
Orthogonal Graph Drawing with
Flexibility Constraints

Study Thesis of

Thomas Bläsius

At the faculty of Computer Science
Institute of Theoretical Informatics (ITI)

Reviewer: Prof. Dr. Dorothea Wagner
Advisors: Dipl.-Inform. Marcus Krug,

Dipl.-Inform. Ignaz Rutter

14. April 2010 – 3. August 2010

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt habe.

Karlsruhe, den 03. August 2010

Thomas Bläsius

Contents

1 Introduction 1
1.1 Outline . 2
1.2 Notation . 3

2 Orthogonal Drawings with Fixed Embedding 7
2.1 Possible Rotation Values . 7
2.2 Computing the Maximum Rotation . 10

2.2.1 Tamassia’s Flow Network . 11
2.2.2 Using the Flow Network to Compute the Maximum Rotation 12

3 Biconnected Graphs with Variable Embedding 15
3.1 Possible Rotation Values . 15
3.2 Replacing Subgraphs . 16
3.3 The SPQR-Tree . 18
3.4 Solving FlexDraw for Biconnected Graphs 20

4 Generalization to Connected Graphs 23

5 Conclusion 25

Bibliography 27

1. Introduction

Since many kinds of data can be expressed as graphs it is an important field of research to
visualize graphs in a human-readable way. A popular convention is the orthogonal graph
drawing convention where edges consist only of vertical and horizontal segments. This
restriction yields potentially very clear drawings since the human eye may easily adapt to
the flow of an edge if it does not have too many bends or crossings with other edges. Hence,
we are interested in orthogonal drawings with few bends that are planar, i.e., two different
edges do not intersect except, possibly, in a common endpoint. Since only planar graphs
with maximum degree 4 admit planar orthogonal drawings we restrict our considerations
to such graphs and call them 4-planar. Unfortunately, not all 4-planar graphs admit planar
orthogonal drawings without bends, for example the K4 and the octahedron, depicted in
Figure 1, require edges with two and three bends, respectively. Hence, one could allow
edges to have bends and try to minimize the number bends. Previous approaches focus on
the minimization of the maximum number of bends per edge or the total number of bends
in the drawing. In typical applications some edges could have varying importance for the
readability depending on their semantic and importance for the application, for example
Figure 2 shows a weighted graph where the number of allowed bends of every edge depends
on its weight. Thus, it is convenient to allow some edges to have more bends than others.
This yields the problem FlexDraw, which asks whether a given 4-planar graph G with a
function flex : E −→ N0 admits a planar orthogonal drawing such that each edge e has at
most flex(e) bends. We call the number of allowed bends expressed by flex(·) the flexibility
of an edge. In this work we give a polynomial-time algorithm for FlexDraw for graphs
with positive flexibility, i.e., for graphs where each edge has positive flexibility.

Figure 1: The K4 on the left requires an edge with two bends, the octahedron on the right
an edge with three bends.

1

2 1. Introduction

Figure 2: Drawings of a weighted graph, where the weights are indicated by the thickness
of the edges. The total number of bends is less in the right drawing, but the left
drawing is clearer since the heavy edges have less bends.

The problem FlexDraw generalizes the well-studied problem to decide whether a given
graph is β-embeddable for some non-negative integer β. A 4-planar graph is β-embeddable
if it admits an orthogonal drawing with at most β bends per edge. Garg and Tamas-
sia [GT01] show that it is NP-hard to decide 0-embeddability for arbitrary 4-planar
graphs, hence it is also NP-hard to minimize the total number of bends. Bertolazzi
et al. [BDD00] give a branch-and-bound algorithm with exponential running time mini-
mizing the total number of bends for biconnected graphs. Di Battista et al. [DLV98] show
that 0-embeddability can be solved in polynomial time for planar graphs with maximum
degree 3 and for series-parallel graphs. On the other hand, Biedl and Kant [BK94] show
that every 4-planar graph admits a drawing with at most two bends per edge with the
only exception of the octahedron, which requires an edge with three bends. Similar re-
sults are obtained by Liu et al. [LMS98]. Liu et al. [LMPS92] also claim to have found
a characterization of the planar graphs with minimum degree 3 and maximum degree 4
that admit an orthogonal drawing with at most one bend per edge. They also claim that
this characterization can be tested in polynomial time. Unfortunately, their paper does
not include any proofs and to the best of our knowledge a proof of these results did not
appear. Katz et al. [KKRW10] introduced the Geodesic Embeddability problem that
considers whether a 4-planar graph admits a planar orthogonal drawing such that all edges
are monotone. They show that this problem is equivalent to 1-embeddability.

While the above mentioned papers consider planar graphs, there are also several results for
plane graphs, i.e., planar graphs with fixed planar embedding. For instance Tamassia’s flow
network can be used to minimize the total number of bends in polynomial time [Tam87].
Note that this solves 0-embeddability for graphs with fixed embeddings whereas the same
problem is NP-hard for graphs with arbitrary embeddings. Tamassia’s flow network is
quite flexible and can for example be modified in a straightforward manner to solve Flex-
Draw for graphs with fixed embedding. Morgana et al. [MdMS04] characterize the class
of plane graphs that admit an orthogonal 1-bend drawing by forbidden configurations.
They also present a quadratic algorithm that either detects a forbidden configuration or
computes a 1-bend drawing.

In this work we describe an efficient algorithm solving FlexDraw for 4-planar graphs with
positive flexibility. Since FlexDraw contains the problem of 1-embeddability as a special
case this closes the complexity gap between the NP-hardness result for 0-embeddability
by Garg and Tamassia [GT01] and the efficient algorithm for computing 2-embeddings by
Biedl and Kant [BK94].

1.1 Outline

In Section 1.2, we fix some notation used in this work. In Section 2, we consider graphs
with fixed embeddings and show that it is impossible to construct rigid graphs, where rigid

2

1.2. Notation 3

s

t

Figure 3: A graph with flexibility 0 for every edge. The angle between s and t is fixed to
720◦.

means that every drawing must be “wound up” as the spiral in Figure 3. Note that the
NP-hardness proof of 0-embeddability by Garg and Tamassia [GT01] crucially relies on
the possibility to construct rigid graphs. In Section 2.1, we show that the construction of
rigid graphs is impossible if we allow at least one bend per edge. In fact we show that it is
sufficient to know the largest possible angle between two designated vertices on the outer
face to know all possible values for this angle. In Section 2.2, we show how to compute
this maximum angle by simply using a variant of Tamassia’s flow network [Tam87].

In Section 3, we drop the planar embedding which was fixed before. In Section 3.1, we
first generalize our results concerning the angle between two designated vertices to graphs
without fixed planar embedding. Again we obtain that computing the maximum angle
would be sufficient to know all possible angles. This shows that the behavior of whole
graphs is similar to the behavior of single edges, where their largest possible angle is
determined by the flexibility. We will see that computing this angle (or deciding that no
valid drawing exists) solves FlexDraw for positive flexibility. In Section 3.2 we show how
to replace subgraphs by simpler graphs. In Section 3.3, we describe the well known SPQR-
tree introduced by Di Battista and Tamassia [DT96a, DT96b]. It decomposes the graph
in smaller, easy to handle subgraphs and can be used to enumerate all planar embeddings.
Putting that together with the replacement of subgraphs yields an efficient algorithm that
solves FlexDraw for 4-planar biconnected graphs with positive flexibility. Finally, in
Section 4, we extend this result to arbitrary 4-planar graphs with positive flexibility.

1.2 Notation

Connectivity and st-Graphs

A graph is connected if there exists a path between any pair of vertices. A separating
k-set is a set of k vertices whose removal disconnects the graph. Separating 1-sets and
2-sets are cutvertices and separation pairs. A graph is biconnected if it does not have
a cut vertex and it is triconnected if it does not have a separation pair. Note that a
triconnected planar graph has a unique embedding up to reflection and the choice of the
outer face [Whi32, Kel80]. The maximal biconnected components of a graph are called
blocks. A bridge is an edge whose removal disconnects the graph.

A weak st-graph is a graph G with two designated vertices s and t such that s and t are
not cutvertices and the graph G+ st is 4-planar, G is an st-graph if G+ st is additionally
biconnected. An orthogonal drawing R of a (weak) st-graph with positive flexibility is
valid if each edge e has at most flex(e) bends and s and t are embedded on the outer face.
A valid orthogonal drawing of a (weak) st-graph is tight if all angles at s and t in inner
faces are 90◦.

3

4 1. Introduction

Orthogonal Representation

The orthogonal representation introduced by Tamassia [Tam87] describes orthogonal draw-
ings of plane graphs (i.e., planar graphs with fixed embedding), by listing the faces as
sequences of bends. The advantage of the orthogonal representation is that it neglects the
lengths of the segments. Thus, it is possible to apply different operations on the drawing,
without the need to worry about the exact geometry.

The orthogonal representation R of a plane graph G contains one lists R(fi) for each
face fi of G, where R(fi) is a circular list of edge descriptions containing the edges on
the boundary of fi in clockwise order (counter-clockwise order if fi is the outer face).
Every edge description r ∈ R(fi) contains three information: edge(r) denotes the edge
represented by r, bends(r) lists the bends of edge(r) where angles of 90◦ and 270◦ are
denoted by 1 and −1 respectively and finally if r′ is the successor of r in R(fi) the
angle α between edge(r) and edge(r′) in fi is represented by angle(r) = −2,−1, 0, 1 for
α = 360◦, 270◦, 180◦, 90◦, respectively. Every edge has exactly two edge descriptions, if r
is one of them, the other is denoted by r̄ and we obtain edge(r) = edge(r̄). The sum over
all bends in bends(r) is denoted by Σ bends(r).

Figure 4a shows an example of an orthogonal drawing. If we enclose each edge description
by 〈·〉 and mark angle(r) bold we obtain the following orthogonal representation:

R(f1) = (〈−1− 1 +1〉, 〈 −2〉, 〈 +1〉, 〈−1− 1 ±0〉)
R(f2) = (〈+1 + 1 +1〉, 〈−1 + 1 +1〉)
R(f3) = (〈−1 + 1 +1〉, 〈+1 + 1 +1〉)

Due to the fact, that every face fi is a rectilinear polygon, it is clear that every orthogonal
representation R of an orthogonal drawing has the following three properties.

(I) The edge description r̄ is consistent with r, which means that bends(r̄) is obtained
by exchanging −1 with 1 in bends(r) and reversing it (an angle of 90◦ forms an angle
of 270◦ in the adjacent face and the bends are traversed in the opposite direction).

(II) The interior bends of any face fi sum up to 4 and the exterior bends to -4:

∑
r∈R(fi)

(Σ bends(r) + angle(r)) =

{
−4, if f is the outer face,

+4, if f is an inner face.

(III) The angles around every node sum up to 360◦.

On the other hand, given a representation R that has Properties I - III we can use the al-
gorithm given by Tamassia [Tam87] to compute an orthogonal drawing efficiently. Hence,
we can consider orthogonal representations instead of drawings and if we make modifica-
tions in a given orthogonal representation, we only have to ensure that the three properties
remain satisfied.

An orthogonal representation R is called normalized if every edge has only bends in one
direction, i.e., either the number of 1s or -1s in bends(r) is zero. Every orthogonal repre-
sentation R can be normalized by successively eliminating the sequences −1+1 and +1−1
in bends(r) and updating bends(r̄) accordingly. It is clear that this operation does not
harm any of the three properties. Hence, it is not a restriction to consider only normalized
orthogonal representations and from now on all orthogonal representations we consider are
implicitly assumed to be normalized.

4

1.2. Notation 5

f1

f2 f3

+1

+1 +1

+1
−1

−1−1

−1

+1
+1 −1

−1

±0

−2

+1

+1+1

+1 +1

+1

(a)

± 0

−2
f1

f2 f3

±0±0

−2 −2+2 +2±0±0

+1

+1+1

+1 +1

+1

(b)

Figure 4: A simple orthogonal drawing (a) and its normalized version (b).

Rotation and the Path from s to t

For a normalized orthogonal representation R it is sufficient to know Σ bends(r) instead
of bends(r). Therefore Σ bends(r) is called the rotation of the edge description r and is
denoted by rotR(r). The value of rotR(r) denotes the number of bends edge(r) has and the
sign determines the direction of the bends (positive to the right, negative to the left). Note
that Property I simplifies to the equation rotR(r) = − rotR(r̄) for normalized orthogonal
representations.

Figure 4b shows the normalized drawing of the orthogonal representation from Figure 4a.
We obtain the following normalized orthogonal representation where the sequence bends(r)
is replaced by the rotation rotR(r):

R(f1) = (〈−2 +1〉, 〈±0 −2〉, 〈±0 +1〉, 〈−2 ±0〉)
R(f2) = (〈+2 +1〉, 〈±0 +1〉)
R(f3) = (〈±0 +1〉, 〈+2 +1〉)

Now we extend the term rotation to other objects than single edges. Let R(fi) be an
orthogonal representation of the face fi and let r, r′ ∈ R(fi) be two edge descriptions such
that r′ is the successor of r. Then the rotation between them is defined as rotR(r, r′) =
angle(r). If fi is the external face and the vertex v incident to edge(r) and edge(r′)
has a unique angle in fi we represent this angle by rotR(v) = rotR(r, r′). Note that
this is the case if v is not a cutvertex. Hence, if G is a (weak) st-graph, we have that
rotR(s) and rotR(t) represent the angles at s and t in the outer face, respectively. For a

π(s, t)

π(t, s)

t

s

(a)

t

s

(b)

st

st

t

s

f`

fr

(c)

Figure 5: An st-graph G where the paths π(s, t) and π(t, s) are depicted dashed and dotted,
respectively, with rot(π(s, t)) = 0, rot(π(t, s)) = −3, rot(s) = 1 and rot(t) = −2
(a). Bending the edges along a cycle in the dualgraph (b) and the flex graph G×

of G (c).

5

6 1. Introduction

path π = (r1, . . . , rk) of consecutive elements in R(fi) the rotation is defined as the total
rotation along this path:

rotR(π) = rotR(r1) +
k∑
i=2

(rotR(ri−1, ri) + rotR(ri))

If it is clear from the context which representation R is meant, we simply write rot(·)
instead of rotR(·).

The paths we normally consider are the paths from s to t and from t to s on the outer face
of (weak) st-graphs. Note that these paths are unique since s and t are not cutvertices. For
a given orthogonal representation R with s and t on the outer face f1 we define the path
π(s, t) as the path of edge descriptions in R(f1) connecting s and t in counter-clockwise
direction. Note that the rotation rotR(π(s, t)) describes the angle between the nodes s and
t. Analogously we define π(t, s) as the path from t to s. Note that Property II yields the
equation rot(π(s, t)) + rot(t) + rot(π(t, s)) + rot(s) = −4. See Figure 5a for an example.

6

2. Orthogonal Drawings with Fixed
Embedding

In this section we consider the situation where G is an st-graph with positive flexibility
flex(·) and fixed planar embedding E such that the vertices s and t are on the outer
face f1. We wish to know for which integers ρ we can find a valid and tight orthogonal
representation R such that rotR(π(s, t)) = ρ. Therefore, we define the maximum rotation
of G with respect to the planar embedding E as maxrotE(G) = maxR∈Ω rotR(π(s, t))
where Ω is the set of all valid orthogonal representations of G with planar embedding E .
In Section 2.1 we will show that at least for every integer −1 ≤ ρ ≤ maxrotE(G) there
exists a valid and tight orthogonal representation R such that rotR(π(s, t)) = ρ, which
shows that rigid graphs do not exist for graphs with positive flexibility. In Section 2.2 we
will show how to compute maxrotE(G) efficiently.

2.1 Possible Rotation Values

To show that we can reach the claimed interval we wish to reduce the rotation on the
path π(s, t) for a given orthogonal representation R, i.e., to construct an orthogonal rep-
resentation R′ such that rotR′(π(s, t)) = rotR(π(s, t)) − 1. We start with the following
observation: Let R be an orthogonal representation of the graph G, let f1, . . . , fk, f1 be a
simple directed cycle in the dual graph G∗ and for an edge (fifi+1) in this cycle let ei be
the corresponding edge in G with the edge descriptions ri ∈ R(fi), r̄i ∈ R(fi+1). Then we
obtain a new orthogonal representation by decreasing rot(ri) and increasing rot(r̄i) by 1
for 1 ≤ i ≤ k; see Figure 5b for an example of such a cycle and the resulting graph. To
prove that the result is again an orthogonal representation we have to check whether Prop-
erties I– III remain satisfied. Since ri is changed consistently with r̄i and the angles around
vertices are not changed it is clear that Properties I and III are satisfied. Property II holds
since each face of G has either none of its edge descriptions changed or exactly one of them
is increased by 1 and exactly one of them is decreased by 1.

Since we are only interested in valid orthogonal representations we delete edges from G∗

that would violate the flexibility of the corresponding edge in G. Additionally, we split
the outer face f1 into f` and fr such that the edges in G∗ belonging to edges on π(s, t) are
separated from the edges belonging to π(t, s). For an example see Figure 5c depicting the
flex graph of the graph from Figure 5a assuming that flex(e) = 1 for every edge e. More
precisely we define the flex graph G× as follows.

7

8 2. Orthogonal Drawings with Fixed Embedding

Let G be a (weak) st-graph with flexibility flex(·) and let R be a valid orthogonal repre-
sentation of G. We start by adding st to G where st is embedded in the outer face f1 such
that f1 is split into f` and fr bounded by π(s, t) and st and by π(t, s) and st, respectively.
We denote the resulting graph by Gs,t and its dual graph by G∗s,t. The flex graph G×

of G with valid orthogonal representation R has the same nodes as G∗s,t. For an edge e
in G let fu and fv be its incident faces in Gs,t and let ru ∈ R(fu) and rv ∈ R(fv) be
the corresponding edge descriptions. We add the edge (fufv) if −flex(e) < rotR(ru) and,
analogously, we add (fvfu) if −flex(e) < rotR(rv). With this definition an edge (fufv)
in G× implies that rot(ru) can be decreased without harming the flexibility of edge(ru).
Additionally a simple directed path f` = f1, . . . , fk = fr in G× represents a cycle in the
dualgraph of G, hence we can decrease rot(ri) and increase rot(r̄i) by 1 as described above
for cycles and obtain a valid orthogonal representation R′ of G. Note that the path starts
in f` and ends in fr, hence we have that rotR′(π(s, t)) = rotR(π(s, t))− 1. The following
lemma shows that such a path always exists if rotR(π(s, t)) ≥ 0, its proof is illustrated in
Figure 6.

Lemma 1. Let G be a weak st-graph with positive flexibility and let R be a valid orthogonal
representation of G with rotR(π(s, t)) ≥ 0. Then the flex graph G× contains a directed
path from f` to fr.

Proof. Assume that G together with the orthogonal representation R is a minimal counter
example such that G× does not contain a simple path from f` to fr. We will use the fact,
that all smaller graphs satisfying the conditions of this lemma cannot be counter examples
to construct a path from f` to fr in G×, which contradicts the assumption that G is a
counter example.

First, we show that G× contains at least one edge starting from f`. Let π(s, t) be composed
of the edge descriptions r1, . . . , rk in R(f1) where f1 is the outer face of G. Then, by
assumption we have

rot(π(s, t)) =
k∑
i=1

rot(ri) +
k∑
i=2

rot(ri−1, ri) ≥ 0

Since the rotation rot(ri−1, ri) between two edges is at most 1, the second sum is strictly
less than k. This yields the following lower bound for the first sum:

k∑
i=1

rot(ri) > −k

Therefore, there must be at least one edge with edge description ri on the path π(s, t) such
that rot(ri) ≥ 0. Due to the fact that G has positive flexibility, the edge corresponding to
edge(ri) starting in f` is contained in the flex graph G×.

Now let (f`fu) be an edge in G×. We distinguish three cases. If fu = fr we are done, since
the edge (f`fu) is a directed path of length 1 from f` to fr in G×.

If fu = f` the corresponding edge e in G is a bridge whose removal does not disconnect s
and t; see Figure 6a for an example. Let H be the connected component in G−e containing
s and t and let S be the restriction of the orthogonal representation R to H. Figure 6b
shows the resulting graph with respect to the graph from Figure 6a. For the outer face
of H we have that rotS(π(s, t)) + rotS(t) + rotS(π(t, s)) + rotS(s) = −4. Since the path
π(t, s) was not changed we have that rotS(π(t, s)) = rotR(π(t, s)). Moreover, since we only
remove edges the angles at s and t do not decrease and thus we have rotS(t) ≤ rotR(t)
and rotS(s) ≤ rotR(s). Hence, we have that rotS(π(s, t)) ≥ −4− rotR(π(t, s))− rotR(s)−

8

2.1. Possible Rotation Values 9

st

st

t

s

f`

fr

(a)

st

st

t

s

f`

fr

fu

(b)

st

st

t

s

fr

f ′
`

(c)

Figure 6: Removing the marked bridge in (a) yields (b), the new flex graph is obtained by
removing the corresponding loop. Removing the marked edge in (b) yields (c),
the faces f` and fu are merged into f ′` to obtain the new flex graph.

rotR(t) = rotR(π(s, t)) ≥ 0. Since H satisfies the conditions of this lemma and has fewer
edges than G it is not a counter example and its flex graph H× contains a path from f`
to fr. Due to the fact that H× is a subgraph of G× this path was also contained in G×

and hence G cannot be a counter example.

Otherwise, fu is an internal face of G. Let e be the edge in G corresponding to (f`fu)
in G×. We consider the graph H that is obtained from G by removing e. If s or t becomes
a cutvertex due to this deletion (i.e., H is no longer a weak st-graph) we additionally
remove the bridges incident to s or t whose removals do not disconnect s and t. Let S be
the restriction of R to H. Note that the flex graph H× is obtained from G× by merging
f` and fu into a single node f ′` (and deleting some edges if we had to remove bridges);
compare with Figure 6b and the resulting graph in Figure 6c. As above we obtain that
rotS(π(s, t)) ≥ 0 and hence in H× there exists a path from f ′` to fr. The corresponding
path in G× (after undoing the contraction of f` and fu) either starts at f` or at fu and
ends at fr. In the former case we have found our path, in the latter case the path together
with the edge (f`fu) forms the desired path. This again contradicts the assumption that
G is a counter example.

With this lemma we can show that the possible values of rot(π(s, t)) form an interval as
mentioned before. However, we first show the existence of tight orthogonal representations
that have nearly the same rotation. Recall that a valid orthogonal representation of an
st-graph is called tight if all angles at s and t in inner faces are 90◦.

Lemma 2. Let G be a weak st-graph with positive flexibility and let R be a valid orthogonal
representation. Then there exists a valid orthogonal representation R′ of G with the same
planar embedding such that R′ is tight, rotR′(π(s, t)) ≥ rotR(π(s, t)) and rotR′(π(t, s)) ≥
rotR(π(t, s)).

Proof. Let f1 be the outer face of G and assume that f2 is an inner face incident to s
whose inner angle at s is larger than 90◦. We show how to decrease this angle by 90◦ by
only changing the number of bends on certain edges. Hence, by applying the described
operation iteratively, we can reduce all internal angles at inner faces incident to s and t
to 90◦.

We will first split the vertex s into two vertices s1 and s2 such that f2 becomes part of the
outer face. Then we will reduce the rotation on the path from s1 to s2 and finally merge
s1 and s2 back to s; see Figure 7 for an illustration of these steps.

Let e1 and e2 be the two edges incident to s such that e1 occurs before e2 when traversing
the boundary of f2 clockwise starting from s. Assume that e1 is incident to f1 (the case that

9

10 2. Orthogonal Drawings with Fixed Embedding

t

se2

e1f2

f1

(a)

t

s1s2

π(s1, s2)

(b)

t

s1
s2

(c)

t

s

f2

f1

(d)

Figure 7: Orthogonal representation that is not tight since s has an angle of 180◦ in f2 (a).
Splitting s into s1 and s2 yields the path π(s1, s2) with rotation at least 4 (b),
hence the rotation can be reduced (c). Merging s1 and s2 back into s yields a
tight orthogonal representation (d).

only e2 is incident to f1 works similarly). We split s into two vertices s1 and s2 and attach
e1 to s1 and the remaining edges incident to s to s2. Let H be the resulting graph and let
S be the orthogonal representation of H induced by R. The graph H with the designated
vertices s1 and s2 is a weak st-graph with positive flexibility. Since f2 is an internal face in
G its total rotation in R is 4 and since the angle at s in f2 was at least 180◦ we have that
rotS(π(s1, s2)) ≥ 4. Hence H satisfies the conditions of Lemma 1 and the flex graph H× of
H contains a simple path that reduces the rotation along π(s1, s2) by 1. This path either
contains an edge stemming from π(s2, t) or an edge of π(t, s1) and hence either increases
rotS(π(s2, t)) or rotS(π(t, s1)) by 1 where the other one remains unchanged. Denote the
resulting orthogonal representation by S ′. We obtain R′ by merging s1 and s2 back into s.
Since rotS′(π(s1, s2)) = rotS(π(s1, s2)) − 1 we increase the rotation at s in f2 by 1 (i.e.,
decrease the angle by 90◦). It is clear that R′ satisfies Properties I–III and we obtain
the claimed inequalities rotR(π(s, t)) = rotS(π(s2, t)) ≤ rotS′(π(s2, t)) = rotR′(π(s, t))
and rotR(π(t, s)) = rotS(π(t, s1)) ≤ rotS′(π(t, s1)) = rotR′(π(t, s)). Note that aside from
changing the numbers of bends on certain edges we did only change angles incident to s.

Given a valid orthogonal representation of a graph with positive flexibility with a non-
negative rotation along the path from s to t Lemma 1 states the existence of another
valid orthogonal representation with the same angles around vertices but reduced rotation
along the path from s to t. On the other hand Lemma 2 states that a valid orthogonal
representation can be made tight such that neither rot(π(s, t)) nor rot(π(t, s)) is decreased
and hence both of them remain nearly unchanged. In the following theorem both lemmas
are combined to show the existence of valid and tight orthogonal representations for all
rotation values between maxrotE(G) and −1.

Theorem 1. Let G be a weak st-graph with positive flexibility and fixed planar embed-
ding E. Then for each ρ ∈ {−1, . . . ,maxrotE(G)} there exists a valid and tight orthogonal
representation R of G with planar embedding E such that rotR(π(s, t)) = ρ.

Proof. Let ρ ∈ {−1, . . . ,maxrotE(G)}. We construct an orthogonal representation R with
rotR(π(s, t)) = ρ as follows. Let R′ be a valid orthogonal representation of G with planar
embedding E such that rotR′(π(s, t)) = maxrotE(G). By Lemma 2 we can make R′ tight
without decreasing rot(π(s, t)). We obtain R by applying Lemma 1 successively until
rotR(π(s, t)) = ρ.

2.2 Computing the Maximum Rotation

In this section we will use a variant of Tamassia’s flow network [Tam87] to compute
maxrotE(G) for a given st-graph G with positive flexibility and fixed planar embedding E .
In Section 2.2.1 we describe the flow network in general and motivate why and how it
works. In Section 2.2.2 we show how to use it for our purpose.

10

2.2. Computing the Maximum Rotation 11

1 1

1

1

1

1

1

1

1

1

1

2

2

1f1

f1

(a)

1

1

1

00
2

0
1

1

1 1

1

(b)

Figure 8: The example in (a) shows Tamassia’s flow network where edges with flow 0 are
omitted and the external face f1 is split up to improve readability. In (b) all
possible configurations for a single vertex are depicted.

2.2.1 Tamassia’s Flow Network

Let G be a 4-planar graph with fixed planar embedding E and given normalized orthogonal
representation R. Before we give a precise definition of Tamassia’s flow network we try
to give an intuition on how to construct a flow network N together with a flow that
represents the orthogonal representation R. The flow network N contains one vertex for
every face and one for every vertex in G, it contains directed edges between adjacent faces
and for every face it contains edges to and from the vertices on its boundary (note that
a vertex can occur multiple times on the boundary of the same face, hence there can be
multiple edges). Let e be an edge in G incident to the faces fu and fv with its two edge
descriptions r ∈ R(fu) and r̄ ∈ R(fv). If rotR(r) is positive we set the flow from fv to fu
to rotR(r), if it is negative we set the flow from fu to fv to − rotR(r). This is consistent
since − rotR(r) = rotR(r̄) (Property I). Let r, r′ ∈ R(f) be two edge descriptions on the
boundary of the face f such that r′ is the successor of r and v is the enclosed vertex. Then
rotR(r, r′) represents the angle at v in f and if it is positive we set the flow on the edge
(v, f) to rotR(r, r′), if it is negative we set the flow on (f, v) to − rotR(r, r′). See Figure 8a
for an example graph with an orthogonal representation and a corresponding flow.

Note that all information contained in the orthogonal representation can be extracted from
the flow. If we construct the described flow from different orthogonal representations we
maintain the following properties that are always satisfied. Since the rotation in every ver-
tex is one of −2,−1, 0, 1 we can restrict the capacities of edges (f, v) to 2 and the capacities
of edges (v, f) to 1. Since the total rotation around every inner face is 4 (Property II) we
have a surplus of four units of flow for every inner face. Analogously, we have a lack of four
units for the outer face. How much lack or surplus of flow a vertex has depends only on the
degree of the vertex, since the sum of angles around every vertex is fixed (Property III);
compare with Figure 8b. Hence, we get a feasible flow by setting sources and sinks with
fixed out- and in-flow according to the surplus and lack of flow, which depends only on the
graph and its planar embedding but not on the orthogonal representation. Finally, if we
have two edges in N stemming from the same edge in G or from the same occurrence of a
vertex in the boundary of a face, then the flow on at least one of them is 0. Note that such
two edges have the same endpoints but they point in opposite directions. A flow in N that
has this property is called normalized. As described above every normalized orthogonal
representation yields a feasible normalized flow in N and two different representations yield
two different flows since all information contained in the orthogonal representation is also
contained in the flow. On the other hand it is easy to see that every feasible normalized

11

12 2. Orthogonal Drawings with Fixed Embedding

fu fv

(fv, fu)

(fu, fv)

(a)

e1

e2

fu fv

(fu, e1, fv)

(fu, e2, fv)

(b)

f v

(v, f)

(f, v)

(c)

f v

(f, v1)

(f, v2)

(d)

Figure 9: If the faces fu and fv are bounded by only one edge like in (a) the edges (fu, fv)
and (fv, fu) are unique. If they are bounded by more edges we denote them like
depicted in (b). If v occurs exactly once in the boundary of f we have unique
edges (f, v) and (v, f) (c). Otherwise we denote them like in (d).

flow in N yields a normalized orthogonal representation, thus we get a bijection between
all normalized orthogonal representations and the feasible normalized flows in N . Hence,
the problem of finding an orthogonal representation satisfying several conditions reduces
to the problem of finding a flow satisfying these conditions. For example the total number
of bends can be minimized by simply solving a minimum cost flow problem. Note that the
planar embedding in this setting is fixed, as the network N depends on the embedding.

To sum up we define the flow network N = (U,D) of a 4-planar graph G = (V,E) with
fixed planar embedding E more precisely as follows. The vertices are defined as U = V ∪F
where F is the set of all faces in G. There are two types of edges D = DF ∪ DV where
DF = E∗ contains the edges from the dual graph of G, i.e., for every edge e ∈ E with
incident faces fu, fv ∈ F we get the two directed edges (fu, fv) and (fv, fu). Since there
can be multiple edges between faces we denote such an edge by (fu, e, fv) and (fv, e, fu)
to make clear which edge is meant (see Figure 9a,b). For every face f ∈ F and for every
vertex v ∈ V that lies on the boundary of f the set DV contains the directed edges (v, f)
and (f, v). Note that v could occur several times on the boundary of the face f , hence we
denote the edges stemming from the ith occurrence of v in the boundary of f by (f, vi) and
(vi, f) (see Figure 9c,d). We define the capacities cap(·) of edges in D as follows. For edges
(fu, fv) ∈ DF we set cap(fu, fv) =∞. For edges (f, v) ∈ DV we set cap(f, v) = 2 and for
(v, f) ∈ Dv we set cap(v, f) = 1. The network N has several sources and sinks with fixed
out- and in-flow. Every inner face is a sink with in-flow 4. The outer face is a source with
out-flow 4. Every vertex with degree 4 and 3 is a source with out-flow 4 and 2, respectively,
and the vertices with degree 1 are sinks with in-flow 2. A flow in N is normalized if we
have flow(fu, e, fv) = 0 or flow(fv, e, fu) = 0 for every two edges (fu, e, fv), (fv, e, fu) ∈ DF

stemming from the same edge e and if flow(f, vi) = 0 or flow(vi, f) = 0 for every pair of
edges (f, vi), (vi, f) ∈ DV stemming from the same occurrence of v in the boundary of f .

There is a bijection between all normalized orthogonal representations of G and all nor-
malized flows in N and this bijection can be computed efficiently. Hence, we can simply
add several restrictions or optimization criteria to the flow network and test whether there
exists a normalized orthogonal representation with these restrictions by simply testing
whether there exists a feasible flow in N or optimize the resulting drawing by solving a
minimum cost flow problem. For example one could set the cost for every unit of flow
over an edge in DF to 1. The resulting flow with minimum cost would yield an orthogonal
drawing that minimizes the total amount of bends on edges.

2.2.2 Using the Flow Network to Compute the Maximum Rotation

Now we use the flow network described in the previous section to compute maxrotE(G) for
a given st-graph G with fixed planar embedding E . First we ensure that the constructed

12

2.2. Computing the Maximum Rotation 13

s

t

f`
frr r̄

π(s, t)

Figure 10: If rot(r) is maximized, rot(π(s, t)) is also maximized and the angles at s and t
in f` are both 90◦.

orthogonal representations are valid, i.e., no edge has more bends than its flexibility allows.
Thus we set the capacity of every edge (fu, e, fv) ∈ DF to flex(e). Since we wish to
maximize the rotation on π(s, t) we could add costs of -1 to edges (fu, e, f1) and costs
of 1 to edges (f1, e, fu) where f1 is the outer face and e is an edge on the path from s
to t. By solving this minimum cost flow problem we either compute a valid orthogonal
representation of G with planar embedding E that maximizes rot(π(s, t)) or decide that
such an orthogonal representation does not exist.

The same result can be achieved faster if we use only maximum flows instead of minimum
cost flows and exploit the planarity of N to compute these maximum flows. The resulting
running time is stated in the following theorem.

Theorem 2. Given a weak st-graph G with fixed planar embedding E with s and t on the
outer face we can compute maxrotE(G) in O(n3/2) time or decide that G does not admit
a valid orthogonal representation with this embedding.

Proof. We add to G the edge st and embed it into the outer face such that we split it into
two parts f` and fr where f` is bounded by π(s, t) and st and fr is the outer face of G+st.
We claim that in a valid orthogonal representation of G + st that maximizes rot(r) with
its embedding we have that maxrotE(G) = rot(r) + 2, where r is the edge description of
st in the outer face fr. Figure 10 illustrates this claim and its proof.

The total rotation around the face f` is 4 where the rotation in the vertices s and t is
at most 1. This yields the inequality rot(r̄) + rot(π(s, t)) ≥ 2. Since rot(r) = − rot(r̄)
we get rot(π(s, t)) ≥ rot(r) + 2 and hence maxrotE(G) ≥ rot(r) + 2. On the other hand,
by Theorem 1, we can find a tight orthogonal representation of G with rot(π(s, t)) =
maxrotE(G). We can add the edge st such that the angles at s and t in f` are 90◦. Thus,
their rotation is 1 and we get for r a rotation of maxrotE(G) − 2. Hence we obtain the
inequality maxrotE(G) ≤ rot(r) + 2 which yields the claim.

It remains to show that we can maximize rot(r) efficiently. First, we construct the flow
network with capacity constraints as described above ensuring that the flow over every edge
is not greater than its flexibility (where we get infinite capacity for the edges corresponding
to st). Then we can compute a flow with multiple sinks and sources to compute a valid
orthogonal representation of G or decide that there is no such representation. Since the
flow network is planar and the in- and out-flow of the sinks and sources is fixed this can
be done in O(n3/2) time [MN95].

Once we have a flow yielding a valid orthogonal representation we wish to maximize the
flow over the edge (fr, st, f`). We delete the edges (fr, st, f`) and (f`, st, fr) from the
residual network. To maximize the flow on (fr, st, f`) we wish to find as many augmenting
paths as possible from f` to fr. Hence we simply compute a maximum flow from f` to fr
in the residual network without the edges stemming from st. Since this network is planar
and the source f` and the sink fr lie on the same face a maximum flow can be computed
in O(n) time [HKRS97].

13

14 2. Orthogonal Drawings with Fixed Embedding

Until now we considered the possible values for rot(π(s, t)) we obtain for a given planar
graph with positive flexibility and fixed planar embedding. We showed that at least all
values between the maximum rotation and −1 can be achieved. Hence, the maximum
rotation gives a good hint on how a plane graph behaves and we provided an algorithm
computing it efficiently. In the following we extend these results to graphs with variable
embeddings.

14

3. Biconnected Graphs with Variable
Embedding

Until now the planar embedding of our input graph was fixed. Now, we assume that
this embedding is variable. Following the approach of the previous section, we define
the maximum rotation of an st-graph G as maxrot(G) = maxE∈Ψ maxrotE(G) where Ψ
contains all planar embeddings of G such hat s and t are embedded on the outer face.

In Section 3.1 we will show that the possible values for rot(π(s, t)) form an interval depend-
ing only on maxrot(G), deg(s) and deg(t). In Section 3.2 we will show how to exploit this
property to replace subgraphs with other subgraphs without changing maxrot(G). This
leads to the definition of very simple gadgets that can model the behaviour of all possi-
ble weak st-graphs. In Section 3.4 we will use the SPQR-tree introduced in Section 3.3
to compute maxrot(G) for st-graphs or decide that G does not admit a valid orthogonal
representation, where the replacement of subgraphs with our gadgets reduces the number
of embeddings from exponentially to linearly many. This can be used to solve FlexDraw
for biconnected graphs.

3.1 Possible Rotation Values

We restrict our considerations to st-graphs where deg(s), deg(t) ≤ 2. We say that such an
st-graph is of Type (1,1) if deg(s) = deg(t) = 1, it is of Type (1,2) if s or t has degree 1
and the other one has degree 2 and it is of Type (2,2) if deg(s) = deg(t) = 2. We get the
following technical lemma.

Lemma 3. Let G be an st-graph with deg(s),deg(t) ≤ 2 and let R be a tight orthogonal
representation of G. Then rot(π(s, t)) + rot(π(t, s)) = −x where x is 0,1 and 2 for graphs
of Type (1,1), (1,2) and (2,2), respectively.

Proof. SinceR satisfies Property II we have that rot(π(s, t))+rot(t)+rot(π(t, s))+rot(s) =
−4. If s has degree 1 we have that rot(s) = −2. If deg(s) = 2 holds then s is incident to
exactly one inner face and by assumption it has an angle of 90◦ in this face. Hence, in the
outer face there is an angle of 270◦ and thus rot(s) = −1. As the same analysis holds for
t the claim follows.

The following theorem shows that the possible rotation values of an st-graph form an
interval that is nearly symmetrically to 0.

15

16 3. Biconnected Graphs with Variable Embedding

Theorem 3. Let G be an st-graph with positive flexibility and let ρ be an integer. Then
there exists a valid and tight orthogonal representation R of G with rot(π(s, t)) = ρ if
and only if −maxrot(G) − x ≤ ρ ≤ maxrot(G) where x depends on the Type of G and
x = 0, 1, 2 for Types (1,1), (1,2) and (2,2), respectively.

Proof. We first show the only if part. Let R be any orthogonal representation of G. By
the definition of maxrot(G) we clearly have that rotR(π(s, t)) ≤ maxrot(G). By definition
we also have that rotR(π(t, s)) ≤ maxrot(G) (otherwise by mirroring we could obtain an
orthogonal representation R′ with rotR′(π(s, t)) > maxrot(G)) and hence with Lemma 3
we obtain − rot(π(s, t))− x ≤ maxrot(G).

It remains to show that for any given ρ in the range we can find a valid and tight orthogonal
representation. By definition of maxrot(G) it is clear that we find a planar embedding E
such that maxrotE(G) = maxrot(G). Thus, if −1 ≤ ρ ≤ maxrot(G), by Theorem 1 we
find a valid and tight orthogonal representation such that rot(π(s, t)) = ρ. If ρ ≤ −2, by
Lemma 3 we need to find a valid orthogonal representation R with rotR(π(t, s)) = −ρ −
x =: ρ′. Note that by the definitions of ρ and x we have that 0 ≤ ρ′ ≤ maxrot(G). Thus by
Theorem 1, we obtain a valid orthogonal representation R′ of G with rotR′(π(s, t)) = ρ′.
We obtain the desired orthogonal representation R by mirroring R′.

Corollary 1. Let G be an st-graph with positive flexibility. If G admits a valid orthogonal
drawing then maxrot(G) ≥ 1 if G is of Type (1,1) or (1,2) and maxrot(G) ≥ −1 if G is
of Type (2,2).

Proof. If s or t has degree 1 and G admits a valid orthogonal representation, then the
range of all possible rotations covers at least three integers, since the edge incident to
s or t, respectively, can have the rotation -1, 0 and 1. If maxrot(G) < 1 for graphs of
Type (1,1) or (1,2) Theorem 3 yields a range that covers less then three different integers
(or is completely degenerated), which contradicts the assumption that G admits a valid
orthogonal representation. If maxrot(G) < −1 and G is of Type (2,2) then Theorem 3
yields an empty range, which again contradicts the assumption that G admits a valid
orthogonal representation.

In this section we saw that the possible values for rot(π(s, t)) form an interval that is nearly
symmetric around 0. Note that the “nearly” symmetric stems only from the way how we
measure the rotation: rot(π(s, t)) is not exactly the negation of rot(π(t, s)) if deg(s) and
deg(t) are not both 1. Now, considering for example a graph of Type (1,1), we find that
this graph behaves exactly like a single edge with flexibility maxrot(G).

3.2 Replacing Subgraphs

In Section 3.1, we have seen, that the possible values for the rotation on the path from
s to t only depend on the maximum rotation and the degrees of s and t. Thus, two
graphs of the same type with the same maximum rotation are in a sense equivalent. If
we consider for example a graph of Type (1,1), i.e., s and t have degree 1, with maximum
rotation ρ, then we have that the rotation can take all values between −ρ and ρ. Hence
the whole graph behaves similar to a single edge with flexibility ρ. We will now use this
equivalence to show that we can replace subgraphs with other graphs of the same type
with the same maximum rotation without changing the maximum rotation of the whole
graph. Afterwards, we will give three very simple families of graphs, one for each Type of
st-graph, called gadgets. These gadgets extend the idea of replacing graphs of Type (1,1)
with single edges to graphs of Types (1,2) and (2,2).

16

3.2. Replacing Subgraphs 17

fr

f`

v

u

s

t

H

(a)

fr

f`
H

v

u

s

t

(b)

H ′

fr

f`

v

u

s

t

(c)

Figure 11: Illustration of Lemma 4, st-graph G with split pair {u, v} splitting off H (a),
replacement of H with a tight orthogonal representation (b) and replacement
of H with a graph H ′ with maxrot(H) = maxrot(H ′) = 3 (c).

A pair of vertices {s, t} is called a split pair if st is an edge in G or if {s, t} is a separation
pair. The split components with respect to the split pair {s, t} are the maximal subgraphs
Hi of G such that Hi contains s and t but {s, t} is not a separation pair in Hi. For
example {u, v} in Figure 11a is a split pair and the black and gray subgraphs are the split
components with respect to {u, v}.

Lemma 4. Let G be an st-graph with positive flexibility and let {u, v} be a split pair of G
with a split component H such that the union of all other split components G− contains
s and t and H is an st-graph of Type (1,1), Type (1,2) or Type (2,2) (with respect to the
vertices u and v). Let H ′ be a graph with designated vertices u′, v′ of the same type as H
with maxrot(H ′) = maxrot(H).

Then G admits a valid orthogonal representation R with rotR(π(s, t)) = ρ if and only if
the graph G′ that is obtained from G by replacing H with H ′ admits a valid orthogonal
representation R′ with rotR′(π(s, t)) = ρ.

Proof. Given a valid orthogonal representation R of G we wish to find a valid orthogonal
representation R′ of G′ such that rotR′(π(s, t)) = rotR(π(s, t)). The other direction is
symmetric.

We first treat the case that H is of Type (1,1). Let S be the restriction of R to H. By
Theorem 3 we have that rotS(π(u, v)) ∈ {−maxrot(H), . . . ,maxrot(H)} and hence, again
by Theorem 3, there exists a valid orthogonal representation S ′ of H ′ with rot(π(u′, v′)) =
rot(π(u, v)). Since H is of Type (1,1) we have that rotS′(u

′) = rotS(u), rotS′(v
′) = rotS(v),

rotS′(π(u′, v′)) = rotS(π(u, v)) and rotS′(π(v′, u′)) = rotS(π(v, u)). Hence by plugging
S ′ into the restriction of the orthogonal representation R to G− we obtain the desired
representation R′ of G′.

In the case where H is of Type (1,2) we can assume that u has degree 2 and deg(v) = 1.
Then the angle at u in fi is 90◦ or 180◦ where fi is the inner face of H incident to u. If
this angle is 90◦, i.e., S is tight, we replace it by a corresponding tight representation of
H ′ with the same rotation, which exists by Theorem 3. For the case where we have an
angle of 180◦ at u in fi we show how to construct an orthogonal representation R+ of G
having the same planar embedding as R such that rotR+(π(s, t)) = rotR(π(s, t)) and the
angle at u in fi is 90◦. Then R′ can be constructed from R+ as above. These two steps
are illustrated in Figure 11

By Lemma 2 there exists a valid and tight orthogonal representation S+ of H with either
rotS+(π(u, v)) = rotS(π(u, v)) or rotS+(π(v, u)) = rotS(π(v, u)). Without loss of generality
assume the former, the other case is symmetric. Since we have increased the outer angle
at u we have that rotS+(u) = rotS(u) − 1 and hence rotS+(π(v, u)) = rotS(π(v, u)) + 1.
Let f` and fr be the faces in G whose boundaries contain π(u, v) and π(v, u), respectively.

17

18 3. Biconnected Graphs with Variable Embedding

ρ

s

t

(a) Gρ1,1

ρ

1
1

s

t

v

(b) Gρ1,2

ρ+ 2
s

t
ρ+ 2

(c) Gρ2,2

Figure 12: Gadgets for st-graphs with maximum rotation ρ depending on the Type.

Then we obtain R+ by plugging S+ into the restriction of R to G− such that the angle
at u in fr is increased by 90◦ to 180◦. Since the angle at u in fi was decreased by 90◦

the sum of angles around u remains 360◦. Additionally, by increasing the angle at u in
fr, its rotation is decreased by 1, which compensates the increased rotation along π(v, u).
Hence R+ is the claimed orthogonal representation. This finishes the treatment of graphs
of Type (1,2). Graphs of Type (2,2) can be treated analogously.

In Section 3.1, we characterized which values are possible for the rotation on the path from
s to t. These possible values form an interval depending only on the maximum rotation
and the type of the graph. With Lemma 4 we know that this rotation characterizes a
graph, i.e., the replacement of subgraphs with other graphs having the same maximum
rotation and type does not change the maximum rotation of the whole graph.

We now present the three gadgets, for st-graphs of Type (1,1), Type (1,2) and Type (2,2);
see Figure 12. Let ρ be an integer. The graph Gρ1,1 is simply an edge st with flex(st) =
ρ. The graph Gρ1,2 has three vertices s, v, t and two edges between t and v, both with
flexibility 1, and the edge vs with flexibility ρ. The gadget Gρ2,2 consists of two parallel
edges between s and t, both with flexibility ρ + 2. Note that by Corollary 1 all edges
of our gadgets have again positive flexibility and that maxrot(Gρ1,1) = maxrot(Gρ1,2) =
maxrot(Gρ2,2) = ρ. Moreover, each of these graphs has an essentially unique embedding
with s and t on the outer face.

3.3 The SPQR-Tree

Let G be a biconnected planar graph. Recall that a pair of vertices {s, t} is called a split
pair if st is an edge in G or if {s, t} is a separation pair. The split components with respect
to the split pair {s, t} are the maximal subgraphs Hi of G such that Hi contains s and t
but {s, t} is not a separation pair in Hi; see Figure 13 for an example. The idea behind
the SPQR-Tree introduced by Di Battista and Tamassia [DT96a, DT96b] is the following.
Given a biconnected planar graph G and a split pair {s, t} one can replace every split
component by a single edge called virtual edge associated with the split component, the
resulting graph is called a skeleton and can be seen as a sketch of the graph. Then all

s

t

s

t

s

t

s

t

Figure 13: A graph with the split pair {s, t} on the left and its corresponding split com-
ponents on the right.

18

3.3. The SPQR-Tree 19

s

t

P1

P1

S1

S2

R1

S3R2 P2

S4

S1

S2

R1

P1

Figure 14: Since {s, t} is a split pair of the graph in the top left we obtain the P-node P1

with one subgraph associated with every edge in skel(P1). Further decompo-
sition of these subgraphs yields the S-nodes S1 and S2 and the R-node R1.
The resulting SPQR-tree is shown on the bottom. Note that the Q-nodes are
omitted and the edges associated with the parent are depicted as dashed line.

planar embeddings of G having s and t on the outer face are obtained by combining all
embeddings of the skeleton with the embeddings of the split components represented by
the virtual edges such that every split component has s and t on the outer face.

For a graph G with two designated vertices s and t, called the poles of G, such that G+st is
biconnected, we obtain the SPQR-tree T , representing all planar embeddings of G having
s and t on the outer face, by computing the root µ of T , i.e., computing the skeleton
skel(µ) and graphs H1, . . . ,Hk associated with the virtual edges in skel(µ). The children
of µ in T are obtained by computing the SPQR-tree for each subgraph Hi recursively.
Four different cases can be distinguished; see Figure 14 for an example of the recursive
decomposition of a graph, yielding its SPQR-tree.

Base Case: If G consists of a single edge from s to t then T = µ is a single Q-node whose
skeleton is G itself.
Series Case: If G is not biconnected µ is an S-node. Let v2, . . . , vk be the cutvertices
ordered from s to t, set v1 = s and vk+1 = t and let Hi be the block containing vi and
vi+1. Then skel(µ) contains the k virtual edges vivi+1 for i = 1, . . . , k, each associated
with the SPQR-Tree of Hi (with respect to its poles vi, vi+1) and additionally it contains
the edge st associated with the parent of µ.
Parallel Case: If {s, t} is a split pair in G with the split components H1, . . . ,Hk then µ is
a P-node and skel(µ) consist of the two nodes s and t with k parallel edges each of them
associated with one component Hi plus one additional edge from s to t associated with

19

20 3. Biconnected Graphs with Variable Embedding

the parent of µ.
Rigid Case: If none of the above cases applies µ is an R-node and we consider the maximal
split pairs {u1, v1}, . . . , {uk, vk} with respect to s and t. A split pair {u, v} is called maximal
if for all other split pairs {u′, v′} the vertices u and v are in the same split component
together with s or t. Let Hi be the union of all split components concerning {ui, vi} that
contain neither s nor t except from the case where s or t is part of the split pair. Then
skel(µ) is obtained by replacing every Hi with the edge uivi associated with the subgraph
Hi and adding the edge st associated with the parent of µ. In the next recursion step Hi

has the poles ui and vi. Note that skel(µ) is 3-connected.

If µ is an S-, P- or R-node, it has virtual edges e1, . . . , ek associated with its children
µ1, . . . , µk such that µi is the root of the SPQR-tree of the graph Hi. We call Hi the
pertinent graph of µi and the expansion graph of ei. We denote the pertinent graph of a
node µ by pert(µ).

The resulting tree T is rooted and we obtain all embeddings with s and t on the outer face
by combining all planar embeddings of skel(µ) having the virtual edge associated with the
parent (depicted as dashed lines in Figure 14) on the outer face for every node µ in T .
By choosing an other pair of nodes s and t as initial split pair we obtain the same tree
with an other root. Since there is exactly one Q-node for every edge e one could choose
this Q-node as root to represent all planar embeddings with e on the outer face, thus we
obtain all planar embeddings by rooting T in every Q-node once. Hence, to obtain all
planar embeddings of the graph G it is sufficient to consider the embeddings of skel(µ) for
the nodes µ in T . If µ is an S-node, skel(µ) has only one embedding. If it is a P-node,
it consists of k parallel edges and one additional edge fixed on the outer face representing
the parent. Hence, we obtain all planar embeddings of skel(µ) by choosing a permutation
for the k parallel edges. Thus, there are k! different planar embeddings. If µ is an R-node
its skeleton is 3-connected and the edge associated with the parent is fixed to the outer
face. Hence, we have a unique embedding except for flipping around its poles.

Note that the SPQR-tree T of a planar graph G with n vertices has O(n) nodes and the
total size of all skeletons is in O(n). Moreover, the SPQR-tree of G can be computed in
linear time [GM01].

3.4 Solving FlexDraw for Biconnected Graphs

In Section 2.2 we have seen how to compute the maximum rotation for graphs with fixed
embedding. We will now use the SPQR-tree to compute the maximum rotation for st-
graphs with variable embedding. By identifying every edge in an arbitrary biconnected
4-planar graph with st we can decide whether the graph admits a valid orthogonal repre-
sentation, i.e., we solve FlexDraw for biconnected graphs with positive flexibility.

We first describe an algorithm that computes maxrot(G) for a given 4-planar st-graph G
with positive flexibility or decides that G does not admit a valid orthogonal representation.
We use the SPQR-tree T of G+ st, rooted at the Q-node corresponding to st to represent
all planar embeddings of G with s and t on the outer face. Our algorithm processes the
nodes of the SPQR-tree in a bottom-up fashion and computes the maximum rotation of
each pertinent graph from the maximum rotations of the expansion graphs of its edges,
i.e., the pertinent graphs of its children. For each node µ of the SPQR-tree we maintain
a variable maxrot(µ). We will prove later that after processing a node we have that
maxrot(µ) = maxrot(pert(µ)). For each Q-node µ we initialize maxrot(µ) to be the
flexibility of the corresponding edge. We now show how to compute maxrot(µ) from the
maximum rotations of its children. We make a case distinction based on the type of µ.

20

3.4. Solving FlexDraw for Biconnected Graphs 21

If µ is an R-node let µ1, . . . , µk be the children of µ corresponding to the virtual edges
e1, . . . , ek in skel(µ) and let H1, . . . ,Hk be their pertinent graphs. Each virtual edge
ei = (vi, v

′
i) represents at least one incidence in G to vi and v′i. Since skel(µ) is 3-connected

each node in skel(µ) has at least degree 3 and hence, since G is 4-planar, no virtual edge
can represent more than two incidences, i.e., the poles vi and v′i have at most degree 2
in the pertinent graph Hi of µi. Hence, pert(µi) is of Type (1,1), (1,2) or (2,2). As we
already know their maximum rotations we can simply replace each of the graphs by a
corresponding gadget; we call the resulting graph Gµ. Since the embeddings of all gad-
gets are completely symmetric it is sufficient to compute the maximum rotations of Gµ
for the only two embeddings E1 and E2 induced by the embeddings of skel(µ). We set
maxrot(µ) = max{maxrotE1(Gµ),maxrotE2(Gµ)} if one of them admits a valid represen-
tation. Otherwise we stop and return “infeasible”.

If µ is a P-node we treat µ similar as in the case where µ is an R-node. Again, we have
that each pole has degree at least 3 in skel(µ) and hence no virtual edge can represent
more than two edge incidences. We replace each virtual edge with the corresponding
gadget and try all possible embeddings of skel(µ), which are at most six, and store the
maximum rotation or stop if none of the embeddings admits a valid representation.

If µ is an S-node let µ1, . . . , µk be the children of µ. We compute maxrot(µ) as

maxrot(µ) =
k∑
i=1

maxrot(µi) + k − 1

Theorem 4. Given a 4-planar st-graph G with positive flexibility we can compute maxrot(G)
in O(n3/2) time or decide that G does not admit a valid orthogonal representation with s
and t on the outer face.

Proof. We prove the invariant that after processing the node µ we have maxrot(µ) =
maxrot(pert(µ)). The proof is by induction on the height h of the SPQR-tree T of G+ st,
rooted at the Q-node corresponding to st. Let µ be the root of T .

If h = 1 then G is a single edge e and µ its corresponding Q-node. Since maxrot(G) =
flex(e) the claim holds. For h > 1 let µ1, . . . , µk be the children of µ. By induction we have
that maxrot(µi) = maxrot(pert(µi)) for i = 1, . . . , k. We make a case distinction based on
the type of µ.

If µ is an R- or a P-node then by Lemma 4 we have that maxrot(Gµ) = maxrot(pert(µ))
and since the gadgets have a unique embedding we consider all relevant embeddings of Gµ.
Due to Corollary 1 all edges inGµ have positive flexibility thus we can compute maxrot(Gµ)
efficiently with Theorem 2. If none of the embeddings admits a valid orthogonal representa-
tion then obviously also pert(µ) and thus G do not admit valid orthogonal representations.

If µ is an S-node and the pertinent graphs of its children admit valid orthogonal rep-
resentations then there always exists a valid orthogonal representation of pert(µ). Let
H1, . . . ,Hk be the pertinent graphs of the children of µ and let v1, . . . , vk+1 be the vertices
in skel(µ) such that vi and vi+1 are the poles of Hi. By the definition of maxrot and
by Theorem 1 there exist tight orthogonal representations R1, . . . ,Rk of H1, . . . ,Hk with
rot(π(vi, vi+1)) = maxrot(µi). We put these orthogonal representations together such that
the angles at the nodes v2, . . . , vk on π(v1, vk+1) are 90◦. Hence, we get an orthogonal
representation of pert(µ) with rot(π(v1, vk+1)) =

∑k
i=1 maxrot(µi) + k − 1. On the other

hand if we had an orthogonal representation of pert(µ) with a higher rotation, then at
least one of its children µi would need to have a rotation that is bigger than maxrot(µi).
This would contradict the assumption that maxrot(µi) was computed correctly for each
child of µ.

21

22 3. Biconnected Graphs with Variable Embedding

This proves the correctness of the algorithm. For the running time note that the SPQR-
tree can be computed in linear time [GM01]. We can compute maxrot(µ) for a given node
µ from the maximum rotations of its children in O(| skel(µ)|3/2) time by Theorem 2 since
each skeleton has only a constant number of embeddings. The total running-time follows
from the fact that the total size of all skeletons is in O(n).

This theorem can be used to solve FlexDraw for biconnected 4-planar graphs with posi-
tive flexibility. Such a graph G admits a valid orthogonal representation if and only if one
of the graphs G − e, e ∈ E(G), which is an st-graph with respect to the endpoints of e,
admits a valid orthogonal representation such that e can be added to this representation.
This can be done if and only if maxrot(G− e) + flex(e) ≥ 2. This can be seen as follows.
Let s and t be the endpoints of e. Adding e to G − e creates a new interior face and the
total rotation of this new face needs to be 4. We can have at most two 90◦ angles at s
and t, hence maxrot(G − e) + flex(e) ≥ 2 is a necessary condition. On the other hand,
it is not hard to see that it is possible to add e to a tight orthogonal representation of
G− e with rot(π(s, t)) + flex(e) ≥ 2. If flex(e) ≥ 3 then we can add e to a tight orthogonal
representation of G − e with rot(π(s, t)) = −1, which exists since maxrot(G) is at least
−1 by Corollary 1. Otherwise, we add e to a tight orthogonal representation of G − e
with rot(π(s, t)) = 2− flex(e), which is possible since 2− flex(e) ≥ −1 holds in this case.
We obtain the following theorem; the running time is due to O(n) applications of the
algorithm for st-graphs.

Theorem 5. FlexDraw can be solved in O(n5/2) time for biconnected 4-planar graphs
with positive flexibility.

22

4. Generalization to Connected Graphs

In this section we generalize our results to connected 4-planar graphs that are not nec-
essarily biconnected. To do that we first analyze for a single cutvertex which properties
every cut component needs to have such that we can find a valid orthogonal representation
of the whole graph. Afterwards we will use the block-cutvertex tree to decide whether a
connected 4-planar graph admits a valid orthogonal drawing.

Lemma 5. Let G be a connected 4-planar graph with cutvertex v and corresponding cut
components H1, . . . ,Hk. Then G admits a valid orthogonal representation if and only if
all cut components Hi have valid orthogonal representations such that at most one of them
does not have v on the outer face.

Proof. The only if part is clear since a valid orthogonal representation of G induces valid
orthogonal representations of all cut components Hi such that at most one of them does
not have v on its outer face.

Now, for i = 1, . . . , k let Si be valid orthogonal representations of the cut components Hi

such that at most one of them does not have v on its outer face.

If all of them have v on their outer face then by Lemma 2 we can assume that these
representations are tight. Then it is clear that the components H1, . . . ,Hk can be merged
together in v maintaining their representations Si.

Otherwise, one of the representations, without loss of generality S1, does not have v on the
outer face. If v has degree greater than 1 in at most one component we can simply merge
the corresponding representations as bridges can always be added. The only problem that
can arise is that there are exactly two components H1 and H2 such that v has degree 2 in
both of them and both angles incident to v in H1 are 180◦. We resolve this situation by
either increasing or decreasing the number of bends of an incident edge and changing the
angles at v appropriately.

Recall that the maximal biconnected components of a graph are called blocks. The block-
cutvertex tree of a connected graph is a tree whose nodes are the blocks and cutvertices of
the graph. In the block-cutvertex tree a block B and a cutvertex v are joined by an edge
if v belongs to B. Now let G be a connected 4-planar graph with positive flexibility and
B its block-cutvertex tree. Let further B be a block of G that is a leaf in B and let v be
the unique cutvertex of B.

23

24 4. Generalization to Connected Graphs

If B is the whole graph G we return “true” if and only if G admits any valid orthogonal
representation. This can be checked with the algorithm from the previous Section.

If B is not the whole graph G we check whether B admits a valid orthogonal representation
having v on its outer face. This can be done with the algorithm from the previous section
by rooting the SPQR-tree of B at all edges incident to v. If it does admit such an
representation then by Lemma 5 G admits a valid orthogonal representation if and only if
the graph G′, which is obtained from G by removing the block B, admits a valid orthogonal
representation. We check G′ recursively. If B does not admit such an representation we
mark B and proceed with another unmarked leaf. If we ever encounter another block B′

that has to be marked we return “infeasible”. This is correct as in this case B has to be
embedded in the interior of B′ and vice versa, which is obviously impossible. Checking
a single block B can be done in O(|B|5/2) time by Theorem 5. Since the total size of all
blocks is in O(n) the total running-time is O(n5/2). This proves the following theorem.

Theorem 6. FlexDraw can be solved in O(n5/2) time for 4-planar graphs with positive
flexibility.

24

5. Conclusion

In this work we have considered the problem FlexDraw, which deals with the question
if a 4-planar graph with a given flexibility function flex(·) admits an orthogonal drawing
such that each edge e has at most flex(e) bends.

We have shown that FlexDraw can be solved efficiently for graphs with positive flexibility
by computing the maximum rotation for every pair of adjacent vertices. This computation
relies on the fact that the possible rotation values for every graph form an interval around 0
and hence every graph behaves similar, depending only on the maximum rotation. This
fact followed from the impossibility to construct rigid graphs. With this knowledge we were
able to compute the maximum rotation considering all planar embeddings by traversing
the SPQR-tree, where the replacement of processed subgraphs by simple gadgets with the
same behavior reduced the number of embeddings we really had to consider to linearly
many. For every embedding we considered we used a variant of Tamassia’s flow network to
compute the maximum rotation or decide that the graph does not admit a valid orthogonal
representation with respect to the fixed planar embedding. Since the SPQR-tree can only
be used for biconnected graphs we finally used the BC-tree to extend our result to not
necessarily biconnected graphs. The resulting algorithm solves FlexDraw in O(n5/2)
time. This running time stems from linearly many flow computations.

A straightforward extension to the described algorithm would be the generalization to
positive flexibility functions flex : E −→ N ∪ {∞}, i.e., some edges may be bent arbitrar-
ily often. Since FlexDraw can be solved in polynomial time for graphs with positive
flexibility but is NP-hard if flex(e) = 0 for all edges e [GT01], it is an interesting open
question whether FlexDraw can still be solved in polynomial time if few edges are re-
quired to have no bends. For example one could try to use the results for 0-embeddability
concerning graphs with maximum degree 3 and series-parallel graphs [DLV98] to solve
FlexDraw if the subgraph induced by the edges with flexibility 0 has maximum degree 3
or is series-parallel. Or even simpler, one could require only a tree, forest, matching or
constantly many edges to have 0 bends.

25

Bibliography

[BDD00] P. Bertolazzi, G. Di Battista, and W. Didimo, “Computing orthogonal draw-
ings with the minimum number of bends,” IEEE Transactions on Computers,
vol. 49, no. 8, pp. 826–840, 2000.

[BK94] T. Biedl and G. Kant, “A better heuristic for orthogonal graph drawings,”
in Algorithms – ESA ’94, ser. Lecture Notes in Computer Science, vol. 855.
Springer, 1994, pp. 24–35.

[DLV98] G. Di Battista, G. Liotta, and F. Vargiu, “Spirality and optimal orthogonal
drawings,” SIAM Journal on Computing, vol. 27, no. 6, pp. 1764–1811, 1998.

[DT96a] G. Di Battista and R. Tamassia, “On-line maintenance of triconnected com-
ponents with spqr-trees,” Algorithmica, vol. 15, no. 4, pp. 302–318, 1996.

[DT96b] G. Di Battista and R. Tamassia, “On-line planarity testing,” SIAM Journal
on Computing, vol. 25, no. 5, pp. 956–997, 1996.

[GM01] C. Gutwenger and P. Mutzel, “A linear time implementation of spqr-trees,” in
Proceedings of the 8th International Symposium on Graph Drawing (GD ’00),
ser. Lecture Notes in Computer Science, vol. 1984. Springer, 2001, pp. 77–90.

[GT01] A. Garg and R. Tamassia, “On the computational complexity of upward and
rectilinear planarity testing,” SIAM Journal on Computing, vol. 31, no. 2, pp.
601–625, 2001.

[HKRS97] M. R. Henzinger, P. Klein, S. Rao, and S. Subramanian, “Faster shortest-
path algorithms for planar graphs,” Journal of Computer and System Sciences,
vol. 55, pp. 3–23, 1997.

[Kel80] A. K. Kelmans, “Concept of a vertex in a matroid and 3-connected graphs,”
Journal of Graph Theory, vol. 4, no. 1, pp. 13–19, 1980.

[KKRW10] B. Katz, M. Krug, I. Rutter, and A. Wolff, “Manhattan-geodesic embedding of
planar graphs,” in Proceedings of the 17th International Symposium on Graph
Drawing (GD ’09), ser. Lecture Notes in Computer Science, D. Eppstein and
E. Gansner, Eds., vol. 5849. Springer, 2010, pp. 207–218.

[LMPS92] Y. Liu, P. Marchioro, R. Petreschi, and B. Simeone, “Theoretical results on at
most 1-bend embeddability of graphs,” Acta Mathematicae Applicatae Sinica
(English Series), vol. 8, no. 2, pp. 188–192, 1992.

[LMS98] Y. Liu, A. Morgana, and B. Simeone, “A linear algorithm for 2-bend embed-
dings of planar graphs in the two-dimensional grid,” Discrete Applied Mathe-
matics, vol. 81, no. 1–3, pp. 69–91, 1998.

[MdMS04] A. Morgana, C. P. de Mello, and G. Sontacchi, “An algorithm for 1-bend
embeddings of plane graphs in the two-dimensional grid,” Discrete Applied
Mathematics, vol. 141, no. 1–3, pp. 225–241, 2004.

27

28 Bibliography

[MN95] G. L. Miller and J. Naor, “Flow in planar graph with multiple sources and
sinks,” SIAM Journal on Computing, vol. 24, no. 5, pp. 1002–1017, 1995.

[Tam87] R. Tamassia, “On embedding a graph in the grid with the minimum number
of bends,” SIAM Journal on Computing, vol. 16, no. 3, pp. 421–444, 1987.

[Whi32] H. Whitney, “Congruent graphs and the connectivity of graphs,” American
Journal of Mathematics, vol. 54, no. 1, pp. 150–168, 1932.

28

	Contents
	1 Introduction
	1.1 Outline
	1.2 Notation

	2 Orthogonal Drawings with Fixed Embedding
	2.1 Possible Rotation Values
	2.2 Computing the Maximum Rotation
	2.2.1 Tamassia's Flow Network
	2.2.2 Using the Flow Network to Compute the Maximum Rotation

	3 Biconnected Graphs with Variable Embedding
	3.1 Possible Rotation Values
	3.2 Replacing Subgraphs
	3.3 The SPQR-Tree
	3.4 Solving FlexDraw for Biconnected Graphs

	4 Generalization to Connected Graphs
	5 Conclusion
	Bibliography

