
Cooperative Route Planning
On Time-Dependent Road Networks

Master Thesis of

Nils Werner

At the Department of Informatics
Institute of Theoretical Informatics

Reviewers: PD Dr. Torsten Ueckerdt
Prof. Dr. Peter Sanders

Advisor: Tim Zeitz

Time Period: 1st October 2021 – 1st April 2022

KIT – The Research University in the Helmholtz Association www.kit.edu

Statement of Authorship

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel
vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten
anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT
zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu
haben.

Karlsruhe, March 31, 2022

iii

Abstract
We study efficient algorithms for route planning in road networks. Cooperative
routing applications consider the previously assigned routes of all road users in the
current request. The aim is to distribute traffic evenly over the entire road network.
Besides that, another goal is to detect and avoid impending traffic bottlenecks at an
early stage.
In this thesis, we present a simple model to implement cooperative route planning.
For this purpose, the underlying road network is modeled as a graph with time-
dependent edge weights. Each request causes a modification of the edge weights
along the proposed route.
We apply the A* algorithm to solve the shortest path queries efficiently. This
goal-directed approach uses a heuristic (also called potential) to skip irrelevant
nodes during the search. However, existing heuristics are often inaccurate on time-
dependent graphs. To improve the performance of the A* algorithm, we introduce
time-dependent A* potentials as a novel approach. The focus is on the design of
these time-dependent potentials as well as their implementation and evaluation.
Our experiments show that the cooperative model needs further adaptation for use
in a real-world application. However, we also observe that our time-dependent A*
potentials further improve the efficiency of the A* algorithm. Compared to existing
heuristics, the running time is improved by up to an order of magnitude. This makes
time-dependent A* potentials interesting for other application areas, too.

Deutsche Zusammenfassung
Wir untersuchen effiziente Algorithmen zur Routenplanung in Straßennetzwerken.
Kooperative Anwendungen zeichnen sich dadurch aus, dass sie die Routen aller
Verkehrsteilnehmer in der aktuellen Anfrage berücksichtigen. Dabei wird eine gleich-
mäßige Verteilung des Verkehrs auf das gesamte Straßennetzwerk angestrebt. Ein
weiteres Ziel besteht darin, drohende Verkehrsengpässe frühzeitig zu erkennen und
zu vermeiden.
In dieser Arbeit stellen wir ein einfaches Modell zur Umsetzung kooperativer Routen-
planung vor. Hierfür wird das zugrundeliegende Straßennetz als Graph mit zeitab-
hängigen Kantengewichten modelliert. Ferner werden durch jede gestellte Anfrage
die Kantengewichte entlang der jeweils vorgeschlagenen Route verändert.
Um die Kürzeste-Wege-Anfragen schnell zu verarbeiten, nutzen wir den A* Algorith-
mus. Dieser zielgerichtete Ansatz verwendet eine Heuristik (auch Potential genannt),
um irrelevante Knoten während der Suche frühzeitig auszuschließen. Auf zeitab-
hängigen Graphen erweisen sich bestehende Heuristiken jedoch als ungenau. Um die
Performance des A* Algorithmus weiter zu verbessern, stellen wir mit zeitabhängigen
A*-Potentialen einen neuen Ansatz vor. Der Fokus liegt dabei auf dem Entwurf
zeitabhängiger Potentiale sowie deren Implementierung und Evaluation.
Unsere Experimente zeigen, dass das kooperative Modell weitere Anpassungen zum
Einsatz als Endnutzeranwendung benötigt. Allerdings stellen wir auch fest, dass
unsere zeitabhängigen Potentiale die Effizienz des A*-Algorithmus weiter verbessern.
Im Vergleich zu bestehenden Heuristiken lässt sich eine Verbesserung der Laufzeit
um bis zu einer Größenordnung beobachten. Dies macht zeitabhängige A*-Potentiale
auch für andere Anwendungsgebiete interessant.

v

Contents

1 Introduction 1
1.1 Related Work . 1
1.2 Contribution and Outline . 3

2 Preliminaries 5
2.1 Problem Statement . 5
2.2 Basic Definitions and Models . 5
2.3 Algorithms for Route Planning . 10

2.3.1 The A* Algorithm . 10
2.3.2 Customizable Contraction Hierarchies 13
2.3.3 Lazy RPHAST: CCH-Potentials . 16

3 Cooperative Route Planning 19
3.1 Basic Concept . 19
3.2 Graph Model . 21
3.3 Applying Speedup Techniques . 24

4 Time-Dependent A* Potentials 25
4.1 Engineering Time-Dependent Potentials . 26
4.2 Multi-Metric Potential . 27
4.3 Corridor-Lowerbound Potential . 31

5 Experiments 37
5.1 Experimental Setup . 37
5.2 Graph Instances and Queries . 38
5.3 Comparing Time-Dependent A* Potentials 39
5.4 Evaluating Cooperative Route Planning . 44

6 Conclusion 49
6.1 Future Work . 50

Bibliography 51

vii

1. Introduction

Modern route planning systems for road networks have become an integral part of our
lives. In the past decade, its usage has mostly shifted from separate navigation devices
to mobile applications. Nowadays, a large proportion of the requests are processed by
a few providers, such as Google Maps1 or TomTom2. The relevance of centralized route
planning applications will continue to increase with the usage of autonomous vehicles. As
these vehicles rely on routing applications, the given requests could represent the entire
traffic flow. This would enable comprehensive control and optimization of traffic flows by a
centralized authority. However, popular route planning applications mostly suggest routes
in a selfish manner. Regardless of the route choices by other road users, these applications
assign the currently best route to each driver. Especially in unusual traffic situations (e. g.
congested roads), following this approach leads to sub-optimal traffic distributions.

The idea of cooperative routing represents a counter design to the selfish routing approaches
which have dominated to date. Its main goal is to enforce cooperation between the road
users and distribute traffic evenly in the road network. By this, cooperative route planning
aims to achieve a social optimum state in which the total travel time of all users is minimized.
For this reason, it is important to predict future traffic conditions based on the given set of
user requests. Consequently, the routing algorithm cannot solely base its calculations on
current traffic data. It must also consider the planned route information derived from the
other drivers.

Implementing cooperative routing requires careful engineering. Existing (selfish) route
planning applications apply graph theory to model the underlying road network. A
shortest path algorithm is used to determine the fastest route between two locations in the
network. These algorithms must solve the given queries quickly (i. e. within milliseconds)
to be suitable for real-time routing applications. In addition to that, cooperative routing
introduces further complexities. Particularly, each request must be solved with respect
to all previously assigned routes. This motivates our research for efficient algorithms for
cooperative route planning.

1.1 Related Work
There has been lots of research on designing efficient algorithms for route planning in
the past decade. Bast et al. [BDG+16] provide an extensive overview. Throughout these

1Google Maps: https://www.google.com/maps/
2TomTom: https://www.tomtom.com

1

https://www.google.com/maps/
https://www.tomtom.com

1. Introduction

works, the underlying road network is modeled as a weighted graph. Solving point-to-point
queries corresponds to the Shortest-Path Problem, for which Dijkstra’s algorithm [Dij59] is
a well-known solution. On continental-sized graphs, however, solving a point-to-point query
with Dijkstra takes several seconds. This makes the algorithm infeasible for many real-time
applications. Therefore, several speed-up techniques have been proposed to accelerate the
basic algorithm by several orders of magnitude. These techniques aim to reduce the search
space size, i. e. the number of visited nodes during a query, by exploiting auxiliary data. For
example, goal-directed approaches like the A* algorithm [HNR68] apply a pre-calculated
heuristic that estimates the remaining distance to the given target node. Depending on the
precision of the estimates, the goal-directed search only considers a fraction of the nodes
visited by a standard Dijkstra run. Apart from the A* algorithm, many other speed-up
techniques consist of two stages. In the initial preprocessing step, the graph is extended
with auxiliary data. As this step is run infrequently, it may take several hours or even days.
Subsequently, the auxiliary data can be exploited to solve the queries faster. One of the
most popular techniques are Contraction Hierarchies (CH) [GSSD08]. In this hierarchical
approach, the preprocessing step classifies the nodes by their importance and produces
additional shortcut edges. These shortcuts are later used to skip unimportant nodes during
the query. More recently, Customizable Contraction Hierarchies (CCH) [DSW14] has
been proposed as a CH extension. Inspired by Customizable Route Planning [DGPW17],
the preprocessing step is divided into a metric-independent preprocessing and a metric-
dependent customization step. In the latter stage, the updated edge weights are applied to
the shortcuts within a few seconds. This allows regular adjustments to the current traffic
situation. Both CH and CCH accelerate Dijkstra’s algorithm significantly. On continental-
sized graph instances, their query times are less than a millisecond. Nevertheless, there are
even faster speed-up techniques, for example Hub Labeling [ADGW11] and Transit Node
Routing [ALS13].

All of the aforementioned approaches model the road network with scalar edge weights. In
reality, however, the travel time along a segment strongly depends on the time of the day.
For example, the travel time during peak hours in the morning and afternoon is usually
higher than around midnight. In time-dependent route planning, the travel time of each road
segment is modeled as a function that depends on the current daytime. In 1966, Cooke and
Halsey modified Dijkstra’s algorithm to handle time-dependent edges [CH66]. Recently, the
research interest in time-dependent route planning has also increased. For instance, some
A* heuristics have been extended to cover time-dependence [DW09, SZ21]. Their estimates
for each node are constant over the entire day, though. Besides A*, several other speed-up
techniques have also been modified for time-dependent route planning [BGSV13, SWZ21].
Due to the increased complexity of the edge weights, preprocessing time and memory
consumption are significantly higher. Some storage-intensive techniques (e. g. Hub Labeling
or Transit Node Routing) are therefore not easily applicable to time-dependence. To
reduce the memory consumption, some approaches [BGSV13] approximate travel time
profiles during the preprocessing stage. Unfortunately, this leads to either inexact results
or additional effort during the query phase. Currently, CATCHUp [SWZ21] offers the best
trade-off between storage consumption and query time. The algorithm extends CCH and
enables a customization within a few minutes. Experiments have shown that CATCHUp
requires less than ten milliseconds for queries on continental-sized graphs [SWZ21]. The
authors also provide a detailed running time comparison with other time-dependent speed-
up techniques.

In a cooperative setting, we consider the behavior of other road users and take into account
their route choices. In the past 60 years, the Traffic Assignment problem has been studied
in multiple variants (see [FH95] for a comprehensive overview). Its goal is to determine how
traffic is distributed over an underlying transportation network. We emphasize that the

2

1.2. Contribution and Outline

results are not primarily used for real-time navigation. Instead, the expected behavior of
all drivers provides important insights for urban transportation planning [PERW15]. The
traffic demand is typically given as origin-destination (OD) matrices. Each matrix entry
represents the quantity of traffic that has to be routed between the corresponding origin
and destination node. In other studies, a set of concrete OD-pairs is provided [BSW19b].
Assuming that each driver aims to minimize the travel time, the system converges to an
equilibrium state. In this state, no road user can improve the currently taken route.

Beckmann et al. [BMW56] have formalized the traffic assignment problem as a mathematical
program. Its solution corresponds to an equilibrium flow pattern [BSW19b]. Over the
decades, several algorithms have been proposed to solve the traffic assignment problem.
The Frank-Wolfe algorithm [FW56] is one of the most famous approaches. Some other
methods are outlined in [PERW15]. Up to this point, the mentioned approaches do not
consider time-varying traffic flows and are hence considered as static. For an overview
about Dynamic Traffic Assignment, we refer to a survey by Peeta et al. [PZ01].

The scope of traffic assignment algorithms is often restricted to cities or metropolitan
areas. In most related work, the limited performance only allows considering graphs
with a few thousand nodes and edges. For example, the graph instances used in a
recent survey [PERW15] are bound to 15 000 nodes and 40 000 edges. The shortest path
calculations are often the main performance bottleneck of these algorithms. Surprisingly,
we are only aware of three studies that apply speed-up techniques from route planning. The
first known approach from Luxen and Sanders [LS11] is based on Contraction Hierarchies.
A more recent work by Buchhold et al. [BSW19b] applies Customizable Contraction
Hierarchies to utilize the customization step between each iteration of the traffic assignment
algorithm. Both approaches consider OD-pairs, but there is also an adaption to OD-
matrices for the latter work [SN20]. All of the mentioned approaches provide significant
speedups compared to earlier work. However, time-dependence has not been taken into
account in these works.

Traffic assignment algorithms require that all queries are known in advance. In route
planning applications, however, a real-time assignment has to be made at the time of a
user’s request. Furthermore, the future inputs are unknown at this time. Despite the
prominence of cooperative route planning, few works incorporate the behavior of other road
users into efficient route planning algorithms. Existing dynamic route planning approaches
either predict future traffic conditions with stochastic models based on the current traffic
situation [LPBM17] or combined with historical data [HMT17, ZMCS+19, WVLM11].
However, none of these works utilize efficient speed-up techniques for time-dependent route
planning.

1.2 Contribution and Outline
We study a model of cooperative route planning in which the queries are processed on-line,
i. e. by ascending departure time and unaware of upcoming requests. Similar to a real-world
scenario, the queries are received one after another and must be resolved in real-time. The
given optimization problem is to minimize the aggregated travel time of all road users.
Our proposition is that the best results are achieved by considering all available route
information from previous requests in the current query.

Due to the on-line query processing, the applied shortest path algorithm cannot predict
the impact of upcoming requests. To incorporate future traffic conditions more precisely,
subsequent adjustments to the routes are necessary. For simplicity, however, our model is
limited to one-time route assignments. We are aware that this approach yields suboptimal
results in practice, especially for the queries processed first. Implementing a complex

3

1. Introduction

traffic distribution algorithm is beyond the scope of our work, though. We are primarily
interested in providing a proof of concept for the plausibility of cooperative route planning.
Nevertheless, integrating a cooperative model into real-world route planning applications
would present an interesting extension of our work.

The main focus of this work is designing efficient shortest path algorithms for the mentioned
model of cooperative route planning. To the best of our knowledge, this is the first work
that addresses time-dependent graphs with permanently changing edge weights. To consider
all available information about future traffic conditions, we must process the requests on
the current edge weights. This poses further challenges related to the usage of speed-
up techniques. In particular, it is too time-consuming to perform the preprocessing or
customization step before each query. Despite that, A* potentials are still suitable for this
scenario because their inaccuracy does not imply sub-optimal routes. The applied heuristics
deliver correct results as long as their estimates provide a lower bound of the actual
travel times. In our model, the travel times only increase with a rising number of queries.
Therefore, A* potentials remain valid throughout all requests, although the estimation
quality continuously degrades. We recommend adjusting the potential estimates frequently.
This separate step can be executed in the background, similar to the customization stage
of the CCH algorithm.

Our results include a novel approach of time-dependent A* potentials. More precisely, the
potential estimates depend on the node as well as the departure time at the origin. Although
cooperative route planning is the primary motivation for this study, we point out that time-
dependent potentials have other applications beyond the scope of this work. Our baseline
heuristic is the current state-of-the-art CCH-Potential [SZ21]. This heuristic provides
static lower-bound estimates over the entire day and is therefore time-independent. Despite
that, the time-dependent A* potentials proposed in our work are largely derived from the
CCH-Potential algorithm. Our first approach, the Multi-Metric-Potential, maintains several
weight functions (metrics) to cover overlapping time intervals throughout the day. In each
query, the algorithm selects a time interval that covers the entire trip. Then, it suffices
to use the lower bound of each travel time function within the given time frame as an
estimate. The second approach (Corridor-Lowerbound-Potential) is more fine-grained and
determines the relevant time interval for each edge individually. While its preprocessing
step is time-consuming, this approach provides an even more precise heuristic for the A*
algorithm.

We conduct several experiments to evaluate the performance of the time-dependent A*
potentials as well as the storage consumption and plausibility of our cooperative model. Our
experiments show that both the Multi-Metric-Potential and Corridor-Lowerbound-Potential
outperform the CCH-Potential. On graphs with real-world traffic predictions, speedups of
up to a factor of 10 are achieved. We also evaluate our cooperative distribution algorithm
and conclude that further improvements are necessary for practical usage.

This thesis is organized as follows. First, basic definitions and algorithms are introduced in
Chapter 2. Chapter 3 covers the main aspects of cooperative routing and explains our traffic
distribution algorithm. In Chapter 4, we present our time-dependent A* potentials and
prove their correctness. A comprehensive experimental evaluation of the time-dependent
potentials as well as our cooperative distribution algorithm is provided in Chapter 5.
Finally, Chapter 6 summarizes our main observations and discusses future work related to
cooperative route planning.

4

2. Preliminaries

In this chapter, we define the basic notation used throughout the thesis. We also describe
a model commonly used for time-dependent route planning and introduce some efficient
algorithms for the Shortest Path Problem.

2.1 Problem Statement
We want to design and implement efficient shortest path algorithms for cooperative route
planning. In our model, the queries are given on-line, sorted by ascending departure time.
Each query should be solved with respect to all route information available up to this point.
Therefore, the algorithm must operate on the current edge weights to obtain exact results.
Overall, we want to find out whether predicting future traffic conditions from previously
assigned routes helps to reduce the total travel time of all road users.

The research focus is on developing speed-up techniques to accelerate the time-dependent
shortest path computations. Our goal is to provide algorithms that can handle permanently
changing edge weights. We primarily focus on A* potentials for this reason. Existing
competitors, such as CCH-Potentials [SZ21], should be outperformed in terms of query
time. Furthermore, the algorithm should allow fast estimate adjustments to the current
traffic situation.

2.2 Basic Definitions and Models
To solve the given problems, we first describe how to model the underlying road network
using graph theory. A graph is a tuple G = (V, E, len) consisting of a set of nodes V ,
a set of edges E ⊆ V × V , and a weight function len : E → R+. Edges represent links
between two nodes. Moreover, the weight function assigns a non-negative weight to each
edge. An underlying road network can be modeled by providing an edge for each road
segment. Consequently, the nodes either represent connecting points (e. g. intersections)
or dead ends. To enable one-way roads in our model, we use directed edges. A segment
between two adjacent nodes v, w ∈ V is traversable in both directions if {(v, w), (w, v)} ⊆ E.
Furthermore, the weight function typically represents the expected travel time along each
segment. Alternatively, it is also possible to apply other criteria such as travel distance or
fuel consumption. Custom preferences, for example avoiding highways/toll roads, can be
incorporated by assigning an infinite weight to the affected edges. In the following, we also
denote the weight function as metric. However, we do not require any of the properties

5

2. Preliminaries

associated with the mathematical term of a metric. We also point out that the terms node
and vertex as well as edge and arc are used interchangeably in literature.

Finding the fastest route in a road network corresponds to the Shortest Path Problem
(SPP) in our modeled graph. For now, we focus on point-to-point queries between a source
node s ∈ V and a target node t ∈ V .

Definition 2.1 (Shortest Path Problem). Let G = (V, E, len) be a graph and let s, t ∈ V
be the source and target node of the current query. The Shortest Path Problem asks for a
path P = (s, . . . , t) such that the sum of edge weights along P is minimized.

The expected travel time between the source and the target node is given by the sum of
edge weights along the shortest path P . In the following, we will use the notation of the
shortest distance function d(·) to express the fastest travel time between any pair of nodes.

Definition 2.2 (Shortest Distance Function). Consider the graph G = (V, E, len) and the
shortest path P = (u, v1, . . . , vk, w) between two arbitrary nodes u, w ∈ V . The shortest
distance function d : (V × V)→ R+ is defined as

d(u, w) = len((u, v1)) + · · ·+ len((vk, w))

for all nodes pairs u, w.

The Floyd-Warshall Algorithm [Flo62] can be used to calculate all entries of d(·). For point-
to-point queries between two nodes s, t ∈ V , however, it is sufficient to obtain d(s, t) and its
corresponding path. Dijkstra’s Algorithm [Dij59] is a more efficient solution to this problem.
It iteratively explores the graph from the source node. The algorithm maintains a distance
label dist : V → R+ for the tentative distances from s to all other nodes and a predecessor
label pred : V → V for the path retrieval. Additionally, a priority queue Q is used to order
the recently explored nodes by ascending distance. Initially, dist and pred are unset for
all nodes but the source (dist[s] = 0 and pred[s] = s, respectively). In each iteration, the
Dijkstra search extracts the node v ∈ Q with the smallest distance label dist[v] and scans
its outgoing edges. If dist[v] + len(v, w) < dist[w] for an edge (v, w) ∈ E, the label of w is
updated and w is re-inserted into the priority queue. Moreover, the predecessor of w is
set to v. The algorithm terminates as soon as the target node t is extracted from Q and
returns dist[t]. As pred induces a reversed shortest-path tree from s, we can recursively
follow the references from t to obtain the asked path between s and t.

Dijkstra’s algorithm is classified as label-setting [BDG+16, AMO93] for non-negative edge
weights. This means that once a node v ∈ V is extracted from the queue, its label dist[v]
becomes final and will not be improved in any following iteration. After the queue
extraction of the target node, dist[t] = d(s, t) holds. The algorithm thus obtains correct
results. From a theoretical point of view, the queue operations dominate the running
time of Dijkstra’s algorithm. Using a common Binary Heap results in a worst-case time
of O((|V |+ |E|) · log |V |). Although the usage of other queue implementations improves
this bound in theory [BDG+16], these approaches often lack efficiency in practice.

Up to this point, we have assumed that the travel time along a road segment is constant
throughout the day. This gives us a simple model and allows fast shortest path calculations.
In reality, however, there is often a strong correlation between the daytime and the observed
travel time. For example, there is significantly less traffic around midnight than during
rush hours in the morning and afternoon. Time-Dependent Route Planning incorporates
this aspect by using travel time profiles instead of scalar edge weights. These profiles are
periodic and bound to a time interval T = [0, p] with period p ∈ R+.

6

2.2. Basic Definitions and Models

Definition 2.3 (Travel Time Profiles). Let T = [0, p] be a time interval with period p ∈ R+.
A time-dependent graph GT = (V, E, len) consists of a node set V , edges E ⊆ V × V and a
weight function len : (E × T)→ R+. The travel time profile fe : T → R+ of an edge e ∈ E
is given by fe(τ) = len(e, τ) for all τ ∈ T .

Hence, time-dependent graphs can be seen as a generalization of the graph model we have
examined before. We can transform each time-independent graph into a time-dependent
graph by using constant travel time functions for each edge. To approximate the travel
time profiles by scalar edge weights, we can e. g. consider their lower and upper bounds.

Definition 2.4 (Lower/Upper-Bound Weights). Let GT = (V, E, len) be a time-dependent
graph. The range of the travel time functions is limited by the lower bound len : E → R+
with

len(e) = min
τ

len(e, τ)

for all edges e ∈ E and the upper bound len : E → R+ such that

len(e) = max
τ

len(e, τ).

Compared to their time-independent counterparts, time-dependent graphs can utilize
significantly more memory. In particular, we have to store complex travel time profiles
instead of scalar edge weights. A compact memory layout is necessary to keep the storage
overhead as low as possible. Periodic Piecewise Linear Functions are a commonly used
solution to this problem. They are represented by a set of breakpoints B ⊆ T × R+.

Definition 2.5 (Periodic Piecewise Linear Function, Breakpoints). Let T = [0, p] be a time
interval and let f : T → R+ be a travel time profile. We call f a Periodic Piecewise Linear
Function with breakpoints B = {b0, b1, . . . , bk} ⊆ T × R+ (bi = (τi, wi)), if the following
conditions hold:

• Periodicity: τ0 = 0, τk = p and w0 = wk.

• Ordered by timestamp: τi < τj for all 0 ≤ i < j ≤ k.

• Equivalence: f(τi) = wi for all 0 ≤ i ≤ k and the function curve is linear between all
breakpoints.

Periodic Piecewise Linear Functions are evaluated by performing a linear interpolation.
To determine the function value f(τ) for an arbitrary timestamp τ ∈ T , we first have to
find the neighboring breakpoints bi, bi+1 ∈ B such that τi ≤ τ ≤ τi+1. A binary search
achieves this in O(log |B|) time. The subsequent interpolation between bi and bi+1 is a
constant-time operation.

Extending Dijkstra’s algorithm to time-dependent edge weights has first been studied by
Cooke and Halsey [CH66]. It turns out that some minor modifications to the algorithm
suffice. First of all, the query now also contains a departure timestamp τdep. Moreover,
the travel time profile of each edge e = (v, w) ∈ E must be evaluated at the arrival
time τdep + dist[v] at v. Although the evaluation of the weights becomes more complex, the
queue operations still dominate the overall running time. The performance losses caused
by the time-dependent model are therefore manageable.

In addition to queries with a fixed departure τdep, we can also calculate the shortest distance
for any departure time. These profile queries are particularly relevant for the preprocessing
of speed-up techniques, as τdep is unknown in advance. Performing a separate Dijkstra run

7

2. Preliminaries

τ

Travel Time

τ

Travel Time

τ

Travel Time

+ =

τ

Travel Time

τ

Travel Time

→

Figure 2.1: Examples of linking (above) and merging (below) travel time functions.

for each possible τ ∈ T is infeasible. To enable Dijkstra’s algorithm to process profile queries,
we maintain entire travel time functions as distance labels. The queue keys are derived
from the lower-bound weights len. Unfortunately, neither the composition of edges with
distance labels (linking) nor the comparison between labels (merging) is straightforward for
profile queries. In the time-independent setting, linking an edge weight len((v, w)) onto a
distance label dist[v] is done by a simple addition. After that, the merge operation updates
the label at node w according to min{dist[w], dist[v] + len(v, w)}. Both operations have a
complexity of O(1) for scalar edge weights. Before discussing the complexity of linking and
merging for profile queries, we define the general procedure.

Definition 2.6 (Linking and Merging Travel Time Profiles). Let GT = (V, E, len) be
a time-dependent graph with time interval T . Furthermore, let du, dv : T → R+ be the
corresponding distance labels of two nodes u, v ∈ V and fe be the travel time profile at
edge e = (u, v). Then, the linking step ℓ = du ⊕ fe composes du and fe such that

ℓ(τ) = du(τ) + fe(τ + du(τ))

for all τ ∈ T . In the subsequent merging operation, the minimum h = min(dv, ℓ) is given
by

h(τ) = min(dv(τ), ℓ(τ)).

The linking and merging operations on travel time functions are sketched in Figure 2.1.
We omit further algorithmic details and refer to a work by Delling [Del09]. Both linking
and merging run in linear time O(|Bf |+ |Bg|), with respect to the number of breakpoints
in the input functions f, g. Moreover, the linked function f ⊕ g has at most |Bf |+ |Bg|
breakpoints. Due to additional intersection points in between, the merging step returns
profiles with at most 2 · (|Bf |+ |Bg|) breakpoints. The complexity remains linear, though.
Although these operations seem straightforward to implement, a practical implementation
is non-trivial. First of all, both linking and merging can produce breakpoints at arbitrary
positions. Therefore, we must not use integer values to represent travel time functions.
Moreover, several edge cases related to inexact floating-point arithmetics must be addressed.
For further details, we refer to the CATCHUp [SWZ21] implementation, which we have
partially used for our experimental evaluation.

Profile queries are usually several orders of magnitude slower than a time-dependent
Dijkstra search with a fixed departure time τdep. An important reason is that the queue

8

2.2. Basic Definitions and Models

τ

Travel Time

Figure 2.2: Lower-bound approximation of a complex travel time profile. By accepting a
slight deviation from the original function, the number of breakpoints can be
halved.

operations no longer dominate the running time. Instead, the linear-time linking and
merging steps turn out to be the performance bottleneck. Unfortunately, the number of
breakpoints at the distance labels increases with every step. With a growing distance from
the source node, the performance of these procedures degrades continuously.

Another issue is that Dijkstra profile queries are not classified as label-setting, but label-
correcting [AMO93]. Using a lower bound of the distance label as a queue key does not
necessarily imply that a node is settled after its queue extraction. Instead, a node has
to be re-inserted whenever its distance label is improved at any timestamp τ ∈ T . This
circumstance increases the total number of linking and merging steps and thus leads to
further performance losses. We can only consider a node v ∈ V settled if its upper-bound
distance maxτ∈T dist[v](τ) falls below the minimum queue key. Therefore, we use the
upper-bound distance to the target node as a threshold to terminate the query as early as
possible.

There has been some research on the maximal complexity of travel time functions. A
conjecture by Dean [Dea04] states that the complexity may grow superpolynomially. Later,
Foschini et al. [FHS11] have proven this conjecture. For an aggregated number of k
breakpoints over all edge weight functions, the maximal complexity of a profile is bounded
by k · nO(log(n)) where n = |V |. If k is polynomial in the number of nodes, this formula
simplifies to nΘ(log n). Although this does not resemble the average case, the rapid growth
in complexity of the distance labels still poses a major performance issue.

To facilitate the linking and merging operations, we apply approximation techniques to the
travel time functions. At the cost of inexact results, profiles are approximated whenever
the number of breakpoints exceeds a given threshold. Douglas-Peucker [DP73] and Imai-
Iri [II88] are two of the most popular algorithms to approximate complex functions. These
methods reduce the number of breakpoints by tolerating a slight deviation (1 + ϵ) from the
original function. The error tolerance ϵ > 0 is given as an additional parameter. Depending
on the use case, we can also provide an approximated lower or upper-bound function, as
depicted in Figure 2.2.

We must also address another modeling issue of time-dependent edges. The First-In-First-
Out (FIFO) property states that departing at a later time does not result in an earlier
arrival time. This implies that the slope of a travel time function not fall below −1 at any
time.

9

2. Preliminaries

Definition 2.7 (FIFO Property for Travel Time Functions). Let f : T → R+ be a travel
time function in the interval T = [0, p]. The FIFO property is satisfied for f if

f(x) + x ≤ f(y) + y

holds for any timestamps 0 ≤ x < y ≤ p.

Allowing non-FIFO travel time profiles has severe impacts on the performance of our
algorithms. In particular, the time-dependent SPP gets NP-hard and might even be
unsolvable by Dijkstra’s algorithm [Ord89]. Therefore, it is crucial to assert the FIFO
property after each linking, merging, and approximation step.

We can conclude that time-dependent route planning is associated with several issues that
do not exist in the time-independent model. However, addressing these problems allows us
to use a more realistic model of the underlying road network.

2.3 Algorithms for Route Planning

In the past two decades, several speed-up techniques have been proposed to accelerate
Dijkstra’s algorithm. A common feature of these methods is to reduce the search space size,
i. e. the number of visited nodes during a query. We introduce the most relevant research
results for our work in this section. Section 2.3.1 describes the goal-directed search, also
known as the A* Algorithm [HNR68]. In Section 2.3.2, we discuss two hierarchical speed-up
techniques. Contraction Hierarchies [GSSD08] usually outperform Dijkstra by several
orders of magnitude. More recently, an extension has been proposed to incorporate frequent
traffic changes [DSW14]. Finally, an approach to combine A* and hierarchical techniques
is presented in Section 2.3.3. We describe all algorithms in their original time-independent
graph model.

2.3.1 The A* Algorithm

Extending Dijkstra’s algorithm with a goal-directed heuristic can help to skip irrelevant
nodes during the query phase. The heuristic is applied to estimate the remaining distances
to the target node. Using the sum of distance labels and heuristic estimates as queue keys
changes the processing order of the nodes. In the case of perfect estimates, the search will
only visit nodes along the shortest path.

Goal-directed heuristics have originally been used in the area of artificial intelligence [GH05].
The A* algorithm [HNR68] is widely applied to reduce the effort of finding admissible
solutions in huge data sets. Pohl [Poh71] has studied the relation between Dijkstra’s
algorithm and A*. For shortest-path algorithms, the heuristic is given as a potential
function πt : V → R+ which estimates the distances to a fixed target node t ∈ V . The
actual A* algorithm can be considered as a generalization of Dijkstra. As outlined in
Algorithm 2.1, the heuristic πt is applied to change the order in which the nodes are
processed. In particular, the queue key of each node v ∈ V is given by dist[v] + πt[v]
(lines 12–15). All other steps are equivalent to Dijkstra. Therefore, using the Zero-
Potential πt(·) = 0 restores the original search order. Aside from that, modifying the
A* algorithm to handle time-dependent edge weights is analogously done as discussed in
Section 2.2.

To ensure the correctness of the A* algorithm, some conditions must hold for the potential
functions. We define the corresponding properties as feasibility [GH05] and lower-bound
property.

10

2.3. Algorithms for Route Planning

Algorithm 2.1: Goal-Directed Search (A* Algorithm)
Input: Graph G = (V, E, len), Potential Function π : V → R+
Input: Source node s ∈ V , target node t ∈ V
Data: Priority Queue Q
Output: Shortest distance dist(t) from s to t (∞ if not reachable)

1 forall v ∈ V do
2 dist(v)←∞
3 Q.insert(s, 0)
4 dist(s)← 0
5 while Q is not empty do
6 u← Q.deleteMin()
7 if u = t then
8 return dist(t)
9 forall (u, v) ∈ E do

10 if dist(u) + len((u, v)) < dist(v) then
11 dist(v)← dist(u) + len((u, v))
12 if Q.contains(v) then
13 Q.decreaseKey(v, dist(v) + π(v))
14 else
15 Q.insert(v, dist(v) + π(v))

Definition 2.8 (Feasibility Property of A* Potentials [GH05]). Consider the potential
function πt : V → R+ for a given graph G = (V, E, len). We call πt feasible, if

len((u, v)) + πt(v)− πt(u) ≥ 0

holds for all edges (u, v) ∈ E.

Definition 2.9 (Lower-Bound Property of A* Potentials). The potential πt satisfies the
lower-bound property if

πt(v) ≤ d(v, t),
i. e. the estimates do not exceed the actual shortest distance d(v, t) between any node v ∈ V
and the target node.

Pohl [Poh71] has shown that running A* with a feasible potential πt corresponds to a
Dijkstra search with reduced edge weights

len′((u, v)) = len((u, v)) + πt(v)− πt(u)

for all (u, v) ∈ E. The feasibility of πt implies a non-negative weight function len′ and
thus preserves the correctness of Dijkstra’s algorithm. If the heuristic provides exact
estimates, all edges along the shortest path have a reduced cost of zero. Moreover, we
show that feasibility is a sufficient criterion for the lower-bound property if πt(t) = 0
(see Theorem 2.11). An inductive argument is applied to prove this relation. In the
induction step, we exploit the sub-path property. Consistent with Bellman’s Principle of
Optimality [Bel57], subsequences of shortest paths are also shortest paths.

Lemma 2.10 (Sub-path property of shortest paths). Let G = (V, E, len) be a graph with
non-negative edge weights len : E → R+. Moreover, let P = (v1, . . . , vk) be the shortest
path between v1, vk ∈ V . For any 1 ≤ i < j ≤ k, the subsequence P ′ = (vi, . . . , vj) of P is
a shortest path between vi and vj.

11

2. Preliminaries

Suppose for contradiction that the shortest path between some vi, vj deviates from P ′.
Then, we can replace the subsequence P ′ in P with the shorter path. However, this is a
contradiction to the assumption that P is the shortest path. Next, we prove the relation
between the A* correctness properties.

Theorem 2.11. Let πt : V → R+ be a feasible potential with πt(t) = 0. Then πt also
satisfies the lower-bound property, i. e. πv(t) ≤ d(v, t) for all v ∈ V .

Proof. We give a proof by induction on the depth k in the (reversed) shortest path tree
induced by a fixed target node t ∈ V .

Initial Case: k = 0 is only satisfied for the target node t. As d(v, v) = 0 for all v ∈ V , we
require πt(t) = 0 as given by assumption.

Induction Step: For a fixed k ≥ 0, we show that if πt(v) ≤ d(v, t) holds for all nodes v
with tree depth k, it also holds for all nodes u with depth k + 1.

Let u ∈ V be an arbitrary node at depth k+1 and let (u, v, . . . , t) be the corresponding path
in the tree. The sub-path property (Lemma 2.10) of shortest paths implies d(u, v) = len(u, v)
as well as d(u, t) = d(u, v) + d(v, t). Moreover, (v, . . . , t) is a shortest path from v to t with
length k. Hence, πt(v) ≤ d(v, t) follows by induction hypothesis. The feasibility property

len(u, v) + πt(v)− πt(u) ≥ 0

can thus be rewritten as
πt(u) ≤ len(u, v) + πt(v)

≤ d(u, v) + d(v, t)
= d(u, t)

which implies that all feasible potentials πt with πt(t) = 0 also satisfy the lower-bound
property.

We have already mentioned that feasible potentials guarantee the correctness of the A*
algorithm. However, it is also possible to obtain correct results from heuristics that only
satisfy the lower-bound property. Although some reduced edge weights may be smaller
than zero, we can terminate the A* algorithm upon the target node extraction from the
queue.

Theorem 2.12. The A* algorithm provides correct results if the used potential function πt

provides lower-bound estimates for all nodes and πt(t) = 0.

Proof. It suffices to show that the distance labels of all nodes along the shortest path
are final when the queue extraction of t terminates the algorithm. We give a proof by
contradiction.

Let tentt = dist[t] be the tentative distance after the first queue extraction of t. Suppose
we could improve dist[t] in a following iteration. Then, at least one node v ∈ V along the
shortest path between s and t must remain in the queue or has not been discovered yet.
Hence, dist[v] + πt(v) ≥ tentt. We also require dist[v] + d(v, t) < tentt as we assume that
the target distance can still be improved. This implies

dist[v] + πt(v) ≥ tentt > dist[v] + d(v, t),

which can be simplified to πt(v) > d(v, t). As this contradicts to the lower-bound property
of πt, such a node v does not exist. Therefore, dist[t] = d(s, t) holds at the termination of
the A* algorithm.

12

2.3. Algorithms for Route Planning

Most A* heuristics found in literature (e. g. [GH05, DW09, SZ21]) are feasible. Despite
that, Theorem 2.12 proves that the A* algorithm also obtains correct results for potentials
which satisfy the lower-bound property, but not feasibility. In this case, however, negative
reduced weights are possible. Some nodes might therefore be visited several times. From
a theoretical perspective, the worst-case running time of these label-correcting shortest
path algorithms is significantly higher compared to label-setting algorithms [AMO93].
Fortunately, the observed performance impacts are often manageable. As we will see later
in Chapter 4, using such heuristics may even improve the overall running time of the A*
algorithm. An important reason is that feasible potentials constrain the algorithmic design
space and prohibit some performance optimizations. As a side note, it is also possible to
obtain correct results with potentials violating the lower-bound property. However, such
modifications like Anytime A* [LGT03] cause significant performance losses and are thus
unlikely able to compete with the A* potentials described in the following chapters.

2.3.2 Customizable Contraction Hierarchies

Hierarchical speed-up techniques such as Contraction Hierarchies (CH) [GSSD08] augment
the graph by adding additional shortcut edges during preprocessing. In the query phase,
these shortcuts can be used to skip unimportant nodes and thus reduce the search space to
a fraction of the original graph. To transform the result into a valid route, we translate the
shortcuts back to their corresponding set of original edges in the input graph. Initially, the
function rank : V → {1, . . . , |V |} is determined to order the nodes by their importance. For
instance, nodes along highway segments are more important than dead ends in residential
areas. Throughout this work, we depict the most important nodes at the top and the
least important nodes at the bottom. We emphasize that choosing a suitable node order is
crucial to gain significant speed-ups over Dijkstra’s algorithm. Further details on obtaining
good orders are found in [GSSD08].

During the preprocessing step, the nodes are iteratively contracted in ascending order.
By contracting a node v ∈ V , additional shortcut edges are created between all incoming
and outgoing upward neighbors of v. As shown in Figure 2.3, the contraction of the
node v produces an additional shortcut edge (u, m). Its weight corresponds to the original
weights along the path (u, v, m). The contraction of all nodes results in an augmented
graph G′ = (V, E ∪ E′) with the shortcut edges E′. Multi-edges in G′ are aggregated to
a single edge with the smallest weight. For the subsequent query stage, we construct a
forward (upward) graph

−→
G = (V, {(v, w) : (v, w) ∈ E ∪ E′ ∧ rank(v) < rank(w)})

as well as a backward (downward) graph
←−
G = (V, {(w, v) : (v, w) ∈ E ∪ E′ ∧ rank(v) > rank(w)})

with reversed edge directions. We denote the edges in −→G as forward or upward edges in
the following. Analogously, the edges of ←−G are classified as backward or downward edges.

The query phase exploits the added shortcuts to skip unimportant parts of the graph. A
bidirectional variant of Dijkstra’s algorithm solves the given query. The forward search
explores −→G from the source node s. Similarly, the backward search operates on the reversed
graph ←−G and begins at the target node t. Both search directions only consider edges from
less to more important nodes. When the searches meet at an intermediate node m ∈ V ,
we have found an up-down path between source and target (see Figure 2.3). However, the
first meeting node found is not necessarily part of the shortest path. Both searches must
continue until their respective minimum queue keys exceed the tentative distance between s

13

2. Preliminaries

rank

s

u

v
w

m

t

5

6

2

4

10

9

1

Figure 2.3: Visualization of the CH contraction and query step. Contracting the nodes v, w
augments the graph by two shortcut edges (dashed). During the subsequent
query from s to t, several original edges can be skipped by using these shortcuts.
The thick edges mark the shortest up-down path with meeting node m.

and t. Although this seems rather conservative, it is necessary to ensure the correctness of
the algorithm. It is guaranteed that the shortest path between any pair of nodes is found
via an up-down path [GSSD08].

Contraction Hierarchies can be applied to solve queries on continental-sized graphs within
milliseconds [GSSD08]. However, finding a good node order can take several hours,
depending on the size of the graph and the applied algorithm. Real-world applications must
regularly apply traffic updates within seconds. Re-running the preprocessing step for each
traffic update is thus not applicable. Customizable Contraction Hierarchies (CCH) [DSW14]
has been proposed to solve this issue. In this speed-up technique, the CH preprocessing
is split into two sub-phases. The metric-independent stage obtains a node order and
augments the given graph with shortcuts accordingly. We only run this step whenever
the topology of the road network changes. The metric-dependent phase (also denoted as
customization) applies the updated traffic data to the augmented CCH graph. In contrast
to the metric-independent stage, the customization is highly optimized and runs within
seconds [DSW14]. Hence, CCH is more suitable for usage in real-world applications. In the
following, we briefly describe the three CCH stages (preprocessing, customization, queries).

Preprocessing. Metric-independent node orders can be calculated with a nested dissection
(ND) [BCRW16, Geo73] algorithm. Initially, a small separator set S ⊆ V is selected to split
the remaining graph G \ S into two disjoint partitions of balanced size. While the nodes of
the separator set are classified as the most important in G, recursion is applied to determine
the order within the partitioned subgraphs. Further details, including graph partitioning
algorithms, can be found in [DSW14]. The obtained node order is then used to contract
the nodes iteratively and create additional shortcut edges. Due to metric-independent
calculations, the resulting shortcut graph is unweighted. The direction of the edges is also
omitted at this point. As a result, augmented CCH graphs are usually larger than CH
graphs [DSW14]. The main reason is that the CH algorithm is able to conduct metric-based
optimizations [GSSD08]. Nevertheless, the resulting performance impact on the query
times is negligible. Furthermore, computing a ND-based node order allows us to extract
an elimination tree of low height from the augmented CCH graph. The root of this tree
corresponds to the most important node in the graph. All other nodes are child nodes of
their respective lowest-ranked upward neighbor. An example of this is given in Figure 2.4.
We will explain later how to exploit the elimination tree in the query. Besides that, we
must be aware that obtaining an optimal ND-based node order as well as constructing
elimination trees with minimal height is NP-hard [DSW14, Pot88]. The preprocessing
step thus relies on heuristic approaches which provide good results in practice.

14

2.3. Algorithms for Route Planning

rank rank

Figure 2.4: Constructing an elimination tree (right) from an unweighted graph with a given
node order (left). Added shortcut edges are dashed.

Customization. During the subsequent customization phase, the shortcut weights are
initialized according to the given metric len : E → R+. In contrast to the metric-
independent preprocessing step, the direction of the edges is relevant from now on. Initially,
an infinite weight is assigned to all shortcut edges. After that, the algorithm enumerates
all lower triangles {u, v, w} (rank(u) < rank(v) < rank(w)) in the augmented CCH graph.
It is checked whether the weight at (v, w) ∈ E ∪ E′ can be improved by traversing the
path (v, u, w). This procedure is repeated for the downward edge (w, v). Processing the
triangles in ascending node order is necessary to ensure the correctness of the algorithm.
In particular, the weights of intermediate shortcuts must be initialized when needed for
further calculations. After completion of the triangle enumeration, it is possible to apply
further metric-dependent optimizations. Similar to the CH preprocessing, we can remove
unnecessary shortcut edges to reduce the size of the graph (perfect customization). Further
details are explained in [DSW14].

Query. The CCH query algorithm applies a bidirectional search to find the shortest path
between a given source s ∈ V and a target node t. Each search direction employs an
elimination tree query instead of Dijkstra’s algorithm. The forward search starts exploring
the outgoing edges of the source node in −→G and recursively follows the parent references
from s up to the tree root. Analogously, the backward search starts at t and proceeds on←−G .
Bauer et al. [BCRW16] have proven the correctness of the bidirectional elimination tree
query. Compared to a Dijkstra-based CH search, the entire upward (reversed downward)
search space of s (t) must be explored. Fortunately, we can do this without maintaining
the tentative distances in a priority queue. Therefore, elimination tree queries perform well
on long-range queries, where large parts of the graph are scanned. Still, both algorithms
yield query times within milliseconds [DSW14]. Lastly, we point out that only metric-
independent node orders provide theoretical boundaries on the height of the elimination
tree. We cannot use elimination tree queries in Contraction Hierarchies for this reason.

Both CH and CCH are extendable to time-dependent graphs [BGSV13, SWZ21]. However,
their preprocessing times are significantly higher. This is due to the additional effort
of processing travel time functions instead of scalar edge weights. Moreover, queries
take an order of magnitude longer [SWZ21]. We must also consider that designing a
bidirectional search with an initially unknown arrival time at the target node is non-trivial.
This poses additional challenges for the implementation of the query algorithm. Time-
dependent Contraction Hierarchies have been studied in [BGSV13]. More recently, Strasser
et al. [SWZ21] have reworked the CCH algorithm to solve time-dependent queries. As
expected, the time-dependent customization takes much longer than in the time-independent
scenario. The authors have reported times of up to 15 minutes on continental-sized graphs
with several million nodes and edges [SWZ21]. For some applications, the customization
takes too long to incorporate traffic updates frequently. Fortunately, it is possible to

15

2. Preliminaries

rank

v
t

w

Figure 2.5: Lazy RPHAST with multiple source nodes. As the forward search spaces of v
and w overlap with each other, only few computations are required to obtain
the distance between w to t.

decouple the CCH data from the graph used for the queries. We provide more details in
the next section.

2.3.3 Lazy RPHAST: CCH-Potentials

Several speed-up techniques augment the graph with additional shortcut edges to accelerate
the queries. We have mentioned that this can be problematic if the edge weights are
subject to frequent changes, especially on time-dependent graphs. CH-Potentials [SZ21]
are a solution to this problem. They combine hierarchical speed-up techniques and the
A* algorithm. The authors also describe a general scheme of decoupling the speed-up
technique from the underlying graph structure. CH-Potentials provide fast and tight
heuristic estimates which are derived from a CH or CCH. The queries are solved with the
A* algorithm that operates on the unmodified input graph. Although the A* algorithm
is generally slower than hierarchical methods, we can apply traffic updates without any
additional effort. The correctness properties of the applied A* heuristics must hold, though.

Computing valid potential estimates for all nodes v ∈ V corresponds to solving the All-To-
One SPP on the augmented shortcut graph. More precisely, we are interested in computing
estimates πt(v) of the shortest distance d(v, t) between all nodes v and the target node t.
PHAST [DGNW13] is a CH extension and an efficient solution to the All-To-One problem.
The algorithm is divided into two phases. During the first stage, the search space of t

is explored on the reversed downward graph ←−G . In the second step, the entire forward
graph −→G is inspected in reversed order, i. e. starting with the most important node. The
previously obtained distance labels are used to combine the edge weights of −→G and ←−G .
This is necessary to ensure that all up-down paths (see Section 2.3.2) are considered. By
construction of the node order, the backward distance of the highest-ranked node must be
set after the exploration of ←−G . Then, processing the nodes in reverse order guarantees that
all upward neighbors of the currently scanned node have a final distance label.

Depending on the accuracy of the potential estimates, the A* search is often restricted to
small parts of the graph. Therefore, PHAST might perform unnecessary calculations for
many nodes. To provide potentials for a smaller set of nodes, we are interested in solving
the Many-To-One SPP (multiple sources, one target node) efficiently. Restricted PHAST
(RPHAST) [DGW11] has been proposed as a modification of PHAST and is more suitable
for the given problem. For a given set of source nodes, the algorithm applies an additional
selection step. It extracts all nodes and edges in the forward graph −→G which are reachable
from these nodes. The second stage of PHAST is then conducted on the restricted graph.

Although RPHAST solves the Many-To-One SPP efficiently, one issue remains to be solved
to make it suitable for providing A* potentials. While the target node is known in advance,

16

2.3. Algorithms for Route Planning

Algorithm 2.2: Lazy RPHAST: CCH-Potential
Data: Forward Graph −→G = (V,

−→
E ,
−→
len), Backward Graph ←−G = (V,

←−
E ,
←−
len)

Data: Elimination Tree tree: V → V
Data: Tentative distances B(·) to the target node, initially ∞
Data: Potential estimates D(·) for each node v ∈ V , initially ⊥

1 function init(t):
2 u ← t
3 while u ̸= ⊥ do

// init backward-upward search space of t

4 forall e ← (u, v) ∈ ←−E do
5 B[v]← min{B[v], B[u] +←−len(e)}
6 u ← tree(u)

7 function potential(v):
8 u ← v, stack ← Stack()

// determine non-explored forward-upward search space
9 while u ̸= ⊥ && D[u] = ⊥ do

10 stack.push(u), u ← tree(u)

// descend search space in reverse order
11 while stack is not empty do
12 u ← stack.pop()
13 forall e ← (u, x) ∈ −→E do
14 B[u]← min{B[u], B[x] +−→len(e)}
15 D[u]← B[u]

16 return D[v]

the sources are given one after another by the A* algorithm. In addition, we must provide
a target distance estimate for the current node before the A* algorithm proceeds with the
next node. To solve this problem, the second RPHAST step is executed lazily [SZ21]. As
depicted in Figure 2.5, each potential request extends the previously explored search space
in −→G . This avoids redundant computations and enables processing the sources one after
another. The entire CH-Potential [SZ21] algorithm is based on Lazy RPHAST. As we only
consider customizable speed-up techniques in the following, we also denote this approach
as CCH-Potential.

Lazy RPHAST is outlined in Algorithm 2.2. During the Initialization step, the upward
search space of the target node t is explored on the reversed backward graph ←−G . As
the shortest distances in a CCH can only be captured by considering up-down paths, all
distance labels are tentative and become final once the respective nodes are scanned in
forward direction. The second stage is invoked whenever the potential estimate for a
node v ∈ V is requested by the A* algorithm. We ascend in the elimination tree until we
either reach the root or find a node that has been settled in a previous request (lines 8–10).
Storing the parent nodes along this path in a stack allows us to descend back to v in
reversed order. After exploring the outgoing edges of each node u in the stack, the distance
estimate πt(u) = D[u] becomes final (lines 11–15). As we keep the results of previous
requests in D[·], the running time for a single potential request varies. While the earliest
queries likely have to explore their entire upward search space, some intermediate requests

17

2. Preliminaries

might require no work at all. The more potential requests by the A* algorithm, the higher
the probability that large parts of the CCH graph are already explored. Unlike PHAST
and RPHAST, Lazy RPHAST thus performs efficiently for both small and large sets of
source nodes.

Compared to a Dijkstra search, CCH-Potentials can reduce the search space size of a query
by around three orders of magnitude [SZ21]. Although solving queries with a CH or CCH
yields even faster response times, we can exploit the flexibility of A* to incorporate further
modeling details (e. g. time-dependence) more efficiently. We have already discussed
that applying a time-dependent CCH leads to high memory consumption and a slow
customization phase. In contrast, using CCH-Potentials completely avoids the need for a
time-dependent speed-up technique. Instead, it suffices to obtain a feasible A* heuristic
from the lower-bound weights len of the actual travel time functions. Further efficient
algorithms for time-dependent route planning emerge from this observation. We will discuss
these in more detail in Chapter 4.

18

3. Cooperative Route Planning

This chapter covers the basic concepts of cooperative route planning. Possible advantages
over existing selfish routing algorithms are discussed in Section 3.1. In Section 3.2, we
describe our proposed model of cooperative route planning. Finally, Section 3.3 points out
some issues related to applying speed-up techniques to the given model.

3.1 Basic Concept
In most route planning applications, the incoming routing requests are solved independently
from each other. These applications propose the currently best-known route to the users
without considering other requests. Although this selfish approach is comparatively easy
to implement, it does not provide an accurate prediction of future traffic conditions. In
particular, a set of similar requests is likely being routed along the same roads. This
might lead to additional and avoidable traffic jams. It would be smarter to apply a more
sophisticated approach that distributes traffic evenly across the road network. We give two
real-world examples why cooperation between road users can be advantageous.

Firstly, selfish routing systems often suggest alternative routes during traffic disruptions
(e. g. accidents or roadworks). Occasionally, the routing application proposes the same
alternative route to all drivers. As a result, the detour congests while the traffic along the
main route eases. The other way around, it is also possible that all road users attempt to
traverse the main roads and ignore all detours. In a cooperative environment, however, the
traffic would be distributed evenly.

The other example is related to major events, such as sports matches. As many road
users aim to arrive simultaneously, the main roads towards the venue are likely congested.
Extending the arrival time of road users over a longer time window and evenly distribut-
ing traffic over the access roads would be reasonable countermeasures. Both examples
demonstrate that predicting and balancing future traffic flows can help to reduce congestion.

In addition to these real-world observations, theoretical studies show that selfish routing
negatively affects the aggregated travel time of all road users. In 1952, John Wardrop
introduced two famous principles related to traffic assignment [War52]. These principles
distinguish between a user-optimal and a system-optimal environment [KZT20]. The first
principle describes a user equilibrium state in which the selfishly taken route of each
user takes less time than any alternative. Conversely, this also means that a user will
immediately choose an alternative route if it promises an earlier arrival time at the desired

19

3. Cooperative Route Planning

s

a

b

t

c(x
) =

x c(x) = 1

c(x) = 1 c(x
) =

x

0.5
0.5

0.5 0.5
s

a

b

t

c(x
) =

x c(x) = 1

c(x) = 1 c(x
) =

x

c(x) = 0
1

1
1

Figure 3.1: Braess paradox: An additional road segment can slow down the entire traffic,
even if its usage is free of cost [RT02]. In this example, one unit of traffic has
to be routed from s to t. If all drivers selfishly minimize their cost, we will
obtain equilibrium states with costs of 1.5 (left) and 2 (right).

destination. According to the second principle, the average travel time of each user is
minimized in the social optimum state. Achieving this system-optimal state requires full
cooperation between all road users. Therefore, user equilibrium and social optimum state
usually differ from each other. Although some assigned routes might be sub-optimal in the
latter setting, there are cases in which the social optimum can be advantageous for all road
users. We present a well-known paradox to underline this claim.

The Braess paradox [BNW05] has been published by the mathematician Dietrich Braess
in 1968. It demonstrates that the user equilibrium state can worsen when considering
an additional road segment. An example taken from [RT02] is visualized in Figure 3.1.
In this example, the cost of traversing an edge is given by the function c(x). The costs
(e. g. congestion or traffic delays) depend on the road conditions and the traffic load x.
Suppose that we are routing one unit of traffic from the leftmost node s to the rightmost
node t. In the first scenario, the target node is reachable via the paths (s, a, t) and (s, b, t).
Traversing these paths is associated with the cost c(x) = 1 + x. Both the user-optimal and
system-optimal environment yield an equilibrium state in which the traffic is distributed
evenly over the lower and upper route. Hence, the cost for all road users is 1.5 in both
cases. Next, the road network is expanded by an edge (a, b) that can be traversed free of
cost. Even though this additional edge provides a possibility to bypass the most expensive
edges (s, b) and (a, t), we suddenly observe an equilibrium cost of 2 in the user-optimal
setting. An important reason is that the previous equilibrium state is no longer valid. In
this state, a single driver at node a could improve the remaining travel time by taking
the detour via the new edge. Assuming that all drivers selfishly follow this detour, the
edge (a, t) will not be used at all. Following the same argumentation, the edge (s, b)
will not be used in an equilibrium state, either. Therefore, all traffic is routed along the
path (s, a, b, t) with a total cost of 2. In the system-optimum setting, no driver traverses
the new road at all. The system-optimum equilibrium cost remains unchanged at 1.5.

Both practical examples and theoretical results underline that cooperation between road
users can reduce the aggregated travel time. We refer to cooperative route planning as a
centralized approach to predict future traffic conditions and avoid congested roads at an
early stage. Moreover, we study a cooperative routing model in which a central authority
assigns routes in real-time and considers the impact of previously made queries in the
current request. To predict future traffic conditions, each route assignment increases the
expected travel times along the affected road segments. This allows us to assign similar
requests to different routes and reduce the congestion of a few main roads. We point out
that this is not a solution to unforeseen events, such as temporary road closures. However,
routing fewer vehicles along the same road reduces the risk of both traffic jams and accidents.

20

3.2. Graph Model

Cooperative route planning can thus be a useful measure to reduce congestion in urban
areas.

Unfortunately, applying traffic assignment algorithms in real-time route planning appli-
cations is infeasible for several reasons. Contrary to our problem setting, the Traffic
Assignment Problem requires all origin-destination pairs to be known in advance. Moreover,
adapting to this scenario by continuously recalculating an equilibrium state for the cur-
rently known requests is not practicable. The performance of traffic assignment algorithms
is limited, particularly on large graph instances. Considering time-dependence in the
assignment step would degrade the performance even further. Hence, we restrict our model
to provide routes in real-time, considering all available information derived from previous
requests.

In general, an on-line distribution of the given requests over the road network will not
yield a social optimum state. This would require an off-line algorithm that is aware of
the entire input sequence in advance. Nonetheless, the studied model enables cooperation
between the road users in real-time. In particular, we enforce cooperation by predicting
future traffic flows based on previous requests. Our approach requires further adjustments
to be usable in real-world applications, though. For example, subsequent route adjustments
could incorporate additional traffic information. However, we stress that our main focus is
on designing efficient shortest-path algorithms for cooperative route planning. For this, it
is sufficient to use a simple model with one-time route assignments. In the next section,
we will formally describe our considered model. We also present a graph structure that
enables predictions of future traffic conditions.

3.2 Graph Model
First, we present a graph structure that captures future traffic flows. For this purpose, the
route information of all previous requests must be stored. Following modeling techniques of
traffic assignment algorithms, we store the traffic loads along each road segment [BSW19b].
To account for time-dependent traffic flows, we maintain k buckets for each edge. These
buckets cover equally-sized time intervals over the entire period T and store the number of
vehicles passing the edge in the respective time frame. Additionally, we define the capacity
of each edge as the number of vehicles that can traverse the segment during each interval
without causing significant congestion. In the following, we denote the resulting graph
structure as Capacity-Graph.

Definition 3.1 (Capacity-Graph). Let T = [0, p] be a time interval with period p ∈ R+.
Moreover, let k ∈ N and let G = (V, E) be a graph representing the topology of the road
network. The Capacity-Graph GT,k = (V, E, C, Cmax) is a tuple of

• the set of nodes V and edges E given by G,

• the function C : (E×[0, k])→ N representing the edge buckets. The entry C(e, i) stores
the number of vehicles passing the edge e ∈ E within the interval

[
i · p

k , (i + 1) · p
k

)
,

• and the capacity function Cmax : E → N.

The parameter k in GT,k controls the degree of time-dependence. Using k = 1 corresponds
to the time-independent case and only considers the total traffic on each road segment. In
contrast, a large k offers a more detailed overview of current and future traffic conditions.
Depending on k, we must be aware that maintaining O(k · |E|) edge buckets can lead to
considerable memory consumption. Apart from that, k also affects the capacity Cmax of
each edge bucket. Shortening the time intervals implies that fewer vehicles can traverse the

21

3. Cooperative Route Planning

τ

Traffic Demand

τ

Velocity

τ

Travel Time

→ →

Figure 3.2: Two-step procedure to obtain travel time profiles from traffic loads stored in
the edge buckets. After deriving velocities from the traffic loads, we convert
the resulting speed profile into the desired travel time profile. Compared to
directly converting traffic loads into travel times, the breakpoints are arranged
to be FIFO-consistent.

road during each interval. The capacity of each edge also depends on the road type. While
highways usually enable high traffic loads before congesting, many roads in residential
areas are not designated for transit traffic. This has to be considered in the model, too.

Next, we discuss how to derive travel times from traffic loads. This problem has been
studied in the context of traffic assignment [BSW19b]. A commonly used solution is the
Bureau of Public Roads (BPR) function [BoPR64]. This function requires three parameters:
the initial free-flow time t0 along the road segment as well as the traffic load c and the
capacity cmax of the edge. Then, the travel time is determined according to

t(t0, c, cmax) = t0 ∗
(

1 + α ∗
(

c

cmax

)β
)

, (3.1)

where α and β are additional calibration parameters to take into account further modeling
aspects. Although several different parameterizations can be found in literature (see e. g.
[BSW19b, MM14]), α ≤ 1 and β ≥ 2 are common modeling choices. This implies a
polynomial growth of the BPR functions, consistent with real-world observations: Few
vehicles on the road do not interfere with each other. However, as soon as the road starts
to congest (i. e. c ≥ cmax), the slowdown is worsened with every additional vehicle.

The BPR function enables the conversion from traffic loads into travel times. In a time-
dependent scenario, however, the function must be applied to all buckets of the considered
edge. We must ensure that combining the resulting set of breakpoints produces a FIFO-
consistent travel time profile (see Section 2.2). To solve this issue, we first convert the
bucket loads into piecewise constant speed functions. The function

v(s, t0, c, cmax) = s

t (t0, c, cmax) = s

t0 ∗
(

1 + α ∗
(

c
cmax

)β
) (3.2)

extends Equation (3.1) to derive velocities from traffic loads. Note that this conversion
step also considers the travel distance s along the respective edge. The other parameters
of the BPR function remain identical. Finally, the piecewise constant speed profiles are
converted into piecewise linear travel time profiles. For this purpose, we apply a method
from [SZ21] in our implementation. The adapted procedure assumes that the velocity of
all drivers changes instantly and simultaneously at the breakpoints of the speed profiles.
Consequently, no “overtaking“ takes place at any road segment. This preserves the FIFO
property. We refrain from further details at this point. The entire conversion step is
depicted in Figure 3.2 and takes linear time O(|B|) in the number of breakpoints of the
speed profile.

22

3.2. Graph Model

Algorithm 3.1: Cooperative Traffic Distribution
Input: Capacity-Graph GT,k = (V, E, C, Cmax)
Input: User Requests R = listOf(s, t, τdep), ordered by departure τdep

Output: listOf(shortest path P = (s, . . . , t))
1 for i from 0 to |R| do

// determine the shortest path for the current request
2 (s, t, τdep) ← R[i]
3 P ← shortestPath(GT,k, s, t, τdep)

// update the edge weights along P, return result
4 updateWeights(GT,k, P , τdep)
5 return P to user i

6 function updateWeights(GT,k, P , τdep):
7 forall edges e = (v, w) ∈ P do

// get timestamp at current node, determine bucket
8 τv ← departureAtNode(v, τdep)
9 b ← roundToBucketId(T, k, τv)

// increment traffic load, update travel time profile
10 incrementEdgeBucket(GT,k, e, b)
11 updateTravelTimeFunction(GT,k, e)

Up to this point, we have demonstrated how to store traffic loads and how to convert these
into FIFO-consistent travel time functions. This allows us to extract a time-dependent
graph GT = (V, E, len) with weight function len : (E × T)→ R+ from a given Capacity-
Graph GT,k = (V, E, C, Cmax). Next, we describe our approach of distributing the given
requests evenly over the road network. As already mentioned, the incoming requests are
sorted by departure time and must be processed sequentially. Our traffic distribution
strategy is outlined in Algorithm 3.1. For each request, we apply a shortest path algorithm
to retrieve the path P . In the subsequent update phase (lines 6–11), the travel times
along P are slightly incremented at the affected timestamps. First, the arrival time τv at
each node v ∈ P is determined by traversing P . We then round τv to the corresponding
bucket id b = ⌊ τv

p · k⌋ with respect to the period p of T . Finally, the traffic load C(e, b)
of the considered edge e ∈ E is incremented by one unit, and the travel time function
gets updated accordingly. The next request will then be solved on the updated graph to
incorporate all available traffic information.

To reduce the memory consumption of the Capacity-Graph, we refrain from storing an
array of k bucket entries for each edge. Doing so would dominate the required storage for
large k. Moreover, a significant part of the edges might be irrelevant for the queries. For
example, we will unlikely consider dirt tracks in rural areas. Besides that, only a fraction of
all buckets are utilized after processing a small set of queries. Our implementation provides
a more compact storage layout instead. We only store the used buckets of each edge and
maintain these sorted by bucket ids. Hence, updating and inserting new bucket entries
takes logarithmic time. Compared to keeping an array of fixed sized k for each edge, our
approach reduces the overall memory consumption if less than 50% of all edge buckets are
used.

23

3. Cooperative Route Planning

Customizable Speed-up
Technique

initializes A* Potential
Function

A* Algorithm
potential

request

Input Graph
frequent metric synchronization

update after each query

Queries

Figure 3.3: Scheme of decoupling the customizable speed-up technique from the input
graph on which the queries are processed. This procedure is advantageous on
dynamic graphs, assuming that minor edge weight adjustment do not violate
the correctness of the A* potential.

3.3 Applying Speedup Techniques
In this section, we discuss issues related to the design of efficient shortest path algorithms
for cooperative route planning. Most importantly, the applied algorithm must be able
to adapt to permanently changing edge weights. Unfortunately, the majority of known
(time-dependent) speed-up techniques [BDG+16, Del09] assume that the edge weights do
not change while processing the queries. Particularly techniques with long preprocessing
times are therefore infeasible for this dynamic setting. We are even unable to leverage
customizable approaches like CCH. As our goal is to incorporate all available traffic
information, we would have to run the customization step after each query.

Of all mentioned speed-up techniques, goal-directed heuristics (A* potentials) seem to be
the most suitable for dynamic graphs with permanently changing weights. Theorem 2.12
(see Section 2.3.1) proves that the A* algorithm is guaranteed to find the optimal solution as
long as the applied heuristic provides lower-bound estimates. At this point, we can exploit
the simplicity of our cooperative model. Due to the one-time route assignments, the traffic
load of an edge bucket is never decreased. Hence, it is possible to design A* potentials
which remain valid after processing an arbitrary amount of queries. The estimation quality
will continuously degrade, though.

As already seen in Section 2.3.3, it is possible to combine speed-up techniques with the A*
algorithm to provide fast and tight heuristics. Furthermore, the speed-up technique can
be decoupled from the input graph. Updates after every step are thus obsolete unless the
heuristic provides invalid estimates. Inspired by CCH-Potentials [SZ21], Figure 3.3 shows
a generalized scheme of a speed-up technique for cooperative route planning. The queries
are solved with the time-dependent A* algorithm on the input graph, which gets updated
after each query. Moreover, the applied heuristic is initialized by a customizable speed-up
technique. This technique, in turn, is frequently customized with the current edge weights
to keep providing tight estimates.

In the next chapter, we will analyze the presented scheme in more detail. Based on the
CCH-Potential algorithm, we will design time-dependent A* potentials whose estimates
also depend on the given daytime.

24

4. Time-Dependent A* Potentials

In this chapter, we focus on designing time-dependent A* potentials to provide efficient
algorithms for cooperative route planning. A general scheme of exploiting the A* algorithm
to decouple speed-up techniques from the input graph has been presented in Section 3.3. As
we refrain from subsequent route adjustments in our cooperative model, the stored traffic
loads never decrease along any segment. Hence, the lower-bound property of A* potentials
is preserved after updating edge weights. However, the estimation quality degrades with
each additional query. Therefore, the underlying speed-up technique should be customized
frequently with the adjusted travel time profiles of the input graph.

So far, most studies related to A* potentials have only considered time-independent graphs.
Although a few heuristics also cover time-dependence [DW09, SZ21], their estimates for
each node are constant throughout the day. In the following, we introduce a novel approach
of time-dependent A* potentials. Contrary to common A* heuristics, these also consider
the time component τ .

Definition 4.1 (Time-Dependent A* Potential Function). Consider the time-dependent
graph GT = (V, E, len). A time-dependent A* potential is a function

πs,t,τdep : (V × T)→ R+, (4.1)

which estimates the travel time between each node v ∈ V and the target t ∈ V when
departing v at time τ ∈ T . During its computation, the source node s ∈ V , the target
node t, and the departure time τdep ∈ T can be taken into account.

Due to the additional parameter of the potential function, it is necessary to redefine the A*
correctness properties from Section 2.3.1. Fortunately, the relation between the feasibility
and the lower-bound property (see Theorem 2.11) also holds in the time-dependent scenario.
A feasible potential πs,t,τdep with πs,t,τdep(t, ·) = 0 hence provides lower-bound estimates.

Definition 4.2 (Feasibility Property of Time-Dependent A* Potentials). A time-dependent
A* potential πs,t,τ on the graph GT = (V, E, len) is feasible if

len(e, τ) + πs,t,τdep(v, τ + len(e, τ))− πs,t,τdep(u, τ) ≥ 0 (4.2)

for all edges e = (u, v) ∈ E and timestamps τ ∈ T .

25

4. Time-Dependent A* Potentials

Definition 4.3 (Lower-Bound Property of Time-Dependent A* Potentials). Consider the
time-dependent graph GT = (V, E, len). The time-dependent potential function πs,t,τdep

satisfies the lower-bound property if

πs,t,τdep(v, τ) ≤ d(v, t, τ)

with respect to the shortest distance d(v, t, τ) between any node v ∈ V and the target t ∈ T
at departure time τ ∈ T .

In the following sections of this chapter, we examine time-dependent A* potentials in
more detail. Section 4.1 contains an overview of different design approaches and points
out the most promising ideas. After that, we propose two time-dependent A* potentials.
We also discuss key aspects of an efficient implementation of these potentials. The Multi-
Metric-Potential introduced in Section 4.2 applies a time-independent CCH which handles
multiple weight functions simultaneously. At the cost of longer preprocessing times, the
Corridor-Lowerbound-Potential (Section 4.3) uses a time-dependent CCH to allow tighter
estimates. Both approaches provide time-dependent estimates based on the source node,
the target node, and the departure time.

4.1 Engineering Time-Dependent Potentials
A naive method to obtain a time-dependent potential function is to perform a backward
Dijkstra profile query as described in Section 2.2. Before executing the A* algorithm, we
initialize the heuristic by conducting a One-To-All profile search that starts at the target
node and explores the entire reversed graph. The resulting distance labels are then used as
estimates in the query step. It suffices to evaluate the labels of the requested nodes at the
given timestamps. As discussed in Section 2.2, we can employ approximation algorithms
to reduce the computation effort of the linking and merging operations. Applying a lower-
bound approximation to the travel time profiles preserves the lower-bound property and
thus the correctness of the resulting A* heuristic.

Using profile queries to compute time-dependent A* heuristics has two advantages. Firstly,
no preprocessing has to take place in advance. Secondly, we always consider the updated
travel time functions of the input graph in our calculations. Aside from the applied
approximations, the resulting potential estimates are therefore precise. This leads to
fast query times of the A* algorithm. Unfortunately, conducting profile queries is too
time-consuming and thus not applicable. While (approximated) profile queries take
several minutes on city-sized graphs, the time-dependent Dijkstra modification solves the
actual request within a second. To compete with CCH-Potentials (see Section 2.3.3), the
initialization of the time-dependent A* heuristic must even occur within milliseconds.

As mentioned before, the linking and merging operations constitute the major performance
bottleneck of profile queries. Their negative impact on the running time does not justify
the usage of a tight heuristic in the subsequent A* execution. For this reason, we must
avoid these operations during the potential initialization. Consequently, maintaining travel
time profiles is not feasible here. We can still incorporate time-dependence by initializing
the A* heuristic with the known parameters s, t ∈ V and τ ∈ T . However, using scalar
edge weights implies that the provided estimates are constant, regardless of the current
time at the visited node.

To obtain time-dependent potentials efficiently, we take a step back and reconsider the CCH-
Potential algorithm from Section 2.3.3. The heuristic can be adapted to time-dependent
graphs by applying the lower-bound metric len to compute the estimates. It is trivial to
show that the CCH-Potential is feasible. CCH-Potentials are also fast to compute. The

26

4.2. Multi-Metric Potential

(i) (ii)

10

5
1

3

4

7

(iii)

10

5
1

3

4

7

t
0

7
11

(iv)

10

5
1

3

4

7

tv 0

7
11

16

26

Figure 4.1: Overview of the different stages of an A* potential based on Lazy RPHAST: (i)
Metric-Independent Preprocessing, (ii) Metric-Dependent Preprocessing, (iii)
Potential initialization, (iv) Potential request.

precision of the estimates can be improved, though. While len provides tight estimates at
daytimes with low traffic (e. g. around midnight), there is little accuracy during traffic peaks
in the morning and afternoon. Hence, len is not representative of traffic flows throughout
the day.

Despite this problem, CCH-Potentials are still a good starting point to design time-
dependent A* potentials. Both of our heuristics use CCH as underlying speed-up technique.
Moreover, the potentials are based on the scheme depicted in Figure 4.1. This generic
scheme divides the algorithm into four stages. The first two stages are related to the
CCH preprocessing (see Section 2.3.2). In the initial metric-independent preprocessing
step, the nodes are ranked by their importance. Based on this order, the nodes are
contracted to construct a CCH graph with additional shortcut edges and its corresponding
elimination tree. The second preprocessing step is frequently executed and applies the
current edge weights to the CCH graph. We intentionally call this step preprocessing and
not customization because the latter is only a sub-routine. Both proposed potentials will
perform further operations before and after the customization. The queries are processed in
the third (initialization) and fourth (potential request) stage. These stages are processed as
described for Lazy RPHAST in Section 2.3.3. After initializing the backward search space
from the target node, the forward graph is lazily explored during the potential requests.
Our proposed heuristics must implement these two stages efficiently. To outperform
CCH-Potentials, we have to provide time-dependent estimates without causing significant
computation overhead.

4.2 Multi-Metric Potential
Our first proposed time-dependent A* heuristic is the Multi-Metric-Potential. It extends the
CCH-Potential by applying multiple metrics simultaneously. Each metric lenI : E → R+
provides lower-bound travel times within a given time interval I ⊆ T . Analogously to
CCH-Potentials, we apply Lazy RPHAST to compute the potentials. We instantiate
the routine with a metric lenI whose corresponding time interval covers the departure
time τdep ∈ T as well as the arrival time τmax at the target node. This is necessary to
ensure the feasibility property of the resulting A* heuristic.

We perform a separate elimination tree query on the upper-bound travel times len to
determine the latest arrival time τmax at the target node. Although this bound on τmax is
rather conservative, it can be computed fast. In our cooperative setting, we must also be
aware that len is not static. Each modification of the travel time functions may violate the
correctness of the customized upper-bound metric. Whenever such a violation is detected,
we have to re-run the customization before continuing with the following queries.

27

4. Time-Dependent A* Potentials

Time[h]
0 4 8 12 16 20 24

2 hours

4 hours

8 hours

24 hours

Figure 4.2: The Multi-Metric-Potential is initialized with a set of time intervals that cover
different ranges. A separate metric with lower-bound weights is extracted for
each given interval.

Preprocessing. We initialize the preprocessing with a set of time intervals I = {I1, . . . }.
Based on these intervals, the metrics M = {lenI1 , . . . } are extracted in advance. Each
metric lenI ∈M provides lower-bound weights within its corresponding interval, i. e.

lenI(e) = min
τ∈I

len(e, τ)

for all edges e ∈ E of the input graph. To deliver tight estimates during the query phase,
the selectable metrics should be based on a variety of overlapping time intervals I. As
depicted in Figure 4.2, we recommend to cover the entire day by intervals of different
lengths. Since the lower-bound metric len can be applied for all possible inputs [τdep, τmax],
we require T ∈ I such that len ∈M. During the query step, we can fall back to this metric
if no other candidates qualify.

After the metric extraction, the CCH graph is customized with these metrics. To process
all metrics at once, the basic CCH algorithm is slightly adjusted. Although we consider
different time intervals, the entire customization step processes time-independent weights.
For simplification, we omit the perfect customization step which removes unnecessary edges
subsequently (see [DSW14] for further details). After that, we reorder the edge weights
into a flat array, grouped by each metric. The purpose of this reordering is to improve the
cache performance. If the outgoing edges of a node are laid out consecutively in memory,
several entries will be fetched with a single data access. Compared to grouping the weights
by edges, this results in significant performance gains.

Initialization and Potential Request. These stages work mostly similar to Algorithm 2.2
outlined in Section 2.3.3. Therefore, we only point out the adjustments to the basic Lazy
RPHAST routine. At the beginning of the initialization, an elimination tree query is
run to determine the latest arrival time τmax at the target node. After that, we pick a
suitable metric lenI ∈M such that [τdep, τmax] ⊆ I. If multiple metrics qualify, we pick
the metric with the shortest corresponding time interval. Figure 4.3 shows that choosing
smaller intervals can improve the precision of the heuristic. Some visualized interval minima
are significantly tighter than the trivial lower bound over the entire day. Afterward, we
initialize Lazy RPHAST with lenI to compute the A* heuristic. Additional pruning can be
applied to speed up the potential computations. In particular, we exploit that each node
with a distance label greater than τmax − τdep is not relevant for the current query. The
estimates for these nodes can be set to infinity without violating the correctness. During
the execution of the A* algorithm, the affected nodes will not be visited at all. All other
operations run analogously to the CCH-Potential algorithm.

Metric reduction. Applying several metrics simultaneously improves the accuracy of the
potential estimates. However, it also leads to high memory consumption and additional
computation effort during customization. Our approach of reducing the number of metrics

28

4.2. Multi-Metric Potential

τ

Travel Time

Figure 4.3: Extraction of several interval minima from a travel time function. The deter-
mined lower-bound weights (dashed) strongly depend on the given interval
boundaries (marked in different colors).

is based on the observation that some metrics have similar edge weights. This particularly
affects the metrics that cover time intervals with low traffic volumes. During the metric
reduction step, we merge pairs of similar metrics to a single weight function. The input
parameter k ∈ N controls how many metrics remain after the reduction. It is important to
mention that this procedure does not restrict the set of usable time intervals during the
query. Instead, the affected intervals point to the same metric after a merging step. The
merged metric must therefore provide lower-bound weights for both of these intervals.

The metric reduction procedure is described in Algorithm 4.1. Initially, each pre-defined
time interval I references a custom metric lenI ∈M as defined above. Then, all metrics
are compared with each other. We quantify the similarity between two metrics leni, lenj

by the square sum of their weight differences. More precisely, we compute
∑
e∈E

(leni(e)− lenj(e))2

over all edges e ∈ E. This approach particularly emphasizes large variations between edge
weights. Therefore, similar metrics are characterized by predominantly small deviations.
After the comparison, we iteratively merge the two most similar metrics. To enable fast
retrieval of these metrics leni, lenj , we maintain all pairs in a priority queue (ordered by
their squared differences). When merging leni and lenj , we obtain the function len′ such
that

len′(e) = min{leni(e), lenj(e)}.

Hence, len′ provides a lower bound for all intervals that have previously referenced leni

or lenj . To conduct the reduction in-place, we implicitly set leni = len′. For this reason,
all intervals which have previously been pointed at lenj must afterward reference leni (see
line 8). Moreover, all metric comparisons related to leni must be repeated (lines 9–10).
All queue entries that refer to lenj , on the other hand, are obsolete and may be removed.

Overall, the proposed metric reduction algorithm runs in time O(|M|2 · |E| · log(|M|)).
The quadratic number of metric comparisons (lines 3–4 and 9–10) constitutes the main
bottleneck. Especially on large graphs, the procedure can be time-consuming. This
underlines the need to constrain the initial set of intervals without compromising the
accuracy of the resulting A* potentials too much. An important measure is to omit
intervals outside of expected traffic peak hours. Additional performance improvements can
be achieved by parallelizing the initial metric comparisons. Another optimization is to
pre-merge similar metric pairs with little differences before performing further comparisons.

29

4. Time-Dependent A* Potentials

Algorithm 4.1: Generic Metric Reduction

Input: Metric reduction threshold k ∈ N
Input: Set of metrics M = {len1, . . . , lenn} and intervals I = {I1, . . . , In}
Output: Reduced set of metrics M

1 function reduceMetrics(M, I, k):
// init queue - insert all pairs

2 Q ← priorityQueue()

3 forall (leni, lenj) ∈M2: i < j do
4 Q.insert({i, j}, metricDiff(leni, lenj))

5 while more than k metrics remaining do
6 {i, j} ← Q.pop() // wlog i < j

// merge metrics, update interval data
7 mergeMetrics(leni, lenj)
8 updateIntervalReferences(I, lenj → leni)

9 forall {k, i} ∈ Q do
10 Q.update({k, i}, metricDiff(lenk, leni)) // update entries with i

11 forall {k, j} ∈ Q do
12 Q.remove({k, j}) // remove entries with j

13 return M

Up to this point, we have only claimed that the Multi-Metric-Potential is feasible. We will
now formally prove this claim. As the potential estimate for the target node is always zero,
feasibility also implies the lower-bound property.

Theorem 4.4. The Multi-Metric-Potential is feasible if its upper-bound metric len is valid.

Proof. Consider the time-dependent graph GT = (V, E, len) with upper-bound weights len
and let πs,t,τdep be a Multi-Metric-Potential. πs,t,τdep is initialized with the source node s ∈ V ,
the target node t ∈ V , and the departure time τdep ∈ T . We assume that the estimates
of πs,t,τdep are based on the metric M : E → R+. Moreover, let dM : (V × V) → R+
be the shortest distance function between any pair of nodes by using the weights of M .
Then, dM (v, t) = πs,t,τdep(v, ·) follows for all v ∈ V . Hence, we get

len(e, τ) + πs,t,τdep(v, τ + len(e, τ))− πs,t,τdep(u, τ ′)
= len((u, v), τ) + dM (v, t)− dM (u, t)
≥ dM (u, v) + dM (v, t)− dM (u, t)

(4.3)

for each edge e = (u, v) ∈ E and timestamp τ ∈ T . We can now apply the triangle
inequality

dM (u, t) ≤ dM (u, v) + dM (v, t) (4.4)

which states that dM (u, t) must not be shortened by visiting v along the path. Thus,

len(e, τ) + πs,t,τdep(v, τ + len(e, τ))− πs,t,τdep(u, τ) ≥ 0 (4.5)

which was to be proven.

30

4.3. Corridor-Lowerbound Potential

To conclude, the Multi-Metric-Potential represents an extension of the CCH-Potential that
provides time-dependent potential estimates. By applying several pre-calculated metrics
for different time intervals, we leverage time-independent CCH to provide time-dependent
A* heuristics efficiently. However, long-range queries pose an issue for the Multi-Metric-
Potential. If [τdep, τmax] covers large parts of the day, the approach will fall back to the
metric len. The estimates of Multi-Metric-Potentials and CCH-Potentials are identical
in this case and do not justify the additional initialization effort. We present another
time-dependent A* heuristic in the next section to solve this issue.

4.3 Corridor-Lowerbound Potential
As discussed in the last section, the Multi-Metric-Potential is not optimized for long-range
queries. For large time intervals [τdep, τmax] ⊆ T , the approach falls back to the lower-
bound metric len to obtain a feasible heuristic. To compute tighter estimates, we consider
shorter time intervals for each edge in the following. Although it can take several hours to
traverse a route, each road segment is only relevant within a small time window.

The Corridor-Lowerbound-Potential determines individual time intervals for each edge.
Similar to the Multi-Metric-Potential, this approach represents a modification of Lazy
RPHAST to compute time-dependent A* heuristics. Instead of using pre-defined and
time-independent metrics, we must employ a time-dependent CCH to retrieve tight lower-
bound weights within arbitrary intervals. During each query, the relevant interval I(v)
is determined for all nodes v ∈ V visited by the A* algorithm. For each outgoing
edge (v, w) ∈ E′ in the time-dependent CCH graph G′

T = (V, E′, len′), we use the lower-
bound weight

min
τ∈I(v)

len′((v, w), τ)

within the interval I(v). This step is embedded into a Lazy RPHAST routine, which in
turn computes the A* heuristic.

The resulting potential estimates can be seen as lower-bound weights obtained from an
implicit subgraph, also denoted as corridor. This subgraph contains the source and target
node s, t ∈ V and at least all relevant nodes for the shortest path retrieval between s
and t. Moreover, it restricts the domain of each travel time function len((v, w), ·) to the
corresponding time interval I(v) of the node v ∈ V .

Definition 4.5 (Corridor subgraph). Consider the time-dependent graph GT = (V, E, len)
and the shortest distance functions d, d : (V ×V)→ R+ related to the lower and upper-bound
metrics len, len. Moreover, the time interval function I(·) assigns

I(v) = [τdep + d(s, v), τdep + d(s, v)] ⊆ T

to each node v ∈ V , with respect to the departure time τdep at the source node s ∈ V . Then,
the corridor C = (VC , EC , lenC) is a subgraph of GT with partial travel time profiles. It
consists of

• the nodes VC = {v ∈ V : d(s, v) ≤ d(s, t)},

• the edges EC = {(v, w) ∈ E : v ∈ VC ∧ w ∈ VC},

• and partially defined edge weights lenC : (E × T)→ R+ such that

lenC((v, w), τ) =
{

len((v, w), τ) τ ∈ I(v)
⊥ otherwise

for each edge (v, w) ∈ EC .

31

4. Time-Dependent A* Potentials

τ

Travel Time

Figure 4.4: Approximating a complex travel time function by piecewise constant seg-
ments. The segments (straight red lines) cover time intervals of equal sizes and
mark their respective minimum travel time. To obtain a lower-bound weight
within I(v) (gray rectangle), it is sufficient to compare the two intersecting
segments.

Intuitively, the corridor C contains a superset of all relevant nodes for the current query.
Applying a Corridor-Lowerbound-Potential on GT thus roughly corresponds to using the
CCH-Potential on the corridor C. We emphasize that C is an implicit structure that
we will not extract separately. The performance of our approach depends on the size
of the corridor, though. In the worst-case, the A* algorithm requires estimates for all
nodes v ∈ VC .

To compute the heuristic efficiently, the time intervals I(·) must be determined fast. We
perform a separate Lazy RPHAST run for these calculations. The subroutine processes
lower and upper-bound distances and starts at the given source node. Some minor
adjustments to Algorithm 2.2 presented in Section 2.3.3 suffice. Most importantly, the
search direction is reversed. In the initialization step, the forward search space of the source
node is explored. The distances labels are then lazily expanded on the reversed downward
graph. We must be aware that obtaining I(v) for each inspected node v ∈ V already
requires as much computation effort as the entire CCH-Potential algorithm. Therefore, the
resulting estimates must be precise enough to balance this negative performance impact
during the execution of the A* algorithm. Next, we describe the different stages of the
Corridor-Lowerbound-Potential and discuss several optimizations.

Preprocessing. Based on the input graph, we first conduct a time-dependent CCH
customization as described in the CATCHUp paper [SWZ21]. After the customization, we
approximate the resulting travel time functions by k ∈ N constant segments which cover
equally sized time intervals. Figure 4.4 depicts the procedure. Using this rather unusual
approximation scheme has several advantages. Instead of keeping complex travel time
functions with thousands of breakpoints, we can adjust k to control the memory utilization.
Storing the same number of entries for each edge can also improve the cache performance,
as we will discuss later. Besides that, the extraction of the minimum edge weight within a
given interval I(v) is not as complex as evaluating piecewise linear travel time functions.
As shown in the figure, it suffices to compare all approximated segments which intersect
with I(v).

Initialization. Algorithm 4.2 describes the procedure during the initialization and the
potential requests. Similar to the CCH-Potential, we explore the search space of the target
node t on the reversed downward graph ←−G in the initialization step. However, we must be
aware that linking an edge e = (v, w) ∈ ←−G occurs in backward direction. As all edges are
traversed in forward direction during the query, we use the lower-bound weight of e within
the time interval I(w) assigned to node w. After that, the backward distance labels are
updated accordingly (lines 6–8).

32

4.3. Corridor-Lowerbound Potential

Algorithm 4.2: Corridor-Lowerbound Potential
Input: CCH forward/backward graphs −→G = (V,

−→
E ,
−→
len), ←−G = (V,

←−
E ,
←−
len)

Input: CCH elimination tree tree: V → V
Data: Tentative distances B(·) to the target node, initially ∞
Output: Potential estimates D(·) for each node v ∈ V , initially ⊥

1 function init(s, t, τdep):
2 u ← t
3 while u ̸= ⊥ do

// init search space of t with respect to τdep

4 forall e ← (u, v) ∈ ←−E do
5 I(v) ← relevantInterval(v, τdep)

6 intervalMin ← minτ∈I(v)
←−
len(e, τ)

7 B[v]← min{B[v], B[u] + intervalMin}
8 u ← tree(u)

9 function potential(v):
10 u ← v, stack ← Stack()

// determine non-explored forward-upward search space
11 while u ̸= ⊥ && D[u] = ⊥ do
12 stack.push(u), u ← tree(u)

// descend search space in reverse order
13 while stack is not empty do
14 u ← stack.pop()
15 I(u) ← relevantInterval(u, τdep) // same for all out-edges

16 forall e ← (u, x) ∈ −→E do
17 intervalMin ← minτ∈I(u)

−→
len(e, τ)

18 B[u]← min{B[u], B[x] + intervalMin}
19 D[u]← B[u]

20 return D[v]

Potential request. The forward graph −→G is explored lazily during the potential retrieval
step. Analogously to the Lazy RPHAST algorithm, all undiscovered upward nodes are
collected and processed in reversed order (lines 10–12). Contrary to the initialization,
linking edges now occurs in forward direction. Therefore, the relevant time interval I(v)
is identical for all outgoing edges of the node v. Updating the distance labels with the
corresponding interval minimum (lines 18–19) works similar to the initialization phase.

As mentioned before, applying another Lazy RPHAST routine to determine the time
intervals I doubles the required work to compute the potentials. Obtaining the minimum
edge weights results in additional computation effort, particularly if the intervals cover
several approximated segments. Therefore, thorough engineering is necessary to achieve
significant speedups over the CCH-Potential. Similarly to the Multi-Metric-Potential, we
can perform pruning and skip all nodes whose distance label exceeds the upper-bound
distance τt− τdep between source and target node. τt can be obtained by running a separate
interval request I(t) for the target node.

33

4. Time-Dependent A* Potentials

I: Sorted by Interval

Interval 1 Interval 2 Interval 3 Interval 4

II: Sorted by Edge

Edge 1 Edge 2 Edge 3 Edge 4 Edge 5 Edge 6 Edge 7 Edge 8

Figure 4.5: Possible storage layouts of the edge intervals in a single-dimensional array. The
intervals are colored to enable a better distinction between the approaches.

Approximating complex travel time functions into equally sized time intervals is another
measure to reduce memory consumption. Here, we can exploit that all approximated
edge functions follow the same structure, i. e. their breakpoints have identical timestamps.
Therefore, the weights can be stored in a single-dimensional array and accessed in constant
time by their edge id and the rounded timestamp. The procedure works as described in
Section 4.2. Figure 4.5 depicts the two possible storage layouts. We have observed that
grouping the array by interval timestamp (approach I) yields better cache performance.
Assuming that the outgoing edges of a node are laid out consecutively in memory, they will
not be flushed out of the cache if the interval I(v) of the corresponding node v ∈ V only
spans over a few entries. By grouping the weights by edge instead, we would not be able
to reuse previous cache entries when proceeding with the next edge. The main reason is
that the number k of breakpoints per edge function is usually too high to fit all associated
segments into a single cache line. Apart from that, the choice of k has another impact on
the running time of the query phase. While large intervals (small k) reduce the memory
consumption, they also worsen the accuracy of the potential estimates. We recommend
choosing k ∈ [48, 96] breakpoints per edge to achieve a reasonable trade-off. If the edge
profiles cover a single day, the corresponding segments are bound to a range between 15
and 30 minutes. Assuming that I(v) covers 15 minutes on average, we have to carry out at
most two comparisons per edge in expectation and still obtain tight potentials.
Last but not least, we formally prove the correctness of the Corridor-Lowerbound-Potential.
We first show that the lower-bound property is satisfied if the time intervals I(·) are
valid for each node. According to Theorem 2.12, this implies that the A* algorithm may
terminate upon the target node extraction from the queue. We also give a counterexample
to disprove the feasibility property.
In the following, we reuse the notations from Definition 4.5. Particularly, we consider
a time-dependent graph GT = (V, E, len) with bounds len, len and the corresponding
shortest distance functions d, d. We examine a query with source and target nodes s, t ∈ V
and departure time τdep ∈ T .

Lemma 4.6. Let P = (s, v1, . . . , vk, t) be a shortest path on the graph GT , with respect to the
departure time τdep. Each node v ∈ P is also part of the corridor C = (VC , EC , lenC) ⊆ GT .

Proof. Suppose by contradiction that there is a node vi ∈ P \ VC . Then, the inequality

d(s, vi, τdep) ≥ d(s, vi) > d(s, t)

holds. Moreover, we obtain

d(s, t, τdep) = d(s, vi, τdep) + d(vi, t, τdep + d(s, vi, τdep))

from the sub-path property of shortest paths. The contradiction

d(s, t, τdep) ≥ d(s, vi, τdep) > d(s, t)

34

4.3. Corridor-Lowerbound Potential

rank

u

v

t

1
τ

2
6

τ

1
5

τ

Figure 4.6: Counterexample to contradict the feasibility property of the Corridor-
Lowerbound-Potential. The violation occurs at the edge (u, v).

follows directly because d(·) is non-negative. Therefore, such a node vi ∈ P \ VC does not
exist and all nodes v ∈ P are part of the corridor.

Due to this lemma, we can restrict our consideration to the corridor C. Next, we show that
all nodes along the shortest path between s and t are visited within their time interval I(v).

Lemma 4.7. All nodes v ∈ VC along the shortest path P = (s, . . . , t) are visited within
their corresponding time interval I(v) = [τdep + d(s, v), τdep + d(s, v)].

Proof. It suffices to show that any access outside of I(v) is either impossible or irrelevant
for the shortest path. The inequality d(s, v) ≤ dist[v] follows directly from the correctness
of the lower bound. Hence, visiting a node v before τdep + d(s, v) is not possible.

Related to the upper bound case, it might be possible that v is extracted with a distance
label greater than d(s, v). Assuming that dist[v] will not be improved in a later iteration
implies dist[v] > d(s, v). Suppose that d(s, v) is derived from the path P = (s, . . . , v).
Traversing P then improves the distance between s and v, which contradicts to the sub-path
property (Lemma 2.10) of P . As a result, v cannot be part of the shortest path between s
and t. Visiting a node outside of its interval I(v) is either not possible or irrelevant for the
shortest path retrieval, as to be proven.

Theorem 4.8. The Corridor-Lowerbound Potential provides lower-bound estimates for all
nodes that are part of the corridor.

Proof. According to Lemma 4.6, we can ignore all nodes which are not part of the cor-
ridor C ⊆ GT . Moreover, Lemma 4.7 states that all nodes v ∈ VC along the shortest
path P = (s, . . . , t) must be visited within their given time interval I(v). For each
edge (v, w) ∈ EC , it is guaranteed that the extracted weight provides a lower bound within
the range I(v). Therefore, all applied weights are lower-bound estimates of the actual
distances. The resulting potential function thus satisfies the lower-bound property.

Due to the intermediate approximation of the travel time functions into k constant segments,
the Corridor-Lowerbound-Potential is not necessarily feasibile. A counterexample is pro-
vided in Figure 4.6. In this example, the feasibility property is violated for the edge (u, v).
As the node u is more important than v, the edge (u, v) will not directly be considered in
the potential computation. Instead, the shortcut edge (u, t) that combines (u, v) and (v, t)
is used. Moreover, the time interval I(u) is chosen shorter than I(v). While I(u) only

35

4. Time-Dependent A* Potentials

covers the first segment of the approximated travel time function, both segments of the
edge (v, t) must be considered. In this context, the potential of v is set too low to guarantee
feasibility. By the given numbers in our example, we obtain

len((u, v), τ) + πs,t,τdep(v, τ + len((u, v), τ))− πs,t,τdep(u, τ) = 1 + 1− 6 = −4

which contradicts the feasibility property. As described in Section 2.3.1, the A* algorithm
is thus label-correcting and might visit some nodes several times. This does not affect the
correctness of the algorithm, though. Moreover, we have already discussed that approxi-
mating the edge functions enables further optimizations related to memory consumption
and cache performance.

To sum up, both the Multi-Metric-Potential and Corridor-Lowerbound-Potential extend the
CCH-Potential to incorporate time-dependence. Our approaches provide tighter potential
estimates over the entire day. In the next chapter, we will compare the proposed heuristics
in terms of their memory consumption and running times.

36

5. Experiments

We present the results of our experimental evaluation in this chapter. Section 5.1 and
Section 5.2 describe implementation details as well as the experimental setup. After that,
we examine the performance of our proposed time-dependent A* potentials in Section 5.3.
Finally, Section 5.4 contains a comprehensive evaluation of the cooperative routing model.
Besides evaluating memory consumption and running times, we also compare the model
with common selfish routing strategies.

5.1 Experimental Setup
Our benchmark machine runs openSUSE Leap 15.3, and has 192 GiB of DDR4-2666 RAM
and two Intel Xeon Gold 6144 CPUs, each of which has eight cores clocked at 3.5 Ghz
and 8 × 64 KiB of L1, 8 × 1 MiB of L2, and 24.75 MiB of shared L3 cache. Unless stated
otherwise, all experiments have been conducted sequentially.

The code is written in Rust and compiled with rustc 1.58.0-nightly. All experiments
have been executed in the release mode with the target-cpu=native option. Our
implementation can be found on GitHub1. It extends the rust_road_router2 framework
which provides efficient implementations for several speed-up techniques, including CCH-
Potentials [SZ21] and CATCHUp [SWZ21]. We also reuse the given graph data structures.
In addition to that, we run InertialFlowCutter [GHUW19] to obtain metric-independent
node orders for the applied speed-up techniques.

Next, we describe the parameterization of our implementation. We interpret time-dependent
edge weights as periodic functions whose domain covers a single day. The modulo operation
is applied to map all timestamps into the domain T = [0, p]. Wherever possible, we represent
travel time functions as integer weights with a precision of milliseconds, i. e. p = 86.4 · 106.
However, using integers is not possible for hierarchical time-dependent speed-up techniques.
Each linking and merging step may produce breakpoints at arbitrary timestamps. Therefore,
the corresponding algorithms operate on floating-point weights. To reduce the impact of
inaccuracies, we use the range T ′ = [0, 86.4 · 103] instead.

The Capacity-Graph structure defined in Section 3.2 also requires further parametrization.
Based on the results of our experiments, we recommend to use k ∈ [50, 300] buckets per edge.
Each bucket then represents a time interval of approximately 5–30 minutes. Additionally,

1Full implementation: https://github.com/nils-we97/rust_road_router-fork
2Basic framework: https://github.com/kit-algo/rust_road_router

37

https://github.com/nils-we97/rust_road_router-fork
https://github.com/kit-algo/rust_road_router

5. Experiments

Graph #Nodes #Edges TD Edges [%] #Breakpoints [×106]
Lux-20 58 511 123 718 71.67 2.40
Ger-06 4 688 214 10 795 826 7.25 23.79
Eur-17 25 757 978 55 503 819 27.16 455.60
Eur-20 28 510 049 60 898 831 76.28 1 011.60

Table 5.1: Statistics about the used PTV graph instances.

we have to calibrate the BPR function to convert traffic loads into velocities. As suggested
by Buchhold et al. [BSW19b], we use the parameters α = 1 and β = 2. Apart from
that, our implemented Capacity-Graph stores both traffic loads, speeds, and travel time
functions. At the cost of increased memory consumption, we achieve better performance
while evaluating and updating the travel time profiles. As described in Section 3.2, we only
maintain the traffic loads and velocities of used edge buckets.

For the Corridor-Lowerbound-Potential approach, we approximate the shortcut edges
by k = 72 piecewise constant intervals of equal length. Consequently, each segment covers a
time slice of 20 minutes. The Multi-Metric-Potential is instantiated with a generic pattern
of time intervals, as shown in Figure 4.2 (see Section 4.2). These intervals range from one
to 24 hours. For all experiments conducted in Section 5.3, we have reduced the interval
density around midnight to accelerate the metric reduction step.

5.2 Graph Instances and Queries
We use both proprietary and publicly available graph instances for our evaluation. In
Section 5.3, the performance of the time-dependent A* potentials is evaluated on pro-
prietary graphs. All experiments related to the cooperative model are conducted on graph
instances obtained from OpenStreetMap3 (OSM). The usage of OSM data requires further
preprocessing. First, we extract the road map as well as the travel times and distances of
each road segment. A subroutine of the RoutingKit4 framework is applied for this. As
described in [ZNN11], we initialize the edge capacities according to the underlying road
types. After that, falsely modeled edges with invalid capacities are removed and multi-edges
are combined to a single edge. For simplification, we also restrict the graph to its largest
strongly connected component. We use two different OSM instances. While the smaller
graph models the road network of Berlin with 131k nodes and 287k edges, the road map of
Baden-Württemberg contains 1.9M nodes and 4.4M edges.

The proprietary graphs used in our experiments are provided by the PTV Group5. Due to
missing information about the edge capacities, we cannot conduct experiments related to
the cooperative model on these graphs. Nonetheless, the instances provide real-world traffic
predictions and are thus suitable to evaluate the quality of our proposed A* potentials. More
details about the PTV instances are provided in Table 5.1. The last column (#Breakpoints)
refers to the aggregated number of breakpoints of all travel time functions. Moreover, all
edge profiles with at least two breakpoints are classified as time-dependent (third column).

Due to lacking real-world trip data, we have to use randomly generated query sets in
our evaluation. We distinguish between four different query types: uniform, geometric,
population-uniform and population-geometric. For uniform queries, both source and target
node are drawn uniformly at random. Many evaluations found in literature are based on

3OpenStreetMap: https://www.openstreetmap.org/about
4Routing Kit: https://github.com/RoutingKit/RoutingKit
5PTV Group: https://ptvgroup.com/

38

https://www.openstreetmap.org/about
https://github.com/RoutingKit/RoutingKit
https://ptvgroup.com/

5.3. Comparing Time-Dependent A* Potentials

these queries (see e. g. [GSSD08, DSW14, SZ21, SWZ21]). Although uniform queries are
fast to generate, they often do not represent realistic traffic flows. Luxen and Sanders [LS11]
claim that more realistic query sets can be obtained by using a geometric distribution
with an expected travel distance of 40 kilometers. The geometric query type adopts
this approach. We pick a random source node and determine the desired travel distance
randomly from the geometric distribution. Then, we run Dijkstra’s algorithm and set the
target to the first node that exceeds the given distance threshold. Due to lacking travel
distances in the PTV data, we assume an expected travel time of 45 minutes for these
instances.

Even though geometric query sets are more realistic than uniform queries, the random choice
of the source node still lacks plausibility. In reality, most trips start and end in densely
populated areas. Following a recent work by Buchhold et al. [BSW19a], we incorporate
publicly available population data. We use two different population grids with a precision
of 100x100 meters for Germany6 and 1x1 km for Europe7. A separate preprocessing step is
applied to assign the nodes to their respective grid cells. The population-uniform approach
picks source and target node in two separate steps. First, we select two random cells by
their population density. After that, the source and target node are chosen randomly from
the selected cells. Lastly, the population-geometric query type combines the aspects of
population-uniform and geometric queries. The source node is picked randomly according
to the population density. However, we refrain from choosing the target as the first node
that surpasses the geometrically drawn travel distance d. Instead, we collect all cells
visited in the distance range [0.9d, 1.1d] and choose the target node from those cells. Again,
population density is taken into account for the selection to ensure that the target node is
likely located in a densely populated area.

In addition to the discussed query types, we also apply the Dijkstra-Rank [SS05] method-
ology. The Dijkstra rank of node v corresponds to the number of nodes settled by a
Dijkstra run before extracting v. This way, we can evaluate short-, mid-, and long-range
queries separately. Altogether, these five different query types offer a variety of query
sets. Besides that, we must also generate reasonable departure times for the queries. We
distinguish between a uniform and a rush hour departure distribution. While the uniform
distribution approach picks the departure time uniformly at random, the latter applies a
pattern from [TB10] to increase the probability of departing within a peak traffic hour. We
claim that the use of population-geometric query sets combined with a rush-hour departure
distribution provides a realistic approximation of real-world traffic flows.

5.3 Comparing Time-Dependent A* Potentials
First, we evaluate the memory consumption and running time of our time-dependent A*
potentials discussed in Chapter 4. The corresponding experiments are conducted on the
PTV graphs. To obtain a general overview of the applicability of time-dependent potentials,
we refrain from adjusting the travel time profiles after each request. Instead, the focus is
on evaluating the performance on time-dependent graphs with real-world traffic prediction.
The CCH-Potential is used as a baseline heuristic in our experiments.

Preprocessing. Table 5.2 summarizes the results of evaluating the A* potentials in terms
of memory consumption and preprocessing time. In all runs, the CCH customization is
parallelized on 16 cores. For simplicity, we only measure the space utilization after the
preprocessing and omit intermediate data structures. As expected, CCH-Potentials require

6Germany: https://www.zensus2011.de/DE/Home/Aktuelles/DemografischeGrunddaten.html
7Population grid, Europe: https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/

population-distribution-demography/geostat

39

https://www.zensus2011.de/DE/Home/Aktuelles/DemografischeGrunddaten.html
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography/geostat
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography/geostat

5. Experiments

Graph CCH-Pot Multi-Metrics Corridor-Lowerbound
space [GB] time [s] space [GB] time [s] space [GB] time [s]

Lux-20 0.01 0.04 0.03 1.03 0.08 1.48
Ger-06 0.94 3.54 3.02 103.97 7.08 53.49
Eur-17 4.83 19.64 15.65 571.17 36.18 1220.53
Eur-20 5.26 22.34 17.04 649.07 40.60 2104.91

Table 5.2: Preprocessing time and space utilization of the different A* potentials.

the least storage utilization and preprocessing time. In addition to the graph structure,
only the lower-bound metric len of the edge weights has to be customized and stored. By
incorporating time-dependence in our A* potentials, we observe longer preprocessing times
and higher memory utilizations. Depending on the parameterization, the intermediate
memory utilization can be troublesome on large graphs for both Multi-Metric-Potential and
Corridor-Lowerbound-Potential. We have observed temporary utilizations of up to 180GB,
which is only slightly below the capacity of our benchmark machine. To avoid running out
of memory, we restrict the Multi-Metric-Potential to 20 customized metrics and limit the
degree of approximation in the Corridor-Lowerbound-Potential to at most 72 intervals per
edge.

Further optimizations can be applied to reduce the preprocessing time of our time-dependent
A* heuristics. We have observed that up to 90% of the time required to preprocess the Multi-
Metric-Potential is caused by the metric reduction step. Even on the largest instance Eur-20,
the CCH customization of 20 metrics only takes a minute. Therefore, using fewer time inter-
vals would help to reduce the preprocessing time. For the Corridor-Lowerbound-Potential,
the time-dependent customization (adopted from the CATCHUp [SWZ21] implementation)
dominates the running time of the preprocessing step. We report preprocessing times of
up to 30 minutes on continental-sized graph instances. At the expense of performance
during the query phase, we can omit some stages of the customization [SWZ21]. Still, long
preprocessing times are infeasible for some applications, particularly if the stage has to be
re-run frequently.

Queries. Next, we evaluate the different potentials in terms of running time and search
space size during the query stage. Apart from Dijkstra-Ranks, we consider all combinations
of PTV graph instances and query types introduced in Section 5.2. While the departure
time of the uniform query types is chosen uniformly at random, the rush hour departure
distribution is applied for the geometric query sets. Table 5.3 shows the average running
times and search space sizes over 10 000 queries. To provide a comparison with Dijkstra’s
algorithm, we have also applied a Zero-Potential which naively returns 0 as target distance
estimate for all nodes.

Compared to Dijkstra’s algorithm, the CCH-Potential reduces the search space size by
up to two orders of magnitude. Both Multi-Metric-Potential and Corridor-Lowerbound-
Potential achieve even smaller search spaces. Due to the additional computation effort
to obtain time-dependent estimates, the observed running time improvements are not as
significant as the reduction in search space size. Nonetheless, both time-dependent A*
potentials also yield better running times than the CCH-Potential. In particular, applying
the Corridor-Lowerbound-Potential results in the fastest query times throughout all runs
and outperforms the CCH-Potential by up to an order of magnitude. The Multi-Metric-
Potential improves the running time of the CCH-Potential on all geometric query sets. We
observe little running time differences for uniform queries on large road networks, though.

40

5.3. Comparing Time-Dependent A* Potentials

G
ra

ph
Q

ue
ry

Ty
pe

Ze
ro

-P
ot

[D
ijk

st
ra

]
C

C
H

-P
ot

M
ul

ti-
M

et
ric

s
C

or
rid

or
-L

ow
er

#
no

de
s

tim
e

[m
s]

#
no

de
s

tim
e

[m
s]

#
no

de
s

tim
e

[m
s]

#
no

de
s

tim
e

[m
s]

Lu
x-

20

un
i

28
06

6
4.

73
15

10
0.

38
64

7
0.

21
33

5
0.

19
po

p-
un

i
29

34
2

4.
80

18
66

0.
44

78
3

0.
22

36
5

0.
18

ge
om

22
95

8
3.

90
16

07
0.

39
58

0
0.

18
27

8
0.

15
po

p-
ge

om
23

79
7

3.
98

20
21

0.
48

76
0

0.
22

32
4

0.
16

G
er

-0
6

un
i

23
34

89
0

62
5.

44
17

75
5

7.
39

11
52

9
5.

93
12

07
2.

21
po

p-
un

i
22

57
57

0
59

7.
48

19
80

7
8.

22
12

73
5

6.
39

12
28

2.
21

ge
om

21
96

24
69

.0
7

20
54

1.
26

83
0

1.
02

26
4

0.
68

po
p-

ge
om

23
87

97
59

.0
1

24
18

1.
10

94
6

0.
89

28
4

0.
62

Eu
r-

17

un
i

12
49

92
18

33
88

.9
4

33
90

51
17

5.
86

33
33

03
16

4.
05

73
17

13
.3

2
po

p-
un

i
12

44
78

10
31

60
.4

2
33

77
10

14
2.

39
32

98
12

14
6.

81
70

23
10

.9
0

ge
om

32
43

76
75

.2
8

29
23

1.
30

11
74

1.
46

39
8

1.
03

po
p-

ge
om

28
99

95
69

.2
4

40
82

1.
78

16
75

1.
70

42
5

1.
06

Eu
r-

20

un
i

14
40

38
98

50
24

.5
1

31
69

78
16

7.
01

31
08

94
17

2.
41

11
28

4
17

.3
4

po
p-

un
i

13
40

53
30

46
23

.2
0

31
63

65
23

1.
62

30
82

46
24

3.
07

10
99

6
18

.6
9

ge
om

32
66

01
10

5.
03

59
05

2.
77

25
84

2.
20

52
0

1.
26

po
p-

ge
om

41
30

13
13

8.
03

77
82

5.
00

34
38

3.
39

59
0

1.
57

Ta
bl

e
5.

3:
Av

er
ag

e
ru

nn
in

g
tim

e
an

d
se

ar
ch

sp
ac

e
siz

e
of

th
e

A
*

al
go

rit
hm

by
ap

pl
yi

ng
di

ffe
re

nt
po

te
nt

ia
ls.

Ea
ch

qu
er

y
se

t
co

nt
ai

ns
10

00
0

ra
nd

om
ly

ge
ne

ra
te

d
qu

er
ie

s.

41

5. Experiments

Figure 5.1: Search space visualization of a query between the red and black circle. Each
blue circle represents a visited node. Left: CCH-Potential, mid: Multi-Metric-
Potential, right: Corridor-Lowerbound Potential. Only 10% of the visited nodes
are displayed for the first two approaches.

Figure 5.1 visualizes the search space of a query on the road network of Luxembourg. For
better representation, only 10% of the nodes scanned by the A* search are displayed in
the left and middle images. To obtain the fastest route between the nodes marked in red
and black, the CCH-Potential yields a search space size of around 21 000 nodes. Applying
the Multi-Metric-Potential reduces the number of visited nodes to 14 000. By far the
smallest search space size is achieved by using the Corridor-Lowerbound-Potential. In this
run, only 2 000 nodes have been visited by the A* algorithm, 90% less compared to the
CCH-Potential.

We have also examined the accuracy of the potential estimates. The relative deviation dev(·)
between the actual distance d(s, t, τdep) and the potential estimate πs,t,τdep(s, τdep) is given
by the equation

dev(s, t, τdep) = 1−
πs,t,τdep(s, τdep)

d(s, t, τdep) .

The deviations have been measured for the uniform and geometric query sets on the Eur-20
graph. As expected, the largest deviation between the heuristic estimate and the actual
distance is observed for the CCH-Potential. It averages 3.64% for the uniform and 8.97%
for the geometric queries. In particular, the estimates are less precise for trips during
rush hours. The estimates of the Multi-Metric-Potential deviate by 3.43% for both query
types. The balanced result is a consequence of instantiating many metrics that cover time
intervals in expected peak traffic hours. By far the tightest estimates are provided by the
Corridor-Lowerbound-Potentials. In this case, the average deviations range from 0.37% on
the uniform to 0.57% on the geometric query set. We can conclude that approximating
the customized edge weights into k equally sized time intervals does not pose a risk of
inaccurate predictions. Instead, it enables significant performance optimization for the
potential retrieval.

Dijkstra-Ranks. The results in Table 5.3 provide average running times over 10 000 runs.
Therefore, they do not highlight the difference between short-range and long-range queries.
To distinguish between these types, we also evaluate the potentials on Dijkstra-Rank queries.
The experiment has been conducted on the Eur-20 instance. We have processed 1 000
queries for each rank r ∈ {28, 29, . . . , 224}. Both source nodes and departure times of these

42

5.3. Comparing Time-Dependent A* Potentials

0.1

1

10

100

1000

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
log(Dijkstra Rank)

Q
u
er
y
ti
m
e
[m

s]
CCH-Pot
Corridor-Lowerbound
Multi-Metric

Figure 5.2: Query time as a function of the Dijkstra Rank.

queries are drawn randomly. The running times are presented in Figure 5.2, grouped by
A* potential and Dijkstra rank. Each colored box represents the interquartile range (IQR).
An additional mark is set for the median running time. The whisker boundaries outside
of the boxes represent 1.5 × IQR intervals. Furthermore, outliers below and above the
whiskers are marked as separate dots.

For all ranks up to 214, the CCH-Potential has the lowest reported median running times.
Especially for short-range queries, we can deduce that the comparably low initialization
effort compensates for the larger search space of the A* algorithm. As the distance between
source and target increases, the advantages of time-dependent A* potentials come into play.
From rank 214 onward, the Corridor-Lowerbound-Potential provides the fastest running
times. Simultaneously, the outliers of the CCH-Potential and Multi-Metric-Potential have
a considerable impact on their average query times. For long-range queries, the Corridor-
Lowerbound-Potential outperforms the competitors significantly. The largest differences
between the median query times are reported at the last rank 224. Throughout all ranks,
we can also observe that the variance of the running times is relatively low for the Corridor-
Lowerbound-Potential. Hence, this heuristic provides good estimates for all types of queries.
Apart from that, the Multi-Metric-Potential outperforms the CCH-Potential between the
ranks [217, 223]. At rank 224, the running times of these approaches converge with each
other. The reason is that the Multi-Metric-Potential has to fall back to the lower-bound
metric len for many long-range queries. Therefore, the heuristics provide identical estimates.
In general, however, the Multi-Metric-Potential provides tighter estimates and makes the
A* algorithm less prone to variations in the running time.

Up to this point, we can conclude that the Multi-Metric-Potential and Corridor-Lowerbound-
Potential incorporate time-dependence efficiently. Throughout different query sets, both
approaches outperform the baseline CCH-Potential on road networks with real-world
traffic predictions. However, especially the Corridor-Lowerbound-Potential requires long
preprocessing times and causes a considerable memory utilization. This can be troublesome
if the application requires frequent adjustments to the current traffic situation. Furthermore,
we have observed that the Multi-Metric-Potential offers a trade-off between the other
approaches. A manageable preprocessing time is sufficient to enable relatively tight

43

5. Experiments

Graph #Queries Single-Bucket 50 Buckets 200 Buckets
Usage [%] Space [MB] Usage [%] Space [MB] Usage [%] Space [MB]

Berlin
500k 77.09 25.17 35.27 226.69 22.82 547.46
1.5M 84.26 25.23 50.57 301.55 36.10 828.03
3M 87.81 25.40 61.00 348.41 47.21 1 041.49

BaWü
500k 37.88 400.96 11.31 2 105.83 7.23 4 873.83
1M 45.56 408.66 14.81 2 632.09 10.16 6 569.35
2M 53.48 416.80 19.39 3 320.48 14.00 8 811.98

Table 5.4: Space consumption of multiple Capacity-Graphs with a varying bucket count.
The relative usage refers to the share of edge buckets with a traffic load greater
than zero.

potential estimates. Therefore, the choice of the most suitable A* heuristic depends on the
application area. In the following series of experiments, we evaluate the applicability of
our time-dependent A* potentials for cooperative route planning.

5.4 Evaluating Cooperative Route Planning
We finally evaluate our model of cooperative route planning. In the first experiment, we
determine the memory consumption of several Capacity-Graphs initialized with different
bucket counts. Then, the performance of our A* potentials is examined on the Capacity-
Graphs. We also evaluate the solution quality of the on-line distribution algorithm described
in Section 3.2. For this purpose, we provide selfish routing algorithms for comparison.

To model realistic traffic loads on the Capacity-Graphs, it is necessary to generate and
process millions of requests. This can be problematic for two reasons. First, creating
large sets of geometric queries is time-consuming because every single request involves a
Dijkstra run. Moreover, it also takes several hours to solve these queries for each heuristic
separately. As a workaround, we use uniform queries instead. Although these are less
realistic, uniform queries are fast to generate. They also cover longer distances, whereby
congestion on the main roads can be modeled with fewer requests. Apart from this, we
must ensure that the A* heuristics provide lower-bound estimates throughout all runs. In
the given cooperative model, the edge weights are slightly increased after each query but
never decreased. For both of our time-dependent heuristics, it has to be guaranteed that
the extracted upper-bound metric len remains valid. We can exploit that it is sufficient to
update len upon a bound violation. The reason is that the potentials satisfy the lower-bound
property as long as the bounds are valid. To avoid too frequent adjustments, we increase
all entries in len by 50%. The main preprocessing routine is still run regularly to enable
tight potential estimates.

Memory Consumption. In the first experiment related to cooperative route planning,
we evaluate the memory consumption of several Capacity-Graphs. On each OSM road
network, we compare graphs with 1, 50, and 200 buckets per edge. The results are shown
in Table 5.4. We have captured the memory usage as well as the share of used edge
buckets, i. e. those with a non-zero traffic load. For the single-bucket case, the relative
usage corresponds to the share of road segments used in at least one route. Besides that, it
should be noted that applying a speed-up technique causes additional storage overhead.
Our measurements do not take into account such auxiliary data.

We have processed three million queries on the OSM graph of Berlin. Although common
traffic flows within the city consist of fewer trips [FG19], this scenario poses a challenge for
both the distribution algorithm and the underlying A* heuristic. We observe that 500k

44

5.4. Evaluating Cooperative Route Planning

0

2

4

6

8

CCH-Pot Corridor-Lower Multi-Metric

T
im

e
p
er

q
u
er
y
[m

s]

500 000 Queries

0

2

4

6

8

CCH-Pot Corridor-Lower Multi-Metric

1 000 000 Queries

Stages: Query Update Preprocessing

Figure 5.3: Comparison of the running times of the A* potentials on the instance of Berlin.
The bars are divided into the different stages Preprocessing, Query and Update.

uniform queries suffice to cover large parts of the graph. After three million requests, most
of the road segments are considered in at least one route. We assume that the remaining
edges refer to irrelevant road segments, such as dirt tracks or falsely modeled roads. Besides,
we can see that the bucket structure dominates the overall memory consumption. Compared
to the single-bucket Capacity-Graph, maintaining up to 200 buckets per edge can increase
the required storage by a factor of 40. Nonetheless, memory usage grows sublinearly
with the applied bucket count. We can conclude that storing only used edge buckets (as
described in Section 3.2) is advantageous in practice.

On the graph of Baden-Württemberg, two million requests have been run. Due to the choice
of uniform queries, most trips cover large distances and thus mainly congest the highways
and federal roads. Compared to the measurements on the road network of Berlin, the share
of used edges is therefore lower. As we have seen before, a high degree of time-dependence
implies considerable memory consumption. Here, the bucket structures alone account for
up to 8GB of used memory. This underlines the importance of choosing the bucket count k
reasonably. Especially for continental-sized graphs, a large k could be troublesome. It is
necessary to achieve a good trade-off between the accuracy of the time-dependent graph
model on the one hand and the memory consumption associated to the edge buckets on
the other.

Query Times. Next, we compare CCH-Potential, Multi-Metric-Potential, and Corridor-
Lowerbound-Potential in a cooperative setting. Contrary to the experiment conducted in
Section 5.3, we now apply an update step which adjusts the edge weights after each route
assignment. Throughout all runs, we use Capacity-Graphs with 100 buckets per edge. To
ensure the correctness of the time-dependent A* heuristics, the upper-bound metric len
must be validated in each step. Moreover, we re-run the preprocessing step regularly for
both Multi-Metric-Potential and Corridor-Lowerbound-Potential. This enables frequent
adjustments to the current traffic situation and therefore improves the accuracy of the
estimates.

We have measured the running times of the A* heuristics on the graph of Berlin. In this
experiment, two uniform query sets with half a million and a million requests are used. The
preprocessing step of the Multi-Metric-Potential and the Corridor-Lowerbound-Potential
is run after 50 000 queries each. Additional adjustments to the upper-bound metrics are
applied whenever needed. Figure 5.3 presents the average query times. In the chart,

45

5. Experiments

0

50

100

150

0 250 500 750 1000

Number of Queries [×103]

A
ve
ra
g
e
Q
u
er
y
T
im

e
[m

s] CCH-Pot
Corridor-Lowerbound
Multi-Metric

Figure 5.4: Running times on unsorted query sets, measured on the graph of Baden-
Württemberg.

we subdivide the bars by the different query stages. Besides query and update time for
each request, we also consider the amortized running time of the preprocessing phase. As
expected, the update time is consistent for all approaches. Moreover, we obtain significant
variations in the preprocessing times. Due to the small size of the graph, performing a
time-independent CCH customization takes less than a second. Therefore, the amortized
preprocessing effort is negligible for both CCH-Potential and Multi-Metric-Potential. In
contrast, each preprocessing step of the Corridor-Lowerbound-Potential can take up to a
minute.

It seems surprising that all A* potentials solve the queries equally fast. The Multi-
Metric-Potential yields the fastest query times, followed by the CCH-Potential and the
Corridor-Lowerbound-Potential. However, none of our time-dependent heuristics provide
significant speedups as measured before. This observation reveals a fundamental issue of the
studied cooperative model: If we process the queries by ascending departure time, only a
fraction of the available information is related to future traffic flows. The preprocessing step
mainly processes past traffic data instead. As a result, the estimates of our time-dependent
A* potentials differ only marginally from the CCH-Potential. Unfortunately, there are no
simple measures to deal with this problem. Running the preprocessing step more frequently
to incorporate additional traffic information is not practical for large graphs as it will
further degrade the overall performance.

To demonstrate that time-dependent A* potentials can still outperform the CCH-Potential
in a cooperative setting with permanently changing edge weights, we repeat the experiment
with unsorted query sets. We explicitly do not order the queries by departure time.
Although this setup does not resemble a real-world use case, it allows us to incorporate
more information about future traffic conditions. Figure 5.4 visualizes the running times
after processing one million queries on the road map of Baden-Württemberg. This time, we
aggregate the running times of preprocessing, query, and update phase. The measurements
take place after 10 000 requests each. While the average running time of the CCH-Potential
grows linearly with the number of processed queries, the time-dependent A* potentials
provide tighter estimates throughout the entire run. We also observe that intermediate
updates of the bounds do not pose a performance risk. Therefore, we can conclude that
time-dependent A* potentials are also applicable for cooperative route planning. However,
sufficient information on future traffic flows must be available.

46

5.4. Evaluating Cooperative Route Planning

0.95

1.00

1.05

1.10

0.5 1.0 1.5 2.0
Number of Queries [×106]

R
el
a
ti
ve

S
o
lu
ti
o
n
Q
u
a
li
ty

cch-20k cch-100k cch-INF coop-1 coop-50 coop-200

Figure 5.5: Evaluating the solution quality of different distribution strategies (cooperative
vs. selfish). The resulting total travel time is compared with the benchmark
instance coop-200.

Solution Quality. Finally, we evaluate the solution quality of our cooperative distribution
algorithm. In particular, we investigate whether our applied strategy distributes traffic
evenly and minimizes the overall travel time. We compare our cooperative approach with
selfish methods that do not adjust the edge profiles in each step and aim only at optimizing
the result for the current query. The experiment is conducted as follows. First, each
approach determines the routes for the given requests. Then, the travel times of the
assigned routes are re-evaluated on a benchmark instance, i. e. a Capacity-Graph with
adjusted edge weights. We obtain the solution quality of each approach from the sum over
the corresponding travel times of all proposed routes.

The evaluation is conducted on three Capacity-Graphs with different bucket counts (1, 50,
and 200, respectively). This allows us to investigate the impact of time-dependence, too.
We use the latter instance as a benchmark for the subsequent comparisons. The selfish
routing instances apply a CCH to accelerate the computations. We regularly customize
the CCH graphs with the current travel times obtained from the benchmark instance. For
simplification, we refrain from instantiating a selfish approach with time-dependent edge
weights. Instead, the travel time functions are evaluated at the departure timestamp of the
current query.

Figure 5.5 shows the results of the comparison. We have run two million queries (ordered
by departure time) on the graph of Baden-Württemberg and conducted a comparison
after 100k steps each. The cooperative instances are labeled as coop-x, where x refers
to the bucket count in the respective Capacity-Graph. Moreover, the selfish approaches
(cch-x) are customized after every x requests. We also take into account an instance that
is never synchronized (cch-INF). The y-Axis of the figure represents the relative solution
quality compared to the benchmark instance (coop-200). This value is retrieved by dividing
the total travel times of the respective approach by the benchmark result. Therefore,
the solution quality of the benchmark instance is always equal to 1. As we consider a
minimization problem, results below 1 indicate improvements over the benchmark instance.
Conversely, a higher quotient implies a poorer solution quality.

47

5. Experiments

The comparatively poor solution quality of the cooperative approaches contradicts our
original expectations. After processing two million queries, we observe that the selfish
routing approaches provide even better routes. Moreover, using Capacity-Graphs with a low
degree of time-dependence seems beneficial in the considered cooperative model. As seen in
the last experiment, our cooperative model has limited information about future traffic flows.
This affects both the running time of the A* algorithm and the quality of the obtained
routes. In addition, we have considered uniform queries that are distributed evenly over
the entire day. Therefore, predictions based on the current traffic situation are suddenly
more precise. This leads to the paradoxical case that the CCH-based selfish approaches
provide better routes. Compared to their cooperative competitors, the total travel time is
improved by around 5%. For the same reason, a higher degree of time-dependence is also
disadvantageous in the given scenario. The fewer edge buckets the Capacity-Graph has,
the more likely it is to incorporate past and current traffic data in the current query.

Nevertheless, these results do not imply that cooperative route planning is inferior to
selfish routing. We also observe that the cooperative approaches perform far better than
the selfish instance cch-INF which does not apply any traffic updates at all. Therefore,
we emphasize that further adjustments to the studied model are necessary to exploit the
benefits of cooperative routing to its full extent. In particular, more information about
future traffic conditions must be available. This could e. g. be achieved by incorporating
historic data. The stored traffic loads can then be used to detect unusual traffic peaks in
advance. Another solution could be to allow subsequent adjustments of the routes. As
we have already seen, time-dependent A* potentials perform comparatively well if future
traffic flows are predictable. We assume that this also improves the quality of the suggested
routes. To this end, we encourage revising the cooperative model and the provided on-line
traffic distribution algorithm.

48

6. Conclusion

We have introduced and discussed efficient algorithms for cooperative route planning
on time-dependent graphs. For this, we have studied a model in which the queries are
processed on-line, ordered by ascending departure time. A simple strategy has been applied
to distribute traffic evenly in the road network. Our main focus has been on designing
time-dependent A* potentials to accelerate the search for shortest paths.

As a main result, our proposed A* potentials outperform the current state-of-the-art
CCH-Potential [SZ21] by up to an order of magnitude in terms of query time. Both Multi-
Metric-Potential and Corridor-Lowerbound-Potential incorporate time-dependence with
manageable computation effort during the query phase. In addition, the two approaches
also point out interesting algorithmic insights. As exploited in the Multi-Metric-Potential,
we can obtain time-dependent A* heuristics by applying a time-independent speed-up
technique. These techniques usually require shorter preprocessing times than their time-
dependent counterparts. Hence, the potential is particularly suitable for applications
where fast customization is necessary. Besides that, A* potentials which violate the
feasibility property are not necessarily less efficient. Although the A* algorithm may visit
some nodes several times, this allows us to apply further optimizations. For example,
we approximate travel time functions in the Corridor-Lowerbound-Potential to achieve
significant performance gains.

The proposed time-dependent potentials have different strengths and weaknesses. On the
one hand, the Corridor-Lowerbound-Potential provides tight estimates and enables the
fastest running times in the query phase. On the other hand, it uses a time-dependent
CCH as the underlying speed-up technique. This leads to slow preprocessing times and
considerable memory usage. In contrast to this, the Multi-Metric-Potential offers a trade-off
between the flexibility of the CCH-Potential and the accuracy of the Corridor-Lowerbound-
Potential. Although its estimates are not as precise as the Corridor-Lowerbound-Potential,
the preprocessing step runs comparatively fast. Moreover, it also outperforms the CCH-
Potential for most query types.

Our experiments also show that the considered model for cooperative route planning requires
further investigations. In particular, the simple distribution algorithm is insufficient to
provide good routes on congested road networks. For random queries, we have seen that
processing the current traffic situation yields better results than using the prediction of
future traffic conditions. This underlines the need to revise the model itself and incorporate
more traffic information.

49

6. Conclusion

6.1 Future Work
As our experiments have shown, the application scope of time-dependent A* potentials
is not limited to cooperative route planning. In general, the potentials are suitable for
applications in which the edge weights of the graph are subject to frequent changes.
Moreover, real-world applications must consider further modelling aspects, such as turn
costs or the distinction between live and predicted traffic data [SZ21]. Integrating these
aspects into hierarchical speed-up techniques can be tedious. However, by decoupling the
speed-up technique from the input graph, we can exploit A* potentials to achieve this with
less effort.

We assume that the performance of both proposed time-dependent A* potentials can yet
be improved. For completeness, a sensitivity analysis related to the number of metrics
(Multi-Metric-Potential) and the number of approximated intervals (Corridor-Lowerbound-
Potential) should be performed. Some other setup parameters should be reconsidered, too.
For example, the preprocessing effort of our time-dependent heuristics is comparatively low
for small graphs. Therefore, the underlying CCH can be synchronized more frequently with
the current traffic situation. Moreover, we suggest further design improvements related to
the Multi-Metric-Potential. In particular, the super-quadratic running time of the metric
reduction step constitutes the main performance bottleneck during the preprocessing. The
remaining parts take less than a minute, even on continental-sized graphs. Regarding the
Corridor-Lowerbound-Potential, it is possible to reduce the preprocessing time by skipping
some optional stages of the time-dependent customization at the expense of additional
computations during the query phase. However, this measure will only marginally reduce
the preprocessing time and therefore does not solve the main drawback of this approach.

Last but not least, we discuss the applicability of cooperative route planning. To integrate
the studied model into real-world applications, further aspects must be addressed. We
suggest considering historical traffic data when predicting future traffic flows. Then, we
can adjust the expected travel times by route information obtained from other road users.
This is particularly useful during unexpected situations such as road accidents or major
events. Besides that, it is naive to assume that the suggested route remains optimal over
the whole trip. Subsequent route adjustments offer the advantage of taking into account
additional traffic information. Applied to our model, this implies that the traffic loads
stored in the edge buckets can both increase and decrease. This poses further challenges for
the design of valid potential functions. Lastly, it would also be interesting to compare the
paths obtained by the cooperative model with the social optimum state. This would allow
us to quantify the inevitable loss of solution quality due to the real-time route assignments
to each request.

Overall, several issues have to be resolved before our cooperative route planning approach
can be integrated into real-world applications. However, the use of a central authority
that distributes traffic evenly in real-time could lead to a noticeable easing of the traffic
situation in urban areas. Nonetheless, incentives must be provided to ensure that all drivers
follow their assigned routes. The success of cooperative routing ultimately depends on the
extent to which the road users are willing to cooperate rather than pursue their interests.

50

Bibliography

[ADGW11] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Wer-
neck. A Hub-Based Labeling Algorithm for Shortest Paths in Road Net-
works. In Experimental Algorithms - 10th International Symposium, SEA
2011, Kolimpari, Chania, Crete, Greece, May 5-7, 2011. Proceedings, volume
6630 of Lecture Notes in Computer Science, pages 230–241. Springer, 2011.
https://doi.org/10.1007/978-3-642-20662-7_20.

[ALS13] Julian Arz, Dennis Luxen, and Peter Sanders. Transit Node Routing Re-
considered. In Experimental Algorithms, 12th International Symposium,
SEA 2013, Rome, Italy, June 5-7, 2013. Proceedings, volume 7933 of Lec-
ture Notes in Computer Science, pages 55–66. Springer, 2013. https:
//doi.org/10.1007/978-3-642-38527-8_7.

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows
- Theory, Algorithms and Applications. Prentice Hall, 1993.

[BCRW16] Reinhard Bauer, Tobias Columbus, Ignaz Rutter, and Dorothea Wagner.
Search-space size in contraction hierarchies. Theoretical Computer Science,
645:112–127, 2016. https://doi.org/10.1016/j.tcs.2016.07.003.

[BDG+16] Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller-
Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F.
Werneck. Route Planning in Transportation Networks, volume 9220 of Lecture
Notes in Computer Science, pages 19–80. Springer International Publishing,
Cham, 2016. https://doi.org/10.1007/978-3-319-49487-6_2.

[Bel57] Richard E. Bellman. Dynamic Programming. Princeton University Press,
1957.

[BGSV13] Gernot V. Batz, Robert Geisberger, Peter Sanders, and Christian Vetter.
Minimum Time-Dependent Travel Times with Contraction Hierarchies. ACM
Journal of Experimental Algorithmics, 18, 2013. https://doi.org/10.1145/
2444016.2444020.

[BMW56] Martin Beckmann, Charles B. McGuire, and Christopher B. Winsten. Studies
in the Economics of Transportation. Technical report, Yale University Press,
1956.

[BNW05] Dietrich Braess, Anna Nagurney, and Tina Wakolbinger. On a Paradox
of Traffic Planning. Transportation Science, 39(4):446–450, 2005. https:
//doi.org/10.1287/trsc.1050.0127.

[BoPR64] Bureau of Public Roads. Traffic Assignment Manual. US Department of
Commerce, 1964.

51

https://doi.org/10.1007/978-3-642-20662-7_20
https://doi.org/10.1007/978-3-642-38527-8_7
https://doi.org/10.1007/978-3-642-38527-8_7
https://doi.org/10.1016/j.tcs.2016.07.003
https://doi.org/10.1007/978-3-319-49487-6_2
https://doi.org/10.1145/2444016.2444020
https://doi.org/10.1145/2444016.2444020
https://doi.org/10.1287/trsc.1050.0127
https://doi.org/10.1287/trsc.1050.0127

Bibliography

[BSW19a] Valentin Buchhold, Peter Sanders, and Dorothea Wagner. Efficient Cal-
culation of Microscopic Travel Demand Data with Low Calibration Ef-
fort. In Proceedings of the 27th ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems, SIGSPATIAL
2019, Chicago, IL, USA, November 5-8, 2019, pages 379–388. ACM, 2019.
https://doi.org/10.1145/3347146.3359361.

[BSW19b] Valentin Buchhold, Peter Sanders, and Dorothea Wagner. Real-time Traffic
Assignment Using Engineered Customizable Contraction Hierarchies. ACM
Journal of Experimental Algorithmics, 24(1):2.4:1–2.4:28, 2019. https://doi.
org/10.1145/3362693.

[CH66] Kenneth L. Cooke and Eric Halsey. The Shortest Route Through a Network
with Time-Dependent Internodal Transit Times. Journal of Mathematical
Analysis and Applications, 14(3):493–498, 1966. https://doi.org/10.1016/
0022-247X(66)90009-6.

[Dea04] Brian C. Dean. Shortest Paths in FIFO Time-Dependent Networks: Theory
and Algorithms. Technical report, Massachusetts Institute of Technology,
2004.

[Del09] Daniel Delling. Engineering and Augmenting Route Planning Algorithms.
PhD thesis, Karlsruhe Institute of Technology, 2009. http://digbib.ubka.
uni-karlsruhe.de/volltexte/1000011046.

[DGNW13] Daniel Delling, Andrew V. Goldberg, Andreas Nowatzyk, and Renato F.
Werneck. PHAST: Hardware-accelerated shortest path trees. Journal of
Parallel and Distributed Computing, 73(7):940–952, 2013. https://doi.org/
10.1016/j.jpdc.2012.02.007.

[DGPW17] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck.
Customizable Route Planning in Road Networks. Transportation Science,
51(2):566–591, 2017. https://doi.org/10.1287/trsc.2014.0579.

[DGW11] Daniel Delling, Andrew V. Goldberg, and Renato Fonseca F. Werneck. Faster
Batched Shortest Paths in Road Networks. In ATMOS 2011 - 11th Workshop
on Algorithmic Approaches for Transportation Modeling, Optimization, and
Systems, Saarbrücken, Germany, September 8, 2011, volume 20 of OASIcs,
pages 52–63. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011. https:
//doi.org/10.4230/OASIcs.ATMOS.2011.52.

[Dij59] Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs.
Numerische Mathematik, 1:269–271, 1959. https://doi.org/10.1007/
BF01386390.

[DP73] David H. Douglas and Thomas K. Peucker. Algorithms for the Reduction
of the Number of Points Required to Represent a Digitized Line or its Car-
icature. Cartographica: The International Journal for Geographic Informa-
tion and Geovisualization, 10(2):112–122, 1973. https://doi.org/10.3138/
FM57-6770-U75U-7727.

[DSW14] Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable Contraction
Hierarchies. In Experimental Algorithms - 13th International Symposium, SEA
2014, Copenhagen, Denmark, June 29 - July 1, 2014. Proceedings, volume
8504 of Lecture Notes in Computer Science, pages 271–282. Springer, 2014.
https://doi.org/10.1007/978-3-319-07959-2_23.

52

https://doi.org/10.1145/3347146.3359361
https://doi.org/10.1145/3362693
https://doi.org/10.1145/3362693
https://doi.org/10.1016/0022-247X(66)90009-6
https://doi.org/10.1016/0022-247X(66)90009-6
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000011046
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000011046
https://doi.org/10.1016/j.jpdc.2012.02.007
https://doi.org/10.1016/j.jpdc.2012.02.007
https://doi.org/10.1287/trsc.2014.0579
https://doi.org/10.4230/OASIcs.ATMOS.2011.52
https://doi.org/10.4230/OASIcs.ATMOS.2011.52
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.1007/978-3-319-07959-2_23

Bibliography

[DW09] Daniel Delling and Dorothea Wagner. Time-Dependent Route Planning. In
Robust and Online Large-Scale Optimization: Models and Techniques for Trans-
portation Systems, volume 5868 of Lecture Notes in Computer Science, pages
207–230. Springer, 2009. https://doi.org/10.1007/978-3-642-05465-5_
8.

[FG19] Robert Follmer and Dana Gruschwitz. Mobility in Germany - short report,
2019. Edition 4.0 of the study by infas, DLR, IVT and infas 360 on behalf of
the Federal Ministry of Transport and Digital Infrastructure (BMVI) (FE no.
70.904/15). Bonn, Berlin. www.mobilitaet-in-deutschland.de.

[FH95] Michael Florian and Donald Hearn. Network Equilibrium Models and Al-
gorithms. In Network Routing, volume 8 of Handbooks in Operations Re-
search and Management Science, pages 485–550. Elsevier, 1995. https:
//doi.org/10.1016/S0927-0507(05)80110-0.

[FHS11] Luca Foschini, John Hershberger, and Subhash Suri. On the Complexity
of Time-Dependent Shortest Paths. In Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San
Francisco, California, USA, January 23-25, 2011, pages 327–341. SIAM, 2011.
https://doi.org/10.1137/1.9781611973082.27.

[Flo62] Robert W. Floyd. Algorithm 97: Shortest Path. Communications of the ACM,
5(6):345, 1962. https://doi.org/10.1145/367766.368168.

[FW56] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming.
Naval Research Logistics Quarterly, 3(1-2):95–110, 1956. https://doi.org/
10.1002/nav.3800030109.

[Geo73] Alan George. Nested Dissection of a Regular Finite Element Mesh. SIAM
Journal on Numerical Analysis, 10(2):345–363, 1973. https://doi.org/10.
1137/0710032.

[GH05] Andrew V. Goldberg and Chris Harrelson. Computing the Shortest Path: A*
Search Meets Graph Theory. In Proceedings of the Sixteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver, British
Columbia, Canada, January 23-25, 2005, pages 156–165. SIAM, 2005.

[GHUW19] Lars Gottesbüren, Michael Hamann, Tim N. Uhl, and Dorothea Wagner. Faster
and Better Nested Dissection Orders for Customizable Contraction Hierarchies.
Algorithms, 12(9):196, 2019. https://doi.org/10.3390/a12090196.

[GSSD08] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling.
Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road
Networks. In Experimental Algorithms, 7th International Workshop, WEA
2008, Provincetown, MA, USA, May 30-June 1, 2008, Proceedings, volume
5038 of Lecture Notes in Computer Science, pages 319–333. Springer, 2008.
https://doi.org/10.1007/978-3-540-68552-4_24.

[HMT17] Márton T. Horváth, Tamás Mátrai, and János Tóth. Route Planning Methodol-
ogy with Four-step Model and Dynamic Assignments. Transportation Research
Procedia, 27:1017–1025, 2017. https://doi.org/10.1016/j.trpro.2017.12.
127.

[HNR68] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A Formal Basis for
the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on
Systems Science and Cybernetics, 4(2):100–107, 1968. https://doi.org/10.
1109/TSSC.1968.300136.

53

https://doi.org/10.1007/978-3-642-05465-5_8
https://doi.org/10.1007/978-3-642-05465-5_8
www.mobilitaet-in-deutschland.de
https://doi.org/10.1016/S0927-0507(05)80110-0
https://doi.org/10.1016/S0927-0507(05)80110-0
https://doi.org/10.1137/1.9781611973082.27
https://doi.org/10.1145/367766.368168
https://doi.org/10.1002/nav.3800030109
https://doi.org/10.1002/nav.3800030109
https://doi.org/10.1137/0710032
https://doi.org/10.1137/0710032
https://doi.org/10.3390/a12090196
https://doi.org/10.1007/978-3-540-68552-4_24
https://doi.org/10.1016/j.trpro.2017.12.127
https://doi.org/10.1016/j.trpro.2017.12.127
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136

Bibliography

[II88] Hiroshi Imai and Masao Iri. Polygonal Approximations of a Curve - For-
mulations and Algorithms. In Computational Morphology, volume 6 of
Machine Intelligence and Pattern Recognition, pages 71–86. Elsevier, 1988.
https://doi.org/10.1016/B978-0-444-70467-2.50011-4.

[KZT20] Alexander Krylatov, Victor Zakharov, and Tero Tuovinen. Principles
of Wardrop for Traffic Assignment in a Road Network. In Optimiza-
tion Models and Methods for Equilibrium Traffic Assignment, pages 17–43.
Springer International Publishing, Cham, 2020. https://doi.org/10.1007/
978-3-030-34102-2_2.

[LGT03] Maxim Likhachev, Geoffrey J. Gordon, and Sebastian Thrun. ARA*: Any-
time A* with Provable Bounds on Sub-Optimality. In Advances in Neural
Information Processing Systems 16 [Neural Information Processing Systems,
NIPS 2003, December 8-13, 2003, Vancouver and Whistler, British Columbia,
Canada], pages 767–774. MIT Press, 2003.

[LPBM17] Thomas Liebig, Nico Piatkowski, Christian Bockermann, and Katharina Morik.
Dynamic Route Planning with Real-Time Traffic Predictions. Information
Systems, 64:258–265, 2017. https://doi.org/10.1016/j.is.2016.01.007.

[LS11] Dennis Luxen and Peter Sanders. Hierarchy Decomposition for Faster User
Equilibria on Road Networks. In Experimental Algorithms - 10th International
Symposium, SEA 2011, Kolimpari, Chania, Crete, Greece, May 5-7, 2011.
Proceedings, volume 6630 of Lecture Notes in Computer Science, pages 242–253.
Springer, 2011. https://doi.org/10.1007/978-3-642-20662-7_21.

[MM14] Enock T. Mtoi and Ren Moses. Calibration and Evaluation of Link Con-
gestion Functions: Applying Intrinsic Sensitivity of Link Speed as a Prac-
tical Consideration to Heterogeneous Facility Types Within Urban Net-
work. Journal of Transportation Technologies, 4:141–149, 2014. https:
//doi.org/10.4236/jtts.2014.42014.

[Ord89] Ariel Orda. Traveling without Waiting in Time-Dependent Networks is NP-
hard. Manuscript, 1989.

[PERW15] Olga Perederieieva, Matthias Ehrgott, Andrea Raith, and Judith Y. T. Wang.
A Framework for and Empirical Study of Algorithms for Traffic Assignment.
Computers & Operations Research, 54:90–107, 2015. https://doi.org/10.
1016/j.cor.2014.08.024.

[Poh71] Ira Pohl. Bi-directional Search. In Proceedings of the Sixth Annual Machine
Intelligence Workshop, volume 6, pages 124–140. Edinburgh University Press,
1971.

[Pot88] Alex Pothen. The Complexity of Optimal Elimination Trees. Technical report,
Pennsylvania State University, Department of Computer Science, 1988.

[PZ01] Srinivas Peeta and Athanasios K. Ziliaskopoulos. Foundations of Dynamic
Traffic Assignment: The Past, the Present and the Future. Networks
and Spatial Economics, 1(3):233–265, 2001. https://doi.org/10.1023/A:
1012827724856.

[RT02] Tim Roughgarden and Éva Tardos. How Bad Is Selfish Routing? Journal of
the ACM, 49(2):236–259, 2002. https://doi.org/10.1145/506147.506153.

[SN20] Arne Schneck and Klaus Nökel. Accelerating Traffic Assignment with Customiz-
able Contraction Hierarchies. Transportation Research Record, 2674(1):188–196,
2020. https://doi.org/10.1177/0361198119898455.

54

https://doi.org/10.1016/B978-0-444-70467-2.50011-4
https://doi.org/10.1007/978-3-030-34102-2_2
https://doi.org/10.1007/978-3-030-34102-2_2
https://doi.org/10.1016/j.is.2016.01.007
https://doi.org/10.1007/978-3-642-20662-7_21
https://doi.org/10.4236/jtts.2014.42014
https://doi.org/10.4236/jtts.2014.42014
https://doi.org/10.1016/j.cor.2014.08.024
https://doi.org/10.1016/j.cor.2014.08.024
https://doi.org/10.1023/A:1012827724856
https://doi.org/10.1023/A:1012827724856
https://doi.org/10.1145/506147.506153
https://doi.org/10.1177/0361198119898455

Bibliography

[SS05] Peter Sanders and Dominik Schultes. Highway Hierarchies Hasten Exact
Shortest Path Queries. In Algorithms - ESA 2005, 13th Annual European
Symposium, Palma de Mallorca, Spain, October 3-6, 2005, Proceedings, volume
3669 of Lecture Notes in Computer Science, pages 568–579. Springer, 2005.
https://doi.org/10.1007/11561071_51.

[SWZ21] Ben Strasser, Dorothea Wagner, and Tim Zeitz. Space-Efficient, Fast and
Exact Routing in Time-dependent Road Networks. Algorithms, 14(3):90, 2021.
https://doi.org/10.3390/a14030090.

[SZ21] Ben Strasser and Tim Zeitz. A Fast and Tight Heuristic for A* in Road
Networks. In 19th International Symposium on Experimental Algorithms, SEA
2021, June 7-9, 2021, Nice, France, volume 190 of LIPIcs, pages 6:1–6:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. https://doi.org/
10.4230/LIPIcs.SEA.2021.6.

[TB10] Ozan K. Tonguz and Mate Boban. Multiplayer games over Vehicular Ad
Hoc Networks: A new application. Ad Hoc Networks, 8(5):531–543, 2010.
https://doi.org/10.1016/j.adhoc.2009.12.009.

[War52] John G. Wardrop. Road Paper. some Theoretical Aspects of Road Traffic
Research. Proceedings of the Institution of Civil Engineers, 1(3):325–362, 1952.
https://doi.org/10.1680/ipeds.1952.11259.

[WVLM11] David Wilkie, Jur P. Van den Berg, Ming C. Lin, and Dinesh Manocha.
Self-Aware Traffic Route Planning. Proceedings of the AAAI Conference on
Artificial Intelligence, 25(1):1521–1527, 2011.

[ZMCS+19] Jorge L. Zambrano-Martinez, Carlos T. Calafate, David Soler, Lenin-
Guillermo Lemus-Zúñiga, Juan-Carlos Cano, Pietro Manzoni, and Thierry
Gayraud. A Centralized Route-Management Solution for Autonomous Ve-
hicles in Urban Areas. Electronics, 8(7), 2019. https://doi.org/10.3390/
electronics8070722.

[ZNN11] Michael Zilske, Andreas Neumann, and Kai Nagel. OpenStreetMap for Traffic
Simulation. In Proceedings of the 1st European state of the map: Open-
StreetMap conference, pages 126–134. OpenStreetMap Austria u.a., 2011.
http://dx.doi.org/10.14279/depositonce-4679.

55

https://doi.org/10.1007/11561071_51
https://doi.org/10.3390/a14030090
https://doi.org/10.4230/LIPIcs.SEA.2021.6
https://doi.org/10.4230/LIPIcs.SEA.2021.6
https://doi.org/10.1016/j.adhoc.2009.12.009
https://doi.org/10.1680/ipeds.1952.11259
https://doi.org/10.3390/electronics8070722
https://doi.org/10.3390/electronics8070722
http://dx.doi.org/10.14279/depositonce-4679

	Contents
	1 Introduction
	1.1 Related Work
	1.2 Contribution and Outline

	2 Preliminaries
	2.1 Problem Statement
	2.2 Basic Definitions and Models
	2.3 Algorithms for Route Planning
	2.3.1 The A* Algorithm
	2.3.2 Customizable Contraction Hierarchies
	2.3.3 Lazy RPHAST: CCH-Potentials

	3 Cooperative Route Planning
	3.1 Basic Concept
	3.2 Graph Model
	3.3 Applying Speedup Techniques

	4 Time-Dependent A* Potentials
	4.1 Engineering Time-Dependent Potentials
	4.2 Multi-Metric Potential
	4.3 Corridor-Lowerbound Potential

	5 Experiments
	5.1 Experimental Setup
	5.2 Graph Instances and Queries
	5.3 Comparing Time-Dependent A* Potentials
	5.4 Evaluating Cooperative Route Planning

	6 Conclusion
	6.1 Future Work

	Bibliography

