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Abstract

A subset S ⊂ V (G) of vertices of a planar graph G is called collinear if G admits a
plane straight-line drawing where all the vertices in S lie on a line. The aim of this
thesis is to find a lower bound for the maximal number of collinear vertices in graphs
of a certain graph class. Our approach is to examine whether independence or a fixed
minimal distance between vertices in a subset of vertices is a sufficient condition for
collinearity. An independent set of vertices with minimal pairwise distance d is called
d-scattered. The size of maximum independent sets is linear in the number of vertices
in planar graphs [Die17]. However, in general planar graphs the number of collinear
vertices is limited by a sublinear upper bound [RV11]. Thus we examine specific
graph classes, in particular series-parallel graphs and 4-connected triangulations. For
the former we show that any fixed minimal pairwise distance between vertices of an
independent set is not a sufficient condition for collinearity. Though we introduce a
meaningful subclass of series-parallel graphs, in which 3-scattered sets are always
collinear. For 4-connected triangulations we show that independent sets are in general
not collinear and present forbidden substructures. We further present approaches to
prove collinearity of d-scattered sets and outline the limits of these approaches.

Deutsche Zusammenfassung

Eine Teilmenge S ⊂ V (G) von Knoten eines planaren Graphen G heißt kollinear,
wenn G kreuzungsfrei und geradlinig so gezeichnet werden kann, dass die Knoten S
auf einer Linie liegen. Das Ziel dieser Arbeit ist es, eine untere Schranke für die maxi-
male Anzahl kollinearer Knoten in Graphen einer bestimmten Graphklasse zu finden.
Es wird untersucht, ob Unabhängigkeit oder eine feste minimale paarweise Distanz
zwischen Knoten einer Menge ausreicht, um Kollinearität zu garantieren. Knoten-
mengen mit minimaler paarweiser Distanz d heißen d-gestreut. Die Größe maximaler
unabhängiger Mengen in planaren Graphen ist linear in der Anzahl Knoten [Die17].
In allgemeinen planaren Graphen unterliegt die Anzahl kollinearer Knoten jedoch ei-
ner sublinearen oberen Schranke [RV11]. Daher untersuchen wir Subklassen planarer
Graphen, insbesondere serien-parallele Graphen und vierfach-zusammenhängende
Triangulierungen. Für erstere zeigen wir, dass kein d existiert, sodass d-gestreute
Knotenmengen immer kollinear sind. Wir definieren jedoch eine bedeutende Unter-
klasse serien-paralleler Graphen, sodass 3-gestreute Knotenmengen in Graphen dieser
Klasse kollinear sind. Für vierfach-zusammenhängende Triangulierungen zeigen wir
ebenfalls, dass Unabhängigkeit keine hinreichende Bedingung für Kollinearität ist
und stellen Teilgraphen vor, die in vierfach-zusammenhängenden Triangulierungen
mit unabhängigen kollinearen Knotenmengen nicht vorkommen. Des Weiteren stellen
wir zwei Ansätze vor, mit deren Hilfe Kollinearität von d-gestreuten Knotenmengen
gezeigt werden könnte, jedoch auch die Grenzen derselben.
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1. Introduction

A subset S ⊆ V (G) of vertices of a planar graph G is called an alignable or collinear set
if G admits a plane straight-line drawing where all the vertices in S lie on a line L. The
aim of this thesis is to find a lower bound for the maximal number of collinear vertices in
graphs depending on the graph class.

Da Lozzo et al. [DLDF+18] give such a lower bound for planar graphs of treewidth k.
They show that every such graph has a collinear set of size in Ω(k2). Further they show
that every n-vertex 3-connected cubic graph has a collinear set of size at least dn/4e.

For general planar graphs a linear lower bound is not possible since Ravsky et al. [RV11]
prove an upper bound on the number of collinear vertices in straight-line drawings of
general planar graphs. They construct a class of triangulations T such that the number
of collinear vertices in a drawing of a graph T ∈ T is in O(|V (T )|α). The parameter α is
bounded by the shortness exponent of the dual T of T , i.e. the limit inferior of quotients
log c(T )/ log |V (T )| over all T ∈ T , where c(T ) denotes the length of the longest simple
cycle in T . By construction of T , T is cubic and 3-connected and thus α < 0.986 [GW73].
Therefore, the number of collinear vertices in T ∈ T is in O(|V (T )|0.986). According to Da
Lozzo et al. [DLDF+18] this sublinear upper bound is still true if the treewidth of the
graphs is bounded by 5.

A stronger version of collinear sets are free collinear sets. A set R ⊆ V (G) is called free
collinear set if a total order <R of R exists such that, given any set of |R| points on a line
L, the graph G has a plane straight-line drawing where the vertices in R are mapped to
the given points and their order on L matches the order <R [DLDF+18]. Evidently every
free collinear set of a graph G is a collinear set of G. Hence, the size of a free collinear
set is a lower bound to the size of a maximal collinear set in the same graph. Dujmovic

Figure 1.1: A planar graph G with a collinear set S (violet).
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1. Introduction

et al. [Duj15] prove that every planar graph has a free collinear set of size at least
√
n/2.

Thus, the same lower bound applies to collinear sets. For outerplanar graphs this bound
improves to (n+ 1)/2 [RV11] and for planar graphs of treewidth at most two even to n/30.
Da Lozzo et al [DLDF+18] extend the latter result to planar graphs of treewidth at most
three by proving a lower bound of d(n− 3)/8)e for free collinear sets.

The impact of collinear sets on other graph drawing problems is significantly increased by a
recent result by Dujmovic et al. [DFG+18]. They show that a set S ⊆ V (G) is a collinear
set if and only if it is a free set. A set S is called free if for any set of points X in the plane
with |X| = |S|, G has a plane straight-line drawing in which the vertices of S are mapped
to the points in X. The equivalence of free sets and free collinear sets was known before
[BDH+09]. Dujmovic et al. close the gap between collinear and free collinear sets.

Free sets have a wide range of applications to other graph drawing problems, e.g. untangling
and n-universal point subsets. To untangle the (not necessarily crossing-free) straight-line
drawing of a planar graph means to change the coordinates of some of its vertices such that
in the resulting straight-line drawing no two edges cross [Duj15]. Bose et al. [BDH+09]
prove that every planar graph can be untangled while keeping n1/4 of its vertices fixed.
Although for some graph classes there exist tighter bounds, others can be improved with
the new result on collinear and free sets. Bose et al. [BDH+09] as well as Ravsky et al.
[RV11] prove that if S is a free collinear set of a planar graph G, every straight-line drawing
of G can be untangled while keeping Ω(

√
|S|) vertices fixed. Together with the above

mentioned results on collinear sets, this improves the lower bound for 3-connected cubic
graphs from Ω(n1/4) to Ω(

√
n) and for graphs with treewidth at least k to Ω(k).

An n-universal point set is a set of points P in R2 such that every planar graph on n
vertices admits a plane straight-line embedding on P . Fraysseix et al. [DFPP90] show that
a grid of (2n− 3)× (n− 1) points in the plane is enough to draw every planar graph. A
stronger statement was proven by Cardinal et al. [CHK15]. They show that there exist
n-universal point sets for all planar graphs on at most ten vertices. Conversely they show
that there are no n-universal point sets of size n for planar graphs on 15 or more vertices.
The gap in between 10 and 15 vertices remains to be closed. However, Kurowski [Kur04]
proves that for sufficiently large n a n-universal point set has size at least 1.235n.

Concerning graph sizes which do not admit an n-universal point set of size n, the following
question arises. What is the largest natural number σ such that every graph in a collection
of σ planar graphs on n vertices admits a plane straight-line drawing on the same set P
of n points? Cardinal et al. [CHK15] call this simultaneous geometric embedding without
mapping. For n = 35 they describe a collection of 7393 planar graphs which cannot be
drawn on any common point set P of size 35. Thus, σ < 7393 for n = 35.

The problem of universal point subsets considers a set of points S of size k such that every
planar graph, or every graph of a specific graph class, admits a plane straight-line drawing
with k of its vertices represented by the points of S. Angelini et al. [ABE+12] show that
there exist universal point subsets of size d

√
ne for planar graphs on n vertices. Dujmovic

et al. [Duj15] show that every set P of at most
√
n/2 points in the plane is a universal

point subset for all n-vertex planar graphs. In addition they show that if a graph G has a
free set of size k, every set of k points in the plane is a universal point subset for G. The
new result by Dujmovic et al. [DFG+18] shows that if S is a collinear set for a graph G,
then every set of |S| points in the plane is a universal point subset for G. This is relevant
for 3-connected cubic planar graphs, for which the lower bound on universal point subsets
is improved from Ω(

√
n) to size dn/4e.

The proof of the equivalence of collinear and free collinear sets [DFG+18] uses a concept
introduced by Da Lozzo et al. [DLDF+18]. An open and simple curve λ is called good for
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a graph G if for each edge e of G, λ either entirely contains e or has at most one point in
common with e (if λ passes through an end-vertex of e, that counts as a common point).
The curve λ is called proper if both end-points are on the outer face of G. A planar graph
G has a plane straight-line drawing with vertices S ⊂ V (G) collinear if and only if G
has a proper good curve that passes through the vertices S. This is particularly helpful,
since it enables us to examine whether a set of vertices can be aligned without considering
their actual coordinates in a drawing. Mchedlidze et al. [MRR18] call proper good curves
pseudolines and we will use this notion in this thesis. They show that determining whether
a pseudoline passing through a given set of vertices exists or not is NP-complete but
fixed-parameter tractable.

Drawings with bends

Instead of looking at pure straight-line drawings, Kaufmann and Wiese [KW99] consider
drawings with a limited number of bends per edge. They show that every planar 4-connected
triangulation T admits a plane drawing with at most one bend per edge such that the n
vertices of T can be assigned to any n points in the plane. They give an algorithm using
the fact that every 4-connected triangulation T admits an external hamiltonian cycle C,
i.e. a hamiltonian cycle with an edge on the outer face. The vertices are assigned to the
points in the order of C and a bend is introduced to the edge e ∈ C on the outer face and
every edge E(T ) \ E(C) such that the drawing is crossing free.

General planar triangulations are only 3-connected. Thus, they may contain separating
triangles and therefore are not hamiltonian. Consider an edge e = (u, v) of a separating
triangle. On either side of e there is a triangular face. One face is bounded by e and the
edges (u,w1) and (v, w1), the other by e and (u,w2) and (v, w2). Kaufmann and Wiese
place a dummy vertex z on e and connect it to w1 and w2. This decreases the number
of separating triangles. They repeat this operation until no further separating triangle is
contained in the triangulation. Thus, the triangulation becomes 4-connected. With the
above described procedure, they place all vertices on a line, including the dummy vertices.
Removing the dummy vertices and replacing them by a bend gives a planar drawing with
at most three bends per edge. They further describe a procedure to reduce the number of
bends to two per edge.

The above introduced concept of pseudolines gives rise to an alternative proof of the result
by Kaufmann and Wiese [KW99], transferring results on book embeddings to drawings with
bends. In a book embedding the vertices of a graph G are placed on a line called the spine
of the book. Its edges are drawn on the pages of the book. A page can be thought of as a
half-plane bounded by the spine where the edges are drawn as circular arcs between their
endpoints. A graph admits a k-page book embedding if all of its edges can be assigned to
k pages and there exists a linear ordering of the vertices on the spine such that no two
edges of the same page cross [BK79]. Book embeddings restrict every edge to one page. In
topological book embeddings the edges are allowed to cross the spine, and thus spread over
several pages.

Consider a 2-page topological book embedding of a graph G and identify the spine of the
book with a line L on the plane and the two pages with the half-planes on either side
of the line. Every edge is cut into curve segments by a crossing of the spine. Insert a
dummy vertex in the middle of every curve segment, i.e. if an edge crosses the spine twice
insert three dummy vertices. This obtains the graph G′. Then L is a pseudoline with
respect to G′ passing exactly the vertices V (G) ⊂ V (G′) and crosses edges incident to
dummy vertices only. Hence, G′ admits a planar straight line drawing with V (G) collinear.
Removing the dummy vertices and replacing them by a bend of the respective edge at the
same position yields a drawing of G with one bend per edge and an additional bend of
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1. Introduction

(a) A 2-page book embedding of
a graph G.

(b) Drawing of G with one bend
per edge and all V (G) collinear.

Figure 1.2: From book embedding to one-bend drawing. The pseudoline L is colored in
red.

an edge for every crossing of the spine. Di Giacomo et al. [DGDLW05] prove that every
planar graph admits a 2-page topological book embedding with at most one crossing of
the spine. Thus, every planar graph admits a drawing with all of its vertices collinear and
at most two bends per edge. A 2-page topological book embedding without any crossing
of the spine is a 2-page book embedding. See Fig. 1.2 for an example. Bernhart and
Kainen [BK79] show, that a planar graph G admits a 2-page book embedding if and only
if it is sub-hamiltonian, i.e. it is a subgraph of a planar graph admitting a hamiltonian
cyle. Thus sub-hamiltonian planar graphs can be drawn with all vertices on a line and
at most one bend per edge. Together with the equality of collinear and free vertex sets
[DFG+18], this reaffirms the results by Wiese and Kaufmann. Note that we examine two
(sub-)hamiltonian graph classes in Chapters 2 and 3: Every series-parallel graph admits a
2-page book embedding [CLR87] and, as stated before, 4-connected planar triangulations
are hamiltonian [Tut56].

1.1 Contribution
We aim to find lower bounds on the number of collinear vertices in specific graph classes.
Our approach is to examine properties of a collinear vertex set instead of counting vertices.
A collinear set always induces a linear forest, i.e. a induced sequence of paths. In general,
we cannot expect a planar graph to have a long induced path since Di Giacomo et al.
[GLM16] show that the length of the longest induced path is in O(log(n)). Thus, we
investigate whether there are large independent sets which are collinear. Following from
the four color theorem [Die17] and the pigeonhole principle, every planar graph has an
independent set of at least one fourth of its vertices. Hence, if independent sets of graphs
in a graph class are collinear this implies a linear lower bound on the number of collinear
vertices in these graphs. In particular we study independent sets of series-parallel graphs
and 4-connected triangulations. For both graph classes we provide a counterexample and
thereby show that in general independent sets cannot be aligned in these graph classes.
For series-parallel graphs we show that even increasing the pairwise distance of vertices of
an independent set to any constant distance is not sufficient for collinearity. We restrict
the graph class to series-parallel graphs where the source and sink of every component
in parallel composition have distance at least 4. We call this graph class 4-stretched
series-parallel graphs and show that independent sets with vertices of pairwise distance at
least three are collinear. For 4-connected triangulations we describe some approaches to
prove collinearity of independent sets with higher pairwise distance and the limits of the
approaches. We then describe the graph class of 2-sided near-triangulations, a superclass of
4-connected triangulations, and a strongly restricted (not 4-connected) subclass of 2-sided
near-triangulations. We prove that independent sets are collinear in the latter.
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1.2. Preliminaries

In the remainder of this chapter we give some preliminary definitions and results. In the
following Chapter 2 we present our results on series-parallel graphs. Chapter 3 considers
4-connected triangulations and 2-sided near-triangulations. Chapter 4 gives a summary
and conclusion to this thesis.

1.2 Preliminaries
In the following, we introduce concepts and notation used throughout the thesis. The
definitions are oriented towards the book on graph theory by Diestel [Die17].

A graph is a pair G = (V,E) of sets such that E ⊆ V 2 and every e ∈ E is a two-
element subset. We call V the vertices and E the edges of G. A subgraph of G is a pair
Gsub = (Vsub, Esub) such that Vsub ⊂ V and Esub ⊆ V 2

sub ∩ E. We say G contains Gsub.
Furthermore, a subgraph Gind is called induced, if Eind = V 2

ind ∩ E. The vertex set Vind
induces the subgraph Gind.

The degree of a vertex v is the number of incident edges. A path P = v1v2 . . . vn is a graph
with vertices V = {v1, v2, . . . , vn}, |V | ≥ 1, such that E = {(v1, v2), (v2, v3), . . . , (vn−1, vn)}.
The length of the path is the number of its edges. Paths are called simple if no vertex
is repeated. A graph is called connected if there exists a path between any pair of
vertices. We assume every graph to be connected in this thesis, unless stated otherwise.
A cycle C = v1v2 . . . vnv1 is a graph with vertices V = {v1, v2, . . . , vn}, |V | ≥ 1, such that
E = {(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1)}. A cycle on n vertices has length n. Cycles
are called simple if v1 is the only repeated vertex. A graph G is called hamiltonian if there
exists a subgraph C of G such that V (C) = V (G) and C is a simple cycle. It is called
sub-hamiltonian if G is the subgraph of a hamiltonian graph. A cycle on 3 vertices is called
a triangle. For a triangle on the vertices a, b and c we write (a, b, c) instead of abca.

A drawing Γ of a graph G is a mapping of the vertices V to points and the edges to curves
in the plane R2 such that for every curve representing an edge e = (u, v), its endpoints are
exactly the points representing u and v. A (combinatorial) embedding of G is the set of
all drawings of G with the same cyclic ordering of edges around every vertex. We do not
further distinguish between an edge and the curve representing it and between a vertex
and the point representing it. The context resolves any ambiguities. Consequently, we
do not distinguish between a path or cycle in G and the (closed) curve representing it
in Γ. The curve representing an edge without its endpoints is called the interior of the
edge. The drawing Γ is called plane if no two vertices are mapped to the same point and
no two edges intersect at their interior. A graph G is called planar if it admits a plane
drawing. In this thesis we only consider planar graphs. Thus, every time we write "graph",
we mean "planar graph". Furthermore, we consider straight-line drawings, where every
edge is represented by a line segment. By the Fáry-Wagner-Theorem [Fár48] every planar
graph admits a plane straight-line drawing.

The region R of a (connected) graph G or its drawing Γ is the connected region of R2

containing exactly the vertices and edges of G. In a plane drawing of G, a face is a
connected region in R2 \G. In every drawing of G, there is exactly one unbounded face
Fo, the outer face. Observe that R is exactly R2 \ Fo. All other faces are inner faces. A
graph is called maximally planar if inserting any additional edge would violate planarity.
Maximally planar graphs are also called triangulations since every face is bounded by a
triangle. We call the cycle bounding a face its boundary and the cycle bounding the outer
face the boundary of G. The interior of G is R without its boundary. The exterior of G is
its outer face. A vertex is inside G if it lies on the interior of G. It is outside G if it lies on
the outer face. Let C1 and C2 be two subgraphs of G. Then C1 contains C2 in Γ if the
region of C1 contains the region of C2. We also write that C1 and C2 are nested if it is
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1. Introduction

(a) A drawing of the graph G and a pseudoline L. (b) A drawing of the graph G with V (G)
collinear.

Figure 1.3: Pseudolines.

irrelevant whether C1 contains C2 or vice versa. They overlap if their regions have at least
one point in common.

Pseudolines

A vertex set S ⊂ V (G) is called collinear or alignable if G admits a plane straight-line
drawing where all vertices in S lie on a line. In Section 1 the concept of pseudolines is
introduced. Recall that a curve L is a pseudoline with respect to a drawing of a graph G
if L starts and ends at the outer face of G and for each edge e ∈ E(G), L either entirely
contains e or has at most one point in common with e. A planar graph G has a plane
straight-line drawing with vertices S ⊂ V (G) collinear if and only if G admits a drawing
such that there exists a pseudoline that passes through the vertices S [MRR18, DLDF+18].
The resulting drawing preserves the embedding. More informal, if L is a pseudoline in a
drawing Γ, it can be stretched to a line L′ and all vertices and edges of G can be rearranged
such that the new drawing Γ′ is a plane straight-line drawing with the same embedding as
Γ and L′ passes through exactly the same vertices, edges and faces of G as L. See Fig. 1.3
for illustration.

Pseudolines are excessively used throughout this thesis. In every proof of collinearity of a
vertex set S we construct a pseudoline passing through S. Some additional vocabulary is
needed to describe a pseudoline L. We write L collects a vertex v if it passes through v.
Let Le be a curve starting and ending at infinity and let O1 and O2 be the half-planes on
either side of Le. Let P be a path contained in Le. The pseudoline L intersects P at a
point p ∈ P if there exist points p1, p2 ∈ L such that p1 ∈ O1, p2 ∈ O2 and |p − p1| < ε,
|p − p2| < ε, for any ε > 0. L intersects a cycle C at a point p ∈ C if there exist points
p1, p2 ∈ L such that p1 is inside C, p2 is outside C and |p− p1| < ε, |p− p2| < ε, for any
ε > 0. The pseudoline only touches a path or cycle if p1, p2 are both on O1 or both on O2,
respectively both are inside or both are outside. Observe that a pseudoline can touch a
path or cycle only at a vertex.

Vertex Sets

Consider two vertices v, u ∈ V (G). Their distance dist(v, u) is the length of the shortest
path P with endpoints v and u. Recall that the length of a path is the number of its edges.
The neighborhood of a vertex v is the set of vertices N(v) ⊂ V (G) such that dist(v, n) ≤ 1
for every n ∈ N(V ). Note that v itself is part of its neighborhood. The neighborhood
N(A) of a vertex set A ⊂ V (G) is the union of all neighborhoods of the vertices in A. A
set S ⊂ V (G) is called independent if N(s) ∩ S = {s} for every vertex s ∈ S. In Chapter
2 and 3 we examine whether independent sets are collinear in two subclasses of planar
graphs. The reason we do not consider general planar graphs is the following observation.

As mentioned before, Ravsky et al. [RV11] constructed a sequence G of triangulations
such that the number of collinear vertices is in O(|V (G)|0.986) for every graph G ∈ G.

6



1.2. Preliminaries

Furthermore, every graph G ∈ G is planar. Therefore, G has an independent set SG ⊂ V (G)
of size at least d|V (G)|/4e, following from the four color theorem [Die17] and the pigeonhole
principle. Comparing the sublinear upper bound on the number of collinear vertices in
G and linear lower bound on the size of the maximum independent set SG, we infer that
SG cannot be collinear for all but a finite number of graphs in G. Thus we can state the
following as a preliminary result.

Corollary 1.1. There exists a sequence of triangulations G such that for every graph
G ∈ G every maximum independent set SG is not collinear.

In summation we can say that independence of a set of vertices is not a sufficient condition
for collinearity.

Consider an independent set S. S is called d-scattered or distance-d independent, if
dist(u, v) ≥ d for every two vertices u, v ∈ S, u 6= v. Similar to independent sets, d-
scattered sets are implied by d-distance colorings of graphs. A d-distance coloring of a
graph G is a coloring of the vertices of G such that any two vertices of the same color
have distance at least d. Every color class in such a coloring forms a d-scattered set. The
d-distance chromatic number χ(d) of G is the smallest number k such that there exists a
d-distance coloring with only k colors. According to Skupień et al. [JS01], given a planar
graph G, let D = max(8,∆(G)), where ∆(G) is the maximum degree of G. Then the
d-distance chromatic number of G is

χ(d)(G) ≤ 6 + 3D + 3
D − 2 ((D − 1)d−1 − 1)

Again with the pigeonhole principle there is a color class of size at least
⌈
|V (G)|
χ(d)(G)

⌉
in such a

coloring. Thus, there is always a d-scattered set of size at least
⌈
|V (G)|
χ(d)(G)

⌉
in G.

Series-parallel Graphs

In Chapter 2, we examine independent and d-scattered sets in series-parallel graphs. A
graph G is called series-parallel if it contains two vertices s and t and a single edge (s, t) or
it consists of two series-parallel graphs G1, G2 with sources s1, s2 and sinks t1, t2 which
are combined using one of the following composition operations [BCDB+94].

• Series composition: Identify t1 and s2, s1 is the source of G, t2 is the sink of G.

• Parallel composition: Identify s1, s2 and set it to be source of G. Identify t1, t2 and
set it to be sink of G.

Thus, a series-parallel graph is obtained by a sequence of series and parallel compositions
of smaller series-parallel graphs. We call every such series-parallel subgraph C of G a
component of G.

4-connected Triangulations

A graph G is called connected if there exists a path between any pair of vertices. G is
called k-connected, if removing any set A ⊂ V (G) of size less than k, i.e. |A| < k, and all
incident edges leaves G connected. If removing a set A′, |A′| ≥ k, disconnects G then A′ is
a separating set.

In Chapter 3 we examine independent sets in 4-connected planar triangulations. Starting
with the octahedron graph, all 4-connected planar triangulations can be generated using
one of two edge de-contraction operations. For reasons of simplicity we describe the reverse
operations here. For the first operation we find a vertex v of degree four, for the second
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1. Introduction

operation of degree five, in a planar 4-connected triangulation T with more than six vertices.
In both operations we contract one of v’s incident edges, i.e. we identify vertex v with
one of its neighbors and remove loops and parallel edges. The resulting graph is a planar
4-connected triangulation T ′ and |V (T ′)| = |V (T )|−1. We can continuously contract edges
in this way and yield a planar 4-connected triangulation until the resulting graph has only
six vertices left. This graph on six vertices is the octahedron graph. Brinkmann et al.
[BLSVC14] show that every 4-connected triangulation can be generated starting with the
octahedron graph and using the reverse of the above described operations.

In Section 3.2 and 3.3 we consider a superclass of 4-connected triangulations. A near-
triangulation is a planar graph G with a drawing Γ such that every inner face is a
triangle. A 2-sided near-triangulation is a 2-connected near-triangulation T without
separating triangles such that going clockwise on its outer face, the vertices are denoted
a1, a2, . . . , ap, bq, . . . , b2, b1, p ≥ 1 and q ≥ 1, and such that there is neither a chord (ai, aj)
nor (bi, bj), i.e. an edge (ai, aj) or (bi, bj) such that |i− j| > 1.
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2. Collinear sets in series-parallel graphs

One of the first questions posed during the work on this thesis was whether independence
or any fixed minimal pairwise distance between vertices of a vertex set in a graph suffices
for them to be collinear. As mentioned before, in general planar graphs independence is not
enough [RV11]. In this chapter we show that even for series-parallel graphs independence
does not suffice (Section 2.1). Recall that a d-scattered set S ⊂ V (G) is a set of vertices
with pairwise distance at least d. In Section 2.2 we show that for any constant number d,
there exists a series-parallel graph with a d-scattered set which is not collinear. Section
2.3 defines a meaningful subclass of series-parallel graphs in which every 3-scattered set is
collinear.

2.1 Counterexample: Independent sets
Since independence of vertices does not suffice for them to be collinear in general planar
graphs [RV11], we pose the question whether independence suffices when restricting to
series-parallel graphs. However, we construct a series-parallel graph G with a maximum
independent set S contradicting this conjecture, see Fig. 2.1.

The series-parallel graph G consists of three components Cu, Cv, Cw. Every component is a
parallel composition of i ∈ N, i ≥ 3, paths on exactly three vertices each. We obtain G by
a series composition Cuv of Cu with Cv and a parallel composition of Cuv with Cw. We call
the source of G s, its sink t, the common vertex of Cu and Cv m. The middle vertices of
the components Cu, Cv and Cw are called u1, . . . , ui, v1, . . . , vi and w1, . . . , wi, respectively.
The vertices {u1, . . . , ui, v1, . . . , vi, w1, . . . , wi} form the independent set S. Then G is a
series-parallel graph with 3(i+ 1) vertices and the independent set S contains 3i of them.

To see that the independent set S ⊂ V (G) is indeed not collinear, we construct a traversal
graph T for every embedding Γ of G such that there exists a hamiltonian path in T if and
only if there exists a pseudoline L collecting the vertices S. Traversal graphs are introduced
in [MRR18]. Due to the structure of G we can omit parts of the definition and use a
simpler version of traversal graphs. We need the following observations for that.

The vertices S′ = V (G) \ S = {s,m, t} form an independent set too. Thus, G is bipartite.
Therefore every face in a embedding Γ of G is bounded by a cycle of even length. Since
the longest cycle in G has length six and with Euler’s formula on planar graphs, there are
exactly two faces surrounded by a 6-cycle and all other faces are bounded by a 4-cycle.
We call the faces bounded by a 4-cycle 4-faces, the ones bounded by a 6-cycle 6-faces.
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2. Collinear sets in series-parallel graphs
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Figure 2.1: The series-parallel graph G and the independent set S (violet).

(a) A 4-face of G. (b) A 6-face of G. (c) A 4-face as the
outer face of G.

(d) A 6-face as the
outer face of G.

Figure 2.2: Faces of G and the corresponding edges of T . Vertices S ⊂ V (G) are depicted
in violet and are also vertices of T , other vertices and edges of T are depicted
in red.

Observe that every edge of G is incident to a vertex in S. Thus, a pseudoline L collecting
the vertices of S intersects with every edge at one of its endpoints. Hence, L can never
cross an edge at its interior.

Consider a fixed embedding Γ of G. The vertices of the traversal graph T (Γ) correspond
to all points of Γ that have to be collected by L. We omit Γ from T (Γ) whenever Γ is
clear from the context and just refer to T . Hence for every vertex v ∈ S, there exists
a corresponding vertex a ∈ V (T ). The pseudoline L starts and ends at the outer face,
thus we add a vertex o corresponding to the outer face fo. Thus there exists a bijective
function t : S ∪ {fo} → V (T ). We say a vertex a ∈ V (T ) is associated with a face f of
G if it corresponds to a vertex v ∈ V (G) incident to f . The vertex o ∈ V (T ) is always
associated with the outer face of G. The edges of T represent direct connections between
two points in G without crossing any edge. Thus for two vertices ai, aj ∈ V (T ), there
exists an edge (ai, aj) if and only if ai and aj are associated with the same face. See Fig.
2.2 for illustration.

The resulting traversal graph T of an embedding Γ of G has a hamiltonian cycle if and
only if S is collinear in Γ. Consider a hamiltonian cycle C in T . We construct a curve
L as follows. Let C ′ be C without the vertex o and its incident edges. For every edge
(ai, aj) ∈ E(C ′), L crosses a face from the vertex vi = t−1(ai) to the vertex vj = t−1(aj).
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2.1. Counterexample: Independent sets
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(a) Traversal graph for the embedding
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(b) Traversalgraph for the embedding bounded by a
4-cycle.

Figure 2.3: Traversal graphs. The triangles are emphasized by thicker lines. The original
graph is indicated in grey.

Since C is hamiltonian, L is a simple curve starting and ending at a vertex at the outer
face of G and can thus be extended to a pseudoline. Conversely, consider a pseudoline L in
the embedding Γ. It starts and ends at the outer face and it does not cross any edge. It
collects every vertex S and intersects a face from a vertex vi to a vertex vj only if there
exists an edge (t(vi), t(vj)) ∈ T . Since L is simple, this yields a hamiltonian cycle C in T .

It remains to show that a traversal graph T of any embedding Γ of G is indeed not
hamiltonian. We distinguish between two kinds of embeddings of G, depending on the
choice of the outer face. Choosing a 6-face as the outer face yields the embedding Γsix
shown in Fig. 2.1(a). This embedding is unique. Choosing a 4-face as the outer face yields
a family of embeddings Γ1, . . . ,Γbic as shown in Fig. 2.1(b).

The corresponding traversal graphs T = {Tsix, T1, . . . Tbic} are depicted in Fig. 2.3. Observe
that every T ∈ T contains two triangles (a1, b1, c1) and (ai, bi, ci) (resp. (ai, bi, ci+1)). They
are connected to each other via three induced paths a1a2 . . . ai, b1b2 . . . bj and c1c2 . . . ci
(resp. c1c2 . . . ci+1) on at least three vertices and there is no other path between the
triangles. Thus, there exists no simple cycle containing the vertices a2, b2 and c2 and T is
not hamiltonian.

Observe that G is not the only series-parallel graph with a non-collinear independent set.
We obtain G by a series composition Cuv of Cu with Cv and a parallel composition of Cuv
with Cw. Any series-parallel graph obtained by series compositions of j ∈ N+ copies of Cuv
and a parallel composition of the resulting graph with Cw has a non-collinear independent
set. The traversal graph contains two cycles on 2j+1 vertices, connected via 2j+1 induced
paths on at least three vertices and there exists no other connection. Since 2j + 1 is an odd
number, the traversal graph is not hamiltonian. The resulting graph G has (2j + 1)(i+ 1)
vertices and the independent set 2ji vertices. Thus, we can state the following theorem.

Theorem 2.1. For every i, j ∈ N, i ≥ 3, j ≥ 1, there exists a series-parallel graph G on
(2j + 1) ∗ (i+ 1) vertices with an independent set S ⊂ V (G) of size 2ji such that S is not
collinear.
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2. Collinear sets in series-parallel graphs
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Figure 2.4: A d-nice component Cnice ∈ Cnice. The distance of ui to wi and t is d− 1.

2.2 Counterexample: d-scattered sets
Before proving the main theorem of this section we define two graph classes and prove
several lemmas we will use in the proof of the theorem. Consider a parallel composition Dj

of a single edge and a path Pj on 2d− 1 vertices. Let wj and t be the source and sink of
this graph and let uj denote the middle vertex of Pj . Let Dj be the series composition of
Dj with a single edge (s, wj) such that s and t are the source and sink of Dj . The parallel
composition of a single edge (s, t) and three copies D1, D2 and D3 of Dj yields the graph
Ci depicted in Fig. 2.4. We call Ci on 6d− 4 vertices a d-nice component and the family
of all d-nice components Cnice. Furthermore, let Ci be the series composition of Ci and a
single edge (ti, tnicei) such that the source si of Ci is the source of Ci and tnicei is the sink
of Ci. Let C1, C2 and C3 be three copies of Ci. Let G be the parallel composition of C1,
C2 and C3 such that s = s1 = s2 = s3 and t = tnice1 = tnice2 = tnice3 . We call G a d-nice
graph and the family of all d-nice graphs, for some d ≥ 2, we denote by Gnice.

Lemma 2.2. Let s and t be the source and sink of a d-nice component Cnice ∈ Cnice. In
every planar embedding of Cnice, there exists a triangle Tnice = (s, t, w) and a d-scattered
set S ⊂ V (Cnice) such that the source s ∈ S and there exists a vertex u ∈ S that lies inside
the triangle Tnice. We call Tnice a d-nice triangle.

Proof. Consider the d-nice component Cnice as shown in Fig. 2.4. Cnice is a parallel
composition of four components, one of them being the edge (s, t). Each of the three other
components Dj , j ∈ {1, 2, 3}, contains a vertex wj incident to both s and t and thus forms
a triangle (s, t, wj), sharing the edge (s, t). Furthermore, the vertices u1 ∈ V (D1), u2 ∈
V (D2), u3 ∈ V (D3) together with the source s form a d-scattered set S.

Since the edge (s, t) and the three components Dj are composed in parallel, in any planar
embedding of Cnice at least one of the three vertices wj , j ∈ {1, 2, 3}, lies inside one
of the triangles (s, t, wi), i ∈ {1, 2, 3}, i 6= j. Along with wj the inner vertices of any
component composed in parallel to the edge (wj , t) lie inside the same triangle (s, t, wi).
Otherwise an edge of this component would cross the boundary of the triangle. The path
Pj = wj . . . uj . . . t is such a component, i.e. the vertex uj ∈ S lies inside the triangle
Tnice := (s, t, wi).
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2.2. Counterexample: d-scattered sets
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Figure 2.5: Scheme of d-nice triangles Ti and pseudolines (red) collecting the vertices of
the d-scattered set S (violet).

Lemma 2.3. Let G ∈ Gnice be a d-nice series-parallel graph. Then there exists a d-scattered
set S such that the source s of G is in S and in every embedding of G there are three
vertices u1, u2, u3 ∈ S lying inside three d-nice triangles T1, T2 and T3 only sharing the
vertex s.

Proof. Let Ci, i ∈ {1, 2, 3}, be the three d-nice components contained in G. From Lemma
2.2 we know that there exists a d-scattered set Si ⊂ V (Ci) such that in every planar
embedding of Ci, there exists a d-nice triangle Ti = (si, ti, wi) and a d-scattered set
Si ⊂ V (Ci) such that the source si is in Si and another vertex ui ∈ Si lies inside the
triangle Ti. Since s = s1 = s2 = s3 is the source of G and the triangles do not share any
other vertex, it remains to show that S = S1 ∪ S2 ∪ S3 is a d-scattered set in G.

Consider Ci. The vertices s and ti are the source and sink of Ci and thus every path
from a vertex vi ∈ V (Ci) to a vertex vj ∈ V (G) \ V (Ci) contains s or ti. Additionally,
(s, ti) ∈ E(Ci) and therefore every shortest path between two vertices vi ∈ Ci and v′i ∈ Ci
lies completely in Ci. Otherwise it would pass s and ti and using the edge (s, ti) would
shorten the path.

Now consider a vertex xi ∈ Si. Since Si is d-scattered in Ci, it has distance at least d to
every other vertex in Si. In particular if xi 6= s, then every shortest path between the
vertices s and xi has length at least d as s ∈ S1 ∩ S2 ∩ S3. Denote this path by Pxi . It
remains to show that xi has distance at least d to all vertices S \ Si.

Assume there exists a vertex xj ∈ Sj , j ∈ {1, 2, 3} and j 6= i, such that the distance e
between xj and xi is less than d. Then there exists a path P from xi to xj of length e < d.
Since G is a parallel composition of C1, C2 and C3, P contains either s or t. If it contains
s, then it contains Pxi , which is a contradiction since the length of Pxi is at least d > e.
Otherwise if P contains t, then there exists a path P ′ of length at most

⌊
e
2
⌋
from t to xi

or to xj . The path P ′ does not contain s. Thus, it contains ti and tj and there exists a
path P ′′ of length at most

⌊
e
2
⌋
− 1 between ti and ui or between tj and uj . Since s is also

a neighbor of ti and tj , this means that there exists a path of length at most
⌊
e
2
⌋
from s to

ui or uj , which is a contradiction as Pui and Puj are the shortest paths from s to ui and
uj and have length at least d > e. Therefore all vertices in S = S1 ∪ S2 ∪ S3 have pairwise
distance at least d and S is a d-scattered set.

For the upcoming Lemma 2.4 we use the notion of a region of a graph. Recall that the
region of a graph with a given embedding is the complement of the outer face.
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2. Collinear sets in series-parallel graphs
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Figure 2.6: The series-parallel graph G and the vertices of a d-scattered set (violet). A
pseudoline (red) collecting the vertices of the d-scattered set.

Lemma 2.4. In every plane embedding of a d-nice graph G with source s and sink t, the
regions of two of the three contained d-nice components C1, C2 and C3 only overlap at the
source s. The region of the third d-nice component

1. either only overlaps at s too (see Fig. 2.6(a)) or

2. both of the other triangles are contained in the d-nice triangle of it (see Fig. 2.6(b)).

Proof. To show this we derive all possible embeddings of G. In particular we distinguish
between different mutual positions of the three d-nice triangles Ti = (s, ti, wi) ⊂ Ci,
i ∈ {1, 2, 3}, which have a vertex ui ∈ S embedded inside. Since G contains three copies of
the d-nice component Cnice sharing the vertex s and from Lemma 2.3 we know that these
three triangles T1, T2 and T3 exist, all sharing the vertex s and they are all connected with
the vertex t via edges (t1, t), (t2, t) and (t3, t).

First consider the mutual position of two of the three triangles, without loss of generality
T1 and T2. Either they overlap at the vertex s only (see Fig. 2.5(b)), or, without loss of
generality, T1 is nested inside T2 (see Fig. 2.5(c)). Since s is their only common vertex,
partial overlapping of the triangles would yield an edge crossing.

Now consider the complementary position of the third triangle T3. If T1 is nested inside T2,
then the vertex t is also placed inside T2 and outside T1 since t1 ∈ V (T1) and t2 ∈ V (T2)
are adjacent to t and otherwise the edges (t1, t) and (t2, t) would cross the boundary of
the triangle T2, T1 respectively. The vertex t3 ∈ V (T3) is also adjacent to t and thus T3 is
nested inside T2 and overlaps with T1 at s only. This yields the second case. If T1 and T2
only overlap at the vertex s, the vertex t is placed on the outer face. Therefore T3 cannot
be nested inside T1 or T2 since the edge (t3, t) would cross the triangle’s boundary. Neither
can only one of T1 or T2 be nested inside T3 because switching the numbering of T3 with
said triangle would yield the same situation as before. Hence T3 either overlaps with T1
and T2 at s only (first case) or T1 and T2 are both nested inside T3 (second case).

We now use Lemmas 2.3 and 2.4 to proof the main theorem.

Theorem 2.5. For every natural number d there exists a series-parallel graph G and a
d-scattered set S ⊂ V (G) such that S is not collinear.

Proof. Let G ∈ Gnice be a d-nice series-parallel graph and let C1, C2 and C3 be its d-nice
components. From Lemma 2.3 we know that there exists a d-scattered set S ⊂ V (G)
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2.3. 3-scattered sets in 4-stretched series-parallel graphs

such that the source s of G is in S and in every embedding of G there are three vertices
u1, u2, u3 ∈ S lying inside three d-nice triangles Ti only sharing the vertex s.

For the sake of a contradiction, assume that S is collinear and let L be a pseudoline
collecting S = S1 ∪ S2 ∪ S3, Si = S ∩ V (Ci), i ∈ {1, 2, 3}. First consider the partial route
of L to collect the vertex ui ∈ Si inside the d-nice triangle Ti, i ∈ {1, 2, 3}. For illustration
see Fig. 2.5(a). L has to enter and exit Ti to collect ui, i.e. cross its boundary at least
twice. Since L also collects s, it does not cross the interior of the edges (s, ti) and (s, wi)
and it does not cross at the vertices wi and ti. Hence it crosses the boundary of Ti at s
and at the interior of the edge (wi, ti) due to the lack of another possible crossing point.

From Lemma 2.4 we know that in every plane embedding of G, the regions of two of the
three contained d-nice components only overlap at the source s. Without loss of generality
let C1 and C2 be those components. Now consider the route of L to collect the vertices
of u1 ∈ S1 and u2 ∈ S2 inside the respective triangles. L crosses the boundary of T1 and
T2 exactly at the vertex s and the interior of the edges (w1, t1) and (w2, t2) to collect the
vertices u1 and u2. As s can only be collected once, L enters T1 at the edge (w1, t1), leaves
T1 and directly enters T2 via s and leaves T2 at the edge (w2, t2) (or reversed). So L always
collects s between collecting u1 and u2.

We use the restrictions on L to contradict its existence. We distinguish between possible
embeddings of the third component C3.

Case 1: C1, C2 and C3 overlap at vertex s only (Fig. 2.6(a)).

Since T3 does not overlap with T1 and T2 at its interior, L collects the vertex u3 inside T3
either before or after collecting the vertices u1, s and u2. To do so it crosses the boundary
of T3 at s and at the edge (w3, t3). This is a contradiction since s cannot be collected twice.

Case 2: C1 and C2 are nested inside T3 (Fig. 2.6(b)).

L can cross the boundary of T3 only twice. Thus, it enters and leaves via s and the edge
(w3, t3) and collects the vertices u1 and u2 in between. Since T1 and T2 are nested inside
T3 and L always collects s between collecting u1 and u2, s is collected twice and L violates
pseudoline properties.

From Lemma 2.4 we know that there is no other possible embedding of G, concluding the
proof.

2.3 3-scattered sets in 4-stretched series-parallel graphs
Increasing the pairwise distance between vertices of an independent set does not suffice for
S to be collinear in series-parallel graphs in general. Thus we restrict the graph class of
series-parallel graphs to a subclass. Let G be a series-parallel graph. Consider the series
and parallel compositions obtaining G. Then G is called c-stretched if the distance between
the source and sink is at least c in every parallel composition. There is no restriction on
the series composition. Observe that every series-parallel graph is 1-stretched. We show
that in a 4-stretched series-parallel graph G every 3-scattered set S ⊂ V (G) is collinear.

Before we proof the main theorem of this section, we need some additional definitions. Let
C be a component of a series-parallel graph G. Let Γ be a drawing of G and Γ(C) be the
drawing of C in Γ. Throughout this section we assume that for every component C of G,
the source s and sink t of C are on the outer face in the drawing Γ(C). A series-parallel
graph always admits such a drawing. Let L+ be a simple curve connecting the sink t of C
to infinity without intersecting Γ(C). Let L− be a simple curve connecting the source s of
C to infinity without intersecting Γ(C) or L+. Then L+ and L− divide the outer face of
Γ(C) into two half-planes. We call one of the half-planes the right outer face, the other
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2. Collinear sets in series-parallel graphs
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Figure 2.7: Invariants C to G. The pseudoline is colored in red. Entry- and exitpoints are
marked with a cross. The vertices of S are colored violet.

one left outer face. Further we call the path Br from s to t with all vertices on the right
outer face the right boundary of C, the left boundary Bl is defined symmetrically. We
do not linguistically distinguish between a vertex or edge and the point or line segment
representing it in Γ. Further we do not distinguish between Br (resp. Bl) and the polyline
representing it.

Let L be a pseudoline with respect to C. Then both endpoints of L are on the outer face
of C. In this section we explicitly give L a direction and say it starts at the starting point
and ends at the endpoint. We say L enters C at a point p← if L intersects the boundary of
C at p← and for ε > 0 there exists a point pb on the outer face of C such that |p←− pb| < ε
and pb is before p← on L. L enters from the right (resp. left) if pb is on the right (resp.
left) outer face. We call p← an entrypoint. We say L exits or leaves C at a point p→ if L
intersects the boundary of C at p→ and for ε > 0 there exists a point pa on the outer face
of C such that |p→− pa| < ε and pa is after p→ on L. L leaves to the right (resp. left) if pa
is on the right (resp. left) outer face. We call p→ an exitpoint. All entry- and exitpoints
are intersection points. Further let p, q be two points on L. Then Lp is the curve segment
from the starting point of L to p and pL is the curve segment of L from p to its endpoint.
pLq is the curve segment of L from p to q. Let p be the crossing point of two curves L1
and L2. Then L1pL2 = L1p ∪ pL2.

Theorem 2.6. Let G be a 4-stretched series-parallel graph and let S ⊂ V (G) be a 3-
scattered set. Then S is collinear.

Proof. Let Γ be a drawing of G. We inductively construct a pseudoline L for every
component C of G collecting all vertices S ∩ V (C). Let p< be the first entrypoint and p>
be the last exitpoint point of L with C. Let L+ and L− be the curves separating the right
and left outer face.

We preserve the following invariants.

• Invariant A: L is a pseudoline with respect to C.

• Invariant B: L collects all vertices V (C) ∩ S.

• Invariant C: If V (C) ∩ S = ∅, L does not intersect with C. Otherwise L does not
intersect with L+ or L− except for their endpoints. See Fig. 2.7(a) for illustration.

• Invariant D: L starts on the right outer face and ends on the left outer face. See Fig.
2.7(b) for illustration.

• Invariant E: The intersection points on the right boundary (resp. left boundary) are
ordered along the right boundary (resp. left boundary) from s to t in the same order
as they appear on L. See Fig. 2.7(b) for illustration.
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Figure 2.8: Induction base. The pseudoline is colored in red. Entry- and exitpoints are
marked with a cross. The vertices of S are colored in violet.

• Invariant F: If s ∈ S (resp. t ∈ S), then s (resp. t) is an intersection point on the
right as well as on the left boundary. Furthermore, if S ∩ (V (C) \ {s, t}) 6= ∅, then
there exists at least one entrypoint on the right and one exitpoint on the left unequal
to s and t. See Fig. 2.7(b) for illustration.

• Invariant G: If ({s} ∪N(s)) ∩ S = ∅ (resp. ({t} ∪N(t)) ∩ S = ∅), then none of the
edges (s, n), n ∈ N(s) (resp. (t, n), n ∈ N(t)), is intersected by L. See Fig. 2.7(c) for
illustration.

Note that Invariants C and E mean that the intersection points on either boundary are
alternately entry- and exitpoints. Together with D, the alternation starts with the first
entrypoint p< and ends with an entrypoint on the right boundary. On the left boundary it
starts with an exitpoint and ends with the last exitpoint p>. Invariants E and F combined
state that if s ∈ S (resp. t ∈ S), then s (resp. t) is the first entrypoint on the right as well
as the first exitpoint on the left.

Induction base:

Let C be the series-parallel graph on two vertices, s and t and either s ∈ S, t ∈ S or
s, t /∈ S. Then there exists a pseudoline L from the right to the left outer face complying
with the invariants. See Fig. 2.8 for illustration.

Induction step:

Let C be a component of G with at least three vertices. Then C is a composition of
two series-parallel graphs C1 and C2. Further, there exist pseudolines L1 and L2 for C1,
respectively C2, complying with the invariants. We distinguish whether C is a series (Case
1) or a parallel composition (Case 2) of C1 and C2.

Case 1: C is a series composition of C1 and C2, see Fig. 2.9.

Let s1, t1 be the source and sink of C1 and let s2, t2 be the source and sink of C2. Without
loss of generality let v = t1 = s2 be the common vertex of C1 and C2 in C. Then s = s1
and t = t2 are the source and sink of C. Furthermore, the right (resp. left) boundary of C
is the union of the right (resp. left) boundaries of C1 and C2.

If V (C1) ∩ S = ∅, we leave out L1, and set L = L2. Otherwise if V (C2) ∩ S = ∅, we leave
out L2, and set L = L1. Then L trivially conforms with the invariants. Otherwise we
further distinguish whether v ∈ S (Case 1a) or v /∈ S (Case 1b).

Case 1a: v ∈ S, see Fig. 2.9(a).

The vertex v ∈ S is the last entry- and exitpoint of L1 and the first entry- and exitpoint
of L2 (Invariants E and F). Let L = L1vL2. Then v is an entrypoint on the right and
an exitpoint on the left. Thus, L preserves Invariant F. L trivially preserves the other
invariants.
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2. Collinear sets in series-parallel graphs
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(a) Case 1a: v ∈ S
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(b) Case 1b: v /∈ S

Figure 2.9: Case 1: Series composition of C1 and C2. The pseudoline L1 is colored in green,
L2 in blue and Lcross in red. Entry- and exitpoints are marked with a cross.
The vertices of S are colored in violet.
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(a) Case 2a: s, t /∈ S
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(b) Case 2b: s, t ∈ S
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p2>
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pr2

p′r2

(c) Case 2c: s ∈ S, t /∈ S

Figure 2.10: Case 2: Parallel composition of C1 and C2. The pseudoline L1 is colored in
green, L2 in blue and Lcross, Llow and Lup in red. Entry- and exitpoints are
marked with a cross. The vertices of S are colored in violet.

Case 1b: v /∈ S, see Fig. 2.9(b).

Since S is 3-scattered, either N(v) ∩ V (C1) ∩ S = ∅ or N(v) ∩ V (C2) ∩ S = ∅. Without
loss of generality let N(v) ∩ V (C1) ∩ S = ∅. Invariant G states that L1 crosses none of the
edges (v, n), n ∈ N(v) ∩ V (C1). Furthermore, the last exitpoint of C1, p1>, is on the left
outer face and the first entrypoint of C2, p2<, is on the right outer face (Invariant D). Let
Lcross be a pseudoline from p1> to p2< crossing exactly the edges (v, n), n ∈ N(v) ∩ V (C1).
This yields a new entrypoint p← and a new exitpoint p→ on the left and right boundary
of C. Set L = L1p1>Lcrossp2<L2. Then L trivially preserves Invariants A, B, C, D and F.
It preserves Invariant E since L collects all intersection points of L1, then p←, then p→
and all intersection points of L2 at last. Thus it collects all intersection points in order of
appearance on the respective boundary. Invariant G is preserved since L crosses the same
edges as L1 and L2 together and the edges (v, n), n ∈ N(v) ∩ V (C1), are neither incident
to s nor to t (C is 4-stretched).

Case 2: C is a parallel composition of C1 and C2, see Fig. 2.10.

Let s1, t1 be the source and sink of C1 and let s2, t2 be the source and sink of C2. Then
s = s1 = s2 and t = t1 = t2 are the source and sink of C. Without loss of generality let C1
be on the right outer face of C2. Then the left boundary of C1 is the left boundary of C.
The right boundary of C2 is the right boundary of C. The left boundary of C1 and the
right boundary of C2 bound an inner face finternal of C. We distinguish whether s and t
are both in S (Case 2a), both not in S (Case 2b) or one of them is in S (Case 2c).
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2.3. 3-scattered sets in 4-stretched series-parallel graphs

pri
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(a) Case 2a: S ∩ V (C) = ∅
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pli pri
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pi>

(b) Case 2c: S ∩ V (C) = {s}

Figure 2.11: Case 2: Creation of entry- and exitpoints.

Case 2a: s, t /∈ S, see Fig. 2.10(a).

If V (C) ∩ S = ∅, set L = L1. It does not intersect with C (Invariant C) and thus trivially
preserves all invariants. Otherwise examine the pseudolines Li, i ∈ {1, 2}, first. If the set
S ∩ V (Ci) is empty, then Li does not intersect with Ci (Invariant C). Then re-route Li
such that it enters Ci a point pri and leaves at a point pli such that Li does not intersect
with any vertex or any edge (si, ns), ns ∈ N(si) or (ti, nt), nt ∈ N(ti). This is possible since
dist(si, ti) ≥ 4. See Fig. 2.11(a) for illustration. Then C1 and C2 each have an entrypoint
on the right boundary and an exitpoint on the left boundary. If the set S ∩ V (Ci) is not
empty, these intersection points exist by Invariant F.

Furthermore, the last exitpoint p2> of L2 is on the left boundary of C2 and the first entry
point p1< of L1 is on the right boundary of C1 (Invariants C and D). Thus, in Γ(C) p2>
and p1< are both at the inner face finternal. Hence, there exists a curve Lcross from p2> to
p1< without crossing any vertex, edge, or L1 and L2. Then let L = L2p2>Lcrossp1<L1 and
L preserves the invariants.

Case 2b: s, t ∈ S, see Fig. 2.10(b).

Invariant E states that si, ti, i ∈ {1, 2}, are both an entrypoint on the right boundary and
an exitpoint on the left boundary. Thus, Li leaves at si to the left outer face and enters at
ti from the right outer face. In between it intersects Ci from left to right since it cannot
intersect L+ and L− (Invariant C). Thus, there exist points pli and pri, the first entrypoint
(resp. last exitpoint) after s (resp. before t) on Li on the left (resp. right) boundary.

Regarding Γ(C), pr1 and pl2 are both at the inner face finternal. Hence, there exists
a curve Lcross from pr1 to pl2 without crossing any vertex, edge, or L1 and L2. Then
L = L1pr1Lcrosspl2L2 preserves the invariants.

Case 2c: s ∈ S, t /∈ S or s /∈ S, t ∈ S, see Fig. 2.10(c).

Without loss of generality let s ∈ S, t /∈ S. In the case s /∈ S, t ∈ S the construction of L is
symmetric.

If V (Ci)∩S = {si}, then si is an entrypoint on the right and an exitpoint the left boundary
(Invariant F). Then re-route Li such that after collecting si, Li intersects Ci from the
left to the right outer face and from the right to the left outer face without intersecting
itself, any vertex, any edge twice or any edge (si, ns), ns ∈ N(si) or (ti, nt), nt ∈ N(ti).
This is possible since dist(si, ti) ≥ 4. See Fig. 2.11(b) for illustration. This creates entry-
and exitpoints pli, pri, p′ri and pi> in this order on Li such that pri, p′ri are on the right
boundary and pli, pi> are on the left boundary.

If V (Ci)∩S ) {si}, then pli is the first entrypoint of Li after s, exitpoint pri and entrypoint
p′ri are consecutive on the right boundary of C and pi> is the last exitpoint of Li. Entrypoint
p′ri and exitpoint pi> exist by Invariant F. The existence of pli and pri follows from Invariant
C and the existence of p′ri and pi>.
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2. Collinear sets in series-parallel graphs

Then pr1, pl2, p2> and p′r1 are on the inner face finternal of C in Γ(C) and there exist curves
Llow from pr1 to pl2 and Lup from p2> to p′r1 such that Lup, Llow do not intersect each
other or any vertex or edge. Further they only intersect L1 and L2 at their endpoints.
Then L = L1pr1Llowpl2L2p2>Lupp

′
r1L1 preserves the invariants.

Observe, that to be 3-scattered is a necessary condition on S, otherwise Case 1b could not
be resolved. On the other hand, only Case 2a and Case 2c of the induction step require
the graph G to be 4-stretched. In both cases 3-stretched would be enough to preserve
all invariants except Invariant G. Invariant G is singly used in Case 1b to ensure that
the pseudoline Lcross does not interfere with L1 or L2. For simplicity both C1 and C2 are
required to comply with Invariant G, although one of them complying would be enough.
Thus for instance 7-scattered sets in 3-stretched graphs are collinear. The proof requires
adjustment of Case 2a, Case 2c and Invariant G.
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3. Collinear sets in 4-connected
triangulations

Considering the counterexample for d-scattered sets in series-parallel graphs in Chapter 2,
we ask whether independent sets are collinear if the graph does not contain such a series-
parallel graph as a subgraph. The counterexample for d-scattered sets in series-parallel
graphs contains several triangles such that removing the vertices of a triangle would
disconnect the graph. Ravsky et al. [RV11] construct a family of graphs with a maximum
collinear set – and use separating triangles to prove that the size of the maximum collinear
set is sub-linear. In a 4-connected graph such triangles are forbidden. A graph G is
4-connected if removing any set of less than four vertices and their incident edges does not
disconnect the graph. This leads to the question whether independent sets in 4-connected
planar graphs are collinear, in particular in maximally planar 4-connected graphs, i.e.
4-connected triangulations. In Section 3.1 we answer this question in the negative. For
d-scattered sets in 4-connected triangulations the question is still open, though we describe
some approaches on how to prove their collinearity and describe their limits in Section 3.2.
One of the approaches uses the decomposition of 2-sided near-triangulations, a superclass to
4-connected triangulations. In Section 3.3 we prove that if a 2-sided near-triangulation can
be decomposed using only one of two possible decomposition operations, an independent
set is collinear in this graph.

3.1 Counterexample: independent sets in 4-connected trian-
gulations

Similar to the counterexample in 2.2 we construct a graph containing several identical
components as subgraphs and an independent set S. A component C is depicted in Fig.
3.1(a). It consists of a path P = sabct and two vertices u and v, each directly connected to
every vertex in P . We call the 4-cycle sutvs the cycle F . Note that in every embedding of
C all faces are triangles except the one bounded by F and that C does not contain any
separating triangles. However, C is not 4-connected.

Let T4nice be a family of planar 4-connected triangulations such that every T ∈ T4nice
contains four copies of C, namely C1, C2, C3 and C4, and for all i, j ∈ {1, 2, 3, 4}, i 6= j,
V (Ci)∩ V (Cj) = {si} = {sj} = {s} and (ti, tj) /∈ E(T ). We show that for every T ∈ T4nice
there exists an independent set S such that S is not collinear. The following lemma serves
as preparation. Note that Lemma 3.1 and 3.2 do not consider a concrete graph of the
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3. Collinear sets in 4-connected triangulations
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(a) A component Ci.
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b4b3

(b) Four components C1, C2, C3, C4, only
overlapping at the vertex s.

Figure 3.1: Components Ci. Vertices of the independent set S are depicted in violet, regions
Ri in light yellow and the pseudoline L in red.

family T4nice but only use its properties: 4-connectivity and the structure of the contained
components. We show the existence of a graph T ∈ T4nice in Theorem 3.3.

Let Γ be a drawing of T and let Γ[Ci] be the drawing of Ci in Γ. Let Ri be the region of
Γ[Ci], i.e. the complement of its the outer face.

Lemma 3.1. Let Γ be a plane drawing of a graph T ∈ T4nice with drawings Γ[Ci] of
the components Ci in Γ, i ∈ {1, 2, 3, 4}, and their regions Ri. Then the outer face of at
least three of the four drawings Γ[Ci] is bounded by the 4-cycle Fi containing the vertex
s = s1 = s2 = s3 = s4 and their regions Ri only overlap at the vertex s.

Proof. Since T is 4-connected and its drawing is plane, in every triangle D ∈ T there is
either no vertex x ∈ V (T ) \ V (D) embedded inside D or all vertices V (T ) \ V (D) are
embedded inside D, i.e. D bounds the outer face of T in Γ. Otherwise D would be
separating. This holds in particular for all triangles in the drawing Γ[Ci] of a component
Ci. In a component Ci only one face is bounded by the 4-cycle Fi, which contains the
vertex s. All other faces are bounded by triangles.

Assume that there are two components Ci and Cj in T , i 6= j, such that their outer faces
in Γ[Ci] and Γ[Cj ] are both bounded by a triangle Di, Dj respectively. As shown above
this means that Di and Dj both bound the outer face of T in Γ. Since Di 6= Dj and
the outer face of T is unique, this is a contradiction. Thus, at least three of the four
drawings Γ[C1],Γ[C2],Γ[C3],Γ[C4] are bounded by a 4-cycle, without loss of generality
Γ[C1],Γ[C2],Γ[C3].

Furthermore, since all inner faces of Γ[Ci], i ∈ {1, 2, 3}, are triangles, no vertex x ∈
V (T ) \V (Ci) is embedded inside an inner face of Γ[Ci]. Hence, no vertex x ∈ V (T ) \V (Ci)
is embedded in the region Ri. Since the only common vertex of C1, C2, C3 is s, their regions
only overlap at s.

Lemma 3.2. Every graph T ∈ T4nice has an independent set S ⊂ V (T ) such that S is not
collinear.

Proof. Let S be an independent set of T such that {s, b1, t1, b2, t2, b3, t3, b4, t4} ⊂ S. For
the sake of a contradiction assume that S is collinear and let L be a pseudoline collecting
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3.1. Counterexample: independent sets in 4-connected triangulations

Figure 3.2: A graph T ∈ T4nice with an independent set S. S is depicted in violet, the
regions of the four components C1, C2, C3, C4 are highlighted in yellow.

S. From Lemma 3.1 we know that the outer faces of at least three of the four drawings
Γ[Ci], i ∈ {1, 2, 3, 4}, are bounded by a 4-cycle Fi = svitiuis. Without loss of generality let
the three drawings be Γ[C1],Γ[C2],Γ[C3].

Let Ri be the region of Γ[Ci]. All vertices of Ci are contained in Ri, in particular the
vertex bi ∈ S. To collect a vertex bi L crosses Fi at least twice. Since s, ti ∈ S, none of the
edges of Fi can be crossed by L. Hence, L crosses at the vertices s and ti due to the lack
of another possible crossing point.

Consider the route of L to collect the vertices b1 and b2 inside the respective region. See
Fig. 3.1(b) for illustration. To enter and leave the regions R1 and R2, L crosses F1 at s
and t1 and F2 at s and t2. As s can only be collected once, L enters R1 at t1, leaves R1
at s and directly enters R2 via s and leaves R2 at t2 (or reversed). So L always collects s
between collecting t1 and t2 without leaving the region R1 ∪R2.

We use the restriction on L to contradict its existence. Since R3 only overlaps with R1 and
R2 at s (Lemma 3.1), L collects the vertex b3 inside R3 either before or after collecting the
vertices t1, s and t2. To do so it crosses F3 at s and at t3. This is a contradiction since s
cannot be collected twice.

Theorem 3.3. There exists a 4-connected triangulation T with an independent set S ⊂
V (T ) such that S is not collinear.

Proof. Consider the graph T depicted in Fig. 3.2. It is 4-connected and since T ∈ T4nice,
it has an independent set S, which is not collinear. S is even a maximum independent
set.

Observe that T is not the only 4-connected triangulation with a non-collinear independent
set S. Let G be the subgraph of T induced by the vertices V (C1)∪V (C2)∪V (C3)∪V (C4).
The non-collinear set S ⊂ V (T ) is an independent set in G as well. Consider a grid of
vertices and edges bounding every cell by a 4-cycle. Insert a copy of G in every cell of the grid
and triangulate the graph without creating a separating triangle. This obtains an arbitrarily
large 4-connected triangulation Tgrid ∈ T4nice. The independent set Sgrid ⊂ V (Tgrid) is the
union of all independent sets S of the copies of G. See Fig. 3.3(a) for illustration. Since
every S ⊂ Sgrid is not collinear, Sgrid is not collinear.
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3. Collinear sets in 4-connected triangulations

(a) The graph Tgrid ∈ T4nice. (b) The graph Tcycle ∈ T4nice.

(c) The graph Tsp ∈ T4nice. The subgraph Gsp
is colored black.

Figure 3.3: Large 4-connected triangulations with a non-collinear independent set.

The independent set Sgrid ⊂ V (Tgrid) is not the largest independent set in Tgrid. For an
arbitrarily large 4-connected triangulation with a non-collinear maximum independent set
we compose not only four, but i ≥ 4 copies C1, . . . Ci of the component C in Fig. 3.1(a).
Let all of the components overlap at the vertex s = sj ∈ V (Cj), j ∈ {1, . . . i}. We insert a
vertex on the outer face and triangulate the resulting graph without a separating triangle
and without edges between the vertices tj and tk, j, k ∈ {1, . . . i}. The resulting graph
Tcycle with 6i+ 2 vertices has a maximum independent set Scycle = { s, b1, . . . , bi, t1, . . . , ti}
of size 2i+ 1 (see Fig. 3.3(b) for Tcycle and Fig. 3.1(a) for the labeling of the vertices).

For yet another 4-connected planar triangulation with a non-collinear independent set
consider the counterexample for independent sets in series-parallel graphs in Section 2.1.
The graph Gsp (see Fig. 2.1) has 3(i+ 1) vertices, 6i edges and thus 3i− 1 faces, i ≥ 3. We
insert a vertex into every face bounded by a 4-cycle and connect it to every vertex of the
bounding cycle. We insert 3 vertices in the faces bounded by a 6-cycle and triangulate the
faces. The resulting graph is a planar 4-connected triangulation Tsp with 6(i+ 1) vertices.
The independent set Ssp ⊂ V (Gsp) of size 3i is independent in Tsp as well. Since Gsp is a
subgraph of Tsp, Ssp cannot be aligned in Tsp either. Observe that Tsp also contains three
copies of the component C (see Fig. 3.1(a)), but they do not overlap at the vertex s.
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3.2. Attempts for d-scattered sets

3.2 Attempts for d-scattered sets
Independence is not a sufficient condition for collinearity of a vertex set in 4-connected
triangulations. As in Chapter 2 we increase the pairwise distance between any two vertices
in an independent set we want to align. Hence, we consider d-scattered sets for some s ≥ 3.
In this section we sketch two approaches to prove collinearity of d-scattered sets. We do
not go into detail, but outline the limits of the approaches and where further restrictions
might be useful.

The first approach in Section 3.2.1 uses canonical ordering to iterate over the vertices of a 4-
connected triangulation. The second approach uses the fact, that 4-connected triangulations
are a subclass of 2-sided near-triangulations and as such they can be decomposed into
smaller 2-sided near-triangulations (see Section 3.2.2).

In the preliminaries we introduced a recursive definition of 4-connected triangulations
using edge (de-)contractions. It did not prove useful to decide whether an independent or
d-scattered set is collinear since the distance between vertices is altered when contracting
edges. However, we suspect it might be useful when counting (non-independent) collinear
vertices in 4-connected triangulations.

3.2.1 (2,2)-canonical ordering

Throughout this section we use closed pseudolines instead of pseudolines. A closed
pseudoline Lc is a closed and simple curve which contains a pseudoline Lo such that the
curve segment Lc \Lo lies completely on the outer face of G. Conversely to Lc being closed,
we call Lo an open pseudoline.

Let C denote the cycle bounding the outer face of a graph G in a drawing Γ of G. Let
l∞ ∈ L∞(x) be a curve connecting a vertex x ∈ C with infinity such that Γ ∩ l∞ = {x}.
We say a closed pseudoline L covers the vertex x if every curve l∞ ∈ L∞(x) crosses L at
least once in its interior. L covers x c times if every curve l∞ ∈ L∞(x) crosses L at least
c times in its interior. The vertex x is uncovered if there exists a curve l∞ ∈ L∞(x) not
crossing L at in interior. Note that x does not count as a crossing point. See Fig. 3.4(a)
for illustration.

A useful tool when dealing with a triangulation is canonical ordering, i.e. an ordering of its
vertices v1, v2, v3, . . . , vn such that v1, v2 and vn bound the outer face and for every subgraph
Gi−1 ⊆ G, 4 ≤ i ≤ n, induced by the vertices v1, . . . , vi−1, the following requirements are
met:

• Gi−1 is 2-connected and the boundary of its outer face is a cycle Ci−1 containing the
edge (v1, v2).

• Vertex vi is on the outer face of Gi−1 and its neighbors in Gi−1 form an (at least
2-element) subinterval of the path Ci−1 \ (v1, v2).

Such an ordering exists for every planar triangulation [DFPP90]. For 4-connected trian-
gulations this ordering can be refined such that every vertex vi, 3 ≤ i ≤ n − 2, has at
least two neighbors in G \Gi [KH97]. See Fig. 3.4(b) for illustration. In other words, in a
refined canonical ordering not only Gi−1 is 2-connected, but G \ Gi−1 is 2-connected as
well [BD16].

This concept is generalized to (r, s)-canonical orderings in [BD16]. Let G be a plane
triangulation. A vertex partition V1 ∪ · · · ∪ VL is an (r, s)-canonical ordering if the vertices
v1, v2 and vn bound the outer face, v1 ∈ V1 and vn ∈ VL and for every 1 < i < L the
graph Gi is r-connected and G \Gi is s-connected. They also show that a (3, 1)-canonical
ordering exists for every 4-connected triangulation such that every Vi, 1 < i < L, is either
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3. Collinear sets in 4-connected triangulations

ba c

(a) Vertex a is covered twice, ver-
tex b is covered once and vertex
c is uncovered.

vi

Gi−1

G \Gi

(b) A vertex vi in (2, 2)-
canonical ordering.

vj
vk

(c) Invariant D: The vertices are
in canonical ordering on the y-
axis. Thus, j < k and vj is cov-
ered once more than vk.

Figure 3.4: Some basic definitions.

v1 v2

(a) v1, v2 /∈ S.

v1 v2

(b) v1 ∈ S.

v1 v2

(c) v2 ∈ S.

Figure 3.5: Base case. The pseudoline L (red) collects a vertex v1 or v2 if it is in S (violet).

a single vertex or an induced path of which every vertex has degree three in V1 ∪ · · · ∪ Vi.
The above introduced refined canonical ordering is a (2, 2)-canonical ordering.

Our attempt is to construct a pseudoline L for the graph G collecting a d-scattered set
S ⊂ V (G) inductively. We start with the graph G2 and let L collect the vertices V (G2)∩S.
We iterate over all graphs Gi in the sequence G2, . . . , Gn and adjust the route of L such
that it collects V (Gi) ∩ S. In every step of the iteration we try to preserve the following
invariants with respect to the graph Gi.

• Invariant A: L is a pseudoline.

• Invariant B: L collects all vertices S ∩ V (Gi).

• Invariant C: L covers every vertex on the boundary of Gi at most twice.

• Invariant D: For every edge (vj , vk), j < k, on the boundary of Gi, it holds that if
L intersects (vj , vk) at its interior, vj is covered once more than vk by L. See Fig.
3.4(c) for illustration.

We start with the graph G2 as the base case. We construct L as shown in Fig. 3.5. The
pseudoline L is a closed curve around G2, collecting v1 or v2 if necessary. It trivially
conforms with the invariants.
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3.2. Attempts for d-scattered sets

vi

Gi−1

(a) vi ∈ S.

vi

Gi−1

(b) vi /∈ S.

Figure 3.6: Case 1. The pseudoline L (red) collects the vertex vi if it is in S (violet). The
dashed red line depicts the optional second layer of L.

vi

Gi−1

(a) vi ∈ S.

vi

Gi−1

(b) vi /∈ S.

Figure 3.7: Case 2. The pseudoline L (red) collects the vertex vi if it is in S (violet). The
dashed red line depicts the optional second layer of L.

Let N(vi) the neighborhood of vi and let Ni−1(vi) = N(vi)∩V (Gi−1) be the neighborhood
of vi in the subgraph Gi−1. Considering the graph Gi−1 and its boundary we distinguish
how often L covers the neighbors Ni−1(vi) in Gi−1. We yield the following cases.

• Case 1: L covers all Ni−1(vi) once or all Ni−1(vi) twice, see Fig. 3.6.

• Case 2: L covers parts of Ni−1(vi) twice, the rest once, or L covers parts of Ni−1(vi)
once, the rest not at all, see Fig. 3.7.

• Case 3: L does not cover Ni−1(vi) at all, see Fig. 3.8.

• Case 4: L covers parts of Ni−1(vi) twice, the rest not at all, see Fig. 3.9.

• Case 5: L covers parts of Ni−1(vi) once, parts twice and some vertices of Ni−1(vi)
not at all, see Fig. 3.10.

For every case, we further distinguish, whether vi ∈ S (Case a) or vi /∈ S (Case b). So for
example in Case 3b L does not cover Ni−1(vi) and vi /∈ S. Beforehand note that in the
Cases 2 and 4, whenever there is a vertex vj ∈ Ni−1(vi) covered c ∈ {0, 1, 2} times in Gi−1,
there exists a path Pj induced by the vertices Ni−1(vi) from vj to the rightmost or the

vi

Gi−1

(a) vi ∈ S.

vi

Gi−1

(b) vi /∈ S.

Figure 3.8: Case 3. The pseudoline L (red) collects the vertex vi if it is in S (violet).
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3. Collinear sets in 4-connected triangulations
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Gi−1

(a) vi ∈ S. This case does not occur.

vi

Gi−1

(b) vi /∈ S.

Figure 3.9: Case 4. The pseudoline L (red) crosses all edges incident to vi.

vi

Gi−1

(a) vi ∈ S. This case cannot be resolved.

vi

Gi−1

(b) vi /∈ S. This case cannot be resolved

Figure 3.10: Case 5.

leftmost neighbor of vi such that all vertices on Pj are covered c times. This follows from
Invariant D and from the fact that vj has at least one neighbor vk 6= vi in G \Gj such that
k > j.

In the Cases 1a, 1b, 2a and 3b we place the vertex vi such that none of its incident edges
intersect with L at their interior. For illustration see Fig. 3.6, 3.7(a), 3.8(b). In Case 2b
we place vi such that it is covered as few times as possible (see Fig. 3.7(b)). Case 3a is the
reason why some vertices on the boundary of Gi are covered more than once. All neighbors
of vi are uncovered and vi ∈ S has to be collected by L. Thus we go along the boundary
of Gi−1 to the first crossing point p of L with the boundary of Gi−1 and re-route L from
p to vi. Hence, all vertices on the boundary of Gi−1 between p and vi are covered twice
(see Fig. 3.7(a)). This yields Case 4; Some neighbors of vi are covered twice, the rest not
at all. Then there exists a vertex vk ∈ Ni−1(vi) in S (obtained in Case 3a). Thus vi /∈ S,
omitting Case 4a (see Fig. 3.9(a)). In Case 4b we place vi between the two layers of L
such that every incident edge crosses L once and vi is covered once (see Fig. 3.9(b)).

So far in all cases the invariants can be preserved, even for independent sets. In Cases 5a
and 5b consider the path Pi−1 induced by the vertices Ni−1(vi) on the boundary of Gi−1.
Starting at one endpoint of the path the first vertices are covered twice, then some once
covered vertices follow and the rest is uncovered. This follows again from Invariant D and
the fact that every vj ∈ Ni−1(vi) has at least one neighbor vk 6= vi such that k > j. In
Case 5b (vi /∈ S) vi is placed such that it is covered once and its incident edges cross L at
most once. This violates Invariant D since vi is covered once and some of its neighbors are
uncovered. Placing vi at another position results in two crossings of L with the same edge,
thereby violating pseudoline properties and Invariant A. In Case 5a (vi ∈ S) no matter
where we place vi, L crosses an incident edge at least twice (possibly at vi) and thereby
violates pseudoline properties and Invariant A.

The proposed invariants cannot be preserved. Thus, consider changing or omitting the
invariants. Invariant A and B are necessary to ensure that L is a pseudoline collecting all
vertices S ⊂ V (G). Changing Invariant C to covering the boundary at most once would
make it impossible to place vi in Case 3a. Allowing three or more covers of a vertex on
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the boundary would yield an additional case, where some vertices Ni−1(vi) are uncovered,
covered once, twice or three times each. Thus vi cannot be placed without violating
pseudoline properties. Invariant D ensures that whenever there is a vertex vj ∈ Ni−1(vi)
covered c ∈ {0, 1, 2} times in Gi−1, there exists a path Pj induced by the vertices Ni−1(vi)
from vj to the rightmost or the leftmost neighbor of vi such that all vertices on Pj are
covered c times. Omitting Invariant D would make it impossible to place vi in Case 2a
without violating Invariant A.

Batches

Increasing the pairwise distance between vertices in S, new invariants and different strategies
to place vi might help to prove collinearity of a set S. To find these, we wish for a broader
view. We propose iterating over a sequence of batches of vertices instead of single vertices,
while keeping the canonical ordering of the vertices as before. Let B be a division of the
vertices V (G) into a sequence of batches B1, . . . , Bm. Naturally, B1∪ · · · ∪Bm = V (G) and
no two batches have a common vertex. Further, the following requirements with respect to
the canonical ordering of the vertices v1, . . . , vn appear to be innate.

• For two vertices vi ∈ Bk and vj ∈ Bl we have k ≤ l if i < j.

• In every batch Bk = {vi . . . vi+r}, k < m: Bk ∩ S = {vi+r}.

• The last batch Bm = {vn−s . . . vn} might not have a vertex in S: Bm ∩ S = ∅ or
Bk ∩ S = {vn}

• Every vertex vi ∈ Bk, vi /∈ S, has a neighbor vj ∈ Bk such that j > i or vi = vn.

Not every canonical ordering admits such a division of the vertices, but every graph
admitting a canonical ordering also admits a canonical ordering meeting the requirements:
Consider a canonical ordering v1, . . . , vn of the vertices of G. Subdivide the sequence, such
that the last vertex of every part is in S. This division meets the first two requirements, but
possibly not the third. We re-order the vertices as follows. Consider a vertex vi /∈ S in a
batch Bk = {vl, . . . , vl+r}, such that vi has no neighbor vj ∈ Bk with j > i. Then we switch
the vertices vi+1, . . . , vl+r with vi in the canonical ordering. In the new canonical ordering
v′1, . . . v

′
n, all vertices have the same position, but v′l+r = vi and v′i = vi+1, . . . , v

′
l+r−1 = vl+r.

Also, v′l+r = vi is moved to batch Bk+1. We repeat this, until all vertices meet the third
requirement.

This subdivision of the vertex set V (G) into batches may be useful to prove collinearity of
d-scattered sets in 4-connected triangulations, where d ≥ 3 or even more. We leave this to
future work.

3.2.2 Decomposition as 2-sided near-triangulation

Gonçalves et al. [GIP18] present another way to decompose 4-connected triangulations.
They introduce a decomposition of the graph class of 2-sided near-triangulations, a su-
perclass of 4-connected triangulations. Recall that a near-triangulation is a plane graph
G such that every inner face is a triangle. A 2-sided near-triangulation is a 2-connected
near-triangulation T without separating triangles such that going clockwise on its outer
face the vertices are denoted a1, a2, . . . , ap, bq, . . . , b2, b1, with p ≥ 1 and q ≥ 1, and such
that there is neither a chord (ai, aj) nor (bi, bj) (that is an edge (ai, aj) or (bi, bj) such
that |i− j| > 1). To decompose a 2-sided near-triangulation Gonçalves et al. define the
following operations.

• ap-removal (see Fig. 3.11(a)): This operation applies if p > 1, ap has no neighbor
bi with i < q and none of the inner neighbors of ap has a neighbor bi with i < q.
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(a) ap-removal.
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bq−1
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d

a1b1

TaTb

(b) Cutting.

Figure 3.11: Operations to decompose a 2-sided near triangulation.
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(b) Tb yields Case 2.

Figure 3.12: Case 1.

This operation consists in removing ap from T and in denoting bq+1, . . . , bq+r the
new vertices on the outer face in anti-clockwise order. This yields a 2-sided near-
triangulation T ′.

• bq-removal: This operation applies if q > 1, bq has no neighbor ai with i < p and
none of the inner neighbors of bq has a neighbor ai with i < p. This operation consists
in removing bq from T and in denoting ap+1, . . . , ap+r the new vertices on the outer
face in clockwise order. This yields a 2-sided near-triangulation T ′. This operation is
strictly symmetric to the previous one.

• cutting (see Fig. 3.11(b)): This operation applies if p > 1, q > 1 and the unique
common neighbor of ap and bq, denoted d, has a neighbor ai with i < p and a
neighbor bj with j < q. This operation consists in cutting T into three 2-sided
near-triangulations T ′, Ta and Tb.

– T ′ is the 2-sided near-triangulation contained in the cycle formed by vertices
a1, . . . , ai, d, bj , . . . , b1 and the vertex d is renamed ai+1.

– Ta (resp. Tb) is the 2-sided near-triangulation contained in the cycle formed by
the vertices ai, . . . , ap, d (resp. d, bq, . . . , bj), where the vertex d is denoted b1
(resp. a1).

Note that when applying the cutting operation, the vertex d could also be renamed bj+1.
We use the decomposition operations to pose requirements on a pseudoline L collecting an
independent set S.

Consider the 2-sided near-triangulation T and an independent set S ⊂ V (G) such that
S is collinear. For the cutting-operation we propose the following recursion. Consider a
pseudoline L collecting the vertices of S. The cutting-operation decomposes T into T ′, Ta
and Tb. This yields requirements on L with respect to the subgraphs T ′, Ta and Tb. We
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(b) Ta yields Case 2.

Figure 3.13: Case 2.

describe these by requirements on separate pseudolines L′, La and Lb for the respective
subgraph. In particular L′, La and Lb cannot intersect with specific edges of T ′, Ta and Tb,
respectively. We call these edges walls. A pseudoline L cannot intersect a wall e ∈W (L)
neither at its interior nor its endpoints. Note that after a cutting operation Ta and Tb have
either less than four vertices or they are further decomposed by ap- or bq-removal. The
cutting-operation requires q > 1 and p > 1, but q = 1 in Ta and p = 1 in Tb.

We distinguish the following cases for L with respect to T .

• Case 1: L crosses the boundary of T at the vertex ap. The case when L crosses the
boundary at bq is symmetric.

• Case 2: L crosses the boundary of T at the interior of the edge (ap, bq).

• Case 3: (ap, bq) ∈W (L).

For every case we list the possible cases for the subgraphs T ′, Ta and Tb.

Case 1: L crosses the boundary of T at the vertex ap.

• If Ta yields Case 1, then (d, bq) ∈W (Lb), yielding Case 3 for further decomposition
of Tb (see Fig. 3.12(a)).

• If Tb yields Case 2, then all edges induced by ap ∪N(ap) ⊂ V (Ta) are walls. This
yields Case 3 for Ta (see Fig. 3.12(b)).

In both cases if the common edge of {ea} = Ta ∩ T ′ or {eb} = Tb ∩ T ′ is not intersected by
La, resp. Lb, then ea ∈W , resp. eb ∈W . This yields Case 2 or 3 for T ′.

Case 2: L crosses the boundary of T at the interior of the edge (ap, bq).

• If d ∈ S, then T ′, Ta or Tb yields Case 1. Then all edges induced by d∪N(d) are walls
in the remaining two subgraphs. This yields Case 3 for the remaining two subgraphs
(see Fig. 3.13(a)).

• If d /∈ S, then Ta yields Case 2 and Tb yields Case 3 or vice versa. If the common
edge of {ea} = Ta ∩ T ′ or {eb} = Tb ∩ T ′ is not intersected by La, resp. Lb, then
ea ∈W , resp. eb ∈W . This yields Case 2 or 3 for T ′ (see Fig. 3.13(b)).

Case 3: (ap, bq) ∈W (L).

• If d ∈ S, then either two of the subgraphs T ′, Ta and Tb are in Case 1 and in the
third all edges induced by d ∪N(d) are walls (see Fig. 3.14(a)). Or d is collected in
one of the subgraphs without intersecting its boundary; thus; yielding walls in both
of the other subgraphs (see Fig. 3.14(b)).
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Figure 3.14: Case 3.

• If d /∈ S, then Ta and Tb are either both in Case 2 or both in Case 3. The case of T ′
depends on the pseudolines La and Lb and whether they cross the common edges or
not (see Fig. 3.14(c)).

The first missing piece in this case distinction is a case where ap or bq are collected from
inside T ′. The second is a way to guarantee that there exist pseudolines L′, La and Lb,
meeting the requirements in all three cases. The third piece is to expand these cases to the
ap- and bq-removal-operation. It remains to show that this can be achieved by restricting
S to d-scattered sets, with d ≥ 3. Observe, that restricting S to d-scattered sets would
implicitly avoid substructures of T in combination with S as shown in the counterexample
in Section 3.1.

3.3 Independent sets in restricted 2-sided near-triangulations
In the previous section we presented an approach to construct a pseudoline for a 4-connected
triangulation G, using the fact that 4-connected triangulations are a subclass of 2-sided
near-triangulations. Due to that fact, we also know that independent sets in 2-sided
near-triangulations in general are not collinear. However, if a 2-sided near-triangulation
can be decomposed such that cutting operations are used only and no ap- or bq-removal
operations are applied, independent sets can always be aligned. We call this graph class
restricted 2-sided near-triangulations. Recall the definition of the cutting-operation. The
cutting-operation applies if p > 1, q > 1 and the unique common neighbor of ap and bq,
denoted d, has a neighbor ai with i < p and a neighbor bj with j < q. The operation cuts
T into three 2-sided near-triangulations T ′, Ta and Tb.

• T ′ is the 2-sided near-triangulation contained in the cycle formed by vertices a1, . . . ,
ai, d, bj , . . . , b1, and the vertex d is renamed ai+1 or bj+1.

• Ta (resp. Tb) is the 2-sided near-triangulation contained in the cycle formed by
vertices ai, . . . , ap, d (resp. d, bq, . . . , bj), where the vertex d is denoted b1 (resp.
a1).

Let T be a restricted 2-sided near-triangulation on n vertices. First we observe that
restricting possible decompositions to the cutting operation means that the subgraphs
Ta and Tb of T are both triangles. As mentioned in the previous section, after a cutting
operation Ta and Tb have either less than four vertices or they are further decomposed by
ap- or bq-removal. The cutting-operation requires q > 1 and p > 1, but q = 1 in Ta and
p = 1 in Tb. With the restriction to the cutting operation Ta and Tb have at most three
vertices. By the definition of the cutting operation Ta (resp. Tb) has at least three vertices,
namely d, ap and ap−1 (resp. d, bq and bq−1). Therefore Ta and Tb are both triangles.
For the subgraph T ′ this means that it has exactly |T | − 2 vertices. Thus, we define the
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a1 b1

a2

(a) Case 1: a1 ∈ S.

a1 b1
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(b) Case 2: b1 ∈ S.

a1 b1
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(c) Case 3: a2 ∈ S.

a1 b1

a2

(d) Case 4: T0 ∩ S = ∅.

Figure 3.15: Four cases of the induction base.

decomposition sequence T0, . . . , Tk where Tk = T , Ti−1 = T ′i , i ∈ {1, . . . , k} and T0 is a
restricted 2-sided near-triangulation that is not further decomposed. We further observe
that T0 has exactly three vertices. T0 has at most three vertices since otherwise it would
be decomposed. It has at least two vertices since otherwise T1 would have less than four
vertices – and would not be decomposed. If T0 has two vertices, then T1 has four vertices,
which is not possible since there exists no 2-sided near-triangulation on four vertices such
that the cutting operation can be applied. Hence, T0 has exactly three vertices – and every
restricted 2-sided near-triangulation has an odd number of vertices.

Lemma 3.4. Independent sets in restricted 2-sided near-triangulations can always be
aligned.

Proof. Let T be a restricted 2-sided near triangulation with an independent set S ⊂ V (T ).
We prove the claim by induction on the decomposition sequence T0, . . . , Tk, T = Tk. We
show that for every Ti ∈ {T0, . . . , Tk} there exists a pseudoline Li preserving the following
invariants.

• Invariant A: L is a pseudoline.

• Invariant B: The pseudoline Li intersects the boundary of Ti at the edge (a1, b1). We
call this intersection point p. If one of the endpoints a1 or b1 is in the independent
set S, then p = a1 or p = b1, respectively.

• Invariant C: Li intersects the boundary of Ti at the edge (ap, bq). We call this
intersection point pi. If one of the endpoints ap or bq is in the independent set S,
then pi = ap or pi = bq, respectively.

• Invariant D: Li does not intersect the boundary of Ti at any other point. However, it
may touch the boundary from inside Ti, i.e. it can collect a vertex on the boundary,
but not intersect the boundary.

• Invariant E: Li collects all vertices S ∩ V (Ti).

Induction base:

We assume that T0 has three vertices a1, b1 and a2. The cases with T0 has the vertices a1,
b1 and b2 are symmetric. We construct the pseudoline L0 as follows.

Case 1: a1 ∈ S. Let p = a1 and p0 be in the interior of the edge (a2, b1). See Fig. 3.15(a)
for illustration.

Case 2: b1 ∈ S. Let p = p0 = b1. See Fig. 3.15(b) for illustration.

Case 3: a2 ∈ S. Let p lie in the interior of the edge (a1, b1) and let p0 = a2. See Fig.
3.15(c) for illustration.
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(c) Case 3: a′
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Figure 3.16: Three cases of the induction step. The pseudoline Li is denoted in red. For
alternative routes of Li it is dotted. The independent set S is denoted in
violet; if a vertex may or may not be in S it is denoted in light violet.

Case 4: T0∩S = ∅. Let p lie in the interior of the edge (a1, b1) and let p0 lie in the interior
of the edge (a2, b1). See Fig. 3.15(d) for illustration.

L0 conforms to all invariants in all four cases.

Induction step:

We assume that the common neighbor d of the vertices ap and bq in Ti is renamed ap in
Ti−1, thus we call it a′p. We distinguish the following cases.

• Case 1: bq ∈ S

• Case 2: d = a′p ∈ S

• Case 3: bq, a′p /∈ S

In the case d is renamed bq all cases are symmetric.

By induction we know that there exists a pseudoline Li−1 such that Li−1 conforms with
all invariants with respect to Ti−1. For Invariant C, with respect to the naming of vertices
in Ti, this means that the intersection point pi−1 lies in the interior of the edge (a′p, bq−1)
or if one of the endpoints a′p or bq−1 is in the independent set S, then p = a′p, respectively
p = bq−1.

Case 1 (bq ∈ S): Since bq ∈ S, it follows a′p, bq−1 /∈ S. Therefore, pi−1 is in the interior of
the edge (a′p, bq−1). Thus, we construct a pseudoline Li, which follows the route of Li−1 to
pi−1. From pi−1 it enters the face (a′p, bq−1, bq) and intersects the boundary of Ti at the
vertex bq, hence pi = bq. For illustration see Fig. 3.16(a).

Case 2 (d = a′p ∈ S): Since a′p ∈ S, it follows pi−1 = a′p. Thus, we construct a pseudoline
Li, which follows the route of Li−1 to the intersection point pi−1. From pi−1 it enters the

34



3.3. Independent sets in restricted 2-sided near-triangulations

face (a′p, ap, bq) and intersects the boundary of Ti in the interior of the edge (ap, bq), hence
pi lies in the interior of (ap, bq). For illustration see Fig. 3.16(b).

Case 3 (bq, a′p /∈ S): Since a′p /∈ S, it follows pi−1 lies in the interior of the edge (a′p, bq−1)
or pi−1 = bq−1. Thus, we construct a pseudoline Li following the route of Li−1 to the
intersection point pi−1. From pi−1 it enters the face (a′p, bq−1, bq) without intersecting the
boundary of Ti, intersects the edge (a′p, bq) and intersects the boundary of Ti at the vertex
ap, resp. the edge (ap, bq). Thus pi = ap or pi lies in the interior of (ap, bq). For illustration
see Fig. 3.16(c).

In all three cases Li preserves Invariants A and B as Li−1 does so. It preserves Invariant
C by construction of pi. Furthermore, it does not intersect the boundary of Ti at any
point between p and pi−1 as well as between pi−1 and pi. Thus, Invariant D is preserved.
Invariant E is preserved since Li collects all vertices which are collected by Li−1 as well as
ap or bq, if ap ∈ S, respectively bq ∈ S.
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4. Conclusion

Independent sets are in generally not collinear in neither series-parallel graphs, nor 4-
connected triangulations. For series-parallel graphs, we show that there exist arbitrarily
large series-parallel graphs with non-collinear independent sets. We further show that any
fixed minimal pairwise distance between vertices of an independent set does not suffice for
them to be collinear. We present a family of graphs Gnice such that for every d ∈ N there
exists a graph G ∈ Gnice with a non-collinear d-scattered subset of its vertices. On the
other hand, we show that 3-scattered sets in 4-stretched series-parallel graphs are collinear.
In 3-stretched series-parallel graphs, 7-scattered sets are collinear. Whether 6-scattered
sets or vertex sets with smaller pairwise distance are collinear in 3-stretched series-parallel
graphs is still open. Furthermore, the question whether d-scattered sets are collinear in
2-stretched series-parallel graphs is still open for any d.

We present a graph G with an independent set S in Chapter 3. If G is contained in
a 4-connected triangulation T and ST ⊃ S is an independent set in T , then ST is not
collinear. G is not the only forbidden substructure in a 4-connected triangulation with
collinear independent set. We present an extension of the counterexample for independent
sets in series-parallel graphs, which is a 4-connected triangulation with a non-collinear
independent set. It contains a similar but different substructure from G.

For d-scattered sets we sketch two approaches to prove collinearity. The limits of the
approaches are outlined and where further restrictions might be useful. In particular
we use a refined canonical ordering to iteratively construct a pseudoline collecting the
vertices of a d-scattered set, but cannot preserve the proposed invariants. However, we
present a tool to possibly find more suitable invariants in the future. Instead of iterating
over single vertices in a canonical ordering, we propose iterating over batches of vertices.
Hopefully, this enables to prove collinearity of d-scattered sets for some d – or gives insights
to find forbidden substructures which make d-scattered sets in 4-connected triangulations
non-collinear.
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