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Abstract

We study the problem of electric vehicle routing in road networks. Careful route
planning is important, especially when planning far trips, because the battery capacity
of electric vehicles is limited and charging stations are rare compared to gas stations.
This makes it necessary to plan the route and all charging stops beforehand, so that
the battery does not deplete along the way. While considering the battery’s state of
charge is important, it is still desirable to reach the target as fast as possible. In this
thesis we address the problem of finding a route with minimal travel time which never
violates battery constraints. We extend previous work on this problem by realistically
modeled charging stations. Thereby, we take different types of charging stations into
account. Our approach is capable of modeling battery swapping stations as well as
regular charging stations with various charging power supplies. Our algorithm is
based on a multi-objective search using Pareto-sets. Since the size of these Pareto-sets
can get very large in practice, we propose several speed-up techniques in order to
make the algorithm practicable. Furthermore we show heuristics leading to even
faster algorithms. This thesis is concluded with a detailed evaluation of the proposed
algorithm. Our experiments show that our algorithms can compete with existing
algorithms, which can only solve certain special cases of our problem. Furthermore
using our heuristics it is for the first time possible to find a fast and feasible routes
on a continental graph.

Deutsche Zusammenfassung

Wir untersuchen das Problem der Routenplanung für Elektroautos in Straßennetzwer-
ken. Das sorgsame Planen der Route ist im Besonderen auf längeren Strecken wichtig,
da die Akkukapazität begrenzt ist und Ladestationen im Vergleich zu herkömmlichen
Tankstellen selten sind. Daher ist es wichtig, die Route mit allen Ladestopps im
Vorfeld zu planen, um zu verhindern, dass die Batterie unterwegs erschöpft wird.
Während es wichtig ist, den Ladezustand des Akkus zu berücksichtigen, gilt es
weiterhin, das Ziel so schnell wie möglich zu erreichen. In dieser Arbeit befassen
wir uns mit dem Problem eine Route mit minimaler Reisezeit zu finden, welche
nie die Akku-Randbedingungen verletzt. Wir erweitern frühere Arbeiten zu diesem
Problem um realistisch modellierte Ladestationen. Dabei berücksichtigen wir ver-
schiedene Arten von Ladestationen. Unser Ansatz ermöglicht die Modellierung von
Battery swapping sowie normale Ladestationen mit verschiedenen Ladeleistungen.
Unser Algorithmus basiert auf einer Suche mit mehreren Zielfunktionen, welche
Pareto Mengen benutzt. Da diese Pareto Mengen in der Praxis sehr groß werden
können, schlagen wir verschiedene Beschleunigungstechniken vor, welche den Algo-
rithmus praktikabel machen. Darüber hinaus stellen wir Heuristiken vor, die zu noch
schnelleren Algorithmen führen. Wir schließen diese Arbeit mit einer detaillierten
Auswertung der vorgestellten Algorithmen ab. Unsere Experimente zeigen das unser
Algorithmus mit existierenden Algorithmen, welche nur Spezialfälle von unserem
Problem lösen, konkurrieren kann. Darüber hinaus ist es durch die Nutzung unserer
Heuristiken zum ersten Mal mögliche schnelle und zulässige Routen für kontinentale
Graphen zu berechnen.
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1. Introduction

The importance of electromobility has increased steadily over the past few years. The
development of electric vehicles (EV) made great progress and many EVs are already
in use. While they have undeniable advantages over conventional vehicles, such as their
independence of fossil fuels, there is still the huge disadvantage of their limited battery
capacity. This gives rise to the demand of new route planning algorithms, which take into
account the special properties of EVs.

Route planning for EVs differs in many points from conventional route planning. First
of all, there is a limited capacity of the vehicle’s battery, which leads to limited driving
ranges of about 100 km for most EVs. Furthermore charging stations (CS) for electric
vehicles are not as common as gas stations, and when used the recharging process can
take several hours. Because of this it can be reasonable to use a slower route to reach the
target if this saves some energy. This means that it is crucial to keep track of the state of
charge (SoC) of the vehicle’s battery, when searching for a fast route. The problem gets
even more complicated since the SoC does not necessarily decrease when driving. The
reason for this is the EVs capability of recuperating energy when driving downhill, unless
the battery’s capacity is exceeded.

There has already been some research on route planning for EVs, which took into account
the constraints caused by limited battery capacity. We will present these research in
section 1.1 in greater detail. The previous research focused primarily on finding most
energy efficient routes or fastest routes which satisfy the battery constraints. However,
hardly any research engaged the possibility of using charging stations for recharging the
battery. A reason for this was, that recharging takes too long and is therefore not viable en
route. Beyond that, recharging has only be considered as a static event which restores the
complete battery in a short and constant time [Sto12a, GP14, SBW12]. This is reasonable
if battery swapping stations (BSS) are available, where the complete battery gets exchanged
with a new fully charged battery. But up to now these stations are only a concept.

For long distance routes it is unavoidable to use regular charging stations. This establishes
the need for route planning algorithms which can handle currently available charging
stations.
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1. Introduction

1.1 Related Work

A great amount of research has already addressed the field of route planning. A survey on
recent route planning algorithms is given by Bast et al. [BDG+14]. Many of the shown
algorithms are based on Dijkstra’s algorithm [Dij59], which solves the most basic routing
problem, i.e., finding the shortest route between two vertices. The algorithm finds the
optimal route under a single and static metric (e.g. travel time). The survey covers many
well studied speedup techniques which are capable of accelerating Dijkstra’s Algorithm
significantly. The main principle of these techniques is to compute additional information
in a preprocessing step, which then is used to accelerate the query algorithm.

Speedup Techniques. The surveyed speedup techniques are classified as either goal
directed approaches or hierarchical ones.

Goal-directed techniques try to guide the search in the direction of the target. This can,
for example, be done by labeling edges with additional information which specifies if an
edge might be useful in order to reach a specific destination region. This approach is
known as the Arc-Flags algorithm [KMS06]. Another example for a goal directed technique
is A* Search [HNR68]. This technique uses a function which gives a lower bound for the
remaining distance to the target. This lower bound is then used to favor roads which lead in
the right direction i.e., the value of the lower bound decreases. One possibility for obtaining
such a lower bound is the ALT (A*, Landmarks, Triangle inequality) algorithm [GH05].
This algorithm uses a set of landmarks and precomputes the distance between them and all
other points. The query algorithm then uses these landmarks and the triangle inequality
in order to compute a lower bound for the distance to the target.

Hierarchical techniques often make use of the road network’s structure. If the target is far
away, the fastest route uses almost always highways. The Transit Node Routing (TNR)
algorithm is based on this observation [BFSS07]. It first computes a small set of transit
nodes (e.g. motorway accesses) and all pairwise distances between them. Afterwards
every node in the network is associated with a set of access nodes. Access nodes are those
transit nodes which are relevant for the associated node. If source and target are far
apart from each other, then the query algorithm needs to consider only their access nodes
and the distance can be minimized using only a few table lookups. Another important
approach are Contraction Hierarchies (CH) [GSSD08]. The basic idea of this technique
is to remove unimportant vertices successively without changing the minimal distances
between all other vertices. This is achieved by inserting new edges if the distance between
two other vertices would otherwise increase. The query algorithm starts from source and
target simultaneously and proceeds only from less important to more important vertices.
Geisberger et al. showed that this always yields the shortest path.

In many cases it is possible to combine two or more of the basic speedup techniques. An
example for this is Core-ALT [BDS+08], which combines the hierarchical approach CH
with the the goal directed technique ALT. The preprocessing for this algorithm contracts,
just as the CH preprocessing, unimportant parts of the road network. But instead of
contracting the complete network a small core remains uncontracted (e.g. 1% of the road
network). Afterwards ALT is performed on the core network.

The survey covers also many other variations of the route planning problem. Some of them
involve time-dependent metrics or are able to handle dynamic scenarios such as the current
traffic situation. Another variation of the problem concerns the case where more than one
metric has to be optimized. A common approach to handle multiple objectives utilizes
Pareto sets [TC92, Mar84, SM13]. While this problem is hard in theory [GJ90] it turns
out to be often feasible in practice for some transportation networks [MHW01].
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1.1. Related Work

EV Routing. When considering EV routing, most works consider two criteria associated
with every road. One is the travel or driving time, the other is the energy consumption.
Most research on EV routing focuses on integrating battery constraints into classical
single criterion routing algorithms. The constraints arise from the fact that the battery
capacity is limited and it is impossible to use further energy when the battery is depleted
(under-charging). On the other hand EVs are capable of recuperating energy when driving
downhill. This energy can be used to replenish the battery as long as its capacity limit is
not reached (over-charging).

Integrating these battery constraints already leads to several distinguishable problems. One
of them is the optimization of energy consumption [EFS11, SLAH11, BDPW13]. However,
solutions for this problem might be undesirable in practice, since they can feature long
detours in order to save energy. One solution for this problem is, to allow only such routes,
where the driving time does not exceed the minimal unconstrained driving time, by more
than a predetermined factor [Sto12b]. Another problem variation optimizes driving time
while only such routes are allowed were the battery constraints are met [Sto12b]. The
last two problems are extensions of the constrained shortest path problem (CSP) which is
NP-complete [HZ80].

It is possible to adapt common speedup techniques like A* search or CH for CSP [Sto12c].
These adaptions are often also applicable for EV routing problems. It has been shown that
battery constraints can be modeled by replacing the constant energy consumption per road
with an energy consumption function which maps the current state of charge onto actual
consumption with respect to over- and under-charging [BDPW13]. Doing so enables also
the CH preprocessing technique to be used for EV routing problems [Sto12b].

All variations of the route planning and EV routing problem assume a fixed driving speed
per road. Considering the EV routing problem, where the fastest route which respects the
battery constraints is searched for, this might lead to inappropriate results. The computed
route might utilize many small roads in order to save energy. This is not pleasing if the
same result can be achieved by using larger streets but driving below the speed limit. This
problem can be solved by labeling each road with multiple driving times and associated
energy consumption [BDHS+14].

Charging Stations. Another meaningful extension of routing problems for EVs, is the
introduction of charging stations. All previous problem variations had a restricted cruising
range imposed by the limited battery capacity, leading to parts of the road network which
are simply not reachable by the EV. However, it is of course possible to recharge the battery
by using a charging station in the same way a conventional vehicle can refuel using a gas
station. While the recharging process can take a long time for EVs, the possibility should
certainly be considered.

Some research has already addressed this problem. First of all, there is an extension of CSP
which allows the constrained resource to be replenished without referring to the special case
of EV routing [SBW12]. Furthermore there has been some research addressing the specific
problem of incorporating charging stations for EVs into routing algorithms [Sto12b, GP14].
All of these approaches have in common that they present practical algorithms at the
drawback that they simplify the recharging process. It is assumed that recharging takes a
constant time and always results in a fully charged battery.

While this might be reasonable for battery swapping stations, it is insufficient for modeling
currently available charging stations. When using regular charging stations, it is possible to
interrupt the charging process at any given time. Furthermore the charging rate depends
on the current SoC and decreases as the SoC approaches the battery limit. Because of this,
leaving a charging station before the battery is fully charged, can lead to faster routes.

3



1. Introduction

The approach of Liu et al. [LWL14] models recharging more detailed and allows to interrupt
the charging process as soon as enough energy has been charged. They use a linear function
to model the charging process between 0% and 80% SoC. They ignore the possibility
of charging more than 80% because at this point the charging process loses efficiency
significantly. While their model is reasonable, their experimental section suggests that the
algorithm is only applicable for very small graphs. This renders the algorithm unusable for
real world applications.

Another approach is shown by Sweda et al. [SDK14]. They also use a linear function to
model the first part of the charging process. Furthermore they allow to charge the battery
up to 100% and use an exponential function to model the decline of the charging rate as
the SoC approaches its limit. However, their algorithm is restricted to work only on grid
graphs. Their algorithm is similar to an exhaustive search and they do not report the
algorithm’s performance. Therefore it is not possible to adopt their solution in order to
obtain an efficient algorithm for large real-world networks.

1.2 Contribution

In this thesis we address the problem of finding a path which minimizes an electric
vehicle’s travel time between two points in a road network. Our approach considers battery
constraints as well as the opportunity of recharging the battery at charging stations.

We especially focus on modeling the charging process. Our solutions use piecewise linear
convex functions in order to model the SoC-gain over time. This type of functions allows
the development of efficient algorithms while they are capable of representing many different
types of charging stations accurately. This includes battery swapping stations, regular
charging stations with various charging powers, as well as superchargers where the maximal
achievable SoC is limited due to technical restrictions.

We first develop a baseline algorithm and show how piecewise linear charging functions
can be incorporated into a shortest path search. Afterwards we adapt known speedup
techniques to our scenario. This results in practical algorithms, so that it is possible for
the first time to solve the problem even for road networks of continental scale.

In order to obtain even faster algorithms we propose several heuristic approaches. While
non of these heuristics can guarantee to find the optimal solution, we show that some
of them often find the optimum. As we introduce heuristics with greater inaccuracy we
observe decreasing (empirical) running times.

Finally, we evaluate the performance of all our algorithms on large real world networks.
Furthermore, we analyze the accuracy of our heuristic solutions by comparing them with
the exact ones.

4



1.3. Outline

1.3 Outline
The remainder of this thesis is structured as shown in the following overview.

Chapter 2. The preliminaries chapter lays the foundation for this work and establishes
the notation used throughout this thesis. Furthermore, we introduce algorithms
solving the shortest path problem and the constrained shortest path problem. We
analyze their functionality in detail as it serves as a basis for our own algorithms.
This chapter also covers the well-known speedup techniques A* and CH in detail,
since we adapt them later for our EV routing problem.

Chapter 3. The problem statement chapter gives a precise definition of the routing
problem covered in this thesis. Furthermore, we introduce charging functions and
show how they can be used in order too model several types of charging stations.

Chapter 4. This chapter states our basic approach. We introduce a first algorithm capable
of solving the problem described in chapter 3. We use Dijkstra’s algorithm as a
starting point and show step-by-step how different parts of the algorithm have to be
adapted in order to incorporate charging functions.

Chapter 5. In this chapter we examine several advanced speedup techniques in order to
make our algorithm applicable for larger real world networks. We start by applying an
A* search. Here we show how the special properties of our problems can be exploited
in order to compute excellent potential functions for the A* search. Furthermore,
we describe how Contraction Hierarchies can be used in our context. Finally, we
combine both speedup techniques and obtain our best correct algorithm.

Chapter 6. In this chapter we introduce some heuristic approaches. Algorithms proposed
in this chapter do not guarantee to find the optimal solution. Instead, we aim for
fast algorithms which only have to find a feasible solution. We present a new and
intuitive approach as well as extensions to our algorithm from the previous chapters.

Chapter 7. We perform an extensive evaluation of all presented algorithms in the Experi-
ments chapter. We start by describing the experimental setup, which includes the
input data used in the experiments. Afterwards, we analyze the performance of our
algorithms.

Chapter 8. This thesis is concluded with a summary of the achieved results. Furthermore,
we give an outlook on future work in the field of fast electric vehicle routing.
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2. Preliminaries

In this chapter we define some basic concepts and notions, which are the foundation of
the following work. Furthermore, we introduce some algorithms which are adapted in
subsequent chapters.

2.1 Graph Theory
Graphs. A Graph G = (V,E) is a tuple consisting of a finite set V of vertices and a finite
set E ⊆ V × V of edges. A tuple edge = (u, v) ∈ E is called an directed edge from u to v.
In this case v is called the head of the edge e and u is called its tail. Throughout this
thesis we only consider directed graphs, i.e., the existence of an edge from u to v does not
imply that there is an edge from v to u. A graph G′ = (V ′, E′) is called a subgraph of G
if V ′ ⊆ V and E′ ⊆ E holds.

The number of vertices contained in the graph is denoted by n := |V |, the number of
edges is denoted by m := |E|. Given a vertex u ∈ V , the number of edges with u as
tail is called the out-degree of u, it is formally defined as degout(u) := |{(u, v) ∈ E}|.
Accordingly, the number of edges with u as head, the in-degree of u, is accordingly defined
as degin(u) := |{(v, u) ∈ E}|. The total number of edges incident to u is called degree of u,
it is defined as deg(u) := degout(u) + degin(u).

A scalar edge weight function is a function which assigns a value to each edge in a graph.
In the context of electric vehicle routing we will mainly use two edge weight functions. The
driving time dt: E → R≥0 assigns to each edge the non-negative time it takes to traverse
the edge using the electric vehicle. The energy consumption cons : E → R assigns to each
edge the energy consumed when traversing the edge. Note that the energy consumption
can be negative due to recuperation.

Paths. A path P in G is a sequence of vertices (u1, u2, . . . , uk) in V such that for 1 < i ≤ k
the edge e = (ui−1, ui) exists in E. Given two vertices u, v ∈ V , if there exists any
path P = (u, . . . , v) starting at u and ending at v, then v is called reachable from u. Any
path from u to v is also called a u-v-path. If there exists an u-v-path as well as a v-u-path,
then we call u and v connected. A path with u1 = uk is also called a cycle. The number of
vertices contained in a path P is denoted by |P | = k.

A path Q = (v1, v2, . . . , v`) is called a subpath of P (denoted Q ⊂ P ) if and only if ` ≤ k and
there exists an i ∈ [0, k− `] such that for all 0 < j ≤ ` the condition ui+j = vj holds. The

7



2. Preliminaries

special subpath of P containing the first i vertices of P is denoted by P i := (u1, u2, . . . , ui)
is called a prefix of P .

Given an edge weight function ω on E it is possible to extend the definition of ω to paths
in G. The weight of a path P regarding ω is then defined as ω(P ) =

∑k
i=2 ω((vi−1, vi)).

A tree Tu rooted at u is a special graph with m = n − 1 edges such that every vertex v
in Tu is reachable from u. This is equivalent to the fact that there exists a unique path
from u to every other vertex v. The root vertex u is the only vertex in Tu with in-degree
zero. If a vertex v in Tu has no outgoing edges i.e., degout(v) = 0, it is called a leaf.

Shortest Paths. Given two vertices u, v ∈ V and an edge weight ω (in this context
often referred to as length) the distance between u and v is the minimal weight or length
of any path starting at vertex u and ending at v. Formally the distance is defined as
distω(u, v) := infP=(u,...,v) ω(P ). The condition distω(u, v) ∈ R does not hold in general.
If u is not connected to v, the set of paths starting at u and ending at v is empty, therefore
distω(u, v) is ∞. Furthermore distω(u, v) may be −∞ if the graph contains a cycle of
negative length. In the case of distω(u, v) being a real number, there exists at least one
path in G starting at u and ending at v of length distω(u, v). Every such path is called a
shortest path from u to v (SPω(u, v)).

A shortest path tree Tv rooted at v is a special subgraph of G containing all vertices
reachable from v. Furthermore, Tv contains exactly one path from v to every other vertex
and this path is a shortest path in G. The in-degree of every vertex contained in Tv is 1
except for u, which has an in-degree of 0. Note that Tv is a tree by construction.

2.2 The Shortest Path Problem
In this section, we introduce several problems related to shortest paths and algorithms
capable of solving them.

There are three basic problems associated with the computation of shortest paths. These
problems are listed below.

• The Single-Pair Shortest Path (SPSP) problem. We are given a graph
G = (V,E), an edge weight ω as well as source and target vertices s, t ∈ V . The
problem asks for the distance distω(s, t).

• The Single-Source Shortest Path (SSSP) problem. We are given a graph
G = (V,E), an edge weight ω as well as a source s ∈ V . We ask for the distance
from s to every other vertex in V .

• The All-Pairs Shortest Path (APSP) problem. We are given a graph G = (V,E)
and an edge weight ω. The problem asks for the distance between each pair of vertices
from V .

In addition to the distance it is often also asked for an example of a shortest path. This
thesis focuses on extensions of the Single-Pair Shortest Path problem, but we will
also encounter SSSP problems in order to solve our main problem. Both problems, SPSP
and SSSP, are solved by Dijkstra’s algorithm, therefore we discuss it next.

2.2.1 Dijkstra’s Algorithm

A well known algorithm for solving the single-pair shortest path problem as well as the
single-source shortest path problem, under the precondition that ω(e) is not negative for
all e ∈ E, is Dijkstra’s algorithm. The algorithm was first published by Edsger Dijkstra
in 1959 [Dij59]. A pseudo code version of the algorithm is given in algorithm 2.1. Besides
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2.2. The Shortest Path Problem

Algorithm 2.1: Dijkstra’s Algorithm
Input: Graph G = (V,E), edge weight ω, source vertex s
Data: Priority queue Q
Output: Distances from s given by dist[·], shortest-path tree given by parent[·]

1 for each v ∈ V do // initialization
2 dist[v]←∞
3 parent[v]← ⊥
4 dist[s]← 0
5 Q . insert(s, dist[s])

6 while not Q . isEmpty() do // main loop
7 u← Q .deleteMin()
8 for each (u, v) ∈ E do
9 if dist[v] > dist[u] + ω((u, v)) then

10 dist[v]← dist[u] + ω((u, v))
11 parent[v]← u
12 if Q . contains(v) then
13 Q . decreaseKey(v,dist[v])
14 else
15 Q . insert(v,dist[v])

calculating the distance between s and every other vertex it also outputs an implicit
representation of a shortest path tree, containing a shortest path from s to every other
vertex.

As input the algorithm gets a graph G = (V,E), an edge weight ω : E → R≥0 and a source
vertex s. The two arrays dist[·] and parent[·] are the output of the algorithm. After the
algorithm terminated dist[v] holds the correct distance from s to v for every v ∈ V .
The parent array implies a shortest path tree rooted at s. This means that for every
vertex v ∈ V reachable from s, which is equivalent to dist[v] < ∞, the shortest path
from s to v can be reconstructed by following the pointers given by parent[·] from v to s.
Thus SPω(s, v) = (s = v1, v2, . . . , vk = v) is given by vi−1 := parent[vi] for all 1 < i ≤ k.

The algorithm makes use of a priority queue data structure Q. This queue maintains key-
value pairs, where the value represents a vertex v ∈ V and the key represents the tentative
distance from s to v. Implementation details of the priority queue are not important for
the understanding of Dijkstra’s algorithm. However, the priority queue must match the
following interface.

• isEmpty() returns a boolean value, which is true if and only if the queue holds at
least one element.

• deleteMin() returns the vertex v associated with the minimal key currently contained
in the queue. Afterwards v is removed from the queue.

• contains(v) returns a boolean value, which is true if and only if v is held by the
queue.

• decreaseKey(v, d) sets the key associated with v to d. Preconditions for this operation
are, that v is already contained in the queue and that the key currently associated
with v is greater than or equal to d.

• insert(v, d) inserts v into the queue and sets its key to d. Precondition for this
operation is, that v is not contained in the queue.
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The basic approach of Dijkstra’s algorithm is to grow a graph-theoretic circle around s,
such that for every vertex v contained in this circle the correct distance form s to v is
known and held in dist[v]. Furthermore parent[·] implies a correct shortest path tree for all
vertices within this circle. The algorithm starts by initializing the arrays dist and parent,
as well as the priority queue Q. Since s is the only vertex for which the distance from s is
known at the beginning, dist[s] is set to 0. For all other vertices it is set to dist[v] =∞.
Accordingly, the parent array is initialized with all entries set to ⊥, representing an empty
shortest path tree. The queue Q is initialized by inserting the source vertex s into it. After
the initialization, the main loop of the algorithm begins in line 6 of algorithm 2.1. As long
as there are vertices contained in Q, the vertex u with minimal key, and therefore minimal
distance from s, will be removed from Q. Once a vertex has been removed from Q it is
called settled. At this point dist[u] contains the correct distance from s to u and parent[·]
implies a shortest path from s to u. Next, the algorithm examines all outgoing edges of u.
For every such edge e = (u, v) it is checked if the shortest path from s to u extended by
the edge e yields a shorter distance from s to v than the current tentative distance dist[v].
If this is the case, the edge e is relaxed. This means that the tentative distance of v is set
to dist[u] + ω((u, v)). Moreover, parent[v] is set to u, since we reached v via u. Finally, v
is either inserted into Q or its key is decreased, depending on it being previously contained
in Q or not. Once a vertex got inserted into Q it is called visited.

Backwards Search. Sometimes we are not interested in the distances from one source
vertex to every other vertex contained in V , but in the distances from every vertex v ∈ V
to a single given vertex t. It is possible to compute such a backwards shortest path tree
using Dijkstra’s algorithm. Similar to the forward version of the algorithm, we start by
initializing all labels with distance ∞, except for the vertex t, which has its distance set
to 0. Afterwards the algorithm proceeds along the lines of the forward version, except for
one little change when settling a vertex u. Instead of relaxing all outgoing edges e = (u, v),
the backward version of the algorithm relaxes all incoming edges e = (v, u). The remaining
algorithm is unchanged.

Correctness. We now give a proof for the correctness of Dijkstra’s algorithm i.e., we prove
that, after the algorithm terminated dist[v] = distω(s, v) holds for all v ∈ V . The proof
is subdivided into three claims: Every reachable vertex from s gets settled. Throughout
the whole computation dist[v] overestimates distω(s, v) i.e., dist[v] ≥ distω(s, v). By the
time v gets settled dist[v] = distω(s, v) holds.

The first claim can be proven by contradiction. Assume there is a vertex v ∈ V reach-
able from s which does not get settled. Since v is reachable from s there exists a
path P = (s = v1, v2, . . . , vk = v). We also know that s gets settled by the algorithm
in the first iteration of the main loop. Therefore, there must exist an i ∈ [2, k] such
that vi−1 gets settled but vi does not. But by the time vi−1 gets settled the edge (vi−1, vi)
gets relaxed and therefore vi gets inserted into Q. This is a contradiction to vi not getting
settled, because the algorithm terminates only after every vertex inserted into Q got settled.

The second claim can be verified by using the fact that every change of dist[v] corresponds
to the length of a path P from s to v in G. By definition the length of P is at least as long
as the length of a shortest path from s to v, which has length distω(s, v).

The third claim can again be proven by contradiction. Assume there is a vertex v, which
got settled and dist[v] > distω(s, v) holds. Since v is reachable from s there exists a shortest
path P = (s = v1, v2, . . . , vk = v) from s to v. There have to be unsettled vertices in P ,
otherwise dist[v] = ω(P ) = distω(s, v) would hold which is a contradiction. Let vi be the
first unsettled vertex in P . After vi−1 got settled the edge e = (vi−1, vi) got relaxed, and
therefore dist[vi], which is equal to distω(s, vi), is less than dist[v]. But then vi would have
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been settled before v, which is a contradiction. This fact is called the label-setting property
of Dijkstra’s algorithm.

Complexity. The initialization phase of the algorithm takes O(n) time. Since every
vertex gets settled at most once the main loop of the algorithm has at most n iterations.
Therefore, the operations insert(·, ·), deleteMin() and isEmpty() get called at most n times.
Furthermore, the fact that a vertex gets settled only once implies that each edge gets
relaxed at most once. Therefore, the operations decreaseKey(·, ·) and contains(·) get called
at most m times. This yields an overall running time of

O(n+ (Tinsert + TdeleteMin + TisEmpty)n+ (TdecreaseKey + Tcontains)m).

The exact running time now depends on the priority queue implementation. The best
known implementation for Dijkstra’s algorithm is a Fibonacci Heap which yields a worst
case complexity of O(m + n logn) [FT87]. In practice however, a Binary Heap, which
yields a worst case complexity of O((n+m) logn), is often sufficient.

The algorithm shown in algorithm 2.1 solves the SSSP problem. If we are only interested
in the shortest path from s to a single vertex t, the algorithm can be terminated in line 7
as soon as u equals t. This does not affect the correctness of the algorithm, since the value
of dist[u] does not change after u got settled. This new stopping criterion can reduce the
running of the algorithm, however it will not reduce its worst case complexity.

The proof of correctness as well as the complexity analysis make use of the fact that ω has
no negative values. However, Dijkstra’s algorithm still computes the correct distances for
an edge weight function with negative values as long as there are no negative cycles in G.
In this case it is not possible to use the stopping criterion to speedup the computation for
the SPSP problem. Furthermore the label-setting property does not hold anymore, instead
the algorithm becomes label-correcting. This also implies that the worst case complexity
shown above is not valid anymore. Instead the worst case complexity for graphs with
negative edge weights, but without negative cycles, is exponential in the graph size [Joh73].

Dijkstra’s algorithm solves the SSSP problem efficiently. However, for the SPSP problem
it is in practice often to slow for real time applications on large graphs. Because of this a
lot of research has been done, trying to speedup the shortest path computation. A common
approach is to use additional information at run time to speedup Dijkstra’s algorithm.
This additional information has of course to be calculated beforehand. Speedup techniques
for Dijkstra’s algorithm can be divided into two major groups. One is to make the shortest
path search goal directed. The other is to skip unimportant vertices or parts of the graph.
We now discuss two well studied speedup techniques.

2.2.2 A* Search

The A* search algorithm is an extension of Dijkstra’s algorithm first introduced in [HNR68],
which makes the search goal directed. This is done by rearranging the order in which the
vertices get settled. The basic idea is to prefer vertices which are closer to t. To achieve
this the algorithm makes use of a heuristic potential function πt : V → R, which provides
further information about the minimal distance from a vertex to t. The values for πt(·) get
computed in a preprocessing, afterwards the potential is given as additional input to the
query algorithm. The function πt is then used to change the order in which the vertices get
removed from the queue. This is done by using dist[v] + πt(v) as key for v in the queue, in
lines 13 and 15 of algorithm 2.1.

In order to maintain correctness as well as the algorithms worst case complexity, the
potential πt has to be feasible. This is only the case if the reduced edge weight, which
is defined as ω̄((u, v)) := ω((u, v))− πt(u) + πt(v), is greater or equal to zero for every
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edge (u, v) ∈ E. In this case the A* search is label setting. In fact, A* processes the vertices
in the same order as Dijkstra’s algorithm with ω̄ as edge weight function does [GH05]. If
additionally πt(t) = 0 holds we say that πt is an admissible heuristic, which means that it
never overestimates the distance to t.

2.2.3 Contraction Hierarchies

It is an important approach for accelerating shortest path computations to exploit the
hierarchical structure of road networks. Long routes tend to consist mainly of a small subset
of important roads, such as highways. This insight is used in various speedup techniques.
All of them have in common that they aim to skip unimportant roads so that the search
algorithm primarily scans important roads. We now describe one of these hierarchical
techniques in detail.

The Contraction Hierarchies (CH) algorithm was first introduced by Geisberger et al.
[GSSD08]. The main component of the algorithm is an operation called vertex contraction,
which contracts (removes) a vertex u from the graph without changing shortest distances
between the reminding vertices. In order to achieve this, a new shortcut edge e = (v, w) is
inserted for every pair v, w of neighbors from u, with the property that the only shortest
path from v to w contains u. The length of this shortcut is the length of the former
shortest v-w-path P = (v, u, w).

Preprocessing. The preprocessing step of CH orders all vertices by importance and
contracts them in this order beginning with the least important one. The result of the
preprocessing is the original graph augmented with all shortcuts which where added during
some vertex contraction. The order in which the vertices get contracted is crucial for
the performance of the later query algorithm. Therefore, it is aimed for an order which
minimizes the average search space of the later query. In order to determine a good vertex
ordering various heuristics have been examined. These heuristics try to minimize the
search space size by minimizing the overall number of shortcuts added during preprocessing
and picking the vertices uniformly from the graph. Several measurements can be used in
order to achieve a good ordering, some of them involve the vertex degree or the number
of shortcuts added during the next contraction or the number of neighbor vertices which
already got contracted.

When performing contracting the vertex u, the algorithm has to determine for every
pair v, w of neighbor vertices from u, if a shortcut is needed or not. This is done by
performing a witness search after u got removed from the graph. This witness search
uses Dijkstra’s algorithm for searching for a path from v to w which is shorter than the
two edges (v, u) and (u,w). If such a path is found no shortcut is needed. However, the
algorithm remains correct if a shortcut is added even if a shorter path exists. Therefore it
is possible to interrupt the search, e.g. after a certain number of vertices has been settled,
in order to reduce the preprocessing time.

Query Algorithm. The query algorithm runs a modified version of Dijkstra’s algorithm
on the graph containing both, the original edges as well as the shortcuts. This search is
bidirectional, which means that a forwards search starting at s and a backwards search
starting at t run simultaneously. In contrast to plain Dijkstra the CH query considers only
edges which lead from less to more important vertices. In particular this means that the
forwards search relaxes only such edges e = (u, v), where u got contracted before v while
the backwards search uses only the ones where v got contracted before u.

If both, the forwards and the backwards search, reach the same vertex u, then the sum
of the both distance labels dists[u] and distt[u] is an upper bound for the distance from s
to t. This is simply because both labels together correspond to a complete path from s
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to t via u. In addition to that Geisberger et al. [GSSD08] showed that the most important
vertex v on the shortest s-t-path is always reached by both searches and that the forwards
and backwards label for the vertex v hold the correct minimal distance.

Therefore, the minimal distance from s to t can be found by minimizing dists[v] + distt[v]
over all vertices v which are reached by both searches. The algorithm keeps track of the
minimal tentative distance from s to t during the search. Every time a vertex gets settled
by both searches, it is checked if the tentative distance can be improved. The algorithm
can stop as soon as the keys of all vertices in the queue are greater than the tentative
distance.

Core ALT. The CH preprocessing technique yields an enormous speedup, but preprocessing
time and the size of the shortcut graph depend on the given metric [GSSD08]. Because
of this it may be unpractical to compute the complete CH. An easy solution for this
problem is to interrupt the CH preprocessing at some time, leaving a small part of the
graph uncontracted. Further speedup can be achieved by combining hierarchical and
goal directed approaches. An example for such a technique is Core-ALT [BDS+08]. This
technique applies the CH preprocessing until only a small core graph remains uncontracted.
It then uses A* together with landmarks and the triangle inequality to accelerate the query
algorithm on the core graph.

2.3 The Constrained Shortest Path Problem
We now take a look at the Constrained Shortest Path (CSP) problem, which is
closely related to our problem setting. This problem is an extension of the SPSP problem
where an additional edge weight function rc called resource consumption is given. As before,
the objective of the problem is to find a path of minimal length. But now the resource
consumption of the solution must not exceed a certain bound.

Definition 2.1. Constrained Shortest Path (CSP)
We are given an undirected Graph G = (V,E), an edge weight ω, source and target
vertices s, t ∈ V , as well as resource consumption rc : E → R≥0 and an upper bound for
the resource consumption R ∈ R≥0.

The problem asks for the shortest path P = (s = v1, v2, . . . , vk = t) ∈ G from s to t, which
does not exceed the resource bound R i.e.,

rc(P ) =
k∑
i=2

rc((vi−1, vi)) ≤ R.

In contrast to the Single-Pair Shortest Path problem, the Constrained Shortest
Path problem turns out to be NP-complete as shown by Garey and Johnson [GJ90].

The objective of the EV routing problem we study is to get as fast as possible to the target.
Thus, driving time is used as the edge weight, which gets minimized. The limiting resource
is the electric energy stored in the vehicles battery. In contrast to the resource consumption
of CSP the energy consumption of an electric vehicle is not always positive. When driving
downhill the EV’s engine can possibly recuperate energy. If the battery is not fully charged
the recuperated energy can be stored and used later on. So in this scenario an upper bound
as used in CSP is not sufficient to completely describe the battery constraints.

The upper bound for an EV’s battery capacity is denoted by M . In order to simplify the
notation we use 0 as lower bound for SoC. If it is undesirable to discharge the battery
completely, either because of range anxiety (the fear of getting stranded) or because it
damages the battery, then it is simply possible to define the desired lower bound for
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Figure 2.1: An simple example for Graph. The edges are labeled with (driving time, energy
consumption). The initial SoC at s is 10, thus we want to reach u we can use
the direct edge (s, u), but if we want to reach v we have to take a detour via w.

SoC as 0. Doing so has no impact on the problem’s complexity and does not affect the
algorithms presented in this thesis. These two bounds define the range of valid battery
states B = [0,M ].

In the context of EV routing a path is called feasible if the SoC of the EV’s battery does not
leave the range B at any given time. Checking if a given path P is feasible is slightly more
complicated than checking if it obeys the resource bound of CSP. Here it was sufficient to
check if rc(P ) ≤ R holds. In order to determine if P is feasible, it is not sufficient to look
at the total energy consumption cons(P ) of the path. Instead we have to look at the SoC
for every vertex in P .

The initial SoC for the source vertex s is given by b(s). Traversing a single edge e = (s, v)
reduces b(s) by cons(e), unless this would result in overcharging the battery. In this case
the SoC is set to M . So the SoC at vertex v is given by b(v) = max(b(s) − cons(e),M).
A negative value for b(v) indicates that the initial SoC is insufficient for traversing the
edge e. Using this formula we define the function b(P, i) which computes the EV’s SoC
after traversing the first i vertices of the path P = (v1, v2, . . . , vk)

b(P, i) :=
{
b(v1) if i = 1
min(b(P, i− 1)− cons((vi−1, vi)),M) else.

The path P is called feasible if b(P, i) ∈ B holds for all 1 ≤ i ≤ k. These extensions of
CSP lead to the definition of the Electric Vehicle Route Planning problem.

Definition 2.2. Electric Vehicle Route Planning (EVR)
We are given a Graph G = (V,E), a driving time dt: E → R≥0, an energy consumption
cons : E → R, a range of valid battery states B = [0,M ], source and target vertices s, t ∈ V ,
as well as the initial state of charge b(s).

The problem asks for the shortest path P = (s = v1, v2, . . . , vk = t) ∈ G from s to t, which
is feasible i.e., b(P, i) ∈ B for all 1 ≤ i ≤ k.

Next we show how Dijkstra’s algorithm can be modified to solve EVR. The biggest obstacle
is that a subpath of a shortest path is not necessarily a shortest path on its own, when
considering a constrained shortest path problem. Consider the example shown in 2.1. If the
battery’s capacity is 10 then the shortest feasible path from s to v has a driving time of 6.
The subpath from s to u has a driving time of 3. But there exists another feasible path
that reaches u with a driving time of 1. This path is perfectly fine if we want to reach u,
but the remaining energy is not sufficient to reach v. So depending on which vertex is the
target, we get a different driving time for reaching u. In order to solve this problem the
new algorithm has to maintain more than one label for the vertex u.
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2.3.1 Pareto-Sets

A common approach for solving optimization problems with multiple objectives is to utilize
Pareto-sets, which contain all Pareto-optimal solutions [Mar84] [TC92]. A solution A is
called Pareto-optimal if there exists no other solution B which is equivalent or better
with respect to every objective. Otherwise we say that B dominates A which is denoted
by B ∝ A. In the case of EV routing our objectives are driving time and SoC. Given two
paths P,Q represented by their labels (dtP , bP ), (dtQ, bQ) dominance is defined as

P ∝ Q :⇔ dtP ≤ dtQ ∧ bP ≥ bQ.

When solving EVR it is sufficient to consider only non-dominating paths, i.e., the Pareto-
set, because a dominated path will never be part of the optimal solution. If vertex v is
reachable from s via the two paths P,Q and P ∝ Q, then Q cannot be part of the optimal
path from s to t. Every v-t-path with energy consumption low enough so that it can be
traversed after traversing Q can also be traversed after P , because P provides at least
as much SoC at v as Q. Therefore the total s-t-path will remain feasible when using P
instead of Q. Furthermore, this does not increase the driving time, since the driving time
of P is at most as high as the driving time of Q.

Dijkstra’s algorithm can now be changed to maintain a label-set per vertex v instead of a
single label. This label-set will contain one label for every Pareto-optimal s-v-path that
has been found. If an incoming edge of v gets relaxed a new label for v will be generated.
This label must only be added to the label-set if it is not dominated by any previously
contained label. When adding the new label, all other labels dominated by the new one,
can be removed. This approach leads to the Multi-Objective Shortest Path Search as it
was first introduced by Martins [Mar84].

2.3.2 Multi-Objective Shortest Path Search

The basic procedure of this algorithm is similar to Dijkstra’s algorithm. As before the
algorithm utilizes a queue to maintain visited but unsettled labels. These labels are settled
one at a time in ascending order of their keys. Every time a label gets settled, all outgoing
edges of the associated vertex are relaxed. So the basic operations of vertex settling and
edge relaxations are used in the same way as they were used in Dijkstra’s algorithm.

A main difference are the labels used by the algorithm. Dijkstra’s algorithm used a tuple
consisting of distance and parent pointer as label. Given multiple objectives the labels are
changed to consist of one value for every objective and an additional parent pointer if path
reconstruction is desired. Thus, for EV routing, a triple consisting of driving time, SoC
and parent pointer is used as label.

Given the new labels, an order has to be defined on them. Dijkstra’s algorithm settled the
labels in increasing order of distance. When multiple objectives are given it is not clear
how the labels should be ordered. An order can for example be defined by using a linear
combination of the objectives or by using lexicographical ordering. In the special case of
EVR it is the main objective to minimize the driving time, while the SoC is only used
to check if the path is feasible. Therefore, the labels are ordered lexicographically with
driving time as first criterion and SoC as second. Thus, labels get settled in increasing
order of driving time.

Label-Sets. Dijkstra’s algorithm only uses one label for each vertex v represented by
dist[v] and parent[v]. In contrast to that, a label-set labelSet[v] is used for every vertex v if
multiple objectives are given. This label-set contains all tentative Pareto-optimal s-v-paths.
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The label-set itself is organized as an array which stores all Pareto-optimal labels in the
same order as they get settled.

In addition to that, each label-set maintains a pointer to the first unsettled label contained
in the set. Since labels get settled in increasing order of driving time and all edges have
positive driving time it is not possible that a new label is added to the label-set, which
has lower driving time as an already settled label. This is analogous to the label setting
property of Dijkstra’s algorithm.

Algorithm 2.2 shows a pseudo code version of the multi-objective shortest path search for
solving EVR. Just like Dijkstra’s algorithm the algorithm starts with an initialization phase.
All label-sets are initialized as empty sets, indicating that there is no path known leading to
the vertex. Only the label-set for the source vertex s contains the initial label (0, b(s),⊥),
indicating that the search starts at s with a SoC of b(s).

The label-sets used by the algorithm have to provide the three basic operations Key,
Settle and HasUnsettledLabels.

• Key(labelSet) returns a key based on the first unsettled label contained in the label-
set, i.e. the label with the smallest driving time of all unsettled labels contained in
the label-set. As key we basically use the driving time, SoC is used in order to break
ties.

• Settle(labelSet) returns the smallest (wrt. key) unsettled label contained in the
label-set. Additionally this label gets marked as settled. This is done by increasing
the label-set’s internal pointer to the first unsettled label by one.

• HasUnsettledLabels(labelSet) returns a boolean value, which is true iff the label-
set contains one ore more unsettled labels. This is the case if the label-set’s internal
pointer points to an actual label. The label-set contains no unsettled labels if the
internal pointer points behind the array used to store the contained labels.

In each iteration of the main loop the vertex u with the minimal key, i.e. driving time from s
to u, is removed from the queue. Afterwards the label with minimal key, of the label-set
associated with u, gets settled. If the label-set of u contains further labels, the vertex u
gets reinserted into the queue, using the key of the next unsettled label in the label-set.
Settling a label is done by relaxing all outgoing edges of estimating Pareto-sets.the current
vertex u, similar to plain Dijkstra’s algorithm. When relaxing an edge e = (u, v), the labels
driving time and SoC get altered by the according weights of the edge e. At this point the
algorithm also takes over- and under-charging into account. When computing the SoC
after traversing e in line 12, the battery capacity M is used as an upper bound in order to
prevent over-charging. If the SoC b′ of the new label drops below 0, under-charging occurs.
This means that the edge cannot be traversed, thus the new label is discarded in line 13.
At the same time we check if there already exits another label which dominates the newly
created one. In this case the new label is also discarded, because it can never be part of
the optimal solution. If, on the other hand, the label is not dominated and has a valid
SoC, then it is added to the label of vertex v and the key of v in the queue is adjusted
accordingly.

Complexity. Since the the algorithm solves a variation of the constrained shortest path
problem, which is NP-complete [HZ80], it is unlikely that it has a polynomial running
time. Indeed it is possible that the set of Pareto optimal solution contains exponentially
many labels, in the size of the graph. Since complete Pareto sets are computed during the
execution of the algorithm, its running time is at least exponential. However, in practice
the actual size of the involved Pareto-sets can be much smaller [MHW01], which makes
the algorithm often feasible in practice.
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Algorithm 2.2: Multi-Objective Shortest Path Search for EVR
Input: Graph G = (V,E), driving time dt, energy consumption cons,
battery constraints B = [0,M ] source and target vertices s, t, initial SoC b(s)
Data: Priority queue Q
Output: Array labelSet[·] containing a label-set for each vertex in V

1 for each v ∈ V do // initialization
2 labelSet[v]← ∅
3 labelSet[s]← {(0, b(s),⊥)}
4 Q . insert(s,Key(labelSet[s]))

5 while not Q . isEmpty() do // main loop
6 u← Q .deleteMin()
7 if u = t then stop
8 (dt, b,parent)← Settle(labelSet[u])
9 if HasUnsettledLabels(labelSet[u]) then Q . insert(u,Key(labelSet[u]))

10 for each (u, v) ∈ V do
11 dt′ ← dt + dt(u, v)
12 b′ ← min(b− cons(u, v),M)
13 if (b′ ∈ B) and not (labelSet[v] ∝ (dt′, b′, u)) then
14 labelSet[v]← labelSet[v] ∪ {(dt′, b′, u)}
15 if Q . contains(v) then
16 Q . decreaseKey(v,Key(labelSet[v]))
17 else
18 Q . insert(v,Key(labelSet[v]))

Label-Correcting Algorithm. The algorithm presented in 2.2 is label setting provided
that driving time is used as primary key criterion and that the driving time for each edge
is positive. In this case labels get settled in increasing order of driving time. Thus it is
not possible that a label gets dominated and therefore removed, once it has been settled.
But it is of course possible that multiple labels associated with the same vertex get settled
during the execution of the algorithm.

The algorithm presented here settles only one label in each iteration of the main loop. The
algorithm can be altered to settle the complete label-set of a vertex once the vertex gets
extracted from the queue. This variation does not affect the correctness of the algorithm.
But it is possible that a label that has already been settled gets dominated by another
label that is added to the same label-set later. Therefore this variation of the algorithm is
called label correcting.

2.3.3 Energy Consumption Functions
The multi-objective shortest path search is a basic technique for solving EVR. The Battery
constraints are explicitly checked by this algorithm in lines 12 and 13. These explicit checks
can get complicated when adapting advanced speedup techniques for this problem. It is,
however, possible to check battery constraints implicitly by using a edge weight function.

Instead of assigning a constant energy consumption to every edge this new edge weight
function assigns an energy consumption function to every edge. These energy consumption
functions where introduced by [EFS11] and describe the effectively consumed energy
depending on the SoC before traversing the edge. Formally, an energy consumption
function c : B → R ∪ {∞} is a function which maps SoC to energy consumption. The
function c takes battery constraints, i.e. over- and undercharging, already into account.
The special value ∞ indicates that the SoC is not sufficient for traversing the edge.
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Such an energy consumption function can always be described using only three values cost,
minIn and maxOut. The actual energy consumption, if neither over- nor undercharging
occur, is given by cost. The value minIn defines the minimal SoC that is needed for
traversing the edge. The value maxOut defines the the maximal SoC after traversing the
edge, i.e., the SoC after traversing the edge with a previously fully charged battery. These
three values define the energy consumption function c(b) (see Figure 2.2 for an example) as

c(b) :=


∞ if b < minIn
cost if b− cost < maxOut
b−maxOut else.

Energy consumption functions are used to determine the change of SoC when traversing an
edge e. The SoC b′ after traversing e is defined as b′ := b− ce(b), where b is the initial SoC
and ce is the energy consumption function for e. The definition of the energy consumption
function ensures that b′ ∈ B∪{∞} holds, where the special value ∞ indicates that the
initial SoC was not sufficient to traverse the edge. Furthermore, the energy consumption
functions fulfill the FIFO property, i.e., given two SoC values b1, b2, then b1,≤ b2 implies
that b1− ce(b1) ≤ b2− ce(b2). This means that starting with a higher SoC will never result
in a lower SoC after traversing an edge.

A given constant energy consumption cons(e) for the edge e, can by modeled with an
energy consumption function by defining the three values coste, minIne and maxOute as

coste := cons(e)
minIne := max[0, cons(e)]

maxOute := min[M, M − cons(e)].

Energy consumption functions cannot only be used to model the energy consumption on a
single edge, but also an a complete path. When considering the energy consumption of a
path P , it is not enough to look at the summed energy consumption of all edges in P which
is given by cons(P ). This value may neglect effects of over- and under-charging. Consider
a path P with two edges, where the first has a consumption of 1, and the second one a
consumption of −1. For this example cons(Path) is 0 but is still not possible to to traverse
the path with an empty battery, due to the first edge. In the opposite case, where the
first edge has consumption −1 and the second one has consumption 1, the path is always
traversable. But given the battery capacity M = 2, it becomes clear that the final SoC is
the same for any initial SoC grater than 1. These effects can be modeled using an energy
consumption function.

Linking. In order to compute the energy consumption function for a path, the link opera-
tion is used. Given two edges e, f ∈ E and their energy consumption functions ce and cf ,
the linked energy consumption function ce◦f describes the energy consumption if the edges e
and f are traversed successively. Formally, the linked energy consumption function ce◦f is
defined as ce◦f (b) := cf (b− ce(b)). The linked energy consumption function ce◦f can again
be represented by the three values cost(e◦f),minIn(e◦f) and maxOut(e◦f). Given these three
values for the energy consumption functions of e and f , the result of linking these edges is

minIn(e◦f) = max[minIne, minInf + coste]
maxOut(e◦f) = min[maxOutf , maxOute− costf ]

cost(e◦f) = max[coste + costf , minIne−maxOutf ].

In order to be able to traverse e and f , one has to be able to traverse at least e, therefore
minIn(e◦f) is at least as high as minIne. Furthermore, the remaining energy after traversing e
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Figure 2.2: An example for two energy consumption functions ce, cf and the result ce◦f
of linking them. The battery capacity is M := 4. The function ce is defined
by coste = −1, minIne = 2 and maxOute = 4, the function cf is defined by
costf = 1, minInf = 1 and maxOutf = 1. Linking these two functions yields
coste◦f = 1, minIne◦f = 2 and maxOute◦f = 1. Note that coste◦f is higher
than the sum of coste and costf , which is 0.

has to be sufficient to traverse f . Thus minIn(e◦f)− coste is at least as high as minInf , so
minIn(e◦f) is the maximum of this two lower bounds. Likewise, maxOut(e◦f) is defined as
the minimum of two upper bounds for the maximal remaining SoC. It is not possible to
have a higher SoC after traversing e and f as the maximal possible SoC after traversing
only f . Moreover the final SoC cannot be higher as the SoC resulting from traversing f
with the maximal possible SoC after traversing e, i.e., maxOut(e◦f) ≤ maxOute− costf .

The definition of cost(e◦f) is a bit more complicated. Clearly, the sum of the consumption
of both edges is a lower bound on the overall energy consumption. But in some cases the
actual energy consumption will be higher than this sum, no matter what the initial SoC is.
Figure 2.2 shows an example of this case. The third graph shows clearly that coste◦f = 1
holds. the energy consumption function defined by cost = costedge + cost f = 0, minIn = 2
and maxOut = 1 would, however, yield the same results, since traversing both edges always
involves either over- or under-charging. But if we want cost to be a tight bound for the
minimal consumption of a path, we have to account for this special case.

The special case occurs when traversing the path always involves either over- or under-
charging. For the energy consumption function this means that the horizontal part of
the function disperses, i.e., the second case of the function’s definition. The minimal
energy consumption then occurs at the intersection of the two straight lines x = minIn
and y = x − maxOut, i.e., the vertical and the diagonal part of the function. Thus it
becomes clear that use(e◦f) cannot be less than minIne−maxOutf .

The link operation is not commutative but associative. Therefore the energy consumption
function of a path P can be computed by splitting P into arbitrary subpaths, computing
the energy consumption function for these subpaths and finally link them in the same order
as the subpaths occur in P .

While the summed energy consumption cons(P ) cannot be used to determine the actual
energy needed for traversing P , it still can be useful as a lower bound for the required
energy. For any path P the condition cons(P ) :=

∑
e∈P cons(e) ≤ minInP holds. Obviously

this is true for a Path P containing only one edge e. In this case

minInP = minIne := max[0, cons(e)] ≥ cons(e) = cons(P )
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holds per definition. If the path P consists of more than one edge, it can be split into the
first edge e and a remaining path P ′. In this case

minInP := max[minIne, minInP ′ + coste]
≥minInP ′ + coste
= minInP ′ + cons(e)
≥ consP ′ + cons(e) = cons(P )

holds, thus cons(P ) is a valid lower bound for the minimal energy minInP required to
traverse P .

In order to adapt common single criterion speedup techniques for EV routing, energy
consumption functions are often useful. We give some examples for such speedup techniques
in the next section.

2.3.4 Speedup Techniques

Most of the speedup techniques presented for the shortest path problem can be adapted for
EV routing or, more generally, for multi objective shortest path search. We now describe
some approaches which can also be used in our scenario.

A* Search. Similar to the single criterion shortest path problem, it is possible to direct
the search towards the target using A* search. Given multiple objectives, this requires
multiple potential functions which provide lower bounds for each of the objectives [SI91].
When considering EV routing problems, this means that two potentials are needed. One
providing a lower bound for the driving time and one providing a lower bound for the
needed energy. Such lower bounds can be obtained by performing backwards Dijkstra
searches on both of these objectives [HS13, SF12].

The lower bound for the energy consumption can furthermore be used to prune the search.
If a label’s SoC exceeds the lower bound for energy consumption, given by the associated
potential, the label cannot be extended to a feasible path reaching t, thus the label can be
discarded. This restricts the search space to vertices from which the target t is reachable.

Contraction Hierarchies. The CH speedup technique can also be modified to work with
multiple objectives and resource constraints, as shown in [Sto12c]. While the query algo-
rithm stays mainly unchanged, the preprocessing step and especially the vertex contraction
operation become slightly more complicated. When contracting a vertex in the original
CH algorithm, all shortest paths distances between its neighbors are preserved by inserting
shortcuts. The length of this shortcut was determined by the sum of the length of the
edges that got replaced by the shortcut.

Some changes have to be made when adapting the vertex contraction operation for multiple
objectives or the EVR problem. Firstly, there exists not necessarily a unique shortest
path. This means that instead of preserving shortest paths when contracting a vertex,
we now have to preserve the complete Pareto set. This also means that there might be
multiple Pareto optimal paths that have to be inserted between the same pair of neighbors
when contracting a vertex. Therefore, the resulting shortcut graph may have multiedges.
Secondly, when considering the EVR problem it is not possible to define the consumption
of a shortcut as the sum of the consumption of the edges which are replaced by the shortcut,
since over- and under-charging have to be considered. In order to take this into account
energy consumption functions can be used to accurately represent the energy consumption
of the shortcuts.

As before, when contracting a vertex u a witness search is performed for every pair v, w of
neighbors of u. The shortcut from v to w can only be omitted if the graph contains a path
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which dominates the shortcut and does not contain u. A variation of the multi-objective
shortest path search, which uses energy consumption functions, is used to search for such a
path in the graph after u got removed. Unfortunately this search is significantly slower
than Dijkstra’s algorithm, used in the original CH preprocessing, thus the preprocessing
for multiple objectives takes much longer.

It is possible to counteract this by using the fact that it is admissible for the witness search
to produce false negative results. This means that the witness search determines that the
shortcut is not dominated by any path in the remaining graph, although this is actually the
case. Common strategies restrict the number of queue extractions, or the maximal number
of labels per label-set. While this may lead to additionally and unnecessarily inserted
shortcuts it can reduce the running time of the algorithm.

Combinations. Due to the fact that complete Pareto sets are assigned to every shortcut
in the CH, its size increases drastically compared to a CH using only a single objective.
This in turn increases the time needed to perform witness searches. Because of this it
may become unpractical to compute the complete CH. A common approach to handle this
problem is to interrupt the CH preprocessing at some point resulting in a partial CH and
an uncontracted core graph.

In this case it is again possible to combine the CH speedup technique with another
speedup technique for the core graph. An example for such a technique is the SHARC
algorithm [DW09]. The algorithm combines CH vertex contractions with the Arc-Flags
speedup technique for the remaining core graph, in order to solve the multi-criteria shortest
path problem.

2.4 Functions
A function f : X → Y is a mapping between two sets X and Y , which assigns to each
value x ∈ X a value f(x) ∈ Y . In this context x is called the argument of f and f(x) is
called the value of f for x. The Set {(x, y) ∈ X × Y | y = f(x)} is called the graph of f .
The graph of a function should not be confused with the graph introduced in section 2.1.

The inverse of a function f : X → Y is another function f ′ : Y → X such that the
condition f(x) = y ⇔ f ′(y) = x is fulfilled. This means that the inverse function assigns
the associated argument to each value of f and the other way around, i.e. f ′(f(x)) = x
and f(f ′(y)) = y. The inverse function does of course only exists if there exists for
every y ∈ Y only at most one x ∈ X such that f(x) = y holds. If this is the case, the
function is called injective. Furthermore there must also exist at least one x ∈ X for every y
such that f(x) = y holds. A function with this property is called surjective. Thus the
inverse of a function does only exist if the function is injective and surjective.

Piecewise Linear Functions. A piecewise linear function f : X → Y is a function, such
that there exists a decomposition of X into intervals with the property that f restricted to
one of these intervals is a linear function. If x ∈ X is the endpoint of one of these intervals,
then we call the point (x, f(x)) a supporting point of f .

A piecewise linear function is uniquely defined by the sequence of all its supporting points,
sorted by their x-values. Given such a sequence of supporting points [(x1, y1), . . . , (xk, yk)],
the associated piecewise linear function f is defined as

f(x) :=



(x−x1)(y2−y1)
x2

+ y1 if x1 ≤ x < x2
...

(x−xk−2)(yk−1−yk−2)
xk−1

+ yk−2 if xk−2 ≤ x < xk−1
(x−xk−1)(yk−yk−1)

xk
+ yk−1 if xk−1 ≤ x ≤ xk.
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Note that the function value of the supporting points is always defined by the linear
function for the interval on their right side, except for the last supporting point. This
means that, following this definition, the left endpoint of each interval is always included
in the interval, while the right endpoint is only included in its interval, if it is the last one.

Slope. The slope of a function f at position x is defined as the value of the derivative
of f at position x. The slope of a function is therefore only defined for those values of x
where+f is differentiable. In this case, the slope of f at x is denoted by

∂f(x′)
∂x′

(x).

The slope is undefined for values of x where f is not differentiable.

Piecewise linear function are differentiable for all values of x, except for the x-values of
their supporting points. This means that slope is actually not defined at the supporting
points of f . Nevertheless we can assign a value to slope at these points by exploiting
that the function value of a supporting point is defined by the linear function to its right.
Therefore f is right differentiable for all x except the last supporting point, where it is left
differentiable.

We therefore define the slope of a piecewise linear function f , which is given by its supporting
points [(x1, y1), . . . , (xk, yk)], at position x as

∂f(x′)
∂x′

(x),

where ∂f(x′)/∂x′ denotes the right derivative of f , if x < xk holds and the left derivation
otherwise.

Convex and Concave. A function f is called convex if its slope is monotonically
increasing, i.e., For every x1 ≤ x2 ∈ X the equation ∂f(x)/∂x(x1) ≤ ∂f(x)/∂x(x2) holds.
If, on the other hand, the slope of the function f is monotonically decreasing, i.e. For
every x1 ≤ x2 ∈ X the equation ∂f(x)/∂x(x1) ≥ ∂f(x)/∂x(x2) holds, then f is called
concave. Note that a function that is not convex is not necessarily concave. If, however, f
is a convex function, then g(x) := −f(x) is a concave function and the other way around.

Domination. Functions can also be used in the context of Pareto optimization. If a
Pareto-set previously contained points from X × Y , then we know allow that it may also
contain functions f : X ′ → Y , where X ′ is a subset of X. The dominance relation for this
functions is then defined as follows.

A function f : X ′ → Y dominates a single point (x, y) ∈ X × Y is there exists one
point (x′, y′) in the graph of f , i.e., f(x′) = y′, such that (x′, y′) dominates (x, y). This
means

f ∝ (x, y) :⇔ ∃x′ ∈ X ′ : (x′, f(x′)) ∝ (x, y).

A point (x, y) ∈ X × Y dominates a function f : X ′ → Y if it dominates all the points in
the graph of f , i.e.,

(x, y) ∝ f :⇔ ∀x′ ∈ X ′ : (x, y) ∝ (x′, f(x′)).

A function f : X ′ → Y dominates another function g : X ′′ → Y if each point in the graph
of g is dominate by some point in the graph of f .

f ∝ g :⇔ ∀x ∈ X ′′ : ∃x′ ∈ X ′ : (x′, f(x′)) ∝ (x, g(x)).
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There has already been some research in the field of electric vehicle routing. Some algorithms
exist which compute either the most energy efficient route or the fastest route regarding
battery constraints. Furthermore, there has already been some research on recharging
stations and how they can be handled by algorithms. One approach assumes the cost of
recharging events to be constant and that it would always result in a fully charged battery
afterwards. While this is adequate for battery swapping stations, it might be insufficient
for regular charging stations. For instance, it is an unnecessary waste of time to recharge
the battery completely, if a partially charged battery is sufficient to reach the target.

Similar to previous approaches we define charging stations to be a subset of the road
networks vertices. We denote this set of charging stations as CS ⊆ V . In contrast to
previous approaches, we allow each charging station v ∈ CS to have its own specific charging
characteristics. We do so by associating a charging function cfv : B×R+ → B with every
charging station v. This function takes two parameters, the initial SoC b ∈ B at which the
charging station was reached, and the desired charging time ct ∈ R≥0, and maps them to a
resulting SoC cfv(b, ct).

Considering the new flexibility introduced by charging functions, it becomes clear that it is
no longer sufficient to determine which roads should be used and where the battery should
be recharged. In order to completely describe the route, it is required to know the charging
time spent at each station. Because of this, a solution for the problem consists not only of
a path P from s to t, but also of a function ct : CS∩P → R+, which assigns a charging
time to every charging station in P .

The introduction of charging stations also requires us to adapt the definition of a feasible
path. As before, the set of valid battery states is given by B = [0,M ], and the initial
battery state at s is given by b(s) ∈ B. For a given path P = (s = v1, v2, . . . , vk = t) and
associated charging times ct : CS∩P → R≥0, we then define the EV’s SoC b(P, i) when
arriving at vertex vi as

b(P, i) :=


b(v0) if i = 1
min(b(P, i− 1)− cons(vi−1, vi),M) if vi−1 /∈ CS
min(cfvi−1(b(P, i− 1), ct(vi−1))− cons(vi−1, vi),M) else.
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As before this function already takes over-charging into account by using M as an upper
bound for its values. A negative value for b(P, i) indicates that it is not possible to reach vi
using this path. Therefore, the path P is called feasible only if b(P, i) is not negative for
all 1 ≤ i ≤ k.

Because of the new charging stations, we also have to redefine what a shortest path is, i.e.,
which property of the path should be minimized. As before we want to arrive as early as
possible at the target vertex. Besides driving time we now have to take into account the
additional charging time. The sum of a path’s driving time and charging time is called
travel time. It is defined as

tt(P ) := dt(P ) +
∑

v∈CS∩P
ct(v).

Note that because of this dt(P ) ≤ tt(P ) always holds. Now that we have introduced the
elements needed to describe charging stations, we can introduce the Electric Vehicle
Route Planning With Recharging problem.

Definition 3.1. Electric Vehicle Route Planning With Recharging (EVRC)
We are given an directed Graph G = (V,E), a driving time dt: E → R+, an energy
consumption cons : E → R, a range of valid battery states B = [0,M ], a source and a target
vertex s, t ∈ V, the initial battery state b(s) ∈ B, as well as a set of charging stations CS ⊆ V,
and for every charging station v ∈ CS a recharging function cfv : B×R+ → B.

The problem asks for a feasible path P = (s = v1, v2, . . . , vk = t) ∈ G which minimizes
travel time, together with a function ct : CS∩P → R+ which assigns a charging time to
every charging station contained in P .

The path P is feasible if and only if neither under-charging nor over-charging of the battery
occur on P , i.e., b(P, i) ∈ B holds for every 1 ≤ i ≤ k.

The Electric Vehicle Route Planning With Recharging problem extends the
Electric Vehicle Route Planning problem, by adding charging stations. If CS is the
empty set we get an instance of the original EVR problem. Therefore, every instance of
CSP is also an instance of EVRC. Consequently, EVRC is also NP-hard.

3.1 Charging Functions

A charging function cf : B×R+ → B is a function which maps the current SoC b ∈ B and
a desired charging time ct ∈ R≥0 to the resulting SoC after the recharging process has
finished.

We demand a charging function to fulfill certain conditions in order to be meaningful. First
of all, a charging function should only increase the battery’s SoC. This means that for
an arbitrary initial SoC b and any charging time ct ≥ 0 the condition cf(b, ct) ≥ b holds.
Moreover, we demand that a charging function is monotonously increasing with respect to
charging time

∀ b ∈ B : ct1 ≤ ct2 ⇒ cf(b, ct1) ≤ cf(b, ct2).

This means that a longer charging time never results in a less charged battery. We call a
charging function which fulfills this property monotonous.
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In reality the charging speed depends on the used amperage, which is reduced if the battery
is nearly fully charged, in order to prevent the battery from getting damaged [JW06].
Because of this, the charging speed drops as the SoC approaches the battery’s capacity. We
presume that the decline of charging speed is again a monotonous process, i.e., a battery
with a higher SoC can never be charged faster than a battery with less SoC. We call a
charging function with this property concave, which is formally defined as

∀ b ∈ B : ct1 ≤ ct2 ⇒
∂cf(b, t)
∂t

(ct1) ≥ ∂cf(b, t)
∂t

(ct2).

If a charging function has all these three properties (i.e., it never reduces the SoC, it is
monotonous and it is concave), it is called feasible.

Simplification. The restrictions we have introduced so far ensure that we have to consider
only meaningful charging functions when designing our algorithms. Next, we would like to
simplify the charging functions so that we do not need to handle two dimensional functions.
Therefore, we introduce the assumption that, in order to describe a complete charging
function, it is sufficient to know the charging function for an initially empty battery. All
other values can then be reconstructed by shifting this function.

For this purpose we introduce a new special charging function cf ′ : R≥0 → B, which maps
charging time to resulting SoC for the special case that the battery is completely depleted
before the recharging process starts. Formally, this means cf ′(ct) = cf(0, ct). We now use
the function cf ′(ct) to construct cf(b, ct) for any initial SoC b. We do so by adding the
time, that would have been needed to charge from 0 to b, to the charging time ct. This
leads to the following definition for charging functions cf(b, ct).

Definition 3.2. Charging Functions
Given a monotonously increasing function cf ′ : R≥0 → B, which maps charging time
to resulting SoC for an initially empty battery, we define the complete charging func-
tion cf : B×R+ → B for an arbitrary initial SoC b as

cf(b, ct) := cf ′(ct + cf ′−1(b)).

In this definition we use cf ′−1(b), which is the inverse of the function cf ′(ct). But, in
general, a monotonously increasing function cf ′(b) is neither injective nor surjective. Thus
its inverse might not be defined.

But in Definition 3.2 we do not need a proper inverse function. We only need a function,
which yields the time needed to charge from 0 to b, so that we can add this time to the
charging time ct. This means we only need a function cf ′(b), which fulfills cf ′(cf ′−1(b)) = b,
if there exists any ct ≥ 0, such that cf ′(ct) = b holds.

Therefore we define cf ′−1(b) in this case as the function, which maps SoC b onto the minimal
charging time which is required to reach a SoC of at least b

cf ′−1(b) :=
{

min{ct | cf ′(ct) ≥ b} if ∃ ct : cf ′(ct) = b

∞ else.

While this definition of cf(b, ct) allows us to work with simpler, one dimensional functions,
it highly restricts the set of possible charging functions. However the one dimensional
function cf ′ is sufficient to model realistic charging functions. We will see this in Section 7,
when we use our functions to model charging functions originating from realistic data.
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In addition to a function which maps initial SoC and charging time onto resulting SoC,
we will sometimes need a function which maps initial SoC bi and desired SoC bd onto the
minimal charging time required to surpass bd. Using the definition above we can define the
function cf−1 : B×B→ R≥0 as

cf−1(bi, bd) := cf ′−1(bd)− cf ′−1(bi).

This function will always yield the minimal charging time needed to reach at least a SoC
of bd, provided that bd is reachable. We prove that the charging time given by cf−1(bi, bd)
is always sufficient to reach a SoC of bd, by using it as argument for cf(bi, ct).

cf(bi, cf−1(bi, bd)) = cf ′(cf−1(bi, bd) + cf ′−1(bi))
= cf ′(cf ′−1(bd)− cf ′−1(bi) + cf ′−1(bi))
= cf ′(cf ′−1(bd)) ≥ bd

Furthermore, we can use a similar argument to show that any charging time shorter
than cf−1(bi, bd) is not sufficient to reach bd. For this purpose let ε > 0 be an arbitrary
short but positive time span, we then have

cf(bi, cf−1(bi, bd)− ε) = cf ′(cf ′−1(bd)− cf ′−1(bi)− ε+ cf ′−1(bi))
= cf ′(cf ′−1(bd)− ε) < bd.

The reason for this is, that cf ′−1(bd) is the minimal charging time ct, such that cf ′(ct) ≥ b
holds. Thus reducing the charging time by any ε > 0 will result in a final SoC less than bd.

In our implementation we use piecewise linear functions to model all charging functions.
A piecewise linear function is represented by an array of supporting points, sorted by
charging time. Furthermore, we define that charging functions continue with a slope of 0
after the last supporting point. We now show how various types of charging functions can
be modeled using this approach.

Regular Charging Stations. Recharging at a regular charging stations is typically a
linear process until a SoC of about 80% is reached. Afterwards, the applied amperage is
reduced in order to prevent the battery from getting damaged [JW06]. The overall charging
speed depends furthermore on the battery’s capacity and on the power available at the
charging station. An example for such a charging function, where a SoC of 80% is reached
after 4 time units, 90% is reached after 5 time units and the battery is fully charged after 7
time units would be represented by the supporting points [(0, 0), (4, 80), (5, 90), (7, 100)].
The associated charging function cf ′(ct) is then given as

cf ′(ct) :=



80
4 b if 0 ≤ ct < 4
90−80
5−4 b+ 80 if 4 ≤ ct < 5

100−90
7−5 b+ 90 if 5 ≤ ct < 7

100 else.

Super Charger. Super chargers are a special kind of charging stations which feature a
very high charging power. A drawback of these stations is, that the charging process has
to be terminated when a SoC of 80% is reached, because it would otherwise damage the
battery. So the charging function consists only of the linear part, and can thus be modeled
using only two supporting points. The charging function cf ′ of a super charger that reaches
a SoC of 80% after two time units would, for example, be represented by [(0, 0), (2, 80)].
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For such a function cf ′ it is important that we use the initial SoC as a lower bound for the
resulting SoC after recharging in Definition 3.2. Because of this, the result of recharging with
an initial SoC of 90% is cf(90, ct) := max(90, cf ′(ct + cf ′−1(90))) = max(90, cf ′(ct)) = 90
for any given charging time ct.

Battery Swapping Stations. Another type of "charging" stations are battery swapping
stations (BSS), where the whole battery is exchanged with a new fully charged one.
Modeling such a station using our model is a bit more complicated, because the charging
process of a swapping station is not continuous as opposed to normal charging stations or
super chargers. When using a battery swapping station, the SoC does not change at first
(actually it drops to zero), before it after some time immediately increases to 100%.

If we want to model such a charging station using our model, we use the charging function cf ′
defined by [(0, 100)]. This function states that the battery is immediately fully charged
when using the charging station. This is not very accurate so far, because swapping the
battery will most certainly take some time. We model this time using additional edges in
the graph.

Consider the scenario where vertex v represents a battery swapping station which needs
one time unit to replace the battery. In this case we add a new vertex v′ to the graph.
This vertex represents the actual charging station using the charging function defined
by [(0, 100)]. We then connect v′ with the graph via two edges (v, v′) and (v′, v). Both
of them have an energy consumption of 0. Furthermore we define their driving times as
dt(v, v′) = 1 and dt(v′, v) = 0. By doing so, we obtain an accurate model for battery
swapping stations, while the used charging function remains continuous.

The same approach can also be used to model additional effects which consume time when
using a charging station. It is, for example, possible to model the time needed for parking
the car, plugging in the power cable (and paying), using this approach.
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We now attempt to solve EVRC by using a modified version of the multi-objective shortest
path search. Apart from having exponential worst case complexity, this yields a feasible
base line algorithm for EVR. But the charging stations introduce a new kind of problem,
in the sense that we have to choose a charging time for every charging station we use. The
set of possible charging times is continuous and only limited by 0 as minimal charging
time and by the time needed to recharge the complete battery as maximal charging time.
Up to now Dijkstra’s algorithm only had to choose from discrete sets of neighbor vertices.
Therefore, it was possible to examine all possibilities.

Trying the same in order to find the optimal charging time means that we have to create a
new label for every possible charging time. But this is not possible, considering the fact
that the charging time has to be chosen from a continuous set. Using a discrete set of
allowed charging times is an obvious workaround for this problem. In order to remain
accurate, this set has to have a very fine resolution. But this would lead to a huge number
of labels and therefore, the algorithm would be unpractical. Because of this we will try to
restrict the set of meaningful charging times.

Obviously we do not want to waste travel time due to recharging. This means that the
battery should not be charged any longer than necessary in order to reach the target. If we
know the target vertex t, we could calculate the path from the current charging station to
this target vertex. Afterwards, we know the amount of energy needed in order to use this
path. We then could charge exactly this amount of energy. Unfortunately, this approach
has two major problems.

• The first problem is that there is not only one path from the current charging station
to t. Instead of this we have to consider a whole Pareto-set of paths. For example,
it might not be the best solution to use the fastest path from a charging station to
t, because this path might require a long charging time. If there exists a path with
longer driving time, which requires significantly less energy, it might provide a lower
travel time. Therefore, we have to compute complete Pareto-sets as we did before
when solving EVR. Afterwards, it would be possible to calculate the charging time
for every path contained in the Pareto-set. The optimal solution is then given by the
path with minimal sum of driving time and charging time.

• The second problem is that we do not really know the target (or the location of
the next stop) except for the last charging station used on the path to t. Consider
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the case where one charging station is not sufficient in order to reach t. At some
point during the computation we have to pick a charging time for the first charging
station. When doing so, we would like to compute the Pareto-set of paths to the
next stop, in order to determinate how much energy we have to charge. But now the
next stop is not t but the second charging station, which is not yet known. An easy
solution for this problem is to try every other charging station as second stop. Doing
so would increase the number of labels exponentially with every additional charging
stop needed. Therefore, this approach most probably would lead to an unpractical
algorithm.

We now introduce a first practicable algorithm which simply ignores the first problem.
For this algorithm we assume that we can always take the fastest path connecting two
charging stations. Obviously such an algorithm cannot guarantee to find the optimal
solution, however it will at least find feasible solutions.

4.1 Conventional Car Driver’s Approach
We begin with a simple algorithm for calculating feasible paths. We search for a path
similar to the way, a driver of a gas powered vehicle would do. This means to drive as fast
as possible, or as one pleases, and to rely on the availability of filling stations wherever one
needs to refuel.

Transferred to an algorithm naively this means to compute the shortest path regarding
driving time without considering battery constraints and check whether this path is feasible
afterwards. Of course it is unlikely that this path will contain sufficient charging stations.
It is easy to see this by looking at highways, a charging station would not be located
directly on the highway but on a resting area right next to it.

In order to take this into account, we again restrict our algorithm to use only the shortest
path without considering battery constraints. But now this restriction must only be fulfilled
between any two stops. With a stop being defined as starting at s, arriving at t, or using a
charging station. An algorithm using this approach might be capable of finding a feasible
path from s to t in a short time, but it is unlikely that such a path is optimal regarding
travel time. Since recharging the battery can take a long time, it might be faster to use a
slow path if this avoids the necessity of recharging or reduces the charging time sufficiently.

Because of this it is impossible that the conventional car drivers approach yields an optimal
solution for our problem. Nevertheless its result may only be slightly slower than the
optimal solution. Thus, we will recall this approach in Chapter 6.1 in order to develop an
heuristic algorithm.

4.2 Charging Function Propagating Algorithm
Due to the additional assumption we made for the conventional car drivers approach, it
was not possible to develop an optimal algorithm. Because of the fact that recharging
can take a long time, it is important for an optimal algorithm to optimize both criteria,
driving time and energy consumption. The algorithm we want to introduce now is based on
the multi-objective shortest path search and solves the problem optimally. The algorithm
maintains a label-set for each vertex in V . Each label contained in one of these sets consists
of a travel time tt and a SoC b. As mentioned before, the main problem is settling vertices
which represent charging stations, because it is not trivial to decide how much energy is
needed to reach t or the next charging station. How much energy is needed depends on
the further course of the path, but this information is not available at the time we have to
settle a vertex representing a charging station.
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The basic idea of our algorithm is to delay the decision about how much time should be
spent at a charging station as long as possible. We achieve this by extending the labels. In
addition to travel time and SoC, each label keeps a pointer to the last seen charging station
on the associated path. As soon as we try to relax an edge with an energy consumes higher
than the current label’s SoC, we can charge exactly the missing energy retroactively.

So, for our new algorithm we want the labels to be a triple (tt, b, v) consisting of the travel
time tt ∈ R≥0, the current SoC b ∈ B and the last seen charging station v ∈ CS∪{⊥},
where ⊥ means that we have not seen any charging station so far. We now want to discuss
how this extension of the labels effects their dominance relation. The charging function
associated with the last seen charging station v enables us to trade travel time for SoC.
Thus, we have to consider all possible values, for the travel time needed to reach v, in order
to define dominance.

One label dominates another only if it has a higher SoC for every possible travel time. A
label A = (ttA, bA, u) dominates a label B = (ttB, bB, v) if and only if ttA ≤ ttB and there
exists no charging time ct ≥ 0 such that cfu(bA, ttB − ttA + ct) ≤ cfv(bB, ct) holds. This
means that the minimal travel time of label B is greater than the minimal travel time
of label A, and if we spent some time for recharging, so that the travel time provided by
label A and B is equal, we will still arrive with a lower SoC when using label B.

4.2.1 SoC-Functions

In order to simplify the verification of dominance, we exploit the structure of charging
functions. Instead of holding a triple consisting of tt and b together with a pointer to
the last seen charging station, we now use a function b : R≥0 → B∪{−∞} which maps
travel time to SoC. The special value −∞ indicates that it is not possible to traverse the
path associated with the label in the given travel time. We restrict ourselves to concave
piecewise linear functions represented by a sorted vector of supporting points, which is
possible since all charging functions we use are piecewise linear.

Let [(tt1, b1), . . . , (ttk, bk)] be a sequence of supporting points sorted by travel time in
ascending order as label for the vertex v ∈ V . We define the SoC-function b(·) associated
with this sequence as

b(t) :=



−∞ if 0 ≤ t < tt1
(t−tt1)(b2−b1)

tt2
+ b1 if tt1 ≤ t < tt2

...
(t−ttk−1)(bk−bk−1)

ttk + bk−1 if ttk−1 ≤ t < ttk
bk else.

An example figure for such a SoC-Function with supporting points [(1, 1), (3, 4), (6, 7)] is
shown in Figure 4.1.

Given such a function, we see that it is impossible to arrive at vertex v in less than tt1
time, indicated by the value −∞. We call tt1 the earliest arrival time for vertex v. For any
travel time t between tt1 and ttk we choose 1 < i ≤ k with tti−1 ≤ t < tti and interpolate
linearly between the two points (tti−1, bi−1) and (tti, bi). For any travel time t greater
than ttk there exists no Pareto-optimal solution. However, we allow to simply wait at v
until the time has passed, during which the SoC does not change. If a SoC-function is
equal to −∞ for every value of t, the associated path is unfeasible, thus it is unfeasible to
reach v using this path.
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Figure 4.1: An example for a SoC-Function b(t) with supporting points [(1, 1), (3, 4), (6, 7)].

Dominance. Using SoC-functions as labels simplifies the definition of dominance consid-
erably. The SoC-function bA(·) dominates the function bB(·) (denoted by bA ∝ bB) if and
only if for each t ∈ R≥0 the condition bA(t) ≥ bB(t) holds. Since we keep the supporting
points of every SoC-function ordered by travel time, this can be checked efficiently by
performing a linear sweep over the supporting points of both functions.

Lemma 4.1. Let bA(·) and bB(·) be two piecewise linear SoC-Functions defined by the
supporting points [(ttA1 , bA1 ), . . . , (ttAk , bAk )] and [(ttB1 , bB1 ), . . . , (ttB` , bB` )]. The function bA
dominates bB if bA(t) ≥ bB(t) holds for every t ∈ T , where T is the set containing the
travel times of all supporting points, defined as T := {ttA1 , . . . , ttAk , ttB1 , . . . , ttB` }.

Proof. Let tti and ttj be two consecutive elements of T , which means there exists no
ttc ∈ T such that tti < ttk < ttj . This means that both functions bA(·) and bB(·) are linear
between tti and ttj . The precondition that bA(tti) ≥ bB(tti) and bA(ttj) ≥ bB(ttj) holds
implies that bA(t) ≥ bB(t) holds for all tti ≤ t ≤ ttj .

If both SoC-functions bA(·) and bB(·) are monotonously increasing, which is the case if
all participating charging functions are feasible, then there exists an additional way of
verifying dominance. Instead of comparing the resulting SoC for the same travel time, it is
possible to compare the travel time required to reach a certain SoC.

Lemma 4.2. Let bA(·) and bB(·) be two monotonously increasing SoC-Functions. In this
case bB is dominated by bA (bA ∝ bB) if there exists an ∆ ≥ 0 for every travel time tt ≥ 0,
such that bA(tt) ≥ bb(tt +∆).

Proof. The lemma follows directly from the definition of monotonous increasing functions.
Since bB is monotonously increasing tt ≤ tt′ implies that bB(tt) ≤ bB(tt′) holds. Therefore,
we have bA(tt) ≥ bB(tt +∆) ≥ bB(tt) for every tt ≥ 0 and given ∆ ≥ 0, which proves the
claim.

As before this statement of dominance can easily be verified be looking at all supporting
points of bA and bB, provided that both functions are piecewise linear.

We now describe how the new SoC-functions can be used as labels for the multi-objective
shortest path search in order to solve EVRC.

4.2.2 Pareto Search for SoC-Functions

During the initialization phase we do not need to change much. As before, all label-sets are
initialized as the empty set. Afterwards, the initial label defined by [(0, b(s))] is inserted
into the label-set for the vertex s and s itself is inserted into the queue.
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Vertex Settling. After the initialization phase the algorithm continues with the main
loop. Here it settles the minimal label contained in Q until Q is empty. To enable this
behavior for our SoC-functions, we need to define an order on them. We also want to
keep the label-setting property of Dijkstra’s algorithm, so we have to define the order
accordingly. Fur this purpose, we order SoC-functions by their earliest possible arrival
time, i.e., the travel time of the first supporting point. Furthermore, we use the SoC of the
first supporting point to break ties. By doing so we ensure that the label-setting property
holds, in the sense, that a settled label will never be dominated. Since our graph contains
only edges with positive travel time, the earliest arrival time will never decrease due to an
edge relaxation. Therefore, it is impossible that a SoC-Function gets dominated, once it
was settled.

Edge Relaxations. Next, we show how SoC-functions are handled during an edge
relaxation. Consider the label A = [(tt1, b1), . . . , (ttk, bk)] of u being settled and the
according SoC-function bA(·). Relaxing the edge e = (u, v) ∈ E generates a new label B
for v. The SoC-function bB(t) for this label has to reflect that an additional time of dt(e)
is needed to reach v and that traversing the edge consumes cons(e) energy. This can be
achieved by shifting the function bA(·) by (dt(e),− cons(e)). In addition to that, we have
to ensure that bB(t) ∈ B∪{−∞} holds for every value of t. Thus we define the result bB(·)
of relaxing the edge e, which is denoted by bA ◦ e, as

(bA ◦ e) (t) = bB(t) :=


−∞ if b′B(t) < 0
M if b′B(t) > M

b′B(t) else

where b′B(t) := bA(t−dt(e))−cons(e) is the shifted function. The definition of bB(·) reflects,
that arriving at v with negative SoC renders the path unfeasible, thus bB(·) is set to −∞
in this case. On the other hand, a SoC greater than M means that overcharging occurs,
hence these values are limited to M .

Up to now we have defined all operations needed, to use SoC-functions together with the
multi-objective shortest path search. In fact, the introduced modifications are sufficient to
solve EVR. But we have not used the charging stations so far. Now we will integrate them
into the algorithm.

Charging Station Settling. Every time we attempt to settle a label of a vertex v, we
check whether v is a charging station. If that is the case we have to explore the possibility
of recharging at this station. Here, we distinguish two different cases. One where the label
only contains one supporting point and another where the label contains more than one
supporting point.

A label [(tt1, b1)] consisting of only one supporting point can occur in two situations. Either
the associated path does not contain any charging station up to now, or the path contains
some charging stations but it exists only one possible charging time in order to reach v.
In both cases the path from s to v is distinct, which makes it easy to integrate the new
charging station, since it cannot be a disadvantage to use the new charging station. Before
settling the label we simply change its SoC-function to

b(t) :=
{
−∞ if t < tt1

cfv(b1, t− tt1) else.

This new function for the label states, that we can start recharging as soon as we arrive
at v. The supporting points needed to describe the changed function b(·) can be obtained
by shifting the supporting points of cfv.
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b1(t) = cf ′(t− 1 + cf ′−1(1))

b3(t) = cf ′(t− 3 + cf ′−1(4))

Figure 4.2: An example showing the results of switching the last seen charging station. The
previous SoC-function b(t) is defined by [(1, 1), (3, 4), (6, 5)]. The new charging
function cfv(0, t) is defined by [(0, 0), (1, 3), (7, 6)]. The shaded area contains
all points dominated by some btt(t). Yet the complete shaded area can be
dominated by using only the functions b1(t) and b3(t).

Settling a charging station gets more complicated if the current label [(tt1, b1), . . . , (ttk, bk)]
contains more than one supporting point. In this case we have to decide how much energy
should be charged using the last seen charging station, before we switch over to the new
one. But this depends on the energy needed for the remaining path from v to the target
vertex, which we do not know yet. Given the SoC-function b(·) associated with the current
label, we can define a new function btt(t) for every tt ≥ tt1

btt(t) :=
{
b(t) if t < tt
cfv(b(tt), t− tt) else.

This function is a correct SoC-Function for the case that it took a time of tt to arrive
at v (including recharging at the last seen charging station), where we switch over to
the new charging station. Keeping all of these functions does not lead to a practicable
algorithm. Luckily, it is possible to choose a small set of these functions such that all the
other functions are dominated by them. The reason for this is, that our SoC-functions as
well as the charging function are piecewise linear and concave.

Switching the charging station makes only sense, if the charging speed offered by the new
charging station is higher than the charging speed at the last seen station, for the particular
SoC at which the station is changed. Furthermore, if this situation occurs, it is the best
choice to switch over to the new charging station as soon as it offers a higher charging
speed. There are, however, only two possible reasons for this. Either the charging speed of
the new station suddenly increases and surpasses the speed of the old one, or the charging
speed available at the old station decreases. The first case cannot occur since our charging
functions are concave, meaning that the charging speed will only decrease as the charging
proceeds. Thus, we are left with the second case, i.e., the slope of the current SoC-function
decreases. Since our SoC-functions are piecewise linear this can only occur at a supporting
point of the function.

An example for this situation is shown in Figure 4.2. This example also shows, how the
charging function cf(0, t) gets shifted sideways when defining btt(t) so that it intersects the
SoC-function b(t) at exactly tt. Thus, we only need to identify those functions, which are
not dominated by any other function, and can proceed with them. See Figure 4.2 for an
example of this situation.
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Theorem 4.3. Let b(t) be a SoC-Function defined by the sequence [(tt1, b1), . . . , (ttk, bk)]
of supporting points. Furthermore let cf(b, ct) be a feasible charging function which is
defined by cf ′(ct) according to Definition 3.2 on page 25. Then for every tt ≥ tt1, there
exists an i ∈ [1, k] such that btti ∝ btt, i.e. it is not worse to switch over to the new charging
station at tti than at tt.

Proof. We prove this theorem in two steps. First, we show that bttk ∝ btt holds for the
special case of tt ≥ ttk. Afterwards, we prove the claim for the more general case of tt
lying between two supporting points, i.e., tt1 ≤ tt ≤ ttk.

Case 1. We start, by showing that bttk dominates btt for the special case of tt ≥ ttk. This
is only valid if bttk(t) ≥ btt(t) holds for every t ≥ 0. For t < ttk both SoC-functions, bttk(t)
and btt(t), are equal to b(t) per definition, thus bttk(t) ≥ btt(t) holds. For t ≥ ttk we have

bttk(t) := cf(b(ttk), t− ttk) = cf(b(tt), t− ttk),

because b(·) is constant for values greater or equal to ttk. If additionally t < tt holds,
then btt(t) is defined as b(tt), which is less or equal to cf(b(tt), t− ttk), since recharging
never decreases the SoC. If otherwise t ≥ tt holds, then btt(t) is defined as cf(b(tt), t− tt).
This is again less or equal to cf(b(tt), t− ttk) because t− tt ≤ t− ttk and cf is monotonous.
Therefore, bttk ∝ btt holds for tt ≥ ttk.

Case 2a. We now address the second case, that is tt1 ≤ tt ≤ ttk. In this case there exists
an index i ∈ [1, k − 1], such that tti ≤ tt ≤ tti+1 holds. We now show that either btti
or btti+1 dominates btt. Which of these functions dominates btt is determined by the slope
of b and cf at the point were we switch over to the new charging function. We first consider
the case of

∂b(t)
∂t

(tt) = bi+1 − bi
tti+1− tti

<
∂cf(b(tt), t− tt)

∂t
(tt).

This means that the new charging station offers a higher charging speed than the last
seen one for a SoC of b(tt). Thus the new charging function should be used in order to
benefit from the higher charging speed. Since b is piecewise linear and cf is concave this is
still valid if we switch over to the new charging station earlier. Thus btti ∝ btt holds in
this case, which we now prove formally. As before, both SoC-functions are per definition
equivalent for t < tti and therefore btti(t) ≥ btt(t) holds. For t ≥ tti we use that, changing
time at which we switch over to the new charging function, from tt to tti, is equivalent to
shifting the charging function regarding travel time. This means there exists a value ∆ such
that cf(b(tti), t− tti) is equivalent to cf(b(tt), t+ ∆− tt) (See Figure 4.3a for an example).
This value ∆ is given by tt− tti− cf−1(b(tti), b(tt)):

cf (b(tt), t+ ∆− tt) = cf
(
b(tt), t+ tt− tti− cf−1(b(tti), b(tt))− tt

)
= cf

(
b(tt), t− tti− cf−1(b(tti), b(tt))

)
= cf

(
b(tt), t− tti + cf ′−1(b(tti))− cf ′−1(b(tt))

)
= cf ′

(
t− tti + cf ′−1(b(tti)

)
− cf ′−1 (b(tt)) + cf ′−1 (b(tt))

= cf ′
(
t− tti + cf ′−1(b(tti)

)
= cf (b(tti), t− tti)

Furthermore ∆ is not negative, since tt− tti ≥ cf−1(b(tti), b(tt)) holds. The reason for
this is that tt− tti is the time needed to charge from b(tti) to b(tt) using the last charging
function and cf−1(b(tti), b(tt)) is the time needed, using the new charging function. As the
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Case 2b
Figure 4.3: Examples for case 2a and 2b of the proof. The charging function is defined

by [(0, 0), (1, 2), (5, 6)] in both cases. For case 2a the current SoC-function b(t)
is given as [(2, 0), (3, 3), (7, 5)], so that the slope of b(t) for t = tt is less than
the slope of cf(b(tt), t) for t = tt. For case 2b the current SoC-function b(t) is
given as [(3, 1), (5, 5)], thus the slope of b(t) for t = tt is greater than the slope
of cf(b(tt), t) for t = tt. In both cases the charging function can be shifted to
the left by ∆, such that it intersects b(t) at a supporting point.

slope of the old charging function, is less than the slope of the new charging function, the
new charging function needs less time to charge from b(tti) to b(tt).

Since ∆ ≥ 0 holds, we can prove btti(t) ≥ btt(t) for t ≥ tt quite easily by using Lemma 4.2

btti(t) = cf(b(tti), t− tti) = cf(b(tt), t+ ∆− tt) ≥ cf(b(tt), t− tt) = btt(t)

In particular this equation shows, that btti(tt) ≥ btt(tt) holds. We furthermore know
that btti(tti) = btt(tti) holds per definition, cf(b, t) is concave and b(t) is linear in the
interval [tti, tt]. Therefore, btti(t) ≥ btt(t) also holds for t ∈ [tti, tt], which proves bttk ∝ btt.

Case 2b. The last case we have to address is the one that the last seen charging station
offers a charging speed at least as high as the new one for a SoC of b(tt), or more formally

∂b(t)
∂t

(tt) ≥ ∂cf(b(tt), t− tt)
∂t

(tt).

An example for this case is shown in Figure 4.3b. It is clear that switching over to the new
charging station is not reasonable, since the current one offers a higher charging speed. The
earliest possible moment at which the new charging function could offer a higher charging
speed than the current station, is the next supporting point of b(t). Thus btti+1 ∝ btt holds
in this case, which can be proven similar to case 2a.

In this case, ∆ is given by cf−1(b(tt), b(tti+1))− (tti+1− tt), which is the difference of the
time needed for the new charging station to charge from b(tt) to b(tti+1) and the time
needed by the current station to do so. Since the current charging station offers a charging
speed at least as high as the new one, this difference, and therefore ∆ is again not negative.
Using the new ∆ we can show (along the lines of case 2a) that

cf (b(tt), t+ ∆− tt) = cf (b(tti), t− tti+1)

holds. From there on the proof is analogous to case 2a.

Whenever our algorithm extracts a vertex from the queue that represents a charging station,
we can apply Theorem 4.3. Since we know that changing the charging station is only
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meaningful at a supporting point of the current SoC-function, we simply create one new
label for each supporting point in order to explore the possibility of switching over to the
new charging station at that point.

The algorithm terminates as soon as a label for the target vertex t gets settled. In this case
the earliest arrival time of this label is the shortest possible travel time of any path from s
to t. Furthermore, the path associated with this label is the shortest feasible s-t-path.

Path Retrieval. If we are not only interested in the shortest possible travel time, but
also want to know the shortest path as well as the charging time for every used charging
station, we have to extend the labels by a parent pointer. When doing so, the shortest
path can be found by backtracking these pointers from t to s. During the backtracking
process we keep track of the arrival time and the SoC for every vertex contained in the
path. For the vertex t these values are simply given by the first supporting point of the
label for t. Backtracking an edge e reduces the arrival time by dt(e) and increases the SoC
by cons(e). If we reach a charging station these values can be used in order to calculate
the charging time.

4.2.3 Implementation Details

Whenever an edge e = (u, v) is relaxed, we have to duplicate and modify the SoC-function
associated with u. As it has been described in the high level algorithm up to know, this
takes at least linear time in the size of the SoC-function, i.e., its number of supporting
points. But the modification actually performed in order to create the new label for v
is fairly simple. The function gets only shifted by dt(e) and cons(e). If this shift causes
the SoC-function to exceed M , which represents over-charging, The function is simply
truncated. Under-charging is handled similarly.

We can optimize the relax operation so that only constant time is needed. In order to do so
we do not apply the shift to the function but rather accumulate it. Thus when relaxing an
edge, it is not necessary to shift each of the SoC-function supporting points, but only the
overall shift of the function has to be adjusted. In addition to shifting the SoC-function
we also must account for over- and under-charging. Therefore, we have to keep track of
additional values specifying the maximal reachable SoC and the minimal needed SoC. But
this is exactly what is done by the energy consumption functions introduced in Chapter 2.3.3.
So our final SoC-function label consists of the quadruple (v, b, c, tt):

• The vertex v of the last seen charging station along the route to the current vertex.
This vertex is used as a pointer to the charging function cfv(b, ct), which provides
the supporting points of the b-function.

• The SoC b at which the last seen charging station was reached. Inserting this into
the charging function of vertex v, we obtain a one-dimensional function mapping
time to SoC. This defines the basic shape of the to be shifted SoC function.

• An energy consumption function c that describes the energy consumption along the
used path from v to the current vertex. costc is used to shift the basic SoC function,
while minInc and maxOutc are used to truncate the SoC-function according to over-
and under-charging.

• The minimal travel time tt required to reach the current vertex. This value is also
applied as a shift to the basic SoC-function.

Relaxing an edge e can indeed be done in constant time using these SoC-function labels.
The values v and b are simply copied to the new label. The energy consumption function c
is linked with the energy consumption of e and the travel time tt is increased by the driving
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time of e. Similarly switching over to a new charging station can be done in constant time.
We do so by assigning the new charging station to v. The values b and tt are set to the
time and SoC at which we switch over to the new charging station. Finally, the energy
consumption function c is cleared so that it represents an energy consumption of 0.

While relaxing an edge and swapping the last seen charging station can be done quite
easily, it becomes a bit more complicated to evaluate the SoC function. Previously the
value b(t) of the charging function could be obtained by linear interpolation of the according
supporting points. Using the quadruple representation of the SoC-function, its value is
now defined as b(t) := b− c(cfv(b, t− tt)).

Complexity. The complexity of the labels used in this algorithm is bound by the number
of supporting points used to define the charging functions. Furthermore we do use neither
less nor more labels than the plain version of Label Setting Dijkstra. Therefore, the worst
case complexity is still exponential in the size of the graph.
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We now want to utilize known speedup techniques in order to improve our charging station
aware algorithm. Therefore, we analyze how A* and Contraction Hierarchies can be
adapted to our new scenario. Finally, we show a combination of both techniques as it is
used by our final algorithm.

5.1 A* Search

First we take a look at the A* technique. The main challenge of this technique is finding a
good admissible potential function, which estimates the distance from every vertex to t.
Common approaches make use of the triangle inequality or landmarks in order to obtain
a good potential for the shortest path problem [GH05]. The special structure of EVRC,
however, enables us to develop new, specialized potentials. The initial idea here is, that we
can drop some of the constraints. This produces a simpler problem, which can be solved
using Dijkstra’s algorithm. Afterwards, the resulting potential can be used to speedup the
original query.

We start by dropping all battery constraints, leaving us with the normal shortest path
problem for the driving time metric. Given a target t, we can perform a backwards run of
Dijkstra’s algorithm starting at t. As result we get the unconstrained minimal driving time
from every vertex to t. Since adding battery constraints reduces the number of feasible
paths, they can only lead to an increased driving time. Therefore, the unconstrained driving
time is an lower bound for the constrained driving time and can be used as potential for
the driving time of the constrained problem. Thus, we can use it to obtain a first speedup
technique for EVRC.

Now we want to do better and try to incorporate at least some information about energy
consumption. Just as we can use driving time as metric for Dijkstra’s algorithm we can use
energy consumption. By doing so we obtain for every vertex the minimal energy required
to reach t. If for some vertex u ∈ V this minimal energy exceeds the available energy at u,
then it is not possible to reach t from u without recharging. Furthermore it is evident that,
on any feasible path from u to t, at least the difference between minimal required energy
and available energy has to be obtained using a charging station.

Our first observation here is, that the minimal travel time for reaching t does not only
depend on the vertex u where the path begins, but also on the SoC at this vertex u. So in
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the context of EVRC we would like to have a potential πt : V ×B→ R≥0, which assigns a
lower bound on the travel time to every pair of a vertex v and a SoC b.

A second observation is that we can calculate a lower bound for the amount of energy that
has to be charged at a charging station. But when calculating a potential function we are
interested in a lower bound for travel time. Thus we need a way to convert energy into
travel time. Luckily this is exactly what the charging function, or more precise the inverse
of the charging function, does. A problem with this approach is that we do not know which
charging station will be used by the optimal solution. We also do not know the SoC with
which the charging station is reached. In order to solve this problem we will simply assume
that it is always possible to use the fastest charging station.

We will now use both observations in order to calculate a new, more precise potential
function for the minimal travel time.

5.1.1 Uniform Charging Speed
As before our algorithm starts with a backwards execution of Dijkstra’s algorithm using the
driving time metric. Afterwards, a second backwards execution using energy consumption
as metric is performed. By doing so we obtain a lower bound πdt : V → R for the driving
time from every vertex to t and a lower bound πcons : V → R for the energy consumption
from every vertex to t. Finally we calculate an upper bound for the charging speed cfmax

cfmax := max
[
∂cfv(b, t)

∂t
(ct)

]
s.t. v ∈ CS, b ∈ B, ct ∈ R≥0.

So the maximal charging speed is given by the maximal slope of any charging function cfv
for any SoC b and charging time ct. Since all charging functions are given as piecewise
linear function, this value can be obtained easily by a linear sweep over all supporting
points.

Given πdt, πcons and cfmax we can define an improved potential π1 : V × B → R≥0 for
manipulating the order in which the labels of our basic algorithm from Section 4.2 get
settled

π1(v, b) :=
{
πdt(v) if b ≥ πcons(v)
πdt(v) + πcons(v)−b

cfmax
else.

Given a label A = [(tt1, b1), . . . , (ttk, bk)] for vertex v, the value π1(v, b1) is a lower bound
for the remaining travel time from v to t. This holds because for b ≥ πcons(v) the
value π1(v, b1) is simply the minimal driving time from v to t without constraints. In the
case of b < πcons(v) the target t is not reachable from v without recharging and it is not
possible to recharge the missing energy in less than (πcons(v)− b)/ cfmax time. Furthermore
it is sufficient to use the label’s first supporting point, although the label describes an
entire function bA(·) mapping arrival time to SoC. The reason for this is that bA(·) is only
a shifted charging function. Therefore, its slope cannot be greater than cfmax which means
that the sum of arrival time at v and π(v, tti) is minimal for the first supporting point:

∀1<i≤k : tt1 + π1(v, b1) ≤ tti + π1(v, bi).

While π1(v, b) is certainly a better potential than the minimal driving time without
constraints, it is still a rough estimation. One problem is, that we use the minimal driving
time as lower bound as soon as the SoC is sufficient for the most energy efficient path. But
in reality the driving time of these both paths may differ significantly. This results in a
huge difference between the calculated lower bound and the actual travel time, especially if
the target is not reachable without recharging. In this case we assume the lower driving
time for the fastest path without considering the associated higher energy consumption
and therefore longer charging time.
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5.1.2 Optimal Energy Consumption Rate
Now we develop a potential function which considers the trade-off between driving time
and energy consumption. The new potential function only affects the case where we have
to use a charging station.

We invest some time in order to receive energy, every time a charging station is used. Thus,
wasting energy on a path that makes use of a charging station is equivalent to wasting
time. In order to find the optimal path i.e., a path that wastes neither time nor energy, we
have to look at the combined time for driving and charging.

We define a new edge weight ω : E → R which is a lower bound on the travel time of an
edge if the energy consumed on this edge has to be obtained using a charging station. Since
the charging rate of all charging stations is limited by cfmax, we define ω(·) as

ω(e) := dt(e) + cons(e)
cfmax

.

Note that ω might assign negative values as lower bound for travel time, if the energy
consumption cons(e) is negative. This is fine because an edge with negative consumption
provides energy that otherwise must have been charged. We still ignore the fact that energy
can be lost due to over-charging. Because of this we can use ω to calculate a lower bound
on the driving and recharging time of a whole path P = (u1, . . . , uk). Given that we start
at vertex u1 with an empty battery, we can be sure that it takes at least ω(P ) time to
reach uk. If we start at vertex u1 with some SoC b(u1) > 0, we might overestimate the
total travel time for the path P when using ω(P ) as potential. We solve this by subtracting
the time that would have been needed to charge the battery up to b(u1).

To obtain our new potential function, we perform a third backwards execution of Dijkstra’s
algorithm starting at t and using ω as metric. This yields a lower bound πtt : V → R for
the combined driving and charging time. Together with the lower bounds πdt and πcons
from the previous subsection we can define a new potential

π2(v, b) :=
{
πdt(v) if b ≥ πcons(v)
πtt(v)− b

cfmax
else.

As before it is clear that the potential is admissible for the case b ≥ πcons(v). We now
assume that it is not possible to reach t from v with SoC b i.e., b < πcons(v). Furthermore
we assume that there is a feasible path P from v to t such that its total travel time is less
than π2(v, b). A lower bound minIn for the energy that is needed to drive along P is given
by cons(P ). If we subtract b from this value we get a lower bound for the energy that has
to be charged. Thus a lower bound for the total travel time on P is given by

tt(P ) + cons(P )− b
cfmax

=
∑
e∈P

(
dt(e) + cons(e)

cfmax

)
− b

cfmax

=
∑
e∈P

ω(e)− b

cfmax

= ω(P )− b

cfmax

But πtt(v) is a lower bound for ω(P ). Therefore, π2(v, b) has to be less than ω(P )− b
cfmax

,
which is a contradiction to the assumption that the total travel time for the path P is less
than π2(v, b).

Note that π2(v, b) never yields a negative result. The only possibility for negative values is
that the second case of the definition is used i.e., b < πcons(v) and that cons(P ) < b holds.
This is not possible, since πcons(v) is a lower bound for cons(P ).
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A drawback of the new potential is, that it uses the value cfmax as an upper bound for
the charging rate. So the potential is inaccurate if the actual charging rate available on a
path from s to t is much lower than cfmax. This can be the case if only normal charging
stations are available but cfmax is influenced by the existence of battery swapping stations
somewhere else in the graph.

5.1.3 Incorporating Multiple Charging Station Types

Our previous potential functions assume, that a constant charging rate cfmax is available
everywhere in the graph. The potential is still admissible if this assumption does not hold
but it may result in an inaccurate lower bound for the actual travel time. In order to
improve the potential function we will now discuss how we can calculate a potential which
takes into account reachability of charging stations.

The actually available charging rate for a vertex v depends on the set of charging stations
directly reachable from v. Not all charging stations are directly reachable from v due to the
fact that the reachability of electric vehicles is limited by the battery capacity. This means
that we cannot drop all battery constraints if we want that the charging rate depends on
the neighborhood of a vertex v.

As before we want to obtain a lower bound on the total travel time by performing a
backwards search from t. If we compute Pareto-sets, similar to our approach for the
forwards search, we would obtain the exact travel time, and therefore, a somehow perfect
potential. This is of course not practicable since the computation of the potential would
take as long as the algorithm without optimization. We will now analyze how such a
backwards search works in detail and how it can be simplified, so that we can find admissible
and accurate potential functions in short time.

Backwards Search With Travel-Time-Functions. We want to perform a backwards
search originating from t similar to our forwards search. Since this search should take
battery constraints and charging stations into account, again we will use the concept of
SoC-functions. During forwards search these functions are used to map travel time onto the
maximal available SoC. When performing a backwards search, our point of view is slightly
different. Here we use travel-time-functions tt : B → R≥0 ∪ {∞} which map available
SoC onto the minimal travel time required to reach the target with the given SoC. So
travel-time-functions can be seen as the inverse of SoC-functions. We use again piecewise
linear functions to represent these functions, just as we did for the SoC-functions.

While being conceptually equivalent, the travel-time-functions used for backwards searches
have some subtle differences compared to the SoC-functions used in the forwards search. The
main difference is, that smaller values for the minimal required travel time are considered
better. Because of that we have to adjust the definition of dominance. Given two travel-
time-functions ttA and ttB, we define that ttA ∝ ttB holds only if-ttA(b) ≤ ttB(b) holds
for all b ∈ B. For the same reason ∞ is used as special value indicating that the path is
not feasible, instead of −∞. Furthermore, travel-time-functions are always convex. All
these differences exist because a travel-time-function can be obtained from a SoC-function
by swapping the time- and the SoC-axis.

Using this we can develop a backwards search starting at t with an initial travel-time-
function which states that t is reachable from t in zero time and without requiring any
energy, i.e., the travel-time-function defined by the supporting point [(0, 0)]. Whenever a
travel-time-function belonging to the vertex u is settled, all incoming edges of u are relaxed.
Relaxing an edge e increases the SoC of the label by cons(e) and increases the minimal
required travel time by dt(e). Thus (cons(e),dt(e)) is added to every supporting point of
the travel-time-function. If the minimal SoC b, for which tt(b) < ∞ holds, exceeds the
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battery capacity M , then the label can be discarded. Settling a vertex which also is a
charging station works similar to the forwards search.

The backwards search stops as soon as all labels are settled. At this point we have for every
vertex v a Pareto-set {tt1, . . . , ttk} of travel-time-functions, which map available SoC b onto
the minimal Travel time required to reach t from v with an initial SoC of b. This Pareto-set
can be used to define a potential function π(v, b) as π(v, b) := min{tti(b) | 0 ≤ i ≤ k}. In
order to find this lower bound, we simply search through all travel-time-functions in the
Pareto-set and look for the one, which yields the lowest travel time for the given SoC b.

The whole procedure described so far is basically our default algorithm adapted to work as
a backwards search. Using this as an actual potential would not provide any speedup, since
computing the potential takes as long as an query without optimization. But now that we
have an accurate potential we can use it as a starting point for further optimization. A
main reason for Pareto searches being much slower than single criterion Dijkstra, is that
the Pareto-sets can get quite large. This in turn increases the number of labels that get
settled and edges which get relaxed.

Therefore, our main approach for a fast and accurate potential function is, to reduce the
complexity of the Pareto-sets. We start by treating the Pareto-set as a whole, instead of
the single entries. This means that we are transitioning from a label-setting algorithm to a
label-correcting one.

Lower Bound Functions. In order to reduce the complexity of the Pareto-sets we want
to view them as a whole, instead of as a set of many travel-time-functions. The easiest
way to do so is replacing the Pareto-set with one single function which dominates all the
travel-time-functions contained in the Pareto-set.

Consider a Pareto-set {tt1, . . . , ttk} of travel-time-functions. Given such a Pareto-set we
define a new function tt : M → R≥0 ∪ {∞} which, again, maps SoC onto minimal required
travel time. The value of this function is defined as

tt(b) := min
1≤i≤k

tti(b).

This function obviously dominates all travel-time-functions contained in the Pareto-set,
while itself is not necessarily a travel-time-function, in the sense that it is in general neither
continuous nor convex.

Now we can use any type of function as a lower bound for tt(b) in order to simplify the
Pareto-set. We use such functions to replace all Pareto-sets in the backwards search, which
results in a label correcting search algorithm. In order to be applicable in such a search,
lower bound functions need to support some operations. First of all, there has to be a way
of computing initial lower bound functions from a given Pareto-set. Furthermore, the lower
bound functions need to support linking and merging, which each take two lower bound
functions and map them to a new lower bound function.

Linking. Linking in general describes the result of consecutive events. This is the case if
either two paths or edges are traversed successively, or a path or an edge is traversed after
using a charging station.

We first consider the case of linking two paths or edges. Let therefore P and Q be two
paths such that the last vertex of P is equal to the first vertex of Q. Note that in order
to represent edges, a path containing only the two vertices of the edge, can be used.
Furthermore let ttP (b) and ttQ(b) be two lower bound functions which map SoC b onto a
lower bound for the travel time required to traverse P or Q. The result of linking these
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two functions is then defined to be a lower bound tt(b) for the conjunction of both paths,
which we denote by ttP ◦ ttQ. The result of linking two lower bound functions has to fulfill

(ttP ◦ ttQ) (b) :≤ min
0≤bA≤b

(ttP (bA) + ttQ(b− bA)) .

This definition reflects that both paths have to be traversed and that if we spend bA energy
on path P , we can only use the remaining energy b− bA to traverse path Q.

We now define how charging functions and paths or edges can be linked. Let therefore v be
a charging station with its charging function cfv. Furthermore let P be a path starting at v
and let ttP (b) be a lower bound function for the travel time needed to traverse P for an
initial SoC of b. The result of linking the two functions cfv and ttP is denoted by cfv ◦ ttP
and describes the minimal travel time needed to traverse P if we start with an initial SoC
of b at v and are allowed to use the charging station before departing. The result of linking
these two functions is defined as

(cf ◦ ttP ) (b) :≤ min
ct≥0

(ttP (cf(b, ct)) + ct)

This definition states simply that, before traversing the path P , an arbitrary amount of
time can be spent for recharging. This of course increases the travel time but also the
available energy for traversing P .

Merging. Merging is used when there are multiple paths between two vertices. In this
case the merged lower bound function for these paths is defined as the minimal travel
time required to traverse any of these paths for a given initial SoC b. Let P and Q be
two u-v-paths and ttP (b), ttQ(b) their corresponding lower bound functions. The result tt(b)
of merging these two functions is a function which maps initial SoC b onto a lower bound
for the travel time required to get from u to v, if either of the paths P and Q can be used.
The merged function is denoted by ttP ∪ ttQ and has to fulfill

(ttP ∪ ttQ) (b) :≤ min (ttP (b), ttQ(b)) .

Using lower bound functions which support these operations as labels we can perform a
backwards and label correction search starting at t. As initial label for the vertex t, the
constant function equal to 0 is used. As key for the lower bound function tt(b), which is
used to sort them in the queue, we use tt(M), which is the minimal travel time needed
to reach the target for any initial b. When settling a vertex, we first check if the vertex
is a charging station. If this is the case, the charging function is linked with the current
label. Afterwards, all incoming edges are relaxed. When relaxing an edge e = (u, v), the
current lower bound for u is linked with the lower bound for e, in order to obtain a new
lower bound for v. If v had previously been visited, its current lower bound is merged with
the new lower bound created during the edge relaxation.

5.1.4 Convex Lower Bound

As first approach for efficient lower bound functions we use again piecewise linear functions.
Since the ideas proposed in the previous section emerged from piecewise linear travel-time-
functions all needed operations can be implemented for this type of functions quite easily.
Using the definitions of the previous section, our piecewise linear lower bound functions
would contain one supporting point for every Pareto optimal solution. Thus we have to
use a weaker lower bound in order to reduce the complexity.

A simple way of reducing the complexity of a piecewise linear function is to remove some
of its supporting points. As we want to preserve a correct lower bound function, we cannot
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Algorithm 5.1: Linking for Convex Lower Bound Functions
Input: Two sequences A = [(b, tt)A1 , . . . , (b, tt)Ak ], B = [(b, tt)B1 , . . . , (b, tt)B` ]
Output: A sequence C of supporting points representing ttA ◦ ttB

1 C ← ∅
2 iA, iB ← 0
3 while iA ≤ k and iB ≤ ` do
4 C ← append(C, A[iA] +B[iB])
5 m← min(slope(A, iA), slope(B, iB))
6 if slope(A, iA) ≤ m then iA++
7 if slope(B, iB) ≤ m then iB++

remove arbitrary supporting points. When removing supporting points we have to ensure
that the resulting function dominates the original one, i.e. itself is a lower bound for the
original lower bound function. This means that we cannot remove those supporting points
which are part of the convex hull of all supporting points.

Based on this observation our approach is to use convex and piecewise linear functions as
lower bounds. We use a sequence [(b1, tt1), . . . , (bk, ttk)] sorted by SoC to represent such a
function. Next we have to show how these functions can be linked and merged. The result
of these operations, as defined in the previous section, is not necessarily convex. Thus we
can only use a convex lower bound for the actual result of these operations. Every time
two functions are linked or merged, we use Grahams Scan [Gra72] to compute the convex
hull of the resulting supporting points and discard all supporting points which are not part
of the convex hull. Since our supporting points are already sorted, this can be done in a
single linear sweep over the supporting points. Replacing the result of linking or merging
with its convex lower bound will introduce an additional error, but it will hopefully also
keep the number of needed supporting points low.

Linking. Linking two convex and piecewise linear functions can be done in linear time
using a single sweep over the supporting points of both functions as shown in Algorithm 5.1.
Given two sequences A = [(b, tt)A1 , . . . , (b, tt)Ak ] and B = [(b, tt)B1 , . . . , (b, tt)B` ], which define
the functions ttA(b) and ttB(b), the algorithm computes the supporting points of the
function (ttA ◦ ttB)(b). Every supporting point of the resulting function is the sum of one
supporting point from sequence A and one point from B. The first supporting point is the
sum of the first points from both sequences A and B. The following supporting points are
computed by adding the next supporting point of the currently steeper function with the
same point as before of the other function.

We now show that the result of this procedure is the linked function, which is defined by

(ttA ◦ ttB) (b) := min
0≤bA≤b

(ttA(bA) + ttB(b− bA)).

For b < bA1 + bB1 the linked function is equal to∞, since there exists no bA such that ttA(bA)
and ttB(b− bA) are both less than ∞. For b = bA1 + bB1 there exists only one value for bA
such that the result is less than ∞. Thus we have (ttA ◦ ttB) (bA1 + bB1 ) = ttA1 + ttB1 , which
corresponds to the first supporting point computed by Algorithm 5.1. We now assume that
the first segment of the function ttA is steeper than the first segment of function ttB. In
this case our algorithm uses (bA2 + bB1 , ttA2 + ttB1 ) as second supporting point of the linked
function. This is equivalent to the definition of linking, since there exists no bA such that

(ttA ◦ ttB) (bA2 + bB1 ) = ttA(bA) + ttB(bA2 + bB1 − bA)

is less than ttA2 + ttB1 . For bA = bA2 we get ttA2 + ttB1 as travel time, which is the value
of the computed supporting point. Choosing bA > bA2 leads to a travel time of ∞,

45



5. Speedup Techniques

Algorithm 5.2: Merging for Convex Lower Bound Functions
Input: Two sequences A = [(b, tt)A1 , . . . , (b, tt)Ak ], B = [(b, tt)B1 , . . . , (b, tt)B` ]
Output: A sequence C of supporting points representing ttA ∪ ttB

1 C ← ∅
2 iA, iB ← 0
3 while iA ≤ k and iB ≤ ` do
4 tt← min(A[iA]. tt, B[iB]. tt)
5 if A[iA]. tt ≤ tt then C ← append(C, A[iA++])
6 if B[iB]. tt ≤ tt then C ← append(C, B[iB++])
7 while iA ≤ k do
8 C ← append(C, A[iA++])
9 while iB ≤ ` do

10 C ← append(C, B[iB++])

because bA2 + bB1 − bA is less than the minimal SoC required to traverse B. Finally,
choosing bA < bA2 cannot yield a travel time less than ttA2 + ttB1 , because of the slopes
of both functions. A smaller value for bA means that the SoC available for traversing A
decreases while the SoC for B increases. This means traversing A will take longer while
traversing B will take less time. But, since the slope of A is steeper, the additional travel
time needed for A will be greater than the travel time saved on B. Thus the overall
travel time will increase if bA is less than bA2 . We can repeat the same argument for the
remaining supporting points of the linked function. Therefore, the function computed by
our algorithm is indeed the linked function.

Merging. Merging two convex and piecewise linear functions is even easier than linking
them. In order to ensure that

(ttP ∪ ttQ) (b) ≤ min (ttP (b), ttQ(b))

holds we simply have to merge the supporting points of both functions into one sequence
which is again sorted by SoC. Since simply merging the supporting points of both lower
bound functions yields in general a function which is not convex, we use Grahams Scan
simultaneously in order to ensure that the resulting sequence of supporting points is
convex. An exemplary pseudo code implementation of the merge operation is provided in
Algorithm 5.2.

Since we have defined all required operations, we now can perform a label correcting search
starting at the target vertex which uses piecewise linear and convex functions as label.
Doing so results in one lower bound function ttv : B→ R≥0 ∪{∞} for every vertex v. Note
that if the backwards search did not reach a vertex v, which means that there exists no
feasible v-t-P , then the lower bound function for this vertex is constant and equal to ∞.
This lower bound function travelT imev can then be used directly as a potential for the A*
search.

π3(v, b) := ttv(b).

5.1.5 Parametric Lower Bound

Another approach is to use a parametric equation as lower bound for the Pareto-sets. The
big advantage of such a solution is, that the complexity of a parametric equation is constant.
This means that the lower bound function only needs constant memory space, independent
of the original Pareto-sets complexity. We propose to use hyperbolic functions of the form

y = α

x− β
+ γ
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as lower bound for the minimal required travel time depending on the initial SoC. Further-
more, we use explicit values mintt and minb which are lower bounds for the travel time
and the SoC required to traverse a path. Incorporating these values yields lower bound
functions tt(b) of the form

tt(b) :=
{
∞ if b < minb
max( α

b−β + γ, mintt) else,

which are represented by quintuples (α, β, γ,mintt,minb). Since not every combination of
these five values yields a meaningful lower bound function we introduce some additional
restrictions for the values of α, β, and γ, which ensure that the resulting function is convex:

α ≥ 0
β ≤ minb
γ ≤ mintt .

We can now try to use these functions in the same way as we have used the piecewise
linear and convex functions before. First we have to consider how we can compute the
five values from a given Pareto-set of paths or from a single edge. In the case of piecewise
linear and convex functions we used Grahams Scan to compute the convex hull of the given
Pareto points. Computing an initial lower bound is slightly more complicated for our new
hyperbolic functions.

Given a Pareto-set [(b1, tt1), (b2, tt2), (b3, tt3)] consisting of exactly three points, there exists
a unique hyperbolic function, such that all three points are contained in the graph of this
function. First of all we can compute the minimal values for required travel time and SoC

mintt := min{tt1, tt2, tt3}
minb := min{b1, b2, b3}.

Furthermore, we know that all three points are contained in the graph of a hyperbolic
function, which leads to a system of three equations with three unknown variables. We
solve this system for α, β, and γ and obtain:

β := (tt2− tt1)b1b2 + (tt1− tt3)b1b3 + (tt3− tt2)b2b3
(tt1− tt2)b3 + (tt3− tt1)b2 + (tt2− tt3)b1

γ := b1 tt1−b2 tt2−(tt1− tt2)β
b1 − b2

α := (tt1−γ)(b1 − β).

If less than three points are given, we can use degenerated forms of hyperbolic functions.
In the case of two Pareto points we generate a third point approaching the arithmetic mean
of the two given points. This gives us

β = b1 + b2 − b1b2
ε

for ε > 0

as value for β. Afterwards, we use the definition for γ and α from above. In the case that
only one point (b, tt) is given, we set α = 0, β = b and γ = tt. Examples for all these cases
are provided in Figure 5.1.

In the case that more than three Pareto points are given, there exists no simple closed
formula for a good hyperbolic lower bound. Thus we have to search for a hyperbolic lower
bound function which is close to all given Pareto points. The best hyperbolic function we
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Figure 5.1: Three examples for hyperbolic lower bound functions in green. Left: A
lower bound for a single Pareto point (1, 2). Middle: A lower bound for
two Pareto points (1, 3), (2, 1). Right: A lower bound for three Pareto points
(1, 4), (2, 2), (3, 1). The red function shows the hyperbolic function without the
limits mintt and minb. The shaded area depicts the deviation from the original
Pareto-set.

could find, is one that is a lower bound for all Pareto points and minimizes the deviation
from the original Pareto-set. As deviation we define the area enclosed by the hyperbolic
function and the Pareto front.

If we additionally demand that at least three Pareto points are contained in the hyperbolic
function, then we can simply search through all functions defined by a subset of three points
from the Pareto-set. For every such subset we compute the uniquely defined hyperbolic
lower bound function. We then check if this function is also a lower bound for the remaining
points in the Pareto-set. If this is the case, we compute the actual deviation from the
Pareto front. Finally, we keep only the hyperbolic lower bound function with the minimal
deviation.

This search is not really efficient, but computing initial lower bound functions has to be
done only once and can even be part of preprocessing. Furthermore, there is normally only
one Pareto per edge. Therefore, we can often compute initial lower bounds efficient using
the closed formula. Next we show how hyperbolic lower bounds can be linked.

Linking. Recall, that linking for arbitrary lower bound functions ttA, ttB is defined as

tt(b) = (ttA ◦ ttB) (b) := min
0≤bA≤b

(ttA(bA) + ttB(b− bA)) .

Together with the definition of the hyperbolic lower bound functions we can see that the
lower bounds min tt and min b are simply the sum of the corresponding values from the
function ttA and ttB. This means mintt := minttA + minttB and minb := minbA + minbB.

Now we look at the function f(bA) := (ttA(bA) + ttB(b− bA)) for a fixed value of b. For ttA
and ttB we insert the corresponding hyperbolic functions without using their explicit lower
bounds (mintt and minb). Thus we get

f(bA) := αA
bA − βA

+ γA + αB
b− bA − βB

+ γB.

Since ignoring the bounds mintt and minb of our hyperbolic functions only decreases their
value, we can use the function f to calculate a lower bound for the linked function tt(b)

min
0≤bA≤b

f(bA) ≤ (ttA ◦ ttB) (b) = tt(b).
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Figure 5.2: Example of two hyperbolic functions (ttA(b) and ttB(b)), and how the result of
merging them could look like (tt(b)). The area shaded in dark grey corresponds
to the error of the merge operation. Minimizing the area shaded in dark
grey (the error) will maximize the area shaded in light grey.

Next we determine the minimal value of the function f . We do so by differentiating f and
analyze where it is equal to 0, which leads to

f ′(b′A) = −αA
(b′A − βA)2 + αB

(b− b′A − βB)2
!= 0.

Solving this equation for b′A yields

b′A =
αA(b− βB)− αBβA −

√
αAαB(b− βA − βB)

αA − αB
.

Using this value b′A as argument of the function f yields

min
0≤bA≤b

f(bA) = f(b′A) =
αA + αB + 2√αAαB

b− (βA + βB) + (γA + γB),

which is a hyperbolic function of the argument b. Thus we can use it as the linked function
tt(b), which therefore is defined by the three values

α = αA + αB + 2
√
αAαB

β = βA + βB

γ = γA + γB.

Merging. The last operation we need to define for hyperbolic functions, so that we can
use them as lower bound functions, is merging. Unlike the other operations, merging two
hyperbolic functions causes some problems. The main reason for this is that the minimum
of two hyperbolic functions is in general not a hyperbolic function. An example for this is
shown in Figure 5.2. Thus, if we want to merge two hyperbolic functions, we can only try
to find a lower bound for the exact minimum of the two functions.

So we are searching for a hyperbolic function tt(b), which satisfies the equation

tt(b) := (ttP ∪ ttQ) (b) ≤ min (ttP (b), ttQ(b)) ,

and is as close as possible to the two functions ttA(b) and ttB(b). We can quantify the
deviation from the optimal solution of this problem, by the area enclosed by the three
functions tt(b), ttA(b) and ttB(b). This area is shaded in dark gray in Figure 5.2. So we
want that tt(b) minimizes this area.
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Now we have to find a quintuple (α, β, γ,mintt,minb), which fulfills the conditions men-
tioned above. It is easy to see that mintt and minb have to be defined as

mintt := min (minttA,minttB)
minb := min (minbA,minbB) .

This helps us to simplify the objective function of our optimization problem. Instead of
minimizing the area enclosed by the three functions tt(b), ttA(b) and ttB(b), we can now
maximize the area beneath tt(b), which is additionally bounded by mintt and minb. This
area is shaded light grey in Figure 5.2. Since this area is only bounded by one hyperbolic
function, it is much easier to compute. The actual value of this area A is given by

A(α, β, γ) :=

α
mintt−γ+β∫
minb

(
α

b− β
+ γ −mintt

)
db

= α log
(

α

(minb− β)(mintt−γ)

)
+ (minb− β)(mintt−γ)− α.

Now we can apply some numerical optimization technique in order to maximize the
function A(α, β, γ) with the side conditions that tt(b) ≤ ttA(b) and tt(b) ≤ ttB(b) hold
for every b ∈ B. Unfortunately this is relatively slow compared with the constant running
time need for linking hyperbolic functions or the linear running times when using piecewise
linear and convex functions.

5.2 Contraction Hierarchies
The second speedup technique we adapt for our scenario are Contraction Hierarchies (CH).
The CH algorithm was first introduced by Geisberger et al. [GSSD08], where it was used
to speedup a single criterion shortest path search. The approach of Storandt [Sto12b]
already adapts CH for electric vehicle routing with charging stations, although they only
consider battery swapping stations. For building the CH they use the techniques, which
they introduced in [Sto12c].

An essential component of the algorithm proposed in [Sto12b] is, that the vertices which
represent charging stations are not contracted during the CH preprocessing. Thus the
impact of charging stations only has to be considered in the query algorithm but not during
preprocessing. We also use this approach for our CH preprocessing. Apart from that,
crucial ingredients for the CH preprocessing are the vertex ordering, in which the vertices
get contracted, and the witness search, which is used to determine if a shortcut es needed
or not.

5.2.1 Heuristic Vertex Ordering

In their work, Geisberger et al. introduce and evaluate several criteria, which can be used
to determine the next vertex to be contracted. In our implementation we use three of the
introduced criteria, namely edge difference, contracted neighbors and search space depth.

Edge Difference. The edge difference vor a certain vertex v describes the relation between
removed edges and newly added shortcuts when contracting the vertex v. In the original
work of Geisberger et al. this value was defined as the difference between the number
of shortcuts that have to be added when contracting v and the degree of v, which is the
number of edges that get removed when contracting v. The number of shortcuts that
have to be added is, for this purpose, determined by simulating the contraction of v. The
purpose of this criterion is, to keep the average degree of the uncontracted small.
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In our implementation make some small adjustments to this criterion. First of all, the
original CH preprocessing was designed for the single criterion shortest path problem.
Therefore there exits a unique shortest distance between any pair of two vertices, leading
to at most one shortcut between two vertices. As shown before, when considering our
EV routing problem, we have to deal with Pareto-sets of optimal paths between pairs of
vertices. So one shortcut can represent an arbitrary number of paths, depending on the
size of the corresponding Pareto-set. Because of this we do not use the number of added
shortcuts and the degree of a vertex v, but the sum of the sizes of the Pareto-sets associated
with these edges.

Furthermore we use the quotient of these two values instead of their absolute difference.
Thus our final value for the vertex v using this criterion is given by∑

e∈SC(v)
ParetoSetSize(e)∑

(v,u)∈E
ParetoSetSize(v, u) +

∑
(u,v)∈E

ParetoSetSize(u, v) ,

where SC(v) denotes the set of shortcuts, which have to be added when contracting v,
and ParetoSetSize(e) denotes the size of the Pareto set associated with the edge ore
shortcut e. All edges in the input graph have of course one fixed driving time and energy
consumption, thus their Pareto Set size is counted as 1. Shortcuts, on the other hand, may
contain Pareto sets with multiple entries, whenever the exit multiple non dominating paths
between the head and the tail of the shortcut, as we have seen in Section 2.3.4.

Contracted Neighbors. Since the main aim of the CH preprocessing is, to speedup
query time, it is desirable that the search space of the later query algorithm is minimized.
The contracted neighbors criterion tries to achieve this by preventing that many vertices
which are neighbors of each other get contracted successively. The criterion simply counts
the number of neighbors of a vertex, which already got contracted. This number is initially
zero for every vertex. Every time a vertex v gets contracted, the number is incremented by
one for all neighbors of v.

Search Space Depth. Another approach for minimizing the later search space size is, to
minimize the depth of the search tree. The search space depth is a rough approximation
for the depth of the vertex v in a search tree during some query. This criterion again is
initially zero for all vertices. When contracting a vertex v, the depth off all its neighbors
may increase by one. Therefore the new depth of its neighbors is set to the depth of v plus
one, if it was not already higher.

A sum of all three criteria is used to evaluate how important a vertex is. A higher value
implies that the vertex is more important, thus the vertex with the smallest sum of the three
criteria gets contracted next. As we will see in the experimental section, the Pareto-sets
as well as the average vertex degree tends to get very high during the preprocessing. We
try to compensate for that by multiplying the edge difference criterion with the factor 16
when computing the sum of the three criteria.

5.2.2 Witness Search

Another essential component of the CH preprocessing is the witness search. As already
discussed in the preliminaries section, we have to use a Pareto search as witness search,
if we do not want to add unnecessary shortcuts. Unfortunately such a search is relative
slow compared to a single criterion search. This difference becomes particularly obvious, if
the core graph already features a high average vertex degree and if the shortcuts contain
already large Pareto-sets.
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In order to make the preprocessing phase a bit faster, we allow that some unnecessary
shortcuts are added, if this reduces the time spent for the witness search. So we do not
need to perform a full and correct Pareto search, but can use a heuristic algorithm instead.
We only have to make sure that the heuristic search considers only feasible paths, i.e.,
the computed travel time is never shorter than the correct travel time, which would be
computed by a full Pareto search.

Our first improvement is to limit the size of the Pareto-sets used as labels during the search.
We use a fixed upper bound for all involved Pareto-sets. If, due to an edge relaxation, the
Pareto-set of some vertex exceeds this upper bound we simply delete some of the entries, so
that the size is again lower than the given bound. When deleting entries from a Pareto-set
we try to maintain the overall shape, so that the resulting set is a good approximation for
the initial set. We do so by comparing the entries of the Pareto-set. We search for the two
points contained in the set with the minimal euclidean distance and delete one of them. In
our implementation we use 10 as an upper bound for the Pareto-set size.

Another possibility to reduce the computation time is to limit the depth of the search tree.
For this purpose we extend each label by a counter, counting the number of edges, that
have been relaxed in order to create the label. When relaxing an edge, the depth of the
newly created label is given by the depth of the current label plus one. If the depth of a
label exceeds the given limit, the label is simply ignored. In our implementation we use a
maximal search depth of 15.

The witness search is not only used when contracting a node, but also when the contraction
is simulated in order to compute the edge difference criterion. So the witness search
is actually performed twice for every vertex. This can, of course, be optimized. When
computing the edge difference, we do not only count the size of the Pareto-set of the
shortcuts, but we also save all shortcuts that have to be added if the vertex gets contracted.
Thus we do not need to repeat the witness search if the vertex gets actually contracted.

5.2.3 Query Algorithm and SoC-Functions

Our charging station propagating algorithm from Chapter 4.2 only needs minor modifica-
tions, so that it can be used with a CH instead of a graph without preprocessing.

Just as the normal CH query algorithm introduced by Geisberger et al., our algorithm
relaxes only edges or shortcuts in the direction of increasing vertex importance. Recall that
a vertex u was defined to be more important than another vertex v, if u got contracted
after v. As we do not allow that charging stations get contracted, our CH contains a core
of uncontracted vertices. All uncontracted vertices are defined to be equally important,
thus our algorithm has to relax all edges or shortcuts between vertices in the core graph.

Our search algorithm, using SoC-functions, is actually only meant to be used as a forwards
search. A CH query, however, requires a bidirectional search. We solve this problem by
splitting the search algorithm in two phases. First we perform a backwards search starting
at t, until we reach the core graph. This search can be done without using SoC-functions,
because all charging stations are contained in the core graph. We stop the backwards
search as soon as the core is reached, thus we cannot encounter any charging stations and
our backwards search needs only to link the energy consumption functions of the relaxed
edges. Afterwards, we add additional shortcuts from the core vertices, which were reached
by the backwards search, to t to our graph. Furthermore, we give t the highest priority so
that these new shortcuts are relaxed by the later forwards search. After this is done we
start a forwards search from s which now uses SoC-functions.
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The last difference between our CH query algorithm and the plain search algorithm using
SoC-functions is the relaxation of shortcut edges. A shortcut from u to v potentially
represents a complete Pareto-set of paths from u to v. We relax each of these paths
separately as if they were different edges.

Relaxing a complete path P instead of an edge is actually not a huge difference, if
the SoC b(tt), which is used as label, is represented by the quadruple (v, b, c, tt). The
relaxed SoC-function, which is denoted by (b ◦ P ) (tt), is in this case defined by the
quadruple (v, b, c ◦ c(P ), tt + dt(P )). This definition reflects, that relaxing a path changes
neither the last seen charging station nor the SoC b with which this charging station was
reached. But relaxing a path increases the minimal travel time by the time needed to
traverse the path. Furthermore, it changes the energy consumption on the path from the
last charging station to the last vertex of P . We compensate for that by linking the current
energy consumption function c with the energy consumption function c(P ) of the path P .

5.3 Combining CH and A*
As the size of Pareto-sets can grow exponentially in the size of the graph, it is sometimes
simply not possible to compute a complete CH. We can stop the CH preprocessing at
any given time, for example if a certain time has passed, or if the average degree in the
uncontracted graph gets too high. Stopping the preprocessing will leave us with a hopefully
small core graph. We now can use the A* speedup technique restricted to the core graph.

The only difference to using A* on the input graph is, that the edges in the core graph
already contain Pareto-sets instead of a single travel time, consumption pair. During
forwards and backwards search the Pareto edges are relaxed as if they were separate edges,
leading to the same vertex. When using lower bound functions, in order to compute the
potential function, these Pareto-sets can be approximated by lower bound functions before
the actual backwards search starts. This can already be done during preprocessing.

If we cannot compute a complete CH, we perform a reordering on the vertices, such that
all core vertices are stored within consecutive memory.
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In this chapter, we introduce several heuristics for EVRC. Instead of insisting on finding
the optimal solution, we now only aim for fast algorithms. We start by reviving the
conventional car driver’s approach which was first introduced in Chapter 4.1. Afterwards,
we develop heuristics based on our algorithms from Chapters 4.2 and 5.

6.1 Conventional Car Driver’s Approach (CCDA)
As we have shown before, it is not sufficient to treat charging stations for EVs in the same
way as it is done with gas stations for conventional vehicles. While we were not able to
develop an optimal algorithm using this approach it might still lead to a good heuristic.

The basic idea of the conventional car driver’s approach is, that we restrict ourselves to
using only shortest paths without considering battery constraints. This restriction should
be fulfilled between any two stops, with a stop being defined as starting at s, arriving
at t, or using a charging station. Doing so, the path between any two charging stations is
uniquely defined. So, when computing a path from s to t, the algorithm only has to choose
a sequence of charging stations.

Preprocessing. Since the path connecting any two charging stations is uniquely defined,
it can be precomputed. We now introduce a preprocessing step where we compute a
shortcut graph G′ = (V ′, E′), similar to the auxiliary graph proposed in [SF12], containing
all charging stations as vertices, i.e., V ′ := CS. This graph contains an edge connecting
two charging stations, if and only if the shortest path (regarding driving time) between
these two charging stations is also a feasible path (regarding battery constraints) when
departing with a fully charged battery.

For this purpose, we compute a shortest path tree Tu for every charging station v ∈ CS.
This shortest path tree can be computed using Dijkstra’s algorithm. In addition to dist[·]
and parent[·], we also keep track of the linked energy consumption function c for every
vertex in Tu. After we computed Tu, we check for every charging station v ∈ CS whether
the linked energy consumption function of the path from u to v is feasible. If this is the
case, we add an edge e = (u, v) to the shortcut graph G′. Since we only add edges for such
vertices, where the consumption function is feasible, we may as well stop the execution
of Dijkstra’s algorithm as soon as the consumption functions for all vertices in Q are
unfeasible. This does not violate correctness of the algorithm, because relaxing an vertex
with an unfeasible battery state can never lead to a vertex with a feasible battery state.
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Finally, we define an edge weight function on the computed shortcut graph G′. Recall that
every edge e = (u, v) ∈ E′ represents a shortest path from u to v in G. We use the driving
time of this path as driving time dt(e) for the edge e. Furthermore, we know the linked
energy consumption function of this path. We use this function to describe the energy
consumption of e. As before, we represent this function using three values, hence we get
the three additional edge weights cost(e), minIn(e), and maxOut(e).

Query Algorithm. Our query algorithm gets G′ as additional input and operates in two
phases. The first phase uses Dijkstra’s algorithm to calculate two shortest path trees, one
in forwards direction rooted at s and one in backwards direction rooted at t. Just as during
preprocessing, we keep track of the linked energy consumption functions and stop the com-
putation as soon as the queue contains only vertices with a unfeasible energy consumption
functions. If the forwards search reaches t and the initial SoC b(s) is sufficient to reach t,
we can stop the computation and output the found path. Otherwise, we compute the
set CSs containing all charging stations reached from s and CSt containing all stations
from which t is reachable. Afterwards, we proceed with the second phase of the algorithm.

We now know that t is not reachable from s without recharging. Moreover, we know all
charging stations reachable from s and all charging stations from which t is reachable.
Now we can use the shortcut graph G′ to compute the shortest path between any pair of
vertices in CSs and CSt. For this purpose, we temporarily add s and t to V ′ and connect
them to the sets of reachable charging stations. This is done by adding edges e = (s, u) for
every u ∈ CSs and e′ = (v, t) for every v ∈ CSt to E′. The driving time and consumption
values of these edges are the ones of the associated paths in G as they were computed in
phase one. Afterwards, we use a slightly modified version of Dijkstra’s algorithm on G′ to
compute the final path connecting s and t. We use an additional array b[·] to keep track
of the current SoC for every vertex we visit. This means that we maintain a label (tt, b)
consisting of travel time and SoC for every vertex. It is now fairly easy to decide how much
time has to be spent for charging when visiting a charging station.

Every time an shortcut edge e = (u, v) ∈ E′ is relaxed, we know the current SoC b[u] at u.
Therefore, we can define the function f(ct) := cfu(b[u], ct) which maps charging time at
the charging station u to the thereby reached SoC. Furthermore, we know the minimal
SoC needed for traversing e given by minIn(e). Now we can recharge at u until the state
of charge is exactly minIn(e). By doing so we can compute a new label (tt′, b′) for v. The
travel time tt′ := tt[u] + f−1(minIn(e)) + dt(e) is given as the sum of the time needed to
reach u, the recharging time and the driving time for the edge e. The new SoC for the
vertex v is given by b′ := minIn(e). As before the edge e gets only relaxed if tt′ is less than
the current travel time tt[v] for reaching v.

Note that we only relax such edges e = (u, v) ∈ E′ where b[u] < minIn(e) holds. The
reason for this is the precondition that we cannot reach v without recharging. Otherwise
there would be an edge from the parent of u to v in G′.

Complexity. During preprocessing we compute one shortest path tree for every charging
station, using basically plain Dijkstra. Therefore, the time complexity of the preprocessing
phase is given by O(|CS | · (n+m) log ·n). The preprocessing might add up to |CS |2 new
edges, thus we get m′ ∈ O(m+ |CS |2).

The query algorithm consists of up to three invocations of Dijkstra’s algorithm. Two
invocations are plain Dijkstra, and compute the set of charging stations reachable from s
and the set of charging stations from which t is reachable. The third invocation uses
Dijkstra’s algorithm with a slightly modified relax operation. But this modified edge
relaxation can still be done in constant time. Therefore, the overall worst case complexity
of the query algorithm is equivalent to the worst case complexity of Dijkstra’s algorithm,
which is O((n+m′) log ·n) = O((n+m+ |CS |2) log ·n) when using a Binary Heap.
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6.2 Optimal Travel Time for Given Charging Speed
In this section we add heuristics to our algorithm developed in Chapter 4 and 5. We no
longer insist on finding the optimal solution, if this reduces the computation time. The
starting point for this heuristic is our base algorithm with both speedup techniques, A*
and CH, enabled.

Our first heuristic improvement focuses on edge relaxations. After the CH preprocessing,
most edges in the core graph are shortcuts. Recall that a shortcut from u to v has a
Pareto-set assigned to it, where each entry corresponds to a Pareto optimal path from u to v.
When relaxing such a shortcut edge, each of the Pareto-set’s entries has to be linked with
the current label for vertex u, which generates a new label for the vertex v. Furthermore,
for every new label, it has to be checked if it is dominated by another label of the vertex v,
or if itself dominates some of these labels.

The Pareto-set of a shortcut edge, can potentially be very large. This leads to a large number
of new labels being created, as well as a large number of dominance checks that have to be
performed. On the other hand, if the optimal route contains the vertices u and v, it can at
most use one of the paths represented by the Pareto-sets entries. Therefore, our approach is
to guess which of the Pareto-sets entries is likely to be part of the optimal s-t-path. Then
our algorithm considers only this single entry, when relaxing a shortcut edge.

Next, we describe the criterion we use to determine the single entry from the Pareto-set
that gets relaxed. In order to find this entry, we have to compare the entries in the
Pareto-set. When comparing two non dominating paths between the same vertices, we
make the following general observations.
• It is not meaningful to use the faster path, which consumes more energy, if the lost
energy has to be recharged afterwards and recharging takes longer than the time
saved by using the faster path.
• It is not meaningful to use the slower path, in order to save energy, if the saved
energy could also be acquired by using a charging station and recharging takes less
time than the additional time needed to traverse the slower path.

Basically, this means that, under some circumstances, the optimal path is simply the one,
which minimizes the sum of driving time and the time required to recharge the amount
of energy used to traverse the path. This sum is actually equivalent to the ω edge weight
function which we introduced in Chapter 5.1.2, provided that recharging is possible with a
constant charging speed of cfmax. Recall that the ω edge weight function was defined as

ω(e) := dt(e) + cons(e)
cfmax

.

In fact, we can show that ω is optimal under certain conditions, which leads to the following
theorem.

Theorem 6.1. We are searching for the fastest feasible s-t-path. Given a Pareto-set P
containing all non dominating paths from u to v, the path P ∈ P which minimizes ω(P ), is
a subpath of the fastest feasible s-t-path, provided that the following conditions are satisfied.

• The fastest path contains u and v in this order.

• The SoC at u is not sufficient to reach t without recharging, regardless of which path
from P is used.

• There occurs no over-charging on the path from u to the next used charging station.

• No matter which path is used, there is always a charging station available before the
battery depletes, and the charging speed is always cfmax.
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Proof. Let P ∈ P be the path which minimizes ω(P ) and ttP the total travel time required
to reach t when using P . Now we assume, for contradiction, that all four conditions are
satisfied and that there exists another path P ′ ∈ P with a total travel time ttP ′ < ttP for
reaching t.

Case 1. We first consider the case of dt(P ′) < dt(P ), which means that traversing P ′ is
faster than traversing P . Since all paths in P are non dominating, it also means that the
energy consumption of P ′ is higher than the one of P , i.e., cons(P ′) > cons(P ).

Consider the fastest s-t-path that has a total travel time of ttP ′ and contains P ′ as a
subpath. Next, we replace the occurrence of P ′ in this s-t-path by P . This increases the
total travel time of the path by dt(P )− dt(P ′). Moreover, the total path remains feasible
since the energy consumption did not increase.

Because t is not reachable without recharging, regardless of whether we use P or P ′,
there has to be a charging station on the s-t-path which we use. The third condition tells
us now, that no over-charging occurred between u and this charging station. Therefore,
when replacing P ′ by P , our SoC at this charging station increases by cons(P ′)− cons(P ).
Thus, we do not need to recharge this amount of energy, which reduces the charging time
by (cons(P ′)− cons(P ))/ cfmax. Finally, the travel time for reaching t when replacing P ′
with P is given by

ttP ′ +
(
dt(P )− dt(P ′)

)
− cons(P ′)− cons(P )

cfmax
≥ ttP .

This time value cannot be less than ttP , since ttP is the minimal travel time when using P .
Next we use that ttP − ttP ′ > 0 holds per assumption, which leads to

dt(P )− dt(P ′)− cons(P ′)− cons(P )
cfmax

≥ ttP − ttP ′ > 0

⇔ dt(P ) + cons(P )
cfmax

> dt(P ′) + cons(P ′)
cfmax

⇔ ω(P ) > ω(P ′),

which is a contradiction to P being minimal under ω.

Case 2. Now we consider the case of dt(P ′) > dt(P ) (note that dt(P ′) = dt(P ) cannot
occur since P and P ′ are non dominating). In this case we also have cons(P ′) < cons(P ).

As before, we consider the fastest s-t-path with total travel time ttP ′ , which contains P ′.
Again we replace P ′ with P in this path, which reduces the overall travel time to t
by dt(P ′)− dt(P ), while it also decreases the b at v by cons(P )− cons(P ′).

This might renders the path infeasible, because the SoC at v might no longer be sufficient
to reach t. But the fourth condition ensures that there is a charging station available on the
path, which we can use to recharge the missing energy. Furthermore, the third condition
states that no over-charging occured between u and this charging station. Therefore, when
reaching the charging station, we are still missing a SoC of cons(P )− cons(P ′), compared
to the original s-t-path using P ′. We now use this charging station to recharge the missing
SoC, which ensures that the path to t is again feasible. Altogether the travel time for
reaching t when replacing P ′ with P is given by

ttP ′ −
(
dt(P ′)− dt(P )

)
+ cons(P )− cons(P ′)

cfmax
≥ ttP .

As in the first case, this is equivalent to ω(P ) > ω(P ′), which is a contradiction to P being
minimal under ω. Thus, our initial assumption must have been false which proves the
theorem.
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6.2. Optimal Travel Time for Given Charging Speed

6.2.1 Constant and Global Charging Speed

We now use Theorem 6.1 to pick one entry from each shortcut’s Pareto-set, for the case
that the maximal available charging speed is given by cfmax. Recall that the value cfmax is
also used to compute the potential function π2 (Chapter 5.1.1). Thus this heuristic is well
suited for being used together with π2 as potential function.

Every time a shortcut edge should be relaxed, we search for the entry in the associated
Pareto-set, which has the minimal value for ω. Only this entry is then used in the search
algorithm, all other Pareto entries are ignored. Since the value of ω does not depend on
the current SoC, it is possible to compute the optimal entry for every Pareto-set in a
preprocessing step.

As we do not check if all conditions of Theorem 6.1 are satisfied, we cannot guarantee
that the resulting algorithm is correct, thus it is only a heuristic. We can, however, try to
fulfill some of the conditions. One of the requirements is that the target t is not reachable
without recharging. When computing the potential function for the A* search, we also
compute a lower bound for the energy required to reach t. This enables us to check if
the current SoC might be insufficient to reach t every time an edge from u to v has to
be relaxed. We only apply our heuristic if the current SoC at vertex u is less than the
minimal SoC required to reach t from u.

We do not check whether the third and fourth condition are satisfied, i.e., if no over-charging
occurs and if sufficiently many charging stations are available, all providing a charging
speed of cfmax. Our assumption is, that these requirements are often satisfied by chance.

Using this heuristic makes relaxing a shortcut from u to v much more efficient. Now only
one entry from the shortcut’s Pareto-set has to be relaxed, instead of all of them. This
leads to the creation of only one new label for the vertex v, which also reduces the overall
number of labels that have to be settled. Furthermore, if only one new label for the vertex v
is created, we only have to check for this single label if it is dominated by another label of
the vertex v, or if itself dominates some of v’s labels.

6.2.2 Lower Bound Potential Functions

The heuristic proposed in the last section requires the knowledge of the maximal available
charging speed cfmax. In this section, we introduce a slight modification of our heuristic,
where we replace the maximal available charging speed by travel-time-functions. Thus
this heuristic is particularly well suited for being used together with π3 as potential
function (Chapter 5.1.3).

We try to avoid using the maximal charging speed cfmax, since it is highly inaccurate for
networks which feature different kinds of charging stations like regular charging stations
and battery swapping stations. The heuristic presented in the previous section used cfmax
in order to convert energy consumption into travel time. The SoC-function of the vertex
currently getting settled as well as the potential function for this vertex also contain
information about the available charging speed.

A SoC-function arises from the last seen charging station on the current path. Thus its slope
states the charging speed offered by this charging station. When computing the potential
functions, travel-time-functions are used. These travel-time-functions are the result of a
backwards search form t to the current vertex, thereby they incorporate information about
the charging stations which could be used on the remaining path to t.

We use both functions together, in order to find an alternative for ω, that does not
use cfmax. Consider the case that a shortcut from u to v should be relaxed. We define a
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6. Heuristics

new function ω′, which takes the current SoC-function b(·) for the vertex v and one path P
which is represented by an entry of the shortcut’s Pareto-set, as arguments. We then use
the potential function of the vertex v, in order to evaluate the minimal travel time required
to reach t if we would use the path P . Thus ω′ is defined as

ω′(b, P ) := min
ttv≥0

ttv +π(v, (b ◦ P ) (ttv)),

where P is an u-v-path and b(·) is the current SoC-function for the vertex u. The definition
minimizes the sum of the travel time ttv required to reach v, including recharging at the last
seen charging station, and the minimal time to reach t from v with a SoC of (b ◦ P ) (ttv).
Here (b ◦ P ) (ttv) is the SoC at which the vertex v is reached if it took us a time of ttv to
reach v, including recharging.

Now we evaluate ω′ for every path represented by the shortcut’s Pareto-set. Afterwards,
our search algorithm relaxes only the path which had the minimal value of ω′, all other
Pareto-entries are ignored. Since the value of ω′ depends on the current SoC-function b(·)
and the potential function π for the vertex v, it is not possible to determine the optimal
Pareto-set entry in a preprocessing step, as it was possible for the heuristic described in
the previous section.

In order to compute ω′ for a path P , the path has to be relaxed. Thus using this heuristic
does not decrease the number of paths that have to be relaxed, as opposed to the heuristic
of the last section. But these relaxations are only used to compute the value of ω′. Only
one path is relaxed in order to obtain a new label, thus the overall number of labels which
are created during the relaxation of a shortcut, as well as the number of dominance checks
that have to be performed is equivalent to the heuristic from the previous section.

6.3 Approximating Pareto-Sets
During the CH preprocessing we already used a heuristic witness search, in order to decide
if a shortcut is needed or not. The heuristic used for this search can also be applied to our
charging function propagating search algorithm. In order to reduce the size of the label-set
during the search we introduced a fixed limit for their size. If the size of a label-set exceeds
this limit, some of the contained labels are simply deleted.

Instead of deleting arbitrary labels, we decide that the label with the minimal travel time
should never be removed, because it potentially leads to the fastest feasible path to t. We
also do not delete the label with the highest SoC, because if the target is reachable by any
of the label-set’s labels, then it is also reachable by the label with the highest SoC. So
keeping this label guarantees, that we find a feasible path to t, if there exists one.

Apart from that we would like to delete labels which are most probably not part of a fast
solution. We can use the potential π in order to estimate the remaining travel time to the
target, similar to the way we used π in the definition of ω′. Given a label for the vertex v
represented by the SoC-function b(·), an estimation for the overall travel time to t is given
by

min
ttv≥0

ttv +π(v, b(ttv)).

If we have to delete a label from a label-set we simply delete the one with the maximal
estimated travel time for reaching t.
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7. Evaluation

In this chapter we evaluate our implementations of the introduced algorithms. First we
describe the input data used for the experiments, as well as the general experimental setup.
Afterwards, we evaluate the performance of the algorithms introduced in Sections 4, 5,
and 6.

7.1 Experimental Setup and Input Data
First we introduce the input used for our experiments. In order to create a complete
problem instance we need a road network together with edge weight functions for driving
time and energy consumption. Furthermore, we need the locations of charging stations as
well as their charging functions.

7.1.1 Road Networks

We evaluate our algorithms using two different types of road networks.

PTV. One of the road networks we use, is kindly provided by the PTV AG for scientific use.
Besides information about road segments and intersections, the data includes geographical
coordinates and road types. For every road type an average driving speed is given. This
information is used together with the length of the edges in order to obtain driving times.
We extracted three graphs of different sizes from the provided data, namely europe, germany
and luxembourg. The size of these graphs is stated in Table 7.1.

OSM. As a second source for road networks we use OpenStreetMap1 (OSM) data. Sabine
Storandt kindly provided us the graph of southern Germany (called osm-sger), which was
used in the eperimental section of [Sto12b]. The graph covers the part of the OSM graph
of Germany which is located south of a latitude of 48.9. In addition to that we extracted
the complete graph of Germany (called osm-ger) from OpenStreetMap. The data of these
road networks again contains geographical coordinates and to some extend information
about the road type. As before this is used to obtain driving times for the edges.

7.1.2 Energy Consumption

We already have the graphs together with driving times, but we also need an edge weight
function for the energy consumption. An EV’s energy consumption depends strongly on

1http://www.openstreetmap.org/
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Graph #vertices (n) #edges (m) #edges with cons ≤ 0

germany 4 692 091 10 805 429 1 119 710 (10.36%)
europe 26 316 863 60 614 720 7 116 296 (11.74%)
luxembourg 36 457 81 950 12 947 (15.79%)
osm-sger 5 588 146 11 711 088 1 142 391 (9.75%)
osm-ger 20 690 320 41 791 542 1 735 554 (4.15%)

Table 7.1: The different graphs used in the evaluation section.

the road slope. In order to compute the slope we use elevation data from the Shuttle Radar
Topography Mission (SRTM), which is freely available from the CGIAR Consortium for
Spatial Information2. The data covers large parts of the world with a precision of three arc
seconds, which corresponds to 90 meters at the equator. Parts of the graphs which are not
covered by this data are removed. In order to compute the actual energy consumption we
use two models depending on the type of the graph.

For the graph originating from PTV data, the energy consumption is computed using PHEM
(Passenger car and Heavy duty Emission Model) [HRZL09], which is developed by the
Graz University of Technology. Among others, the model can be used to compute an EV’s
energy consumption for a great variety of driving situations, taking road categories, driving
speed and slope into account. The road types provided by the PTV data were mapped
to PHEM road categories using a heuristic previously used by Baum et al. [BDPW13].
PHEM models energy consumption for many EV configurations and vehicle types. For
our experiments we choose the model of an Peugeot iOn. This vehicle is equipped with
a 16 kWh battery, which will also be used in our experiments. Additionally we use a fictive
vehicle which has the same energy consumption but features a larger 60 kWh battery.

For the OSM based graphs we use the consumption model introduced in [EFS11]. The same
model was used in [Sto12b], thus together with the osm sger graph we obtain the same
setting that was used in their experimental section. In their model, the energy consumption
for an edge e = (u, v) is given by

cons(e) := fixed(e) +
{
η(v)− η(u) if η(v)− η(u) ≥ 0
α · (η(v)− η(u)) else

fixed(e) := dist(u, v)/50

where dist(u, v) is the linear distance between the two vertices in meters, η(u) is the height
evaluation of a vertex in meters, and α models the EV’s capability of recuperating energy
when driving downhill, which is set to 0.25 in their and our experiments.

Table 7.1 shows an overview over all graphs used in the experimental section. Besides the
number of vertices and the number of edges, the table also shows the number of edges with
negative energy consumption according to the used model.

7.1.3 Charging Stations

In addition to the road networks with driving time and energy consumption we also need the
locations of charging stations. We will evaluate our algorithm on different sets of charging
stations. For a realistic setting we use charging station locations from ChargeMap3, which
lists a huge amount of charging stations all over the world. Their data contains geographic

2http://srtm.csi.cgiar.org/
3http://chargemap.com/
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coordinates. We use these coordinates to map the charging stations to the vertex in our
graph which is closest. If the distance to the closest vertex exceeds 20 meters we ignore
the charging station.

Additionally, we evaluate our algorithms on sets of randomly chosen charging stations
similar to the experimental setting of [Sto12b]. The authors of [SF12] observed that the
number of charging stations in a road network is typically O(

√
n), where n is the number

of vertices in the graph. Therefore, we use this as an orientation for the size of the random
charging station sets.

7.1.4 Charging Functions

The last input data we need are the charging functions, which depend on many factors,
like station type, battery capacity, current SoC, and desired SoC. One type of charging
stations are battery swapping stations. At such a station it is possible to swap the entire
battery in about 90 seconds. We assume that in addition to the swapping time one would
also lose time due to reaching the actual station and paying afterwards. We take this
into account and model the according charging function in such a way that the complete
recharging process always takes three minutes.

The charging function for regular charging stations are a bit more complex. Their shape
depends on the battery capacity and the available power. Using a normal electrical outlet
at home yields a power of 3.7 kW. Most charging stations in use today met the IEC62196
typ 2 standard and yield a power of 11 kW or 22 kW. Supercharger stations by Tesla yields
a power of up to 120 kW, whereby the maximal reachable SoC is limited to 80%.

In order to model charging functions for this kind of stations we use interpolation points
kindly provided by Martin Uhrig et al., which have developed a model for charging function
based on real measurements of Lithium-Ion-Batteries [UL13]. The data contains a table for
every combination of battery capacity and available power, which states the charging time
for given initial and desired SoC (An example table for the battery capacity M = 16 kWh
and an available power of 11 kW is shown in the appendix).

The data shows nicely that the charging process is linear up to 80%. Furthermore, it
becomes evident that our assumption cf(b, ct) := cf ′(ct + cf ′−1(b)) from Chapter 3.1 is
reasonable.

7.2 Experiments
In this section we evaluate the performance of our algorithms in detail. We implemented
all our algorithms in C++ using g++ version 4.7.1 (64 bit) with optimization level 3 as
compiler. The experiments were performed on a single core of a machine with a dual 8-core
Intel Xeon E5-2670 processor clocked at 2.6GHz, with 64GiB of DDR3-1600 RAM. In
order to ensure reproducibility of the experiments only one algorithm was running at any
given time.

7.2.1 CH Preprocessing

We start by evaluating the CH preprocessing. We compute the CH as described in
Chapter 5.2 with a heuristic vertex ordering. In order to determine the next vertex for
contraction, we use a linear combination of all three introduced criteria, which weights
the edge difference criterion 16 times heavier than the contracted neighbors criterion and
the search space depth criterion. Furthermore we use an upper bound of 20 for the search
depth of the used witness search, and an upper bound of 10 for its label-set size.
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Table 7.2: Computation times of the CH preprocessing on various graphs and for different
core sizes. All running times are in the format h:mm:ss. Missing values indicates
that the preprocessing had not terminated after eight hours. Except for the
graph of Luxembourg, where some values are missing because the number of
charging stations, which is the minimal core size, is greater than the desired
core size. CS denotes the used charging station set. The last column states
computation times for a core that only contains the charging stations.

Core size

Graph CS Capacity 1% 0.5% 0.2% only CS

germany cm-1966 16 kWh 6:56 13:26 2:30:46 ?
60 kWh 7:35 14:58 4:49:02 ?

r-2166 16 kWh 7:32 14:13 3:35:14 ?
60 kWh 8:17 15:22 7:21:37 ?

r-4332 16 kWh 7:51 17:03 ? ?
60 kWh 8:41 18:15 ? ?

∅ 16 kWh 6:53 12:10 56:30 ?
europe cm-15666 16 kWh 1:11:05 3:38:29 ? ?

60 kWh 1:15:49 3:48:11 ? ?
r-5579 16 kWh 1:02:13 3:12:42 ? ?

60 kWh 1:04:47 3:26:34 ? ?
r-11158 16 kWh 1:37:59 5:27:31 ? ?

60 kWh 1:41:18 5:59:57 ? ?
lux cm-36 16 kWh 4 5 11 37

4 kWh 1 1 3 5
r-190 16 kWh 5 — — 9:47

4 kWh 5 — — 38
r-280 16 kWh 22 — — 26:10

4 kWh 14 — — 1:20
osm-sger cm-643 ~100 km 8:34 10:43 15:43 7:54:42

~500 km 8:48 11:01 17:04 ?
r-100 ~100 km 8:14 10:13 14:19 1:09:29

~500 km 8:56 10:58 15:04 1:42:37
r-2363 ~100 km 8:41 11:07 21:24 ?

~500 km 9:14 11:45 25:24 ?
∅ ~100 km 8:06 10:07 14:15 53:20

osm-ger cm-2126 ~100 km 8:03 9:06 13:05 7:37:50
~500 km 8:49 9:55 14:18 ?

r-4548 ~100 km 8:56 10:17 15:38 ?
~500 km 9:12 10:48 17:13 ?

We tested the preprocessing on all graphs with varying battery capacities and charging
station sets. The results are shown in Tables 7.2 and 7.3. The column labeled CS describes
the used set of charging stations, where cm stands for data from ChargeMap and r for a
random set. The consecutive number specifies the number of charging stations used. For
comparison only, we have also performed the preprocessing using an empty set of charging
stations. While this does not yield a useful graph for our algorithm, it can be used to
analyze the impact of the charging stations. Recall that charging stations influence the
preprocessing, since it is forbidden to contract them.
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For the PTV graphs we used battery capacities of 16 kWh and 60 kWh, except for Lux-
embourg graph. Because of this graph’s size, a 16 kWh is nearly sufficient to reach every
vertex without recharging. Thus we used a small 4 kWh battery, so that using a charging
station becomes necessary on more routes. For the OSM graphs we used battery capacities
which are equivalent to the energy consumption of driving 100 km or 500 km on flat ground.

Table 7.2 states the times needed to compute CHs up to a certain core size for the different
input graphs and charging station sets. We stopped the computation after eight hours
if it was not already finished, thus some values are missing in the table. In the case of
the Luxembourg graph, some core sizes are not possible because there are more charging
stations then the size of the desired core and it is not allowed to contract charging stations.

The data shows, that computing a CH until the core contains only 1% of the vertices, is
for all graphs possible and does not take to much time. Furthermore we see, that as the
desired core size decreases, the computation time quickly increases. Contracting further
vertices becomes finally so slow that is unpractical for most graphs to compute a CH until
only charging stations remain uncontracted.

The computation times show that a larger charging station set increases the time needed
to reach a certain core size. For a core size of 1% the computation times differ only by
a few minutes. But as the core gets smaller, the impact of a larger charging station sets
quickly becomes visible. For an example we can look at the germany graph with a 16 kWh
battery. Here computing a core containing 1% of the vertices takes between six and eight
minutes independent of the charging station set. Computing a core containing 0.2% for
the charging station set from ChargeMap takes 2.5 hours. Computing a core of the same
size for a slightly bigger set of random charging station takes already one additional hour.
If we double the number of random charging stations, it is no longer possible to compute
the core in under eight hours.

We also observe, that although the osm-sger and osm-ger graph have more vertices than
the germany graph, it is possible to compute smaller core graphs for osm-ger and osm-sger.
On reason for this could be that these graphs have an initially smaller average degree.
While the germany graph has an initial degree of 4.61, the OSM graphs have only average
degrees of 4.19 for osm-sger and 4.03 for osm-ger. Furthermore the different consumption
model used for the OSM graphs could be reason for the faster preprocessing time.

Next we analyze why the CH preprocessing becomes so slow for core size below 1% of the
original vertices. While the fact that we do not allow to contract charging stations, has
certainly an impact on the computation time, the presence of charging stations can be
ruled out as reason for the slow computation times. For the germany and osm-sger graph
we have additionally included data showing the computation time for the CH preprocessing
if no charging station exist. The preprocessing is indeed faster if no charging stations exist,
but the computation time still increases drastically for smaller core sizes. For the germany
graph we are unable to compute a complete CH even if no charging stations are given.

In order to understand the times needed for the preprocessing we can look at Table 7.3.
This table states the average vertex degree for all combination of input graphs and core sizes.
Since the shortcuts added during preprocessing may represent several Pareto optimal paths,
we slightly modify the definition of vertex degree. Each of the entries in the Pareto-set
associated with a shortcut could also be represented using a multi-edge. In order to account
for this we weight each shortcut edge with the size of its Pareto-set when computing the
vertex degree.

As shown in Table 7.3 the average vertex degree increases quickly with decreasing core size.
A higher vertex degree increases directly the preprocessing time. Every time a vertex get
contracted we have to check for every pair of incoming and outgoing edge, if a shortcut is
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Table 7.3: Result of the CH preprocessing on various graphs and for different core sizes.
The table states the average vertex degree in the core graph. When computing
the vertex degree, we weight shortcuts by the size of their associated Pareto-sets.

Core size

Graph CS Capacity 1% 0.5% 0.2% only CS

germany cm-1966 16 kWh 52.53 233.57 5 266.13 ?
60 kWh 54.30 235.14 5 456.68 ?

r-2166 16 kWh 54.59 240.55 6 737.36 ?
60 kWh 55.13 252.37 15 849.15 ?

r-4332 16 kWh 60.38 301.30 ? ?
60 kWh 62:94 324.56 ? ?

∅ 16 kWh 51.57 194.40 2 387.39 ?
europe cm-15666 16 kWh 64.75 280.96 ? ?

60 kWh 64.83 281.27 ? ?
r-5579 16 kWh 61.60 273.55 ? ?

60 kWh 61.68 274.08 ? ?
r-11158 16 kWh 75.95 358.93 ? ?

60 kWh 77.21 361.38 ? ?
lux cm-36 16 kWh 110.53 129.03 327.52 503.06

4 kWh 78.35 98.78 123.62 273.84
r-190 16 kWh 163.92 — — 1694.03

4 kWh 147.09 — — 491.28
r-280 16 kWh 473.84 — — 3404.60

4 kWh 362.77 — — 1047.01
osm-sger cm-643 ~100 km 13.71 23.10 146.89 17 803.30

~500 km 14.24 23.25 151.23 ?
r-100 ~100 km 13.95 23.17 127.30 6 448.64

~500 km 14.18 23.21 128.38 7 207.75
r-2363 ~100 km 14.45 26.17 433.97 ?

~500 km 14.58 26.20 436.76 ?
∅ ~100 km 14.07 23.38 126.70 9 084.26

osm-ger cm-2126 ~100 km 10.78 18.54 119.52 9 555.46
~500 km 10.84 18.84 119.93 ?

r-4548 ~100 km 11.01 19.36 122.81 ?
~500 km 11.16 19.84 125.30 ?

needed. In the case that these edges are already shortcuts, we have to check for every pair
of one Pareto entry from the incoming shortcut and one Pareto entry from the outgoing
shortcut, if a new shortcut is needed. Thus the number of witness searches increases
quadratic with the average vertex degree.

Although changing the set of charging stations influences the average vertex degree, it is
not the reason for the increasing vertex degree as the core gets smaller. This becomes
particularly evident when we look at the average vertex degrees for the CH preprocessing
of the germany and osm-sger graphs without any charging stations. Here the vertex degree
still increases as the core gets smaller. The reason for this is of course, that each shortcut
has to represent all Pareto optimal paths between its head and tail vertex. But the number
of Pareto optimal paths can be exponential in the size of the original graph.
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Table 7.4: Impact of the Core size on the query time of our algorithms in seconds. For this
experiment we used the germany graph with regular charging stations offering a
charging power 22 kW. The table states average running times in seconds. For
each combination of core size and algorithm we evaluated the same 200 random
queries.

Core size

A* Heuristic 2% 1% 0.5% 0.25% 0.2%

π2 × 26.41 32.20 57.72 118.13 164.47
π2 X 0.39 0.17 0.12 0.35 0.96
π3 × 6.83 5.24 8.95 24.07 39.51
π3 X 3.86 1.79 3.98 6.34 8.97

Furthermore the data presented in Table 7.3 shows once again a difference between the
PTV and the OSM graphs. The average vertex degree for the OSM graphs is much lower
than the degree for the PTV graphs. Because of this it is possible to compute smaller cores
for the OSM graphs. The consumption model used for the OSM graphs could be a reason
for the smaller average degrees.

7.2.2 Impact of the Core Size on the Algorithms

As we observed in the previous section, it is not possible to contract all vertices during the
CH preprocessing. Thus at some point the CH preprocessing has to be aborted. We now
evaluate at which point further vertex contractions are no longer meaningful. We say that
further vertex contractions are not meaningful, if the time need for the contraction cannot
be justified with the speedup gained for the query algorithm.

We evaluate the running times for some of our query algorithms depending on the size of
the core graph. For this experiment we use the germany graph, together with the charging
stations from ChargeMap and a battery capacity of 16 kWh. Table 7.4 shows the resulting
query times in seconds. For each combination of core size and algorithm we performed the
same 200 random queries.

The resulting data shows for all algorithms an increasing query time below a core size
of 0.5%. When using π3 as potential function minimal query times are achieved when using
the CH with a core size of 1%. If π2 is used as potential function, then the query time is
minimized for a core size of 0.5% or 2% depending on whether the heuristic is used or not.

In order to understand why the query times increase with decreasing core this, after the
core size drops below a certain value, we analyze the behavior of the query algorithm in
greater detail. For this purpose we focus on the exact algorithm using π3 as potential
function.

Table 7.5 shows, besides average query time, also the average size of the label-sets created
during the search, as well as the average number of settle and relax operations. The data
shows that the number of settle operations decreases with decreasing core size. This was
expected, since reducing the size of the core also reduces the size of the query algorithms
search space.

But the decreased number of settle operations does not lead to a decreased query time. The
reason for this is the same that already prevented us from computing a complete CH, the
average core degree. As shown in the table, the average core degree increases from about 19
for a core containing 2% of the original vertices up to over 5 200 for a core containing 0.2%
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Table 7.5: This table shows the performance of the exact algorithm using π3 as potential
in more detail. The experimental setup is the same as the one for Table 7.4

Core size 2% 1% 0.5% 0.25% 0.2%

Query time [s] 6.83 5.24 8.95 24.07 39.51
Core degree 18.85 52.53 233.57 1 987.37 5 266.13
Label-set size 121.77 57.54 25.55 11.50 10.86
Settle operations 137 688 72 086 36 094 18 655 16 206
Relax operations 1 230 682 1 864 685 4 285 947 14 760 137 27 871 790

of the original vertices. But a higher degree means that more edges, or Pareto entries of a
shortcut, have to be relaxed, which leads to the high number of relax operations as they
can be seen in the table. At some point the time lost due to additional edge relaxations
is greater then the time saved be the smaller search space. At this point is clearly not
meaningful to contract further vertices, since it increases both, the preprocessing time and
the query time.
Since query times are minimal for a core size of round about 1%, we will use A Ch with
this core size for all further experiments.

7.2.3 Speedup Techniques
In this section we evaluate the speedup techniques we introduced in Chapter 5. First
we will compare the different Potential functions we proposed. Afterwards evaluate the
speedup that can be achieved using A* or CHs ore both techniques combined.
Potential Functions. The potential functions we proposed can be divided in two. Th
first group are potential function which are computed using labels of constant size for
the backwards search. The potential functions π1 and π2 belong to this group. With
these functions we could only use global information about the charging stations, like the
maximal charging speed. Since this might not be accurate if several different types of
charging stations are available, we introduced a second class of potential functions which
are computed using lower bound functions as labels for the backwards search.
Now we want to analyze how these two types of potential functions perform, given different
sets of available charging stations. For our experiment we use two types of charging stations
that differ significantly, namely battery swapping stations and regular charging stations
with a charging power of 11 kW. Using the battery swapping station it takes three minutes
to charge the battery up to 100%. Using the regular charging station it takes a bit more
than two hours to charge a 16 kWh battery up to 100%.
We start with a set of charging stations that only contains regular charging stations. Then
we gradually increase the proportion of battery swapping stations and observe how the
average query times change. As soon as only one battery swapping station is contained
in the charging station set, we have to use the charging speed of this battery swapping
station during the computation of π2.
The results of this experiment can be seen in Figure 7.1. Each data point is the average
query time of the same 200 random queries, which where used for every data point. We used
the germany graph with charging station locations from ChargeMap for this experiment.
The type of each charging station was chosen randomly according to the required ratio of
battery swapping stations and regular stations.
Unfortunately the exact algorithm using π2 as potential was two slow to perform the
full experiment. Because of this we evaluated only 100 queries for this algorithm and
interrupted the computation after 20 minutes if no solution was found.
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Figure 7.1: Running times of our algorithm for the germany graph. The x-axis denotes the
portion of battery swapping stations, the other charging stations are regular
station offering a power of 11 kW.

The figure shows the average query times for the potentials π2 and π3. Furthermore we
evaluated both, the exact as well as the heuristic algorithm. Additionally the figure contains
also the time needed to compute the values for the potentials only, which is represented
by the dotted lines. Clearly visible there is a sudden increase in the query time as the
first battery swapping stations are made available. This matches exactly our prediction.
Furthermore we see that the exact algorithm using π3 as potential is always faster than
the one using π2.

For the heuristic version of out our algorithm we can see that that using π2 yields a better
query time, independent of the composition of the charging stations. The main reason for
that is that the query time of the heuristic algorithm using π3 is dominated by the time
needed to compute the potential.

General Comparison of all Speedup Techniques. Now we want to evaluate the
general speedup that can be achieved using our algorithms. Since our base algorithm
without any speedup techniques is rather slow, we perform this experiment on the lux
graph. Because we do not want that all vertices are reachable without recharging, we use a
small 4 kW battery. As we have seen, a low number of battery swapping stations together
with many slow charging stations is the worst case scenario for our algorithms, therefore
we us a charging station set containing 10% swapping stations and 90% regular stations for
this experiment. As charging station locations we again use the locations from ChargeMap.

Table 7.6 shows the average query times for all combinations of speedup techniques as well
as the base algorithm. Additionally we report the number of settle and relax operations,
as they provide further insight into the performance of the algorithms.

The query time of the base algorithm can be seen in the first row of the table. It takes slightly
more than one second to compute the optimal feasible path for the given experimental
setting. If we only use A* as speedup technique we achieve a speedup between 1.5 and 8.9
depending on the used potential function. Using a CH without additional techniques we
achieve a speedup of 23.6.

When using a CH we observe that especially the number of settled operation is reduced.
Using the base algorithm, an average of over 400 000 settle operations had to be performed.
This number is reduced to about 1 600 when using a CH. The reason for this is the reduced
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Table 7.6: Impact of the speedup techniques CH and A* on our algorithm. Every value is
the average query time of the same 1000 random queries. The battery capacity
is 4 kW, 10% of the available charging stations were swapping stations, the other
stations were regular once, offering a power of 11 kW.
CH A* time [ms] speedup settle operations relax operations

× — 1025.9 1 437 174 590 545
× π1 135.1 7.5 58 304 80 370
× π2 114.7 8.9 47 732 65 623
× π3 676.1 1.5 98 383 132 569
X — 43.2 23.6 1 640 124 944
X π1 21.1 48.5 750 36 824
X π2 17.3 58.9 642 24 658
X π3 15.8 64.9 701 22 352

Table 7.7: Speedup and quality achieved by our heuristic algorithms, which we introduced
in Chapter 6.2. The experimental setup is the same as for Table 7.6. The
algorithms based on the charging function propagating algorithm always found a
feasible path, if on existed. The conventional car drivers approach only managed
to find a solution in 86% of the queries where a feasible solution exists.

CH A* time [ms] speedup settle operations relax operations quality

× — 518.4 1.9 282 579 381 814 1.00
× π1 84.0 12.2 42 910 58 672 0.99
× π2 73.4 13.9 34 997 47 734 0.99
× π3 683.1 1.5 98 383 132 569 0.99
X — 4.0 251.9 199 2 307 0.98
X π1 8.5 120.1 109 1 690 0.97
X π2 8.3 123.0 101 1 035 0.97
X π3 13.3 77.1 658 22 009 0.98
CCDA 4.5 225.5 170 538 (0.92)

size of the search space when using a CH. Compared to the number of settle operations,
the number of relax operations is only reduced by a factor of 5. The reason for this is, that
the CH preprocessing increases the average vertex degree in the core graph.

The maximal speedup can be achieved when combining CH and A* search. In this case
using π3 as potential reduces the average query time to 15.8ms, which is nearly 65 times
faster than the base algorithm.

Speedup of Heuristic Algorithms. We can analyze the speedup of our heuristic ap-
proaches in the same way as we did for the exact algorithms. We use the same experimental
setup as well as the same random queries, which we used to evaluate the speedup of the
exact algorithms, in order to evaluate the our heuristics. The results are shown in Table 7.7.

Besides the achieved speedup we are now also interested in the quality of the computed
solutions, since the heuristics do not guarantee to find the optimal solution. We use the
quotient of the minimal travel time and the travel time of the solution computed by the
heuristic as measurement for the quality of the solution. This means that a quality of one
indicates that the optimal solution has been found. A solution which is slower then the
optimum yields a quality less than one.
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Figure 7.2: Running times of our algorithm, using a 16 kWh battery, depending on the
Dijkstra rank of the query. We evaluated a total of 10 000 random queries per
algorithm on the germany graph for this experiment. Since the base algorithm
is rather slow, we interrupted its computation if no solution was found after two
minutes, thus we report no query times for a Dijkstra rank greater than 217.

Furthermore it is possible that a heuristic does not find any solutions, although there
exists a feasible path. In our experiment, the heuristics based an the charging function
propagating algorithm always found a feasible solution, if one existed. The conventional
car drivers approach on the other hand could only find a solution in 86% of the cases where
a feasible path existed. The quality reported for this algorithm in Table 7.7 only considers
the cases, in which a feasible path was found by the heuristic.

Besides the rather poor quality of the found solutions, the conventional car drivers approach
yields a relative high speedup of 225.5 compared to the exact base algorithm. This speedup
corresponds to an average query time of 4.5ms. Using only a CH as speedup technique
yields the minimal average query time of only 4ms. Using a combination of CH and A*
can reduce the number of settle and relax operations compared to using only a CH. This
does not lead to a further reduction of the query time, because computing the potential
function takes to much additional time. in Figure 7.1 we have already seen that computing
the potential can actually dominate the overall query time when using the heuristic.

Speedup depending on Query Distance. Next we want to analyze the query time of
our algorithms depending on the distance between the source and the target vertex. As
measurement for the distance of a query we use the so called Dijkstra rank. The order in
which the vertices get settled during an execution of Dijkstra’s algorithm can be used to
rank the vertices. Recall that Dijkstra’s algorithm settles each algorithm at most once,
therefore this order is well defined. Since plain Dijkstra is used to define the Dijkstra rank,
it is only defined for a single search criterion. For our scenario we use the driving time
metric to define the Dijkstra rank, since it is the metric we want to minimize, and energy
consumption is only used as restriction. Given a fixed source vertex s we compute the
Dijkstra rank of all other vertices using a Dijkstra search starting at s. The Dijkstra rank
of a vertex v is than defined as the number of vertices that have been settled before v got
settled.

For our experiment we use again the germany graph and charging station locations from
ChargeMap. All charging stations in the graph were regular charging stations offering a
power of 11 kW. Figure 7.2 shows the median of the query times, if a 16 kWh battery is used.
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Figure 7.3: Running times of our algorithm, using a 60 kWh battery, depending on the
Dijkstra rank of the query. We evaluated a total of 10 000 random queries per
algorithm on the germany graph for this experiment. Since the base algorithm
is rather slow, we interrupted its computation if no solution was found after
two minutes, thus we report no query times for a Dijkstra rank greater than 217.
The query of the heuristic algorithm using π3 as potential are not visible in
this plot because they are nearly the same as for the correct algorithm.

Figure 7.3 shows the median of the query times, if a 60 kWh is Used. In both cases
we observe that the query time of the base algorithm quickly increases as the Dijkstra
rank rises. For a Dijkstra rank above 217 the base algorithm becomes unpractical and we
interrupted the computation if no solution was found after two minutes. Therefore we do
not report the query times for a Dijkstra rank above 217.

Both Dijkstra rank plots show that the query time of our algorithm using A* together with
a potential π2 or π3 is constant for low ranks. The reason for this is, that the computation
of the potential function is independent from the the distance between s and t. For queries
with a low rank the computation of the potential function dominates the overall query
time, thus the query time is also independent from the query distance for small ranks.

When using a 16 kWh battery, the query time of the exact algorithm using π2 starts to
increase at a rank of about 218. When using a 60 kWh battery, the query times stays
constant until a rank of 220 is reached. This difference can be explained with the extended
driving range due to the larger battery. If the potential function indicates that the target
is reachable without recharging, the search algorithm will most probably first settle such
labels that do not use a charging station. This means that most of the SoC-functions used
during the search are constant, which results in low query times. Indeed a Dijkstra rank
of 217 roughly corresponds to the driving range of a 16 kWh battery, while a rank of 219

corresponds to the driving range of a 60 kWh battery.

The Dijkstra rank plots show also that the query time of the heuristic algorithms is nearly
completely independent from query distance. The reason for this is again, that the query
time is dominated by the time needed to compute the potential function.

In the appendix we have included a more detailed version of the Dijkstra rank figures using
box plots. These plots show the existence of some outlier queries which take much longer
than the median query time. Furthermore the box plots reveal that using π2 as potential
leads to a much higher variation in the query times than using π3.
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Figure 7.4: Running times of our algorithm for the germany graph with changing initial
SoC. For this experiment we used charging station location from ChargeMap
and regular charging stations offering 11 kW. For each data point we evaluated
the same 200 random queries and computed the average of the query times.

7.2.4 General Evaluation

We conclude our Experimental section with a general evaluation of the query times of our
algorithms. First we analyses how the initial SoC of the battery influences the query times.
Finally we report average query times for all graphs and different types of charging stations.

Influence of the initial SoC. Figure 7.4 shows how the average query times of our
algorithms change depending on the initial SoC. As before we use the germany graph
together with charging stations from ChargeMap. Furthermore we used a 16 kWh battery
and regular charging stations offering 11 kW. We evaluated the same 200 random queries
for every combination of initial SoC and algorithm.

The query time of the individual algorithms changes only slightly, by a factor of two to
four, as the initial SoC changes. But the data shows also that query time of all algorithm
decreases as the initial SoC increases. The reason for this is, that a high initial SoC enlarges
the algorithms search space, because it allows to explore energy wasting paths. The initially
given energy might be wasted: As long as no recharging is required to reach the target,
it does not matter how much of the initial energy is consumed, because spending more
energy does not increase the travel time. If, however, no initial energy is given, then all
the consumed energy has to charged first. In this case wasting energy directly increases
the driving time. Therefore, if this initial SoC is low, it is more likely that energy wasting
paths get dominated by other, more efficient paths early on. This reduces the number of
labels that get settled and therefore the query time.

Query times for all graphs. Finally, Table 7.8 states the query times achieved by our
algorithm for all graphs we tested and for three different sets of charging stations. For the
four graphs osm-sger, osm.ger, lux, and germany we evaluated 1 000 random queries for
each algorithm. In addition to the exact algorithms we also include the query times for
the heuristic algorithm using π2 as potential. We do not include the heuristic using π3 as
potential, because our previous experiments show that using π2 yields always faster query
times. For the heuristic we also include the quality of the found solutions, which is given
by the quotient of the optimal travel time and the travel time of the heuristic solution.
Furthermore we report the percentage of queries for which the heuristic found a feasible
path, if one existed.
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Table 7.8: Query times of our algorithms for all graphs and different charging station types.
For this experiment we used a 16 kWh battery (~100 km driving range for the
OSM graphs) and charging station locations from ChargeMap. The reported
query times are in milliseconds. For the heuristic algorithm using potential π2
we also include the quality of the found solutions as well as the percentage of
found solutions.

Only battery swapping stations:
Algorithm π2 π3 π2 with Heuristic

osm-sger 853.6 1 003.0 111.5 (0.99 100%)
osm-ger 1 381.5 1 496.1 168.2 (0.99 100%)
lux 3.1 8.2 1.7 (1.00 100%)
germany 33 487.0 3 091.5 372.0 (0.99 100%)
europe — — 104 479.2 —

Only regular charging stations offering 11 kW:
Algorithm π2 π3 π2 with Heuristic

osm-sger 733.4 1 186.0 141.4 (0.98 100%)
osm-ger 1 063.6 1 880.1 182.1 (0.99 100%)
lux 2.4 9.7 1.1 (0.99 100%)
germany 15 974.3 5 960.5 127.3 (0.99 99%)
europe — — 87 943.5 —

10% BSS and 90% regular stations (11 kW):
Algorithm π2 π3 π2 with Heuristic

osm-sger 809.8 679.2 153.0 (0.99 100%)
osm-ger 3 794.5 2 309.6 533.1 (0.97 100%)
lux 3.1 11.3 1.6 (1.00 100%)
germany 57 394.6 38 931.3 1 255.8 (1.00 100%)
europe — — 459 323.1 —

We evaluated our algorithms for three different combinations of charging stations. First, we
only use Battery swapping stations (BSS). Restricted to this station type our problem is
basically the same as the one considered in [Sto12b]. Our best algorithm for this setting (π2)
has an average query time of 854ms on the osm-sger graph. This is comparable to the
results achieved by the authors of [Sto12b].

In contrast to the algorithm proposed in [Sto12b] our algorithm is of course capable of using
various types of charging stations. Thus, after we have tested our algorithms for battery
swapping stations, which are the fastest charging stations, we now test our algorithms for
slow regular charging stations, which provide a charging power of 11 kWh. Using the slow
charging stations improves the query times of the algorithm using π2 as potential, while it
slightly increases the query times of the algorithm using π3. Once again we observe that π3
can only outperform π2 on large graphs, such as the germany graph.

We also report the query times for the case that only 10% of the charging stations are
battery swapping stations and the remaining charging stations are slow regular stations.
We include this case as our previous experiments show that this is the most difficult setting
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for our algorithms. Indeed we observe an increased query time for this setting. But our
algorithms remain applicable even for medium-sized graphs like the germany graph.

The table states also query times for the heuristic algorithm on the europe graph. Our
exact algorithms are not applicable for this graph. Thus we do not report exact query
times. Furthermore, as we do not know the minimal travel times, we cannot evaluate the
quality of the solutions found by the algorithm. Since the heuristic is rather slow, we only
performed 100 random queries for the europe graph.

7.3 Example Queries
In the section we present some exemplary queries and the resulting routes computed by our
algorithms. The examples provided in this section should not be used to draw conclusions
about the performance of the algorithm. Instead, the examples should be used to get an
impression on how the algorithms work and how the different potentials as well as the
heuristics influence the algorithm, and its search space.

Figure 7.5 shows the search space of a query from Karlsruhe to Paderborn. The figure
compares three algorithms: the exact algorithms using π2 and π3 as potential, and the
heuristic using π2 as potential. All vertices which were settled during the search are marked.
The brightness of the mark indicates how many labels have been settled for the vertex, the
brighter the mark, the more labels have been settled.

Figure 7.6 shows the search space, of the heuristic algorithm using π2 as potential, for
a query from Karlsruhe to Berlin. This example is particularly interesting because the
search space splits naturally into branches. This behavior can be observed quite frequently.
The reason for this is that the routs lead from one charging station to the next. Thus the
location of the charging station limits the search space to some corridors.

Figure 7.7 shows an example for a continental query. We used the heuristic algorithm
with π3 as potential in order to compute a route from Lisbon to Stockholm for an electric
vehicle with a 60 kWh battery. It took us slightly more than five minutes to compute this
route.
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Figure 7.5: Search space of three algorithms (from left to right): exact with potential π2,
exact with potential π3, heuristic with potential π2. For this query we used the
germany graph with charging station locations from ChargeMap, and regular
charging stations providing a charging power of 22 kW. The battery has a
capacity of 16 kWh. All three algorithms managed to find exactly the same
route, which is shown on the very right. The travel time of the computed route
is eight hours and 31 minutes. The route requires four charging stops which
are marked by the letters A to D. The total charging time of all four stops
is three hours and 23 minutes. The first algorithm (exact, π2) had a query
time of 9.76ms, settled 1 217 different vertices, and settled 162 426 labels. The
second algorithm (exact, π3) had a query time of 2.37ms, settled 810 different
vertices, and settled 35 778 labels. The third algorithm (heuristic, π2) had a
query time of 0.09ms, settled 1 217 different vertices, and settled 8 018 labels.
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Figure 7.6: The search space of the heuristic algorithm using π2 as potential for a query
from Karlsruhe to Berlin. The query was performed on the germany graph
with charging station locations from ChargeMap and regular charging stations
with a charging power of 22 kW. Th electric vehicle had a battery capacity
of 16 kWh. The algorithm had a query time of 245ms, settled 3 735 vertices
(which are marked on the map), and settled 47 250 labels. The computed route
has a travel time of 15 hours, 56 minutes, and 44 seconds. For comparison, the
optimal route for this query has a travel time of 15 hours, 55 minutes, and 30
seconds, this is a difference of only 74 seconds. Particularly interesting is the
shape of the search space. The search space naturally splits into branches. The
reason for this is, that the charging stations are only located along some routes.
The query algorithm then explores corridors, which enclose these routes.
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Figure 7.7: Probably one of the longest journeys possible in our graphs. A route from Lisbon
(Portugal) to Stockholm (Sweden) using a 60 kWh battery. For this query we
used the europe graph with charging station locations from ChargeMap. About
90% of the charging stations are Regular charging stations offering a power of
33 kW (such charging stations are quite common today), the remaining 10% of
the charging stations are battery swapping stations (which might be established
in the not to far future). Computing the route took us five minutes and four
seconds using the heuristic algorithm with π3 as potential. The computed travel
time is one day, twelve hours and 42 minutes. The route requires 18 recharging
stops, which are marked with the letters A to R. All of the recharging stops
actually use battery swapping stations. This either means that the algorithm
by luck encounters swapping stations every time they are needed, or, that the
swapping stations outclass regular station is such a way that it is always worth
to make a detour in order to prevent regular station from being used.
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We conclude this thesis with a short summary of the results obtained in this work. After-
wards, we give an outlook on future work emerging from the results and open problems
encountered during this thesis.

8.1 Summary
In this thesis we developed a fast algorithm solving the Electric Vehicle Route
Planning With Recharging problem. We gave a detailed problem definition and
showed NP-hardness in Chapter 3. The problem incorporates both, battery constraints and
the presence of various types of charging stations. Furthermore it is allowed to interrupt a
charging process at any given time.

We introduced a model for the recharging process, based on piecewise linear and concave
functions. These functions are easy to handle in algorithms and provide great flexibility
for modeling all kinds of charging stations. Thus we were able, to model different types
of charging stations e.g. regular charging stations, super chargers, and battery swapping
stations.

Based on the design of the charging functions, we developed our charging function propa-
gating algorithm. This algorithm allows us for the first time to compute a feasible path,
minimizing the travel time between two vertices. The algorithm has an exponential worst
case complexity, however, it is still capable of computing the optimal solution for small
graphs in about one second.

Next, we focused on adapting known speedup techniques to our scenario. We adapted
the CH preprocessing as well as A*-search to speedup our base algorithm. For the A*
search, we proposed several techniques of computing a potential function which is used
to direct the search towards the target. These potentials require different computational
effort while they yield different speedups. Using both techniques together, we could achieve
a speedup of at least three orders of magnitude, which makes our algorithm applicable for
medium-sized graphs.

In order to achieve even faster query times, and to be able to compute feasible paths even
for continent-sized graphs, we developed heuristic improvements for our algorithm. Using
the heuristics we could achieve an additional speedup of about two orders of magnitude,
while the evaluation of the algorithm showed that the quality of heuristic solutions is very
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high: In most cases the travel time of the heuristic solutions is only some seconds and at
most a few minutes longer, than the travel time of the exact solution. This corresponds to
an error of 1% or less.

Finally, we evaluated all of our algorithms and heuristics in great detail. We analyzed their
performance for various combinations of battery capacity and available charging stations,
and on several different graphs. Our experiments show that, on medium-sized graphs, our
query times are comparable to the ones of previous solutions. However, our algorithm can
handle various types of charging stations, while previous works focused mostly on battery
swapping stations. Also, for the first time, we are able to find feasible and fast solutions
for continental graphs in only a few minutes using our heuristic algorithm.

8.2 Future Work
While we developed several algorithms throughout this thesis, which are applicable even
for large graphs, there is still potential for further improvements.

First of all, further improvements of the query time could be possible due to better vertex
potentials. In our algorithm the time needed to compute the potential dominates the
overall query time for short range queries. Here it might be possible to use a more efficient
potential especially for short range queries, so that such queries can also benefit from the A*
speedup technique. Further research on potential functions could also address hyperbolic
functions (see Section 5.1.5. If an efficient way of merging these functions is found, they
might yield better potential functions than the ones we currently use.

Further research could also address the possibility of saving energy by changing the driving
speed on some streets. This idea was already addressed in [BDHS+14]. Combining this
approach with the availability of charging stations could yield a more realistically modeled
problem than the one we considered in this thesis

Finally, some of the examples shown Sections 7.3 suggest that our algorithm naturally
tends to explore several independent paths towards the target, when using our potential
functions. It is often desirable to find good alternative routes, so that the user can decide
which of them he prefers. Finding such alternative routes is rather difficult when solving
the single criterion shortest path problem. Thus it might be interesting to address the
problem of finding alternative routes for electric vehicles if charging stations are available.
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Figure .1: Dijkstra rank plot evaluating our algorithms on the germany graph, for a battery
capacity of 16 kWh.
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Figure .2: Dijkstra rank plot evaluating our algorithms on the germany graph, for a battery
capacity of 60 kWh.
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