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Abstract

Detecting community structures in networks is an important problem in graph
analytics. With the recent BigData trends network sizes are growing tremendously.
Oftentimes the networks are now too big for the RAM of a single computer. This leads
to the need for distributed graph clustering algorithms. We present two MapReduce
based algorithms which build upon the well-known Louvain algorithm. We implement
them in Thrill, a new experimental BigData batch processing framework. Our
evaluation shows that our algorithms can cluster graphs with tens of billions of edges
in a few hours while still delivering quality similar to the original Louvain algorithm.

Zusammenfassung

Die Identifizierung von Communitystrukturen in (sozialen) Netzwerken ist ein
wichtiges Problem in der Analyse von Graphen. Bedingt durch Trends wie Big-
Data, sind die zu analysierenden Netzwerke in den vergangenen Jahren immer weiter
gewachsen. Die Netzwerke sind mittlerweile oft zu groß für den RAM eines einzelnen
Computers. Somit werden verteilte Clustering Algorithmen zu einer Notwendigkeit.
In dieser Arbeit entwickeln wir auf Basis des bekannten Louvain-Algorithmus zwei
verteilte Clustering Algorithmen für das MapReduce Paradigma. Wir implemen-
tieren die Algorithmen in Thrill, einem neuen experimentellen BigData Framework.
Unsere Evaluation zeigt, dass unsere Algorithmen Graphen mit mehreren Milliar-
den Kanten in wenigen Stunden mit einer ähnlichen Qualität wie der ursprüngliche
Louvain-Algorithmus clustern können.
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1. Introduction

Networks are an almost omnipresent phenomenon in our world. With the popularity of
modern communication networks like the Internet – and even more so with the advent
of the so-called “Internet of Things” – this may seem like an obvious statement. But
actually networks are a much broader phenomenon than the Internet and have much
broader applications than the technological advances of the past few decades. Today
the term social network refers to web services like Twitter or Facebook, but actually in
a more literal sense social networks have been studied by sociologists since the 1930s.
Citations in scientific publications form a network of references as do links between websites.
A biological example would be the brain which is made up of neurons and connections
between them – which leads back to neural networks in artificial intelligence. The list
goes on. The study of networks goes back as far as 1736 when Euler solved the puzzle of
the Königsberg bridges [Eul41] and its applications range among others through biology,
physics, economics, engineering, ecology, marketing, social and political sciences and of
course computer science.

While it is possible to study these networks in their respective context, it is also of great
interest to analyze them purely on the basis of their structural properties. To this end
networks are often represented as a graph – an abstract model of networks as a set of entities
called nodes and the connections between them denoted as edges or links – and often some
additional data like the strength of the links or some weight attached to the nodes. From
these more abstract representations the goal is to extract structural information about the
original network.

One key problem in this is often to identify so-called communities or clusters – groups
of nodes which are strongly connected among each other and much less so to the rest of
the graph. This is of course no precise definition and as it has turned out, finding a good
general formal definition of what a cluster is, is rather difficult. The “correct” definition is
also dependent on the kind of data one is analyzing. For example clusters in social network
graphs may often overlap since most people have connections into several communities
(e.g. students have connections to their fellow students but also to their dorm mates) while
in web graphs pages from one domain often form non overlapping clusters – though on
a higher level several domains might also form a cluster. These are only two of many
characteristics clusters in certain contexts may or may not exhibit. Thus, in literature there
is not one commonly accepted clustering definition but many competing with different
strengths and weaknesses.
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1. Introduction

While the study of networks has been an important problem for more than a century, what
has changed over the past decades is the size of the networks in question – which steadily
increases. The recent trend of “Big Data” is an additional amplifier to that tendency.
The growing size of the graph instances leads to the necessity of algorithms which are
able to handle the enormous amounts of data within reasonable time and memory limits.
While there have been efficient sequential algorithms to find clusterings for quite some time
[BGLL08], the growth in graph size makes available main memory much more of an issue.
For example Facebook – currently the worlds largest social network – has approximately
1.86 Billion users1 at the time of writing. In 2011, [UKBM11] found that every user had
an average of 190 “friends”. If that number had stayed the same since then (which is
unclear) that would mean that the network has now about 350 Billion connections. A
simple edge-list representation of this graph would take roughly 1400 GB of memory2 –
well beyond the capabilities of commodity hardware. This leads to the need for distributed
clustering algorithms3 – which are the subject of this work.

Networks are of course not the only datasets growing tremendously. In the past years a
lot of engineering effort has gone into developing techniques and frameworks to be able
to cope with such amounts of data. One particular successful approach has been the
MapReduce paradigm which was originally introduced by Google [DG08]. In MapReduce,
algorithms are expressed as a set of transformations on list elements distributed among
several computation nodes. For algorithms in MapReduce, the transformations must
be executable independently on each element of the list. This then allows almost trivial
parallelization and distribution over several workers of a compute network. The programmer
does not have to worry about parallelization, synchronization or network communication
of his program but only about the actual algorithm. That said, MapReduce is very simple
to use and still easily scales almost arbitrarily if one can express his algorithm as a set of
transformations on elements of a list where each element can be transformed independently.
For graphs this is not a trivial assumption since their structural key component are in fact
connections.

In this work, we are going to implement and evaluate two graph clustering algorithms in
MapReduce to determine whether or not MapReduce can be a feasible approach to create
scalable graph algorithms scalable for the massive graphs available today.

Related Work

Community detection has been a very important topic in the recent study of networks.
An in-depth comparative overview over the different approaches and algorithms available
can be found in [FH16, LF09, For10]. One method that gained particular popularity is
the optimization of modularity – a graph clustering quality measurement introduced in
2004 by Newman and Girvan [NG04]. Even though finding a clustering with maximum
modularity was proven to be NP-complete [BDG+08], several algorithms successfully
employed greedy modularity optimization heuristics – most notably the so-called Louvain
algorithm [BGLL08] which is still widely used today and also foundational to this thesis.
The Louvain algorithm has two phases. In the first one (called local moving) nodes are
moved around between clusters so each node ends up in the cluster which yields the best
modularity. This can be done very efficiently since the change of modularity for moving a
node from one cluster to another can be computed in constant time. After a local maximum
is reached a so-called meta graph is built. All nodes in each cluster are merged together to

1http://newsroom.fb.com/company-info/
21.86 Billion users ×190 Friends ×8 B per edge (two 32 bit node ids) /2 because we store each edge only
in one direction. It is of course possible to compress such a graph significantly but for the algorithms to
run efficiently it is usually needed in some expanded form.

3External memory algorithms would also an option but are not the topic of this work [ASS14]
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one meta node and the new edges between the meta nodes have the accumulated weight of
edges between nodes of the respective clusters. This is the second phase, called contraction.
Both phases are then repeated recursively on the meta graph until no further improvement
is possible. We will cover this algorithm in greater depth in Section 2.2. The algorithm has
been parallelized successfully in [SM16]. The parallel implementation is publicly available
as part of the Networkit toolkit [SSM16].

Another successful approach to clustering which is of particular importance to this work, is
label propagation. It was first introduced by Raghavan et al. in [RAK07]. The algorithm
initializes each node with its own label. Then each node propagates its label to all neighbors.
Now each node selects the label which he received most often as his new label. This process
is repeated until the labels stabilize. This algorithm can be performed both sequentially
by traversing nodes successively and selecting the label most prominent among their
neighbors or in parallel by performing this in parallel for all nodes at the same time.
The parallel version is suited very well for MapReduce implementations. This simple
version of the algorithm has some issues with some labels getting too strong but there are
many more sophisticated versions of it which address this problem [ŠB11], extend it to
overlapping clusters [XS12] or apply the algorithm to other problems. In the KAHiP [SS13]
implementation4, it is used to partition social network or web graphs which proved difficult
for traditional partitioning approaches [MSS14]. In this case the algorithm was extended
by a size constraint for the labels. Also, it has been demonstrated that label propagation
can actually also be seen as the optimization of a certain objective function [BC09]. This
opens up the possibility to optimize other objective functions – like modularity – through
label propagation under specific constraints. As it turns out, the local moving phase of the
Louvain algorithm can actually be formulated as a label propagation algorithm.

Work on distributed clustering algorithms is only a relatively recent endeavor. One of the
first algorithms was proposed by Riedy et al. [RBM12] and is based on finding edge weight
maximal matchings between clusters and then merging matched communities in parallel.
This approach is in fact an extension to one of the earliest modularity based methods, the
Clauset-Newman-Moore algorithm [New03].

EgoLP, another distributed algorithm to find overlapping clusterings in social networks,
was proposed in [BKA+14]. The implementation is based on Apache Spark and makes use
of label propagation.

Several attempts were made to develop distributed versions of the Louvain algorithm.
Cheong et al. proposed an GPU based algorithm in [CHLG13]. They use parallelism both
in internal steps of the Louvain algorithm like the calculation of the best cluster for each
node but also on the level of splitting the graph into partitions, distributing each partition
to one processor and than clustering each partition independently. The interconnecting
edges are ignored. This can lead to a loss in clustering quality as nodes may be merged into
wrong communities if many of the nodes of their actual community are in other partitions.
Even though this independent clustering of graph partitions can yield significant speed-ups,
it is also problematic since it is highly dependent on the partitioning schema. Cheong
et al. use a simple node id range chunking schema. This works well for graphs with a
good input order like the web graphs they use in their evaluation. But if the input order
were randomized or not as good as for web graphs this can have problematic consequences
for the algorithms output quality. Zeng and Yu [ZY15] attempt to solve this problem
by keeping the nodes directly neighbored to the nodes in each partition along with each
partition. This solves the problem in part. However, it also creates new ones regarding
the effectiveness of the parallelization. As they continue to use node id range chunking –
with a little improvement for better load balancing – the question how to find partitions in

4http://algo2.iti.kit.edu/kahip/
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1. Introduction

a fast yet more robust and input independent way is left open. The partitioned Louvain
algorithm is also used in [WFSP14]. This implementation is also publicly available – both
in a MPI5 and a Hadoop6 based variant. Here, a proper partitioning schema based on
PMETIS is used but the evaluation treats the partitioning as preprocessing and does not
include it in the overall running time of the algorithm.

There are also algorithms which perform a local moving like step for all nodes in parallel
like in label propagation. An open source implementation based on GraphX is available
on Github7. Another GraphX based implementation was proposed in [LYW+16] but the
evaluation includes only very small graphs. GossipMap [BH15] is an algorithm based on
another objective function to be optimized – the Map equation [RAB09]. Since for the map
equation computing the best move for a node is more expensive than for modularity, the
algorithm makes use of a heuristic. The evaluations of GossipMap and EgoLP were, to the
best of our knowledge, the only ones to include graphs with more than one Billion edges.

Contribution

In this work we present two modularity based distributed clustering algorithms for the
MapReduce paradigm. We implement the algorithms in C++ using the experimental
Thrill framework [BAJ+16]. We extend Thrill with several new operations optimized for
graph processing. We thoroughly evaluate the algorithms and their performance both in
terms of the running time and the quality of the clusterings they obtain. We continue
the work of [ZY15] by implementing the algorithm with a much more robust partitioning
schema. Additionally, our evaluation yields valuable insights on how the relationship
between partition structure and clustering structure influences the parallelization of this
algorithm. We evaluate all our algorithms on real world graphs and on synthetically
generated benchmark graphs up to a size of about 25 Billion edges.

Outline

The remainder of this work is organized as follows: Chapter 2 begins by introducing some
basic notation. Then, we cover the foundational sequential clustering algorithms we later
build upon. In Chapter 3, we then will introduce our distributed algorithms. Chapter 4
contains an in-depth evaluation of the algorithms and their internals. Finally, Chapter 5
concludes this work.

5https://github.com/usc-cloud/parallel-louvain-modularity
6https://github.com/usc-cloud/hadoop-louvain-community
7https://github.com/Sotera/distributed-graph-analytics
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2. Foundations

In this chapter, we introduce the concepts and algorithms on which we build our distributed
algorithms. We start by introducing the necessary formal notation in Section 2.1. In
Section 2.2 we then discuss the Louvain algorithm which provides the schema for our
distributed algorithms. Finally, in Section 2.3 we cover label propagation, another clustering
algorithm essential to our work.

2.1 Preliminaries
A graph G = (V,E,w) is a tuple of a set of nodes V , a set of undirected edges E, and
an edge weight function w. Each edge connects two nodes. The edge weight function
w : E → N∪{0} assigns a weight to each edge. E may include self-loops but no multi-edges.
We extend w to non-existing edges by setting their weight to zero. In the case of an
unweighted graph, we assign a weight of 1 to each existing edge.

For conciseness, we allow w(u, v) as a shorthand notation for w({u, v}). In pseudo code, the
use of subscript (for example wuv rather than w(u, v)) indicates that the variable contains
a precomputed value.

The degree of a node is the sum of the weights of the incident edges: deg(u) :=
∑

v∈V w(u, v).
We denote the number of nodes |V | by n, the number of edges |E| as m, and the total
weight of all edges

∑
e∈E w(e) as M . Our input graphs are not necessarily connected.

We define a clustering as a disjoint partition of the node set. Formally, a clustering C of a
graph consists of several clusters C ∈ C containing nodes of the graph so that ∪C∈CC = V
and ∀C,D ∈ C : C 6= D =⇒ C ∩ D = ∅. In a slight abuse of notation, we define
C(v), v ∈ V to be the partition of v in C.

This definition excludes overlapping clusters, but other than that it allows arbitrary node
partitionings. But many of these clusterings do not fit into our informal understanding of
clusters as groups of nodes strongly connected among each other and weakly connected to
the rest of the graph. To define what actually is a good clustering, we need to introduce a
quality function.

2.1.1 Modularity

We first introduce two concepts of weights of sets of nodes.

5



2. Foundations

The first one is the weight between two node sets C and D:

E(C,D) :=
∑

u∈C,v∈D

w(u, v) +
∑

u∈C∩D

w(u, u) (2.1)

Edges between nodes which are in both sets will be counted twice. The second term ensures
that loops are also counted twice. The weight between a cluster and itself E(C,C) is called
intra-cluster weight. Trivially, we conclude that E(V, V ) = 2M .

Further, there is the total weight of a node set or a cluster. This is the sum of the weights
of all edges incident to nodes in C – again, counting loops twice.

A(C) :=
∑
u∈C

(∑
v∈V

w(u, v)
)

+ w(u, u) (2.2)

The total weight of a cluster could also be expressed by means of the weight between
clusters:

A(C) =
∑
D∈C

E(C,D). (2.3)

For brevity we define e(C,D) := E(C,D)
2M and a(C) := A(C)

2M which put these weights in
relation to the total weight of the graph.

We can now define the modularity for a given clustering:

Definition 2.1. Modularity is a function Q(C) which maps a clustering to a rational
number.

Q(C) :=
∑
C∈C

(
e(C,C)− a(C)2

)
(2.4)

The interpretation is that the first term is the observed fraction of weight within the cluster
while the second term is the expected weight fraction in a corresponding random graph
where each node has the same number of incident edges, but the target nodes of each edge
are chosen at random. Thus, higher values of modularity indicate a “better” clustering. To
optimize the modularity one needs to maximize the first term and minimize the second.
The first term e(C,C) grows when there are more edges inside the clusters. The second
term a(C)2 shrinks when each cluster has small total weight.

Properties

Modularity has been studied intensively from a theoretical perspective. In [BDG+08] several
fundamental observations were made: For undirected and unweighted graphs modularity
values are in the range of [−1

2 , 1]. Isolated nodes do not contribute to the overall score
of a clustering. Finding the clustering with maximum modularity for a given graph is
NP-complete.

In some cases, Modularity exhibits counterintuitive behavior: For example when doubling
a graph (the doubled graph contains two unconnected subgraphs which each are isomorph
to the original graph) the optimal clustering will be something completely different than
the original optimal clustering on each subgraph. Another problem is the resolution limit
of modularity [FB07, GdMC10]. Modularity fails to recognize clusterings below a certain
total weight which depends only on the total weight M of the graph. Figure 2.1 shows the
example of a ring of cliques. The intuitive clustering where each clique forms a cluster has
a worse modularity score than when each two cliques are grouped in one cluster. With
bigger graphs this example works also with larger cliques.
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(a) Q = 0.79464 (b) Q = 0.80357

Figure 2.1: Resolution limit of modularity. Normal lines indicate edges within a cluster,
dotted lines edges between different clusters.

2.1.2 Graph Partitioning

Related to clusterings are graph partitions, which also split the nodes of a graph into
disjoint subsets. The difference is that the number and the size of the node subsets are
restricted through parameters given as input to the problem.

Formally, a ε-k-graph-partition P splits the graph nodes into a fixed number of disjoint
subsets k which is given as part of the problem input. Additionally, an imbalance parameter
ε is given which induces a balance constraint on the sizes of partition parts:

|P | ≤ (1 + ε)
⌈
n

k

⌉
: ∀P ∈ P (2.5)

In contrast to clusterings, for partitions it is easier to introduce a quality function reflecting
the intuitive understanding. One widely used quality function is the total cut: The less the
weight of the edges in between the different parts of the partition the better the partition.∑

O,P∈P,O 6=P

E(O,P ) (2.6)

Whether this quality function is a good one, is of course strongly dependent on the problem
it is applied to and there are plenty of different quality functions available. For this work,
the total cut is only used as a means to compare the quality of different partitions.

2.2 Louvain Algorithm
The Louvain algorithm was proposed in [BGLL08]. It is a greedy modularity optimization
algorithm. Despite its age, it is still a popular graph clustering algorithm. It is one of the
fastest known algorithms and delivers good results – though there are other algorithms
which yield better clusterings at the cost of a higher runtime, for example the smart local
moving algorithm [WvE13]. There is also a variety of techniques which build upon the
schema of the Louvain algorithm and extend it with so-called refinements to improve the
clustering quality.

The Louvain algorithm consists of two phases: A local moving phase and a contraction
phase. These are repeated recursively until no further improvement is possible.

7



2. Foundations

Algorithm 2.1: Louvain Algorithm
Input: Graph G = (V,E,w)
Output: Clustering C
// Initialization

1 C ← SingletonClustering(G)
// Local Moving

2 while Q(C) improved do
3 forall v ∈ V in random order do
4 Nv ← {C(u) | {u, v} ∈ E} ∪ {C(v)}
5 C∗ ← arg maxD∈Nv

∆QC(v)→v→D // Resolve ties randomly
6 C(v)← C∗

// Contraction and Recursion
7 if C changed then
8 C′ ← Louvain(BuildMetaGraph(G, C))
9 C ← {

⋃
C∈C′ C |C ′ ∈ C′}

10 return C

Algorithm 2.1 depicts the algorithm. The algorithm begins by initializing the clustering to
a so-called singleton clustering. That means that each node is in its own unique cluster.
Then, in the local moving phase the algorithm iterates over all nodes – possibly several
times.

Each time the algorithm gets to a node, it considers all clusters of nodes adjacent to the
current node. For each cluster, the change of modularity, if the node was moved into that
cluster is calculated. The cluster with the best resulting modularity gets selected and the
node will be moved into it, but only if the resulting modularity is strictly better than the
current one. We resolve ties uniformly at random, but other strategies are possible as well1.
The order in which the nodes are visited, is randomized after each iteration.

In the base algorithm, this process is repeated until no further improvement is possible. For
most graphs the algorithm converges relatively fast and in later rounds only very few nodes
are moved. Exploiting that, one often uses a fixed number of iterations or a threshold for
the modularity improvements to terminate the process earlier.

Finally, in the contraction phase, a meta graph is built from the clustering. In this meta
graph each cluster from the clustering retrieved by the local moving becomes a new node.
Edges between the meta nodes have the accumulated weight of edges between the nodes of
the clusters. Edges between nodes of one cluster will become loops with the summed weight.
A property of this meta graph is that its singleton clustering has the same modularity as
the result of the local moving phase. Formally:

Definition 2.2. For a graph G = (V,E,w) and a clustering C the meta graph G′ =
(V ′, E′, w′) is defined as

V ′ = C
E′ = {{C,D} | ∃u ∈ C,∃v ∈ D : {u, v} ∈ E}

w′(C,D) = E(C,D)
(2.7)

1The original publication mentions that several strategies are possible, but does not specify which one is
used in the implementation.

8



2.2. Louvain Algorithm

The algorithm is then recursively applied to that meta graph until a local moving phase
does not perform any changes and returns the singleton clustering. Recursively unpacking
the meta clusterings yields the final result.

One of the most performance critical points in this algorithm is the modularity difference
calculation. We can derive the equation to do so from the modularity definition. First, we
derive the change of modularity when two clusters are merged. Since we defined modularity
as a sum over all clusters, we only need to consider the two clusters in question.

∆QC∪D =
(
e(C ∪D,C ∪D)− a(C ∪D)2

)
−(

e(C,C)− a(C)2
)
−
(
e(D,D)− a(D)2

)
= e(C,C) + e(D,D) + 2 · e(C,D)−

(
a(C) + a(D)

)2
−(

e(C,C)− a(C)2
)
−
(
e(D,D)− a(D)2

)
= 2 ·

(
e(C,D)− a(C) · a(D)

)
(2.8)

Now moving a node can be considered as moving it out of its current cluster – the inverse
of merging it with this cluster – and then merging it with the target cluster.

∆QC→v→D = 2 ·
(
e({v}, D\{v})− e({v}, C\{v})−

a({v}) ·
(
a(D\{v})− a(C\{v})

)) (2.9)

To be able to efficiently compute this value, we need to keep track of the total weights of
each cluster. We maintain a list containing these weights which is updated whenever a node
is moved between clusters. a({v}) is equivalent to deg(v), so it is trivially computable from
our graph data structure. Calculating the weights between the node and all neighboring
clusters can be done by iterating once over all outgoing edges. This needs to be done in
any case, to aggregate the neighboring clusters. With all that, we can then compute the
modularity difference for each cluster in constant time.

Despite its popularity and effectiveness, relatively little is known about the algorithm from
a theoretical standpoint. It is possible to derive some bounds, but in comparison to the
practical results they are much worse than what the algorithm usually delivers. One round
of local moving takes O(m) time: iterating over n nodes and for each node iterating over all
outgoing edges. Since the modularity strictly increases in each move taken by the algorithm,
a limit for the number of moves can be implied by the number of possible modularity values
which is in O(m2). The number of recursions is trivially bound by n since the algorithm
would terminate if all nodes stayed in their original singleton cluster. However, practical
experience suggests the total runtime is indeed quasi-linear in the number of edges and that
the runtime of a full round of local moving is the dominating element in the total runtime.

Interestingly, due to its recursive nature the Louvain algorithm can sometimes circumvent
certain issues of modularity, like the resolution limit. For example, in some cases a clustering
found on a more fine-grained level might still contain clusters with sizes below the resolution
limit. These will, of course, be merged on a more coarse level because it improves the
modularity score. But when one makes use of the clustering from the more fine-grained
levels, this information can be retained.
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2.3 Label Propagation
Label Propagation, as introduced in [XS12], is another community detection approach.
The term label refers to the same concept we previously defined as cluster. Both terms are
used interchangeably in this work, but for consistency with the literature we will use the
term label when referring to the label propagation algorithm.

The algorithm is conceptually relatively simple: Initialize each node with its own unique
label, iterate over all nodes and update each node’s label to the label appearing most often
among the neighboring nodes (resolving ties randomly) and repeat this until the labels
have stabilized. This process is actually conceptually very similar to the local moving
algorithm. Only the criterion to determine the best label is much simpler.

There are two conceptual variants of this algorithm. In the first one, the updating of the
node labels is performed asynchronously (see Algorithm 2.2). That means, a node can
already know the updated labels of other nodes which were updated before in the same
iteration. In the other variant, the updating is executed synchronously (see Algorithm 2.3).
In this case, all node labels are updated at the same time.

Algorithm 2.2: Asynchronous Label Propagation
Input: Graph G = (V,E)
Output: Labels L
// Initialization

1 L0 ← SingletonLabels
2 while L changed do
3 forall v ∈ V in random order do
4 Nv ← {L(u) | {u, v} ∈ E}
5 L∗ ← arg maxL∈Nv

|{u | {u, v} ∈ E,L(u) = L}| // Resolve ties randomly
6 L(v)← L∗

7 return L

Algorithm 2.3: Synchronous Label Propagation
Input: Graph G = (V,E)
Output: Labels L
// Initialization

1 L0 ← SingletonLabels
2 while L changed do
3 forall v ∈ V in parallel do
4 Nv ← {Lt(u) | {u, v} ∈ E}
5 L∗ ← arg maxL∈Nv

|{u | {u, v} ∈ E,Lt(u) = L}| // Resolve ties
randomly

6 Lt+1(v)← L∗

7 return Lt

The synchronous variant has one great advantage: it is very well suited for parallelism. On
the other hand it also introduces the problem of label oscillation – see Figure 2.2 for an
example. If there are two connected nodes which currently have different labels but belong
to the same community, they will switch their labels in each iteration. More general, this
is always the case when there is a bipartite network where the two parts each have exactly
one label.

10
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(a) At t− 1 (b) At t (c) At t+ 1

Figure 2.2: Example of label oscillation in a bipartite graph

The usually observed runtime of label propagation scales linearly with the number of edges,
quite similar to what one usually sees with the Louvain algorithm. This also corresponds
to the complexity of one full iteration, which is in O(m): iterating over all nodes and for
each node over all its neighbors.

One problem of label propagation is that oftentimes one label starts to grow too strong
and successively consumes more and more other labels. This corresponds to an observation
made in [BC09]. There, it has been shown that label propagation also has a quality function
which it optimizes. This function actually has its global maximum in the trivial state where
all nodes share the same label. The algorithm only delivers reasonable results because it
gets stuck in some local maximum beforehand.

Size Constrained Label Propagation

Beside community detection, label propagation can also been applied to graph partitioning.
In this work, we use the size constrained label propagation approach from [MSS14] to
compute partitions for a partitioned Louvain algorithm. To fulfill the partitioning balance
constraint, size constrained label propagation prohibits the propagation of labels containing
too many nodes. If a label already contains more or as many nodes as the balance constraint
allows, no more nodes are added to the label. This also solves the problem mentioned
above of a single label becoming too strong and consuming all others. Algorithm 2.4 shows
this variant of the algorithm.

Algorithm 2.4: Size constrained Label Propagation
Input: Graph G = (V,E)
Output: Labels L
// Initialization

1 L0 ← SingletonLabels
2 while L changed do
3 forall v ∈ V in random order do
4 Nv ←

{
L(u) | {u, v} ∈ E, |L(u)| < (1 + ε)

⌈
n
k

⌉}
5 L∗ ← arg maxL∈Nv

|{u | {u, v} ∈ E,L(u) = L}| // Resolve ties randomly
6 L(v)← L∗

7 return L
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This chapter begins with an introduction to the MapReduce paradigm in Section 3.1. We
continue with an overview about Thrill, the MapReduce framework our implementation
uses. In Section 3.2 we then introduce our distributed clustering algorithms.

3.1 The MapReduce Paradigm

MapReduce is a programming model for scalable computations on large datasets. It was
introduced by Google [DG08] in 2004. It allows the programmer to formulate his algorithms
without much concern about the technical details of parallelization, data distribution, fault
tolerance, scheduling, and networking. The original proprietary implementation from
Google was never published but luckily several open source frameworks implemented the
model over the years – for example Apache Hadoop1 and its successors.

MapReduce programs operate on lists of items. Each item in these lists is a key value pair.
MapReduce programs are expressed by defining a Map function and a Reduce function.
The Map function takes one key value pair and maps it zero or more new key value pairs.
This corresponds to a FlatMap function in functional programming. The Reduce function
takes a key and all values associated with that key and combines these values into a single
value.

The MapReduce framework applies these functions to the items in the list. The Map
function is applied to each item. The Reduce function is applied to each key together with
all values associated with that key. Everything which has to happen in between the Map
and Reduce operations is done by the framework. The execution of a MapReduce program
can be grouped into five phases:

• Input: An input reader reads data from a distributed file system, generates the key
value pairs and distributes them among the available workers. Oftentimes the input
might already be partitioned into appropriate subfiles.

• Map: The map function is applied to each key value pair. This can happen completely
independently on each worker. Additionally, each worker could further parallelize
this step using multiple threads.

1http://hadoop.apache.org/
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• Shuffle: The key value pairs are redistributed among all workers so that in the end
key value pairs with the same key all end up on the same worker. It is crucial to the
performance of the program that this step redistributes as few elements as possible.
Oftentimes the network communication time is the dominating factor in the overall
running time.

• Reduce: The reduce function is applied to all groups of elements with the same key.
This again can be done completely in parallel.

• Output: Each worker writes its items to the file system. The resulting files can be
stored or used as input to another MapReduce program.

An additional combine phase can be inserted after the map phase which locally combines
all elements of the same key on each worker before transmitting them to their target worker.
This can reduce the network traffic and thus improve the performance.

Data in MapReduce does not have any specific ordering. The original Google implementation
guaranteed that in the output the elements of each worker would be sorted by key but this
is no requirement of the programming model. Also, there is no order defined among the
workers.

This programming model in itself does not contain any means to perform iterative or
recursive algorithms. Nevertheless, it is possible to achieve this by chaining multiple
MapReduce programs – or the same program for several times. In fact, all of the MapReduce
algorithms in this work are chains of several MapReduce programs. Thrill, the framework
we use, allows to construct arbitrary data flows using map, reduce and quite a few other
functional operations. However, most of them can be expressed in terms of the original
map and reduce operations.

MapReduce has also been subject to theoretical analysis. In [KSV10], a theoretical
computation model for MapReduce was proposed and compared to the PRAM model.

3.1.1 Visualization of MapReduce Algorithms

(1) Input T

(2) Map
forall word ∈ text do

Emit(word, 1)

(3) Reduce by
word→ counts

Emit(word,
∑

counts)

(4) Output

(ID, text)

(word, count)

(word, totalCount)

Figure 3.1: The Word Count Algorithm in MapReduce

We will depict MapReduce algorithms as data flow graphs. Figure 3.1 shows the standard
example of counting words in a list of texts. Data flows from input (1) through the map (2)
and reduce (3) operations to output (4). Non-trivial operations are annotated with pseudo
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code. The pseudo code specifies the algorithm applied to each item during the operation.
The Emit function is used to generate the output of one operation and pass it to the next.

The map operation (2) iterates over all words in each text, and emits each word as key
together with a 1 as the value. Then, in the reduce operation (3) all items with the same
word as key are combined and the occurrence counts are summed up. The word→ counts
notation in the reduce operation node means that all list items with the same word will be
grouped and the variable counts will contain a list of all the associated count values.

The connections between the operations indicating the data flow are annotated with a
schema2 of the data flowing through it. The names from the schema are used in the
following operation to reference the respective parts of the data. Values in square brackets
(for example [v]) indicate a list of values.

In contrast to the original MapReduce programming model, we do not require the data to
be in the form of key value pairs but allow tuples. Operations relying on keys will explicitly
specify the key they use. We omit map operations which only select a subset of the data in
a tuple or reorder the data – they are reflected by the schema.

Nodes with an octagonal shape indicate special operations related to control flow or
interacting with the runtime environment. Operations represented by a rectangular shape
are local operations. That means that no communication between the workers is required.
Nodes with an oval shape represent distributed operations which require communication.

For reduce operations, like (3), which sum up the values for each key, we will in the following
omit the pseudo code and denote them by Reduce by key and sum values. Furthermore, for
key value pairs where the value is a collection, we also define a shorthand operation called
expand. This operation is a (flat-)map operation which iterates over all elements in the
value collection and emits them together with a key. An example for expand would be to
turn an adjacency list graph where the items are pairs of a node id and a list of neighbor
ids into an edge list graph where the items are pairs of node ids representing an edge. We
also define aggregate as a shorthand for the inverse operation.

3.1.2 Thrill

Thrill3 is an experimental C++ framework for distributed data processing [BAJ+16]. The
code is available on Github4. It features an interface very similar to the MapReduce
programming model.

Thrill can be compared to other Big Data frameworks like Apache Spark but there is one
big conceptual difference: Data in Thrill is represented as an array like data structure –
thus, it always has an inherent order. The order might be arbitrary at times but there
always is one. These data structures are called Distributed Immutable Arrays or DIAs.

DIAs can not only contain primitive data, but also complex types. Specifically, even data
where the serialized items might be encoded using a variable number of bits. Thrill supports
the C++ STL vectors out of the box and the programmer can define custom serialization
methods for other types.

The data in the DIAs cannot be accessed directly by the user. Instead, one needs to define
a data flow by means of distributed operations including the traditional map and reduce
operations. To define this data flow, the programmer calls the function associated with
the operation on the DIA, for example map, and passes a C++ lambda as an argument

2The data can be thought of as a SQL style table. Each item would be one row and the schema would
specify the column names.

3http://project-thrill.org/
4https://github.com/thrill/thrill
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to the function. This lambda takes one item of the list as an argument and returns the
transformed item. The framework then invokes the lambda for every item of the DIA.
This interface is very similar to how lists are often processed in functional programming
languages.

A technical difference to the original MapReduce programming model is that Thrill does
not require its DIA items to be key value pairs. Instead, when invoking a key dependent
operation the user supplies an additional key extractor lambda which maps each element
to its respective key.

Another significant difference between MapReduce and Thrill is that Thrill does not limit
the user to a single data flow but allows operating on an arbitrary number of DIAs. DIAs
can almost be treated like regular variables. They can be passed around in and out of
functions, be used iteratively and even recursively. Thrill data flows can branch out, so
their data is used in multiple subsequent operations. And on the other hand multiple data
flows can also be merged together and combined back into a single one. In fact, the flow of
data in Thrill can assume any form of a directed acyclic graph.

Due to these two key differences, Thrill offers more operations than the traditional MapRe-
duce programming model. In the following, we give a brief overview of the operations
relevant to this work. Some of these are conceptually equivalent but differ in the imple-
mentation. This has important implications for performance.

• FlatMap: Thrill’s FlatMap operations corresponds to the map operation in the
traditional MapReduce programming model. It takes one item and emits zero or
more new items. Each worker can carry out this operation locally on all his items
without any communication to other workers.

• Map: The Map operation is a specialization of FlatMap where each element is mapped
to exactly one new item.

• Filter : Filter removes all items for which a user-supplied predicate is false.

• GroupByKey: Thrill’s GroupByKey operation has the closest resemblance to the
original reduce operation. Items are grouped by their key and transmitted to one
specific worker responsible for their key. There, they get sorted and delivered to the
user’s function through an iterator. That means that before the user operation can
be executed, all items must have been transferred to their destination and only once
everything is in place, the execution of the user function can begin. The assignment
of keys to workers is done through hashing.

• GroupToIndex : This operation works very similar to GroupByKey. The difference is
the handling of the keys. In this operation the keys are considered to be indices in a
range from 0 to x – the user has to supply x as an argument to the call. The index
range gets partitioned and distributed among the workers. After the execution of the
operation, the resulting DIA contains the elements ordered by their indices. If there
are any holes in the range (indices for which there were no elements), they will be
filled with a neutral element.

• ReduceByKey: For Thrill’s ReduceByKey operation, the user has to supply a function
which combines two list items with equal key into one item of the same type. Similar
to GroupByKey, elements will also be assigned to one worker where all elements with
the same key will be reduced together. But in addition to that the reduce function
is also applied to all elements with equal keys on each worker before transmitting
them over the network. Thrill does so by using hash tables. This also allows the
reduction of elements as soon as they arrive rather than first receiving all items, like
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in GroupByKey. This is in most cases a huge advantage and Thrill advises its users
to favor reduce operations over group operations. But reduce has the limitation that
input and output have to have the same type.

• ReduceToIndex : This operation works like ReduceByKey, only that the keys are again
treated as indices similar to GroupToIndex.

• Sort: As the name suggests the Sort operation sorts a DIA into the order defined by
a user-supplied comparator. It also re-balances the data among the workers, so that
each worker has a similar number of items.

• Zip: The Zip operation combines two (or more) DIAs of the same size into a single new
DIA by combining elements at the same position through a user-supplied function.

• ZipWithIndex : This operation works like Zip, only that the elements are not combined
with elements from another DIA but with their indices.

• InnerJoin: Recently a Join operation was implemented in Thrill as part of a master’s
thesis [NB17]. Join is related to Zip, but it combines elements based on keys rather
than order. The two DIAs do not need to have equal lengths but each pair of elements
in the Cartesian product will be passed into the user-supplied combination function.
This is similar to an SQL style inner join. During development, we made heavy use
of this operation but more detailed benchmarking showed that usually Join causes
more performance problems than it solves. In most cases, there are more efficient
alternatives to a full-blown InnerJoin, so in our final algorithms this operation is
used seldom.

Besides these operations which take data from one DIA and deliver it into another DIA,
there are also so-called actions. Actions perform a calculation on the DIA whose result is a
single value which then gets delivered onto all the workers.

• Size: delivers the total number of elements in the DIA to each worker.

• Sum: calculates the sum of all elements in the DIA.

• Gather : Transfers the content of the entire DIA to one worker where it is made
accessible as a STL vector.

These lists are not comprehensive, but cover only the operations most relevant to this
work. During the process of implementation, we also implemented a few more operations
necessary to solve specific (performance) problems we encountered.

• CollectLocal: This is an action which makes the local DIA content of each worker
accessible as a STL vector.

• FoldByKey: This operation is another variant for the reduce step from MapReduce.
Similar to ReduceByKey elements can be combined (or rather folded) immediately
when they arrive on their target worker by making use of a hash table, but the
restriction that the output type has to be the same as the input type is avoided.
Formally speaking, for a DIA with items of type A, reduce requires its function to
have the signature A × A → A. Fold allows B × A → B. This enables significant
improvements when aggregating all elements of one key into a single item.

• Unique: This is a utility operation which is mapped to a reduce operation. The
elements themselves are the keys. That means all equal elements will be grouped.
The reduction function just picks one of the equal elements.

In the pseudo code examples given throughout this thesis, we use a generic Reduce (or
ReduceToIndex) operation rather than the concrete FoldBy, ReduceByKey or GroupByKey
as this is a performance related implementation detail.
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3.2 Distributed Louvain
In this section we present two Thrill/MapReduce algorithms for distributed graph clustering.
Both are based on the Louvain algorithm. The first one is a hybrid approach which uses
MapReduce to partition, distribute, and contract the graph but still performs the local
moving step using the sequential local moving algorithm on subgraphs. It is described in
Section 3.2.1. The second algorithm, introduced in Section 3.2.2, is completely MapReduce
based and can be parallelized on the level of individual nodes. Both algorithms use our
distributed graph contraction algorithm which is covered in the final section (3.2.3).

3.2.1 Distributed Louvain with Partitioned Local Moving (DLPLM)

This first algorithm is based on and extending the work of [ZY15]. The basic idea behind
the algorithm is to split the graph in as many partitions as there are workers available
and let each worker perform the local moving phase independently on its subgraph. The
clusterings from each worker are then combined, the graph is contracted and the whole
process is repeated recursively. Once the graph shrank below a certain size, we switch back
to the sequential Louvain algorithm on a single worker.

We will start by covering the partitioning phase. In previous work, this step is either treated
as preprocessing and performed by external tools or implemented rather simplistically,
based on chunking the node id range. Both approaches have problematic consequences. If
the partitioning is part of the preprocessing, only the first level of the algorithm can be
distributed among the available workers. So if the coarsened graph is still too big for a
single compute node this approach will fail.

Id chunking approaches, on the other hand, are strongly dependent on the input order of
the graph. See 4.2.2 on how randomizing the input order renders partitioned local moving
based on id range chunking completely ineffective.

To circumvent these issues, the partitioning is an integral part of our algorithm. That also
means the graph can, if necessary, be partitioned on any level of the algorithm, not just
the first. Our requirements regarding the partitioning quality are relatively loose. The
most important goal is to cut through as few clusters as possible, while still achieving a
reasonable balance. That makes label propagation a good fit, since the algorithm has been
successfully used in both partitioning and clustering.

Figure 3.2 depicts the data flow of a single iteration of label propagation. The algorithm
has two inputs: The graph as a DIA of node ids with an array of neighbor node ids, and
the current labels for each node as a list of pairs of a node id and a label id. Before the
first iteration the labels are initialized to singleton labels, so every node has its own unique
label. Both inputs have to be sorted by the node id, so they can be combined without any
further communication in operation (3).

The next step is to transfer the label of each node to all neighbors. This is done in step (4)
by emitting the label once for each adjacent node – together with the id of that neighbor.
Reducing by this target id, we then get all incoming labels for each node. We aggregate
them and select the one with most occurrences. Ties are resolved randomly, similar to the
original algorithm.

As we use a ToIndex operation for this reduction, the new labels will be ordered by the
node id. That allows us to use the output of the reduction step (5) directly as the label
input for the next iteration. This process can be repeated until the labels have completely
stabilized – or until only very few nodes still move between labels.

Each iteration can be divided into three phases (zip, expand, reduce), as indicated by the
coloring. We will encounter these three phases again in later algorithms.
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(1) Input L (2) Input G

(3) Zip

(4) Expand

(5) ReduceToIndex
by v → labels

(6) Output

(u, [v]) : sorted by usorted by u : (u, l)

(l, [v])

(v, l)

(v, l∗) : sorted by v

l∗ ←MostFrequent(labels)
Emit(v, l∗)

Figure 3.2: Distributed Label Propagation

This algorithm can produce reasonable clusterings but we need a graph partitioning. And
since the clusters can have arbitrary sizes, the output of this algorithm is not yet suited
for our purposes. Thus, we extend the algorithm with size constraints in analogy to
Algorithm 2.4.

For this we need to limit the propagation of labels which already contain too many nodes.
Figure 3.3 shows how to achieve this in MapReduce. We introduce a fourth phase to the
label propagation schema which consists of the operations (4) and (5).

Operation (4) aggregates all nodes of one cluster into a single MapReduce item. If labels
grew arbitrarily the size of such an item could even become too big for the RAM of a
single worker. But as this algorithm is actually limiting the size of each label, this is not a
problem.

Operation (5) continues by filtering out all labels containing too many nodes, so no outgoing
labels will be emitted for them. The operations (6) and (7) correspond to operation (4)
from the original algorithm. We need to expand twice since we first need to expand all
nodes out of each label and then each neighbor node from each node. The rest of the
algorithm is the same as in the original algorithm.

There is one edge case omitted in this depiction: A node might only have incident labels
which are already too big. In this case there will be no incoming labels and the node will
be missed in the reduction. This can be prevented by emitting each node together with its
own label, regardless of the cluster size. Or it could be mitigated by zipping the new labels
with the old labels and retrieving the missing information from there.

This algorithm now yields a clustering sufficient for our use case. Individual clusters might
still exceed the maximum size depending on how many nodes join the cluster in the iteration
where it grows beyond the maximum size. But in practice the results are good enough.

We still might have many more small clusters than we need for the partitioning. To get an
actual partitioning with as many parts as we have workers we need to combine clusters
until we have the right number of partitions.
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(1) Input L (2) Input G

(3) Zip

(4) Aggregate by l

(5) Filter

(6) Expand

(7) Expand

(8) ReduceToIndex
by v → labels

(9) Output

(u, [v]) : sorted by usorted by u : (u, l)

(l, u, [v])

(l, nodes = [(u, [v])])

(l, [(u, [v])])

(l, [v])

(l, v)

(v, l∗) : sorted by v

if |nodes| < (1 + ε)
⌈

n
k

⌉
then

Emit(l, nodes)

l∗ ←MostFrequent(labels)
Emit(v, l∗)

Figure 3.3: Distributed Size Constrained Label Propagation

This problem is related to the bin packing problem. Because of that, we use one of the
well-known approximation strategies: the best fit decreasing strategy. That means we sort
our clusters by decreasing size and then successively assign each of them to the partition
where it fits with the fewest space left. We assume that the number of clusters is small
enough to perform this algorithm sequentially on the master worker. That finally yields a
graph partitioning with which we can proceed to the actual clustering algorithm.

We need to zip each node with its partition and then distribute each node to the worker
tasked with clustering its partition. Then we can execute the original sequential local
moving algorithm on each subgraph.

There is one issue left open and that are the interconnecting edges. It would be possible to
just drop them. But that would reduce the quality of the final clustering. Nodes belonging
to clusters from a different partition would likely be merged into a local cluster.

To avoid this problem we implement another improvement from [ZY15]: ghost nodes. Ghost
nodes are nodes which are directly adjacent to nodes from the partition but not part of
the partition. We keep these nodes and thus the interconnecting edges along with each
partition. Additionally, we store the degrees of all ghost nodes.
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During local moving, ghost nodes start in their own unique cluster, just like any other
node. The difference is that ghost nodes will never be moved during the local moving. But
it is still possible for regular nodes to be moved into clusters of ghost nodes.

When passing the resulting clustering on to the contraction, ghost nodes are just ignored.
They will be in the cluster they were assigned to in their own partition. If the cluster a
ghost node was assigned to in its own partition and the local cluster of the ghost node
need to be merged, then this will happen in any case during the next local moving on the
contracted graph.

(1) Input G

(2) Map

(3) Expand

(4) AggregateToIndex by v

(5) Input P

(6) Zip

(7) Aggregate by p

(8) Map

(9) Map

(10) Output

(u, [(v, wuv)]))

(u, degu, [(v, wuv)])

(u, degu, v, wuv)

(v, [(u,wuv, degu)]) : sorted by v
(v, p) :

sorted by v
(p, (v, [(u,wuv, degu)]))

(p, nodes)

(C)

(v, c)

// Each worker performs sequential
local moving on one partition

C ← LocalMoving(nodes)
Emit(C)

forall C ∈ C do
forall v ∈ C do

Emit(v, ID(C))

degu ←
∑

wuv

Emit(u, degu, [(v, wuv)])

Figure 3.4: Partitioned Local Moving

Figure 3.4 depicts the data flow of the implementation of the described algorithm. As
input, we take the graph (1) as a DIA, where each item consists of a node id and a list of
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adjacent neighbor node ids together with the weight of the edge. The second input is a
DIA containing the partition of each node (5). Both DIAs have to be ordered by the node
id. In operation (6) we zip the graph and the partitioning. When aggregating these in (7),
we get a local adjacency list for each partition.

The adjacency arrays already include the ghost nodes. But without the operations (2), (3)
and (4) a crucial information would be missing: the degree of the ghost nodes. Operation
(2) calculates the degree of each node by summing up the weights of the incident edges.
Then operation (3) expands the graph into an edge list, now annotated with the degree of
the source node of the edge. We collapse this into an adjacency list graph by aggregating
by the target node of each edge in (4). Now the adjacency lists contain the degree of each
neighboring node.

With that, operation (8) can perform the sequential local moving with ghost nodes for
each partition. Finally, operation (9) expands the local clusterings into a DIA, which is
then passed on to the distributed contraction algorithm.

But before covering this algorithm we will first introduce another algorithm to perform
distributed local moving purely in MapReduce without the need for explicit partitioning.

3.2.2 Distributed Louvain with Synchronous Local Moving (DLSLM)

The local moving and the label propagation algorithm have a similar structure. In both
algorithms we iterate over all nodes, look at each nodes’ neighbors and their labels or
clusters and select the best one of them according to some objective function. Thus, it
should be possible to formulate the local moving in a label propagation style MapReduce
algorithm. The challenge lies within calculating the change of modularity. Therefore, we
need more information than just to which cluster the neighbors of each node belong. In
this section, we present an MapReduce algorithm achieving this with only two distributed
operations per iteration – and a structure analogue to the distributed size constrained label
propagation algorithm.

According to equation 2.9 to calculate the change in modularity, we need the degree of a
node, the weight of each cluster – but excluding the node – and the weight between the
node and the neighboring cluster. And we would need all that for both the current cluster
of each node and each neighboring cluster. It is possible to calculate all this information
and join it onto the appropriate parts of the graph representation. However, this would be
extremely expensive in terms of necessary distributed operations and the communication
overhead they introduce.

Luckily, actually not all of the information is strictly necessary. And the parts which are
indeed necessary can be retrieved efficiently without using joins. The first thing to note is
that to select the best neighboring cluster we do not need to calculate the precise change
of modularity, but only a value proportional to it. As the parts of the equation referring to
the current cluster will remain constant for any neighboring cluster, we can just drop them.

∆Qv→D ∝ 2M · e({v}, D\{v})− a({v}) · a(D\{v}) (3.1)

But now, in this new equation, the baseline for a positive change of modularity is not zero
anymore. Rather, the baseline is the value of this function for the node with its current
cluster. That means we need to make sure to always include the current cluster in the
list of possible clusters for a node. Luckily, this is much easier and cheaper in terms of
computation and communication than calculating and distributing these values to each
node.
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3.2. Distributed Louvain

We still need each nodes’ degree and all the values for each neighboring cluster. We can
obtain the degree similarly to how we did in the partitioned local moving algorithm, by
annotating the adjacency list with the degree of each neighbor node.

The other two remaining values are actually quite similar to what we already had in size
constrained label propagation. a(D\{v}) is the weighted equivalent of the label size we
used to restrict propagation of labels which were too big. Only now, we need to exclude
the weight of the node, if it is part of that cluster, and pass the value on to the operation
actually selecting the best cluster.

The weight between a node and a neighboring cluster also has an equivalent in label
propagation. There, we counted the occurrences of incoming labels. This is equal to the
number of edges to nodes with that label. And the weight between a node and a neighboring
cluster is the sum over the weights of these edges. So this value can be calculated the same
way. With that, we are able to formulate our algorithm as shown in Figure 3.5.

The algorithm starts by annotating the adjacency list with the neighbor node degrees
through operations (2), (3) and (4), as explained before in Figure 3.4. There, we can see
the four familiar phases of distributed label propagation. First, we zip the extended graph
data structure with the current clustering. Then, we aggregate nodes by their cluster in
operation (7)5.

This time, we do not filter by the cluster size but rather calculate the information and pass
it to the next operations. There are several noteworthy details in the expansion operation
(8). First, when iterating over the outgoing edges we exclude loops. That is because we
always need the weight between a node and the cluster excluding the node. Secondly, we
additionally emit the cluster information for each node, but with a total weight decreased
by the degree of the node and a weight between the cluster and the node of zero. We could
achieve the same by adding a loop with weight zero to each node (and not ignoring it in
the iteration over the outgoing edges).

In the operations (9) and (10), we now aggregate this information on incident clusters for
each node. There will be as many incoming elements as the node has incoming edges –
excluding regular loops and adding one for the imaginary loop. For each of the clusters
represented in this information we can now sum up the weights. This will yield the weight
between the node and the cluster. For the total weight of the cluster, we take the minimum
of all the total weights for this cluster. If the cluster is the nodes current cluster, there will
be one total weight (the one from the imaginary loop) which contains the correct reduced
total weight, which excludes the node. Together with the node degree, which was also
passed along, this is everything that is required to calculate ∆Q. So the algorithm calculates
the modularity change values, and selects the best of them, resolving ties randomly. If
no improvement is possible, this will always be the current cluster or at least one equally
good.

However, this has one problematic consequence: the convergence of the algorithm is not
ensured anymore. For example, if one node were placed in two communities with equal
modularity values, the algorithm could oscillate endlessly between these two states. To
avoid this, we implement oscillation countermeasures.

Cluster Oscillation

In Section 2.3. we touched on the issue of label/cluster oscillation. This is an issue which
this algorithm needs to mitigate. Our solution is to move only a subset of the nodes in
each iteration.

5This has, again, the implication that for each cluster we can fit all its nodes into the RAM of a single
worker. In contrast to size constrained label propagation, there is no limit for the size of a cluster.
Nevertheless, we did not encounter any issues with this assumption in our experiments.
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(u, degu, [(v, wuv)])

(u, degu, v, wuv)

(v, [(u,wuv, degu)]) : sorted by v(v, c) :
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∑
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Emit((u, degu, [(v, wuv)]))

Ac ←
∑

node∈nodes deg(node)
forall (v, neighbors) ∈ nodes do

Emit(v, deg(v), c, 0, Ac − deg(v))
forall (u,wuv, degu) ∈ neighbors do

if u 6= v then
Emit(u, degu, c, wuv, Ac)

([c], [wuc], [Ac])← Unzip([(c, wuc, Ac)])
Nu ← union over [c]
forall c ∈ Nu do

Euc ← sum of [wuc]
Ac\u ← minimum of [Ac]

c∗ ← arg maxc∈Nu
∆Qu→c(degu, Euc, Ac\u)

Emit(u, c∗)

Figure 3.5: Synchronous Local Moving
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We use a hash of the node id and the iteration counter to select a pseudo random subset of
nodes to be possibly moved in each iteration. This selection is done in (8) when iterating
over the adjacent nodes. Rather than emitting the cluster information for all neighbors,
only the ones included in the current iteration are used.

We implemented two variants to determine the amount of nodes in each iteration. The first
possibility is to use a fixed amount of the nodes in each iteration. The alternative is to
vary this amount over the course of the local moving phase. In that case, we start with a
small amount and, as the clustering stabilizes we include more nodes in each iteration. We
can calculate the rate for the next iteration out of the ratio of nodes moved in the previous
round. Given that iteration t had a ratio of Rt and xt nodes were moved into a different
cluster, the ratio for the next round can be calculated like this:

Rt+1 = 1− xt

n ∗Rt
(3.2)

Stopping Criteria

We implement and evaluate two stopping criteria for this algorithm. The first one is to
terminate the local moving as soon as the number of nodes being moved between clusters
during one iterations falls below a threshold. The threshold is defined in relation to the
total number of nodes n.

The alternative is based on the number of clusters. We expect that, despite our coun-
termeasures oscillation is not completely avoidable. Also, due to the resolution limit of
modularity, the meaningfulness of the modularity changes for moving individual nodes in a
mostly stabilized clustering of a very large graph might be limited. Thus, we implement
a stopping criterion which terminates the local moving phase once the decrease of the
number of clusters in one iteration falls beyond a certain threshold. This threshold is also
defined in relation to n.

In addition to that, we limit the number of iterations. In the case of a dynamic ratio, the
limit is 32. When using a fixed ratio R, the maximum number of iterations is 8 ·R−1.

Optimizations

When implementing this algorithm, there are several things one can do to improve the
performance further. First, calculating Euc and Ac\u (the two lines in the forall c ∈ Nu

loop at (10)) can actually be performed in (8). Here, we just aggregated all nodes of each
cluster, so we can precompute these values for each node in the adjacency lists. Then, at
(9), there will be one incoming element for each neighboring cluster, rather than for each
neighboring node.

That allows a second optimization. Rather than aggregating all the information about neigh-
boring clusters and then selecting the best cluster, we can now use Thrills ReduceToIndex
operation and reduce these elements pairwise as they come in.

There is another optimization, which allows us to omit the target degree annotation in the
adjacency list. This is very important since the annotated adjacency list is very costly in
terms of memory. Memory consumption is the crucial factor when trying to cluster graphs
where the (unannotated) adjacency list in memory representation takes several hundreds of
gigabytes of RAM. We can drop this annotation because with the ReduceToIndex operation
we know on which worker operation (10) will take place for each node. So rather than
passing the degree information around with the regular data flow, we distribute it once in
the beginning to each nodes’ corresponding worker. This optimization is not strictly within
the MapReduce model anymore, but a crucial step in making this algorithm efficient.
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(1) Input C (2) Input G

(3) Expand
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(5) Join on v
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(7) Aggregate by c

(8) Output

(u, [(v, wuv)])

(u, v, wuv)

(u, c)

(c, v, wuv)

(v, d)

(c, d, wuv)

(c, d, wcd)

(c, [(d,wcd)])

Figure 3.6: Simple Distributed Contraction

3.2.3 Distributed Graph Contraction

In previous work on distributed variants of the Louvain algorithm, the question how to
contract a graph which is too big for the RAM of a single worker is left open. In the case of
partitioned local moving algorithms, each worker can contract its subgraph independently.
But that still leaves out the interconnecting edges which in extreme cases might still be
too many for the RAM of a single worker.

We implement this operation in a fully distributed manner. Figure 3.6 outlines a simple
version of this algorithm. In operation (3), we expand the given adjacency list into an
edge list representation. Then, in operation (4) and (5), we join the clustering by node
successively onto both sides of each edge. The algorithm then (6) combines all edges which
now share the same source cluster and the same target cluster into one edge with the
combined weight. The final step (7) is to aggregate by the source node of each edge which
yields an adjacency list representation of the contracted graph. This is the input for the
next level of the algorithm.

As mentioned before, joins in Thrill are usually not the very best option. Especially in
this case where the joins operate on the edge list representation. This algorithm can be
implemented significantly faster by exploiting the fact that in Thrill data can be ordered.
Figure 3.7 depicts this improved algorithm.
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Figure 3.7: Distributed Contraction without Joins

By having the adjacency list and the clustering representation both ordered by node ids,
we can combine them without any network communication. That allows us to immediately
translate the source node of each edge in a very efficient way. This is done in operation
(3). We then expand (4) the graph and immediately aggregate by the edge target (5).
This yields the inverted adjacency list. By zipping again with the clustering (6), we can
now translate the target node of each edge. After expanding again (4), we can reduce (8)
and sum up the weights between the clusters. With the final aggregate (9), we get the
contracted adjacency list.

This algorithm is conceptually very similar to the one actually implemented in our code
base but it still makes some non-trivial assumption on the input. Most notably on the
clustering: for Thrill’s ReduceToIndex operation to work properly, it expects that the id
space ranges from 0 to n without any holes or other irregularities. And our local moving
algorithms rely heavily on this ordering feature of ReduceToIndex. Since it is very likely
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that the ids of the clusters returned from the local moving are only a very small and
non-consecutive subset of the id range, the output of our local moving algorithms is not
yet suited for building the meta graph.

We would first have to assign new ids from the range [0, |C|) to our clusters. This could
be done in a separate step by taking the clustering, extracting the unique cluster ids,
generating a cluster id mapping to new indices and then translating the clustering to
the fixed id range. But actually it is also possible to integrate that step into the graph
contraction.

Figure 3.8 shows the algorithm actually used in our implementation. After zipping (3) the
nodes with their cluster, we aggregate all nodes of each cluster (4). Now each cluster is
represented as one item in our collection. That allows us, to use Thrill’s ZipWithIndex
operation (6) to assign a new id to each cluster.

We can now expand this into both the half translated edge list (9) and the clustering DIA
with cleaned up ids. After sorting (8) the cleaned clustering and aggregating by edge target
(10), we can now translate the second half of our representation (11). This allows us, to
then proceed as in the previous algorithm.
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Figure 3.8: Distributed Contraction With Consecutive Output Id Range
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4. Evaluation

In this chapter, we present the evaluation of our algorithms. Section 4.1 gives an overview
about the environment our experiments were performed in and the graphs used. Section 4.2
contains the actual experiments.

4.1 Setup
4.1.1 Implementation

We implement our algorithms in C++. The distributed algorithms were built using the
Thrill framework. We also implement the sequential Louvain algorithm for comparison.
The code will be published on Github1 after the submission of this thesis.

Thrill requires a modern C++ standard, at least C++14. Our code was compiled with
GCC 5.2. Network communication in Thrill is performed with MPI. We use OpenMPI 2.0
for this.

To implement our custom operations, we created our own fork of Thrill2. Several of our
changes to Thrill were merged back into the main repository, and for others there are, at
the time of writing, open pull requests.

As Thrill is an experimental framework and still in active development, we encountered
some stability issues. Specifically, we had several issues with Thrills memory management.
We encountered some of these issues also in our final experiments. Thrill has external
memory functionality to swap out data if the available RAM is not sufficient. However,
these mechanisms seem not to work well in combination with the memory provisioning
of the cluster we performed our experiments on. We had several crashes where Thrill
allocated more memory than the resource management of the cluster allowed.

4.1.2 Test Machines

All performance relevant experiments were conducted on bwUniCluster34. Our experiments
use between 1 and 32 28-way Intel Xeon compute nodes. Each of these nodes contains
two Fourteen-core Intel Xeon processors E5-2660 v4 (Broadwell). The processor frequency

1https://github.com/SDEagle/ma_code
2https://github.com/SDEagle/thrill
3http://www.scc.kit.edu/dienste/bwUniCluster.php
4https://www.bwhpc-c5.de/wiki/index.php/BwUniCluster_Hardware_and_Architecture
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instance n m source

com-amazon 334 863 925 872

SNAP [YL15]
com-youtube 1 134 890 2 987 624
com-lj 3 997 962 34 681 189
com-orkut 3 072 441 117 185 083
com-friendster 65 608 366 1 806 067 135

in-2004 1 382 867 13 591 473 DIMACS 10
[BMS+13, -di11,
BCSV04]

uk-2002 18 483 186 261 787 258
uk-2007-05 105 153 952 3 301 876 564

LFR 100K 100 000 13 215 438

generated

LFR 1M 1 000 000 132 018 381
LFR 10M 10 000 000 1 320 354 525
LFR 100M 100 000 000 13 203 573 605
LFR 200M 200 000 000 26 406 659 441
hypercube 8 388 608 96 468 992

Table 4.1: Test instances

is 2.0 GHz with normal workloads, and can clock up 3.2 GHz when using only one or two
cores per socket. Each node has 128 GB of main memory and a local 480 GB SSD. The
nodes are connected with InfiniBand 4X FDR interconnect.

4.1.3 Graphs

We evaluate our algorithms on both real world instances and artificially generated benchmark
graphs. The real world networks are taken from SNAP [YL15] and the 10th DIMACS
implementation challenge [BMS+13, -di11, BCSV04]. We focus on web graphs and social
networks. Our artificial benchmark graphs are generated using the LFR model [LFR08].

As our algorithms are intended to be used in a distributed setting, we need graphs for
which this setting actually makes sense. Since the traditional Louvain algorithms is given
enough time and RAM well capable of clustering graphs with a billion edges, we need
graphs too big for the RAM of a single host. To generate graphs in that order of magnitude,
we use the external memory LFR graph generator introduced in [HMPW17]. Table 4.1
shows an overview of the graphs used in our experiments. We also include a 23 dimensional
hypercube graph to evaluate the performance of our algorithms on graphs they were not
designed to handle.

LFR Graph Generation Parameters

We choose the parameters for the LFR graph generation by trying to mimic the properties
of a social network. We use the properties reported in [UKBM11] as an orientation. The
node degree distribution is a power-law-distribution with γ = −2. The degrees range from
50 to 10 000. This results in an average degree of around 264. Community sizes are also
taken from a power-law-distribution. The minimum size is also 50, the maximum size is
12 000. The power-law-exponent β for the community sizes is −1. The mixing parameter µ
is 0.4. This means that for each node 40 % of the edges will lead to nodes from a different
cluster. These parameters remain the same through all graph sizes.

For our quality experiments (see Section 4.2.6), we generate an additional set of LFR
benchmark graphs with a fixed number of nodes but varying generation parameters. For
this, we use the LFR graph generator from the NetworKit toolkit [SSM16].
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Preprocessing

Before the actual experiments, we preprocess all graphs. Preprocessing includes removing
degree zero nodes and making the id space consecutive. We also randomize the node order
to ensure that our algorithms are independent of a certain input order. Another reason for
the node order randomization is load balancing. In our algorithms the nodes are sometimes
distributed among the workers based on id ranges. If one range had significantly more
edges than the others this would degrade the overall performance5. The preprocessed graph
is emitted in a binary format, split into several files of fixed size.

4.1.4 Methodology

When possible, we report averaged results over several runs of the same experiment. Due
to limited time and resources on bwUniCluster this was unfortunately not possible for all
experiments. The experiments from Section 4.2.1 and 4.2.2 are averaged – the rest were
run only once.

Our running times always exclude the time necessary to read the graph from the file system
and to write back any results. When an algorithm is run in parallel across multiple hosts,
we always take the time from when the first host starts the operation until when the last
host finishes it.

Clustering Comparison

To quantify the similarity of two clusterings, we use two well-known measures: The
Normalized Mutual Information (NMI) and the Adjusted Rand Index (ARI). For a precise
formal definition of these values see Section 3.2.2 and 5.2 in [WW07]. We use the Networkit
implementation for the actual calculation of these measurements [SSM16].

The NMI is most sensitive to changes where nodes are put in a different cluster. Changes
where entire clusters are split in parts or merged together are reflected less intensively. The
ARI is more sensitive to this kind of changes.

4.2 Experiments
This section contains our experimental results. We start with two preliminary experiments
regarding the oscillation countermeasures and the effectiveness of different partitioning
strategies for the DLPLM algorithm. We continue with several experiments on the
scalability and clustering quality of our distributed algorithms. We conclude this chapter
with a comparative overview of running times and clustering results of the two distributed
algorithms and the sequential Louvain on all our test graphs.

4.2.1 Oscillation Countermeasures

This section contains the experiments on the performance of the oscillation countermeasures
introduced in Section 3.2.2. We evaluate the different strategies in terms of running time
and quality of the clusterings measured by their modularity score. We use three different
types of graphs, one web graph, one social network and one of our LFR graphs. The
experiments were executed on 4 hosts with 16 worker threads each. Table 4.2 contains the
results.

The configurations where all nodes were moved concurrently are very fast but the clusterings
they find are of very bad quality. So in some cases, oscillation does not prevent convergence,

5Our LFR Graphs are a particular extreme example for this. The generator emits the nodes sorted by
their degree.
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size k 4 16 64 256 1024
order algorithm

original chunk 0.989281 0.989132 0.989080 0.989069 0.989076
stream 0.989288 0.989179 0.989247 0.989213 0.989205

shuffled chunk 0.989548 0.989467 0.989673 0.989710 0.989733
stream 0.989644 0.989706 0.989725 0.989698 0.989591
LP 0.989740 0.989739 0.989777 0.989773 0.989770

Table 4.3: Modularity results for partitioning with chunking, streaming graph partitioning
and label propagation (LP) into different partition sizes k on the original and
shuffled uk-2002 graph.

but rather leads to convergence on bad clusterings. Moving all nodes concurrently in
combination with the stopping criterion based on the number of nodes moved, works
surprisingly well on the LFR 10M graph, but on the other graphs the algorithm does not
converge at all and eventually crashes.

The data shows no configuration that performs best for all graphs. Apparently, for different
graphs different strategies perform best. We settle for the constant 1/4 ratio in combination
with the moved stopping criterion and use this configuration for all following experiments.
This is one of the few configurations delivering stable quality and running time on all three
graph types. It also offers a reasonable trade-off between running time and clustering
quality. We also apply this strategy to our label propagation algorithm.

4.2.2 Effectiveness of Partitioned Local Moving

In this experiment we investigate the effectiveness of the partitioning approaches used in
[ZY15, CHLG13]. We compare the chunking approach on both the original graph and
our preprocessed graph with shuffled node order with the results of our label propagation
approach. As label propagation is independent of the input order, we run it only on the
shuffled graph. We also include a streaming graph partitioning technique from [SK12] we
evaluated in early development.

For the streaming approach we use a strategy referred to as deterministic greedy with linear
penalty. As nodes arrive, they are immediately assigned to the partition they have the
most edges to. A linear penalty function is applied to the weight, based on the remaining
capacity of the partition. In the evaluation from [SK12], this was the strategy performing
best.

We perform our experiment on the uk-2002 instance. The algorithm used is a modified
version of our sequential Louvain implementation where on the first level the local moving
is performed in partitions. After the first contraction, the regular Louvain algorithm is
applied. This is a sequential implementation of the algorithm proposed in [ZY15].

Table 4.3 shows the modularity results. Modularity generally only varies very slightly
across all strategies and sizes. Label propagation delivers the best modularity results across
all sizes. The streaming approach is, in most cases, superior to the chunking. There is
no obvious relation between partition size and modularity score. The shuffling improves
the modularity scores for both the chunking and the streaming approach. Overall, the
partitioning strategy and size have surprisingly little influence on the modularity score.

These observations stand in contrast to the quality of the partitionings measured by their
total cut, as in shown in Table 4.4 As expected, the cut sizes grow with the number of
partition elements. Chunking the id range on the original graph delivers the best cuts.
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size k 4 16 64 256 1024
order algorithm

original chunk 9 404 346 11 754 668 12 642 552 13 792 340 19 288 568
stream 53 014 526 68 323 728 73 633 832 78 585 883 85 501 755

shuffled chunk 198 339 260 246 944 129 258 509 423 261 113 135 261 578 869
stream 25 095 327 31 906 359 34 145 074 35 090 278 43 401 203
LP 17 376 628 23 864 982 25 929 781 26 655 192 26 960 313

Table 4.4: Total cut sizes for partitioning with chunking, streaming graph partitioning
and label propagation (LP) into different partition sizes k on the original and
shuffled uk-2002 graph.
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Figure 4.1: Size of the first meta graph with different partition strategies and sizes.

Chunking the id range on the shuffled graph yields extremely heavy cuts, though. The
total weight of the uk-2002 graph is 261 787 258. With four partition elements, the cut
includes already three quarters of the edges.

In contrast, the streaming approach benefits from the randomization. On the randomized
graph, it performs much better than the chunking, but not as good as label propagation.
Label propagation generally delivers relatively good results. It also delivers very stable
total cut weights, even for partitions with a large k. This poses the question why the
modularity scores do not reflect these big differences.

The reason for this is that for bad partitionings the partitioned local moving will not
generate a bad clustering, but rather no clustering at all. Figure 4.1 illustrates this behavior.
It shows the number of nodes in the meta graph after the partitioned local moving. The
dashed lines indicate the size of the meta graph after sequential local moving and the
original graph size. For partitions with k > 64 created by chunking on the shuffled graph,
the meta graph stays around the size of the original graph. That means the partitioned
local moving did not do anything.
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This also explains why the modularity scores stay roughly the same. If the partitioning has
a bad quality, nothing will happen in the partitioned phase, and afterwards the sequential
algorithm will start with a graph very similar to the original graph. That leads to the
conclusion that a good partitioning is essential for the partitioned local moving algorithm.
Otherwise, the parallelization will be completely ineffective.

Label propagation is almost equally effective to chunking on the original graph. Since a
good input ordering is not always available, we choose label propagation as the partitioning
strategy for our DLPLM algorithm. In the next section we evaluate its performance.

4.2.3 Label Propagation Scalability

We apply the label propagation partitioning algorithm to three of our LFR graphs – with 1,
10, and 100 million nodes – and compare running time, speedup, and efficiency of different
threading configurations. Figure 4.2 depicts the results.
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Figure 4.2: Label propagation scaling for three LFR graphs with different host and thread
per host configurations. The configurations are ordered by the total thread
count. Speedup and efficiency are calculated in relation to the configuration
with the fewest total threads.

For brevity, we reference configurations in a short form. For example, the configuration
16x4 means that the algorithm is run on 16 hosts with each 4 worker threads. We use
different numbers of hosts depending on the graph size since for example the LFR 100M
graph requires more RAM than a single worker has. For each host count we run the
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algorithm with 1, 4, 16 and 27 worker threads. 27 threads is the maximum number, since
we have 28 cores and Thrill requires one extra worker for MPI communication.

The algorithm exhibits almost linear scaling in the input size. With the 2x1 configuration
the LFR 1M graphs needs around 180 seconds and the LFR 10M 1800 seconds. With the
8x1 configuration the LFR 10M graphs needs around 500 seconds and the LFR 10M 6500
seconds.

Regarding scaling with the number of threads, the results depend on both the graph size
and the specific configurations. For the LFR 1M graph with 32 or more total threads,
the performance is actually worse than with fewer threads. So there is a point where
adding more threads adds more communication overhead than gained by parallelization.
For larger graphs, for example the LFR 10M graph, we can use more threads and still gain
improvements.

The efficiency plots show, that even though large numbers of threads can yield significant
speedups, using more hosts with fewer threads is more efficient. Using too many threads
per host can even degrade the performance. When using the maximum number of threads
per host on the LFR 10M graph, we even get memory management related crashes. In
all other cases, except with exactly one host, the configurations with 16 threads per host
deliver better running times than those with 27. This indicates that RAM access during
local operations might actually be the bottleneck of this algorithm.

On the LFR 100M graph, both the 16x1 and the 16x4 configurations have super-scalar
speedups over 8x1. Also, 16x1 performs as good as 8x4 which actually has more total threads.
8x16 still yields a slight improvement over 8x4. But 16x4 is much better even though it
uses only half the number of threads as 8x16. We conclude that for this setup the RAM
usage of the local operations is the greater bottleneck than the network communication for
the distributed operations.

4.2.4 DLPLM Scalability

In this section, we evaluate the performance of the DLPLM clustering algorithm. We
expect the algorithm to exhibit similar scaling properties as label propagation. DLPLM
primarily adds the partitioned local moving phase, which can be run completely in parallel
without any communication between the partitions.

For this algorithm, the number of worker threads defines the size of the partitioning and
thus also influences the quality of the final clustering. To investigate this, we also report
the influence of the number of threads on the modularity. We also use different graphs
to investigate if the graph properties have implications for the algorithm’s performance.
We cluster each graph on 4, 8, and 16 hosts. Due to its bad performance in the previous
experiment, we do not use configurations with 27 threads per host. Figure 4.3 shows the
scaling results.

The graph structure has a strong impact on performance, much stronger than expected by
just scaling the running time with the number of edges. Clustering com-friendster with 4x1
took more than 5 hours. Scaling with the number of threads performs analogue to what we
have seen for label propagation. Comparing the 16x4 and the 4x16 configurations shows
that more hosts lead to greater improvements than more threads per host. Clustering the
uk-2002 graph with more than 4 threads per host does not improve the performance much
further.

The efficiency plots show clearly that adding hosts is much more effective, than adding
threads per host. Scaling just the number of hosts with one thread per host yields almost
perfect linear scaling. In some cases, we even get super-scalar speedups. This leads to the

38



4.2. Experiments

4x
1

8x
1

16
x1 4x
4

8x
4

16
x4

4x
16

8x
16

16
x1

6

hosts x threads

0

1000

2000

ru
nt
im

e
[s]

LF
R

10
M

4x
1

8x
1

16
x1 4x
4

8x
4

16
x4

4x
16

8x
16

16
x1

6

hosts x threads

0

5

10

15

re
la
tiv

e
sp
ee
du

p

4x
1

8x
1

16
x1 4x
4

8x
4

16
x4

4x
16

8x
16

16
x1

6

hosts x threads

0.0

0.5

1.0

re
la
tiv

e
effi

ci
en
cy

4x
1

8x
1

16
x1 4x
4

8x
4

16
x4

4x
16

8x
16

16
x1

6

hosts x threads

0

5000

10000

ru
nt
im

e
[s]

co
m
-fr

ie
nd

st
er

4x
1

8x
1

16
x1 4x
4

8x
4

16
x4

4x
16

8x
16

16
x1

6

hosts x threads

0.0

2.5

5.0

7.5

re
la
tiv

e
sp
ee
du

p

4x
1

8x
1

16
x1 4x
4

8x
4

16
x4

4x
16

8x
16

16
x1

6

hosts x threads

0.0

0.5

1.0

re
la
tiv

e
effi

ci
en
cy

4x
1

8x
1

16
x1 4x
4

8x
4

16
x4

4x
16

8x
16

16
x1

6

hosts x threads

0

500

1000

ru
nt
im

e
[s]

uk
-2
00
2

4x
1

8x
1

16
x1 4x
4

8x
4

16
x4

4x
16

8x
16

16
x1

6

hosts x threads

0

5

10

re
la
tiv

e
sp
ee
du

p

4x
1

8x
1

16
x1 4x
4

8x
4

16
x4

4x
16

8x
16

16
x1

6

hosts x threads

0.0

0.5

1.0

re
la
tiv

e
effi

ci
en
cy

Figure 4.3: DLPLM scaling for three different types of graphs with different host and thread
per host configurations. The configurations are ordered by the total thread
count. Speedup and efficiency are calculated in relation to the configuration
with the fewest total threads.

conclusion that this algorithm can scale linearly with the number of hosts. Adding more
threads can improve the performance further, but not as efficiently as adding hosts.

Figure 4.4 depicts the modularity results for different total thread numbers and thus,
partition sizes. For uk-2002 and LFR 10M, the modularity remains roughly constant
through all configurations. With a growing number of total threads, the modularity scores
improve slightly. For com-friendster, this effect is much more significant. The reasons for
this are unclear. Nonetheless, we conclude that adding more threads does not worsen the
clustering quality.

Resource Usage

Figure 4.6 shows an example of resources used during a DLPLM run. The graph in this
case is LFR 10M. The charts show the resource usage of one of eight hosts.

During the initial label propagation, the CPU utilization is relatively good. The local
minima in the beginning of each iteration correspond to the network communication
performed at these points. At the end of the label propagation phase, the already high
RAM usage (the plain graph as an adjacency list should take about 8 GB in total) increases
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Figure 4.4: DLPLM modularity results for different total thread counts and thus partition
sizes k.

significantly. This is where the graph representation containing the target degrees of each
edge is built.

In the actual partitioned local moving, the CPU utilization is very good in the beginning,
but decreases later on. That indicates that a better load balancing by the number of
edges in each partition could improve the performance of this algorithm further. After
the contraction, the higher levels of the algorithm take place with relatively low resource
utilization. This also indicates potential for further improvements. The resource usage also
confirms that in this configuration the network is not a limiting factor.

4.2.5 DLSLM Scalability

This section contains the scaling experiments for the DLSLM algorithm. Since the data
flow is similar to label propagation, the expectation is that the scaling behavior will also be
similar. We use the same graphs and configurations as for the label propagation experiment.
Nonetheless, the results are not completely comparable to the results from Section 4.2.3
since the DLSLM algorithm also contains the contraction and recursion on the contracted
graph. Figure 4.5 depicts the results.

The results confirm the similarity of the two algorithms. Despite the higher complexity
of the modularity difference calculation and the additional contraction and recursion, the
running times are very similar. The algorithm also scales slightly super-linear with both
the number of threads and the graph size. Clustering LFR 1M with 2x1 takes around 160
seconds and clustering LFR 10M with 2x1 takes approximately 1900 seconds. Clustering
LFR 10M with 8x1 takes 500 seconds and clustering LFR 100M with 8x1 takes around
7000 seconds.

Configurations with 27 threads per host also perform bad or lead to memory management
related crashes. Configurations with 16 threads achieve significant speedups but are
relatively inefficient. On the LFR 100M graph, 16x1 achieves a super-scalar speedup over
8x1 and speedups are almost perfectly linear with up to 4 threads per hosts. Once again,
this leads to the conclusion that the RAM usage of local operations is the bottleneck of
this algorithm and not the network usage of distributed operations.

When comparing these numbers to the DLPLM algorithm, we note that the DLSLM
algorithm does not scale as good, but performs better in absolute running times. It actually
takes only slightly more time to perform the entire clustering than the label propagation
takes in DLPLM. This leads to the question if the DLSLM algorithm could also be used to
build a graph partition, and what quality this partition would exhibit.
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Figure 4.5: DLSLM scaling for three different types of graphs with different host and thread
per host configurations. The configurations are ordered by the total thread
count. Speedup and efficiency are calculated in relation to the configuration
with the fewest total threads.

Resource Usage

Figure 4.7 shows an exemplary resource usage of the DLSLM algorithm. The graph and
configuration are the same as in Figure 4.6 – LFR 10M on eight hosts.

The DLSLM algorithms uses less RAM and less CPU than the DLPLM algorithm. Peak
RAM usage is almost a third less. The reason for this is that DLSLM can avoid the
expansive graph representation and stick to a simple adjacency list.

During the synchronous local moving, network utilization is higher than during label
propagation, as more data needs to be communicated to calculate the modularity differences.
Interestingly, the CPU utilization during synchronous local moving is worse than during
label propagation, even though more computations need to be performed. Also, the lows
in utilization do not correspond to peaks in network communication. We follow that in
these periods the workers are either limited by RAM, or they are waiting on other workers
to finish their work. In the latter case, the times could be optimized with better load
balancing.

The later levels of the algorithm show low utilization of both CPU and the network. We
conclude that switching to the sequential Louvain algorithm once the graph has shrank
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Figure 4.6: Resource usage on one of eight hosts performing DLPLM on LFR 10M. Dashed
lines indicate the start of a label propagation iteration, but only on the first
level. Red lines mark the start of the partitioned local moving. The continuous
black lines indicate the contraction phase.
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Figure 4.7: Resource usage on one of eight hosts performing DLSLM on LFR 10M. Dashed
lines indicate the start of a synchronous local moving iteration, but only on the
first level. The continuous lines indicate the contraction phase.
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to a certain size would be an optimization worth exploring. Concluding, this analysis
demonstrates that the DLSLM algorithm is more efficient than DLPLM, both in terms of
time and space. In the next section, we will investigate how the algorithms compete in
terms of the quality of the clusterings found by them.

4.2.6 Quality

In this section we evaluate the quality of the clusterings found by our algorithms. We
conduct two experiments. First, we evaluate the similarity of our clusterings to the ground
truth of a different set of LFR graphs. These graphs are smaller and cover a greater
variance of LFR parameters. Second, we compare our clustering results to the ground
truths of the LFR graphs we used throughout the rest of our experiments.

The LFR graphs generated for this set of experiments all have 100 000 nodes. Both the
node degree distribution and the cluster size distribution are power-law-distributions. We
use an average of 50 and a maximum of 1000 as parameters for the node degree distribution.
For the community size distribution the minimum is 30 and the maximum 1200. Our
degree distribution exponent γ is −2 or −3. The cluster size distribution exponent β is
−1 or −2. The mixing parameter µ ranges from 0.1 to 0.9. We generate a graph for each
combination of these values.
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Figure 4.8: Similarity of clustering results to ground truth with varying LFR parameters
by algorithm.

Figure 4.8 depicts the comparison results between our algorithms and the ground truth for
each graph. In terms of NMI, our algorithms perform as good as or only slightly worse than
the sequential Louvain algorithm. Whether DLSLM or DLPLM perform better, depends
on the community size and degree distribution exponents.

When measured by ARI, the differences to the ground truth are bigger. This also applies
to the sequential Louvain algorithm, but the distributed algorithms perform even worse.
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Which distributed algorithm performs better depends on the community size and degree
distribution exponents.

The NMI results indicate that up to a µ of 0.6, our algorithms generally put nodes into
the correct cluster. The worse ARI results demonstrate that while the nodes may be in the
correct cluster, our algorithms often merge several ground truth clusters together. We can
see this behavior even better in the next figure.

105 106 107 108

n

0.00

0.25

0.50

0.75

1.00

N
M
I

105 106 107 108

n

0.00

0.25

0.50

0.75

1.00

A
R
I

105 106 107 108

n

102

103

104

|C
|

sequential louvain
DLPLM
DLSLM
ground truth

Figure 4.9: Similarity of clustering results to ground truth of our LFR graphs by graph size
and algorithm. The third chart shows the number of clusters in the clustering
retrieved by each method.

Figure 4.9 shows the comparison results between our algorithms and the ground truth for
the LFR graphs used in the other experiments. We also include the number of clusters in
the clustering found by each algorithm. With the RAM available, the sequential Louvain
algorithm is not able to cluster the LFR 100M and LFR 200M graphs. We do not apply
the DLPLM algorithm to graphs with less than a million nodes because the algorithm
would switch immediately to the sequential Louvain algorithm.

The DLPLM approach delivers very good similarity across all graph sizes. The only
exception is the ARI for the LFR 100M graph. This indicates that for larger graphs the
algorithm is prone to merging clusters which do not belong together. But for graphs of
this size, this is likely not to be an issue of the schema of the algorithm, but of modularity
and its resolution limit.

The DLSLM algorithm depicts a much stronger decline in quality for larger graphs, especially
in terms of ARI. In fact, an ARI of zero is also the expected value for a random clustering.
We conclude that on very big graphs too many clusters are eliminated during the first
rounds or our oscillation countermeasures are not yet performing well enough.

4.2.7 Clustering all Graphs
Finally, we cluster all test instances with all our implemented algorithms. All runs were
performed with 16 threads per host. Table 4.5 shows the resulting running times and
modularity scores.

We observe that DLSLM is with two exceptions (in-2004, com-friendster) significantly
faster than DLPLM. This advantage in running time is complemented by worse modularity
scores, again, with two exceptions (com-youtube, uk-2007-05).

Both distributed algorithms introduce a significant overhead. For sufficiently large graphs
and enough threads, they are still able to outperform the sequential algorithm. Also, they
are able to cluster graphs which the sequential algorithm cannot due to RAM limitations.
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RAM is still an issue though, especially for the DLPLM algorithm. Clustering the LFR
200M graph with 32 hosts fails because the RAM is not sufficient. The edge list annotated
with degrees is very expensive in terms of memory. The DLSLM algorithm can avoid this
representation and is much more memory efficient.

The hypercube graph causes noteworthy behavior. Even though the structure of the graph,
by its construction, contains no clustering at all, both the sequential Louvain algorithm
and the DLSLM algorithm find one, which is reasonable according to the modularity score.
This is another case, demonstrating the limited meaning of absolute modularity values
[GdMC10].

The DLPLM algorithm fails to cluster the graph within the time limit of ten hours. Label
propagation is unable to generate a meaningful partitioning for this type of graph. In
each contraction the graph size shrinks only by a handful of nodes. This process would
theoretically converge at some point, but it did not within the time limit.
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Figure 4.10: Similarity of clustering results to sequential Louvain clustering results for all
graphs by algorithm.

We also compare the outputs of the algorithms with the results of a base run of the
sequential algorithm. Figure 4.10 depicts the similarity of the results in terms of NMI
and ARI. The similarity between the sequential algorithm and the base run indicates how
strong two runs of the sequential algorithm with different seeds differ from one other. For
the most part, the deviation of the distributed algorithms from the base run is very similar
to the deviation between two sequential runs. One strong exception is DLSLM on the
LFR 10M graph. On the uk-2007-05 graph, both distributed algorithms tend to merge
clusters which the sequential algorithm keeps separated. Also, the hypercube graph causes
extremely low similarities. Since it has no inherent clustering structure, this is expected.
We conclude that our distributed algorithms produce clustering results with a stability
comparable to the original Louvain algorithm. The results also indicate that on real world
graphs the decline in clustering quality of the DLSLM algorithm is not as bad as in our
LFR graphs.
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5. Summary

We present two distributed clustering algorithms in the MapReduce programming model.
The first one, DLPLM, builds and improves on existing distributed clustering algorithms
[ZY15, WFSP14] by turning the partitioning phase into an integral part of the algorithm.
This makes our algorithm much more generally applicable than its predecessors. The
second one, DLSLM, combines the Louvain method and synchronous label propagation
into a highly efficient clustering algorithm. It is both faster and requires less RAM than
the partitioned approach.

We implement both algorithms using the experimental BigData framework Thrill. Both
algorithms are able to cluster graphs with tens of billions of edges in a matter of hours.
This demonstrates that Thrill is not only an efficient batch processing tool, but also capable
of distributed graph processing.

We present a detailed evaluation of our implementation. We find that both algorithms
scale very well. Similar to the original Louvain method, the running time scales almost
linearly with the number of edges. Also, given a big enough problem, both algorithms scale
linearly with the number of available hosts.

DLPLM offers quality very similar to the original Louvain algorithm. On real world
graphs, DLSLM delivers also qualitatively good results. However, evaluating the algorithms
performance on our artificial benchmark graphs uncovers some qualitative weaknesses.

Our work demonstrates that distributed graph clustering in MapReduce and Thrill is a
feasible approach. Both our algorithms can cluster graphs with several billions of edges in
a few hours. With that, they are a valuable tool to apply community detection to more
and bigger networks than previously possible.

Future Work

We plan to continue the work on the DLSLM algorithm to further improve the quality
of its output. One approach would be to evaluate other clustering quality measures,
for example the map equation [RAB09]. Developing more sophisticated and generally
applicable oscillation countermeasures is another.

Following our results from Section 4.2.5, we would also like to develop a modularity-
based partitioning approach and evaluate, if it can outperform approaches based on label
propagation. If so, it would also be an interesting approach to combine the two distributed
algorithms and use the synchronous local moving to partition the graph for the partitioned
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5. Summary

local moving. Another promising approach to compensate the qualitative downsides of
DLSLM would be to apply refinements. One option would be to locally recluster all clusters.
This would likely split up clusters which should not have been merged, similar to the Smart
Local Moving algorithm [WvE13].
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