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Abstract:

The game Top Trumps is a card game played between two players. A deck
is a finite subset of Rc. Each player gets dealt half of the deck. One player
chooses one of the c categories, the players compare the values of the top two
cards of their decks in the chosen category. The winner shuffles the two cards
to the bottom of his or her deck and is choosing player for the next round.
To a deck X, we associate a directed dominance graph on vertex set X and
edge set {(x, y) | xc(x) < yc(x)}, where c(x) := arg maxi xi. In the first part of
the thesis, we relate properties of the deck, like strength of individual cards
and first-player-advantage, to graph-theoretical properties of the dominance
graph. In the second part, we analyze, which directed graphs can be realized
as dominance graphs and if so, the minimum number of categories required
for this. This notion is strongly connected to the concept of monotone edges
and directed, acyclic cliques consisting of monotone edges. Here, a directed
edge (u, v) is called monotone, if Nout(u) ⊇ Nout(v). We prove an equivalence
theorem, which is a generalization of Dilworth’s theorem to directed graphs.
As a particular consequence, the width of a poset is exactly the minimum
number of categories required to realize it as a Top Trumps deck.

Zusammenfassung:

Das Spiel Supertrumpf ist ein Kartenspiel für zwei Spieler. Ein Deck für
das Spiel ist eine endliche Teilmenge des Rc. Jeder Spieler bekommt die
Hälfte des Decks ausgeteilt. Nun wählt ein Spieler eine der c Kategorien,
woraufhin die Spieler die Werte der obersten Karten ihrer jeweiligen Stapel
in der gewählten Kategorie vergleichen. Der Gewinner legt die beiden Karten
unter seinen eigenen Stapel und darf die Kategorie in der nächsten Runde
wählen. Mit einem Deck X verknüpfen wir seinen Dominanzgraph auf der
Knotenmenge X und der Kantenmenge {(x, y) | xc(x) < yc(x)}, wobei wir
c(x) := arg maxi xi definieren. Im ersten Teil der Arbeit setzen wir Eigen-
schaften des Decks – wie beispielsweise die Spielstärke individueller Karten
oder den Vorteil des beginnenden Spielers – in Beziehung mit graphentheo-

v



retischen Eigenschaften des Dominanzgraphen. Im zweiten Teil der Arbeit
untersuchen wir, welche gerichteten Graphen als Dominanzgraphen realisiert
werden können. Falls dies möglich ist, fragen wir nach der minimalen Anzahl
hierfür notwendiger Kategorien. Diese Fragestellung ist eng verwandt mit dem
Konzept monotoner Kanten und gerichteter Cliquen, die aus monotonen Kan-
ten bestehen. Hierbei bezeichnen wir eine gerichtete Kante (u, v) als monoton,
falls Nout(u) ⊇ Nout(v) gilt. Wir beweisen eine Äquivalenzaussage, die eine
Verallgemeinerung des Satzes von Dilworth auf beliebige gerichtete Graphen
darstellt. Eine bemerkenswerte Konsequenz dieser Aussage ist die Feststellung,
dass die Weite einer Halbordnung genau der minimalen Anzahl an benötigten
Kategorien, um sie als Supertrumpf-Deck zu realisieren, entspricht.
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1 Introduction

The game Top Trumps is a simple children’s card game known to a lot of
people. It consists out of a deck of cards with a common theme. For exam-
ple, this theme may be “sports cars”, “racing trucks”, “football stars”, “comic
characters”, or one of many others. By our personal experience, most of the
themes revolve around vehicles.

On each card there is the name and a picture of one subject from the
common theme, e.g. the name and picture of a certain car. Furthermore,
there exists a set of fixed categories, e.g. “engine displacement”, “engine power”,
“number of cylinders”, “weight” and “top speed”. Each card displays how well
its subject fares in these fixed categories. An example is given in Figure 1.
These statistics may be real-world statistics, or be fictional, like, for example,
in the case of comic book characters.

Figure 1: Two cards from the deck “Auto Monster” by the German company
Ravensburger. The categories are: “Number of seats”, “engine displacement
(cm3)”, “engine power (kW)”, “engine speed (rpm)” and “weight (kg)”.

Top Trumps is played with two or more players and abides the following
rules. Each player gets dealt the same portion of the deck and places his or
her own cards face down on a pile in front of them. One of the players begins
and inspects his or her topmost card. He or she chooses one of the categories,
say, engine power. Then every player reveals his or her topmost card. The
player with the best value in the chosen category wins this round and all the
involved cards. These cards are placed at the bottom of the winning player’s
pile. Now, the next round is played, with the player who just won deciding on
the next category. The game continues in this fashion until all players but one
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are out of cards. (Depending on the deck, sometimes a stalemate may occur.
This case will be discussed later.)

The motivation for this thesis did arise, when its advisor, Torsten Ueckerdt,
played a game of Top Trumps against his son. The son noted that some cards
were clearly superior to some other cards and that it would be good to have
them. Ueckerdt, after playing some time and being mercilessly beaten by his
son, agreed. He asked himself the question, of how one would formalize the
strength of a card, regarding both its attack abilities when oneself chooses the
category, as well as its defense abilities, when the opposing player chooses the
category. For example: Suppose you have a card which is very good in one
category but very bad in all the other categories. Is it better or worse than a
card, which is average in all categories? Also: Do there exist decks in which
every card has the same strength?

We could find no serious, scientific investigations regarding the mathemat-
ical properties of Top Trumps. However, considering the topic yields a theory,
which is surprisingly rich and elegant, especially from a graph-theoretical point
of view. In this thesis, we answer the following natural questions:

1. What is the best strategy for the game?

2. How can the strength of a card be formalized?

3. Do there exist decks in which every card has the same strength?

4. If the winner of a round wins one dollar, how much should one pay for the
right to be the player choosing the category? Does this amount depend
on the deck?

These questions can be answered relatively quickly. But when considering
them, new natural questions arise: We will notice, that if in a Top Trumps
deck X of size n, the set of values given to the cards inside of each category
is exactly {1, . . . , n}, the optimal play can be expressed very easily: Simply
select c(x) := arg maxi xi for a card x ∈ Rc. We call X a ranked deck in this
special case. Every Top Trumps deck can be transformed into an equivalent
ranked deck.

We will also notice, that if we have two cards x, y in a Top Trumps deck, and
we assume both players play optimally, there are exactly three cases: Either

• the player choosing the category wins,

• or the player with card x always wins, irregardless of who chooses the
category,
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• or the player with card y always wins, irregardless of who chooses the
category.

In the latter two cases, we say that x dominates y, or y dominates x, respec-
tively. (We will see that y dominates x, if and only if xc(x) < yc(x)). Therefore,
every ranked Top Trumps deck implies a directed dominance graph, where the
vertices are the cards and the edge set is the set of all pairs (x, y) such that
the card y dominates the card x. Thus, the dominance graph encodes, which
cards beat which other cards in direct combat; in some way, the structure of the
complete deck is captured in the dominance graph. Therefore, we considered
the following questions:

1. What necessary properties must a dominance graph have?

2. Which directed graphs can appear as the dominance graph of ranked
Top Trumps decks? For some given directed graph, what is the lowest
number of categories necessary to get such a representation?

3. Which graphs can appear as induced subgraphs of dominance graphs of
ranked decks? For some given directed graph, what is the lowest number
of categories necessary, such that it can appear as an induced subgraph
in this way?

We could answer Questions 1 and 2 only partially. However, Question
3 seems to correspond to a more regular behavior: Exactly all acyclic di-
rected graphs can be represented as induced subgraphs of dominance graphs
of ranked decks. Furthermore, the lowest number of categories to represent
a directed graph G in this way is equal to the width of a certain poset P
related to G, which is formed by the set of all monotone edges in G; further-
more this number is also equal to the size of a minimal partition of G into
monotone-neighborhood-cliques. Here, a directed edge (u, v) is called mono-
tone, if Nout(u) ⊇ Nout(v) and a directed clique in G is called monotone-
neighborhood, if the clique is acyclic and all edges inside are monotone (com-
pare Figure 2).

This result is interesting due to two reasons: First, we will see how it im-
plies a polynomial-time algorithm to compute a minimal Top Trumps subdeck
representation for a given acyclic graph. Secondly, we will see how the result
can be seen as a generalization of Dilworth’s theorem, which is a well-known
theorem relating to partially ordered sets. As a particular consequence, we
will see that the width of a poset is exactly the minimum number of categories
required for a Top Trumps subdeck representation of the poset. This insight
we deemed surprising, as it connects the initial question about a children’s
game with a seemingly unrelated statement from the subject of graph theory.
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Figure 2: Depiction of a monotone edge and a monotone-neighborhood-clique.

1.1 Overview

We begin in Section 2, by introducing preliminary knowledge and notation,
including the notion of partially ordered sets and Dilworth’s theorem. After
that, the thesis is split into three main parts:

In the first part, Section 3, we are concerned with introducing a model
of the game and studying basic relationships. We begin by defining a formal
mathematical model of Top Trumps (Section 3.1). We find an optimal strategy
for the game and define the strength of a card under the assumption that the
involved players play optimally. We introduce the concept of dominance graphs
in Section 3.2. We then continue in Section 3.3, where we analyze the relation
between dominance graphs and the strengths of individual cards. Also, we
consider those decks, where every card has the same strength. We analyze
properties common to all dominance graphs in Section 3.4 and conclude the
first part of the thesis in Section 3.5, by considering the first-player-advantage
in a game of Top Trumps.

In the second part, Section 4, we are concerned with the question, which
directed graphs can be realized as dominance graphs of ranked decks. We in-
troduce the notion of ranked realizability and the ranked-realizability number in
Section 4.1. We then consider general properties of ranked-realizable, directed
graphs in Section 4.2. We are not able to answer the question completely, but
we make some progress concerning certain graph operations, which we present
in Section 4.3.

In the third and final part, Section 5, we are concerned with the ques-
tion, which directed graphs can appear as dominance graphs of not necessarily
ranked decks. It turns out, that this is equivalent to asking, which directed
graphs appear as induced subgraphs of dominance graphs of ranked decks. In
Section 5.1, we define the concept of realizability and the realizability number.
Subsequently, in Section 5.2, we show that realizability can be characterized
in terms of monotone-neighborhood-cliques. In Section 5.3, we describe the
behavior of realizabilty under some graph operations. In the final subsection,
Section 5.4, we introduce the concept of monotone edges and show how they
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can be used to obtain a third characterization of realizability, creating a con-
nection between the concept of realizability and partially ordered sets. We
show a generalization of Dilworth’s theorem to arbitrary directed graphs in
terms of realizability. As a consequence, there exists a polynomial-time algo-
rithm computing the realizability number of an acyclic directed graph.

1.2 Related Work

We could find almost no scientific investigations related to the topic of Top
Trumps. In 2011, the mathematician James Grime, best known for his regular
appearance on the Youtube channel “numberphile”, published a video on his
personal channel, where he analyzed some statistical properties of one specific
deck and wondered about whether the game is transitive [13]. There is also a
blog post regarding the topic, but to our knowledge, he did not publish any
precise results. In 2014, A. B. Cardona, A. W. Hansen, J. Togelius and M.
G. Friberger described a simple evolutionary algorithm to extract Top Trump
decks from arbitrary data sets as a means of interactive data exploration [2].
They conducted a study and report that “the results show that players enjoy
playing the game, are enthusiastic about its potential and answer questions
related to decks they have played significantly better than questions related
to decks they have not played.” However, they also mention some problems,
which may make this method unsuitable for data exploration. They do not
consider any mathematical properties of the game. The parameter for which
their evolutionary algorithm optimizes the extracted deck, is the average attack
strength s1, whose properties we will analyze in Section 3.5. The game of war
is an incredibly simple variant of Top Trumps: Here, the cards have only one
single category (and there exist multiple suits, so stalemates are possible).
The only possible choice players can make in the game of war, is the choice,
in which of two possible orders the winner may shuffle the two cards back to
his deck. The game can thus be seen as a Markov chain. E. Lakshtanov and
V. Roshchina showed that the expected number of turns in this game is finite
[10].

These are the mathematical investigations regarding Top Trumps that we
know about. But there is one more connection: Further down in the thesis,
we will see that the concept of pairs of vertices connected by an edge, such the
neighborhood of one of the vertices includes the neighborhood of the other, will
play a critical rule. Although not quite the same as our concept, a very similar
concept has already been considered (for details, see Section 5.4). This concept
is the Dilworth number of an undirected graph, which was introduced in 1978
by S. Foldes and P. Hammer [6]. There seem to be many similarities and the
notions of the reduced graph (denoted by mon*(G) in our thesis), as well as
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the polynomial-time algorithm used by C. T. Hoàng and N. V. R. Mahadev [8],
as well as by S. Felsner, V. Raghavan and J. Spinrad [5] are basically identical
for the Dilworth number and for our number. Understanding the connection
completely is currently an open problem.
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2 Preliminaries and Notation

In the following section, we introduce all necessary concepts of graph theory
and other branches of Mathematics and Computer Science which are required
for the main part of the thesis. This serves the purpose of building preliminary
knowledge, as well as establishing the notation. Although every concept will
be briefly explained, some basic knowledge of graph theory is recommended.
An excellent book on graph theory was written by Diestel [3]. (Also, during
all parts regarding algorithms, we assume the reader to have basic knowledge
equivalent to a beginner’s algorithmics course.) In this thesis, we will mainly
talk about directed graphs without loops, which most of the time will be acyclic
as well. However, in Section 5.4, we will also consider undirected graphs and
loops. We begin by introducing undirected graphs and concepts related to
them.

2.1 Undirected Graphs

An undirected graph G is a tuple G = (V,E) of a vertex set V (G) := V and
an edge set E(G) := E, such that V is some finite set and E ⊆

(
V
2

)
, where(

V
2

)
:= {A ⊆ V : |A| = 2}. An element v ∈ V is called a vertex and an element

e ∈ E is called an edge of G. If e := {i, j} ∈ E is an edge, we generally use
the shorter notation ij instead of {i, j} to refer to e. We define the order |G|
of a graph G as the number of its vertices, i.e. |G| := |V (G)|. For v ∈ V , we
define the neighborhood of v in G as NG(v) := {w ∈ V : vw ∈ E}. We also
write N(v) for the neighborhood of v in G, if the graph G can be deduced from
the context. The degree of a vertex v in G, denoted by dG(v), is the size of
its neighborhood in G. Like before, we write d(v) if the graph can be deduced
from the context. Two vertices are called adjacent if there is an edge between
them. A vertex v and an edge e are called incident, if v ∈ e.

A graph H is called a subgraph of G = (V,E), denoted by H ⊆ G, if
V (H) ⊆ V and E(H) ⊆ E ∩

(
V (H)

2

)
. Special subgraphs are the induced sub-

graphs : For X ⊆ V , the subgraph induced by X is denoted by G[X] and
defined by having the vertex set X and the edge set E(G) ∩

(
X
2

)
. If H is an

induced subgraph of G, we denote this by H ⊆ind G. Furthermore, for A ⊆ V ,
v ∈ V , we define G − A := G[V \ A] and G − v := G − {v}. The process
of getting from G to G − v is called removing the vertex v. The complement
of G = (V,E), denoted by G, is the graph on the same vertex set V having
exactly those vertex pairs as edges, which are not edges in G, i.e. the set(
V
2

)
\ E(G).
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We give a name and a symbol to some special graphs and graph classes:
The complete graph Kn on n vertices, has all possible edges between its n
vertices. The path Pn+1 of length n ≥ 1 on n + 1 vertices consists out of the
distinct vertices v1, . . . , vn+1 and the edges vivi+1 for i = 1, . . . , n. The cycle
Cn on n ≥ 3 vertices has the same vertices and edges as Pn and additionally
the edge vnv1. When we say that G contains a path (a cycle), we mean that G
contains a subgraph, which itself is a path (a cycle). In particular, paths and
cycles use no vertex more than once. For p, q ∈ N, Kp,q denotes the complete
bipartite graph with V (Kp,q) := A ∪ B, such that A ∩ B = ∅, |A| = p, |B| = q
and E(Kp,q) := {ab | a ∈ A, b ∈ B}. A (sub–)graph with only vertices but
no edges between them is called an independent set. A subgraph, which is
complete, is called a clique.

Let r, n ∈ N. The extremal number ext(n,Kr+1) is the largest integer m
such that there exists a graph G on n vertices and m edges which does not
have Kc+1 as a subgraph, i.e. it does not contain a clique of size c+ 1. Turáns
theorem [3] states that for all r, n ∈ N, we have

ext(n,Kr+1) ≤
(

1− 1

r

)
n2

2
.

The Turán graph T (n, r) is the graph on n vertices, whose vertex set is the dis-
joint union of r disjoint vertex sets A1, . . . , Ar, such that the following three
conditions hold: (i) For all i, we have |Ai| ∈ {bn/rc, dn/re}. (ii) For all i,
between the vertices of Ai there are no edges. (iii) For i 6= j, there are all
possible edges between Ai and Aj. If a graph G on n vertices has the maximal
amount of edges between all graphs not containing a Kr+1, Turáns theorem
states, that G = T (n, r).

Given a graph G, we consider several graph parameters of G: The clique
number ω(G) is the size of the largest clique contained in G. The chromatic
number χ(G) of a graph is the minimum number of colors needed to color the
vertices of G such that no two adjacent vertices have the same color. Stated
slightly different, the chromatic number is the size of a cardinality-minimal
partition of V (G) into independent sets. The independence number α(G) is
the size of the biggest independent set in G. The clique-cover number k(G) is
the minimum number of cliques needed to cover all vertices of G. These last
two parameters are complementary to the clique number and the chromatic
number in the sense that ω(G) = α(G) and χ(G) = k(G). One easily sees that
χ(G) ≥ ω(G) and k(G) ≥ α(G) holds for every graph G.
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A matching in a graph G is a set of edges M ⊆ E(G) such that for all
e, f ∈ M : e ∩ f = ∅. A vertex cover W in G is a set of vertices W ⊆ V (G)
such that for all e ∈ E(G) : e ∩ W 6= ∅. A graph G with χ(G) ≤ 2 is
called bipartite. König’s theorem states that in a bipartite graph, the size of
a cardinality-maximal matching is equal to the size of a cardinality-minimal
vertex cover [3].

Two vertices u, v of a graph G are said to be connected, if there is a path
from u to v, disconnected otherwise. Being connected is an equivalence relation
on V × V and divides V into equivalence classes. Each such class induces a
connected component in G.

2.2 Directed Graphs

In a directed graph, each edge has additionally one of two directions. Formally,
a directed graph G is a tuple (V,E), where E ⊆ V × V \ {(v, v) | v ∈ V } and
V is finite. We will not use the shorter notation uv for an edge (u, v) in the
case of directed graphs, because (u, v) is different from (v, u) in contrast to the
case of undirected graphs. The reverse edge of (u, v) is (v, u). If both (u, v)
and (v, u) are edges for u 6= v, we call the set {(u, v), (v, u)} a double-edge
between u and v. In a directed graph, we distinguish between the incoming
and the outgoing neighborhood of a vertex v. The incoming neighborhood of
v is defined as N in

G (v) := {u ∈ V | (u, v) ∈ E} and the outgoing neighborhood
of v is defined as Nout

G (v) := {u ∈ V | (v, u) ∈ E}. As before, we may also
write N in(v) and Nout(v), if the graph G can be deduced from the context.
Analogously to the case of undirected graphs, the outdegree dout(v) of a vertex
v is the size of its outgoing neighborhood, and the indegree din(v) of a vertex
v is the size of its incoming neighborhood.

We define subgraphs, induced subgraphs, G−A, and removing vertices anal-
ogously to the undirected case. (We skip the definition of a complement of a
directed graph for now.) A directed graph G can be transformed into an undi-
rected graph G′ by taking the edge {u, v} in G′ if and only if at least one of
(u, v) or (v, u) is present in G. This way, we can define the graph parameters
ω, χ, α, k of directed graphs G as ω(G) := ω(G′), χ(G) := χ(G′), α(G) := α(G′)
and k(G) := k(G′), where G′ is the corresponding undirected graph. We say
that a set A ⊆ V (G) is independent in G, if it is independent in G′.

The directed path ~Pn+1 of length n ≥ 1 on n + 1 vertices from v1 to vn+1

consists out of the distinct vertices v1, . . . , vn+1 and the edges (vi, vi+1) for
i = 1, . . . , n. The directed cycle ~Cn on n ≥ 2 vertices has the same vertices and
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edges as ~Pn and additionally the edge (vn, v1). When we say that G contains
a directed path (a directed cycle), we mean that G contains a subgraph, which
itself is a directed path (a directed cycle). In particular, directed paths and
directed cycles use no vertex more than once. A vertex v in a directed graph
with N in(G) = ∅ is called a source, a vertex v with Nout(G) = ∅ is called a sink.

A directed graph without directed cycles is called acyclic or directed acyclic
graph (DAG). In particular, a DAG contains no double-edges, as these are di-
rected cycles of length 2. A topological ordering of a directed graph G is an
ordering (v1, . . . , vn) of V (G) such that if (vi, vj) is an edge in G, then i < j.
It can easily be shown that a directed graph G is acyclic if and only if it has
a topological ordering. A topological ordering or a directed cycle in G can be
found in time O(|V |+ |E|) using depth-first-search [11].

If G is an undirected graph, and H is a directed graph created from G by
assigning one of the two directions to each edge, H is called an orientation of
G. An orientation of a complete graph is called a tournament. We call the
directed graph on the vertex set {v1, . . . , vn} and the edge set {(vi, vj) | i < j}
a directed clique. A directed clique can also be seen as an acyclic tournament.
Sometimes, this graph is also called a transitive tournament.

Two vertices u, v of a directed graph G are said to be strongly connected,
if there is a directed path from u to v and there is a directed path from v to
u. Being strongly connected is an equivalence relation on V × V and divides
V into equivalence classes. Each such class induces a strongly connected com-
ponent in G.

Two directed graphs G1 and G2 are called isomorphous, denoted by G1
∼=

G2, if there exists a bijection f : V (G1) → V (G2) such that for all (u, v) ∈
V (G1)× V (G1), we have (u, v) ∈ E(G1) if and only if (f(u), f(v)) ∈ E(G2).

2.3 Loops

At one point in the thesis, we will consider loops in graphs. A graph G =
(V,E), which allows loops is a tuple (V,E) of vertices and edges, where V is
finite and E ⊆

(
V
2

)
∪ V . A directed graph G, which allows loops, is a tuple

(V,E) where V is finite and E ⊆ V × V . An undirected or a directed graph,
which contains a loop, is not acyclic. If v is a loop in an undirected graph,
it holds true that v ∈ N(v) (otherwise this is false). Analogously, if (v, v)
is a loop in a directed graph, v ∈ Nout(v) and v ∈ N in(v). At one point in
Section 5.4, we will also need the definition of a strong module in a directed
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graph allowing loops. A subgraph H ⊆ G of a directed graph G allowing loops
is called a strong module, if for all u, v ∈ V (H), we have Nout

G (u) = Nout
G (v)

and N in
G (u) = N in

G (v).
Most of the time, we will not consider loops. When talking of a graph or a

directed graph, we do not allow loops, unless explicitly stated otherwise.

2.4 Posets and Dilworth’s Theorem

Let M be some set. A subset R ⊆ M ×M is called a binary relation on M .
If x, y ∈ M and (x, y) ∈ R, we also write xRy. For example, the relation
“smaller-than”, <, is a relation on R and (−1, 3) ∈ <. A binary relation R
may have multiple properties. The relation is called

• reflexive, if for all x ∈M : xRx.

• transitive, if for all x, y, z ∈M : (xRy ∧ yRz)⇒ xRz.

• antisymmetric, if for all x, y ∈M : (xRy ∧ yRx)⇒ x = y.

• irreflexive, if for all x ∈M : (x, x) 6∈ R.

Binary relations on a finite set can also be understood as directed graphs (al-
lowing loops). If R ⊆ M × M is a binary relation on a finite set M , we
say that the directed graph GR = (M,R), which allows loops, is the graph
corresponding to R. In this context, R is reflexive, if and only if GR has
all possible loops, R is irreflexive, if and only if GR has no loops at all,
and R is antisymmetric, if and only if GR has no double-edges. Continu-
ing this pattern, we call a directed graph G = (V,E) transitive, if for all
x, y, z ∈ V : (x, y) ∈ E ∧ (y, z) ∈ E ⇒ (x, z) ∈ E. (Note that loops are
not important for deciding whether some given directed graph is transitive.)
Following this definition, we have that a binary relation R is transitive if and
only if its corresponding graph GR is transitive.

A tuple (M,�), whereM is a set and � is a binary relation onM such that
� is reflexive, transitive and antisymmetric is called a partially ordered set, or
poset, for short. The relation � is called a partial order in this case. The poset
is called finite, if M is finite. The corresponding directed graph (with loops)
GR is called the comparability graph of R. Two elements x 6= y ∈M in a poset
are said to be comparable, if x � y or y � x holds. Otherwise, x and y are said
to be incomparable, denoted by x ‖ y. As an example for these concepts, let
X := {1, . . . , 5} and let P(X) be the power set of X, i.e. the set of all subsets
of X. Then (P(X),⊆) is a poset and the two elements {1, 2} and {2, 3, 5} are
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Figure 3: A poset of width 3 and height 4 partitioned into 3 chains (loops
omitted).

incomparable.

Sometimes it will be convenient to look at strict posets : If R is a transitive
and irreflexive binary relation on a set M , we call the tuple (M,R) a strict
poset and R a strict partial order. It is easy to see that R is a strict partial
order if and only if the reflexive closure R∪{(x, x) : x ∈M} is a partial order.
For example, on the natural numbers N, ≤ is a partial order and < is a strict
partial order. If R is a strict partial order on a finite set, the comparability
graph GR is acyclic, and in particular it is loop-free.

Let P := (M,�) be a finite poset. A sequence (x1, . . . , xn) ⊆M of pairwise
different elements such that for all i ∈ {1, . . . , n − 1} : xi � xi+1 is called a
chain in P . A chain can also be seen as a set of elements such that every two of
them are comparable, or alternatively as a directed clique in the comparability
graph of P . An antichain is a set of elements such that every two of them
are incomparable. An antichain can also be seen as an independent set in
the comparability graph. The height of the poset P , denoted by height(P ), is
defined as the size of a largest chain. The width of P , denoted by width(P ),
is defined as the size of a largest antichain. There are two theorems regarding
chains and antichains of a poset. We begin with the easier one, due to Mirsky
[12]:

Theorem 2.1 (Mirsky’s theorem). Let P = (M,�) be a poset. Then M can
be partitioned into height(P ) antichains (and not less).

Proof. First, note that if C is a maximal chain, any antichain can contain at
most one element of C, as the elements of C are pairwise comparable, but the
elements of an antichain are pairwise incomparable. Therefore, M can not be
partitioned into less than height(P ) antichains.
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Define the set min(P ) := {x ∈M | ∀y � x : x = y} of the minimal elements
of P . From its definition, it follows that min(P ) is an antichain. Note that
each maximal chain C must contain an element from min(P ). Otherwise, the
lowest element of C is not a minimal element and therefore we can extend C.
Therefore, the height of P − min(P ) is at least one less than height(P ). By
induction, we can partition P −min(P ) into at most height(P )− 1 antichains
and we are done.

The second theorem is known as Dilworth’s theorem and was discovered
by Dilworth in 1950 [4]. We give a proof due to Fulkerson, based on König’s
theorem [7].

Theorem 2.2. [Dilworth’s theorem] Let P = (M,�) be a poset. Then M can
be partitioned into width(P ) chains (and not less).

Proof. Similar to before, note that if A is an antichain, no chain can contain
two elements of A. Therefore, at least width(P ) chains are needed to cover M .

For the other direction, let M := {x1, . . . , xn}. Consider the undirected,
bipartite graph G on the union of the two vertex sets U := {u1, . . . , un} and
V := {v1, . . . , vn} and on the edge set E := {uivj | i 6= j, xi � xj}. By König’s
theorem, there exist a matching M ′ ⊆ E and a vertex cover C ⊆ U ∪ V in G
such that |M ′| = |C|.

Let A := {xi ∈ M | ui 6∈ C and vi 6∈ C}. Then |A| ≥ n − |C|. The set A
is an antichain in P , because if xi, xj ∈ A, then by the properties of a vertex
cover, neither uivj or viuj is an edge of G and thus xi and xj are incomparable
in P . We conclude |A| ≤ width(P ).

Define a chain decomposition D of P the following way: Start with n chains
of size 1, then for each edge uivj ∈M ′, unify the chains containing xi and xj.
By the properties of a matching, whenever the chains containing xi and xj are
unified, xi is the maximal element of its chain, and xj is the minimal element
of its chain. By the transitivity of the poset P , the resulting family D is a
valid chain decomposition. We start with n chains and get one chain fewer for
each edge of M ′. Thus, we finally have

|D| = n− |M ′| = n− |C| ≤ |A| ≤ width(P ).

Therefore, P can be partitioned into at most width(P ) chains.

A closer look on the last inequality in the previous proof yields that equal-
ity must hold as well, i.e. width(P ) = n−|M ′|. This yields a polynomial-time
algorithm to compute the width of a given poset, as the size of a maximum
matching in a bipartite graph can be computed in polynomial time. (A clas-
sical approach is to reduce the problem to a maximum-flow-problem and use,
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for example, the Ford-Fulkerson-Algorithm, which takes time O(|V ||E|) in this
context, because at most |V | augmenting paths can be found [11]). This can
be improved asymptotically to O(|V |2.5) by using the Hopcroft and Karp al-
gorithm for finding maximum bipartite matchings [9] and even a bit further to
O(|V |5/2/

√
log |V |), as shown by Alt, Blum, Mehldorn and Paul [1].

2.5 Other

For n ∈ N, we define [n] := {1, . . . , n}. For two disjoint sets A,B, we denote
the disjoint union of A and B by A ∪̇ B. A partition of a set M is a family
{M1, . . . ,Mk} of subsets of M , which are pairwise disjoint and whose union is
M . For a function f : A→ B, we denote its image by f(A) := {f(a) | a ∈ A}.
Also, if f : A → Rd is a function mapping to the d-dimensional space, and if
i ∈ [d], we denote the i-th component function of f by fi, i.e. for all x ∈ A,
the value fi(x) is the i-th component of the vector f(x). Inside of formulas,
we sometimes use the symbol ∧ for the and-operator, and likewise ∨ for the
or-operator. We denote the probability for event A to happen under condition
B by Pr(A | B).
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3 Top Trumps

This thesis is devoted to analyzing the game Top Trumps and the graph-
theoretical structures surrounding it. The main section is divided into three
parts. In this first part, we concentrate on analyzing the game directly and
introducing important concepts. In the later two parts, we concentrate on
analyzing the structures surrounding the game, using the concepts defined
earlier.

Due to space reasons, throughout the whole thesis, we will only consider
the game when played by two players, and only when played for one single
round. Although this approach seems restrictive at first glance, it will yield
several nontrivial results. We believe these results can be a basis for a study
of the game with multiple players and multiple rounds. However, this is out
of the scope of this thesis.

3.1 Mathematical Model of Top Trumps

We begin by recalling the rules of a Top Trumps game between two players.
If the main target group of the game were mathematicians instead of children,
the game manual would maybe state something like this:

A Top Trumps game on c ∈ N categories is played with a set of n ∈ N cards,
where each card is an element of Rc. If Alice and Bob play against each other,
Alice is dealt bn/2c cards and Bob is dealt dn/2e cards. Each player places his
or her cards top-down on a pile in front of them. In the first round, Alice takes
the role of the choosing player. In each round, the choosing player P looks
at his or her topmost card x and then chooses a category i ∈ {1, . . . , c}. The
other player P ′ then reveals his or her topmost card y. If xi > yi, then P wins.
If xi < yi, then P ′ wins1. The winning player places x and y at the bottom
of his or her deck and is the choosing player for the next round. If xi = yi, a
stalemate occurs. In the case of a stalemate, x and y are placed in the center
and a new round is played with the same choosing player2. The winner of this
new round wins the cards of the new round, as well as all cards in the center.
Finally, the game ends when one player has acquired all n cards. This player is
the winner of the game. An example of one round can be seen in Figure 4: If
Alice chooses the category “agility” of her card “Proxima Midnight”, she wins,

1In some categories, lower values may be considered “better”. For example, in the category
“weight”, generally the lightest car wins. This can easily be modeled by inverting all values
of the category.

2Assuming both players have at least one card left. If only one player has a card left,
this player wins. If both players are out of cards, i.e. all cards are in the center, the game
ends in a draw.
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because 74 is bigger than 65. If she would have chosen “strength” instead, a
stalemate would have occured.

Figure 4: Two cards from the deck “Marvel Avengers Infinity War” by the UK
company Winning Moves.

We want to exclude stalemates from the Top Trumps decks we consider,
as they require case distinction and seem quite cumbersome to handle. For
example, we will later define the strength of a card and show that a stalemate-
free deck on c categories, in which every card has the same strength, has at most
c cards. But if we allow stalemates, we can just assemble a deck consisting out
of copies of the same card. In such a degenerate deck, every card has the same
strength. We found that complications similar to the one described appear
quite frequently.

Therefore, we consider:

Definition 3.1 (no-stalemate-property). Let c ∈ N. A set of points X ⊆ Rc

has the no-stalemate-property, if for all distinct x, y ∈ X, and for all i ∈
{1, . . . , c} : xi 6= yi.

Interpreted geometrically, this means no two points lie on a line parallel
to a coordinate axis. In this geometrical context, the no-stalemate-property is
usually called being in general position. However, note that the notion “general
position” has a lot of different meanings, depending on the context.

Due to the above reason, we only want to consider Top Trump games
without stalemates. Therefore, from now on and for the rest of the thesis,
the term Top Trumps deck shall exclusively denote a deck without stalemates.
Formally:
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Definition 3.2 (Top Trumps deck). Let c ∈ N. A Top Trumps deck on
c categories is a finite set X ⊆ Rc with the no-stalemate-property. A Top
Trumps deck is also simply called a deck. The elements of X are called cards.

Definition 3.3 (value of a card in a category). Let X be a deck on c categories.
In order to avoid using double indices later on, we define the value of a card
x ∈ X in the category i ∈ [c] :

ri(x) := xi

We also make a technical definition which will be used in later proofs: If
we have a finite set M , we can assign the elements of M labels, where the
indiviudal label of an element x ∈ M may depend on x. We can use these
labels to implicitely define a deck.

Definition 3.4 (Defining a deck via a function). Let M be a finite set, let
c ∈ N, and let r′ : M → Rc be a function. We say that r′ defines the deck X ′,
if X ′ = r′(M) and X ′ is a deck with |M | cards. (Note that this is equivalent
to: For all i ∈ [c], the component function r′i is injective.)

During the process of modeling the game, one observes, that the individual
value of a card in a category does not matter, only whether this value is better
or worse than the values of the other cards in the same category. For example,
say the “McLaren F1” is the fastest car in the deck with a stunning 391.21
km/h. Then it does not matter whether its speed is 391.21 km/h or 427.34
km/h. For the study of the properties of this certain deck it is only important
that the McLaren is faster than all other cars from the deck. Therefore we
introduce the notion of a normalized deck, called a ranked deck.

Definition 3.5 (ranked deck). Let c, n ∈ N. A ranked deck on c categories
with n cards is a set X ⊆ Rc, such that |X| = n and for all i ∈ [c] : {xi | x ∈
X} = {1, . . . , n}.

Note that, in particular, a ranked deck possesses the no-stalemate-property
and is thus a deck as well. Every deck can be transformed into a ranked deck by
sorting the values inside of each category. An example is depicted in Figure 5.

Theorem 3.6 (converting a deck to a ranked deck). Let X be a deck on c
categories. There exists a ranked deck X ′, which is equivalent to X in the
following sense: X ′ is defined by r′ : X → Rc and

∀x, y ∈ X : ∀i ∈ [c] : ri(x) < ri(y)⇔ r′i(x) < r′i(y).



18 3 TOP TRUMPS

Proof. Let n := |X|. Fix i ∈ [c] and sort the cards of X ascending by their
value in the i-th category. (AsX is a deck, this is possible without ambiguities.)
Let Oi be this order. For x ∈ X, let r′i(x) be the index of x in Oi. By its
definition, r′i(X) = {1, . . . , n} and therefore the deck X ′ defined by r′ is a
ranked deck. As X ′ maintains the relative order of cards inside one category,
the rest of the claim follows.

118.5
12
1700

132.3
10
1200

2
3
3

1
1
2

3
2
1

99.7
5
1300

Figure 5: Example of a transformation of a deck with three cards into a ranked
deck.

Finally, we introduce the notion of subdecks :

Definition 3.7 (subdeck). If X is a deck and Y ⊆ X, then Y is called a
subdeck of X.

Note that subdecks of decks are always decks, but subdecks of ranked decks
are not necessarily ranked anymore.

After having talked extensively about modeling Top Trump decks, we move
on to our model of the game itself. As noted before, due to space and time
limitations, we only considered a simple model of the game, in particular, we
model only a single round played between the two players Alice and Bob. We
call this model of the game α-Mini-Trump, where α is a parameter in the
range [0, 1].

Definition 3.8 (α-Mini-Trump). Let α ∈ [0, 1]. Let X be a deck on c cat-
egories. The game α-Mini-Trump is a game between the two players Alice
and Bob with the following rules: Alice is dealt a card a ∈ X chosen uniformly
at random. Then Bob is dealt a card b ∈ X \ {a} chosen uniformly at ran-
dom. The choosing player is randomly determined: With probability α, Alice
is the choosing player, with probability 1− α, Bob is the choosing player. The
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3
7
7
4

r1(x) = 3
h(x) = 7
c(x) = 2

x

Figure 6: Example for the functions ri(x), c(x) and h(x).

choosing player may look at his or her own card (but not at any other card)
and choose i ∈ [c]. Subsequently, the player with the higher value in category i
wins.

The game 1
2
-Mini-Trump is simply called Mini-Trump.

Due to the fact that Alice’s and Bob’s cards {a, b} with a 6= b are randomly
chosen from all pairs in X, an optimal strategy for α-Mini-Trump can be
easily given:

Theorem 3.9. Let X be a ranked deck. Let P be the choosing player and let
x ∈ X be the card which was dealt to P . Then an optimal strategy for P is to
choose i such that ri(x) is maximal.

Proof. Let A(i) be the set of cards, which are worse than x in category i, i.e.
A(i) := {v ∈ X | ri(v) < ri(x)}. Because X is a ranked deck, we have that
|A(i)| = ri(x)− 1. Now let P ′ be the other player and let y be their card. As
y is randomly chosen from X \ {x}, the player P maximizes his or her chance
of winning by maximizing |A(i)|.

When there exist multiple best categories, clearly, any one of them may
be chosen, still resulting in optimal play. Especially, always picking the small-
est of these best categories results in an unambiguous, deterministic, optimal
strategy. We give names to these concepts. (An example is given in Figure 6.)

Definition 3.10 (chosen category c(x), highest value h(x)). Let x ∈ Rc, c ∈ N.
We define the highest value of x as

h(x) := max{xi | i ∈ [c]}.

The chosen category of x, denoted by c(x) is the number i ∈ [c] such that
xi = h(x). If there are multiple such i, choose the smallest one. Formally:

c(x) := min{i ∈ [c] | xi = h(x)}.
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Definition 3.11 (Highest-Value strategy). The Highest-Value strategy
for the game α-Mini-Trump is the strategy to always pick c(x) when choosing
the category for a card x.

If X is a ranked deck, the strategy Highest-Value is an optimal strat-
egy. If, on the other hand, X is not a ranked deck, Highest-Value is not
necessarily an optimal strategy. In this case, it can be seen as the strategy
of the “easily impressible” player, who always chooses the highest value of the
current card. In the case of a non-ranked deck, we can tell by Theorem 3.6 and
Theorem 3.9 that the optimal strategy is to select the category, which beats
the largest number of other cards when chosen.

As we now have seen that for ranked decks, Highest-Value is an optimal
strategy (and that indeed every optimal strategy is equal to Highest-Value
except the choice of category when multiple best categories exist), it is natural
to define the strength of a card the following way:

Definition 3.12 (strength of a card). Let X be a deck, let x ∈ X be a card,
and α ∈ [0, 1]. Let W (α;X) be the event that Alice wins in α-Mini-Trump
when the deck X is used, under the assumption that both Alice and Bob use
the strategy Highest-Value. We define the α-strength of x in X as

sα(x;X) := Pr(W (α;X) | Alice gets dealt x).

s1(x;X) is called the attack strength of x in X, s0(x;X) is called the defense
strength of x in X, and s(x;X) := s1/2(x;X) is simply called the strength of x
inX. If the deck X is clear from the context, we may also write sα(x), s1(x), s0(x)
and s(x).

This means that in a ranked deck X, the attack strength s1(x) is the
probability that Alice wins with card x, when both players play optimally and
Alice chooses the category. The defense strength s0(x) is the probability that
Alice wins with card x, when both players play optimally and Bob chooses the
category. The strength s(x) is the probability of Alice winning with card x, if
the choosing player is determined by a fair coin toss.
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3.2 Dominance Graphs

We have seen in the previous section, that the strategy Highest-Value is an
optimal strategy for Mini-Trump on a ranked deck. Therefore, this section is
devoted to understanding the structure of Top Trump decks when the strategy
Highest-Value is used. We begin with an elementary observation (requiring
a small definition):

Definition 3.13 (two-card-duel). Let X be a deck. Let x ∈ X be the card
dealt to Alice and y ∈ X \ {x} be the card dealt to Bob. If Alice and Bob
play a round of Top Trumps both adhering to the strategy Highest-Value,
we say that there is a two-card-duel between x and y. If Alice (Bob) chooses
the category, we say that x (y) chooses the category and if Alice (Bob) wins,
we say that x (y) wins. Similarly, we say that x (y) loses.

Observation 3.14 (nature of two-card-duels). Let X be a deck, x, y ∈ X, x 6=
y. In a two-card duel between x and y there are exactly three possible results:

1. x wins if x chooses the category, and x loses, if y chooses the category

2. x wins, irregardless of who chooses the category

3. y wins, irregardless of who chooses the category

Proof. As Highest-Value is a deterministic strategy, the result is uniquely
determined from the cards x, y and the choosing player. Thus, we only have
to show that it is impossible for x to win, when y chooses and at the same
time lose, when x itself chooses. To do this, assume x wins, when y chooses.
Because y chooses c(y) and loses, we have h(y) < rc(y)(x). But we also have
rc(y)(x) ≤ h(x). Thus h(x) > h(y) ≥ rc(x)(y), which implies that x also wins,
if x itself chooses.

This motivates the following definition: If we are in case 2 of Observa-
tion 3.14, i.e. x always wins, we say that x dominates y.

Definition 3.15 (dominance). Let X be a deck and x, y ∈ X with x 6= y. We
say that x dominates y or that x always wins against y, if

h(y) < rc(y)(x)

and we denote this by
y <D x.

Definition 3.16 (incomparability). Let X be a deck and x, y ∈ X, x 6= y. If
neither x <D y, nor y <D x, we call x and y incomparable.
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Figure 7: Example of a dominance graph: x1 <D x2 and x2 <D x3, but x1 and
x3 are incomparable.

In other words, x dominates y, if x wins against y, even if y chooses the
category. An example for these concepts is given in Figure 7 using a ranked
deck. From this figure, one can already see the direction into which we are
headed: Given a deck X, it is helpful to consider the directed graph where
the vertices are the cards and the edges are the dominances, i.e. the edge set
implied by the relation <D.

Definition 3.17 (dominance graph). Let X be a deck. The dominance graph
of X, denoted by dom(X) is the directed graph G = (V,E) on the vertex set
V := X and the edge set E := {(x, y) | x <D y}.

An example is again Figure 7.

Observation 3.18. The dominance relation is not necessarily transitive.

Proof. A counterexample is given in Figure 7.

Theorem 3.19 (dominance graphs are acyclic). Let X be a deck, and G :=
dom(G) its dominance graph. Then G is acyclic.

Proof. If (x, y) is an edge in G, we observe that h(x) < rc(x)(y) ≤ h(y). Thus,
along every directed path x1, . . . , xk in G, the value h(xi) strictly increases
(where i ∈ [k]). Therefore G is acyclic.
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3.3 Strength of Cards

This subsection is devoted to analyzing the concept of the strength of cards.
In Definition 3.12, we defined the strength sα(x) of a card x in a ranked deck
X as the probability, that Alice wins if she gets dealt card x, Bob gets dealt
a random card y ∈ X \ {x}, both players play optimally, and Alice is the
choosing player with probability α. We also defined the attack strength s1 and
defense strength s0. Note that if X is not a ranked deck, the strength of a card
means its winning probability under the assumption that both players use the
Highest-Value strategy, which is not necessarily optimal. Although this is
somewhat unintuitive, it can be understood as a generalization of the initial
concept, because every deck can be transformed into an equivalent ranked deck
(Theorem 3.6). Now let us begin. A property of α-strength is that it is a linear
mixture of attack strength and defense strength:
Theorem 3.20. Let X be a deck, x ∈ X, and α ∈ [0, 1]. Then

sα(x) = αs1(x) + (1− α)s0(x).

Proof. The value sα(x) is the probability of Alice to win α-Mini-Trump, if
Alice gets dealt the card x. Here the probability space is the random card
that gets dealt to Bob, as well as the weighted coin, which lets Alice be the
choosing player with probability α.

As the toss of the coin and the dealing of the cards are independent, we can
imagine, the coin gets tossed first. If the coin shows that Alice can choose the
category, she will win with probability s1(x), by the definition of s1. Similarly,
if the coin shows “Bob”, Alice will win with probability s0(x). By the basic
laws of probability, we have sα(x) = αs1(x) + (1− α)s0(x).

An important insight about the strength of a card x is that it correlates
directly to the difference of indegree and outdegree of the vertex x in the
dominance graph of X: High indegree means that x is “strong”, high outdegree
means that x is “weak”. An example supplementing the next theorem is given
in Figure 8.
Theorem 3.21. Let X be a deck on n cards, x ∈ X and G := dom(X) the
dominance graph of X. Let din(x) and dout(x) be the in- and the outdegree of
x in G, repectively. Then the following equations hold:

s1(x) = 1− dout(x)

n− 1
(3.1)

s0(x) =
din(x)

n− 1
(3.2)

s(x) =
1

2
+
din(x)− dout(x)

2n− 2
(3.3)
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Figure 8: Example of the concept of strength. If x chooses, it wins against two
cards and loses against one. Thus s1(x) = 2

3
. If the opponent of x chooses, x

never wins. Thus s0(x) = 0. Combined, s(x) = 1
3
.

Proof. Let A1 be the incoming neighborhood of x, i.e. A1 := {y ∈ X | (y, x) ∈
E(G)}. Let A2 be the outgoing neighborhood of x, i.e. A2 := {y ∈ X | (x, y) ∈
E(G)}. Let B be the other vertices in X \ {x}, i.e. B := X \ (A1 ∪A2 ∪ {x}).
Now observe, that if x chooses the category, x wins against exactly the cards
in A1 ∪ B by the definition of dominance graphs. Similarly, if the opponent
of x chooses the category, x wins against exactly the cards from A1. As the
opponent of x gets dealt a random card from X \ {x}, we have

s1(x) =
|A1|+ |B|
n− 1

=
n− 1− |A2|

n− 1
= 1− dout(x)

n− 1

and s0(x) =
|A1|
n− 1

=
din(x)

n− 1
.

By Theorem 3.20, we have s(x) = 1
2
s0(x) + 1

2
s1(x), which implies the third

equation.

One of our motivational questions was, whether there exist decks where
every card has the same strength. We therefore consider

Definition 3.22 (identical-strength-deck). Let X be a deck. It is called identical-
strength-deck, if s(x;X) is identical for all x ∈ X.

In order to determine the nature of identical-strength-decks, we make a
helpful observation:
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Theorem 3.23 (average strength). Let X be a deck on n cards. The average
strength of a card in X is 1

2
, i.e.

1

n

∑
x∈X

s(x) =
1

2
.

Proof. We give two different proofs.
First proof. Consider Alice and Bob playing Mini-Trump and getting

dealt uniformly random cards x, y ∈ X, x 6= y. As α = 1/2, Alice and Bob
have the same chance of being the choosing player. Therefore, the situation is
completely symmetrical. This means that Alice’s chance of winning is equal
to Bob’s chance of winning. As these two chances add up to 1, Alice’s chance
of winning is equal to 1

2
. But by the definition of strength, Alice’s chance of

winning is equal to the average strength of the card dealt to her.
Second proof. This follows from Theorem 3.21 and the fact that the sum

of the indegrees in a graph is equal to the sum of the outdegrees. In fact:

1

n

∑
x∈X

s(x) =
1

n

∑
x∈X

(
1

2
+
din(x)− dout(x)

2n− 2

)
=

1

2
+

∑
x∈X d

in(x)−
∑

x∈X d
out(x)

n(2n− 2)
=

1

2

Corollary 3.24. In every identical-strength-deck, every card has exactly strength
1
2
.

Using this insight, we can deduce the nature of identical-strength-decks.
Consider the following concept: Call the best card of a category the champion
of this category. For example, if X is a ranked deck on n cards, the champion
in category 1 is the card x with r1(x) = n. Formally:

Definition 3.25 (champion). Let X be a deck on c categories, let i ∈ [c]. The
champion in category i is the unique card x ∈ X with ri(x) = max{ri(y) | y ∈
X}. A card x ∈ X is called a champion, if it is the champion in at least one
category.

Theorem 3.26 (nature of ranked identical-strength-decks). Let X be a ranked
deck on n cards. The following are equivalent:

(i) X is an identical-strength-deck

(ii) For all x ∈ X : x is a champion
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(iii) The graph dom(X) has no edges.

Proof. “ (i) ⇒ (ii) ” : If X is an indentical-strength-deck, by Corollary 3.24,
the strength of all cards is 1

2
. Now assume for the sake of contradiction, there

exists x ∈ X such that x is not a champion. Let y be the champion in category
c(x). Then y beats x, if x chooses, because y is the champion in category c(x).
On the other hand, if y chooses, we not necessarily have c(y) = c(x), but
we know that h(y) = n, because y is a champion and X is a ranked deck.
Therefore y wins against every other card, if y chooses. In total, s(y) > 1

2
.

This is a contradiction.
“ (ii)⇒ (iii) ” If x is a champion in some category i, then in particular we

have h(x) = n, because X is a ranked deck. Then there can not be an edge
(x, y) in the dominance graph, because this would mean that h(x) < rc(x)(y),
but all values in a ranked deck are at most n.

“ (iii)⇒ (i) ” If the dominance graph has no edges, by Equation (3.3), the
strength of every card is 1

2
.

Corollary 3.27. Let X be a ranked deck, which is identical-strength on c
categories. Then X has at most c cards.

Proof. There can be at most c different cards, which are a champion in some
category.



3.4 Properties of Dominance Graphs 27

3.4 Properties of Dominance Graphs

Dominance graphs, introduced in Section 3.2, capture the underlying structure
of a Top Trumps deck, or, more abstractly, the structure of a set of points in
Rc with the dominance relation x <D y :⇔ h(x) < rc(x)(y). We hope that
the previous sections were able to persuade the reader that the study of these
objects seems interesting. In the following subsection, we are now interested in
understanding necessary properties that are common to all dominance graphs.
We begin with an easy observation:

Lemma 3.28 (monotony alongside an edge). Let X be a deck and G :=
dom(X) its dominance graph. Let (x, y) ∈ E(G) be an edge in G. Then
h(x) < h(y).

Proof. As (x, y) ∈ E(G) we have by the definition of the dominance graph and
the dominance relation, that h(x) < rc(x)(y). We also have rc(x)(y) ≤ h(y) by
the definition of h(y).

We have already seen in Theorem 3.19 that dominance graphs are acyclic
and in Observation 3.18 that they are not necessarily transitive. However, they
admit a behavior similar to transitivity:

zx

· · ·

y

c(x) = c(y)

Figure 9: Depiction of Lemma 3.29.

Lemma 3.29 (weak transitivity of dominance graphs). Let X be a deck on c
categories and G := dom(X) its dominance graph. Let x, y, z ∈ X such that:

• c(x) = c(y)

• There is a directed path from x to y in G

• (y, z) is an edge in G

Then we also have that (x, z) is an edge in G.

Proof. (A sketch of the situation is depicted in Figure 9.) By Lemma 3.28, the
h-value alongside every edge strictly increases. Applying this lemma repeatedly
on the directed path from x to y yields h(x) < h(y). Because (y, z) ∈ E(G),
we have h(y) < rc(y)(z). In total, we have h(x) < h(y) < rc(y)(z) = rc(x)(z),
which proves the claim.
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. . . . . .
xi xj xj+1x1

Figure 10: Depiction of Corollary 3.30.

Corollary 3.30 (length of induced paths). Let X be a deck, G := dom(X) its
dominance graph. Each induced directed path in G has length at most c, i.e.
at most c+ 1 vertices.

Proof. Assume for the sake of contradiction, G contains an induced, directed
path P on at least c + 2 vertices. Let x1, . . . , xc+2 be the first c + 2 vertices
of this path. Consider the set A := {x1, . . . , xc+1}. As A has size c + 1, there
exist xi, xj ∈ A with i < j, such that c(xi) = c(xj). Because j ≤ c + 1, the
edge (xj, xj+1) is contained in G. Applying Lemma 3.29 to xi, xj, xj+1 yields
that (xi, xj+1) ∈ E(G). This is a contradiction, as P is an induced path.

An example that this theorem is sharp, i.e. that we can create an induced
path of length c using c categories, can be found as a sketch in Figure 17.
Another property that is easy to see is the following:

Lemma 3.31 (same chosen category implies edge). Let X be a deck, G :=
dom(X) its dominance graph and x, y ∈ X, x 6= y. If c(x) = c(y), then either
(x, y) ∈ E(G) or (y, x) ∈ E(G).

Proof. This is obvious due to the definition of dominance and the no-stalemate-
property of X.

Corollary 3.32 (size of independent sets). Let X be a deck on c categories
and G := dom(X) its dominance graph. The size of an independent set in G
is at most c. In other words, α(G) ≤ c.

Proof. If a vertex set has size c + 1, it contains distinct vertices x, y with
c(x) = c(y) and thus there is an edge between x and y.

It is easy to see that we can get an independent set of size c using c cate-
gories, so this theorem is also sharp.

For the next property, we recall from the preliminaries the concept of a
directed clique.

Definition 3.33 (directed clique). Let k ∈ N. The directed graph Hk on the
vertex set {v1, . . . , vk} and the edge set {(vi, vj) | 1 ≤ i < j ≤ k} is called the
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(i) (ii)

Figure 11: (i) A graph containing a directed clique of size 4. (ii) A monotone-
neighborhood-clique of size 3.

directed clique on k vertices. Note that in this case, the sequence (v1, . . . , vk)
is the unique topological order of Hk.

Let G be a directed graph. We say G contains a directed clique, if Hk ⊆ G
for some k ∈ N.

An example can be found in Figure 11. Now consider the following special
case of directed cliques:

Definition 3.34 (monotone-neighborhood-clique). Let G be a directed graph,
H ⊆ G a directed clique and (v1, . . . , vk) the topological vertex order of H.
We call H monotone-neighborhood in G or a monotone-neighborhood-clique
(MNH-clique), if

∀i ∈ {1, . . . , k − 1} : Nout(vi) ⊇ Nout(vi+1).

In other words: If we go along a path in the directed clique, the outgoing
neighborhoods of the vertices we encounter can not grow, in the sense that
whenever we encounter a new vertex, its outgoing neighborhood is included in
the outgoing neighborhood of the previous vertex.

An interesting insight is now that we can cover a dominance graph with c
monotone-neighborhood-cliques.

Lemma 3.35 (clique-cover of dominance graphs). Let X be a deck on c cat-
egories, G := dom(X) its dominance graph. Define for i ∈ [c] : Xi := {x ∈
X | c(x) = i}. Then each Xi is a monotone-neighborhood-clique in G and
{X1, . . . , Xc} is a partition of X.

Proof. It is obvious that {X1, . . . , Xc} is a partition of X. It is also easy
to see that each Xi is a directed clique in G: Let Oi be the sequence that is
obtained when ordering the elements of Xi ascending by their value in category
i. Because we have c(y) = i for all y ∈ Xi, whenever two cards fromXi compete
with each other, the card with the higher value in category i wins. Therefore,
all the edges {(x, y) | x, y ∈ Xi, ri(x) < ri(y)} are present in G and Oi is the
topological order of the directed clique Xi in G.
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For the monotone-neighborhood-property, observe that if x, y ∈ Xi for
some i ∈ [c] such that (x, y) ∈ E(G) and z ∈ X is another vertex such
that (y, z) ∈ E(G), then we have that c(x) = c(y) and can therefore apply
Lemma 3.29 (weak transitivity) to x, y, z and get that (x, z) is also an edge of
G. Therefore, Nout(x) ⊇ Nout(y).

Corollary 3.36. Let X be a deck on c categories, G := dom(X) its dominance
graph. For the clique-cover number k, we have k(G) ≤ c.

Corollary 3.37. Let X be a deck on n cards and c categories, G := dom(X)
its dominance graph. Then G contains a directed clique of size at least dn/ce.
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3.5 Attack Advantage

This subsection is dedicated to the study of the attack advantage. The attack
advantage is a measure on how much it is worth to be the player choosing the
category in a game of Top Trumps. We motivate the introduction of attack
advantage by considering the average strength of a deck. In Theorem 3.23, we
showed that the average strength of a card in a deck is always 1

2
. What about

the average α-strength?

Definition 3.38 (average α-strength). Let X be a deck on n cards, let α ∈
[0, 1]. We introduce the following notation for the average α-strength of a card
in X:

sα(X) :=
1

n

∑
x∈X

sα(x)

We also write sα, if the deck X can be deduced from the context.

Lemma 3.39. Let X be a deck on n cards, α ∈ [0, 1]. Then the average α-
strength is a linear combination of average attack strength and average defense
strength, i.e.

sα = αs1 + (1− α)s0

Proof. By Theorem 3.20, for all x ∈ X, we have sα(x) = αs1(x)+(1−α)s0(x).
The claim follows from summing over all x ∈ X and dividing by n.

Corollary 3.40. In every deck X,

1

2
= s1/2 =

1

2
(s1 + s0) .

Proof. Apply the previous lemma with α = 1/2 and Theorem 3.23, which tells
us that the average strength is 1/2.

In other words, both s0 and s1 have the same absolute difference to 1/2.
As we always have s0 ≤ s1 in any deck (this follows from Observation 3.14),
Corollary 3.40 tells us that we can reconstruct both s0 and s1 from only their
difference s1 − s0. Therefore, this difference of s1 and s0 can be considered an
intrinsic parameter of the deck X. We therefore consider:

Definition 3.41 (attack advantage β). Let X be a deck. We define the attack
advantage β(X) of X as

β(X) := s1(X)− s0(X).



32 3 TOP TRUMPS

Why is this parameter called the attack advantage? Consider the following
modification of Mini-Trump: Alice and Bob get dealt random cards and
play one single round as before. However, the choosing player is no longer
determined randomly, but by an auction before the start of the game. After
the game is over, the winner of the game receives a reward of one dollar.

If Alice wins the auction and is choosing player, her probability to subse-
quently win the game is s1 (this follows from the definition of strength). The
expected payout in this case is therefore s1 dollar. Similarly, if Alice loses the
auction, her expected payout is only s0 dollar. Therefore, the expected gain
of Alice if she is choosing player, in contrast to the situation where she is not
choosing player, is s1 − s0 dollar. Therefore, Alice should bid s1 − s0 = β(X)
dollar in the auction to be the choosing player.

In Theorem 3.21, we expressed the attack and defense strength of individual
cards in terms of their in- and outdegree in the dominance graph. Applying
these equations to the attack advantage yields the key insight, that the attack
advantage is directly correlated to the density of the dominance graph.

Theorem 3.42 (β = 1− density). Let X be a deck on n cards, G := dom(X)
its dominance graph and |E| the number of edges in G. Then

β(X) = 1− |E|(n
2

) .
Proof. By Theorem 3.21, we have s1(x) = 1 − dout(x)/(n − 1) and s0(x) =
din(x)/(n− 1) for all x ∈ X. Therefore

s0 =
1

n

∑
x∈X

s0(x) =
1

n

∑
x∈X

din(x)

n− 1
=

|E|
n(n− 1)

=
1

2

|E|(
n
2

)
and

s1 =
1

n

∑
x∈X

s1(x) =
1

n

∑
x∈X

(
1− dout(x)

n− 1

)
=
n

n
− |E|
n(n− 1)

= 1− 1

2

|E|(
n
2

)
and thus

β(X) = s1 − s0 = 1− |E|(n
2

) .

As an example to this theorem, consider Figure 12, where G1 is a complete
directed clique and G2 is an independent set. In a deck with G1 as dominance
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. . .

G1 G2

Figure 12: Example of the attack advantage β(X).

graph, the right to be the choosing player is completely irrelevant (assuming
optimal play), as the cards are linearly ordered and the player with the higher
card always wins. Therefore β(X) = 0. If, on the other hand, we have a deck
with G2 as dominance graph, the choosing player always wins. Therefore, Alice
should bid 1 dollar in the setting mentioned above, and β(X) = 1.

This example shows that the attack advantage can take the value 0 as well
as the value 1. It is obvious by its definition that 0 ≤ β(X) ≤ 1. However,
as we have seen in Corollary 3.32, to get an independent set on n vertices, we
need n categories. In a typical top trumps deck sold in store, there are few
categories. So a natural question is, which values β(X) can take on decks with
a fixed number of categories. As we have just seen, this question is basically a
question about the possible values which the density in dominance graphs can
take. It has a nice answer using Turán’s theorem: The dominance graph of a
deck on c colors has density at least 1/c− o(1).

Lemma 3.43 (Minimum number of edges). Let X be a deck on n cards and
c categories. Let G := dom(X) be its dominance graph and |E| be the number
of edges in G. Then

|E| ≥
(
n

2

)
− ext(n,Kc+1).

Furthermore, this bound is tight in the sense that for all c, n ∈ N , there exists
a ranked deck Y on c colors and n cards such that dom(Y ) has exactly

(
n
2

)
−

ext(n,Kc+1) edges.

Proof. Let X,G, n, c be like in the claim. By Corollary 3.32, α(G) ≤ c, so G
does not contain a Kc+1. Therefore, G has at most ext(n,Kc+1) edges. This
proves the first part of the claim.

To see the second part, let n, c ∈ N. We can assume c ≤ n. (If c > n,
we have ext(n,Kc+1) =

(
n
2

)
. Then it is easy to see that we can create an

independent set as dominance graph of a ranked deck using n categories. The
rest of the categories can just be copies of existing categories.)
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high

low

high

low

high

low

low

. . .

Y1 Y2 Yc

Figure 13: Sketch of the idea behind the proof of Lemma 3.43.

We construct a ranked deck Y such that the dominance graphH := dom(Y )
of Y has the Turán graph T (n, c) as complement. The Turán graph T (n, c)
has ext(n,Kc+1) edges and is a complete multipartite graph on c parts where
the parts are of almost equal size (meaning their sizes differ by at most one).
So its complement T is a disjoint union of c cliques of almost equal size. We
will construct a ranked deck Y such that dom(Y ) is an orientation of T .

How can we achieve this? The idea is best explained under the simplified
assumption that c divides n: Consider a partition Y = Y1 ∪̇ . . . ∪̇ Yc into
c sets of size s := n/c each. In a first step, for each i ∈ [c], assign the s
highest values in category i to the cards in Yi. In other words, {ri(x) : x ∈
Yi} = {n, n − 1, . . . , n − s + 1}. In a second step, for each i ∈ [c], assign the
other n− s values in category i to the vertices of

⋃
j 6=i Yj. (Note that such an

assignment is always possible and Y is a ranked deck afterwards.) After these
two steps, we have for x ∈ Yi, that ri(x) ≥ n − s + 1 and rj(x) ≤ n − s for
j 6= i. Therefore for all x ∈ Yi, c(x) = i and for all i ∈ [c], the |Yi| highest
values of category i are inside Yi. These two postconditions imply that in the
graph H each Yi is a directed clique and that there is no edge between Yi and
Yj, if i 6= j.

If in the more general case, c does not divide n, consider a partition Y =
Y1 ∪̇ . . . ∪̇ Yc, such that |Yi| ∈ {s, s + 1} for all i ∈ [c], where s := bn/cc. Call
those Yi with |Yi| = s “small”. Similar to before, in a first step, for each i ∈ [c]
assign the |Yi| highest values {n, . . . , n − |Yi| + 1} in category i to the cards
of Yi. In a second step, for each i, assign the remaining n − |Yi| lower values
in category i to the cards of

⋃
j 6=i Yj. But if Yi is small, additionally make

sure that the value n − s in category i is assigned to a card y ∈ Yj such that
rj(y) = n. This is always possible.

By doing this, we achieved that for each i ∈ [c] and x ∈ Yi, we have
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ri(x) ≥ n− s, rj(x) ≤ n− s for j 6= i and we also have the implication

rj(x) = n− s for some j 6= i⇒ ri(x) = n

As s ≥ 1, we therefore have c(x) = i. As before, the |Yi| highest values of
category i are assigned to Yi for all i and therefore the claim follows.

G = T (10, 3)

Figure 14: Example of Lemma 3.43 and Corollary 3.44: The highest attack
advantage with a deck on 3 categories is achieved when the dominance graph
has minimal density over all DAGs with independence number at most 3.

Corollary 3.44 (bounds on the attack advantage). Let X be a deck on c
categories and n cards. Then

0 ≤ β(X) ≤
(

1− 1

c

)
n

n− 1

Proof. By Theorem 3.42, we have β(X) = 1− d, where d is the density of the
graph dom(X). The density is clearly at most 1. (This bound is also tight,
consider a ranked deck, where the values across all categories are equal for
each card.) For the upper bound, by the previous theorem, we have

d ≥ 1− ext(n,Kc+1)(
n
2

)
and this bound is also tight by the same theorem. By Turán’s theorem,
ext(n,Kc+1) ≤ (1− 1/c)n2/2, and so

1 ≥ d ≥ 1−
(

1− 1

c

)
n2

2

1(
n
2

) = 1−
(

1− 1

c

)
n

n− 1
,

which together with β(X) = 1− d implies the result.
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4 Ranked Realizability

As seen in the previous section, the underlying structure of a Top Trumps
deck X is represented by its dominance graph. Here, by the term “underlying
structure”, we mean the following: If both players use the Highest-Value-
strategy in the game Mini-Trump, the dominance graph tells us, which card
beats which other card, how strong each card is, and how much one should
pay to be the choosing player (compare Sections 3.2, 3.3 and 3.5).

If the deck X is additionally a ranked deck, the Highest-Value-strategy
is an optimal strategy for Mini-Trump. Therefore it is very natural to ask the
following questions: Which graphs can be represented as dominance graphs of
ranked Top Trumps decks? And given such a graph, what is the minimum
possible numbers of categories needed to represent it? For example, consider
the graph G from Figure 15. There exists a ranked deck on 3 categories
representing G. We call the graph 3-ranked-realizable in this case. What is
the minimum c ∈ N such that G is c-ranked-realizable?

In this section, we will give our findings regarding these questions. We could
find several insights, but no definite answer to said questions. However, in the
next section, we will consider realizability where non-ranked decks are allowed;
in this case we find a definite answer. This is partly due to the fact that plain
realizability is in some sense more “natural” than ranked realizability. We will
explain why that is the case later on.

1
2
5

2
4
1

5
5
4

3
1
2

4
3
3

G

Figure 15: The directed graph G is 3-ranked-realizable, so Ψ(G) ≤ 3.
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4.1 Definition

Consider the following definitions (and Figure 15 as an example):

Definition 4.1 (realization). Let G be a directed graph and X be a deck. We
say that X is a realization of G, or that X realizes G, if dom(X) = G.

Definition 4.2 (c-ranked-realizable). Let G be a directed graph, let c ∈ N.
We say that G is c-ranked-realizable, if there exists a ranked deck X on c
categories such that X realizes G. We say that G is ranked-realizable, if there
exists some c′ ∈ N such that G is c′-ranked-realizable.

Definition 4.3 (ranked-realizability number Ψ). Let G be a directed graph.
The ranked-realizibility number Ψ(G) is the minimum c ∈ N such that G is
c-ranked-realizable. If such a c does not exist, then Ψ(G) =∞.

We are now interested in the question, which directed graphs G are ranked-
realizable and if so, we want to determine Ψ(G). The most basic insight is the
fact, that all these graphs are acyclic (Theorem 3.19). Before we dive further
into the topic, note that in particular, it can not happen that some directed
graph G is c-ranked-realizable, but not c′-ranked-realizable for some c′ > c:

Observation 4.4. If a directed graph G is c-ranked-realizable for some c ∈ N,
it is also (c+ 1)-ranked-realizable.

Proof. Just copy an existing category. Formally: Let X be a ranked deck on
c categories realizing G, define a new deck X ′ via r′ : X → Nc+1 such that for
all x ∈ X : r′i(x) := ri(x) if i ∈ [c] and r′c+1(x) := rc(x). Then X ′ is a ranked
deck on c+ 1 categories and clearly dom(X ′) = dom(X).
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4.2 Properties

So what can we say about the properties of c-ranked-realizable graphs? Some
properties we already know, due to results from the previous sections, espe-
cially from Section 3.4, where we analyzed the properties of dominance graphs.
If G is a ranked-realizable graph on n vertices and c := Ψ(G), we have in par-
ticular, that

• G is acyclic (by Theorem 3.19)

• an induced directed path in G has at most c edges (by Corollary 3.30)

• α(G) ≤ k(G) ≤ c, and G can be covered with c monotone-neighborhood-
cliques (by Lemma 3.35)

• G has at least(
n

2

)
− ext(n,Kc+1) ≥

n(n− 1)

2
−
(

1− 1

c

)
n2

2
=

1

c

n2

2
− n

2

edges (by Lemma 3.43). So for fixed c and n→∞, G is dense.

Also, in the previous section we have already seen a class of graphs, which
are indeed ranked-realizable.

Lemma 4.5. For all c ∈ N and for all n ∈ N, let H(n, c), be the directed
graph on n vertices, which we get by taking the disjoint graph union of c di-
rected cliques of almost equal size (equivalently, an acyclic orientation of the
complement of the Turán graph T (n, c)). Then Ψ(H(n, c)) = c.

Proof. We saw in Lemma 3.43 that H(n, c) is ranked-realizable with c cat-
egories. So Ψ(H(n, c)) ≤ c. On the other hand, Ψ(H(n, c)) ≥ c, because
H(n, c) contains an independent set of size c.

As special cases of this observation, we get:

• If C is a directed clique, Ψ(C) = 1.

• If E is an independent set on n vertices, Ψ(E) = n

• If M is a matching on m directed edges and 2m vertices, Ψ(M) = m.

So directed cliques, independent sets, and matchings are ranked-realizable.
On the other hand, there exists a very easy family of graphs, which do not
have this property: For each n ≥ 3, the directed path on n vertices is not
ranked-realizable. To see this, consider the following lemma:
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≥ 2

≥ 3

≥ 4

v1 v2 v3

Figure 16: Sketch of the proof that ~P3 is not ranked-realizable.

Theorem 4.6 (length of induced directed paths). Let r ≥ 3, let ~Pr be the
directed path on r vertices and let G be a ranked-realizable directed graph on n
vertices. If G contains an induced directed path ~Pr ⊆ind G then r ≤ n/2 + 1.

Proof. (A sketch of the proof in the case r = 3 is depicted in Figure 16.) Let
v1, . . . , vr be the vertices of the induced copy of ~Pr in G along the path, i.e.
(vi, vi+1) ∈ E(G) for all i ∈ [r − 1]. As G is ranked-realizable there exists
a ranked deck X such that dom(X) = G. As the copy of ~Pr is induced, for
all i ∈ {3, . . . , r}, there is no edge between v1 and vi. This means that v1
wins against vi, if v1 chooses the category. Then, in particular, h(v1) ≥ r − 1,
because X is a ranked deck and v1 wins against at least r − 2 cards, if v1
chooses. By Lemma 3.28, the h-value of the cards strictly increases alongside
any path. As vr is connected to v1 by a path on r − 1 edges, we have h(vr) ≥
h(v1) + r − 1 ≥ 2r − 2. As X is a ranked deck, n ≥ h(vr). In total we have
n ≥ 2r − 2, which implies the claim.
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∗

r − 1
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∗
∗

∗
∗
r
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∗
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r + 1
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∗
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r + 2
∗
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v4

2r − 2
∗
∗

∗
∗
∗

vr

. . .

...
...

...

...

...

Figure 17: Sketch of the proof that Theorem 4.6 is sharp. Elements marked ∗
are ≤ r − 2.

We note that this bound on r with respect to n sharp, a sketch of the idea
for the proof is depicted in Figure 17. However, as we will not need this fact
for the rest of the thesis, we chose not to present a formal proof. Instead,
consider a direct corollary:
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Corollary 4.7 (directed paths are not ranked-realizable). Let n ≥ 3. The
directed path ~Pn on n vertices is not ranked-realizable.

Proof. By the previous theorem, all induced directed paths in a ranked-realizable
graph G on n vertices have at most n/2 + 1 vertices. In particular, for n ≥ 3,
the directed path ~Pn itself is not ranked-realizable.

As a corollary to this, we get a fact which seems counter-intuitive at first
glance:

Corollary 4.8 (Ranked realizability is not preserved under vertex removal).
There exists a directed graph G and v ∈ V (G) such that G is ranked-realizable,
but G− v is not.

Proof. Consider Figure 7 from the previous section. The graph H depicted in
this figure is ranked-realizable and has an induced ~P3 as subgraph. We just
saw that ~P3 is not ranked-realizable. So if we repeatedly remove a vertex from
H to get ~P3, we will at some step get a graph G like in the claim.

Differently stated, if G is ranked-realizable and H ⊆ind G is an induced
subgraph of G, then H is not necessarily ranked-realizable. This might be
contrary to one’s first intuition in the following way: Suppose we have a graph
G, a ranked deck X realizing G and a vertex v ∈ V (G), then one might expect
that if we take the card xv corresponding to v out of the deck X, we get a
ranked deck realizing G − v. But that is not necessarily the case, because
subdecks of ranked decks are not necessarily ranked anymore. Or, stated at a
higher level, the optimal strategy (and thus the dominance graph) may change
when we take out a card. We also can not easily “fix” the deck X \ {xv} to be
ranked again by adjusting the values of the cards: Say, for example, r1(xv) = 4
and r2(xv) = 7. Then there is a set of 3 cards, which are worse than xv in
category 1 and a set of 6 cards, which are worse than xv in category 2. But
these two sets may be completely different. So if we adjust the values of the
categories in some simple way such that X \ {xv} becomes ranked again, for
any card y ∈ X \ {xv}, the values in some categories may change but in other
categories may stay the same. So, ultimately, c(y) may change and so we have
no control over the dominance graph of this new altered deck.

Up so far, we have not been able to determine Ψ(G) for a large class of
graphs. However, it turns out that if we know some graph G has a repre-
sentation with a natural property which we call unique-champion-property,
determining Ψ(G) becomes trivial:

Definition 4.9 (unique-champion ranked deck (UCRD)). If X is a ranked
deck on c categories, such that for all distinct i, j ∈ [c], the champion in
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category i and the champion in category j are not the same card, X is called
a unique-champion ranked deck (UCRD).

(Compare Definition 3.25 for the definition of a champion.) Imagine for
example that Alice creates a game of Top Trumps using her favorite super-
heroes as protagonists, and decides on the four categories “strength”, “speed”,
“cleverness” and “charisma”. Then Alice’s deck (after it has been transformed
to a ranked deck according to Theorem 3.6) is a UCRD, if there does not exist
a superhero, which meets two or more of the descriptions “strongest”, “fastest”,
“smartest” or “most charismatic”. Alice thinks, this is good, because otherwise
the game could be frustrating to the players.

As stated before, if we have a graph G such that G can be realized with a
UCRD, then determining Ψ(G) becomes very easy:

Theorem 4.10. Let G be a directed graph. If there exists a UCRD X on c
categories with dom(X) = G, then Ψ(G) = α(G) = k(G) = c.

Proof. The ranked deck X is a realization of G, so Ψ(G) ≤ c. On the other
hand, for i ∈ [c] let xi ∈ X be the champion in category i. As X is a UCRD,
the set A := {xi | i ∈ [c]} of all champions has size c. But note that A is
an independent set in G, because if a card is champion, it always wins, if it
chooses the category. Therefore α(G) ≥ c. Now, we have seen at the beginning
of this subsection, that α(G) ≤ k(G) ≤ Ψ(G) always holds. In total

c ≤ α(G) ≤ k(G) ≤ Ψ(G) ≤ c,

which proves the claim.

As a consequence, if a UCRD deck representing some directed graph G
exists, it can only have exactly Ψ(G) categories. This leaves us in an interesting
spot. If we know that some UCRD exists representing G, we immediately know
Ψ(G). But we can not exclude the possibility, that for all decks representing
G, there is a card, which is champion in two or more categories.

Also note that if we fix c ∈ N, let n ∈ N tend to infinity, and consider a
random ranked deck X on c categories and n cards (choose c random permu-
tations of [n]), X is a UCRD with probability tending to 1. From this point of
view, very many ranked decks are indeed UCRDs and very few are not. This
would suggest that, for fixed c, almost all c-ranked-realizable graphs G fulfill
α(G) = κ(G) = Ψ(G), although this is of course, no proof at all (we have no
information about how many different UCRDs realize the same graph). Could
it even be true, that α(G) = k(G) for all c-ranked-realizable graphs G? Or
even α(G) = k(G) = Ψ(G)?
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Finally, note that the previous theorem gives us Ψ(G), if the directed graph
G has a UCRD, but it does not help us determining, which graphs at all are
ranked-realizable. This question is still open. We could only find explicit con-
structions for some limited classes of graphs, obtained by repeatedly applying
one of three graph operations, which will be described in the next subsection.
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4.3 Operations Preserving Ranked Realizability

For three graph operations, we were able to show that they preserved ranked
realizability. Namely, these graph operations are the unidirectional join, the
disjoint graph union and the lexicographical graph product. We will describe
each of these operations and prove, in what way they preserve ranked realiz-
ability.

Before we begin, we make some technical definitions. These technical defi-
nitions are helpful, because all the proofs in this subsection (and several of the
proofs in the next section) work using the same strategy: Namely, we consider
a set M , which is often a deck or a union of decks, and we assign new values
r′i(x) to the elements x ∈ M , which may depend of the old values. Then we
want to argue that the collection of the new values indeed forms a deck or
even a ranked deck. Finally, we want to argue that the dominance graph of
this new deck X ′ is similar to some other graph. To avoid imprecise notation
for these proofs, we make the following technical definitions:

Definition 4.11 (defining a deck via a function – part (ii)). Let M be a finite
set, c ∈ N and r′ : M → Rc be a function such that X ′ := r′(M) is a deck on
|M | cards. Then we define for i ∈ [c] and x ∈M :

c′(x) := c(r′(x)) and h′(x) := h(r′(x)).

Here, the functions c(·) and h(·) are the usual ones, compare Definition 3.10.
Furthermore, define dom(M ; r′) to be the directed graph with vertex set M and
edge set {(x, y) | (r′(x), r′(y)) ∈ E(dom(X ′))}.

2
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5
9

x y

2
2

1
1

r′(x) r′(y) r′i(t) := t mod 4

c(y) = 2
c′(y) = 1

yx

dom(M ; r′)

r′(y)r′(x)

dom(X ′)

M = {x, y}

Figure 18: Example of Definition 4.11.

By this definition, dom(M ; r′) is the graph isomorphic to dom(X ′), but
on the vertex set M instead of the vertex set X ′ (this is possible, as r′ is a
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bijection). An example for all these concepts can be found in Figure 18. These
definitions are a bit technical, but if they confuse you, do not worry: In the
next proof, it will all come together.

Definition 4.12 (unidirectional join). Let G1, G2 be directed graphs. The
unidirectional join of G1 and G2, denoted by G1 ~∨G2, is obtained by taking a
copy of G1, a copy of G2 and then adding all edges {(x, y) | x ∈ V (G1), y ∈
V (G2)} between these copies.

G1 G2

Figure 19: Unidirectional join of a directed path and an independent set.

In the world of undirected graphs, the join of undirected graphs G1 and G2

is obtained by taking a copy of G1, a copy of G2 and then adding all possible
edges, i.e. a complete bipartite graph between them. The unidirectional join
is similar, only that the edges all have the same direction (from G1 to G2).
An example can be seen in Figure 19. Now we will prove, as claimed in the
introduction of this subsection:

Theorem 4.13 (Unidirectional joins preserve ranked-realizability). Let c ∈ N
and let both G1, G2 be c-ranked-realizable, directed graphs. Then G1 ~∨ G2 is
c-ranked-realizable.

Proof. Let n1 := |V (G1)| and n2 := |V (G2)| be the number of vertices in G1

and G2, respectively. There exists a ranked deck X1 on c categories and n1

cards realizing G1. Likewise, there exists a ranked deck X2 on c categories and
n2 cards realizing G2. Let V1 := V (G1) and V2 := V (G2) andM := V1 ∪̇V2. We
will create a new ranked deck X ′ from X1 and X2 the following way: Consider
the deck-defining function r′ : M → Rc (compare Definition 4.11) which is
given by

r′i(x) =

{
ri(x) for x ∈ V1
n1 + ri(x) for x ∈ V2

for all i ∈ [c]. Also, define for x ∈ M the value c′(x) like in Definition 4.11.
Let X ′ := r′(M) be the image of r′. We now claim that
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(i) X ′ is ranked deck on n1 + n2 cards and c categories,

(ii) For all x ∈M , we have c(x) = c′(x), and

(iii) dom(X ′) ∼= dom(M ; r′) = G1 ~∨G2.

If we can show all these claims, we are done. For claim (i), note that for each
fixed i ∈ [c], we have r′i(V1) = {1, . . . , n1} and r′i(V2) = {n1+1, . . . , n1+n2}, so
in total X ′ = r′(V1 ∪̇V2) is a ranked deck on n1 +n2 cards. For claim (ii), note
that for any x ∈ V1 ∪̇ V2, all of its values in X ′ compared to X either stayed
the same or were all shifted by the same amount n1. So indeed c(x) = c′(x).
Finally, for claim (iii), let H := dom(M ; r′). Inside of V1, all values stayed the
same, so together with claim (ii), we get H[V1] = G1. Inside of V2, all values
were shifted by n1, so similarly H[V2] = G2. Finally, if x ∈ V1 and y ∈ V2,
note that r′i(x) ≤ n1 and r′i(y) ≥ n1 + 1 for all i ∈ [c]. So we always have the
edge (x, y) in H. In total, H = G1 ~∨G2. By their definition, dom(X ′) and H
are isomorphic.

We proceed with showing that the disjoint graph union preserves ranked
realizability. Consider

Definition 4.14 (disjoint graph union). Let G1, G2 be directed graphs. The
disjoint graph union of G1 and G2, also sometimes called the union of G1 and
G2 is denoted by G1 ∪̇ G2 and is the directed graph obtained by taking a copy
of G1 and adding a disjoint copy of G2.

For example, K2 ∪̇K2 is a matching on two edges. We now show a construc-
tion, which proves that the disjoint graph union G1 ∪̇G2 is ranked-realizable, if
both G1 and G2 are ranked-realizable. To supplement the proof, an exemplary
application of the theorem is depicted in Figure 20.

Theorem 4.15 (disjoint graph unions preserve ranked-realizability). Let G1 be
a c1-ranked-realizable, directed graph and G2 be a c2-ranked-realizable, directed
graph. Then G1 ∪̇G2 is a (c1 + c2)-ranked-realizable graph.

Proof. There exists a ranked deck X1 on c1 categories and n1 := |V (G1)| cards
realizing G1 and a ranked deck X2 on c2 categories and n2 := |V (G2)| cards
realizing G2. Let V1 := V (G1), V2 := V (G2) and M := V1 ∪̇ V2. We can
assume n1, n2, c1, c2 ≥ 1. Let C1 := {1, . . . , c1} and C2 := {c1 + 1, . . . , c1 + c2}.
It will be convenient to assume, that the set of categories, which X2 uses, is
C2 instead of {1, . . . , c2}. By this, we mean that for x ∈ X2, the value ri(x) is
defined exactly if i ∈ C2 and the value c(x) is contained in C2. This assumption
is possible without loss of generality.
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Now consider the deck-defining function r′ : M → Rc1+c2 defined by

x ∈ V1 ⇒ r′i(x) :=

{
n2 + ri(x) for i ∈ C1

r1(x) for i ∈ C2

x ∈ V2 ⇒ r′i(x) :=

{
rc1+1(x) for i ∈ C1

n1 + ri(x) for i ∈ C2

for all i ∈ [c1+c2]. Let X ′ := r′(M). Let c′(x) := c(r′(x)) and h′(x) := h(r′(x))
for x ∈ M . Similar to the proof of the last theorem, Theorem 4.13, we claim
that

(i) X ′ is ranked deck on n1 + n2 cards and c1 + c2 categories,

(ii) For all x ∈M , we have c(x) = c′(x), and

(iii) dom(X ′) ∼= dom(M ; r′) = G1 ∪̇G2.

If we prove all these claims, we are done. For the proof of (i), note that if i ∈ C1,
then r′i(V2) = {1, . . . , n2} and r′i(V1) = {n2 + 1, . . . , n2 + n1}. If, on the other
hand, i ∈ C2, then r′i(V1) = {1, . . . , n1} and r′i(V2) = {n1 + 1, . . . , n1 + n2}. In
total, in every category, every of the values {1, . . . , n1 +n2} is assigned exactly
once, which shows the claim.

For the proof of (ii), note that if x ∈ V1, then for all i ∈ C2 we have
r′i(x) < r′1(x). Therefore c′(x) = c(x) in this case. Similarly, if x ∈ V2, then for
all i ∈ C1, we have r′i(x) < rc1+1(x). Therefore c′(x) = c(x) in this case and
this proves the claim.

For the last claim, let H := dom(M ; r′). Due to (ii) and the fact that
for all x ∈ V1 and i ∈ C1, the value r′i(x) = n2 + ri(x) is just a constant
shift of the previous value ri(x), we have that H[V1] = G1. Similarly, we have
H[V2] = G2. Finally, let x ∈ V1 and y ∈ V2. Then, by claim (ii), c′(x) ∈ C1,
which implies h′(x) ≥ n2 + 1 and r′c′(x)(y) ≤ n2. This shows that x wins, if x
chooses. Analogously, we can show that y wins, if y chooses. So there is no
edge between x and y in H. In total, H = G1 ∪̇G2.

Attentive readers may have noticed that the presented theorem is a gen-
eralization of Lemma 4.5. Now we see that indeed every graph, which is a
disjoint union of k directed cliques, is k-ranked-realizable (k ∈ N).

Definition 4.16 (lexicographical graph product). Let G,H be directed graphs.
The lexicographical graph product of G and H, denoted by G ·H, is obtained
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Figure 20: An application of Theorem 4.15 to two directed cliques of size 2
and 5, respectively.

G

H

G ·H

Figure 21: The lexicographical graph product ~P3 · ~P2.
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by taking a copy Hv of H for every v ∈ V (G) and then, for all (u, v) ∈ E(G),
adding all possible directed edges going from Hu to Hv. Formally:

V (G ·H) := V (G)× V (H), and
((u1, v1), (u2, v2)) ∈ E(G ·H)⇔ (u1, u2) ∈ E(G) ∨ (u1 = u2 ∧ (v1, v2) ∈ E(H)).

An example can be found in Figure 21. The lexicographical graph product
is related to the lexicographic order of tuples. A lexicographic order resembles
the way we would sort words in a dictionary. For readers unfamiliar with the
lexicographic order, we will define it here. We will only be concerned with
2-tuples:

Definition 4.17 (lexicographic order of 2-tuples). Let x, y ∈ R2, where x =
(x1, x2) and y = (y1, y2). We say that x comes before y in the lexicographic
order, denoted by x <L y, if

x1 < y1 ∨ (x1 = y1 ∧ x2 < y2).

For example, (1, 7) <L (2, 0) and (2, 2) <L (2, 3). We will now use this
order in the proof of the final theorem of this subsection.

Theorem 4.18 (lex. graph products preserve ranked-realizability). Let G1 be
a c1-ranked-realizable, directed graph and G2 be a c2-ranked-realizable, directed
graph. Then G1 ·G2 is a (c1c2)-ranked-realizable graph.

Proof. There exists a ranked deck X1 on c1 categories and n1 := |V (G1)| cards
realizing G1 and a ranked deck X2 on c2 categories and n2 := |V (G2)| cards
realizing G2. Let V1 := V (G1), V2 := V (G2), C1 := [c1], C2 := [c2] and
M := V1×V2. We wish to construct a ranked deck on c1c2 categories realizing
G1 · G2. Roughly speaking, the idea behind the proof is, that this new deck
has the “category space” C ′ := C1 × C2 and the values of a card in a category
are elements from R2. Whenever two values of this new deck are compared,
they are done so according to lexicographic order. We can formalize this idea
the following way:

Consider for (i, j) ∈ C1 × C2 the function t(i,j) : M → R2 given by

t(i,j)((u, v)) := (ri(u), rj(v)).

For each fixed (i, j) ∈ C ′, the image T(i,j) := t(i,j)(M) is a set of 2-tuples. Then
consider the deck-defining function r′ : M → Rc1×c2 given by

r′(i,j)((u, v)) := index of t(i,j)((u, v)) in the lex. order of T(i,j)

for all (i, j) ∈ C ′. Let, similar to previous proofs, X ′ := r′(M), c′(x) := c(r′(x))
and h′(x) := h(r′(x)) for x ∈M . We now claim, that
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(i) X ′ is ranked deck on n1n2 cards and c1c2 categories,

(ii) For all (u, v) ∈M , we have c′((u, v)) = (c(u), c(v)) and

(iii) dom(X ′) ∼= dom(M ; r′) = G1 ·G2.

For claim (i), note that for each fixed (i, j) ∈ C ′, we have T(i,j) = t(i,j)(M) =
[n1] × [n2], because M = V1 × V2 and X1, X2 are ranked decks. Therefore,
r′(i,j)(M) = {1, . . . , n1n2}. Also, |C ′| = c1c2, therefore X ′ is indeed a ranked
deck on c1c2 categories and n1n2 cards.

For claim (ii), fix (u, v) ∈ M , let z := (u, v). Now, the category c′(z) =:
(i∗, j∗) ∈ C ′ is the uniquely determined category, such that t(i∗,j∗)(x) is the
lexicographically largest of the tuples R := {t(i,j)(z) | (i, j) ∈ C ′}, or the first
one, if multiple largest tuples exist. What does “first” mean? That depends
on the way, we arrange the categories C1 × C2 on the cards of the new deck.
If we let this arrangement be the lexicographical order of C1 × C2, then the
category (i∗, j∗) is the lexicographically smallest of those categories (i, j) with
the property that t(i,j)(z) is (lexicographically) maximal. Now, because for
comparing the tuples of R, the first component is more important, and the
first component is uniquely determined by i, we have that i∗ = c(u). If we
already know that i∗ is fixed, we similarly see, that j∗ = c(v). Thus follows
the claim.

Finally, for claim (iii), let H := dom(M, r′), so V (H) = M = V1×V2. (For
simplification, we will write f(x1, y1) instead of f((x1, y1)) for f ∈ {r′, c′, h′}.)
For (a, b), (c, d) ∈ V1 × V2, we have

((a, b), (c, d)) ∈ E(H)

⇔ h′(a, b) < r′c′(a,b)(c, d)

⇔ tc′(a,b)(a, b) <L tc′(a,b)(c, d).

Due to claim (ii), this is equivalent to

⇔ (h(a), h(b)) <L (rc(a)(c), rc(b)(d))

⇔ h(a) < rc(a)(c) ∨ (h(a) = rc(a)(c) ∧ h(b) < rc(b)(d))

⇔ (a, b) ∈ E(G1) ∨ (h(a) = rc(a)(c) ∧ (b, d) ∈ E(G2))

⇔ (a, b) ∈ E(G1) ∨ (a = c ∧ (b, d) ∈ E(G2))

⇔ ((a, b), (c, d)) ∈ E(G1 ·G2).

In total, this proves H = G1 · G2, so we are done (by its definition, H ∼=
dom(X ′)).

This was the last of our findings about operations preserving ranked real-
izibility. We summarize Section 4.3:
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Corollary 4.19. Let G1, G2 be directed graphs. Then we have

• Ψ(G1 ~∨G2) ≤ max{Ψ(G1),Ψ(G2)}

• Ψ(G1 ∪̇G2) ≤ Ψ(G1) + Ψ(G2)

• Ψ(G1 ·G2) ≤ Ψ(G1)Ψ(G2),

where Ψ(Gi) =∞ is allowed for i ∈ {1, 2}.

Proof. By Theorems 4.13, 4.15 and 4.18 .
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5 Realizability

We saw in Corollary 4.8, that ranked realizability is not preserved under vertex
removal. In other words, when we have a ranked-realizable, directed graph G
and a vertex v of G, then G− v is not necessarily ranked-realizable anymore.
This fact seems to be against intuition: At first glance, one would expect that
if we have a deck realizing G, we could simply take the card corresponding to
v out of the deck X and get a deck realizing G− v. But that is not the case,
because subdecks of ranked decks are not necessarily ranked anymore.

This raises the following question: What if, instead of asking whether some
graph can be realized using a ranked deck, we just ask, whether the graph can
be realized using a deck. This means we get rid of the requirement that the
values inside of a category are exactly {1, . . . , n} for a deck of size n. Now,
they can be any arbitrary n distinct real numbers (the no-stalemate-property
requires the numbers to be distinct). For example, Figure 22 shows that we
can realize the directed path ~P4 with a deck on 3 categories, but we know that
we can not realize this graph with a ranked deck, by Corollary 4.7. Let us call
a directed graph G realizable, if there exists a deck realizing G.

0
0
1

0.1
3
2

6
0
0.1

5
4
0

Figure 22: The directed path ~P4 is realizable.

We can interpret this new situation in three different ways:

• We ask for the structure of a game of Top Trumps, if both players use
the strategy Highest-Value to pick their category, even if this strategy
is not optimal. As stated before in Section 3.1, the strategy Highest-
Value resembles the behavior of an “easily impressible player”, who al-
ways picks the category with the highest value off of his or her card.

• We ask the question, which graphs can appear as induced subgraphs of
ranked-realizable graphs. (For details, see below.)

• On a more abstract level, we ask for the structure of a set of points
X ⊆ Rc equipped with the dominance relation x <D y ⇔ h(x) < rc(x)(y).
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5.1 Definition

Analogous to the ranked-realizability (Definitions 4.1 to 4.3), consider

Definition 5.1 (c-realizable). Let G be a directed graph, let c ∈ N. We say
that G is c-realizable, if there exists a deck X on c categories such that X
realizes G. We say that G is realizable, if there exists some c′ ∈ N such that
G is c′-realizable.

Definition 5.2 (realizability number ϕ). Let G be a directed graph. The
realizibility number ϕ(G) is the minimum c ∈ N such that G is c-realizable. If
such a c does not exist, then ϕ(G) =∞.

As an example, consider again Figure 22, which shows that ~P4 is 3-realizable,
therefore ϕ(~P4) is at most 3.

We want to make some regards concerning regularity of decks. Namely,
when considering the class of all dominance graphs realized by the family of
all possible decks, it does not matter, whether the values on the cards of a
deck are real-valued or natural numbers: The class of their dominance graphs
stays the same. To see this, consider

Lemma 5.3. Let X ⊆ Rc be a deck. Then there exists a deck X ′ ⊆ Nc, which
is equivalent to X in the following sense: The deck X ′ is defined by a function
r′ : X → Nc such that for all x ∈ X : c′(x) = c(x) (where c′(x) := c(r′(x)))
and furthermore for all x, y ∈ X, for all i ∈ [c]:

ri(x) < ri(y)⇔ r′i(x) < r′i(y).

Proof. Let T := {ri(x) | x ∈ X, i ∈ [c]} be the set of all values used in X.
Sort the values in T ascending to obtain an order OT of T . For i ∈ [c] and
x ∈ X let the new value r′i(x) of x in category i be the index of ri(x) in the
order OT . Let X ′ := r′(X). Then we have that for any two values t1 = r′i(x)
and t2 := r′j(y) for arbitrary x, y ∈ X and i, j ∈ [c], that t1 < t2 if and only
ri(x) < rj(y). Likewise, t1 = t2, if and only ri(x) = rj(y). This implies both
of the claims.

Note that this in particular implies dom(X ′) = dom(X). This means
that, roughly speaking, we can always assume that a deck uses only natural
numbers as values. Furthermore, we can substitute the no-stalemate-property
for a weaker condition:

Definition 5.4 (weak deck). Let X ⊆ Rc. The set X is called a weak deck,
if for all x, y ∈ X, we have rc(x)(x) 6= rc(x)(y). (The functions c, r defined as
usual.)
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Figure 23: A weak deck realizing ~P4.

(An example can be found in Figure 23.) This definition is motivated by
the following observation: If both players of a Top Trumps game stick to using
the strategy Highest-Value, then for a card x, the only category ever chosen
will be c(x). Therefore it suffices for X to be a weak deck, in order to uniquely
determine, which player wins each round and which card wins against which
other card. This also determines the dominance graph uniquely. Therefore,
we can define

Definition 5.5 (dominance graph of weak decks). If X is a weak deck, we
define the dominance graph of X, denoted by dom(X), analogously to the
dominance graph of a deck (ompare Definition 3.17). Likewise, we define
dom(M ; r′) analogously to Definition 4.11, if r′(M) is only a weak deck.

If we have a weak deck X, we can always find a (proper) deck X ′ with the
same dominance graph as X:

Lemma 5.6. Let X be a weak deck. Then there exists a deck X ′, which is
equivalent to X in the following sense: The deck X ′ is defined by a function
r′ : X → Rc such that for all x ∈ X : c′(x) = c(x) and furthermore for all
x, y ∈ X the property (?), defined as

(?) : h′(x) < rc′(x)(y)⇔ h(x) < rc(x)(y),

holds true.

Proof. Let δ := min{|h(x) − rc(x)(y)| : x, y ∈ X}. Because X is a weak deck,
we have δ > 0. We obtain the new values r′ the following way: For every
x ∈ X, decrease the values in the categories [c] \ {c(x)} by some amount in
the range (0, δ/3). For every card x we decreased all values besides rc(x)(x), so
clearly c′(x) = c(x). If we do this decrease-step in the right way, we can also
make X ′ have the no-stalemate-property, because we have the freedom to alter
any value besides the values on cards x in category c(x). But if there are two
distinct cards x, y with c(x) = c(y) =: i, then already ri(x) 6= rj(y). Finally,
note that due to the definition of δ, we also get property (?).
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Together, these two lemmas show the following:

Corollary 5.7. Let c ∈ N. The following classes of graphs are identical:

A1 := {dom(X) | X ⊆ Rc is a deck }
A2 := {dom(X) | X ⊆ Nc is a deck }
A3 := {dom(X) | X ⊆ Rc is a weak deck }
A4 := {H | H ⊆ind G,G is c-ranked-realizable}

Proof. Obviously A2 ⊆ A1. By Lemma 5.3, A1 ⊆ A2. Obviously A1 ⊆ A3.
By Lemma 5.6, A3 ⊆ A1. Obviously A4 ⊆ A2. If on the other hand, we have
a graph G ∈ A2 and a deck X ⊆ Nc realizing G, let M be the largest value
appearing in X. We can fill in M − |X| cards to get a ranked deck Y ⊇ X.
Then G ⊆ind dom(Y ) and so G ∈ A4.
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5.2 Monotone-Neighborhood-Cliques

After having defined the realizability number ϕ of directed graphs, we are in-
terested in the question, which directed graphs are realizable, and in the min-
imum number ϕ(G) of categories to realize some given directed graph G. The
aim of this subsection is to show, that exactly all acyclic directed graphs are
realizable, and that the realizability number ϕ(G) is exactly the minimal size
of a cover of G with monotone-neighborhood-cliques. Recall from Section 3.4
the definition of a monotone-neighborhood-clique:

Definition 3.34 (monotone-neighborhood-clique). Let G be a directed graph,
H ⊆ G a directed clique and (v1, . . . , vk) the topological vertex order of H.
We call H monotone-neighborhood in G or a monotone-neighborhood-clique
(MNH-clique), if

∀i ∈ {1, . . . , k − 1} : Nout(vi) ⊇ Nout(vi+1).

Figure 24: A monotone-neighborhood-clique of size 3.

So if we go along any directed path in such a clique, the sequence of outgoing
neighborhoods of the vertices we encounter, is monotone and non-increasing
with respect to inclusion. Thus the name. An example can be found in Fig-
ure 24.

Before we acquire this result however, we will prove some weaker theorems,
just to make the reader familiar with the concept of realizability. Strictly
speaking, these weaker theorems are not necessary. However, we felt that
these easier theorems provide a nice “warm-up” for the final proof.

So let us begin. In the last subsection we defined the class of realizable,
directed graphs as the class of directed graphs, which are c-realizable for some
c ∈ N. Clearly, the following holds:

Observation 5.8. All realizable, directed graphs are acyclic.

Proof. By Theorem 3.19, all dominance graphs are acyclic (indepedent from
the fact, whether the corresponding deck is ranked or not).

What operations can we perform on DAGs to preserve acyclity? For ex-
ample, we can add a source or a sink. In the simplest case, this source or sink
is connected to every other vertex.
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Theorem 5.9 (adding a complete source/sink). Let c ∈ N, let G be a c-
realizable, directed graph.

(i) If we add a source v to G, such that v is connected to every other vertex,
the resulting graph H is c-realizable.

(ii) If we add a sink v to G, such that v is connected to every other vertex,
the resulting directed graph H is c-realizable.

Proof. Let X be a deck on c categories realizing G. Let L be the lowest value
appearing in X and M be the highest value. Now observe that

(i) we can add the card (L− 1, . . . , L− 1) to X.
(ii) we can the card (M + 1, . . . ,M + 1) to X.
It is easy to see that the resulting deck realizes H.

So we can always add a complete source/sink without increasing the realiz-
ability number. What happens when adding a source, which is not necessarily
complete? We can do it by using one additional category in this case.

Theorem 5.10 (adding a source). Let c ∈ N, let G be a c-realizable, directed
graph. If we add a source v to G, the resulting directed graph H is (c + 1)-
realizable.

Proof. (A sketch of the proof idea can be seen in Figure 25.) Let X be a
deck on c categories realizing G. Without loss of generalization, X ⊆ Nc by
Lemma 5.3. Let M := V (G)∪ {v}. We obtain a new (weak) deck X ′ on c+ 1
categories by assigning new values r′ : M → Rc+1 the following way: If i ∈ [c]
is an old category, define for x ∈ V (G) : r′i(x) := ri(x) and let r′i(v) := 0.
On the other hand, let in the new category c + 1 be rc+1(v) := 1/3 and for
x ∈ V (G)

rc+1(x) :=

{
2/3 if x ∈ Nout

H (v)

0 otherwise.

Then for x ∈ V (G), we have that c′(x) = c(x) ∈ [c], because the old values are
all at least 1, but the new value in category c + 1 is less than one. Also, we
have c′(v) = c+ 1, because r′i(v) = 0 for i ∈ [c] and r′c+1(v) = 1/3.

Now note, that X ′ is a weak deck. Finally, let T := dom(M ; r′). Note that
T [V (G)] = G, because all values and chosen categories for cards corresponding
to V (G) stayed the same. Also, for x ∈ V (G), there is no directed edge (x, v)
in T , because v has the value 0 in categories 1, . . . , c. Finally, note that due
to the choice of rc+1(x) for x ∈ V (G), we have that in T there are exactly the
edges from v to Nout

H (v). In total, T = H. By Corollary 5.7, we can also find
a deck with the same dominance graph as the weak deck X ′, and so we are
done.
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Figure 25: Idea of Theorem 5.10.

As a direct consequence of this theorem, we get that all directed acyclic
graphs are realizable:

Corollary 5.11. Let G be a DAG on n vertices. Then G is n-realizable.

Proof. By induction on n. For the induction base, we have that K1 is 1-
realizable. For the induction step, if we have some DAG G on n vertices, we
can always find a source v in G (for example the first vertex in a topological
order ofG). Then by induction, G−v is (n−1)-realizable and by Theorem 5.10,
G is n-realizable.

Interestingly, when adding a sink instead of a source, we can not always
manage to do so with only one additional category. At the end of this sub-
section, we will show such an example, where we indeed need to double the
number of categories.

We are now ready to prove the promised result. Consider

Definition 5.12 (monotone-neighborhood-clique cover). Let G be a directed
graph. Let C1, . . . , Ck ⊆ G be monotone-neighborhood-cliques in G. The set
{C1, . . . , Ck} is called a monotone-neighborhood-clique cover of size k, if Ci ∩
Cj = ∅ for all i 6= j and

⋃k
i=1 V (Ci) = V (G).

We call a monotone-neighborhood-clique cover ofGminimal, if k is minimal
over all monotone-neighborhood-clique covers of G. Note that we proved in
Lemma 3.35, that if we have a deck on c categories realizing G, then we always
get a monotone-neighborhood-clique cover of size c of G by considering all the
cards with the same chosen category. Therefore, we have

Observation 5.13. Let G be a DAG. Then ϕ(G) is at least the size of a
minimal monotone-neighborhood-clique cover.

In this sense, the property of having a MNH-clique cover of size at most c
is necessary for ϕ(G) ≤ c. We will now show that this is also sufficient.
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Theorem 5.14. Let G be a DAG and let {A1, . . . , Ak} be a MNH-clique cover
of G. Then G is k-realizable.

Proof. Let V := V (G) and n := |V |. The proof will use the same strategy
like the proof of Theorem 5.10. First, we give out values r : V → Rk, such
that X ′ := r(V ) is a weak deck. Then we will prove that dom(V ; r) = G. By
Corollary 5.7, this suffices.

Let Ci := V (Ai) for i ∈ [k]. Let (v1, . . . , vn) be a topological order of G,
i.e. all edges are of the form (vi, vj) for some i < j. In a first step, for all v ∈ V
do the following: Let t be the position of v in the topological order, i.e. v = vt
and let i ∈ [k] be the index of the clique, which contains v, i.e. vt ∈ Ci. Then,
define

ri(vt) := t.

In a second step, for i ∈ [k] and for v ∈ Ci, let for j 6= i

rj(v) :=

{
1/2 + max{rj(w) | w ∈ N in(v) ∩ Cj}; if N in(v) ∩ Cj 6= ∅
0 else.

(5.1)

(A sketch of the assignment of these values is depicted in Figure 26.) Note
that the second step is well-defined, because all recursive calls to r are for
values, which were already defined in the first step. For v ∈ V , define c(v) :=
c(r(v)) and h(v) := h(r(v)). Now we make the following claims:

(i) For all i ∈ [k], for all v ∈ Ci, we have c(v) = i.

(ii) The set X ′ is a weak deck.

(iii) We have dom(X ′) ∼= dom(V ; r) = G.

For the proof of (i) note, that if v ∈ Ci, then ri(v) equals the index of v in the
topological order. But the maximum in Equation (5.1) runs only over vertices,
who come sooner in the topological order than v. Therefore, c(v) = i.

For the proof of (ii), we have to show that for all distinct x, y ∈ V , we
have h(x) 6= rc(x)(y). Let i ∈ [k] be such that x ∈ Ci. Note that due to claim
(i), the value h(x) is a natural number. Due to Equation (5.1), if y were not
contained in Ci, then ri(y) would not be a natural number. But if y ∈ Ci, then
clearly ri(x) 6= ri(y).

For the proof of (iii), let H := dom(V ; r). For i ∈ [k], we quickly see that
H[Ci] = G[Ci]. This is due to the fact that for v ∈ Ci, we have c(v) = i and
h(v) is the index of v in the topological order of G. So in H[Ci] we get exactly
all the edges of the directed clique Ai with the same direction as in Ai as well.
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Figure 26: Central idea behind the proof of Theorem 5.14.

So let vl ∈ Ci and vr ∈ Cj for some i 6= j, such that l and r are the positions
of vl and vr in the topological order. Without loss of generality, l < r. We
have c(vl) = i, c(vr) = j, h(vl) = l and h(vr) = r. Due to the properties of a
topological order, we either have (vl, vr) ∈ E(G) or no edge between vl and vr
in G. In the first case, we also have the edge (vl, vr) in H, due to Equation (5.1)
(applied for v = vr).

In the second case, if there is no edge between vl and vr in G, we have to
show that vr wins, if vr chooses and that vl wins, if vl chooses. If vr chooses,
we have h(vr) = r > l = h(vl) ≥ rc(vr)(vl). Therefore, vr wins.

So the only thing left to show is that vl wins, if vl chooses, when there is
no edge between vl and vr in G. For the sake of contradiction, assume vl loses.
This would mean

h(vl) < rc(vl)(vr) = ri(vr)

⇔ l = h(vl) < 1/2 + max{ri(w) | w ∈ N in
G (vr) ∩ Ci}

But this is only possible if there is a vertex y ∈ Ci ∩ N in
G (vr) such that the

index of y in the topological order is at least l. But then, due to the monotone-
neighborhood-property of Ci, we get that the edge (vl, vr) is in G as well. This
is a contradiction. So we indeed have that vl wins if vl chooses. This completes
the proof of claim (iii), which completes the proof.

Corollary 5.15. Let G be a DAG. Then

ϕ(G) = min{k | there exists a MNH-clique cover of G of size k.}

Proof. By Observation 5.13 and Theorem 5.14.
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Figure 27: Determining ϕ(G) using the MNH-clique characterization.

If we have a directed graph G with a cycle, we clearly have ϕ(G) = ∞.
(Although directed graphs with cycles can not be realized as a deck, they can
be covered with MNH-cliques. Take for example the trivial cover, where every
clique has size 1.) Therefore, we have completely characterized realizability of
directed graphs.

It is satisfying to see, how easy it becomes to determine the realizability
number of some directed graphs using this new characterization:

Example 5.16. For k ∈ N, let ~Pk be the directed path on k vertices, ~Mk be
a matching on k directed edges and ~M ′

k be the directed graph obtained from
~Mk by adding a sink v connected to all endpoints of the edges in ~Mk (compare
Figure 27). Then we have

(i) ϕ(~Pk) = k − 1

(ii) ϕ( ~Mk) = k

(iii) ϕ( ~M ′
k) = 2k

Proof. We use Corollary 5.15 together with the following facts: (i) The last
two vertices induce a MNH-clique, the rest of the edges do not. (ii) Clearly,
~Mk can be covered with k MNH-cliques, but not less. (iii) All MNH-cliques of
size two (or more) intersect at v.

This is the promised example that adding a sink is not as well-behaved as
adding a source when considering realizability.
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5.3 Properties of Realizability

Now that we have obtained an alternative characterization of realizability, we
will use this short subsection to describe some properties and graph operations
concerning realizability. An important property of realizabilty is that it is
preserved under vertex removal.

Observation 5.17 (realizability is monotone under vertex removal). Let c ∈
N, let G be a c-realizable, directed graph and let v ∈ V (G). Then G − v is
c-realizable.

Proof. There exists a deck X on c colors realizing G. By taking the card
corresponding to v out of X, we get a deck realizing G− v.

In other words, if some directed graph H is an induced subgraph H ⊆ind G
of some directed graph G, then ϕ(H) ≤ ϕ(G). As, a consequence, we can re-
prove some of the results from Section 3.4: A c-realizable graph does not con-
tain an induced directed path on c+2 or more vertices, because ϕ(~Pc+2) = c+1.
By the same argument, a c-realizable graph does not contain an independent
set of size c+ 1. In general, we have

α(G) ≤ k(G) ≤ ϕ(G) ≤ Ψ(G)

for all directed graphs G. Here, k(G) ≤ ϕ(G) follows from Corollary 5.15 and
ϕ(G) ≤ Ψ(G) follows from the definition of these two parameters. How big can
the difference between two consecutive elements of this inequality get? For the
parameters of α(G) and k(G), this is an old question, answered for example
by Mycielski’s construction or Tutte’s construction [3]. There exist undirected
graphs G such that we can have α(G) = 2, but k(G) arbitrarily large. The
same is true for the difference between k(G) and ϕ(G):

Theorem 5.18. For all even n ∈ N, there exists an undirected graph G on n
vertices and k(G) = 2 such that for each acyclic orientation ~G of G, we have
ϕ(~G) ≥ n/2.

Proof. (Note that a clique of G becomes a directed clique in ~G, so we can
always cover ~G with two directed cliques.) Let G be the undirected graph
consisting out of a clique on vertex set A := {a1, . . . , an/2} of size n/2, another
clique B := {b1, . . . , bn/2} of size n/2 and a matching connecting A and B,
i.e. the edges {aibi | i ∈ [n/2]}. Now, fix an acyclic orientation ~G of G. For
each i ∈ [n/2], the edge aibi receives an orientation (si, ti), where the starting
point si ∈ {ai, bi} and the end point ti has {ti} = {ai, bi} \ {si}. Consider the
set X := {s1, . . . , sn/2}. No two elements of X can be contained in the same
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MNH-clique. This is because if si ∈ A and sj ∈ B for some i 6= j, then there is
no edge between si and sj in G, so they can not be in the same MNH-clique.
If both si, sj ∈ A, say, then let without loss of generality (si, sj) ∈ E(G)
(otherwise, swap i and j in the argument). But then si and sj can not be
in the same MNH-clique, because (si, tj) 6∈ E(~G). In total, we need at least
|X| = n/2 MNH-cliques to cover ~G. This completes the proof.

(For an upper bound on ϕ, it is not hard to show, that ϕ(~G) ≤ n/2 + 2:
Take the cliques on the two vertex sets C1 := {t1, . . . , tn/2} ∩ A and C1 :=
{t1, . . . , tn/2} ∩B and a clique of size 1 for every element in X.)

This settles our question about the inequality k(G) ≤ ϕ(G). For the in-
equality ϕ(G) ≤ Ψ(G), we have already seen that all directed paths on at least
three vertices are not ranked-realizable, so Ψ(G) =∞, but they are of course
realizable.

Another property of realizabilty that we want to mention, is how it behaves
on the graph operations introduced in Section 4.3.

Theorem 5.19. Let G1, G2 be directed, acyclic graphs. Then

(i) ϕ(G1 ~∨G2) = max{ϕ(G1), ϕ(G2)}

(ii) ϕ(G1 ∪̇G2) = ϕ(G1) + ϕ(G2)

(iii) ϕ(G1 ·G2) ≤ ϕ(G1)ϕ(G2)

Proof. (i) Let c1 := ϕ(G1) and c2 := ϕ(G2). By Corollary 5.7, there exists c1-
ranked-realizable G′1 with G1 ⊆ind G

′
1 and c2-ranked-realizable G′2 with G2 ⊆

G′2. By Theorem 4.13, the graph G′1 ~∨ G′2 is (max{c1, c2})-ranked-realizable.
Because G1 ~∨ G2 ⊆ind G

′
1
~∨ G′2, we get that ϕ(G1 ~∨ G2) ≤ max{c1, c2}. The

other direction is true because G1 ⊆ind G1 ~∨G2 and G2 ⊆ind G1 ~∨G2.
(ii) The minimal number of MNH-cliques to cover G1∪̇G2 is clearly the sum

of the minimal number of MNH-cliques to cover G1 and the minimal number
of MNH-cliques to cover G2.

(iii) The proof is analogous to the first direction of the proof of (i): We use,
that if G1 ⊆ind G

′
1 and G2 ⊆ind G

′
2, then G1 ·G2 ⊆ind G

′
1 ·G′2. The rest of the

proof is a reduction to Theorem 4.18.

The last proof in this subsection regards the question of adding sinks. We
saw in Theorem 5.10, that adding a source increases the realizability number by
at most one, but adding a sink is not so well-behaved: We saw in Example 5.16,
that the realizability number may double. This is the worst that can happen:
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Theorem 5.20. Let G be a DAG. Let H be a graph which is obtained from G
by adding a sink v, which is not an isolated vertex. Then

ϕ(H) ≤ ϕ(G) + min{ϕ(G), din(v)}.

Proof. Let c := ϕ(G). By Corollary 5.15, there exists a MNH-clique-cover
{C1, . . . , Cc} of size c of G. For i ∈ [c], let Ai := V (Ci) ∩ N in(v) and Bi :=
V (Ci) \N in(v). Let k be the number of indices i ∈ [c] such that Ai 6= ∅. Then
k ≤ min{c, din(v)}. Now observe that each of the nonempty Ai or Bi induces
a MNH-clique. For Bi this is the case, as Ci was a MNH-clique beforehand,
then we deleted vertices, but added no new outgoing edges to the vertices of
Bi. Deleting vertices preserves the monotone-neighborhood-property. For Ai
this is the case, as we started with the MNH-clique Ci, then deleted vertices,
and then added a new outgoing edge for each of the vertices in Ai. Because
k 6= 0, we can integrate the vertex v into one of the MNH-cliques induced by
the Ai. In total, we have a MNH-clique-cover of size c + k, which proves the
claim.

Example 5.16 tells us, that this theorem is sharp. Note that if v is an
isolated vertex, ϕ(G) increases by exactly 1, due to Theorem 5.19, case (ii).
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5.4 Monotone Edges and Dilworth’s Theorem

The aim of this last subsection is to prove yet another equivalent characteriza-
tion of realizability, which will imply a polynomial-time algorithm computing
both ϕ(G), as well as a Top Trumps deck realization on ϕ(G) categories, given
some directed acyclic graph G. This idea can be seen as a generalization of
the well-known Dilworth’s theorem (which is a statement about posets) to ar-
bitrary directed or even undirected graphs. We presented Dilworth’s theorem
as part of the preliminaries in Section 2.4.

The new characterization is a characterization in terms of monotone edges.

Definition 5.21 (monotone edge). Let G be a directed graph (which may allow
loops). An edge (u, v) ∈ E(G) is called, monotone, if Nout(u) ⊇ Nout(v).

Nout(u) Nout(v)

u v

Figure 28: A monotone edge.

An example is depicted in Figure 28. The case where G can have loops will
be required later, but can be ignored for the first few results. Every loop is a
monotone edge by this definition.

We also define the monotone subgraph of some directed graph G as the
subgraph with all the monotone edges:

Definition 5.22 (monotone subgraph). Let G be a directed graph (which may
allow loops). The monotone subgraph of G, denoted by mon(G) is the subgraph
H ⊆ G on the same vertex set as G and on the edge set

{(u, v) ∈ E(G) | (u, v) is monotone in G }.

An example is given in Figure 29. Again, by this definition, all loops which
are present in G, are also present in mon(G). Finally, consider the following
definition of an anti-monotone chain, which in our result will be the equivalent
to an antichain in a poset:

Definition 5.23 (anti-monotone chain). Let G be a directed graph (which may
allow loops). A vertex set A ⊆ V (G) is called an anti-monotone chain in G, if
there do not exist distinct u, v ∈ A, such that (u, v) is a monotone edge in G.
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Figure 29: Monotone subgraph of the graph ~M ′
k from Example 5.16.

Recall, that if we have a directed graph G with two distinct vertices u, v,
such that both (u, v) and (v, u) are present, we called this a double-edge be-
tween u and v. Our final result can be very elegantly expressed in directed
graphs without double-edges and without loops. In the other case, the result
is a bit more technical. We begin with the case that there are no double edges
and no loops:

Lemma 5.24. Let G be a directed graph (not allowing loops) without a double
edge, let X ⊆ V (G). Then we have, that

(i) X is an anti-monotone chain in G if and only X is independent in
mon(G).

(ii) G[X] is a MNH-clique if and only if mon(G)[X] is a directed clique.

Proof. (i) “⇒” By the definition of an anti-monotone chain. “⇐” By the
definition of mon(G).

(ii) “⇒” If G[X] is a MNH-clique, every edge inside G[X] is monotone and
G[X] is a directed clique. “⇐” If mon(G)[X] is a directed clique, then G[X]
has exactly the edges as in mon(G)[X] and no more (because there exist no
double-edges) and each of these is monotone, so we get a MNH-clique.

We also have the following lemma:

Lemma 5.25. Let G be a directed graph (which may allow loops). Then
mon(G) is transitive.

Proof. If (u, v) ∈ E(mon(G)) and (v, w) ∈ E(mon(G)), we have that the edge
(u,w) exists in G, because (u, v) is monotone and w ∈ Nout(v). We also have
Nout(u) ⊆ Nout(v) ⊆ Nout(w), because (u, v) and (v, w) are monotone, so
(u,w) is monotone as well and thus (u,w) ∈ E(mon(G)).

Corollary 5.26. Let G be a directed graph (not allowing loops) without double
edges. Then mon(G) is the comparability graph of a strict poset.
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Proof. By the last lemma, mon(G) is transitive. Because G does not allow
double-edges, mon(G) is antisymmetric. Because there are no loops, mon(G)
is irreflexive.

We will from now on identify mon(G) with the poset, of whom it is the
comparability graph. Now we are ready for the final result (case without double
edges):

Theorem 5.27 (Generalized Dilworth’s theorem – no double edges). Let G be
a directed graph (not allowing loops) without double-edges. Then the following
numbers are equal:

(i) Maximal size of an anti-monotone chain in G

(ii) The width of the strict poset mon(G).

(iii) Minimal size of a MNH-clique-cover of G

(iv) If additionally G is acyclic, ϕ(G).

Proof. Case (iii) and (iv) are equivalent by Corollary 5.15. By Lemma 5.24,
the minimal size of a MNH-clique-cover equals the minimum number of di-
rected cliques to cover mon(G). As mon(G) is a strict poset by Corollary 5.26,
this is equal to width(mon(G)), which, by Dilworth’s theorem, equals the max-
imum size of an antichain in mon(G). Again, by Lemma 5.24, this equals the
maximum size of an anti-monotone chain in G.

As a corollary, we get

Corollary 5.28. There exists an algorithm with time-complexity O(nm), which
for all DAGs G on n vertices and m edges computes a deck X on ϕ(G) cate-
gories, such that X realizes G.

Proof. The poset mon(G) can be created in time O(nm) by checking for each
edge, whether it is monotone. There exist known algorithms computing the
width of this poset together with a minimal chain decomposition in time
O(nm) (compare Theorem 2.2). By the previous theorem, this chain decom-
position is a MNH-clique-cover of G of size ϕ(G). Then, we can create a weak
deck realizing G by giving out the ranks like in the proof of Theorem 5.14, and
transform this weak deck into a deck. These two steps take time O(n + m),
including the required topological sorting.

Consider also the special case, when G itself was already a comparability
graph of a strict poset. In this case, we have
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Observation 5.29. In a poset, all edges are monotone.

Proof. This follows from transitivity: If (u, v) is an edge, and w ∈ Nout(v),
then (u,w) is an edge.

This implies that for comparability graphs G of (strict or non-strict) posets,
we have mon(G) = G. Then, Theorem 5.27 simply reduces to Dilworth’s
theorem, but with the additional characterization that the width of this poset
is exactly ϕ(G).

Corollary 5.30. Let G be the comparability graph of a strict poset. The width
of the poset is equal to ϕ(G), i.e. the minimal c such that there exists a Top
Trumps deck X on c categories realizing G.

Proof. By Observation 5.29 and Theorem 5.27.

The dimension of a poset is a well-studied parameter of posets. Our new
characterization of the width of a poset has striking similarities to the charac-
terization of the dimension of a poset:

Definition 5.31 (Pareto-dominance and dimension). For two points x, y ∈ Rc,
we say that y Pareto-dominates x, denoted by x <P y, if xi < yi for all i ∈ [c].

Let G be the comparability graph of a strict poset. The dimension of the
poset is equal to the minimal c such that there exists a set X ⊆ Rc, such
that X realizes G via Pareto-dominance. (By this, we mean V (G) = X and
E(G) = {(x, y) | x <P y}.)

The rest of this subsection is now devoted to generalizing this very elegant
result to graphs with double-edges and undirected graphs. So suppose that we
have a double edge between two vertices u and w, like in Figure 30. If we want
to allow that the edge (u, v) is monotone, this means by our definition, that
Nout(u) ⊇ Nout(v). But because u is an outgoing neighbor of v, the loop at
u must be present for the edge (u, v) to be considered monotone. This means
that if we want to consider the MNH-clique-cover problem in directed graphs
with double edges, we either have to change our definition of a monotone edge,
or we have to include loops. We chose the latter. Especially, a MNH-clique
in a directed graph G allowing loops is a subgraph of G, which is a directed
clique, such that every edge in the directed clique is monotone.

With this insight in mind, we define the transformation of an undirected
graph to a directed graph the following way:

Definition 5.32 (transformation of undirected graph to directed graph with
loops). Let G be an undirected graph. We denote by dir(G) the directed graph
allowing loops, which has the same vertex set as G, the double edge {(u, v), (v, u)}
for every edge uv ∈ E(G) and additionally a loop at every vertex.
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u v

Figure 30: If there is a double edge between u and v and (u, v) is monotone,
then there is a loop at u.

G dir(G) mon(dir(G))

Figure 31: Turning an undirected into a directed graph.

(An example can be found in Figure 31.) We also need to say what we
mean by a MNH-clique cover in a directed graph allowing loops:

Definition 5.33 (MNH-clique-covers in directed graph with loops). Let G be
a directed graph allowing loops. A MNH-clique cover of G of size k is a set
{C1, . . . , Ck} of subgraphs of G, which are MNH-cliques in G, such that they
are pairwise vertex-disjoint and

⋃k
i=1 V (Ci) = V (G). (In particular, the Ci are

not necessarily induced subgraphs.)

This means that in the directed graph (with loops) G from Figure 30, there
are actually two MNH-cliques: Both have vertex set {u, v}, but one has the
edge (u, v) and the other the edge (v, u). Each one of these two MNH-cliques
forms a MNH-clique cover of G of size 1.

Regarding anti-monotone chains in directed graph G allowing loops, we
have already defined what we mean by this term in Definition 5.23. Namely,
this is a set A ⊆ V (G), such that no two distinct vertices of A are connected
by a monotone edge in G.

So if G is an undirected graph, which is modeled as dir(G) like in Defini-
tion 5.32, we have that a vertex set A ⊆ V (G) is an anti-monotone chain, if
and only if there do not exist distinct x, y ∈ A, such that N(x)∪ {x} ⊆ N(y).
As it turns out, a very close variant of this parameter has already been consid-
ered in the literature. The Dilworth number of a graph is a graph parameter
of undirected graphs, introduced in 1978 by Foldes and Hammer as
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Definition 5.34 (Dilworth number ∇(G) [6]). Let G be an undirected graph.
The Dilworth number of G is the maximum size of a set A ⊆ V (G) such that
there do not exist distinct x, y ∈ A with N(x) ⊆ N(y) ∪ {y}.

But ∇(G) is not quite the size of a maximal anti-monotone chain, because
we consider the direction (u, v) in an undirected graph G to be monotone, when
uv ∈ E(G) and the neighborhoods are monotone, but for the Dilworth number,
it is only important that the neighborhoods are monotone, independent of the
edge uv being in G. So the two numbers are not quite the same. However, as
noted in Section 1.2, the authors of [6, 5, 8] used very similar techniques to
the ones we use in this subsection.

Now we are ready to prove the promised generalization of MNH-clique
covers to arbitrary directed graph allowing loops, which by our definition of
dir(G) also includes undirected graphs. Recall from the preliminaries that
a strong module in a directed graph G (allowing loops) is a subgraph S of
G, which is induced by a subset X ⊆ V (G), such that for all x, y ∈ X,
N in(x) = N in(y) and Nout(x) = Nout(y). Now consider

Lemma 5.35. Let G be a directed graph allowing loops. Then each strongly
connected component S in mon(G) is a a bidirectionally connected clique and
a a strong module.

Proof. Let H := mon(G) and S be a strongly connected component in H. By
the definition of a strongly connected component, for all x, y ∈ V (S), there
exists a directed path from x to y in H and vice versa a path from y to x.
Then, by the definition of monotony, we have that Nout

G (x) = Nout
G (y). So if

z ∈ Nout
G (x) and the edge (x, z) is monotone in G, we have that the edge (y, z)

is present in G and also monotone in G. This implies Nout
H (x) = Nout

H (y). So
all vertices in S have the same outgoing neighborhood, both in G as well as in
H. Together with the fact that S is a strongly connected component, we get
that S is a bidirectionally connected clique. (If |V (S)| > 1, we also have that
there exists the loop at x and the loop at y in both G and H.)

If on the other hand there is a vertex y ∈ V (H) \ V (S) and a vertex
x ∈ V (S), such that (y, x) ∈ E(H), then the edge (y, x) is monotone in G, so
Nout
G (y) ⊇ Nout

G (x) ⊇ V (S), so y is connected to all of V (S) in G. Because
all vertices of S have the same outgoing neighborhood in G and the edge
(y, x) is monotone in G, we get that all the other edges {(y, s) | s ∈ V (S)}
are monotone in G as well, and so they “survive” into H. This means that
y ∈ N in

H (s) for all s ∈ V (S). This implies N in
H (v) = N in

H (w) for all v, w ∈ V (S).
In total, we have Nout

H (v) = Nout
H (w) and N in

H (v) = N in
H (w) for all v, w ∈

V (S). So S is indeed a strong module in H.
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G mon(G) mon*(G)

Figure 32: Getting from mon(G) to mon*(G).

In other words, if we have a strongly connected component S in mon(G),
the component behaves “just like a single vertex”. This has the following
implications

Lemma 5.36. Let G be a directed graph allowing loops and H := mon(G).
Then

(i) No anti-monotone chain in G can use two vertices from the same strongly
connected component of H.

(ii) If there exists a MNH-clique cover M of G of size k for some k ∈ N,
then there also exists a MNH-clique cover M ′ of G of size k such that
there is no strongly connected component in H which has a nonempty
intersection with two different MNH-cliques of M ′.

Proof. (i) Because each strongly connected component is a bidirectional clique
in H, so any two vertices are connected by a monotone edge in G. (ii) If there
exists a strongly connected component S ofH such that inM there are distinct
MNH-cliques C1 and C2 with V (C1) ∩ V (S) 6= ∅ and V (C2) ∩ V (S) 6= ∅, then
we can integrate the vertices of S into C1 and remove them from C2. After
this operation, C1 is still an MNH-cliques, because all of the vertices in S have
the same outgoing neighborhood in G. Repeating this operation yields the
claim.

Definition 5.37. Let G be a directed graph allowing loops. Let mon*(G) be the
directed graph obtained from mon(G) by first contracting all strongly connected
components (this is possible, because each of them is a strong module, compare
Lemma 5.35) and then deleting all loops.

An example can be seen in Figure 32.
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Observation 5.38. Let G be a directed graph allowing loops. Then mon*(G)
is the comparability graph of a strict poset.

Proof. Let H := mon*(G). The graph mon(G) is transitive by Lemma 5.25.
This property is preserved when contracting all strongly connected compo-
nents, which are strong modules, so H is transitive. It is antisymmetric, be-
cause contracting all strongly connected components of a directed graph yields
an acyclic graph. So H is transitive and antisymmetric, hence the reflexive
closure is a poset.

This leads to our final theorem:

Theorem 5.39 (generalization of Dilworths theorem to arbitrary graphs). Let
G be a directed graph, allowing loops, or an undirected graph, which is modeled
as a directed graph with loops, like in Definition 5.32. Then the following
numbers are equal:

(i) Maximal size of an anti-monotone chain in G

(ii) Minimal size of a MNH-clique cover of G

(iii) Width of the strict poset mon*(G)

(iv) If additionally G directed and acyclic without loops, the minimum number
ϕ(G) to realize G as a Top Trumps deck

Proof. We already know (i) ⇔ (iv) in Theorem 5.27. As a consequence of
Lemma 5.36, we know that the maximal size of an anti-monotone chain is
equal to the maximum size of an antichain in mon*(G). By the same lemma,
we also know that the minimum size of a MNH-clique cover of G equals the
minimum size of a chain decomposition of mon*(G). Therefore the claim fol-
lows analogously to Theorem 5.27.
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6 Conclusion

The research involved in creating this thesis has been a fascinating journey
for the author and advisor. Who could have guessed, that starting with some
questions about a children’s game, we would end up in the domain of real-
izability, of monotone edges and Dilworth’s theorem? We revisit the central
topics of the thesis and state open problems regarding each of them.

First, in Section 3, we defined a simple model of the game Top Trumps
and established the strategy Highest-Value as an optimal strategy in this
model. Then we introduced the dominance graph of a Top Trumps deck and
showed that properties of the deck, like the strength of individual cards and the
attack advantage, can be elegantly expressed as graph-theoretical properties
of the dominance graph. We also determined the nature of identical-strength-
decks.

It can be argued, that we made our life intentionally simple. That is to
say, in our model we only considered a single round played between only two
players on a deck without stalemates. Also, when there exist multiple equally
best choices of a category for a card x, i.e. the set {i ∈ [c] | ri(x) = h(x)} has
cardinality strictly greater than 1, we simply define c(x) to be the smallest cat-
egory, when in reality any choice results in optimal play. These simplifications
most likely contribute to the fact, that many of the later theorems seem quite
elegant. So it is an open question, whether our observations still hold true,
when the conditions are relaxed. For example, is the strategy Highest-Value
still optimal, when the game is played for more than one round? Could the
situation occur, that if on top of Alice’s pile there is a particularly bad card,
she should intentionally lose the next round, in order to improve the quality
of her own pile? Another question is, what happens if we extend the model
to include mixed strategies? In particular, what happens when the category is
picked uniformly at random by both players?

In Section 4, we asked the question, which directed graphs are realizable
using ranked decks, and what is the minimum number Ψ(G) of categories to
do so. This was motivated by the fact, that in a ranked deck, the strategy
Highest-Value resembles optimal play. For the graph operations of the uni-
directional join, the disjoint graph union and the lexicographical graph prod-
uct, we determined the behavior of Ψ. When there exists a unique-champion
ranked deck realizing G, determining Ψ(G) is also easy. In general, it remains
an open problem, to determine which graphs are ranked-realizable and if so,
to determine Ψ(G). This question might be hard, and solving the following,
maybe easier problems would also be significant progress:
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• Motivated by the observation, that α(G) ≤ k(G) ≤ ϕ(G) ≤ Ψ(G) for all
directed graphs G, we ask whether each of these inequalities can be strict
on ranked-realizable graphs. I.e., do there exist directed graphs G with
Ψ(G) < ∞, but ϕ(G) < Ψ(G)? Do there exist directed graphs G with
Ψ(G) <∞, but k(G) < ϕ(G)? And directed graphs G with Ψ(G) <∞,
but α(G) < k(G)? All examples of ranked-realizable graphs, we could
find, have the property α(G) = Ψ(G) and this is maintained by the three
graph operations.

• We saw in Theorem 4.15, that Ψ(G1 ∪̇G2) ≤ Ψ(G1) + Ψ(G2). Is actually
equality true here, or do there exist counterexamples with Ψ(G1 ∪̇G2) <
Ψ(G1)+Ψ(G2) (where Ψ(G1) =∞ or Ψ(G2) =∞ is allowed)? Note that
we cannot easily prove equality: Although in a realization of G1 ∪̇G2 the
sets of used categories must be disjoint, we cannot easily extract ranked
decks realizing G1 and G2.

In the last part, Section 5, we relaxed the condition of ranked realizability to
realizability, by allowing decks instead of ranked decks, i.e. allowing arbitrary
values on the cards instead of the set {1, . . . , n}. This is a conceptual step away
from the initial game Top Trumps to a more abstract idea. Very interestingly,
every DAG G is realizable and the realizability number ϕ(G) is equal to the
minimal size of a monotone-neighborhood-clique cover, which is also the width
of the underlying poset mon(G), which consists of the monotone edges in G.
Here, a directed edge (u, v) is called monotone, if Nout(u) ⊇ Nout(v) and a
monotone-neighborhood-clique is an acyclic directed clique consisting out of
monotone edges. This connects the idea of realizability to Dilworth’s theorem
and the width of a poset. In particular, the width of a poset is exactly the
minimal number of categories such that there exists a deck realizing the poset.
Our theorem can be generalized to arbitrary directed and undirected graphs.
However, as soon as we have a cycle in the graph, we lose the representation
as a Top Trumps deck, because all dominance graphs are acyclic. Regarding
this final section, we have the following open questions:

• The Dilworth number, introduced by Foldes and Hammer, is almost,
but not quite equal to the generalization of ϕ, which we considered in
Section 5.4. What are the similartities, what are the differences? Can one
number be expressed in terms of the other? Unfortunately, we discovered
the Dilworth number at a very late stage of the thesis, so we had no time
left to answer these questions.

• Can the idea of Top Trumps deck realizations be generalized, such that
all directed graphs can be realized, consistent with Theorem 5.39?
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• The generalization of ϕ to arbitrary directed graphs in Section 5.4 is a
bit technical, especially because loops are involved. Can these concepts
be expressed in an easier, more elegant way, and without using loops?

• Is there some connection between perfect graphs and Top Trump deck
realizations?

• How does ϕ(G) behave on random graphs?

As a final note, we want to mention, that due to its nature, a lot of equiva-
lences and connections were discovered at a late stage of the thesis. Therefore,
we can not fully exclude the possibility, that several of our results were ob-
tained before by different authors. We nonetheless hope that we were able to
convince the reader, that the graph-theoretical theory behind the children’s
game Top Trumps is by far deeper and richer than the name suggests. We
therefore hope that this thesis is not the last, but rather the first scientific
publication regarding the topic.
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