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Abstract

The research field of Transmission Network Expansion Planning (TNEP) focuses on
the problem of expanding existing transmission networks. This is done by choosing
which edges to build from a candidate network. In this thesis we discuss the problem
of expanding transmission networks with the objective to cure critical edges. Critical
edges in the transmission network are identified as edges, whose failure lead to black
outs. We apply a method proposed by Witthaut et al. [WRZ+16a, WRZ+16b] to
identify critical edges. This method relies on a graph theoretical approach using
network flows and can be applied independently of the underlying network model.
Based on this idea, we discuss the effect of using only the graph theoretical network
flows for TNEP for Curing Critical Edges (TNEP-CCE).

First we define the problem TNEP-CCE accurately. We show that the problem
restricted to one critical edge is already NP-complete. A major part of this thesis is
the development and introduction of different approaches to solve this problem. As a
reference model we introduce the formulation as a Mixed-Integer Linear Program
(MILP) using the DC approximation. Then we propose heuristics solely relying on the
graph theoretical simplification of the transmission network. For the first heuristic
we introduce the formulation as a MILP, then we discuss a heuristic based on the
general idea of dynamic programming as well as modifications for this heuristic.

We evaluate all methods proposed in this thesis based on optimization time as
well as result quality. Generally we observe that the heuristic based on dynamic
programming almost always performs worse than the MILP using the network flow.
For the optimization times we observe large speed ups for the MILP using the network
flows in comparison to the MILP using the DC approximation. Concerning the result
quality, we mainly looked at how critical the edges are after the optimization. We
call this value the criticality of the network. We observe only very small differences
in result quality between both MILPs. On most tested networks they perform
equivalently. On the other networks, the model using the DC approximation cured on
average one percent more of the initial criticality. This means that the approach of
using only the network flow for TNEP-CCE leads to large speed ups while retaining
most of the result quality.

Deutsche Zusammenfassung

Forschungsfragen, die sich mit dem Thema der Übertrangungsnetzerweiterung be-
fassen, werden unter dem Begriff „Transmission Network Expansion Planning“
(TNEP) zusammengefasst. Bei der Übertragungsnetzerweiterung geht es in ers-
ter Linie darum, Kanten aus einem Kandidatennetz auszuwählen, um diese zur
Erweiterung eines existierenden Übertragungsnetzes zu bauen. Diese Masterarbeit
behandelt die Fragestellung wie ein Übertragungsnetz erweitert werden kann, um
die Auswirkung von kritischen Kanten zu minimieren. In diesem Kontext werden
Kanten dann als kritisch bezeichnet, wenn ihr Ausfall zu Stromausfällen führen
kann. Zur Identifikation von kritischen Kanten wird in dieser Arbeit eine Methode
von Witthaut et al. [WRZ+16a, WRZ+16b] eingesetzt. Diese Methode verwendet
graph-theoretische Flüsse auf dem Übertragunsnetz um kritische Kanten zu identi-
fizieren und ist dementsprechend unabhängig vom verwendeten Netzmodel einsetzbar.
Basierend auf dieser Idee wird in dieser Arbeit untersucht ob das Problem „TNEP for
Curing Critical Edges“ (TNEP-CCE) nur unter Verwendung von graph-theoretischen
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Flüssen lösbar ist und wie sich diese Vereinfachung auf eine Lösung des Problems
auswirkt.

Im ersten Teil dieser Arbeit wird das Problem TNEP-CCE formal definiert. An-
schließend wird die NP-Vollständigkeit des Problems für einfache Instanzen, die nur
eine einzelne kritische Kante enthalten, gezeigt. Es werden mehrere Methoden zur Lö-
sung des Problems TNEP-CCE vorgeschlagen. Zunächst wird ein Vergleichsmodell als
gemischt-ganzzahliges lineares Modell (MILP) formuliert, dabei wird das DC-Modell
zur Berechnung des Lastflusses auf dem Übertragungsnetz verwendet. Für die Prob-
lemformulierung TNEP-CCE wird ebenfalls ein MILP eingeführt. Zusätzliche Heuris-
tiken werden basierend auf dynamischer Programmierung entwickelt. Dazu wird
zunächst ein Basismodell des Algorithmus zur Lösung von TNEP-CCE vorgestellt.
Anschließend werden für dieses Basismodell mehrere Variationen vorgeschlagen um
das Modell zu verbessern.

Bei der Evaluation werden sowohl die Laufzeiten der einzelnen Modelle als auch ihre
Optimierungsergebnisse verglichen. Dabei wird festgestellt, dass die vorgeschlagene
Heuristik basierend auf dynamischer Programmierung in beiden Fällen schlechter
abschneidet als das MILP, das TNEP-CCE modelliert. Das Vergleichsmodell MILP
mit Wechselstrommodell hat generell deutlich schlechtere Laufzeiten als das MILP
für TNEP-CCE. Bei den Optimierungsergebnissen werden hauptsächlich die nach
der Optimierung im Netz verbleibenden kritischen Kanten verglichen. Dabei wird
der Wert der „Criticality“ verwendet. Dieser Wert gibt an, wie kritisch eine Kante
ist. Zwischen beiden MILPs werden fast keine Unterschiede festgestellt. Auf den
wenigen Netzen auf denen Unterschiede beobachtet werden, sind die Unterschiede
kleiner als ein Prozent der initialen Criticality des zugehörigen Übertragungsnetzes.
Für diese Netze hat das MILP für TNEP-CCE eine höhere Criticality.

Zusammengefasst wird in dieser Arbeit gezeigt, dass die Vereinfachung Wechselstrom-
flüsse durch graph-theoretische Flüsse anzunähern für das Problem TNEP-CCE zu
deutlichen Beschleunigungen der Laufzeit und dabei nur sehr kleinen Verschlechterun-
gen der Optimierungsergebnisse führt.
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1. Introduction

1.1. Problem Statement
As the investments in renewable energies and therefore the share of those in the power
supply increases, new investments in the current power transmission system are un-
avoidable. Renewable energies—especially wind and solar energy—are highly weather
and location dependent and higher loads are expected on certain weather conditions
[HVBG+10, WRZ+16a]. Because of this higher load an expansion of the grid capacity may
be necessary.

The problems concerning transmission network expansions are categorized as ‘Transmission
Network Expansion Planning’ (TNEP) problems and are more closely discussed in the
related work Section 3 of this thesis. They describe the problem where, how and—in case
of the dynamic TNEP problem—when to expand a transmission network to meet a given
peak generation. Transmission network expansion can be optimized under different aspects.
Most commonly the investment costs of new lines should be minimized but there are also
aspects like network reliability and stability, consideration of distributed generation and
environmental impact to consider [HHK13].

As stated above, future changes in power generation methods will possibly lead to higher
loads on the transmission network. For TNEP it can be interesting to know where weak
points of the transmission network can be found for higher loads. To show the effects of
higher loads on transmission network topologies Witthaut et al. [WRZ+16a] discussed two
criteria to identify critical edges in a transmission network. A critical edge describes an
edge whose failure will most likely lead to an outage in the investigated system. These
critical edges are calculated for a static setting on a network and will vary depending on
the load of the system. The first of the two criteria to identify critical edges is based on the
topology of the network and works independently from the used power model. It depends
on the redundant capacity of an edge that is determined via the Edmond-Karp-Algorithm
[EK72]. This criterion is easily calculated and the results presented in the article [EK72]
and in the supplementary material [WRZ+16b] imply that this first criterion works quite
well. We use the first criterion to identify critical edges in this thesis.

This thesis focuses on the expansion of transmission networks under the objective of curing
critical edges, as defined by Witthaut et al. [WRZ+16a] for limited investment costs. To
clarify this problem we discuss the network model used in this thesis as well as the criterion
we use to identify critical edges in detail in Chapter 2. In Chapter 5 of this thesis we
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1. Introduction

define TNEP for Curing Critical Edges formally and discuss its complexity. We propose a
Mixed-Integer Linear Program using the DC power flow approximation to take the physics
of the transmission network into account. We use this MILP as reference model to compare
our other optimization strategies to. Inspired by the criterion to identify critical edges using
a graph theoretical approach, we also use a graph theoretical approach to propose different
heuristics to solve TNEP for Curing Critical Edges. By introducing these heuristics we
achieve further insight into the problem. In Chapter 6 we compare the performance of
the proposed optimization methods considering computation times and success in curing
critical edges.

2



2. Preliminaries

2.1. Transmission Network: Description and Notation
In this thesis the transmission network is considered to be an undirected graph G = (V,E).
In this graph V describes the set of nodes and E describes the set of edges (a, b) ∈ E with
a, b ∈ V . For each node v ∈ V the active power power injection or withdraw of this node is
P (v) with P : V → R and the reactive power injection or withdraw is Q(v) with Q : V → R
. A node v ∈ V of this graph can either be a generator if they insert power in the network
meaning P (v) > 0 or a consumer if they take power out of the network meaning P (v) ≤ 0.
Each node has a voltage angle denoted by Θ(v) with Θ : V → R. The electrical power
lines are modeled by the edges of the graph. Each edge has a given capacity cap: E → R,
resistance r : E → R, conductance g : E → R, reactance x : E → R and susceptance
b : E → R. There is also the active power flow on each line f : E → R. The active power
flow f(a, b) on an edge (a, b) ∈ E is calculated depending on the network model. In this
thesis we will also use the graph theoretical flow on an edge denoted as flow : E → R. This
graph theoretical flow flow(a, b) on an edge (a, b) ∈ E is calculated using a maximum flow
algorithm. We define for both flows, the power flow as well as the graph theoretical flow,
that −cap(a, b) ≤ f(a, b) + flow(a, b) ≤ cap(a, b) and that skew symmetry applies meaning
f(a, b) = −f(b, a) and flow(a, b) = −flow(b, a).

2.2. Network Model
There are different models for the simulation of an AC transmission network. For this thesis
the DC power flow approximation of the transmission network will be used to calculate the
initial power flow in the benchmark networks.

The most commonly used power flow models for TNEP are the AC power flow model and the
DC power flow approximation model [HHK13]. We use the DC power flow approximation
as showing the feasibility of a transmission network in the lossless AC power flow model is
strongly NP-hard [BV15]. This is the case even though the lossless AC power flow model
is already a simplified version of the AC power flow model. It is simplified by assuming
transmission on the edges without losses by setting the resistance for each line (v, u) ∈ E
to r(v, u) = 0. The DC approximation provides a good approximation of the AC power
flow and allows us to model our reference model more efficiently.

For better understanding of the DC power flow approximation, which will be explained
later, the terms for active and reactive power in the AC model will be introduced. As
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2. Preliminaries

introduced in Section 2.1, the transmission network is modeled as a undirected graph
G = (V,E). The active power P (v) of a node v ∈ V is calculated according to Witthaut et
al. [WRZ+16b] by:

P (v) =
∑
u∈V

|U(v)||U(u)|(g(v, u) cos(Θ(v)−Θ(u))) + b(v, u) sin(Θ(v)−Θ(u))) (2.1)

The reactive power Q(v) of a node v ∈ V is calculated according to Witthaut et al
[WRZ+16b] by:

Q(v) =
∑
u∈V

|U(v)||U(u)|(g(v, u) sin(Θ(v)−Θ(u))− b(v, u) cos(Θ(v)−Θ(u))) (2.2)

In the Equations 2.1 and 2.2 U(v) denotes the complex voltage of node v ∈ V and |U(v)|
denotes its voltage amplitude. The conductance of an edge (v, u) is g(v, u) = r(v,u)

x(v,u)2+r(v,u)2

and the susceptance of the edge is b(v, u) = −x(v,u)
x(v,u)2+r(v,u)2 .

As mentioned before this thesis uses the DC power flow approximation. The DC power flow
approximation simplifies the problem to calculate the AC power flow model by introducing
some assumptions [McC12].

The first assumption is that the series resistance r(v, u) is very small in comparison
to the reactance x(v, u) and can be approximated as r(v, u) = 0 for any edge (v, u).
This assumption leads to the conductance being g(v, u) = 0 and the susceptance being
b(v, u) = − 1

x(v,u) . Applying the assumption on the power flow equation of the AC model
we get for the active power:

P (v) =
∑
u∈V

|U(v)||U(u)|b(v, u) sin(Θ(v)−Θ(u)) (2.3)

And the reactive power is calculated as:

Q(v) =
∑
u∈V

−|U(v)||U(u)|b(v, u) cos(Θ(v)−Θ(u)) (2.4)

The second assumption used to obtain the DC approximation is that in typical operation
conditions of a network the phase angle difference between two nodes is small. Using this
assumption leads to the approximations for the trigonometric functions that sin(Θ(v)−
Θ(u)) ≈ Θ(v)−Θ(u), meaning the sinus is nearly linear for small phaseangle differences
and cos(Θ(v)−Θ(u)) ≈ 1.0, meaning the cosinus is nearly constant for small phaseangle
differences. Applying the assumption on the power flow equation of the AC model we get
for the active power:

P (v) =
∑
u∈V

|U(v)||U(u)|b(v, u)(Θ(v)−Θ(u)) (2.5)

And the reactive power is calculated as:

Q(v) =
∑
u∈V

−|U(v)||U(u)|b(v, u) (2.6)

The equation of the reactive power can be transformed to:

Q(v) = −|U(v)|2b(v, v) +
∑

u∈V,u6=v

|U(v)|b(v, u)(|U(v)| − |U(u)|) (2.7)

In most network analysis it is common to use the per-unit-system (p.u.) meaning that
all the values of power, voltage, current, impedance, and admittance are given in relation
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2.3. Finding Critical Edges

to chosen base values in this system [EH72]. Most commonly chosen are a voltage base
Ubase and a power base Pbase value. For the DC approximation we will also use this
per-unit-system.

The next assumption is that the amplitudes of the complex voltages are nearly equal in
all nodes. Since we can choose the value of Ubase we will set it so that |U(v)| = 1.0 pu for
each node v ∈ V if |U(v)| is a multiplicator. Applying the assumption on the power flow
equation of the AC model we get for the active power:

P (v) =
∑
u∈V

b(v, u)(Θ(v)−Θ(u)) (2.8)

And the reactive power is calculated as:

Q(v) = −b(v, v) +
∑

u∈V,u6=v

b(v, u)(|U(v)| − |U(u)|) (2.9)

We assume at last that the difference between the voltage amplitudes |U(v)| − |U(u)| are
by a magnitude smaller than the difference between the phase angles Θ(v) − Θ(u) and
therefore we can neglect the reactive power and set Q(v) = 0.0.

Because of the first assumption, of transmission without losses on the edges, this leads to
the following equation for calculating the power flow f(v, u) on each edge (v, u) ∈ E in the
transmission network:

f(v, u) = b(v, u)(Θ(v)−Θ(u)), ∀(v, u) ∈ E (2.10)

The equation for the power flow calculation for a single edge (v, u) is given by Equation
2.10.

2.3. Finding Critical Edges
Witthaut et al. [WRZ+16a, WRZ+16b] propose two criteria to identify critical edges.
Critical edge refers to an edge, whose failure could cause an outage. The calculation and
definition of critical edges depend on the power flow model used. For the network models
mentioned in Section 2.1, the AC power flow model and the DC power flow model, an
edge (x, y) in a network G = (V,E) is defined as critical critical, if its failure would lead
to an overload f(a, b)′ > cap(a, b). Hereby f(a, b)′ is the recalculated flow in the network
G \ {(x, y)} for any edge (a, b) ∈ E \ {(x, y)}.

In this thesis we use the first criterion to identify critical edges which only depends on
topology of the network and not on the used power flow model. Witthaut et al. show in the
supplementary material [WRZ+16b] to their article that this criterion provides comparable
results regardless of the underlying power flow model. Because of that we give a brief
overview of the power flow model they used in comparison to the DC model, used in this
thesis, and won’t provide greater details of their network model. In the original article
[WRZ+16a] they approximate the AC power flow model with the oscillator model. The
oscillator model is a dynamic network mode in contrast the DC network model we use in
our thesis is a static network model. The oscillator model is like the DC power flow model,
described in Section 2.2, a simplification of the AC power flow model. Like in the DC power
flow model the edge resistance is r(a, b) = 0 for all (a, b) ∈ E and complex voltages are fixed
to |Uv| = 1.0pu. The difference to the DC power flow model is that there is no assumption
of small voltage angle differences. The second difference is that the nodes are modeled as
rotating machines like wind turbines or electric motors [WRZ+16a]. In a stable network

5



2. Preliminaries

modeled using the oscillator model all nodes are synchronized, meaning their rotating
machines have the same frequency. In the oscillator model an edge is called critical if its
deletion induce long-term desynchronization of the rotating machines. A desynchronization
of the rotating machines leads to an large scale outage in the transmission network.

For a network with fixed generators and consumers, with given power generation or
consumption per node, the network can be simulated with the oscillator model to determine
critical edges for this load distribution. First the power flow f(a, b) on each edge (a, b) ∈ E
in a transmission network is calculated according to the oscillator model. Then the ground
truth, which edge is critical, is determined by deleting single edges from the network and
observing whether that induces long-term destabilization in the network. As simulating
the network is time consuming and computationally expensive [WRZ+16a] Witthaut et al.
propose heuristics to identify critical edges.

Witthaut et al. [WRZ+16a] introduce two criteria for identifying critical edges. The first
one is based on the topology of the network and its capacity for rerouting flow, while the
second criterion is derived by modeling general changes of capacity of a single edge and
their effect on the network. As we base this thesis on first criterion to identify critical
edges, the second one is not introduced here.

The first criterion is referred to as redundant capacity predictor in the article. It is calculated
in a purely graph theoretical way and does not depend on the underlying network power
flow model. We refer to the ‘redundant capacity predictor’ as ‘redundant flow predictor’
in this thesis, because in this thesis we refer to capacity in the sense of actual capacity of
edges while the capacity meant in the term ‘redundant capacity predictor’ refers to the
capacity of the graph the reroute flow and not the capacity of single edges. Let (a, b) ∈ E
denote an edge, f(a, b) the initial power flow on this edge and cap(a, b) its capacity. The
maximum flow between two nodes a, b ∈ V after the edge (a, b) is deleted from the network
is called the redundant flow f red(a, b) with f red : E → R. The redundant flow f red(a, b)
of an edge (a, b) ∈ E of the graph G = (V,E) is an indicator for how much flow can be
rerouted if the edge (a, b) fails. In other words, the redundant flow f red(a, b) describes the
maximum a,b-flow in the graph G′ = G \ {(a, b)}. The redundant flow is calculated using
the Edmond-Karp-Algorithm [EK72] for calculating the maximum flows of a single source,
single sink network in graph theory. The pseudo code for the calculation of f red(a, b) from
the article [WRZ+16b] can be seen in Algorithm 2.1. The input for the calculation is the
graph G′ = (V,E′), the capacities cap(u, v) and an initial flow flow(u, v) = f(u, v) for each
edge (u, v) ∈ E′ and the edge (a, b) ∈ E which should be tested. The input flow result
from the initial power flow calculations on the transmission network, done according to
the oscillator model. The algorithm has as input the directed equivalent to the undirected
graph G because the Edmond-Karp-Algorithm is defined on directed graphs. The first
step of the algorithm is to delete the edge (a, b) and its reversed edge (b, a) by setting the
capacities cap(a, b) = cap(b, a) = 0 and initial flow f(a, b) = f(b, a) = 0. In Line 3 the
residual capacity cap′(u, v) is calculated for each edge (u, v) ∈ E. The shortest path in the
residual graph between nodes a and b is calculated in Line 4. This is done by a subroutine
shortestPath which could, for instance be an implementation of Dijkstra’s Algorithm for
Shortest Paths. After pushing the maximum possible flow along the augmenting path, this
additional flow is added to f red(a, b) in Line 8. The algorithm adds flow to f red(a, b) until
no augmenting path is found.

As mentioned the algorithm redundantFlow is a version of the Edmond-Karp-Algorithm.
The difference between the two algorithms is the deletion of the edge (a, b) and declaring
a as source and b as sink, the run time of the algorithm redundantFlow(G, a, b) is in
O(|V ||E|2).
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Algorithm 2.1: redundantFlow
Input: Graph G = (V,E), capacity cap(u, v) and initial flow flow(u, v) for each

edge (u, v) ∈ G, edge (a, b)
Output: Redundant flow f red(a, b) of edge (a, b)

1 cap(a, b), cap(b, a), flow(a, b), flow(b, a)← 0
2 f red(a, b)← 0

// Calculate residual capacity for each edge
3 ∀(u, v) ∈ G : cap′(u, v)← cap(u, v)− flow(u, v)

// Calculate shortest path p from a to b in residual graph
4 p← shortestPath(cap′, a, b)
5 while p 6= Null do

// Calculate the maximum possible flow of path p
6 capmax ← min(i,j)∈p cap′(i, j)

// Increase flow along the path p
7 ∀(i, j) ∈ p : flow(i, j)← flow(i, j) + capmax
8 f red(a, b) ← f red(a, b) + capmax

// Calculate residual capacity for each edge
9 ∀(u, v) ∈ G : cap′(u, v)← cap(u, v)− flow(u, v)

10 p← shortestPath(cap′, a, b)
11 return f red(a, b)

The criterion for critical edges identifies an edge as critical if | f(a,b)
f red(a,b) | > h for some threshold

h. Considering that the redundant capacity is always a positive value as it is determined
using a maximum flow calculation, this can also be written as |f(a, b)| > h · f red(a, b). For
a threshold h ≥ 1.0 this means that the redundant flow f red(a, b) the graph G can provide
for an edge (a, b) ∈ E, has to be larger than the absolute value of the initial power flow
an the edge f(a, b) for the edge to be stable. In the article [WRZ+16a] Witthaut et al.
propose a value of h = 0.614. This means for the redundant flow of an edge (a, b) ∈ E,
that the redundant flow has to fulfill f red(a, b) > 1

0.614 · |f(a, b)| ≈ 1.64 · |f(a, b)| for the
edge (a, b) to be stable.

In the article, the authors test three different topologies of networks with randomly
generated distributions of generators and consumers to obtain different load distributions.
The three network topologies they used are the topologies of the high voltage transmission
grids of Great Britain [RSTW12, SBP+08] and Scandinavia [MHKS14] and the IEEE
118-bus test grid [Chr00]. To obtain a large number of test data they generate test data
by randomly selecting 10% of nodes to be generators and the rest to be consumers for a
heterogeneous network set up or 50% each for a homogeneous setup. For each test case the
total power generation and consumption stays the same and is uniformly distributed to
the generators and consumers respectively. Also the edge capacity for each test case stays
the same. In the homogeneous case each edge has the same capacity. In the heterogeneous
case edges connected to the generators have double the capacity of the other edges. The
difference between the test cases is the distribution of generators in the network, which is
chosen randomly. In total they test 400 different network settings with 66.000 edges in
total.

To quantify the performance of the criteria and show the effects of different thresholds for
h they use the Receiver Operating Characteristics (ROC) curve. The ROC curve originates
in machine learning applications. It depicts the ration of the sensitivity (fraction of correct
predictions) to the false positive rate of a decision criterion. There are two measures for
how good a ROC curve is. The first one is the minimal distance to the perfect operation
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point (0,1), which means that no false positives and all true positives are detected. The
second one is the area under the curve, for an optimal prediction result the area is 1.

To use the criterion to identify critical edges | f(a,b)
f red(a,b) | > h, it is important to chose a

threshold h that suits the application. A high value of h leads to nearly no false positives
in the result but has also relatively low sensitivity compared to a low value for h. For most
applications the value of h that leads to the point closest to the perfect operation point,
is suitable. For the tested networks the value for h, that leads to the point closest to the
perfect operation point, is a value of h = 0.614.

Witthaut et al. choose the value h = 0.614 to compare the ‘redundant flow predictor’ to
criteria like load Lab = | f(a,b)

cap(a,b) | and flow |f(a, b)|. They find their predictor reduces incorrect
predictions by more than 7 times, compared to the simpler criteria load Lab = | f(a,b)

cap(a,b) |
and flow |f(a, b)|.

The usage of the redundant flow to formulate a criterion to identify critical edges is quite
interesting. By using the criterion the physical properties of the transmission network are
not taken into account during the identification of critical edges. However we think that
the formulation of the criterion to identify an edge (a, b) as critical if | f(a,b)

f red(a,b) | > h might
be to restricting. Witthaut et al. clearly formulate in their article, that the criterion should
represent the ability of the graph to reroute the power flow on the examined edge through
the the graph without the examined edge. We know that the skew symmetry property
applies for power flows, meaning f(a, b) = −f(b, a) for all edges (a, b) ∈ E and therefore
|f(a, b)| = |f(b, a)|. For the redundant flow there is generally no symmetry between f red(a, b)
and f red(b, a). This means that, if we want an edge (a, b) in the transmission network to
be stable, we have to check the criterion for both directions of the edge | f(a,b)

f red(a,b) | ≤ h and
| f(b,a)
f red(b,a) | = |

f(a,b)
f red(b,a) | ≤ h. Considering the case with an edge (a, b) ∈ E and f(a, b) = 50

units of flow and h = 1, this means that we have to have f red(a, b) ≥ 50 and f red(b, a) ≥ 50.

The mathematical formulation for the redundant flow in both directions to support the
absolute value of the power flow of an edge seems to be more restrictive than the original
idea for the ‘redundant flow predictor’ and the way it is implemented in the Algorithm
2.1. The original thought stated in the article is, that the criterion should represent the
ability of the graph to reroute the power flow on the examined edge through the the graph
without the examined edge. Therefore we think that the formulation for identifying an
edge as critical if

h <


f(a,b)

f red(a,b) f(a, b) ≥ 0
f(a,b)

f red(b,a) f(a, b) < 0
(2.11)

is the intended formulation. We will use this formulation in this thesis.

In this thesis we propose a heuristic to expand transmission networks by minimizing the
number of critical edges, identified using the ‘redundant flow predictor’, just taking the
network topology and the initial flow on the network into account. We suspect, that the
‘redundant flow predictor’ provides these great results because graph theoretical flow full
fills the constraint of flow conservation. Flow conservation is one of two constraints modeled
in the DC power flow approximation. It is called in this context Kirchhoff’s’ current law,
meaning all current entering a node also leaves the node. However, the graph theoretical
flow does not model the second constraint of the DC power flow approximation which
describes the power flow on an edge depending on the phase angles of the nodes, which the
edge connects. We hope that an heuristic based on the idea of this criterion will propose
functional transmission network expansion in a time equal or faster than methods taking
the physical properties of an AC transmission network into account.
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This chapter is organized into two parts. As the goal of this thesis mainly concerns the
expansion of transmission networks, the first part of this section is focused on state-of-the-art
work concerning the ‘Transmission Network Expansion Planning’ (TNEP).

In Section 3.2 we review an article by Rohden et al. [RWTMO17]. This article is proposed
by the same research group like the ‘redundant flow predictor’ to identify critical edges we
use in this thesis. In this article the authors discuss different methods to cure critical edges.
Because the authors propose in this article also methods to cure critical edges, which are
identified using a slightly different criterion, it is the article which is closest to the thematic
of this thesis.

3.1. Transmission Network Expansion Planning
Transmission Network Expansion Planning describes the problem to expand a transmission
network considering one or multiple objectives for a given set of constraints with edges
from a set of candidate edges. The candidate edges can also supplicate existing network
edges, which often symbolizes the capacity expansion of an existing edge. A comprehensive
review of this field is provided by Hemmati et al. [HHK13]. The definition of the researched
problem can vary a lot between different approaches to this topic, depending on the chosen
network model, objectives and constraints.

The most commonly used network models are the AC model and the DC approximation
[HHK13]. As we already discussed in Section 2.2 of this thesis, the AC model will provide
more accurate power flows than the DC approximation but is more complicated to solve.
In the article by Bent et al. [BCGVH14] it is shown that there is a significant difference
between solution obtained by using the DC approximation compared to solutions obtained
by using the AC model. The short comings when using the DC approximation in TNEP are
proven by showing that solutions computed using the DC approximation exhibit constraint
violations when converted into the AC model. In the article [BCGVH14] it is proposed
to use the LPAC model for power flows to bridge these gaps. The LPAC model is an AC
power flow approximation, which captures line losses, the reactive power flow and allows
some difference between the voltage angle magnitudes. These properties are not taken into
account when using the DC approximation for power flows.

The objectives can also vary for different formulations of TNEP problems. Some commonly
used objectives are the minimization of investment costs, operation costs or reliability costs.
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The constraints consist of constraints for the chosen network model, as well as additional
constraints like for example an investment budget, reliability constraints or environmental
impact limits [HHK13].

Moulin et al. [MPS10] show that TNEP is NP-hard. To show the complexity they use
the DC approximation as network model and the minimization of investment cost as
objective. They use the constraints originating from the use of the DC model without
adding additional constraints. They show the NP-hardness by reducing the Steiner-Tree
problem to this version of the Transmission Network Expansion Planning problem.

Because of the complexity of TNEP there are different options of optimization methods
to use. The optimization methods can be divided into mathematical and meta-heuristic
optimization methods.

First we will review some of the mathematical optimization methods. One mathematical
method often used, especially when using the DC approximation as network model, is the
formulation as Mixed Integer Linear Program (MILP). Alguacil et al. use the formulation
as MILP in the article [AAC10]. In this article the Alguacil et al. quantify the effect of
an deliberated attack on a transmission network. The goal is to expand the transmission
network in an cost-efficient way, while also minimizing the effect of attacks on the network.
To achieve this, the authors quantify the effect of attacks on a network to use this
quantification in the objective function. As the objective they propose to minimize the
sum of their attack quantification and the total expansion cost. The constraints originate
in the usage of the DC approximation as network model.

Another popular mathematical approach to formulate the TNEP problem as Mixed Integer
Non-Linear Programs and use a fast solving method for example to use Benders decomposi-
tion. Benders decomposition is a mathematical programming method to solve large Mixed
Integer Non-Linear Programs (MIP). To solve a MIP the Benders decomposition divides the
problem into two separated problems, the Master-Problem and the Sub-Problem. Each of
this problem has a different part of the decision variables from the original MIP. For a fixed
solution for the Master-Problem the Sub-Problem is solved. If the Sub-Problem is infeasible
new constrains are added to the Master-Problem, so-called Bender-cuts. This process is
repeated until no Bender-cuts are added. The Benders decomposition is for example used
by Binato et al. [BPG01]. They use as objective the minimization of investment cost and
as network model the DC approximation.

Dusonchet and El-Abiad [DEA73] propose an approach using Dynamic Programming
and Discrete Optimizing called Discrete Dynamic Optimizing. In the article the authors
consider a dynamic form of TNEP. In the dynamic TNEP planning horizon the problem
is considered over a longer time span. This means that changes in load distribution over
time need to be considered to answer question when and how to expand the network. We
did not further explain dynamic Transmission Network Expansion Planning as this thesis
considers the static version of the problem. In the static version of TNEP we propose
network expansions by considering snapshots of a network, meaning considering one specific
load distribution at a time. None the less this article is quite interesting for the use of the
Dynamic Programming. The idea Dusonchet and El-Abiad introduce is, that they initialize
an expansion strategy for one planning horizon randomly and than optimize this strategy
using Dynamic Programming but only allowing neighboring strategies as alternatives.
Therefore they find the local optimum. This procedure is repeated until an heuristic
stopping criterion is met. This stopping criterion is, that the expected improvement of
another optimization is smaller than some chosen constant.

Some of the meta-heuristic approaches used for solving TNEP problems are Generic
Algorithms [CZP10], Tabu Search [DSODOB01], the Frog Leap Algorithm [ESH11] and
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artificial Neural Networks [ASEA02]. But since we will not use any meta-heuristic in this
thesis we will not further review these articles.

3.2. Curing Critical Edges
Rohden et al. [RWTMO17] propose a heuristic to find edges in the transmission network
whose failure would most likely lead to an outage. These edges are called critical edges
and the authors also propose three different strategies to cure those critical edges.

As network model the authors use the oscillator model, which is a simplified version of the
AC power flow model and is explained in more detail in Section 2.3. The article [WRZ+16a,
2.3], on which this thesis is primarily based on, is written by the same research team as
the article described in this section. Therefore the identification of critical edges, which
will be explained in the next paragraph, is quite similar.

The transmission network is represented by a graph G = (V,E). The nodes in the graph
v ∈ V represent the buses were power is either injected into the network by generators or
withdrawn from the network by consumers. The nodes power output is P : V → R. A
node is called a generator if P (v) > 0 or a consumer if P (v) ≤ 0. The edges (a, b) ∈ E of
the graph correspond to the transmission lines of the transmission network with a capacity
of cap(a, b). The power flow on an edge (a, b) ∈ E is denoted by f(a, b) and is calculated
using the oscillator model. The authors assume that the initial network have a stable
operating state, so that the demand of all nodes can be satisfied, no edge is overloaded and
the frequencies of generators and consumer are synchronized. The authors also assume
that the networks may be operated under a high load so that the failure of one edge could
lead to desynchronisation of the network. Edges whose failure lead to desynchronisation
are called critical edges.

The authors propose the following heuristic to find critical edges. Let (a, b) ∈ E denote
an edge with power flow f(a, b) and G′ = G \ {(a, b)} the graph, that can be obtained
by deleting edge (a, b) from the Graph G. The redundant flow f red(a, b) is calculated, by
calculating the maximum a,b-flow in the graph G′. This is done by running a version of
the Edmond-Karp-Algorithm [EK72] with a as source and b as sink in graph G′. An edge
is referred to as critical if f red(a, b) < f(a, b).

The method to obtain the redundant flow f red(a, b) of an edge (a, b) ∈ E is the same method
as proposed by Witthaut et al. [WRZ+16a, 2.3]. The difference between critical edges in the
article by Rohden et al. [RWTMO17] in comparison to the critical edges in the article by
Witthaut et al. [WRZ+16a, 2.3] is the relative amount of redundant flow f red(a, b) needed
to declare an edge as not critical or stable. Witthaut et al. propose to use a threshold
h to determine an edge to be critical if | f(a,b)

f red(a,b) | > h. Rohden et al. [RWTMO17] use
basically a threshold of h = 1.0, so that an edge is critical if | f(a,b)

f red(a,b) | > 1.0. The method
used by Witthaut et al. [WRZ+16a, 2.3] is more sophisticated, because this method allows
to adjust the threshold h accordingly. This is important as explained in [WRZ+16a, 2.3],
because the threshold allows adjustments between the false positive rate, which is larger
for a small value of h, and the sensitivity of the predictor, which is higher for a small value
of h. As already discussed, a value for h which leads to the value closest to the perfect
operating point— the point with no false positives but 100% sensitivity—is preferable for
most applications. This optimal value for h depends on the topology of the network, but
for the test networks used in [WRZ+16a, 2.3] was determined to be h = 0.614, which is
more sensitive than the value of h = 1.0 which is used by Rohden et al. [RWTMO17].

For this thesis we will use a threshold of h = 0.614 as proposed by Witthaut et al.
[WRZ+16a, 2.3], to identify an edge (a, b) ∈ E as critical if f(a,b)

f red(a,b) < h. We prefer using a
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threshold of h = 0.614 in comparison to the threshold of h = 1.0 that was proposed by
Rohden et al. [RWTMO17], because the first threshold was determined by experiments
and reasoning using the Receiver Operating Curve, while the threshold by Rohden et al.
seems to be chosen without further explanations.
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Figure 3.1.: Graph showing the initial example graph G = (V,E). The arrows on the
nodes imply whether they are generators (ingoing arrow) or consumer (out-
going arrow). Each edge (a, b) ∈ is marked with its initial flow and its
capacity:f(a, b)/cap(a, b).
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Figure 3.2.: Graph showing the residual graph after calculating the redundant capacity for
edge (2, 3) in the GraphG′ = G\{(2, 3)}, which is marked in red. The maximum
flow calculated is written on the edge (2, 3) . The edge (2, 3) is critical because
its redundant capacity is smaller than its flow f red(2, 3) = 70 < 80 = f(2, 3).
The residual graph divides into two parts marked yellow and green.

Figure 3.1 shows an example graph G for better understanding of critical edges. The
edges of the graph are marked with their initial flow as well as their capacity. In this
example, the flow on the edges was chosen for the sake of the example. In the example
we calculate the residual capacity for edge (2, 3). To do this the edge (2, 3) is deleted
from the graph resulting in the graph G′ = G \ {(2, 3)}. Then the maximum 2, 3-flow
is calculated in G′ using the Edmond-Karp-Algorithm. This leads to the residual graph
shown in Figure 3.2 the maximum 2, 3-flow calculated is 70 units. In Figure 3.2 the edge
we examine (2, 3) is marked as red dotted edge, marked with the maximum 2, 3-flow. The
residual capacity of edge (2, 3) is therefore f red(2, 3) = 70. The edge (2, 3) of the example
graph is a critical edge because its redundant capacity is smaller than the power flow on
this edge: f red(2, 3) = 70 < 80 = f(2, 3). The residual graph divides into two parts marked
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yellow and green, originally connected by the edge (6, 5) in G′. As the capacity of edge
(6, 5) is fully used the edge is not included in the residual graph.

The authors propose three strategies for curing a critical edge. The strategies are designed
for a single critical edge, which is already known by the time the strategies are applied.
The first strategy, referred to as ‘strategy A’ in the article, is to duplicate the critical edge
itself. The second strategy, referred to as ‘strategy B’ in the article, is a variation of the
first strategy. The capacity of the duplicated edge (a, b) is increased incrementally by steps
of 0.1K, where K is the uniform capacity of all edges, until the critical edge is not critical
anymore. Since we don’t assume uniform capacity we will use K as the average capacity of
the network. The third strategy, referred to as ‘strategy C’ in the article, is to add capacity
to the bottleneck of the shortest path p between a and b in G′. The bottleneck is thereby
defined as the edge (a, b) with the smallest value cap(a, b)− f(a, b) for all edges (a, b) ∈ p.
The capacity of the bottleneck is then increased to cap(a, b)′ = 1.1cap(a, b). If the critical
edge is not cured the procedure has to be repeated.

In Figure 3.3 the results are shown if the three curing strategies are applied on the example
graph G to cure the critical edge (2, 3). In Figure 3.3a the result of curing strategy A is
shown. This strategy is to duplicate the critical edge with the same capacity. For the
example graph this means adding another edge (2, 3)′ of capacity cap(2, 3)′ = 150. In
Figure 3.3b the result of applying curing strategy B is shown. Strategy B also duplicates
the critical edge (2, 3) but adjusts the capacity of the new edge in steps of 0.1K. We
choose K = 100 because in the article the authors assume all edges have uniform capacity
K. We won’t assume uniform capacity but will take the approximate average capacity of
all edges. is the and therefore the critical edge is cured after one step and the resulting
capacity cap(2, 3)′ = 10. In Figure 3.3c the result of applying curing strategy C is shown.
As cap(a, b) − f(a, b) is smallest for (5, 3) with cap(5, 3) − f(5, 3) = 90 − 40 = 50 the
capacity of (5, 3) is increased. Its capacity is increased two times in the beginning, because
it is still the bottleneck after the first increase. After those two increases the capacity is
cap(5, 3)′ = 1.12cap(5, 3) = 1.12 · 90 = 108.9. Then cap(6, 2)− f(6, 2) = 60 is smallest and
therefore (6, 2) is the bottleneck. The capacity of edge (6, 2) is increased by 12 units to
cap(6, 2)′ = 132. Then line (5, 3) is the bottleneck again with cap(5, 3)′−f(5, 3) = 68.9 and
the capacity is increased to cap(5, 3)′′) = 119.78. After this step the edge is still critical.
Until this point all increases in capacity had no effect on the redundant flow which is
still f red(2, 3) = 70. At least the capacity for the edge (6, 5) is increased by 13 units to
cap(6, 5)′ = 143. This cures the critical edge because the redundant flow of the graph is
increased and therefore f red(2, 3) = 83 > 80 = f(2, 3).

The performance of these network expansions is measured by how much capacity is needed
to cure all critical edges. In the article [RWTMO17] it is stated that strategy B and C
outperform strategy A. Also it is stated that the performance of strategy C depends on the
network topology. Meaning if the critical edge is caused by one bottleneck in the grid the
performance of strategy B and C are nearly identical. If there are more than one bottleneck
as shown in the example in Figure 3.3c strategy C performs worse than strategy B. But the
authors also state that the time performance of strategy B depends on the used constant
K. If K is chosen to large strategy C can outperform strategy B. If K is chosen to small
strategy B may need a lot of iterations to cure a critical edge.

The article [RWTMO17] states that its expansion strategies do not lead to conclusions
about the real world grid, as it uses a very simplified model. But the authors also did not
test whether the proposed expansions would lead to a feasible network flow or would lead
to a network destabilization or capacity reduction.
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(a) The curing strategy A duplicates the critical edge with all its properties.
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(b) The curing strategy B duplicates the critical edge but adjusts the capacity of the duplicate so
that the edge is just not critical anymore by steps of 0.1K with K = 100 for this example.
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(c) The curing strategy C adds capacity to the current bottleneck of the shortest path from 2 to 3
in G′ = G \ {(2, 3)} until the critical edge is cured. The green numbers are the added capacities
to the edges. They are already added to the capacities written on the lines.

Figure 3.3.: Results of applying the curing strategies A, B and C to the example graph.
The critical edge 2, 3 is marked red.
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3.3. Summary
Transmission network expansion planning is a well researched topic. We could not find any
formulations of the transmission network expansion planning problem with the objective
to cure critical edges, except for the article by Rohden et al. [RWTMO17]. In this thesis a
more sophisticated strategy to cure critical edges is developed which is based on nearly the
same definition of critical edges as the strategies proposed by Rohden et al. We formulate
the problem Transmission Network Expansion Planning Problem for Curing Critical Edges
(TNEP-CCE). Like the problem discussed by Rohden et al. [RWTMO17] formulation is
based on a graph theoretical approach and does not require any constraints based on power
flow. We further research the properties of this problem and show the complexity of a
version of TNEP-CCE restriced to only one critical edge. To compare our solving strategies
to a model including power flow constraints, we reformulate the problem as Mixed-Integer
Linear Program using the DC power flow approximation as network model. We develop
different heuristics to solve the problem TNEP-CCE and compare their performances and
solutions to the MILP formulation using the DC power flow approximation. Furthermore
we test the feasibility of the solutions proposed by our optimization methods by simulating
the resulting networks using the DC power flow approximation.
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This chapter describes the preprocessing done with the test data sets before it can be used
in the evaluation for this thesis. First the data sets are described in Section 4.1. Then
we describe the libraries used to handle the data in Section 4.2. In the Subsection 4.2.1
we will especially look into the PyPSA library. We use the PyPSA library in this thesis
for handling the test data sets and computing the physical properties of our candidate
edges, like for example the reactance. Because our test data set do not include candidate
edges, we developed methods to generate candidate edge sets for the test data set which
are suited for our application. We describe these methods in Section 4.3.

4.1. Test Data
To evaluate the resulting algorithm of this thesis we will use subsets of the European
transmission network. The data set provides data for 17 transmission networks from
different countries. In the following table the networks available in the data set are listed
with their node count as well as the number of edges in the network:

country number of nodes number of edges
Austria 23 29
Belgium 28 32
Bulgaria 12 17
Croatia 6 6
Czech Republic 21 35
Denmark 11 11
Hungary 13 21
Ireland 8 12
Netherlands 33 40
Norway 42 65
Poland 48 84
Portugal 16 22
Romania 17 27
Slovakia 9 13
Slovenia 4 4
Sweden 46 72
Switzerland 15 23
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(a) Load on the Polish transmission network
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(b) Load on the Swiss transmission network
on the 1st February 2013 at 16:00.

14 16 18 20 22

50

51

52

53

54

55

Load

(c) Load on the Polish transmission network
on the 25th June 2013 at 02:00.
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(d) Load on the Swiss transmission network
on the 25th June 2013 at 02:00.

Figure 4.1.: Load on the Polish and Swiss transmission networks. The unit of the x-axis is
given in degrees longitude and the y-axis in degrees latitude in geocoordinates.
Blue symbolizes low loads, while red symbolizes high loads on an edge.

For each of these networks the data set provides extensive data, all data entries provided
by this model are described in detail in the PyPSA documentation. Most important for
this thesis is the data for the edges and nodes in the network. For the edges of the data
set we will mainly use the data entries for bus0 and bus1, meaning the nodes the edge
is connecting, s_nom which describes the capacity of the edge in MVA and the type
describing the line type from which the line standard type impedance parameters are used
to compute x the series reactance and r the resistance of the edge. For the nodes we use
their geocoordinates to compute the length of the candidate edges as well as the data of
generators and loads associated with each node. The loads are in the format of a timeline
containing data for the year 2013 in one hour snapshots. Additional load or generation is
provided by timeline data of the storage units in the transmission network, which can either
dispatch or consume power. The generators are divided into different types of generators,
influencing power cost the ability to expand the power output of the generator and its
efficiency. This data is not primarily important for this thesis, but it is used to compute a
linear optimal power flow on the networks for a chosen snapshot.
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In Figure 4.1a and Figure 4.1c the result of a power flow analysis using the DC approximation
of the Polish transmission network can be seen on two different days and times. In Figure
4.1a the power flow from the 1st February 2013 at 16:00 can be seen and in Figure 4.1c
the power flow on the 25th June 2013 at 02:00:00 can be seen. In Figure 4.1b and 4.1d
the power flow on the Swiss transmission network can be seen for the same snapshots. In
the figures high loads are marked with red colors while low loads on the edges are marked
in blue colors. The unit of the x-axis is given in longitude and the y-axis in latitude in
geocoordinates. In can be seen that the data provides different network topologies and
various power demands for each network. In total the data includes 8760 different snapshots
for each network.

Figures for the other transmission networks in the test data set displaying the power flow
from the 1st February 2013 at 16:00 can be found in the appendix in Section A.

4.2. Libraries

For the implementation of the heuristic proposed in Section 5.5.3.1 we use python 3.7. We
use python as it makes data handling very comfortable, especially since the test data sets
introduced in Section 4.1 are formatted to be used with the python library PyPSA.

4.2.1. PyPSA

PyPSA [BHS18] stands for ‘Python for Power System Analysis’ and is an open source
python library. It provides a lot of features for simulating and optimizing modern power
systems. We will use PyPSA to load the data sets introduced in Section 4.1 from files and
perform an linear optimal power flow analysis on the data sets to get an initial flow on the
network.

The linear optimal power flow (lopf) function of the PyPSA library optimizes the dispatch
of generation and storage to meet a given load for every snapshot examined. As objective
function for the lopf the total costs for the power system are minimized. Where the total
costs consist of the capital cost for transmission assets — transmission lines, transformer,...
— generation and storage facilities as well as marginal cost for generation and storage
facilities. As additionally it is possible to let the optimizer expand the capacities for
transmission, generation and storage. In the lopf the AC power flow is approximated
by using the DC approximation as introduced in Section 2.2. More details on the used
constrains in the lopf can be found in the PyPSA documentation.

We are interested to expand transmission network based on static analysis, therefore we
will handle one snapshot at a time. Since we want to expand the transmission capacity of
the network ourselves we don’t use this feature for the optimization. Also we don’t use the
possibility to expand storage capacity. But since it is preferable for our problem to work
with highly loaded transmission networks we allow expansion of the generation capacity.
By allowing this expansion of generation capacity we get higher loads as the capacity of
generators with low marginal costs is expanded to load the energy storage units. We use
the results from the lopf as input for our problem. Mainly we are interested in the power
flow on each edge of the network, as well as the resulting active power at each node. The
active power at a node is the aggregated active power from all consumer and generators
directly connected to this node. Since this detailed view on each node is not necessary for
our problem we will still refer to a node as consumer if the active power is negative or as
generator if the active power is positive.
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4.2.2. Graphtools

The python library graph-tool [dPP27] is an open source library, which provides functionality
for efficient network analysis. The library itself is mostly implemented in C++ which
allows performance that is comparable to that of a pure C/C++ library. This is beneficial
for the computation times of our algorithms and therefore we use this library for all graph
based computations.

The main feature of this library we use is the computation of maximum s-t-flows. Generally
the library implements three algorithms to compute the maximum s-t-flow in a graph. The
three algorithms are the Edmond-Karp-Algorithm, the Push-Relabel-Algorithm and the
Boykov-Kolmogorov-Algorithm. We use the Boykov-Kolmogorov-Algorithm in this thesis
to achieve better computation times. But generally we could use any of these algorithms.

For more information on the graph-tool library consult the documentation.

4.2.3. Gurobi

Gurobi [GO18] is a state-of-the-art solver for mathematical programming.

We use Gurobi to solve the linear optimal power flow internally in the PyPSA library 4.2.1,
as well as the mathematical models for our problem described in Section 5.3.

For the evaluation in Section 6 we will compare the computation time as well as the results
of the optimizations of our mathematical models done by Gurobi to our own algorithm.

4.3. Candidate Edges
The algorithms presented in this thesis has a set of candidate edges Ecand as input. Each
of these candidate edges has a cost, which symbolizes the cost to build this line, and a
capacity. The test data sets introduced in Section 4.1 do not provide suitable candidate
edges. The only similar functionality they provide are expansion costs for edges in E,
but since we want to limit the number of candidate edges and are especially interested in
building new edges, we restrict the choice of candidate edges by excluding duplicates of
already existing edges from Ecand, meaning Ecand and E are disjoint.

Since the overall performance of our algorithms also depends on the candidate edges they
have as input, we describe the methods used for creating a set of candidate edges Ecand for
a given transmission network G in this section.

There are a lot of different types of transmission lines. The type of line is important as is
influences the physical properties, like the resistance, reactance and capacitance, of the
candidate edges. These physical properties are important for calculating the power flow on
the expanded network. To provide a feasible line type we will choose the line type for the
candidate edges which is most commonly used in the transmission network we examine. In
the test data sets we used, which where introduced in Section 4.1, all edges are of the line
type ‘Al/St 240/40 4-bundle 380.0’ defined in [OO11]. Therefore we will also use this line
type for the sets of candidate edges generated for the test data sets.

4.3.1. Simple Set of Candidate Edges

The first method we used to create a set of candidate edges Ecand for a given transmission
network is the least sophisticated one we used. The method uses as input a threshold dmax,
a set capacity capcand and the transmission network represented by the graph G = (V,E).
Since we use the threshold dmax to limit the length of the candidate edges, we refer to
the length of an edge e ∈ (V × V ) as len(e). The output is a set of candidate edges
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Ecand = {e | len(e) ≤ dmax∩e ∈ (V ×V )\E} with capacity capcand. Meaning Ecand consist
of all edges of the fully connected graph with nodes V , which are not in E and are equal
in length or shorter than dmax.

The position of the nodes in the test data sets introduced in Section 4.1 are given in
geocoordinates. Because we want to calculate the edge length along the surface of the
earth we use the formula for the geographical distance to calculate the length of the edges.
We assume we want to measure the edge length between to nodes u = (lon1, lat1) and
v = (lon2, lat2), u, v ∈ V . The earth radius is given by R = 6371km. The geographical
distance d(u, v) between the two nodes u and v is calculated by:

d(u, v) = R · 2 · atan2(
√
a,
√

1− a)

a = sin(δlat
2 )2 + cos(lat1) cos(lat2) sin(δlon

2 )2

δlat = lat2 − lat1

δlon = lon2 − lon1

We set the costs for each candidate edge e ∈ Ecand to be cost(a, b) = len(e)
10 .

As our goal is to minimize the extend of the critical edges in the network, we want our
candidate edges to be as equally distributed over the network as possible. It is especially
important that nodes connected by only one edge in the original graph are also connected by
a candidate edge, since the edges connecting such nodes are critical for sure, as disconnecting
them leads to the network dividing into two separated parts.

The proposed method works well for transmission networks with nearly evenly spaced
nodes. Meaning the candidate edges are quite evenly spaced for a suited choice of dmax.
For example in Figure 4.2 the Swiss transmission network can be seen with the generated
set of candidatelines with dmax = 100 and capcand = 1000.

Figure 4.2.: Swiss transmission network with the original edges in black and a generated
set of candidate edges with dmax = 100 and capcand = 1000 in orange. The set
of candidate edges was generated using the method of a simple set of candidate
edges. The unit of the x-axis is given in degrees longitude and the y-axis in
degrees latitude in geocoordinates.
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If a transmission network is very heterogeneous considering the space between nodes this
method does not produce a very good set of candidate edges. This can be seen for example
in Figure 4.3. The figure shows the generated set of candidate edges with dmax = 100 and
capcand = 1000 for the Norwegian transmission network. This set of candidate edges is not
suited for our application. Because of the topology of the network all edges in the path
leading to the node in the right top corner are critical because they split the network into
two parts by disconnecting them. But the candidate edges do not connect this node in the
right top corner to any other node and therefore those critical edges can’t be cured.

Figure 4.3.: Norwegian transmission network in black with a generated set of candidate
edges with dmax = 100 and capcand = 1000 in orange. The set of candidate
edges was generated using the method of a simple set of candidate edges. The
unit of the x-axis is given in degrees longitude and the y-axis in degrees latitude
in geocoordinates.

Another problem is that the values for dmax and capcand have to be manually tuned to
generate the best possible result for each transmission network.

4.3.2. Generate Fixed Number of Candidate Edges per Node

The first method we use to generate a set of candidate edges, has the problem, that for
heterogeneous networks considering the spacing between the nodes, it does not produce
good results as discussed in Section 4.3.1. To improve our set of candidate edges we
implemented this second method to generate a set of candidate edges for a given network.
This method uses as input a parameter k and the transmission network represented by
the graph G = (V,E). It will generate at least k candidate edges for each node v ∈ V . To
create these candidate edges we use the distance function introduced in Section 4.3.1 to
calculate the distance between two nodes. For a given node v we calculate the distances
len(v, u) for all nodes in V if (v, u) 6∈ E. Then we add candidate edges for the k couples of
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nodes with the smallest distances calculated. In other words we add edges from v to its k
nearest neighbors, that are not already connected to v. We add each candidate edge (v, u)
just once but count it for the k candidate edges for the node u as well as for the node v.

The capacity of the candidate edges is set to be the average capacity of the original edges
in the network. We set the costs for each candidate edge e ∈ Ecand to be cost(e) = len(e)

10 .

Figure 4.4.: Swiss transmission network with the original edges in black and a generated
set of candidate edges with k = 2 in orange. The set of candidate edges was
generated using the method generating a fixed number of candidate edges for
each node. The unit of the x-axis is given in degrees longitude and the y-axis
in degrees latitude in geocoordinates.

The result of this method for the Swiss transmission network with k = 2 can be seen in
Figure 4.4. Comparing the results for the Swiss transmission network of both methods
in Figure 4.4 for this method and in Figure 4.2 for the simple method from Section 4.3.1.
We can see that there are some small differences of the sets of candidate edges but overall
the sets are quite similar for the Swiss transmission network. The results of this method
for the Norwegian transmission network with k=2 can be seen in Figure 4.5. Comparing
the results of the previous method in Figure 4.3 and of this method in Figure 4.5, we see
that the candidate edges generated by this method are more evenly distributed over the
entire network than the candidate edges generated by the simple generation method. This
indicated that this method is more suitable for generating candidates edges in cases of
heterogeneous networks considering the spacing between the nodes.

This method generates sets of candidate edges, which are better or equally good compared
to the sets of candidate edges provided by the method explained in section 4.3.1. By using
the average capacity over all original network edges we avoid the need to set a suitable
capacity for the candidate edges. But this method still needs the parameter k to be tuned
manually.

Because of the benefits this method provides we will mainly use this method to create
candidate networks for our evaluation. We will refer to this method as the knn-method for
creating candidate edges.
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Figure 4.5.: Norwegian transmission network with the original edges in black and a gener-
ated set of candidate edges with k = 2 and capcand = 1000 in orange. The set
of candidate edges was generated using the method generating a fixed number
of candidate edges for each node. The unit of the x-axis is given in degrees
longitude and the y-axis in degrees latitude in geocoordinates.
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From this point onwards we will only use the definition of Witthaut et al. [WRZ+16a,
WRZ+16b] for critical edges with the modification we proposed at the end of Section 2.3.
Meaning we identify an edge (a, b) ∈ E with a threshold h as critical if:

h <


f(a,b)

f red(a,b) f(a, b) ≥ 0
f(a,b)

f red(b,a) f(a, b) < 0
(5.1)

For our implementation as well as the evaluation we use a threshold of h = 0.614 since this
value was proposed by Witthaut et al. [WRZ+16a, WRZ+16b].

Our goal is to expand the given transmission network G by adding edges. The redundant
flow f red(a, b) of an critical edge depends on the graph the redundant flow is calculated
on. Until this point the graph G on which the redundant flow was calculated did not
change. For more clarity we will from now on specify the graph the redundant flow is
calculated on. Therefore we will redefine the redundant flow as f red : G× E → R. So that
f red(G, (a, b)) is the redundant flow on graph G for the edge (a, b) ∈ E. For short we will
write f red(G, (a, b)) as f red(G, a, b).

Since we want to modify the graph G = (V,E) by adding one or more edges Ebuild to
it, we will write G′ = G ∪ Ebuild to shorten the expression G′ = (V,E ∪ Ebuild). As we
will also talk about removing edges from Graphs in some proofs we will analogously write
G′ = G \ Ebuild instead of G′ = (V,E \ Ebuild).

In this chapter we will introduce a criteria to determine how critical an edge is in Section 5.1.
Furthermore we will define the problem, which is subject of this thesis, formally in Section
5.2. This criteria is important for the mathematical models to solve this problem, which
are introduced in Section 5.3. In next Section 5.4 we will take a look at the complexity of
the problem. In the last section, Section 5.5, of this chapter we will propose a heuristic
algorithm after discussing the challenges of the algorithm design.

5.1. Criteria for Criticality
Until this point we identified an edge either as critical or not as critical by using the
method we proposed in 2.3 which is strongly based on a method by Witthaut et al.
[WRZ+16a, WRZ+16b]. This method identifies an edge (a, b) ∈ E as critical if the initial
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flow f(a, b) on (a, b) divided by the redundant flow f red(G, a, b) or f red(G, b, a) the graph
can support is larger than a threshold h by considering the direction of the initial power
flow:

h <


f(a,b)

f red(a,b) f(a, b) ≥ 0
f(a,b)

f red(b,a) f(a, b) < 0
(5.2)

Since the transmission network is undirected we will from now on assume without loss of
generality that f(a, b) ≥ 0.

For the following sections it is not only important that an edge is critical, but also how
much flow needs to be added to f red(G, a, b), so that the critical edge (a, b) is not critical
as defined in Equation 5.2. We will refer to adding enough redundant flow to f red(G, a, b)
for a critical (a, b) ∈ E so that the critical edge (a, b) is not critical anymore as curing
the critical edge (a, b). To cure a critical edge in a given graph G you need to add at
least a certain amount of additional redundant flow. We refer to this minimally required
additional redundant flow as the criticality of a critical edge (a, b) or as fadd(a, b). The
criticality of (a, b) can be calculated by setting f(a,b)

(f red(G,a,b)+fadd(G,a,b)) = h. The redundant
flow f red(G, a, b) + fadd(G, a, b), that solves this equation is the smallest redundant flow
necessary in the graph G, for which (a, b) is not critical any longer. By transforming this
equation you get fadd(G, a, b) = f(a,b)

h − f red(G, a, b) as minimum additional redundant
flow to add, to cure the critical edge (a, b). As we want to cure the critical edge (a, b) by
adding edges to the graph G and therefore modifying the graph, we will define fadd as:

fadd : G× E → R

fadd(G, (a, b)) = f(a, b)
h

− f red(G, a, b)

Where f red(G, a, b) is the redundant flow of Graph G for edge (a, b). We will write
fadd(G, a, b) for short. We will also refer to fadd(G, a, b) as criticality of the critical
edge (a, b). Be aware that fadd(G, a, b) > 0 if edge (a, b) is critical in graph G and
fadd(G, a, b) ≤ 0 otherwise.

5.2. Problem Definition
As briefly described in the previous chapters, the goal of this thesis is the development
of an algorithm to expand the transmission network with the objective to minimize the
extend of the critical edges. Generally we see two approaches to this problem.

The first approach is to optimize the transmission network considering the physical prop-
erties of the power flow. This approach considers the fact, that the power flow on the
transmission network will change after adding even one edge.

The second approach is to simplify the transmission network as graph with a given initial
flow, as it is already done to identify the critical edges. We remain on this simplification
level and formulate the problem as graph theoretical problem. We have seen this approach
already in the article by Rohden et al. [RWTMO17]. We already discussed in Section
2.3 that the graph theoretical flow used for the ’redundant flow predictor‘ considers flow
conservation, which is in case of the DC approximation equal to Kirchhoff’s’ current law.
Therefore the second approach will at least full fill one of the two constraints of a feasible
power flow as modeled in the DC approximation. This second approach has the advantage
of being less complex but but also less accurate. Because of the lower complexity we discuss
mainly the second approach of the problem in this thesis. The formal definition of the
problem for the second approach is given in Definition 5.1.
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Definition 5.1 (Transmission Network Expansion Planning for Curing Critical Edges
(TNEP-CCE)).
Instance: A graph G = (V,E), with a set of nodes V , a set of edges E and capacities
cap(u, v) for each edge (u, v) ∈ E. For each edge (u, v) ∈ E the initial flow on this edge
is given by f(u, v). Additionally, a set of candidate edges Ecand for graph G is given with
expected building costs cost(x, y) for each candidate edge (x, y) ∈ Ecand. And a set of
critical edges Ecrit as well as an expansion planning budget B ∈ R≥0 is given.
Objective: Finding a subset Ebuild ⊂ Ecand of the candidate edges expanding G to G′ =
(V,E ∪ Ebuild) in such way, that:

• the criticality of critical edges
∑

(a,b)∈Ecrit f
add(G′, a, b) in G′ is minimal

• the cost of the edges in Ebuild is at most equal to the budget:
∑

(x,y)∈Ebuild
cost(x, y) ≤ B

The decision problem for TNEP-CCE is the question whether all critical edges can be
cured

∑
(a,b)∈Ecrit f

add(G′, a, b) = 0.

We use a given set of critical edges Ecrit for this problem definition because we do not
recalculate the power flow for this graph theoretical approach. If the power flow is not
recalculated, there will be no additional critical edges. This is because by not recalculating
the power flow the only way an edge (a, b) can become critical is by reducing the maximum
a,b-flow. But since we are only adding edges to the graph the maximum a,b-flow can only
increase if it changes. We also know, that there is no initial power flow on newly added
edges and hence they cannot be critical. Therefore we can use a given list of critical edges
for this problem without losing accuracy.

5.3. Mathematical Models
In this section we will discuss mathematical models for solving the transmission network
expansion problem in this thesis. In Subsection 5.3.1 we introduce a mathematical model
based on the DC Approximation of the transmission network. This model does not simplify
the transmission network as drastically as proposed in the Section 5.2 instead uses the
DC approximation to apply some physical properties of the transmission network in the
optimization process. We will use this model in the evaluation 6 to compare to our other
solving strategies, which work with the problem definition TNEP-CCE. In Subsection 5.3.2
we introduce a mathematical model for solving TNEP-CCE, meaning without concerning
the physical properties of the transmission network but instead using the network flow to
approximate the physically correct behavior. This mathematical model has the same level
of abstraction as used in the heuristic proposed in Section 5.5.3.1 of this thesis.

5.3.1. Mathematical Model with DC Approximation

In this section we formulate the mathematical model for the problem to expand transmission
networks to cure critical edges including the physical properties of the transmission network.

As input for this problem we have the original transmission network G = (V,E). For this
network we have for each edge (a, b) ∈ E a given capacity cap(a, b) and susceptance b(a, b).
For each node v ∈ V we are given the power consumption or generation P (v). Additionally
to the network we are given a list of critical edges Ecrit ⊂ E, which are identified by
the method described in Section 2.3. Also part of the input are a set of candidate edges
Ecand. Each candidate edge (a, b) ∈ Ecand has a capacity cap(a, b), a susceptance b(a, b)
and building costs cost(a, b). The last part of the input is the expansion planning budget
B.

In the formulation of the mathematical model we use G′ = (V,E ∪ Ecand).
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The problem can be formulated as Mixed-Integer Linear Program with the following
constraints:

s : Ecand → {0, 1} (5.3)

In Equation 5.3 the function s models whether a candidate edge (a, b) ∈ Ecand is build,
s(a, b) = 1, or not, s(a, b) = 0.

∑
(a,b)∈Ecand

cost(a, b)s(a, b) ≤ B (5.4)

Equation 5.4 is the constraint that the cost of the added edges must not exceed the given
expansion budget. The constant B stands for the total expansion planning budget. The
cost of a candidate edge (a, b) is denoted by cost(a, b). The function s(a, b) indicates if the
candidate edge (a, b) is build or not.

P (v)−
∑

(x,v)∈E∪Ebuild

f(x, v) +
∑

(v,x)∈E∪Ebuild

f(v, x) = 0, ∀v ∈ V (5.5)

The second constraint, Equation 5.5 implements Kirchhoff’s current law. The meaning of
this equation is, that all current entering a node of the transmission network must also
leave that node. The constant P (v) stands for the generation (P (v) > 0) or consumption
(P (v) ≤ 0) of the node. The directed power flow from node a to node b is denoted by
f(a, b).

f(a, b) = b(a, b)(Θ(a)−Θ(b)), ∀(a, b) ∈ E (5.6)

f(a, b) = s(a, b)b(a, b)(Θ(a)−Θ(b)), ∀(a, b) ∈ Ecand (5.7)

Equations 5.6 and 5.7 model how the power flow f(a, b) on an edge (a, b) is calculated
according to the DC model. The constant b(a, b) refers to the susceptance of the line
(a, b) ∈ E . The variable Θ(a) denote the voltage angle for each node a ∈ V . When
formulating the Constraint 5.7 like described above we obtain a quadratic constraint. Thus
this problem formulation becomes a Mixed Integer Quadratic Program which is harder
to solve than a Mixed Integer Linear Program. To avoid unnecessarily long computation
times we therefore reformulate the Constraint 5.7 as indicator constraints in Equations 5.8
and 5.9.

s(a, b) = 1 =⇒ f(a, b) = b(a, b)(Θ(a)−Θ(b)), ∀(a, b) ∈ Ecand (5.8)

s(a, b) = 0 =⇒ f(a, b) = 0, ∀(a, b) ∈ Ecand (5.9)

f(a, b) ≥ 0 =⇒ fadd(G′, a, b) ≥ f(a, b)
h

− f red(G′, a, b), (a, b) ∈ Ecrit (5.10)

f(a, b) ≤ 0 =⇒ fadd(G′, a, b) ≥ f(a, b)
h

− f red(G′, b, a), (a, b) ∈ Ecrit (5.11)

fadd(G′, a, b) ≥ 0, (a, b) ∈ Ecrit (5.12)

The criticality of each critical edge fadd(G′, a, b), which is equivalent to amount of additional
redundant flow needed cure the critical edge in graph G′, is modeled in Equation 5.10 and
5.11 for each case of power flow direction on the edge. The Equation 5.12 models, that
we avoid benefits from adding redundant flow for an already cured critical edge meaning
getting a value fadd(G′, a, b) < 0.

f red(G′, a, b) =
∑

(a,x)∈G

flow(a,b)(a, x)−
∑

(x,a)∈G

flow(a,b)(x, a), ∀(a, b) ∈ Ecrit (5.13)
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The redundant flow f red(G′, a, b) of an edge (a, b) in the graph G′ is defined in Equation
5.13. The variable flow(a,b)(u, v) is the graph theoretical flow on edge (u, v) resulting from
a maximum a,b-flow calculation. We previously defined G′ as undirected graph therefore
we have for each pair of edges in the directed equivalent of G (u, v) and (v, u) one edge
either (u, v) or (v, u) in G. We decided to model the flow so that flow(a,b)(u, v) > 0 if the
flow is directed from u to v and flow(a,b)(u, v) < 0 otherwise.

The graph theoretical flow flow(a,b)(x, y) on each edge (x, y) ∈ E ∪ Ecand is modeled by
the Constraints 5.14 and 5.15 for the capacity limits and the Constraint 5.16 describing
that for each node not being the source or sink the ingoing flow has to be equal to the
outgoing flow. In the Equations 5.14 and 5.15 the power flow on an edge is taken into
account to model the capacity limits on each edge. In Equation 5.17 is modeled, that the
graph theoretical flow of an candidate edge is zero if it is not built s(x, y) = 0. In Equation
5.18 we model, that the graph theoretical flow on an critical edge is zero when examining
the maximum flow on the edge which is equivalent to deleting the edge from the graph.

− cap(x, y) ≤ flow(a,b)(x, y) + f(x, y), ∀(x, y) ∈ E ∪ Ecand, (a, b) ∈ Ecrit (5.14)

flow(a,b)(x, y) + f(x, y) ≤ cap(x, y), ∀(x, y) ∈ E ∪ Ecand, (a, b) ∈ Ecrit (5.15)∑
(u,x)∈G′

flow(a,b)(u, x)−
∑

(x,u)∈G′

flow(a,b)(x, u) = 0, ∀u ∈ V \ {a, b}, (a, b) ∈ Ecrit (5.16)

s(x, y) = 0 =⇒ flow(a,b)(x, y) = 0, ∀(x, y) ∈ Ecand, (a, b) ∈ Ecrit (5.17)

flow(a,b)(a, b) = 0, ∀(a, b) ∈ Ecrit (5.18)

For the problem as discussed in Section 5.2 we will use the following objective:

minimize
∑

(a,b)∈Ecrit

fadd(G′, a, b) (5.19)

The objective in Equation 5.19 is to minimize the sum of criticalities of the critical edges.
The graph G′ is equal to G′′ = (V,E ∪ Ebuild), concerning the criticality of the critical
edges. The graph G′′ describes the network resulting from building a subset Ebuild ⊂ Ecand
of the candidate edges. The set Ebuild consists of those candidate edges (a, b) for which
the binary variable s(a, b) = 1. The criticality of the critical edge (a, b) is denoted by
fadd(G′, a, b), and is equivalent to the amount of additional redundant flow needed to cure
the critical edge in graph G′. Both graphs are equal concerning the criticality, because the
model defines that all edges in Ecand \ Ebuild have no graph theoretical flow in equation
5.17.

In the following sections we refer to this mathematical model as MMDC_SET as abbre-
viation for the name ‘Mathematical Model with DC Approximation and a Given Set of
Critical Edges’.

Since we are interested in expanding the transmission network in a way to minimize the
effect of the critical edges, we will also evaluate the effects of changing the objective to:

minimize |E′crit|; E′crit = {e | e ∈ Ecrit, f
add(G′, e) > 0} (5.20)

The Objective 5.20 minimizes the number of critical edges in the expanded graph. In the
following sections we refer to the model using Objective 5.20 as MMDC_NUM. We use
MMDC_NUM as abbreviation for the name ‘Mathematical Model with DC Approximation
with the Objective to Minimize the Number of Critical Edges’.
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5. Modeling to Cure Critical Edges

The two Objectives 5.19 and 5.20 seem to be quite similar on first sight, but in some cases
can lead to very different results. For example, if

∑
(a,b)∈Ecrit f

add(G′, a, b) is very small
but not zero for some assignment of s(u, v) for all (u, v) ∈ Ecand this is a good result for
Objective 5.19. But it can be that for the same assignment of s(a, b) no critical edges
are cured but instead have some small fadd(G′, a, b) for all critical edges (a, b) ∈ Ecrit
and therefore |E′crit| = |Ecrit|. This means that measured for the objective value for the
Objective 5.20, we have made no improvements by choosing those candidate edges.

Considering this, we want to evaluate the results for both different models MMDC_SET
and MMDC_NUM, resulting from the Objectives 5.19 and 5.20, in Section 6.

In the beginning of the subsection we remarked that we use a set of critical edges as input
for the models MMDC_SET and MMDC_NUM. We do this because for the mathematical
model with network flow introduced in the next Subsection 5.3.2 as well as for the algorithms
proposed in this thesis other edges will not become critical during the optimization process.
The reason for this is, that we do not consider power flow changes in those models. Because
we consider these power flow changes in this model the critical edges cannot only be cured
during the addition of candidate edges but because of shifts in the power flow it is also
possible, that new critical edges occur during the optimization.

To consider this behavior we modify the model MMDC_SET. We do this by choosing the
set of critical edges as Ecrit = E ∪Ecand. We do not need to add any additional constraints
for the candidate edges since, if an candidate edge is not build its power flow is zero and
therefore it cannot be critical. Also all edges (a, b) ∈ E which are not critical in G′ have a
negative fadd(G′, a, b) and therefore we set it in Equation 5.12 to zero to avoid benefits
for adding additional redundant flow to not critical edges. We refer to this model, which
recalculates the criticality for all edges, as MMDC_RECALC in the following sections of
this thesis.

5.3.2. Mathematical Model with Graph Flow

In the previous section we modeled the problem to expand the network with the objective
to cure critical edges as Mixed-Integer Linear Program using the DC approximation. As
discussed in Section 5.2 we are interested in solving the problem TNEP-CCE without using
power flow constraints. In this section we formulate a model of the problem TNEP-CCE
as Mixed-Integer Linear Program using the graph approximation. The input for the MILP
is the transmission network as undirected graph G = (V,E). The list of edges E is given
with capacity cap(a, b) and initial flow f(a, b) for each edge (a, b) ∈ E. Additionally we
have as input a set of candidate edges Ecandwith capacity cap(a, b) and costs cost(a, b) for
each candidate edge (a, b) ∈ Ecand, the expansion planning budget B and a set of critical
edges Ecrit ⊂ E.

The objective of the MILP is to minimize the sum criticalities for all critical edge:

minimize
∑

(a,b)∈Ecrit

fadd(G′, a, b) (5.21)

In the Objective 5.21 the variable G′ is the graph representing the network G′ = (V,E ∪
Ecand). The nodes of the graph G′ are fixed as are the original edges E. The objective
is influenced by the choices of candidate edges Ecandto build. For each candidate edges
(a, b) ∈ Ecand we define in Equation 5.22 a binary variable s(a, b). These binary variables
indicate for each candidate edge (a, b) ∈ Ecand whether the edge is build , s(a, b) = 1, or
not, s(a, b) = 0.

s : Ecand → {0, 1} (5.22)
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5.3. Mathematical Models

The next equation models the criticality fadd(G′, a, b), which describes the additional
redundant flow needed to cure the critical edge (a, b) in graph G′.

fadd(G′, a, b) ≥ f(a, b)
h

− f red(G′, a, b), ∀(a, b) ∈ Ecrit (5.23)

fadd(G′, a, b) ≥ 0, ∀(a, b) ∈ Ecrit (5.24)

In the Equation 5.23 the constant f(a, b) is the initial power flow on the critical edge
(a, b), since we do not recalculate the power flow but have it as part of our input we
assume f(a, b) ≥ 0 for all edges (a, b) ∈ E without loss of generality. The constant h is a
threshold for determining critical edges. The variable f red(G′, a, b) stands for the maximum
a,b-flow in the Graph G′ \ {(a, b)}. The Equation 5.24 is necessary to formulate that
fadd(G′, a, b) = max(0, f(a,b)

h − f red(G′, a, b)). The maximum is used to avoid benefits for
expanding the network for an already cured critical edge.

f red(G′, a, b) =
∑

(a,x)∈G′

flow(a,b)(a, x)−
∑

(x,a)∈G′

flow(a,b)(x, a), ∀(a, b) ∈ Ecrit (5.25)

In Equation 5.25 the redundant flow of a critical edge (a, b) ∈ Ecrit is described. The
redundant flow of an critical edge (a, b) ∈ Ecrit is equivalent to the maximum a,b-flow in
the Graph G′ \ {(a, b)}. The variable flow(a,b)(a, x) stands for the flow on edge (a, x) as
calculated in the maximum a,b-flow calculation. We previously defined G′ as undirected
graph therefore we have for each pair of edges (u, v) and (v, u) in the directed equivalent
of the graph one edge either (u, v) or (v, u) in G′. We decided to model the flow so that
flow(a,b)(u, v) > 0 if the flow is directed from u to v and flow(a,b)(u, v) < 0 otherwise.
The flow on each edge is modeled by the Constraint 5.26 for the capacity limits and the
Constraint 5.27 describing, that for each node not being the source or sink the ingoing flow
has to be equal to the outgoing flow. In the Equation 5.26 the original flow on an edge is
taken into account. Additionally the flow on the candidate edges is modeled in Equation
5.28, expressing that the flow of an candidate edge (x, y) is zero if it is not built s(x, y) = 0.

− cap(x, y) ≤ flow(a,b)(x, y) + f(x, y) ≤ cap(x, y), ∀(x, y) ∈ E (5.26)

∑
(u,x)∈G

flow(a,b)(u, x)−
∑

(x,u)∈G

flow(a,b)(x, u) = 0, ∀u ∈ V \ {a, b} (5.27)

s(x, y) = 0 =⇒ flow(a,b)(x, y) = 0, ∀(x, y) ∈ Ecand, (a, b) ∈ Ecrit (5.28)

Equation 5.29 models that the costs of all candidatelines built must not exceed the expansion
planning budget.

∑
(x,y)∈Ecand

s(x, y)cost(x, y) ≤ B (5.29)

Solving this MILP will result in an optimal solution for the TNEP-CCE problem. We refer
to this model in the following sections as MM_GRAPH as abbreviation for Mathematical
Model with Graph Flow.
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5. Modeling to Cure Critical Edges

5.4. Problem Complexity
In this section it is shown that TNEP-CSCE (see Definition 5.2)is NP-complete. The
problem is formulated for only one critical edge for sake of the proof of NP-completeness.
For this section we also assume f(x, y) ≥ 0 for all edges (x, y) ∈ E.

Definition 5.2 (Transmission Network Expansion Planning for Curing a Single Critical
Edge (TNEP-CSCE)).
Instance: A graph G = (V,E), with a set of nodes V and a set of edges E and capacities
cap(u, v), for each edge (u, v) ∈ E. For each edge (u, v) ∈ E the initial flow on this edge
is given by f(u, v). Additionally a set of candidate edges Ecand for graph G is given, with
building costs cost(x, y) and capacity cap(x, y), for all candidate edges (x, y) ∈ Ecand and
one critical edge Ecrit = {(a, b)} as well as a expansion planning budget B.
Objective: Decide whether there is a subset Ebuild ⊂ Ecand of the candidate edges so that:

• The critical edge (a, b) is cured.

• The cost of the edges in Ebuild is at most equal to the budget:
∑

(x,y)∈Ebuild
cost(x, y) ≤

B.

5.4.1. Complexity on General Graphs

To prove the NP-completeness of the Problem 5.2 on general graphs, the ‘Bin Packing
Problem’ in Definition 5.3 is introduced. Bin Packing was proven to be strongly NP-complete
by Garey and Johnson [GJ78].

Definition 5.3 (Bin Packing Problem).
Instance: The instance of the bin packing problem is I = (X,A, b, `) with X a set of l
bins X1, . . . , X` of size b and A a set with elements 1 ≤ ai ≤ b.
Objective: Decide whether there is a partition of A into the bins X1, . . . , X`, so that∑

aj∈Xi
aj ≤ b, ∀i ∈ {1, . . . , `}.

Lemma 5.4. The problem ‘Transmission Network Expansion Planning for Curing a Single
Critical Edge’ from Definition 5.2 is strongly NP-complete.

Proof: To show that the problem of TNEP-CSCE is strongly NP-complete, we will show
that TNEP-CSCE is in NP, then we will show that there is a polynomial-time algorithm
that transforms an instance of the Bin Packing Problem to an instance of TNEP-CSCE
and at last we will show the correctness of the polynomial-time algorithm.

TNEP-CSCE is in NP: Given is an instance of the TNEP-CSCE problem as described in
Definition 5.2 and a subset of candidate edges Ebuild ⊂ Ecand as possible solution. The
following steps check the validity of the solution:

1. Check if the total costs of selected candidate edges Ebuild complies with the budget
B:

∑
(x,y)∈Ebuild

cost(x, y) ≤ B

2. Construct a graph G′ by adding the selected candidate edges Ebuild to the graph G:
G′ = G ∪ Ebuild

3. Check if critical edge (a, b) is critical inG′ by using the algorithm redundantFlow(G′, a, b)
defined in Definition 2.1 meaning: f(a, b)/f red(G′, a, b) > h

The first two steps are in O(|Ebuild|) time and we know |Ebuild| ≤ |Ecand|. The third step
uses the algorithm redundantCapacity as proposed by Witthaut et al. [WRZ+16a,
WRZ+16b]. In Section 2.3, where the algorithm is introduced, we argue that the run-
ning time for redundantFlow(G, a, b) is in O(|V ||E|2) time. Because of that we know
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5.4. Problem Complexity

that redundantFlow(G′, a, b) runs in O(|V ||E + Ebuild|2) time. Therefore you get an
polynomial-time algorithm checking the correctness of a proposed solution for an instance of
TNEP-CSCE by executing the three steps in the given order. This means that TNEP-CSCE
is in NP.

Construct an instance of TNEP-CSCE from an instance of the Bin Packing Problem: An
instance of the Bin Packing Problem is given by I = (X,A, b, `) as described in Definition
5.3. To recollect, X describes the set of bins, A describes the set of elements to partition
into the bins, b describes the bin size and ` the number of bins.

XA

a1

a2

a|A| X`

X2

X1

a1

a2

a|A|

b

b

b

Set X of buckets Xj

with capacity b each
Set A of elements ai

Candidate edges

Critical edge

a1
a1

a1

a2
a2

a2

a|A|

a|A|

a|A|

Network edges

Figure 5.1.: Sketch of the graph created to reduce Bin Packing to TNEP-CSCE. Dashed
lines represent candidate edges. Candidate edges (ai, Xj) ∈ Ecand have capacity
cap(ai, Xj) = ai and costs of cost(ai, Xj) = 1. The red dotted line (A,X)
represents the critical edge. The critical edge needs fadd(G,A,X) =

∑
ai∈A ai

units of additional redundant flow to be cured. The capacity of an edge is
noted on the edge.

In the following paragraph we describe the construction of the resulting TNEP-CSCE
instance, which can be seen in Figure 5.1. To construct the graph G from I we map each
element in X and each element in A to a node. Additionally, we add a node for X and A
respectively. The edges E of the graph connect each node representing an element ai ∈ A to
the node representing A and all nodes representing a bin Xi ∈ X to the node representing
X. The initial flow for each edge (u, v) ∈ E is f(u, v) = 0. The capacities for the edges are
cap(X,Xj) = b for all bins Xj ∈ X and cap(A, aj) = aj for all elements aj ∈ A. As critical
edge we add an edge (A,X), which we chose to be critical with fadd(G,A,X) =

∑
ai∈A ai

units of additional redundant flow missing to cure (A,X). The critical edge is marked as
red dotted line in Figure 5.1 For the candidate edges Ecand we add for each element ai ∈ A
edges to each element Xj ∈ X. The resulting candidate network represents a complete
bipartite graph. In Figure 5.1 the candidate edges are depicted by the dashed lines. For the
candidate edges (ai, Xj) ∈ Ecand we choose unit line costs cost(ai, Xj) = 1 and capacity
cap(ai, Xj) = ai. The expansion planning budget is B = |A|.
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5. Modeling to Cure Critical Edges

The construction of the graphG = (V,E) is inO(`+|A|) time as we have |V | = |X|+|A|+2 =
` + |A| + 2 nodes as well as |E| = |X| + |A| + 1 = ` + |A| + 1 edges to add, including
the critical edge. The construction of the candidate edges is in O(`|A|) time as we have
|Ecand| = `|A| candidate edges. Therefore the mapping algorithm from a Bin Packing
instance to an TNEP-CSCE instance is a polynomial-time algorithm with a running time
in O(`|A|) time.

For the proof of strong NP-completeness it is necessary to show that all numerical parameters
used by our TNEP-CSCE instance are bounded by a polynomial in the length of the input
size, meaning the input of the Bin Packing instance. The constant numerical parameters we
use for the cost and capacity of the candidate edges as well as for the initial flow obviously
fulfill this requirement. A numerical parameter that is not constant is the expansion
planning budget with B = |A|. Because A is part of the input, |A| is bounded by the
length of the input. Also not constant are the edge capacities cap(A, aj) = aj for all aj ∈ A
and cap(Xj , X) = b for all Xj ∈ X. But because the numerical values of aj ∈ A and b
are also used in the Bin Packing Problem, which is known to be strongly NP-complete,
we know that they have to be bounded by a polynomial in the length of the input. The
last parameter which is not constant is the criticality of the critical edge (A,X) which is
fadd(G,A,X) =

∑
ai∈A ai. In the definition of the Bin Packing Problem each element of

A is bounded by 1 ≤ ai ≤ b for all ai ∈ A, this means for the sum
∑

ai∈A ai ≤ b|A|. We
established that |A| as well as b are bounded by a polynomial of the length of the input,
therefore this is also true for their product. Therefore all used numerical parameters fulfill
this requirement.

Proving equivalence: First we will show that if there is a solution of the constructed
TNEP-CSCE instance, this implies the existence of a solution of the underlying Bin
Packing instance. A solution of the TNEP-CSCE instance is a subset Ebuild ⊂ Ecand, for
investment cost less or equal the expansion planning budget

∑
(a,x)∈Ebuild

cost(a, x) ≤ B.
The expansion planning budget is B = |A| and the costs for each candidate edge is
cost(ai, Xj) = 1, (ai, Xj) ∈ Ecand for each candidate edge. Therefore at most |A| candidate
edges can be build, |Ebuild| ≤ |A|. An assignment for elements from A to bins in X can be
constructed from a solution of the TNEP-CSCE instance by adding ai ∈ A to bin Xj ∈ X
if and only if (ai, Xj) ∈ Ebuild. To show that this assignment for elements from A to bins
in X is a valid solution for the Bin Packing Problem, we have to show that each element
ai ∈ A is associated with exactly one bin Xj ∈ X and that each bin Xj ∈ X contains at
most b units

∑
ai∈Xj

ai ≤ b.

First we will show that for each node representing an element ai with ai ∈ A there is
exactly one built edge (ai, Xj) ∈ Ebuild. Assuming there is an element ai with ai ∈ A so
that there is no edge built, meaning (ai, Xj) 6∈ Ebuild for all Xj ∈ X. However in this
case the critical edge (A,X) can not be cured. This is because just |A| − 1 elements of
A would have a path to X. This means adding aj units of additional redundant flow for
each aj ∈ A which is connected to X, resulting in a maximum of

∑
aj∈A aj − ai units of

additional redundant flow in total. This leads to the conclusion, that a valid solution
for the TNEP-CSCE instance Ebuild contains at least one edge for each element ai ∈ A,
connecting the node representing the element to a bin. Because of the expansion planning
planning budget B = |A| and the cost for each candidate edge cost(ai, Xj) = 1 for all
(ai, Xj) ∈ Ecand, we can only build |A| edges. Therefore we know that a valid solution
for the TNEP-CSCE instance Ebuild contains exactly one edge for each element ai ∈ A,
connecting the node representing the element to a bin.

The second part is showing, that each bin Xj contains at most b units
∑

ai∈Xj
ai ≤ b, for

the assignment of the ai as implied by Ebuild. We assume that there is a node Xj so that∑
(ai,Xj) ai > b with (ai, Xj) ∈ Ebuild. The edge (Xj , X) has a capacity of cap(Xj , X) = b.

34



5.4. Problem Complexity

This means that all paths containing Xj together can at most add b units of additional
redundant flow to cure the critical edge. Because

∑
(ai,Xj) ai > b with (ai, Xj) ∈ Ebuild,

this means that at least one edge (ai, Xj) ∈ Ebuild will not be saturated. But because there
is only one edge in Ebuild for each element ai ∈ A, all edges in Ebuild have to be saturated
to provide the

∑
ai∈A ai units of additional redundant flow to cure the critical edge (A,X).

Therefore there cannot be a node Xj so that
∑

(ai,Xj) ai > b with(ai, Xj) ∈ Ebuild. This
means that if we have a solution for the TNEP-CSCE instance we also have a solution for
the Bin Packing instance.

Next we need to show that if there is a solution for Bin Packing, we will also find a
valid solution for the corresponding TNEP-CSCE instance. We know that in the solution
each element ai is contained in one bin Xj and each bin Xj contains at most b units∑

ai∈Xj
ai ≤ b. If we have a Bin Packing solution we can create a TNEP-CSCE instance

solution by choosing the edges Ebuild = {(ai, Xj) | ai ∈ Xj}. Since each element ai ∈ A is
placed in exactly one bin Xj ∈ X, there is exactly one edge (ai, Xj) ∈ Ebuild. We also know
that

∑
ai∈Xj

ai ≤ b for every bin Xj , therefore for a bin Xj the edges (ai, Xj) ∈ Ebuild will
add

∑
ai∈Xj

ai units of flow to cure the critical edge. This means in total
∑

ai∈A ai units
of flow are added. This is sufficient additional redundant flow to cure the critical edge
(A,X). Since there is one edge added for each ai ∈ A this means in total |A| edges are
added for costs of one unit each. This means that

∑
(ai,Xj)∈Ebuild

cost(ai, Xj) = |A| = B.
Thus, it is true that if there is a solution for Bin Packing, there is also a solution for the
corresponding TNEP-CSCE instance.

We have shown that TNEP-CSCE is in NP and that there is a polynomial-time algorithm to
reduce an instance of Bin Packing to an equivalent instance of TNEP-CSCE. Additionally
we have shown that all numerical parameters used by our TNEP-CSCE instance are
bounded by a polynomial in the length of the input. Because we know that Bin Packing is
strongly NP-complete TNEP-CSCE is also strongly NP-complete. �

5.4.2. Complexity on Planar Graphs

To prove that TNEP-CSCE is NP-complete even if the graph G′ = (V,E ∪ Ecand) is series
parallel, the Subset Sum Problem 5.5 is reduced to an instance of TNEP-CSCE.

Definition 5.5 (Subset Sum Problem).
Instance: The instance of the Subset Sum Problem is I = (X,m), with a set of integers
X and an integer m
Objective: Decide if there is a subset of X∗, X∗ ⊂ X so that

∑
x∈X∗ x = m

It is known that the Subset Sum Problem 5.5 is NP-complete [GJ79].

Lemma 5.6. The problem ‘Transmission Network Expansion for Curing a Single Critical
Edge’ from Definition 5.2 is NP-complete even if the instance G′ = (V,E ∪Ecand) is series
parallel.

Proof: To show that TNEP-CSCE is NP-complete for series parallel graphs, we will show
that TNEP-CSCE is in NP, find a polynomial time algorithm that reduces the Subset Sum
Problem to an series parallel instance of TNEP-CSCE and prove that this algorithm is
correct.

TNEP-CSCE is in NP: We have already shown this in the proof for Lemma 5.4.

Construct series parallel instance of TNEP-CSCE from an instance of the Subset Sum
Problem: The instance of the Subset Sum Problem is I = (X,m), with a set of integers
X and an integer m, as described in Definition 5.5. The resulting TNEP-CSCE instance
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5. Modeling to Cure Critical Edges

can be seen in Figure 5.2. As critical edge we choose an edge (s, t) ∈ E with a criticality
of fadd(G, s, t) = m units of additional redundant flow to be cured. The critical edge
is marked as red, dotted edge in Figure 5.2. For each element xi ∈ X we add two
nodes x′i and x′′i with edges (s, x′i), (x′′i , t) ∈ E. As set of candidate edges we choose
the edges (x′i, x′′i ) ∈ Ecand for xi ∈ X. All candidate edges (x′i, x′′i ) ∈ Ecand have the
construction cost cost(x′i, x′′i ) = xi. The candidate edges are depicted as dashed edges in
Figure 5.2. The capacities of all edges corresponding to an element xi ∈ X have capacity
cap(s, x′′i ) = cap(x′i, x′′i ) = cap(x′′i , t) = xi. The initial flow f(u, v) = 0 for each edge
(u, v) ∈ E. The expansion planning budget is B = m.
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Figure 5.2.: Sketch of the graph created to reduce the Subset Sum Problem to TNEP-CSCE.
Dashed lines represent candidate edges Ecand. The red dotted line represents
the critical edge. In this figure we assume that the set X has size n. The
capacity and cost for each line associated with an element xi is the value of xi.

Proving equivalence: It is obvious that the resulting graph is series parallel for all instances
of the Subset Sum Problem.

A solution of the TNEP-CSCE instance is a subset Ebuild ⊂ Ecand, for investment cost less or
equal the expansion planning budget

∑
(u,v)∈Ebuild

cost(u, v) ≤ B. The solution of the TNEP-
CSCE instance (x′i, x′′i ) ∈ Ebuild induces a subset X ⊂ X, X = {xi | (x′i, x′′i ) ∈ Ebuild}.
For all candidate edges (x′i, x′′i ) ∈ Ecand the construction costs are cost(x′i, x′′i ) = xi and
the expansion planning budget B is m. Since the set of built edges Ebuild is a solution of
the TNEP-CSCE instance, the induced subset X has total costs within the budget of B.
Because of the cost cost(x′i, x′′i ) = xi for each candidate edge (x′i, x′′i ) ∈ Ecand, this leads
to the equation

∑
x∈X x ≤ m. The capacity of a candidate edge (x′i, x′′i ) is also chosen as

cap(x′i, x′′i ) = xi and the critical edge needs at least fadd(G, s, t) = m units of additional
redundant flow to be cured. Since Ebuild is a solution for the TNEP-CSCE instance this
means that for G′′ = (V,E ∪ Ebuild) that the critical edge (s, t) is cured. Thus at least
m units of redundant flow have to be added by Ebuild. This means for the set X, that∑

x∈X x ≥ m. Taking the restrictions from the budget into account, we get
∑

x∈X x = m.
In conclusion, this means if Ebuild is a solution for the TNEP-CSCE instance, the subset
X = {xi|(x′i, x′′i ) ∈ Ebuild} is a solution of the given Subset Sum Problem.

If the given subset sum instance has a solution, this means that there is a subset X∗ ⊂ X,
so that

∑
x∈X∗ x = m. According to the construction of the corresponding TNEP-CSCE

instance, there is a solution for the TNEP-CSCE instance by setting Ebuild = {(x′i, x′′i ) |
xi ∈ X∗}. This is because the edges in Ebuild will add exactly m units of flow to the graph,
which is enough to cure the critical edge (s, t) ∈ E and their combined cost is m, which is
within the expansion planning budget.
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We know that the Subset Sum Problem is NP-complete and we can reduce any instance
of Subset Sum to a series parallel instance of TNEP-CSCE. We already showed that
TNEP-CSCE is in NPand therefore TNEP-CSCE is NP-complete for series parallel graphs.
�

5.5. Algorithm Design
In this section we discuss the design of an algorithm for solving the problem TNEP-CCE
of minimizing the extend of the critical edges in the network by adding edges from the set
of candidate edges to the network. In the first Subsection 5.5.1 we discuss which candidate
edges will assist in curing a specific critical edge. In the following Subsection 5.5.2 we
discuss how much redundant flow an candidate edge will provide to cure an critical edge.
In the third Subsection 5.5.3 we will look into different optimization algorithms and their
applicability on the TNEP-CCE problem. At last we will introduce a heuristic for choosing
candidate edges in Subsection 5.5.3.1, which is based on the findings discussed in the first
Subsections.

Like in the last section we can also assume here without loss of generality that the initial
power flow f(x, y) ≥ 0 for all edges (x, y) ∈ E, since we do not recalculate the power flow.

Some of the challenges, that arise during the algorithm design are explained on the example
graph Gexp in Figure 5.3. The figure shows a graph with nodes representing the generators
and consumers of the transmission network and edges representing the transmission lines.
The consumers are marked with an outgoing arrow and the generators are marked with
an ingoing arrow. The candidate edges of the network—marked as dashed edges—are the
edges than can be added to cure critical edges. On each edge of the network you can see the
capacity and the current flow on this edges, this is represented by the tuple ‘flow/capacity’.
The candidate edges are only marked with their capacity.

The goal of the algorithm is to select the candidate edges, that will reduce as much of the
criticality of the existing critical edges as possible. Note, that it is necessary to quantify
the benefit a candidate edge contributes to the solution to make a qualitative statement.
For the quantification it is interesting how many critical edges will be influenced by adding
a candidate edge or formulated differently which candidate edges influence the curing of a
specific critical edge. This topic is discussed in Section 5.5.1. In Section 5.5.2 the question
what quantity a candidate edge can maximally contribute to the curing of one critical edge
is discussed.

5.5.1. Identifying Candidates That Influence a Critical Edge
As discussed, the goal of this thesis is to find an algorithm to expand the transmission
network in a way that minimizes the criticality of the critical edges. The research question
we discuss in this section is which candidate edges are beneficial to add to the network. In
this section we just discuss the question if it is beneficial to add an candidate edge and
not how beneficial it is to add the edge. By discussing this question we hope to provide a
better understanding of this problem as well as a way to speed up the resulting algorithm.

We assume we have a graph G = (V,E) with given capacities cap(a, b) and initial flow
f(a, b) for all edges (a, b) ∈ E. Additionally we have a set candidate edges Ecand with given
capacities and an expansion planning budget B. Normally, we assume a set of critical edges
Ecrit to be in the input, but since this section is based on the algorithm used to identify
critical edges we review the identification of critical edges as described in Section 2.3 at
first.

As the identification of critical edges is described in detail in Section 2.3, we will just
provide a short summary of the identification of critical edges at this point as this section
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Figure 5.3.: Example graph Gexp used in this section to explain some steps of the algorithm
design. Nodes symbolize generators and consumer. Consumer have an outgoing
arrow and generators an in going arrow connected to the node. The edges
symbolize the edges of the transmission network. On each edge of the network
you can see the capacity and the current flow on this edges, this is represented
by the tuple ‘flow/capacity’. Direction of the edges depict the direction of the
flow on the edge. Candidate edges are drawn as dashed edges and are marked
with their capacity.

strongly depends on it. Given a graph G = (V,E) representing a transmission network,
each edge (a, b) ∈ E has to be tested to determine whether it is critical. To test an edge
(a, b) the edge is removed from G. Furthermore, if the flow on the edge (a, b) was directed
in the direction from node a to node b, node a is selected as source and node b as sink.
The redundant flow f red(G, a, b) is calculated by determining the maximum flow between
source a and sink b in the network without the edge (a, b). The edge (a, b) is critical if
f(a, b)/f red(G, a, b) > h, for a given threshold h.

Candidate edges which influence a critical edge (a, b) have to increase the maximum a,b-flow
in G\{(a, b)}. To determine whether the maximum flow is increased by adding a candidate
edge, we make use of the residual graph of the maximum flow calculation to determine
f red(G, a, b). We know that as the maximum flow is calculated to determine f red(G, a, b)
the residual graph decomposes into at least two disconnected subgraphs. One of these
subgraphs contains the source a, while an other one contains the sink b. We will refer
to the set of nodes in the subgraph containing a as Sa ⊂ V and the set of nodes in the
subgraph containing b as Tb ⊂ V . The two subgraphs are induced by the minimum cuts of
the graph. The Min-Cut-Max-Flow Theorem says, that the value of the maximum flow is
equal to the sum of capacities of edges in a minimum cut [FF56]. At this point we will
ignore the nodes in V \ (Sa ∪ Tb). The redundant flow f red(G, a, b), being the maximum
flow between a and b, can only be increased by increasing the minimum cut between the
subgraphs Sa and Tb. This can only be done by adding edges between those two partitions,
because adding an edge to the residual graph between the nodes of the two sets will result
in at least one augmenting path between a and b in the residual graph. Thus adding edges
connecting the two subgraphs will increase the maximum flow and therefore the redundant
flow f red(G, a, b) of the critical edge (a, b).
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The minimum cuts can change after adding an edge to the graph. Therefore it is possible,
that the edges influencing the critical edge (a, b) in G may differ from the edges influencing
the critical edge in G ∪ {e}, for an e ∈ Ecand.
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Figure 5.4.: The residual graph belonging to the example graph, as shown in Figure 5.3,
after deleting edge (2, 3), represented as a red dashed edge. The edges of
the residual graph are represented by black edges and are marked with their
capacities. The edge (2, 3) is not part of the residual graph but is marked with
the tuple of the original flow and capacity on this edge.

For better understanding we will test whether the edge (2, 3) of the example graph Gexp,
shown in Figure 5.3, is critical. To do that, edge (2, 3) is removed from the example graph.
The residual graph of the example graph Gexp after removing edge (2, 3) can be seen in
Figure 5.4. The next step is to choose the node 2 as source and 3 as sink and calculate
the maximum 2,3-flow. The maximum flow between nodes 2 and 3 is calculated to be
70 units of flow. In Figure 5.5 the final residual graph resulting from the calculation of
the redundant flow f red(Gexp, 2, 3) of edge (2, 3) in the example graph is shown. The
result for the redundant flow of edge (2, 3) is the value of the calculated maximum flow
and therefore f red(Gexp, 2, 3) = 70. The edge (2, 3) is considered as critical, because
f(2, 3)/f red(Gexp, 2, 3) = 80/70 = 1.143 > 0.614 = h. It can be seen that, the residual
graph decomposes into two divisions. The nodes in the subgraph containing s = 2 are in
the set S2, but for easier understanding this is symbolized by a violet area. The nodes
in the second subgraph containing t = 3 are in the set T3 symbolized by an orange area.
Be aware that the subgraph containing s = 2 is defined as containing all nodes v ∈ V for
which a path 2→ v exists. The subgraph containing t = 3 is defined as all nodes v ∈ V for
which a path v → 3 exists. The minimum cut of the example graph contains only the edge
(6, 5).

As all candidate edges of the example graph Gexp, shown in Figure 5.3, connect the two
subgraphs. All candidate edges will effect the critical edge (2, 3) if added to the example
graph.

5.5.2. Expected Flow on Added Edge

When adding a set of candidate edges to the network, we can observe, that the additional
redundant flow they provide, is not equal to the sum of capacities of the added candidate
edges. Instead the additional redundant flow describes the additional flow the network can
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Figure 5.5.: The residual graph resulting from the check if edge (2, 3)—represented as
a red dashed edge—is critical in Gexp. The edges of the residual graph are
represented by black edges and are marked with their capacities. The edge
(2, 3) is not part of the residual graph. The minimum s-t-cut consists of edge
(5, 6). The minimum cut decomposes the graph into two subgraphs marked
in violet and orange. The value of the calculated max flow is marked in blue.
Since the roles of the nodes as generator and consumer are irrelevant for this
step we did not marked them as such to simplify the visualization.

support by adding those edges. This means, if we have a critical edge (a, b), that adding
an edge between two nodes x ∈ Sa and y ∈ Tb with a capacity c will not necessarily add
c units of additional redundant flow to fadd(G, a, b). This is the case because to actually
add c units of flow we need to be able to have an a,x-flow of c units in the subgraph Sa

as well as a y,b-flow of c units in the subgraph Tb. If for example the maximum a,x-flow
can just support t < c units of flow, the added edge will also just add t units of additional
redundant flow to fadd(G, a, b).

In this section we want to figure out a value for each edge in the set of candidate edges.
From the previous observation we know that the additional redundant flow a candidate
edge can provide is a good measure for its value.
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Figure 5.7.: Just the candidate line (6, 3) has an augmenting path. For the other two
remaining candidate no augmenting path exists. Flow added: 30

For better understanding we will look at the candidate edges in the example graph and
their values. For the example graph the minimal amount of additional redundant flow you
need to add to cure the critical edge (2, 3) is fadd(Gexp, 2, 3) = f(2,3)

h − f red(Gexp, 2, 3) =
80

0.614 − 70 ≈ 60.3. There are four candidate edges to cure the critical edge (2, 3). In Figure
5.6 each candidate edge is considered to be added to the graph. We calculated for each
candidate edge, how much additional redundant flow this edge would provide to cure the
critical edge (2, 3). As no edge would add more than 40 units of flow, adding one edge
would not be sufficient to cure the critical edge as 60.3 units of flow would be needed to
do so. In the Figure 5.6 we can see that the augmenting path of the different candidate
edges overlap even for such a small example. Adding candidate edges with overlapping
augmenting paths, can lead to the effect that the total flow added will just increase slightly
or not at all when adding the second edge. Therefore after adding one edge to the graph
it is necessary to recalculate the flow a candidate edge would add. In Figure 5.7 the
recalculation is shown after candidate edge (2, 5) was added to the example graph. We can
see that the subgraphs induced by the minimum cut changed by adding the edge (2, 5).
Only the candidate edge (6, 3) is shown in Figure 5.7 because there is no augmenting path
for the other two candidate edges for the maximum flow calculation. Therefore adding the
edges (6, 4) and (2, 4) would not be beneficial to cure the critical edge. However, adding
the edge (6, 3) to the graph cures the critical edge, because 70 flow units can be added to
cure the critical edge by doing so. As the other two candidate edges would not improve
the redundant flow in the second iteration, this emphasizes the importance to recalculate
the value of the candidate edges after adding one edge to the graph.
Therefore it is necessary to have at least a heuristic to estimate the (s, x)-flow for each
x ∈ Sa that can be supported in the subgraph containing a or the (y, t)-flow for y ∈ Tb

that can be routed throw the subgraph containing b respectively.
Additionally the max-flow to a node x ∈ Sa or y ∈ Tb will most likely change after a edge
was added.
For the time being we won’t use heuristics for the flow an candidate edge would add to
cure a critical edge, but rather use the exact value. We will define this value over all edges,
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not just critical edges. For edges, which are not critical adding a candidate edge should
have no value. To achieve this goal we define the value of an candidate edge concerning
one critical edge as val1 : G×E ×Ecand → R≥0. This leads to the equation for a graph G,
possibly critical edge crit ∈ E and candidate edge e ∈ Ecand:

val1(G, crit, e) =
{

0, fadd(G, crit) ≤ 0
min(fadd(G, crit)− fadd(G ∪ {e}, crit), fadd(G, crit)), otherwise

(5.30)

The Equation 5.30 describes the amount the critical edge crit is cured by adding candidate
edge e ∈ Ecand to Graph G. The term fadd(G, crit) − fadd(G ∪ {e}, crit) calculates the
amount the critical edge was cured. Because a critical edge can not be cured more than it
was critical, we need the minimum expression. The distinction for the cases is necessary
because if the edge crit is not critical, there should be no value in adding an edge.

The total value val : G× Ecand → R≥0 of an candidate edge e ∈ Ecand is given by:

val(G, e) =
∑

crit∈Ecrit

val1(G, crit, e) (5.31)

The total value of an candidate edge e ∈ Ecand, as expressed in Equation 5.31 adds up all
values val1(G, crit, e) for all critical edges crit ∈ Ecrit.

The value of an set of edges Ebuild = {e1, e2, . . . en} in a graph G is derived in Equation
5.32.

val(G,Ebuild) =
∑

i∈1,...|Ebuild|
val(G ∪ {ej | j ∈ 0, . . . i− 1}, ei) (5.32)

The total value of an edge set are the summed up values for each edge in the set if one
edge after another is added into the graph. Therefore written without the sum sign
val(G, e1) + val(G ∪ {e1}, e2) + . . . .

The formulation for an edge set is preferable, since the value of an set of edges for a
given graph is always the same no matter in which order the edges were added to the
graph. This property can be explained with the properties of the additional redundant
flow fadd(G, x, y) needed to cure a critical edge (x, y) ∈ E in a graph G = (V,E). The
criticality fadd(G, x, y) for a graph G and a critical edge (x, y) ∈ E is positive as long as
(x, y) is critical. We assume we add two edges e1, e2 ∈ Ebuild to the graph. We know that
fadd(G, x, y) depends on the calculation of the maximum flow therefore the criticality has to
be constant for the same graph and the same critical edge (x, y). This means the equation
fadd((G∪{e1})∪{e2}, x, y) = fadd((G∪{e2})∪{e1}, x, y) = fadd((G∪{e1, e2}, x, y) is true
and therefore, that the order in which the edges in Ebuild are added has no influence on the
criticality fadd(G ∪ Ebuild, x, y), which is the amount of additional redundant flow needed
to cure the critical edge (x, y). Therefore the value of an edge set is also independent from
the order the edges are inserted into the graph.

We want to show that the Equation 5.32 can be expressed as:

val(G,Ebuild) =
∑

crit∈Ecrit

val2(G, crit, Ebuild) (5.33)

with:

val2(G, crit, Ebuild) =
{

0, fadd(G, crit) ≤ 0
min(fadd(G, crit)− fadd(G ∪ Ebuild, crit), fadd(G, crit)), otherwise

(5.34)
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To show this we will look at an set of critical edges Ecrit = {crit} containing only a single
critical edge. We will show it only for one critical edge, since the calculation for each
critical edge are independent from one another and therefore it is sufficient to show the
equivalence for one critical edge. We will divide the problem in three cases:

case 1: The edge crit was never critical
If the edge crit was never critical then we now for the criticality, that fadd(G, crit) ≤ 0. We
know that fadd(G, crit) is calculated using the redundant flow of the Graph f red(G, crit), and
since f red(G, crit) is calculated using a maximum flow, we know that f red(G∪ {e1}, crit) ≥
f red(G, crit) for any added edge e1 ∈ Ecand. Since fadd(G, crit) = f(crit)

h − f red(G, crit)
and f(crit) is the initial flow on the edge which is static for our problem, we know
that fadd(G ∪ {e1}, crit) ≤ fadd(G, crit). Meaning in the worst case that adding an
edge e1 to the Graph G does nothing to cure the a critical edge crit. Therefore we
know that fadd(G ∪ Ebuild, crit) ≤ fadd(G, crit) ≤ 0 for any subset Ebuild ⊂ Ebuild. If
fadd(G ∪ Ebuild, crit) ≤ 0 for any subset Ebuild ⊂ Ebuild, we also know that:∑

crit∈Ecrit

val2(G, crit, Ebuild) = val2(G, crit, Ebuild)

= 0
= val1(G, crit, e1) + · · ·+ val1(G ∪ {Ebuild \ {en}}, crit, en)
=

∑
i∈1,...|Ebuild|

val(G ∪ {ej | j ∈ 0, . . . i− 1}, ei)

= val(G,Ebuild)

Therefore we know that our claim that the Equations 5.32 and 5.33 are equal is true in
this case.

case 2: The critical edge crit is not cured by adding all edges from Ebuild
If the edge crit is never cured we know that fadd(G ∪ Ebuild, crit) ≥ 0 for any subset
Ebuild ⊂ Ebuild. From this follows that val2(G, crit, Ebuild) = min(fadd(G, crit)− fadd(G ∪
Ebuild, crit), fadd(G, crit)). We also know that fadd(G ∪ {e1}, crit) ≤ fadd(G, crit) for any
edge e1 ∈ Ecand. Considering this and that the edge crit is not cured by adding all edges
in Ebuild we know that fadd(G, crit) ≥ fadd(G, crit)− fadd(G ∪Ebuild, crit) > 0. Therefore
we can ignore the minimum term and get val2(G, crit, Ebuild) = fadd(G, crit)− fadd(G ∪
Ebuild, crit). Now we can formulate for Ebuild:

∑
crit∈Ecrit

val2(G, crit, Ebuild) = val2(G, crit, Ebuild)

= fadd(G, crit)− fadd(G ∪ Ebuild, crit)
= fadd(G, crit) + (−fadd(G ∪ {e1}, crit) + fadd(G ∪ {e1}, crit))

+ · · · − fadd(G ∪ Ebuild, crit)
= (fadd(G, crit)− fadd(G ∪ {e1}, crit)) + fadd(G ∪ {e1}, crit))

+ · · · − fadd(G ∪ Ebuild, crit)
= val1(G, crit, e1) + val1(G ∪ {e1}, crit, e2) + . . .

+ val1(G ∪ {Ebuild \ {en}}, crit, en)
= val(G,Ebuild)

Therefore we know that our claim that the Equations 5.32 and 5.33 are equal is also true
in this case.
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case 3: The critical edge crit is cured by adding a subset Ebuild edges from Ebuild
Without loss of generality we assume an index i, such that if the set of edges E<i = {ej |
ej ∈ Ebuild, j < i} is added the critical edge crit is not cured and if any of the edges from
E≥i = {ej | ej ∈ Ebuild, j ≥ i} is additionally added the critical edge is cured. For the first
subset E<i we can use the explanation from case 2. After adding the first subset E<i and
one edge ex from E≥i we can use the explanation from case 1 for the remaining edges from
E≥i \ {ex}. And for the single edge ex we know that val2(G, crit, {ex}) = val1(G, crit, ex).

So we can show that the expressions in Equation 5.32 and 5.33 are equivalent if Ecrit consist
of one critical edge. Since this can be any critical edge and the calculations for the critical
edges are independent, we can generalize it from one critical edge to a set of critical edges.

5.5.3. Selecting Edges to Add to the Graph

In Sections 5.5.1 and 5.5.2 we discussed the aspects influencing the value of an candidate
edge. Now we want to select candidate edges based on this value and the cost of each
candidate edge i, which is given as input to the problem.
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Candidate edges
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Figure 5.8.: Small example of a residual graph Ggreed for which a greedy algorithm would
result in a suboptimal solution. The critical edge is marked as red dotted edge.
Candidate edges are marked as dashed edges. Cost for the candidate edges
are cost(1, 4) = cost(3, 6) = 2 and cost(2, 5) = 1. Each candidate edge has a
capacity of 50 units. The criticality of the critical edge is fadd(Ggreed, 1, 6) = 60.

The first idea might be to use an greedy algorithm to select edges. This can be done by
ordering edges by their value-to-cost-ratio and adding edges until the critical edges are
cured. But it can easily be shown that a greedy algorithm does not necessarily achieve the
optimal solution even for very small instances of the problem TNEP-CCE. To demonstrate
this, Figure 5.8 shows a small example graph Ggreed consisting only of one critical edge and
three candidate edges. The total budget for adding candidate edges is B = 4. The capacity
of each candidate edge (a, b) is cap(a, b) = 50. The value of each candidate edge is also
val(a, b) = 50, because there is just one critical edge all candidate edges influence it and
can support 50 units of flow. The criticality of the critical edge is fadd(Ggreed, 1, 6) = 60
units of additional redundant flow. Because of the candidate edges capacities it is necessary
to add at least two candidate edges to cure the critical edge. The costs of the candidate
edges are cost(1, 4) = cost(3, 6) = 2 and cost(2, 5) = 1. The ratios of value to cost are
25 for edges (1, 4) and (3, 6) and 50 for line (2, 5). Therefore a greedy algorithm would
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5. Modeling to Cure Critical Edges

choose edge (2, 5) as first candidate edge to add. This would result in the critical edge
being not curable as none of the other edges would have any value in the second step.
The optimal solution would be to add the candidate edges (1, 4) and (3, 6), order being
irrelevant. Therefore using a greedy algorithm would not lead to the optimal solution for
this example.

So instead of using a greedy algorithm the next idea might be to use an dynamic pro-
gramming approach to chose from the candidate edges. Dynamic programming is based
on Bellman’s Principle of Optimality [Bel57]. The Principle of Optimality states that
there are problems for which the optimal solution of a problem can be composed from
the optimal solutions of its subproblems. Problems that fulfill this requirement are also
called problems with optimal substructures. Meaning that a problem can only be solved by
dynamic programming if Bellman’s Principle of Optimality applies to it or in other words
if it has an optimal substructure.

For this proof we have to define the subproblems for a TNEP-CCE instance. Let I =
{G = (V,E), Ecand, Ecrit, B} be a TNEP-CCE instance then we define I ′ as instance of the
subproblems as I ′ = {G = (V,E), E′cand ⊂ Ecand, Ecrit, B

′ ≤ B}.
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Figure 5.9.: Small example of a graph G for which a dynamic programming algorithm
would result in a suboptimal solution. The graph has two critical edges (1, 5)
with fadd(G, 1, 5) = 61.4 and (4, 3) with fadd(G, 4, 3) = 77.3. Candidate edges
are marked as dashed edges. Cost for the candidate edges are cost(1, 4) =
cost(2, 3) = 2 and cost(1, 2) = 3. The capacity for each candidate edge has is
marked on the edge. The direction of the edges marks the direction of the flow
on the edges.

We can show that Bellman’s Principle of Optimality does not apply to TNEP-CCE problem.
To show this we will use the counterexample provided by the graph in Figure 5.9. The graph
has two critical edges (1, 5) with fadd(G, 1, 5) = 61.4 and (4, 3) with fadd(G, 4, 3) = 77.3
capacity needed to add. For better understanding the residual graphs resulting from
calculating the critical edges are displayed in Figure 5.10a and Figure 5.10b. We assume an
expansion planning budget of B = 5 units for this Problem. The optimal solution for this
graph would be to add the candidate edges (1, 2) and (2, 3), which would cure both critical

46



5.5. Algorithm Design

90

1

2

3

4

5

100

100
100 150

20

20

60

160
80

61.4

Network edges

Critical edge

Candidate edges

(a) Residual graph resulting from check
if edge (1, 5) is critical.

90

1

2

3

4

5

100

100
100 150

20

20

77.3

130

70

60

Network edges

Critical edge

Candidate edges

(b) Residual graph resulting from check
if edge (4, 3) is critical.

Figure 5.10.: Residuals graphs of the graph introduced in Figure 5.9. The edges of the
residual graph are marked black. The candidate edges are marked as dashed
lines. The capacity of each edge is written next to it. The edges checked for
being critical are marked as red dotted lines and the value of criticality of
the edge is written next to it.

edges within the budget. If TNEP-CCE would have an optimal substructure this optimal
solution should consist of optimal solutions of the subproblems. Therefore looking at the
subproblem excluding the candidate edge (2, 3) for a budget of B = 5− cost(2, 3) = 3 the
optimal solution should be adding edge (1, 2). But adding candidate edge (1, 2) would
not cure any of the critical edges while adding candidate edge (1, 4) would cure critical
edge (1, 5) completely. This means that adding candidate edge (1, 4) would be the optimal
solution for the given subproblem. Therefore Bellman’s Principle of Optimality does not
apply to the TNEP-CCE problem as it has no optimal substructure and an dynamic
programming algorithm would not be able to solve the problem optimally.

5.5.3.1. A Heuristic for Choosing Candidate Edges

We already established that neither dynamic programming nor greedy algorithms can be
used to solve the TNEP-CCE problem optimally. Until now the most efficient way we
found to solve TNEP-CCE optimally is the formulation as MILP and solving it. At this
point we will start to look into heuristics to choose from the candidate edges to solve
TNEP-CCE. We hope that by using a heuristic approach for solving TNEP-CCE we will
find a more intuitive algorithm to solve this problem even if the solution is not optimal.

The general idea behind the heuristic is, that our problem has some parallels to the 0-1
Knapsack problem. A definition for the 0-1 Knapsack problem is given in 5.7.

Definition 5.7 (0-1 Knapsack).
Instance: A set of objects O with a given weight function w : O → R≥0 and a given value
function v : O → R≥0. Also a budget B ∈ R≥0 is given.
Objective: Find an assignment for xi ∈ {0, 1} for each i ∈ O so that:
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• the sum of values is maximal: max
∑

i∈O xiv(i)

• and the weights are with in the budget:
∑

i∈O xiw(i) ≤ B

The parallels of the two problems can be seen if you compare the candidate edges from
the TNEP-CCE problem to the objects of the 0-1 Knapsack problem. In both problems
you have to choose a subset from these sets, so that the costs/weights of those subsets are
within the budget. Furthermore in both cases there are values associated with the items in
the candidate edges/objects. There are two differences the first one being that TNEP-CCE
is a minimization problem while Knapsack is a maximization problem. The second is the
value function.
It is easy to reformulate TNEP-CCE to be a maximization problem by using the objective
maxEbuild⊂Ecand val(G,Ebuild). Because of the definition of the value for a subset of candidate
edges Ebuild ⊂ Ecand in Equation 5.33, the formulation as maximization problem is
equivalent to the formulation as minimization problem.
We know that TNEP-CCE has no optimal substructure. This fact is reflected in the
value function in Equation 5.33. While the value of an object v(a), a ∈ O in the 0-
1 Knapsack problem is independent from previous object selections and therefore the
equation v(Oadd) =

∑
o∈Oadd

v(o) is true, this is not the case for the value function in the
TNEP-CCE problem as shown in Equation 5.32.

The idea for the heuristic approach is, that the instances, in which dynamic programming
does not work, might not occur often in real transmission network topologies. Therefore
we assume that a solution given by a dynamic programming approach will be good in most
cases. In more detail this means that we base our edge selection on the edge selections
for the subproblem of the current problem, which has a equal or smaller budget and
less candidate edges to chose from. Because of the similarities between 0-1 Knapsack
and TNEP-CCE we use a dynamic programming algorithm for 0-1 Knapsack to base
the selection algorithm for TNEP-CCE on. The pseudo code for the resulting algorithm
ExpandNetwork can be seen in the Algorithm 5.1.

The Algorithm ExpandNetwork is not a dynamic programming algorithm but a heuristic
based on the idea of dynamic programming. This is because we do not reuse the calculated
value of the subproblems but recalculate the value of the edge selection in each step.

For the algorithm we assume, that the set of candidatelines is ordered in the way that
Ecand[i] = ei with ei ∈ Ecand. We also assume, that array indices start with 0. The array
K we use has dimensions of (B + 1)× (length(Ecand) + 1). We iterate the array in the
outer for-loop over the candidate edges Ecandand in the inner for-loop over the budget B.
Each field of the array K[j][i] describes the probably best solution for the subproblem with
the set of candidate edges E′cand = {ek|k ≤ i, ek ∈ Ecand} and the budget B′ = j. Each
entry K[j][i] is a 3-tuple (value, cost, E′build), with value being value = val(G,E′build), cost
being cost =

∑
ei∈E′build

cost(ei) and E′build ⊂ E′cand being the optimal solution found for
the subproblem described by this array entry.

The runtime of ExpandNetwork is in O(B|Ecand| ∗ runtime(Val)) time. Therefore the
runtime of ExpandNetwork strongly depends on the runtime of the algorithm which
determines the value of an candidate subset Val. The pseudo code of the Val algorithm
can be found in 5.2. The runtime of the Val is the same as |Ecrit| times the runtime
of the Algorithm redundantFlow 2.1 as this algorithm is executed in the function
fadd(G, a, b). Therefore the runtime of Val is in O(Ecrit · |V | · (|E|+ |Ebuild|)2) if we use
the redundantFlow 2.1 algorithm.
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5.5.4. Modifications

In the following section we will propose some modification to the algorithm introduced
before to improve the performance of the algorithm. We argued before that the runtime of
the Algorithm 5.1 strongly depends on the runtime of the subroutine to calculate the value
of a subset of candidate edges. Thus we will first look into improvements concerning the
value function. The effects of these improvements are evaluated in the Section 6. In the
Section 6 we refer to the originalExpandNetwork Algorithm as HEU for short.

5.5.4.1. Value Function

Lookup table

The first modification is the idea to introduce a lookup table for already calculated values.
This will not have any affect of the worst-case runtime of the algorithm, but we assume
that there are cases in which the values for some edge combinations are calculated multiple
times. Therefore a look up table may improve the runtime of the algorithm.

We implemented the lookup table so that we calculate and add a value to it if the value for
an subset of candidate edges is not already in the table when requested by the Algorithm
ExpandNetwork. The lookup table will not influence the quality of the result of the
Algorithm ExpandNetwork as we use the same method to calulcate the values. In the
Section 6 we will refer to the algorithm resulting from this modification as HEU_LU.

Value approximation

In section 5.5.1 we discussed the necessity to recalculate the value for an edge combination
Ecom ∪ {e},Ecom ⊂ Ecand and e ∈ Ecand even if we already know the values for Ecom and
e. The idea of this modification is to ignore this fact and approximate val(Ecom ∪ {e}) as
val(Ecom ∪ {e}) = val({e}) + val(Ecom). This means we only have to calculate the value
for each candidate edge once which adds up to |Ecrit| · |Ecand| maximum flow calculations
instead of |Ecrit| ·B · |Ecand| maximum flow calculations. This approximation also means,
that we have an optimal subset of our problem. This means we can reuse the previously
computed values for the subsets of candidate edges and therefore have a real dynamic
programming algorithm. But since we already showed the flaws of this approximation we
can expect a drop of quality for the result of the algorithm using this value approximation.

In the Section 6 we will refer to the algorithm resulting from this modification as
HEU_APPROX.
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Algorithm 5.1: ExpandNetwork
Input: Graph G = (V,E),capacity cap(u, v), initial flow f(u, v) for each

(u, v) ∈ E, set of candidate edges Ecand with capacity cap(u, v) and cost
cost(u, v) for each (u, v) ∈ Ecand, set of critical edges Ecrit, expansion
planning budget B

Data: K Array of size (B + 1)× (length(Ecand) + 1) initialized with tuple
(0, 0, ∅)

Output: List of selected edges Ebuild
1 for i = 1 to |Ecand|+ 1 do
2 for j = 1 to B + 1 do
3 ei = Ecand[i]

// If there is enough money to add candidate line i check if
adding it is beneficial

4 if j ≥ cost(ei) then
5 old_value, old_cost, old_edge_set = K[j − cost(ei)][i− 1]

// compute new values
6 new_edge_set = old_edge_set ∪ {ei}
7 new_value = val(G, new_edge_set, Ecrit)
8 new_cost = old_cost + cost(ei)
9 if new_value > K[j][i− 1][0] then

// If new_value is better take new
10 K[j][i] = (new_value, new_cost, new_edge_set)
11 else if new_value == K[j][i− 1][0] then

// If values are the same take the one with smaller
costs

12 if new_cost ≤ K[j][i− 1][1] then
13 K[j][i] = (new_value, new_cost, new_edge_set)
14 else
15 K[j][i] = K[j][i− 1]
16 else

// Take old entries as they have better values
17 K[j][i] = K[j][i− 1]
18 else

// Not enough budget to build line, take old values
19 K[j][i] = K[j][i− 1]

20 return K[B][|Ecand|]

Algorithm 5.2: Val
Input: Graph G = (V,E),set of selected edges Ebuild, set of critical edges Ecrit
Data: float value
Output: Value for selected edges

1 value = 0.0
2 forall (a, b) ∈ Ecrit do
3 value+ = max(0, fadd(G, a, b)− fadd(G ∪ Ebuild, x, y)
4 return value
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In this section we evaluate the methods we developed to solve the Problem TNEP-CCE as
introduced in Section 5.2.

6.1. Evaluation Methods
To obtain reliable data for our test data set we test the optimization methods on all
transmission networks we introduced in Section 4.1. For each network we test 48 different
load distributions on the network by taking the hourly snapshots for the 1st of January
2013 as well for the 25th June 2013. We know that the computation time and the amount
of criticality our optimization methods can cure depend on the provided candidate edges
as well as on the given budget. To test the effects of varying budget and varying number
of candidate edges we run two test series.

For the first test series we use a fixed set of candidate edges and modify the budget. For
each snapshot of a network we test 11 different budgets between 0% and 50% of the total
costs of all candidate edges. We choose these percentages as we can cure all criticalities for
tested networks within this range. We start with 0% of the total cost for the budget and
increase the budget in 5% steps until we reach 50%. Thus we run the optimization for each
network 528 times which should provide meaningful data. The candidate edges for this
test series are generated using the knn-method, introduced in Section 4.3.2. For creating
the candidate network we use k = 2, meaning we create at least two candidate edges for
each node. In the following sections, we refer to this test series as the Budget test series.

For the second test series we choose a fixed budget of 30% of the total costs for all candidate
edges with a varying amount of candidate edges. We decide to use 30% for the budget
as it is not possible to cure all critical edges with this budget in most test networks and
we expect to see more variations between the evaluated algorithms. For each network we
generate a set of candidate edges using the knn-method with k = 2, which is introduced in
Section 4.3.2. From this set of candidate edges we generate random subsets consisting of 0%
to 100% of the candidate edges in 10% steps. This is achieved by using the python package
random which allows us to generate a random subset of the candidate edges given a specified
size. For more information on the python package random, consult the documentation of
the Python Standard Library [Fou19b]. We use each of those subsets as input for all of our
optimization methods for 48 different load distributions of the tested network. Therefore
we run each optimization method on each network 528 times for this test series. In the
following sections we refer to this test series as the Candidate test series.
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6. Evaluation

Generally, we are most interested in the computation times of the methods as well as the
quality of their results. For measuring the computation times, we decide to measure the
time for generating the mathematical model as well as the time for optimizing the model.
For the result quality, we are interested in the prediction error of each optimization method
as well as their result in comparison to the other methods. The prediction error we define
for each optimization method as the absolute difference of the optimal objective value, which
is the amount of criticality predicted for the network after building the proposed edges,
and the amount of criticality which is actually cured by adding the proposed candidate
edges to the network. To obtain the latter value, we add the proposed edges to the original
network and perform a DC power flow approximation on this new network. Depending on
this recalculated power flow we then calculate for each edge in the network its value of
criticality.

All optimization methods are tested on a laptop with a Intel Core i7-6700HQ processor with
6 MB cache, 2.6 GHz, 8 cores and 16 GB RAM. For the evaluation the operating system
used is Arch Linux with the Linux kernel version 4.20.11. The optimization methods are
implemented using Python 3.7.2 [Fou19a] and Gurobi version 8.1 [GO18]. The used python
packages are graph-tool version 2.27 [dPP27] and PyPSA version 0.13.2 [BHS19, BHS18].

6.2. Reference Optimization Method - Mathematical Model
with DC Approximation

The mathematical model with DC power flow approximation is the reference model to
which we compare our results. This model, first introduced in Section 5.3.1, calculates the
best possible subset of candidate edges while considering the power flow changes caused by
adding candidate edges to the network. In total we discuss three variants of this model in
Section 5.3.1.

The first variant is the model with the objective to minimize the sum of the criticalities
for a given set of critical edges, which are part of the input. We refer to this model
as MMDC_SET, an abbreviation for mathematical model using the DC power flow
approximation with a given set of critical edges.

The second variant has the same objective but minimizes the sum of criticalities for all
edges, to avoid creating new critical edges caused by power flow changes when adding edges
to the network. Because of the recalculation of all criticalities we refer to this model as
MMDC_RECALC.

We decide in Section 5.2 to use the objective of minimizing the sum of criticalities as
main objective of the problem TNEP-CCE for this thesis. Nonetheless we are interested
in the effect of choosing the different but similar objective of minimizing the number of
critical edges. Therefore we choose as third variant the objective to minimize the number
of critical edges for a given set of critical edges. We refer to this version as MMDC_NUM.
Since we already decided in Section 5.2 that we use the objective of minimizing the sum of
criticalities, we refrain from evaluating more than one model using a different objective.

First, we compare the versions MMDC_SET and MMDC_RECALC with the same
objectives to see which effect a given set of critical edges has versus checking all edges for
criticality in Subsection 6.2.1.

6.2.1. Given Set of Critical Edges versus Calculated Set of Critical Edges

In this subsection we compare the model MMDC_SET, with a given set of critical edges,
to the model MMDC_RECALC, which models the criticality for all edges.
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6.2. Reference Optimization Method - Mathematical Model with DC Approximation

We have some hypotheses, what we expect to observe during the evaluation, that we
introduce in the following paragraph. For the model MMDC_RECALC we do not introduce
any additional simplifications, which leads to Hypothesis 1.

Hypothesis 1. We expect to see no prediction error for the model MMDC_RECALC.

For the model MMDC_SET we use a fixed set of critical edges. Because of this simplification
criticalities of previously not critical edges are not taken into account in the optimization
process, meaning that the criticality of the network predicted by MMDC_SET might be
too low. This leads to Hypothesis 2 and 3.

Hypothesis 2. For the model MMDC_SET we expect to see some kind of prediction error.

Hypothesis 3. We expect the model MMDC_SET to predict a lower value of criticality
than the actual value of criticality.

Because MMDC_RECALC models the criticality for all edges, the model has a higher
number of constraints and variables than MMDC_SET for the same network. This results
in Hypothesis 4

Hypothesis 4. We also expect a higher optimization and model generation time for the
model MMDC_RECALC in comparison to the model MMDC_SET.

The candidate edges are an important part of the mathematical models, with multiple
variables and constraints for each candidate edge. Because an increasing number of
candidate edges increases the model complexity accordingly, this leads to Hypothesis 5

Hypothesis 5. We expect for both models, that optimization and model generation time
become longer for increasing number of candidate edges.

In contrast to the candidate edges we only have one constraint for the budget. This means
that a higher budget will not lead to more constraints or variables. But we know that the
budgets limits the investment cost for the candidate edges, meaning if we have a higher
budget we can add more edges and therefore more edge combinations can be feasible.
As long as the budget limits the choice of candidate edges the computation time should
therefore increase. These thoughts lead to Hypothesis 6

Hypothesis 6. We expect for both models, that optimization time will increase for in-
creasing budget as long as not all candidate edges can be added. The model generation time
should not be effected by the budget.

We already discussed that we can add more candidate edges with an increasing budget.
For most critical edges and sensible chosen sets of candidate edges we expect that having
the possibility to add more candidate edges will make it possible to cure more criticalities.
We expect that is is possible to cure more criticalities with increasing budget until all
criticalities are cured or until we added all candidate edges which effect the criticalities.
This leads to Hypothesis 7.

Hypothesis 7. We expect for both models, that the sum of criticalities decreases with
increasing budget.

For the Candidate test series we assume that if we have a really small set of candidate edges
it is not possible to make a lot of choices. If the amount of candidate edges is increased,
it is possible that there are more suitable candidate edges or better edge combinations
possible when choosing from the larger set of candidate edges. This leads to Hypothesis 8.
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Hypothesis 8. We expect for both models, that the sum of criticalities decreases with
increasing number of candidate edges.

First we discuss the results for the Budget test series, having a fixed set of candidate edges
and a variable budget.

For all networks we observe a decline in criticality with increasing budget for both models,
just as we predicted in Hypothesis 7. This can be seen for example in Figure 6.1, in which
the value of criticality is depicted for both models in solid lines for the Slovak transmission
network. We observe for all networks that the value of criticality of both models is equal
or nearly the same. This means both models cure approximately the same amount of
criticality.

As predicted in the Hypothesis 1 we do not observe a prediction error for the MMDC_
RECALC model. Interestingly, for the MMDC_SET model we only observe a prediction
error for three networks. The first network we see the error for the MMDC_SET model
is the Slovak transmission network with 9 nodes and 13 edges, and the second one being
the Bulgarian transmission network with 12 nodes and 17 edges and the third one is the
Romanian transmission network with 17 nodes and 27 edges. Also those prediction errors
only occur for the Bulgarian transmission network for the budget being around 20% of
the total cost of candidate edges and for the Romanian only for the budget being around
15% of the total cost of candidate edges. For all other networks both models MMDC_SET
and MMDC_RECALC do not have any prediction error. This observation is contrary
to what we expected in Hypothesis 2, because the prediction error of MMDC_SET just
occurs only on few networks, while we expected it to occur on almost all networks. This
means that the model MMDC_SET using a given set of critical edges performs optimal
for the utmost part of our test data. Figure 6.1 shows the error of the model MMDC_SET
in relation to the budget in percentage of the total cost of all candidate edges. In the
same figure we also depict the real value of criticality for MMDC_SET drawn as solid blue
line and for model MMDC_RECALC as solid orange line. We can also see the predicted
value of criticality for MMDC_SET as dotted blue line. The prediction error of the model
MMDC_SET is drawn as dashed blue line in the figure. The prediction error is equal
to the absolute difference of the predicted value and real value of criticality. This can
also be observed in the figure. We already established that our evaluation results do not
support Hypothesis 2 for almost all networks. But for all occurrences of the prediction
error for model MMDC_SET, it is relatively small. For example the largest prediction
error occurred on the Slovak transmission network and is around 161 MW, but this is only
6% of the initial value of criticality. The average error for all snapshots shown in Figure
6.1 for the Slovak transmission network for the same budget is only around 35 MW. This
is less than 2% of the initial value of criticality, which is around 2600 MW and can be
seen in the figure for a budget of 0% when looking at the real values of criticality for both
models. The value of the error depends on the topology of the network as well as on the
set of candidate edges. So we have no further explanation why the error for MMDC_SET
depicted in Figure 6.1 has a local minimum for a budget of 40%.

In Figure 6.1 we can also observe, that the predicted value of criticality is always lower
than the real value of criticality. This result agrees with Hypothesis 3. This is the case for
all networks in which we observe a prediction error.

We did not test the model MMDC_RECALC for all transmission networks for all snapshots.
The reason for this is, that the optimization time of the model MMDC_RECALC is way
higher than for the the model MMDC_SET. The optimization and model generation times
for the Bulgarian transmission network can be seen in Figure 6.2 and the times for the
Swiss transmission network can be seen in Figure 6.3 for both models. In the figures the
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Figure 6.1.: This figure shows the results for the models MMDC_SET and
MMDC_RECALC for the Slovak transmission network for the Budget test
series. In this figure the real values of criticality for the model MMDC_SET is
drawn as solid blue line and the real value of criticality for MMDC_RECALC
is drawn as solid orange line. For the model MMDC_SET the predicted value
of criticality is drawn as dotted blue line. All values of criticality are marked
on the left side of the figure. The prediction error for the model MMDC_SET
is drawn as dashed blue line. The values for the prediction error are marked
on the right side of the figure.
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Figure 6.2.: Optimization and model generating time of the two model versions
MMDC_SET and MMDC_RECALC for the Bulgarian transmission net-
work for the Budget test series. Times for the MMDC_SET are depicted
in blue and times for MMDC_RECALC are depicted in orange. The model
generation time is depicted using dashed lines. The solid lines are used for
depicting the values for the optimization times.
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Figure 6.3.: Optimization and model generating time of the two model versions
MMDC_SET and MMDC_RECALC for the Swiss transmission network
in the Budget test series. Times for the MMDC_SET are depicted in blue and
times for MMDC_RECALC are depicted in orange. The model generation
time is depicted using dashed lines. The solid lines are used for depicting the
values for the optimization times.

optimization times are depicted as solid lines while the model generating times are depicted
as dashed lines. The model MMDC_SET is represented by using blue lines and the model
MMDC_RECALC is represented using orange lines in both figures. Both figures show
that the times for the model MMDC_RECALC, depicted by the orange lines, both for
the model generation and optimization times, are higher than their blue counterparts.
Especially in Figure 6.3 where the times for the Swiss transmission network are shown, we
can see large differences between the both models. We observe this behavior on all tested
networks. This means that the model MMDC_RECALC has really high computation
times in comparison with the the model MMDC_SET as discussed in Hypothesis 4. The
higher optimization time and model generation time for the model MMDC_RECALC
are as expected, because this model has a lot more constraints and variables to consider
criticalities for all edges. We can observe for all networks that the budget does not effect the
model generation time. For example in Figure 6.2 we can see for the Bulgarian transmission
network, that neither one of the model generation time, depicted with dashed lines, increase
for increasing budgets. This supports one part of the Hypothesis 6. For both models we
observe an all networks increasing optimization times with increasing budget, as long as
the budget is between 0% and 15% of the total costs of candidate edges. This is also
according to Hypothesis 6. However we observe on most networks for larger budgets than
15% similar behavior as shown for the Swiss transmission network in Figure 6.3. Meaning
the average optimization time is longest for a budget of around 15% to 25% depending
on the network. For budgets larger than 25% we observe decreasing or nearly constant
optimization times on most transmission networks. This contradicts the Hypothesis 6, in
which we expected the optimization time to generally increase with increasing budget. We
think this behavior correlates with the value of criticality that can be cured for this budget.
For all test networks the utmost amount of criticality can be cured with a budget of around
20% of the total candidate costs. This can be seen for example in Figure 6.1 for the Slovak
transmission network.
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To get a better overview on the optimization process by Gurobi, Figures 6.4 and 6.5 show
the objective value and the gap for the optimization process on the Austrian transmission
network. The normalized gap of the of the optimization process is calculated as gap(t) =
1− lb(t)

obj(t) , with lb(t) as lower bound at time t and obj(t) as the objective value at time t. We
normalized the objective value by dividing the objective value by the initial criticality for
this snapshot. The objective value is drawn as solid line while the gap is drawn as dashed
line. The results for the model MMDC_SET are marked blue and the results for the model
MMDC_RECALC are marked orange. The normalized objective value for zero seconds is
different for both models and not 1 as both models start the optimization with a random
initialization of their variables. We display both figures as we normalized the optimization
time in Figure 6.5 to focus on the objective value in comparison for both models. In Figure
6.4 we do not normalize the optimization time, to focus on the differences in optimization
time of both models. The figures show the optimization process of the snapshot on the
1st January 2013 at 17:00 of the Austrian transmission network with a budget of 20%.
We decided to use the Austrian transmission network because the differences between
snapshots of this network are relatively small. Also the Austrian transmission network is a
good example for all tested networks as the optimization times on this network are within
the average of all networks for both models.
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Figure 6.4.: Gurobi optimization process for the Austrian transmission network. The
optimization process is for the 1st January 2013 at 17:00 with a budget
of 20%. The solid lines represent the results for the normalized objective
value and the dashed lines represent the normalized gaps relative to the
optimization time. The results for MMDC_SET are marked blue and the
results for MMDC_RECALC are marked orange. The optimization for model
MMDC_SET finished after 1.6 sec, therefore the blue line ends at this time.
The objective value of both models start at different points as the models are
initialized randomly.

Figure 6.4 shows the optimization process for the 1st January 2013 at 17:00 of the Austrian
transmission network. The figure shows the normalized objective value relative to the
optimization time. We can see that the blue lines, representing the results for MMDC_SET,
end at 1.6 sec. This is because the model MMDC_SET successfully finishes the optimization
at this time. This can also be seen by the observation, that the gap becomes zero at 1.6
sec. The resulting objective value is ca. 0.04 as it is not possible to cure all criticalities
for this snapshot with a budget of 20%. The optimization time for MMDC_RECALC
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is 27.7 sec for this snapshot, as can be seen by observing the orange lines. The model
MMDC_RECALC also finishes the optimization successfully with a gap of zero and a
objective value of ca. 0.04.
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Figure 6.5.: Gurobi optimization process with normalized time for the Austrian transmission
network. The optimization process is for the 1st January 2013 at 17:00
with budget of 20%. The solid lines represent the results for the normalized
objective value and the dashed lines represent the normalized gaps relative
to the normalized optimization time. The results belonging to MMDC_SET
are marked blue and the results belonging to MMDC_RECALC are marked
orange. The time for each model is normalized by dividing the measured time
for each step by the total optimization time of the model.

If we normalize the optimization times, shown in Figure 6.4, by dividing the current
optimization time by the total optimization time for each model, we obtain the results
shown in Figure 6.5. In the Figure 6.5 we do not observe, a large difference between both
models MMDC_SET and MMDC_RECALC, especially for the gaps, drawn as dashed
lines. When comparing both objective values, drawn as solid lines, we observe that the
optimization values are the same at the end of each optimization. On average over all tested
snapshots both objective values decreased equivalently fast relative to the normalized time.
The optimization of the Austrian network shown in Figures 6.4 and 6.5 represents the
average of the optimizations we observe on all networks we tested. For the Swiss trans-
mission network however we observe extremely long optimization times for the model
MMDC_RECALC for some snapshots for a budget of 20%. Figure 6.6 shows the opti-
mization process of one of the snapshots of the Swiss transmission network with extensive
computation times. We chose the snapshot of the Swiss transmission network on the
1st January 2013 at 10:00. The figure shows the results relative to the normalized time
because the optimization time for the model MMDC_RECALC is 8857 sec while the
model MMDC_SET optimization time is 0.1 sec on the same snapshot. The results for
MMDC_SET are drawn as blue lines and the results of MMDC_RECALC are drawn as
orange lines. The lines showing the gap are dashed, while the lines showing the normalized
objective value are solid. We observe in Figure 6.6 that the optimal objective value,
especially for MMDC_RECALC, is reached early on in the optimization process and most
of the optimization time is spend to adjust the minimum objective bound. we only observe
these extensive optimization times for MMDC_RECALC in comparison to the optimization
times for MMDC_SET we on the Swiss transmission network and only for a budget around
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20% for the Swiss network. It seems to be caused by a specific combination of network
topology, including load distribution, budget and candidate network. We can neither
observe the same behavior in this magnitude for all snapshots of the Swiss transmission
network nor for different budgets for the same snapshots.

This concludes our observations for the models MMDC_SET and MMDC_RECALC for
the Budget test series. In the following paragraph we discuss the hypotheses on the Budget
test series, which are 8 and 5. As well as the hypotheses we expect to be true for both test
series. These Hypotheses are 1, 2 3 and 4.
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Figure 6.6.: Gurobi optimization process with normalized time for the Swiss transmission
network. The optimization process is for the 1st January 2013 at 10 o’clock
with a budget of 20%. The solid lines represent the normalize objective value
and the dashed lines represent the normalized gap. The lines belonging to
MMDC_SET are blue and the lines for MMDC_RECALC are orange. The
final normalized objective value for both methods is 0.07 as not all criticalities
can be cured.

We observe no prediction error of MMDC_RECALC on all tested networks in the
Candidate test series. This supports Hypothesis 1.

For the Candidate test series we observe decreasing values of criticality with increasing
number of candidate edges for both models and all networks. This supports Hypothesis
8. This behavior can be observed for example in Figure 6.7. In this figure we observe
the value of criticality as blue solid line for MMDC_SET and as orange solid line for
MMDC_RECALC. We observe for both objective values, that they decrease with increasing
number of candidate edges.

We also observe increasing optimization and model generation times for increasing the
number of candidate edges for both models, which supports Hypothesis 5. This behavior
can be seen for all tested networks. One example for the increasing optimization time is
depicted in Figure 6.8, by showing results for the Austrian transmission network. The
optimization times are drawn as solid lines and the model generation times are drawn
as dashed lines. The lines belonging to model MMDC_SET are blue while the lines for
MMDC_RECALC are orange. For the optimization and model generation times we observe
for all networks, that the time for the model MMDC_RECALC is higher than for the the
model MMDC_SET, which supports Hypothesis 4.
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Figure 6.7.: Average real value of criticality for the models MMDC_SET and
MMDC_RECALC for the Austrian transmission network as well as the pre-
diction error and predicted value of criticality for MMDC_SET. The figure
shows the results for the Candidate test series. The real values of criticality
are drawn as solid lines. The prediction error is drawn as dashed line and the
predicted value of criticality is drawn as dotted line. All lines concerning the
model MMDC_SET are blue and all lines concerning MMDC_RECALC are
orange.

For the Candidate test series with fixed budget and variable number of candidate edges
we observe in total 8 networks where the first model version had some kind of prediction
error. But for all those networks except the Slovak, Bulgarian and Romanian, for which we
already observe a prediction error in the Budget test series, the prediction errors are smaller
than 10 MW and are most likely caused by the integer feasibility tolerance of Gurobi.
This tolerance is per default set to 1e−5 meaning Gurobi can insert an edge for 99.99% or
100.01% even though we defined the insertion as binary variable. Considering the amount
of criticality for those networks, for example for the Dutch network with a initial criticality
of 4531 MW we observe the maximum prediction error for MMDC_SET to be 2.5 MW,
this is about 0.06% of the original criticality and can therefore be neglected. Thus, we
conclude that the test data of the Candidate test series also contradicts Hypothesis 2.
Except for the prediction error the values of criticality are almost the same for all network
for both models. An example for this behavior is shown in the Figure 6.7 in which the
result for the Austrian transmission network are depicted. The real values of criticality
are drawn as solid lines and the prediction error is drawn as dashed line. The results for
MMDC_SET are drawn in blue and for MMDCRECALC in orange. We see in this figure
the maximal average prediction error for ten candidate edges, which is 9.8 MW. The initial
value of criticality for the Austrian transmission network can be seen for the real value
for zero candidate edges, it is approximately 13, 986 MW. Therefore the maximal average
error on the Austrian transmission network is less than 0.08%.

To provide an overview over our result for this subsection, we summarize the results of all
networks in the test data set in Table 6.1. In this table we have one entry for the combination
of each hypothesis and each network in which we enter whether the hypothesis is correct
for this network (X) or not (x). Since we did not test the model MMDC_RECALC on all
test networks, because of extensive computation times, we marked networks on which we
did not test an hypothesis with -. For general hypothesis not specifying the test series we
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Figure 6.8.: Average computation times for the Austrian transmission network and the
models MMDC_SET and MMDC_RECALC for the Candidate test series.
The optimization times are drawn as solid lines and the model generation times
are drawn as dashed lines. The lines for MMDC_SET are blue and the lines
for MMDC_RECALC are orange.

write the results as (Budget,Candidate) to differ between both test series. When looking
at the results we can see that Hypothesis 2 is not supported by our test data for the Budget
test series. This is because we could not observe any prediction error for MMDC_SET
on most networks for the Budget test series. For Hypothesis 3 we do not have a lot of
data. The Hypothesis 3 was that we expect an lower predicted value of criticality for the
model MMDC_SET than the actual value. For most of our test data in the Budget test
series we could not observe a difference between two values, therefore we can not draw any
conclusion concerning the hypothesis.

The most significant conclusions of this comparison are, that the model MMDC_RECALC
is more precise than the model MMDC_SET. But the model MMDC_RECALC has
also higher optimization and model building times. For application where time is not
an essential factor the model MMDC_RECALC can therefore be used. For interactive
or time critical applications we would recommend using the model MMDC_SET. The
model MMDC_SET has significantly lower optimization and model building times, while
providing good results and having a low prediction error.

We use the computational more efficient model MMDC_SET as the reference optimization
model for the other optimization methods, because it solves the problem TNEP-CCE as
modeled in Section 5.2.

6.2.2. Objective Minimizing the Sum of Criticalities versus Objective
Minimizing Number of Critical Edges

In this subsection we compare the model MMDC_SET with the model MMDC_NUM.
The model MMDC_SET has the objective to the minimize the sum of criticalities. The
model MMDC_NUM has the objective to minimize the number of critical edges. Both
variants, we compare in this subsection, have a fixed set of critical edges as input.

We evaluate the networks and discuss the following hypothesis we have for the comparison
of the model MMDC_SET and MMDC_NUM. MMDC_SET and MMDC_NUM have
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Table 6.1.: This table summarizes in which networks which Hypothesis from Subsection
6.2.1 are correct for the different test series. Since we did not test the model
MMDC_RECALC on all networks we use the symbol - to indicate, that we did
not test the model. The entries for the networks on which we did not test for
the MMDC_RECALC model are for the model MMDC_SET. If a hypothesis
is supported by the test data we w use the symbol X. If the test data opposes a
hypothesis we use the symbol x. If we cannot draw any conclusion concerning
the hypothesis from the test data we use the symbol ∼. We do not include the
Irish and Slovenian transmission network as both have no critical edges for all
testes snapshots. For general hypothesis not specifying the test series we write
the results as (Budget,Candidate) to differ between both test series.

country H. 1 H. 2 H.3 H. 4 H. 5 H. 6 H. 7 H. 8
Austria (X|X) (X|X) (X|X) (X|X) X x X X
Belgium (X|X) (x|X) (∼|X) (X|X) X x X X
Bulgaria (X|X) (X|X) (X|X) (X|X) X X X X
Croatia (X|X) (x|x) (∼|∼) (X|X) X x X X
Czech Republic - (x|X) (∼|X) - X x X X
Denmark (X|X) (x|x) (∼|∼) (X|X) X x X X
Hungary - (x|X) (∼|X) - X X X X
Netherlands - (x|X) (∼|X) - X x X X
Norway - (x|x) (∼|∼) - X x X X
Poland - (x|X) (∼|X) - X x X X
Portugal (X|X) (x|x) (∼|∼) (X|X) X x X X
Romania - (x|X) (∼|X) - X X X X
Slovakia (X|X) (x|X) (∼|X) (X|X) X X X X
Sweden - (x|x) (∼|∼) - X x X X
Switzerland (X|X) (x|X) (∼|X) (X|X) X x X X

different objectives. MMDC_SET optimizes the sum of criticalities this leads to Hypothesis
9.

Hypothesis 9. We expect when optimizing the network using the model MMDC_SET
to have an overall smaller sum of criticalities after the optimization than when using the
model MMDC_NUM.

Hypothesis 10. Analogously MMDC_NUM optimizes the number of critical edges, which
lead to Hypothesis 10. We expect that the number of critical edges is smaller when using
the model MMDC_NUM.

Because both mathematical models are identical except for the objective, we expect
Hypothesis 11.

Hypothesis 11. Considering the model generating times we do not expect to see large
differences.

Because for MMDC_SET adding an candidate edge as more often an immediate effect on
the objective value than for the model MMDC_NUM, we think Hypothesis 12 is correct.

Hypothesis 12. We expect the model MMDC_SET to have a better optimization time
because adding an candidate edge as more often an immediate effect on the objective value
than for the model MMDC_NUM.
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Because more edges can be added for increasing budgets and increasing number of candidate
edges provide more possibilities to choose from, we formulate Hypothesis 13.

Hypothesis 13. We expect decreasing value of criticality with increasing number of critical
edges or increasing budget for both models.

Because adding candidate edges will increase the model size and increasing the budget will
allow more combination of edges, we formulate Hypothesis 14.

Hypothesis 14. We expect increasing optimization times with increasing number of critical
edges or increasing budget for both models.

We observe for both test series Candidate and Budget and both models the behavior same
behavior of both models. The only exception is Hypothesis 14. Like in the previous section
we observe for the Budget test series on most networks an increase in optimization time
to a budget of 15% to 25% and a decrease in optimization time when further increasing
the budget. For the Candidate test series Hypothesis 14 is supported by the results for all
transmission network. Because all other hypotheses behave the same for both test series
we do not distinguish between the result of both test series in this Section.

We observe for all networks a decrease in criticality for increasing budget and increasing
number of candidate edges. This observation supports Hypothesis 13.

When comparing the results of both models we observe that the value of criticality for
the model MMDC_SET is nearly always lower than the real value of criticality for
MMDC_NUM. Therefore most of the test data supports Hypothesis 9. Interestingly we
observe for the Slovak transmission network, that the value of criticality is lower for the
model MMDC_NUM, optimizing the number of critical edges. The Slovak transmission
network is the only network we observe a lower real value of criticality for MMDC_NUM.
As discussed in Subsection 6.2.1, we observe for the Slovak transmission network that
previously not critical edges become critical in the optimization process for MMDC_SET.
Apparently this is not the case for the model MMDC_NUM even though we have the same
list of critical edges as input and do not recalculate the list during the optimization. This is
most likely caused by the different objectives and the resulting choices in candidate edges.
We also observe that the number of critical edges is the same for both models or lower for
the model MMDC_NUM. This supports the Hypothesis 10. The results for optimizing the
Austrian transmission network can be seen in Figure 6.9. In this Figure we display the
number of critical edges for both models as well as the value of criticality for the Budget
test series on the Austrian transmission network. The real value of criticalities are drawn
as solid lines while the number of critical edges is drawn as dotted lines. The results for
MMDC_SET are drawn in blue and the results for MMDC_NUM are drawn in orange.
For this example we can see, that the number of critical edges is clearly lower for the model
MMDC_NUM. Also we observe that the real value of criticality is lower for the model
MMDC_SET.

We also observe that the model MMDC_NUM using the objective to minimize the number
of critical edges has on average higher computation times. This supports Hypothesis 12.
In fact for the Swiss transmission network we observe for one snapshot with a budget of
15% of the total costs of candidate edges an optimization time over ten hours. The model
MMDC_SET had an optimization time under two seconds for the same snapshot. We
do not observe such dramatic differences in optimization time for all networks or even
all snapshots of the same network. But we see for all networks in our test data set an
increase in computation time for the model MMDC_NUM in comparison to the model
MMDC_SET. A good example for the increase in optimization time is shown in Figure
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Figure 6.9.: Average value of criticality and average number of critical edges for the Austrian
transmission network and the models MMDC_SET and MMDC_NUM for
the Budget test series.. The real value of criticalities are drawn as solid lines
while the number of critical edges is drawn as dotted lines. The results for
MMDC_SET are drawn in blue and the results for MMDC_NUM are drawn
in orange.

6.10. In Figure 6.10 the optimization and model generation times for both models for the
Austrian transmission network are depicted. In this figure we display the optimization
times as solid lines and the model generation times as dashed lines. The times for model
MMDC_SET are drawn in blue and the results for MMDC_NUM are drawn in orange. In
the figure we observe for all budgets a longer optimization and model generation time for
MMDC_NUM. It is quite interesting that the model generation time is also higher for the
model MMDC_NUM even though the models are nearly the same. We observe the higher
model generation time for MMDC_NUM in comparison to the model generation time
for MMDC_SET not only for this example but for all tested networks. This observation
contradict Hypothesis 11.

To provide an overview over our result for this subsection, we summarize the results of
all networks in the test data set in Table 6.2. In this table we have one entry for the
combination of each hypothesis and each network in which we enter whether the hypothesis
is correct for this network (X) or not (x). Since we did not test the model MMDC_NUM
on all test networks, because of extensive computation times, we marked networks on which
we did not test an hypothesis with -. For general hypothesis not specifying the test series
we write the results as (Budget,Candidate) to differ between both test series. We can see
in the table that most of our hypotheses were correct. Only Hypotheses 11 and 14 for the
Budget test series are not supported by our test data.

When excluding the Hypothesis 11, where we suspect the same model generation times,
and the first part of Hypothesis 14, in which we suspect increasing optimization times
for increasing budgets, the results of this evaluation are as expected. While the model
MMDC_SET minimizing the sum of criticalities showed over all a lower sum of criticalities
we observe a lower number of critical edges for the model MMDC_NUM. Because of the
sometimes significantly higher computation times of the model MMDC_NUM we prefer
for this thesis the version with the objective to minimize the sum of criticalities.
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Figure 6.10.: Average computation times for the Austrian transmission network and the
models MMDC_SET and MMDC_NUM for the Budget test series. In this
figure we display the optimization times as solid lines and the model generation
times as dashed lines. The times for model MMDC_SET are drawn in blue
and the results for MMDC_NUM are drawn in orange.

6.3. Heuristic and Modifications
In this section we review the original heuristic proposed in Section 5.5.3.1 in comparison
the modifications proposed in Section 5.5.4. As modifications we propose in Section 5.5.4
the introduction of a lookup table to avoid multiple computations of the same value and
the approximation of the value by using a fixed value for each candidate edge. For short we
refer to the original heuristic as HEU. To the modification of the heuristic using a lookup
table we refer to as HEU_LU and to the version with value approximation we refer to as
HEU_APPROX. First we compare the computation times of these three variations and
then we compare the quality of their results.

6.3.1. Computation Time

Like in the previous section we also measured the model generation time as well as the
optimization time of the model. For all versions of the heuristic the model generation is
exactly the same. During the model generation, we generate a graph object of the network
using the python library graph-tools [dPP27]. Because we do not compute anything on the
graph and the largest of our networks just has 48 nodes and 84 edges we expect to have
really small model generation times for all networks.

For the optimization time we have the following hypothesis. We designed the modifications
especially to speed up HEU, thus we expect to see results supporting Hypothesis 15.

Hypothesis 15. We expect for the computation times that the original heuristic HEU
has the longest optimization time. We expect a speed up by using the look up tables in
the version HEU_LU and an even larger speed up when using the value approximation in
HEU_APPROX.

Because increasing budgets and increasing number of candidate lines make the problem
more complex we expect to see results supporting the Hypotheses 16 and 17.
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Table 6.2.: This table summarizes in which networks which Hypothesis from Subsection
6.2.2 are correct for the different test series. Since we did not test the model
MMDC_NUM on all networks we use the symbol - to indicate, that we did
not test the model. The entries for the networks on which we did not test for
the MMDC_NUM model are for the model MMDC_SET. If a hypothesis is
supported by the test data we use the symbol X. If the test data opposes a
hypothesis we use the symbol x. If we cannot draw any conclusion concerning
the hypothesis from the test data we use the symbol ∼. We do not include the
Irish and Slovenian transmission network as both have no critical edges for all
testes snapshots. For general hypothesis not specifying the test series we write
the results as (Budget,Candidate) to differ between both test series.
country H. 9 H. 10 H.11 H. 12 H. 13 H. 14
Austria (X|X) (X|X) x X (X|X) (x|X)
Belgium (X|X) (X|X) x X (X|X) (x|X)
Bulgaria (X|X) (X|X) x X (X|X) (X|X)
Croatia (X|X) (X|X) x X (X|X) (x|X)
Czech Republic - - - - (X|X) (x|X)
Denmark (X|X) (X|X) x X (X|X) (x|X)
Hungary - - - - (X|X) (X|X)
Netherlands - - - - (X|X) (x|X)
Norway - - - - (X|X) (x|X)
Poland - - - - (X|X) (x|X)
Portugal (X|X) (X|X) x X (X|X) (x|X)
Romania - - - - (X|X) (X|X)
Slovakia (X|X) (X|X) x X (X|X) (X|X)
Sweden - - - - (X|X) (x|X)
Switzerland (X|-) (X|-) x X (X|X) (x|X)

Hypothesis 16. We expect for the Budget test series to see increasing computation times
with increasing budget for all models but especially for the heuristic HEU. We expect this
because the number of maximum s,t-flow computation is for this model proportional to the
budget.

Hypothesis 17. We expect for the Candidate test series to see increasing computation
times with increasing number of candidate edges for all models.

We measure the model generation only for the original heuristic, because the model
generation is exactly the same for the modifications HEU_LU and HEU_APPROX.
We measure model generation times between 0.009 and 0.02 sec for all our networks.
These model generation times are quite small and can be neglected in comparison to the
optimization times for all versions of the heuristic. As the model generation for the heuristic
is the generation of an graph object including the original edges and nodes, neither the
budget nor the candidate edges are relevant for the model generation. Thus it is reasonable
that we observe that both variables have no impact on the model generation times.

The results for the optimization time for the Swiss transmission network for the Budget
test series and the Candidate test series can be seen in Figure 6.11. These results for the
network are representative for all networks in the test data set. In the figures we can see
the optimization times for the original Heuristic HEU in light green. The optimization
times for HEU_APPROX are depicted in a darker green and the optimization times for
HEU_APPROX are depicted in orange in both figures. As expected in the Hypothesis 15
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we can observe significant speed ups for both modifications HEU_LU and HEU_APPROX.
We also observe that the modification HEU_APPROX is always significantly faster than
the modification HEU_LU for both test series. For all networks we observe an increase in
optimization time for increasing budget and increasing number of candidate edges. These
observation support our Hypothesis 16 and 17.

The speed up for the modification HEU_APPROX can be easily explained. The majority of
the optimization time in the algorithm is caused by the computation of maximum s,t-flows.
In each optimization step in the original heuristic HEU there are |Ecrit| maximum s,t-flows
computed, to calculate the criticalities of the critical edges Ecrit if a specific set of candidate
edges is added to the network. For both the original heuristic HEU and the modification
with look up HEU_LU table the number of optimization steps increases proportionally to
the budget as well as to the number of candidate edges. This is because the heuristics are
based on the idea of dynamic programming and we use an array of size budget× |Ecand|.
For each optimization step we fill one array entry by computing |Ecrit| maximum s,t-flows
for the heuristic HEU and also for HEU_LU if the value is not in the look up table. This
also implies that the number of computed maximum s,t-flows increases proportionally to
both the budget and the number of candidate edges. The modification HEU_APPROX
with value approximation just computes one value for each candidate edge and is not
depending on the budget considering the number of computed maximum s,t-flows. We
also do not see an dramatic increase in optimization time while increasing the number
of candidate edges, as for each candidate edge there are just |Ecrit| maximum s,t-flows
computed in the modification HEU_APPROX. For the other version of the heuristic we
compute the |Ecrit| maximum s,t-flows for edge combinations in each optimization step
and by adding one candidate edge we add |budget| optimization steps.

The speed up for the modification HEU_LU depends on the used test data. For all of
our tested networks and generated candidate networks we can see a significant speed up.
Especially for large budgets and candidate networks we observe speed ups larger than 90%.
Looking at the numbers of look ups versus value computations we can see for example
that for the Swiss transmission network for the snapshot at 0:00 at the 1st January 2013
with a budget of 50 % of the total cost for the set of candidate edges we have in total
4936 calls of the value function, from which 4604 can be handle through look ups and the
remaining 332 calls are value computations. Meaning only 7% of the value calls have to be
computed for this example in comparison to the original algorithm. For the same example
the computation times were 2.90 sec for the original heuristic and 0.23 sec for the heuristic
with look up table.

6.3.2. Result Quality

As already pointed out in Section 5.5.4 the modification using the lookup table HEU_LU
has the same results as the original algorithm HEU. The reason for this is, that the lookup
table does not change the value of an edge combination. Therefore we only compare the
values for the proposed subset of candidate edges for the original heuristic versus the
modification with value approximation.

We look into two different aspects of the values. One the one hand we are interested in
the real value of criticality after optimizing the network with each heuristic, especially in
comparison with the reference model MMDC_SET. The other aspect we want to discuss
is the prediction error of each heuristic.

HEU_APPROX uses a value approximation to optimize the network. Because of this
approximation we expect the results of HEU_APPROX to be worse than for HEU_LU
this leads to the Hypotheses 18 and 19.
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(a) Average computation time for the three algorithm versions proposed for the Swiss
transmission network. For the Budget test series. The optimization time for
HEU is depicted in light green. The optimization time for HEU_LU is depicted
in a darker green and the optimization time for HEU_APPROX is depicted in
orange.
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(b) Average computation time for the three algorithm versions proposed for the Swiss
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Figure 6.11.: Average computation time for the three algorithm versions for two different
networks
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Hypothesis 18. We expect the heuristic HEU_LU to cure less criticality than the heuristic
HEU_APPROX.

Hypothesis 19. We expect a higher prediction error for the heuristic HEU_APPROX
than for the Heuristic HEU_APPROX.

Because both models HEU_LU and HEU_APPROX are heuristics and do not recalculate
the power flow we expect Hypothesis 20.

Hypothesis 20. We expect both heuristics to perform worse in both aspects than the
reference model MMDC_SET.

We do not observe any remarkable difference for the values of criticality or the prediction
error between the test series Budget and Candidate.

For all networks we observe the network optimized with the reference model MMDC_SET
to have a lower sum of criticality than the networks optimized using any heuristic. This
supports the Hypothesis 20.

Interestingly we observe for some evaluated networks, that the values of criticality for
the heuristic HEU_APPROX and the heuristic HEU_LU are nearly identical. This can
be seen for example in Figure 6.12. This Figure shows the real values of criticality and
the prediction error as the result of optimizing the Slovak transmission network with the
heuristics HEU_APPROX and HEU_LU as well as with the reference model MMDC_SET.
The real values of criticality are drawn as solid lines in the figure. The prediction errors
are drawn as dashed lines. The results for the the reference model MMDC_SET are drawn
in blue. The results for HEU_LU are drawn in green and the results for HEU_APPROX
are drawn in orange. In this figure it can be seen that the values of both heuristics diverge
just for the last budget of 50% for all other budgets the values were the same. We observe
nearly identical values of criticalities for 7 of the 17 networks of the test data set. As nearly
identical we hereby identify differences of both values of less than 0.5% of the initial value
of criticality. This observation is contrary to what we expected in Hypotheses 18 and 19.

For other of the evaluated networks we can see divergence between the two heuristics
HEU_LU and HEU_APPROX. As an example the results for the Austrian transmission
network are shown in Figure 6.13 for the Candidate and in Figure 6.13 for the Budget test
series. In both plots we display the real values of criticality as well as the prediction errors
for both heuristics HEU_LU and HEU_APPROX and the reference model MMDC_SET.
The real values of criticality are drawn as solid lines in both figures. The prediction errors
are drawn as dashed lines. The results for the the reference model MMDC_SET are drawn
in blue. The results for HEU_LU are drawn in green and the results for HEU_APPROX
are drawn in orange. We can see a difference between the real values of criticality as
well as the error of the heuristic HEU_LU and the heuristic with value approximation
HEU_APPROX. We can see that the value of criticality is always smaller for the heuristic
HEU_LU than for the heuristic with value approximation HEU_APPROX, which is the
behavior we expected originally in Hypothesis 18.

Interestingly the networks we observe the values for both heuristics HEU_LU and
HEU_APPROX to be identical are mostly the smaller networks in our test data set
with the largest one being the Czech transmission network with 21 nodes and 35 edges.
We exclude the Irish and Slovenian network here because both networks have no critical
edges in all tested snapshots and of course all values for all optimization methods are the
same for both networks. The smallest network the effect of diverging values between both
heuristics occurs is the Danish network with 11 nodes and 11 edges.
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Figure 6.12.: Average value of criticality for the heuristics HEU_APPROX and HEU_LU
in comparison with reference model MMDC_SET for optimizing the Slovak
transmission network. In this figure the actual value of criticality as well as
the prediction error are displayed for the Budget test series. The real values
of criticality are drawn as solid lines in the figure. The prediction errors are
drawn as dashed lines. The results for the the reference model MMDC_SET
are drawn in blue. The results for HEU_LU are drawn in green and the
results for HEU_APPROX are drawn in orange.

The effect of the both heuristics HEU_LU and HEU_APPROX performing the same
depends strongly on the topology of the network and also on the number of candidate edges
chosen by the algorithm. As explained in Section 5.5, in reality the values of candidate
edges change when adding edges to the graph. Depending on the topology of the graph
this can happen after adding the first candidate edge as shown in Section 5.5. But we
assume it is more likely to happen if there are more critical edges and a lot of candidate
edges are added to the network, as is the case for our larger test networks.

The prediction error of the heuristics HEU_LU and HEU_APPROX is the difference
between the value of criticality the predict for the optimized network and the actual value
of criticality of the optimized network. Interestingly we observe, that for all tested networks
the predicted value of criticality was higher than the actual value of criticality. This means
that both heuristics predict to perform worse than they actually do. We assume this is
most likely caused by the redistribution of power flow when adding edges. Because we test
our networks for a given power generation and consumption we have on average a lower
power flow on all edges when adding edges to a network. Therefore it can occur that the
power flow on a critical edge decreases after adding a candidate edge so that the criticality
of the critical edge decreases.

On the networks the heuristics HEU_LU and HEU_APPROX perform identical we have
of course the same error. In the other cases we can always observe a larger prediction error
for the heuristic HEU_APPROX as we originally expected in Hypothesis 19. This can
for example be seen in Figure 6.14 for the Budget and in Figure 6.13 for the Candidate
test series. In these figures the prediction error for both heuristics are displayed for the
Austrian transmission network as dashed lines. The lines for the Heuristic HEU_APPROX
are orange and for HEU_LU the lines are green. In Figure 6.13 we can see that the
prediction error is zero if the set of candidate edges is empty. For all other amounts
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Figure 6.13.: Average value of criticality for the heuristics HEU_APPROX and HEU_LU
in comparison with reference model MMDC_SET for optimizing the Austrian
transmission network.In this figure the actual value of criticality as well as the
prediction error are displayed for the Candidate test series. The real values
of criticality are drawn as solid lines in the figure. The prediction errors are
drawn as dashed lines. The results for the the reference model MMDC_SET
are drawn in blue. The results for HEU_LU are drawn in green and the
results for HEU_APPROX are drawn in orange.
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Figure 6.14.: Average value of criticality for the heuristics HEU_APPROX and HEU_LU
in comparison with reference model MMDC_SET for optimizing the Austrian
transmission network.In this figure the actual value of criticality as well as
the prediction error are displayed for the Budget test series.The real values
of criticality are drawn as solid lines in the figure. The prediction errors are
drawn as dashed lines. The results for the the reference model MMDC_SET
are drawn in blue. The results for HEU_LU are drawn in green and the
results for HEU_APPROX are drawn in orange.

71



6. Evaluation

of candidate edges the prediction error is relatively high. This is because a Budget of
30% is not enough to cure the critical edges of the Austrian transmission network. If the
budget would be high enough the error would decrease as can be seen when looking at
the Budget test series. For the Budget test series the prediction error is zero for both
heuristics if the budget is to small to add edges for all networks. As can be seen in Figure
6.14 the prediction error increases with increasing budget until most criticalities can be
cured. If most criticalities are cured the prediction error decreases. For some networks the
prediction error remains quite high even for larger budgets. One example for this is the
Slovak transmission network. Figure 6.12 shows the prediction error for both heuristics for
optimizing the Slovak transmission network as dashed lines. The lines for the Heuristic
HEU_APPROX are orange and for HEU_LU the lines are green. As discussed in the
previous Section, even our reference model MMDC_SET has some prediction error for
the Slovak transmission network as previously not critical edges become critical during
optimization. For both heuristics HEU_LU and HEU_APPROX we can observe the same
effect.

We summarize in table 6.3 which Hypothesis where correct on different networks for the
different test series. We summarize in the table all hypothesis concerning the heuristics
HEU, HEU_LU and HEU_APPROX from Section 6.3. If a hypothesis is supported by the
test data we use the symbol X. If the test data opposes a hypothesis we use the symbol x.
If we cannot draw any conclusion concerning the hypothesis from the test data we use the
symbol ∼. We do not include the Irish and Slovenian transmission network as both have
no critical edges for all tested snapshots. For general hypothesis not specifying the test
series we write the results as (Budget,Candidate) to differ between both test series. In the
table we can see that most of our hypothesis are supported in the evaluation. Only for
Hypothesis 18 the results are mixed. The hypothesis is that HEU_APPROX cures less
criticality than HEU and HEU_LU. The heuristics performed equivalently on the networks
for which the hypothesis is not supported.

6.4. Mathematical Model with Graph Flow

In this section we evaluate the reference model MMDC_SET and both heuristics HEU_LU
and HEU_APPROX in comparison to the mathematical model using graph flow introduced
in Section 5.3.2. For short we refer to the mathematical model using graph flow as
MM_GRAPH.

The model MM_GRAPH models the optimal solution for the problem, if the power
flow is not recalculated after the insertion of candidate edges. The model MM_GRAPH
has the same input and uses the same information as the heuristic HEU_LU. Therefore
MM_GRAPH computes the optimal solution the heuristics could achieve given the sim-
plification of not recalculating the power flow when adding edges. First we discuss the
model generation and optimization times of the model MM_GRAPH in comparison to the
heuristics HEU_LU and HEU_APPROX and the reference model MMDC_SET. Then
we discuss the value of criticality of the optimized network for all for model as well as the
occurring prediction error.

6.4.1. Computation Times

We have the following hypothesis for this evaluation we expect the hypothesis for both test
series Budget and Candidate. Model MM_GRAPH is a simplified model in comparison
to the reference model MMDC_SET. Because of this we have less constraints and less
variables, which leads to Hypothesis 21.
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Table 6.3.: This table summarizes in which networks which Hypothesis from Section 6.3
are correct for the different test series. If a hypothesis is supported by the test
data we use the symbol X. If the test data opposes a hypothesis we use the
symbol x. If we cannot draw any conclusion concerning the hypothesis from
the test data we use the symbol ∼. We do not include the Irish and Slovenian
transmission network as both have no critical edges for all tested snapshots.
For general hypothesis not specifying the test series we write the results as
(Budget,Candidate) to differ between both test series.
country H. 15 H. 16 H.17 H. 18 H. 19 H. 20
Austria (X|X) X X (X|X) (X|X) (X|X)
Belgium (X|X) X X (x|x) ∼ (X|X)
Bulgaria (X|X) X X (x|x) ∼ (X|X)
Croatia (X|X) X X (x|x) ∼ (X|X)
Czech Republic (X|X) X X (x|x) ∼ (X|X)
Denmark (X|X) X X (X|X) (X|X) (X|X)
Hungary (X|X) X X (X|x) ∼ (X|X)
Netherlands (X|X) X X (X|X) (X|X) (X|X)
Norway (X|X) X X (X|X) (X|X) (X|X)
Poland (X|X) X X (X|X) (X|X) (X|X)
Portugal (X|X) X X (X|X) (X|X) (X|X)
Romania (X|X) X X (x|X) (∼|X) (X|X)
Slovakia (X|X) X X (X|X) (x|X) (X|X)
Sweden (X|X) X X (X|X) (X|X) (X|X)
Switzerland (X|X) X X (x|x) ∼ (X|X)

Hypothesis 21. Concerning the computation times we expect the model MM_GRAPH
to have a shorter model generation and optimization time than the reference model
MMDC_SET.

We observe for the heuristic HEU_LU long optimization times. We therefore expect
Hypothesis 22 to be true.

Hypothesis 22. We expect the model MM_GRAPH to have shorter optimization times
than HEU_LU.

The heuristic HEU_APPROX has because of the value approximation less computations
than HEU_LU. We know that HEU_APPROX is fast for optimizing the TNEP-CCE
problem because of the approximations. We expect Hypothesis 23 to be true for this reason.

Hypothesis 23. We expect the heuristic HEU_APPROX to have shorter optimization
times than the model MM_GRAPH, especially on larger transmission networks.

We know that the model generation times for the heuristic HEU_APPROX and the
heuristic HEU_LU are really small and barely increase for larger networks. Therefore we
add Hypothesis 24 to this list.

Hypothesis 24. We expect the model MM_GRAPH to have larger model generation times.
We expect this especially for larger networks and increasing number of candidate edges.

We observe for all networks, that the model MM_GRAPH has a shorter model generation
time than the reference model MMDC_SET as we expected in Hypothesis 21. In comparison
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Figure 6.15.: Model generation times of all optimization methods for optimizing the Polish
transmission network. The model generation time for MMDC_SET is drawn
in blue. The model generation time for HEU_LU and HEU_APPROX is
drawn in green and the time for MM_GRAPH is drawn in red.

to the model generation time of the heuristics the model MM_GRAPH has a longer model
generation time on larger networks while being faster on small networks. This is some
what contrary to what we expect in Hypothesis 24. In the hypothesis we expect the model
generation time of the heuristics to be shorter on all networks. On small and medium sized
networks the differences between the model generation times are about 0.01 sec or smaller
and are compared to the differences in optimization times not that relevant. The model
generation times the largest network can be seen in Figure 6.15. This figure shows the
model generation times for the Polish transmission network. The model generation time
for the model MMDC_SET is drawn as blue line, the generation time for the heuristic
HEU_LU an HEU_APPROX are drawn in green and the model generation time for
MM_GRAPH are drawn as red lines. We can see in Figure 6.15 clearly, that the model
generation time for HEU_LU and HEU_APPROX is the fastest. We can also see that the
model generation time for MMDC_SET is longer compared to the model generation time
for MM_GRAPH.

For the optimization times we observe, that the heuristic HEU_LU and the reference
model MMDC_SET perform generally worse than the heuristic HEU_APPROX and the
model MM_GRAPH. These observation support the Hypotheses 21 and 22. Interest-
ingly, the heuristic HEU_LU performs better than the reference model MMDC_SET
for smaller budgets in the Budget test series. The observe the same behavior for the
heuristic HEU_APPROX and the model MM_GRAPH. For smaller budgets the heuris-
tic HEU_APPROX has a shorter optimization time on most networks than the model
MM_GRAPH. This means Hypothesis 23 is supported for smaller budgets. For larger
budgets we generally observe the model MM_GRAPH to have shorter optimization times.
This observation contradicts Hypothesis 23 for larger budgets. We observe that the budget
for which HEU_APPROX and MM_GRAPH have the same optimization time varies
depending on the network size. For larger networks we observe higher budgets and for
smaller networks lower budgets for which both models have the same optimization time.
A good example for the optimization times can be seen in Figure 6.16. In this figure the
result for optimizing the Polish transmission network can be seen. In the figure we see
the optimization time for MM_GRAPH drawn in red, for MMDC_SET the optimization
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Figure 6.16.: Optimization times for the Polish transmission network for the Budget
test series. The optimization time for MMDC_SET is drawn in blue, for
MM_GRAPH the optimization time is drawn in red, for HEU_LU the opti-
mization time is drawn in green and for HEU_APPROX the optimization
time is drawn in orange.

time is drawn in blue, for HEU_LU the optimization time is drawn in green and for
HEU_APPROX the optimization time is drawn in orange. We can see in the figure that
the optimization time for HEU_APPROX is shorter than the one of MM_GRAPH up to
a budget of 25%. We can see a similar behavior for HEU_LU and MMDC_SET in the
figure. The optimization time of HEU_LU is shorter than the one of MMDC_SET up to
a budget of 30%.

For the test series Candidate we see generally the same behavior for all optimization models,
with the small difference that the computation times for all models steadily increase for
an increasing number of candidate edges. This behavior can clearly be seen in Figure
6.17, which shows the optimization times for the Candidate test series on the Portuguese
transmission network. In the figure the optimization time for MMDC_SET is drawn in blue,
for MM_GRAPH the optimization time is drawn in red, for HEU_LU the optimization
time is drawn in green and for HEU_APPROX the optimization time is drawn in orange.
In this figure we observe a similar behavior, with the difference that the optimization time
for MMDC_SET is longer for all numbers of candidate edges compared to the optimization
times of the other models.

6.4.2. Result Quality

Considering the result quality we have the following hypothesis for both test series. Because
MM_GRAPH as the same input data as both heuristics but solves the problem optimally
for the given data. We expect the results for MM_GRAPH to be better or equally good.
This is captured in Hypotheses 25, 26 and 27.

Hypothesis 25. We expect the model MM_GRAPH to cure more criticality than both
heuristics but less than the reference model MMDC_SET.

Hypothesis 26. For the prediction error we expect the prediction error of the heuristic
HEU_LU and the model MM_GRAPH to be nearly the same.
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Figure 6.17.: Optimization times for the Candidate test series on the Portuguese trans-
mission network. The optimization time for MMDC_SET is drawn in blue,
for MM_GRAPH the optimization time is drawn in red, for HEU_LU the
optimization time is drawn in green and for HEU_APPROX the optimization
time is drawn in orange.

Hypothesis 27. We expect heuristic HEU_APPROX to have over all the highest prediction
error.

Because the reference model models the DC power flow approximation, we expect Hypothesis
28 to be true.

Hypothesis 28. We expect heuristic MMDC_SET to have over all the lowest prediction
error.

For both test series and all networks we can see the model MM_GRAPH curing more
criticalities than both heuristics. This supports Hypothesis 25. Interestingly we do not
see a lot of difference between the real value of criticality for the model MM_GRAPH
and the reference model MMDC_SET. On average the difference between the real values
of criticality for both models is less than one percent of the initial criticality on each
network. This observation is not contrary to our Hypothesis 25 but we expected to see
larger differences between the real value of criticality of the models MMDC_SET and
MM_GRAPH. A good example for this behavior are the results for the Budget test series
on the Swiss transmission network, shown in Figure 6.18. In the figure the real value
for MMDC_SET is drawn as dashed blue line, the value for MM_GRAPH is drawn
as solid red line, the value for HEU_LU is drawn as solid green line and the value for
HEU_APPROX is drawn as dashed orange line. In the figure it can be seen that both
models MM_GRAPH and the reference model MMDC_SET have relatively similar real
values of criticality. Just around 10 and around 20% of total cost of the candidate edges
we see small differences between the two models. For the Swiss transmission network we
observe the largest difference of both models with about 43 MW for a budget of 20% with
an average initial criticality of 4578 MW.

Interesting is, that the predicted value of criticality for the model MM_GRAPH is signifi-
cantly higher than the real value of criticality for all networks. Which is captured in the
prediction error of the model. We observe the higher the predicted value of criticality for

76



6.4. Mathematical Model with Graph Flow

0 10 20 30 40 50
Budget in %

0

1000

2000

3000

4000

Va
lu

e 
of

 c
rit

ica
lit

y 
in

 M
W

MM_GRAPH real value
MMDC_SET real value
HEU_LU real value
HEU_APPROX real value

Figure 6.18.: Real value of criticalities for all optimization methods on the Swiss trans-
mission network for the Budget test series. In this figure the real value for
MMDC_SET is drawn as dashed blue line, the value for MM_GRAPH is
drawn as solid red line, the value for HEU_LU is drawn as solid green line
and the value for HEU_APPROX is drawn as dashed orange line.

the model MM_GRAPH for both test series. For the prediction errors both test series
are quite interesting. For comparison of both test series Figure 6.19 shows the errors for
the Candidate test series while Figure 6.20 shows the errors for the Budget test series. In
both figures the error for MMDC_SET is drawn in blue, the error for MM_GRAPH is
drawn in red, the error for HEU_LU is drawn in green and the error for HEU_APPROX
is drawn in orange. For the Candidate test series we chose the budget to be fixed to 30%
of the total cost of candidate edges. In this case is is not possible to cure all critical edges
given this budget and the original set of candidate edges. Therefore it is expected that the
error in Figure 6.19 does not reduce with increasing number of candidate edges.

For most of the networks from the test data set we see comparable results to the ones
displayed in Figure 6.19 and Figure 6.20. Meaning that both series show errors of zero
if no candidate edges can be added. For the Budget test series we have most of the time
no error for budgets over 35% of total costs of all candidate edges. Also the reference
model MMDC_SET performs best for all tested networks with having the lowest average
prediction error. This behavior supports Hypothesis 28. On average over all networks the
heuristic HEU_APPROX has the highest prediction error, which support Hypothesis 27.
For the heuristic HEU_LU and the model MM_GRAPH we can not conclude that one
outperforms the other considering the prediction error. While in Figure 6.20 the error
of the model MM_GRAPH is on average larger than for the heuristic HEU_APPROX,
we can for example observe the opposite for the Swedish transmission network in Figure
6.21. In Hypothesis 26 we expected the models MM_GRAPH and HEU_LU to have
nearly the same prediction error. While this hypothesis is not supported when looking at
some transmission networks, we think that on average over all transmission networks the
prediction errors of both models are quite similar.

We summarize in the table 6.4 to conclusion for each hypothesis on each network for the
different test series. If a hypothesis is supported by the test data we use the symbol X. If
the test data opposes a hypothesis we use the symbol x. If we cannot draw any conclusion
concerning the hypothesis from the test data we use the symbol ∼. We do not include
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Figure 6.19.: Average absolute error for all optimization methods on the Austrian transmis-
sion network for the Candidate test series. For each algorithm one curve is
displayed showing the average absolute error, meaning the difference between
real value of criticality and the predicted one. In this figure the error for
MMDC_SET is drawn in blue, the error for MM_GRAPH is drawn in red,
the error for HEU_LU is drawn in green and the error for HEU_APPROX
is drawn in orange.
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Figure 6.20.: Average absolute error for all optimization methods on the Austrian trans-
mission network for the Budget test series. For each algorithm one curve is
displayed showing the average absolute error, meaning the difference between
real value of criticality and the predicted one. In this figure the error for
MMDC_SET is drawn in blue, the error for MM_GRAPH is drawn in red,
the error for HEU_LU is drawn in green and the error for HEU_APPROX
is drawn in orange.
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Figure 6.21.: Average absolute error for all optimization methods on the Swedish trans-
mission network for the Budget test series. For each algorithm one curve is
displayed showing the average absolute error, meaning the difference between
real value of criticality and the predicted one. In this figure the error for
MMDC_SET is drawn in blue, the error for MM_GRAPH is drawn in red,
the error for HEU_LU is drawn in green and the error for HEU_APPROX
is drawn in orange.

the Irish and Slovenian transmission network as both have no critical edges for all tested
snapshots. For general hypothesis not specifying the test series we write the results as
(Budget,Candidate) to differ between both test series. In the table we can see that our
hypothesis are correct in most cases. Hypothesis 23 is for most networks in the test series
not supported. The hypothesis is that, we expect the heuristic HEU_APPROX to have
shorter optimization times than the model MM_GRAPH especially on larger transmission
networks. The reason for the hypothesis being wrong for most networks is most likely
that we have rather small networks in our test data set. It would be interesting to observe
the results for this hypothesis on large transmission networks. We observe on the larger
networks in out test data set for the Budget test series, that HEU_APPROX has faster
optimization times for smaller budgets, meaning budgets up to 30%. We observe that the
budgets until which HEU_APPROX has faster optimization times than MM_GRAPH
increases with increasing network size. Therefore we suspect, that the HEU_APPROX
has generally faster optimization times on large transmission networks.
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Table 6.4.: This table summarizes in which networks which Hypothesis from Section 6.4
are correct for the different test series. If a hypothesis is supported by the test
data we use the symbol X. If the test data opposes a hypothesis we use the
symbol x. If we cannot draw any conclusion concerning the hypothesis from
the test data we use the symbol ∼. We do not include the Irish and Slovenian
transmission network as both have no critical edges for all tested snapshots.
For general hypothesis not specifying the test series we write the results as
(Budget,Candidate) to differ between both test series.

country H. 21 H. 22 H.23 H. 24 H. 25 H. 26 H. 27 H. 28
Austria (X|X) (X|X) (x|x) (sim|X) (X|X) (x|X) (X|X) (X|X)
Belgium (X|X) (X|X) (x|x) (X|X) (∼|X) (x|X) (x|x) (X|X)
Bulgaria (X|X) (X|X) (x|x) (X|X) (X|X) (X|X) (X|X) (X|X)
Croatia (X|X) (X|X) (x|x) (X|X) (X|X) (X|X) (X|X) (X|X)
Czech Republic (X|X) (∼|∼) (∼|∼) (X|X) (X|X) (X|X) (X|X) (X|X)
Denmark (X|X) (X|X) (x|x) (∼|x) (X|X) (X|X) (X|X) (X|X)
Hungary (X|X) (∼|∼) (∼|∼) (x|x) (X|X) (X|X) (X|X) (X|X)
Netherlands (X|X) (X|X) (X|X) (x|x) (X|X) (X|X) (X|X) (X|X)
Norway (X|X) (X|X) (x|x) (x|x) (X|X) (X|X) (X|X) (X|X)
Poland (X|X) (X|X) (∼|X) (X|X) (X|X) (X|X) (X|X) (X|X)
Portugal (X|X) (X|X) (x|x) (X|X) (X|X) (x|X) (X|X) (X|X)
Romania (X|X) (X|X) (∼|∼) (x|x) (X|X) (x|x) (X|X) (X|X)
Slovakia (X|X) (X|X) (x|x) (X|X) (X|X) (x|x) (X|X) (X|X)
Sweden (X|X) (X|X) (x|x) (x|x) (X|X) (x|x) (X|X) (X|X)
Switzerland (X|X) (X|X) (x|x) (x|x) (X|X) (x|x) (X|X) (X|X)
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6.5. Properties of the Optimized Networks
At last we discuss the network properties of the optimized networks for all introduced
optimization methods. An optimized network is hereby the result of optimizing a network
using any optimization method and building the proposed edges. We hope to obtain
some information on the performance of our methods on real-world transmission networks
by simulating the optimized networks for all optimization methods using the DC power
flow approximation. By simulating the optimized networks we get information about the
feasibility of our proposed extension for the given load distribution.

As discussed in the beginning of this chapter we calculate a DC power flow approximation on
all optimized networks. For all evaluated networks we had no case, in which the optimized
network had no feasible power flow for the given load distribution. However there are some
differences between the optimized networks, resulting from using different optimization
methods on the same transmission network, which we want to discuss in this section.
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(a) Critical edges of the Austrian transmis-
sion network. Critical edges are marked
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black in the figure. The unit of the x-axis
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Figure 6.22.: Figures showing the critical edges and the candidate edges of the Austrian
transmission network for the 1st January 2013 at 13:00.

The most significant difference between the optimized networks of different optimization
methods is, that they have different topologies. We introduced three methods using the
DC power flow approximation MMDC_SET, MMDC_NUM and MMDC_RECALC, one
mathematical model solving the TNEP-CCE problem MM_GRAPH and the versions of a
heuristic for solving the TNEP-CCE problem HEU, HEU_LU and HEU_APPROX. For
HEU and HEU_LU we observe the same networks as the only difference between both
optimization methods is the use of a lookup table in HEU_LU to avoid calculating the
same value multiple times. Except for HEU and HEU_LU we observe for all optimization
methods differences in choice of candidate edges depending on the network. As an example
to show these different choices in candidate edges we show the results of the optimization
of the Austrian transmission network on the 1st January 2013 at 13:00 with a budget of
25%. In Figure 6.22a the critical edges and in Figure 6.22b the candidate edges for this
snapshot of the Austrian transmission network are depicted. In Figures 6.23a and 6.23b
we can see the results for optimizing the network using the methods MMDC_RECALC
and MMDC_NUM. In Figure 6.23c the results for the optimization with the model
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(a) Results for MMDC_RECALC.
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(b) Results for MMDC_NUM.
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(c) Results for MMDC_SET.
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(d) Results for MM_GRAPH.
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(e) Results for HEU_LU.
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(f) Results for HEU_APPROX.

Figure 6.23.: Optimized networks resulting from optimizing the Austrian transmission
network for the 1st January 2013 at 13:00 with all introduced optimization
methods. Critical edges are marked red, not critical edges are marked black
and added edges are marked green in each figure. The unit of the x-axis is
given in longitude and the y-axis in latitude in geocoordinates.
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MMDC_SET can be seen. The results for the model MM_GRAPH are depicted in Figure
6.23d. The results for the heuristic HEU_LU and HEU_APPROX can be seen in Figures
6.23e and 6.23f. All normal network edges in the figure are displayed in black. Critical
edges in the networks are displayed in red. The candidate edges are displayed in orange.
All candidate edges added to the network by any optimization method are displayed in
green.
We can clearly see a difference between all optimization results. All methods add different
candidate edges to the network and while all critical edges are cured for MMDC_RECALC,
MMDC_NUM, MMDC_SET and MM_GRAPH we have still critical edges for HEU_LU
and HEU_APPROX. The choice of different edges has also an effect on the maximum
power flow the network can support. We do not consider or optimize the maximum power
flow for any of the optimization models. However, the maximum power flow is an interesting
measure for comparing different expansions of the same transmission network. For this
example we had an initial maximum power flow of ca. 18, 679 MW. The maximum power
flow increases for all optimization methods in this example. The highest maximum power
flow we observe in this example for the optimized networks using the MMDC_NUM and
HEU_LU methods both are ca. 25, 598 MW. The difference between both power flows is
less than 0.1 MW which is quite interesting. The lowest maximum power flow we observe
for the MMDC_RECALC model with ca. 23, 544 MW. Of course this is just one example
and therefore we cannot draw any conclusion from these results for the maximum power
flows.
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Figure 6.24.: Results for the maximum power flow calculations on the optimized Austrian
networks. These are the results of the Budget test series. In the figure we
see the increase of maximum power flow for each model. We display the
increase in maximum power flow for MM_GRAPH(red), MMDC_SET (dark
blue), for MMDC_NUM (light blue) and for MMDC_RECALC (purple). For
the heuristics we display the increase in maximum power flow for HEU_LU
(green) and for HEU_APPROX (orange).

To obtain better data we evaluated the maximum power flows for all methods using
the budget test series. In Figure 6.24 we see the results of the maximum power flow
computations on the Austrian transmission network. In the figure we display the changes
of maximum power flow relative to the original maximum power flow of the network
for different budgets. As mentioned above the Austrian transmission network has an
initial maximum power flow of ca. 18, 679 MW. In the figure we display the changes in
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maximum power flow as solid dark blue line for MMDC_SET, as solid light blue line for
MMDC_NUM and as dashed purple line for MMDC_RECALC. For the heuristics we
used a solid green line to display the results for HEU_LU and a dashed orange line for
HEU_APPROX. The results for MM_GRAPH are displayed as solid red line. In the figure
we see, that the maximum power flow for each method increases with increasing budget.
This can be expected as each method adds more candidate edges with increasing budget. It
is interesting to observe that for budgets of less than 15% we can observe similar behavior
for similar optimization methods. This means that HEU_LU and HEU_APPROX have
similar maximum power flows for budgets lower than 15%, as well as all mathematical
models have similar maximum power flows for small budgets. For larger budgets than
15% we observe the tendency of HEU_APPROX providing the largest increase in power
flow to the Austrian transmission network. For HEU_LU we observe the tendency to
provide the lowest increase in maximum power flow. The maximal difference between the
additional maximum power flow provided using HEU_LU and using HEU_APPROX is
ca. 2, 700 MW, this is about 14% of the initial power flow on the Austrian transmission
network. This difference is quite large especially because HEU_LU and HEU_APPROX
use the same routine to add edges to the network but based on different values. We have no
explanation for this difference between the maximum power flow of the networks optimized
using HEU_LU and HEU_APPROX. As mentioned before we do not optimize or model
the maximum power flow in any of our models.
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Figure 6.25.: Results for the maximum power flow calculations on the optimized Swiss
networks. These are the results of the Budget test series. In the figure we
see the increase of maximum power flow for each model. We display the
increase in maximum power flow for MM_GRAPH(red), MMDC_SET (dark
blue), for MMDC_NUM (light blue) and for MMDC_RECALC (purple). For
the heuristics we display the increase in maximum power flow for HEU_LU
(green) and for HEU_APPROX (orange).

On all networks we observe an increasing maximum power flow for all methods with
increasing budget. But the maximum power flow of the methods in comparison with each
other changes from network to network. For example we can see in Figure 6.25 the results
for the Swiss transmission network. We use the same colors and line styles in this figure as
before. We can observe that for the Swiss transmission network both heuristics HEU_LU
and HEU_APPROX have a very similar and the lowest maximum power flow for most
budgets. The other methods perform quite similar for budgets below 20%. For budgets
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above 20% the maximum power flows of these other methods diverge. It is not possible for
those other methods to conclude which one performs best.

For most tested networks we observe that HEU_LU and HEU_APPROX have the lowest
maximum power flow for budgets smaller than 15%. For budgets larger than 15% we
cannot observe any reoccurring pattern besides the increase in maximum power flow for
increasing budgets for all optimization methods.

In conclusion we have no method which performs remarkably better than the other methods.
It seems to depend on the network topology which method provides the largest increase in
maximum power flow. This is not surprising as we do not consider the maximum power
flows during the creation of our optimization methods.
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In Section 5.2 of this thesis we define and introduce the problem TNEP-CCE. This problem
formalizes the problem of expanding a transmission network with the objective to cure
critical edges. We show that the problem is NP-complete, even for instances with planar
graphs and single critical edges.

We introduce different solving methods for this problem.

The first solving method, introduced in Section 5.3.1, is to formulate the problem as
Mixed-Integer Linear Program while considering changes in power flow caused by adding
candidate edges to the transmission network. We discuss two different versions of the MILP.
The first version MMDC_RECALC recalculates the critical edges during the optimization
and the second simplified version MMDC_SET uses a set of critical edges as input. To
observe the effect of the exact objective formulation, we reformulate the objective of the
version MMDC_SET. While the original objective minimizes the sum of all criticalities,
the reformulated objective minimizes the number of critical edges in the network. We refer
to the reformulated version as MMDC_NUM.

To further research the problem and introduce faster heuristic solution methods we intro-
duce the simplification of ignoring power flow changes. Based on this simplification we
reformulate the MILP MMDC_SET to use the initial power flow without updating it. This
simplified version is called MM_GRAPH and is introduced in Section 5.3.2. Additional to
MM_GRAPH we introduce in Section 5.5.3.1 a heuristic HEU to solve TNEP-CCE which
is based on the idea of dynamic programming. For this heuristic we introduce modifications
to speed up the optimization process. The first modification HEU_LU uses a lookup table
and the second modification HEU_APPROX further simplifies the problem. The version
HEU_APPROX approximates the value of criticality which is cured by a set of candidate
edges by using precaluclated values for each candidate edge.

Based on the result of the evaluation, presented in Chapter 6, we come to following
conclusions:

For an application, requiring a solution of the problem TNEP-CCE without time lim-
itations, we recommend using the MILP MMDC_RECALC. Even though the model
MMDC_RECALC has long optimization times it produces the best results in comparison
to the other optimization methods.

The model MMDC_SET provides for most of the tested networks similar results considering
the quality of the solution compared to MMDC_RECALC. The usage of a given set of
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candidate edges leads to significant speed ups in comparison to the optimization time
of MMDC_RECALC. We recommend using this model to achieve high accuracy while
reducing the optimization times compared to MMDC_RECALC. Thus it can be useful for
testing purposes, for example to adjust parameters of candidate networks before optimizing
the network with the MMDC_RECALC model.

For applications with time limitations we recommend using models with faster optimization
times and less accuracy. Generally we recommend using the model MM_GRAPH. The
model MM_GRAPH has great result quality relative to its optimization times. Its
optimization time does not exceed five seconds on any of the tested networks. Thus
we consider MM_GRAPH to be suitable even for usage in applications with direct user
interaction.

We do not recommend using the model HEU in any case. This model has a high opti-
mization time and produces low quality results compared to the models MMDC_SET or
MM_GRAPH.

Generally, we do not recommend using the models HEU_LU and HEU_APPROX as well.
However, the results of the evaluation especially for the model HEU_APPROX were quite
interesting. Because of the properties of the problem TNEP-CCE introduced in Section
5.5, we expected that the value approximation used in HEU_APPROX would lead to a
significant decrease in result quality. But the cases, in which the quality of the result would
suffer due to the value approximation, do not occur in the tested transmission networks as
frequently as expected.

The largest network we tested our models on has 48 nodes and 84 edges. We can only
speculate how they would behave on larger networks. We suspect that the optimization
and model building times of the MILPs will increase further with increasing network size.
We observe that the model HEU_APPROX has the shortest optimization time on the
largest networks in our test data set for budgets between 0% and 25%. The fraction of
budgets for which HEU_APPROX was the fastest model increases with increasing network
size for our test data. Because of that, we think that HEU_APPROX will probably have
the shortest optimization time of all our models on networks considerably larger than the
ones in our test data set. We suspect that the model HEU_APPROX can therefore be
quite useful for optimizing large networks, such as the European transmission network, for
interactive applications.

7.1. Future Work
The focus of this thesis is the introduction and examination of the problem TNEP-CCE.
Because of the time limitations for master theses, it was not possible to implement and
test all ideas we have to solve the problem TNEP-CCE.

Further speed ups for the heuristic HEU and its modifications might be reached by using
a maximum flow algorithm optimized to handle dynamic graphs. As we constantly add
edges to the original network this could lead to speed ups, as previous computations could
be reused. Maximum flow algorithms for dynamic graphs are for example researched in the
context of computer vision. One example for this is a dynamic flow algorithm proposed by
Kohli et al. [KT07].

Another possibility to speed up the heuristic HEU is to reduce the number of candidate
edges considered for curing each critical edge. We already discussed in Section 5.5 that we
can tell whether a candidate edge will cure some criticality of a critical edge (a, b). We
can do this by looking at its position in the residual graph resulting from the maximum
a,b-flow computation for checking the criticality of (a, b). If a candidate edge connects
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the subgraph containing a and the subgraph containing b of the residual graph, we know
that it will cure some criticality. For all other edges we know that they will not cure any
criticality for this critical edge. These properties can be used in the heuristic HEU to speed
up value computations.

Another direction of research can be to apply meta heuristics and other approaches
commonly used in the field of Transmission Network Expansion Planning and apply them
to TNEP-CCE. Some examples of meta heuristics to try are tabu search, neural networks
or the frog-leap algorithm as briefly discussed in Section 3.

We focus on the steady-state version of the TNEP-CCE problem. This means we handle one
load distribution at a time and propose network expansions based only on this distribution.
But it is well known that network load distributions change over time. We also observe
different critical edges for different days and different hours of the same day for the same
network. Thus it might be interesting to formulate a dynamic version of TNEP-CCE and
optimize a network by considering load distributions over a time span. This could for
example include the weighing of critical edges depending on the percentage of time when
they are critical.
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Appendix

A. Test Data: Topologies of Transmission Networks
The following figures show each of the tested transmission networks with a powerflow
analysis on the 1st Feburary 2013 at 16:00.
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Figure A.1.: Load on different transmission networks on the 1st Feburary 2013 at 16:00.
The x-axis is given in degrees longitude and the y-axis in degrees latitude.
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(e) Optimal powerflow for the Dutch
transmission network on 1st Febu-
rary 2013 at 16:00
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Figure A.2.: Load on different transmission networks on the 1st Feburary 2013 at 16:00.
The x-axis is given in degrees longitude and the y-axis in degrees latitude.
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Figure A.3.: Load on different transmission networks on the 1st Feburary 2013 at 16:00.
The x-axis is given in degrees longitude and the y-axis in degrees latitude.
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