
Engineering Overlapping Community
Detection based on the Ego-Splitting

Framework

Master Thesis of

Armin Wiebigke

At the Department of Informatics
Institute of Theoretical Informatics

Reviewers: Prof. Dr. Dorothea Wagner
Prof. Dr. Peter Sanders

Advisors: Michael Hamann

Time Period: 28th February 2019 – 27th August 2019

KIT – The Research University in the Helmholtz Association www.kit.edu

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, August 26, 2019

iii

Abstract

A community is a set of strongly connected nodes in a network, e.g. a group of
friends in a social network. Finding community structures in a network is a problem
with many practical applications, revealing information about the structure of the
network as well as the interaction between its elementary units. In real-world
networks, communities often overlap, meaning that nodes may be part of multiple
communities. We evaluate the problem of detecting overlapping communities in a
network, using the ego-splitting method. Ego-splitting is a framework which first
searches for the communities of each node in its local neighborhood, the ego-net. Each
node is then split into multiple personas to disentangle overlapping communities,
each persona corresponding to one of the locally detected communities. The result is
a persona graph with non-overlapping communities on which detecting communities
is comparatively easy. The ego-splitting framework requires two non-overlapping
community detection algorithms, one to analyze the ego-net and one to detect the
communities on the persona graph. The two algorithms can be chosen freely from
the extensive set of well-known algorithms for non-overlapping community detection.
While this means that the ego-splitting framework is highly flexible, there is a lack
of practical evaluation. We present extensive experimental results for various high
quality non-overlapping community detection algorithms and analyze their usefulness
in the framework. Our experiments show that choosing the right algorithms is
essential to detect high quality communities.
We extend the ego-splitting framework by three additional steps to improve the
quality of the detected communities. First, we increase the scope of the local analysis
by extending the ego-net, i.e. we add additional nodes to the ego-net. In our
experiments, we show that the structure of the communities is improved in the
extended ego-net, making it easier to detect the correct communities. The presented
ego-net extension may also have useful applications in other algorithms that analyze
local community structures. Second, we connect all personas of each node in the
persona graph to reflect their relation to one another, improving the quality of
the communities detected on the persona graph. Third, we clean up the detected
communities to make sure that they are well-connected internally. Our experiments
show that the clean-up process considerably improves the quality of the communities.
In principle, the clean-up process is independent of the ego-splitting framework,
making it possible to clean up communities detected by any overlapping community
detection algorithm.
Our results show that our improved version of the ego-splitting framework is able to
detect communities of high quality in overlapping networks. Moreover, the running
time of our algorithm is comparatively low and does not depend on the structure of
the network. On synthetic networks, where each node is part of multiple communities
(between two and four), our algorithm outperforms the state-of-the-art algorithms
OSLOM and MOSES in both quality and running time.

v

Deutsche Zusammenfassung

Eine Community ist eine Menge von dicht verbundenden Knoten in einem Netzwerk,
z.B eine Gruppe von Freunden in einem sozialen Netzwerk. Das Erkennen von Com-
munities in Netzwerken ist ein Problem mit vielen praktischen Anwendungsbereichen,
da es Information sowohl über die Struktur des Netzwerk als auch über die Interaktio-
nen zwischen den einzelnen Teilen enthüllen kann. Eine Community ist eine Menge
von Knoten die dicht verbunden sind, z.B. ein Gruppe von Freuden in einen sozialen
Netzwerk. In realen Netzwerken sind Communities häufig überlappend, das heißt ein
Knoten kann Teil von mehreren Communities sein. Wir evaluieren das Problem der
Erkennung von überlappenden Communities basierend auf der Ego-Splitting Methode.
Ego-Splitting ist ein Framework, das zuerst nach den Communities jedes Knoten in
seiner lokalen Nachbarschaft, dem Ego-Net, sucht. Dann wird jeder Knoten in eine
Menge von Personas aufgeteilt, um die überlappenden Communities voneinander zu
trennen, wobei jeder Persona eine der lokal gefundenen Communities zugeordnet wird.
Man erhält einen Persona-Graph, der nur nicht-überlappende Communities enthält,
die vergleichsweise einfach zu erkennen sind. Das Ego-Splitting Framework benötigt
zwei Algorithmen zur Erkennung von nicht-überlappenden Communities, einen um
das Ego-Net zu analysieren und einen um die Communities im Persona-Graph zu
erkennen. Die zwei Algorithmen können frei aus der großen Menge an bekannten
Algorithmen zur Erkennung von nicht-überlappenden Communities gewählt werden.
Zwar ist das Ego-Splitting Framework dadurch sehr flexibel, aber es gibt einen
Mangel an praktischen Evaluationen. Wir präsentieren umfangreiche experimentelle
Ergebnisse für verschiedene Algorithmen zur Erkennung von nicht-überlappenden
Communities, und analysieren deren Brauchbarkeit für das Framework. Unsere
Experimente zeigen, dass die Auswahl der korrekten Algorithmen essentiell ist zur
Erkennung von Communities mit hoher Qualität.
Wir erweitern das Ego-Splitting Framework um drei zusätzliche Schritte, um die
Qualität der gefundenen Communities zu erhöhen. Erstens erhöhen wir die Umfang
der lokalen Analyse, indem wir zusätzlich Knoten zum Ego-Net hinzufügen. In un-
seren Experimenten zeigen wir, dass die Communities in diesem erweiterten Ego-Net
eine bessere Struktur besitzen, wodurch es leichter ist, die korrekten Communities
zu erkennen. Die vorgestellte Ego-Net Erweiterung könnte auch für andere Algo-
rithmen Verwendung finden, die lokale Communitystrukturen analysieren. Zweitens
verbinden wir alle Personas jedes Knotens im Persona-Graph, um deren Beziehung
zueinander hervorzuheben. Dadurch wird die Qualität der erkannten Communities
im Persona-Graph erhöht. Drittens bereinigen wir die erkannten Communities, um
sicherzustellen, dass sie intern dicht verbunden sind. Unsere Experimente zeigen,
dass der Bereinigungsprozess die Qualität der Communities deutlich verbessert. Der
Bereinungsprozess ist prinzipiell unabhängig vom Ego-Splitting Framework und kann
damit benutzt werden, um die erkannten Communities beliebiger Algorithmen zu
bereinigen.
Unsere Ergebnisse zeigen, dass unsere verbesserte Version des Ego-Splitting Frame-
works Communities von hoher Qualität auf überlappenden Netzwerken erkennen
kann. Außerdem ist die Laufzeit unseres Algorithmus verhältnismäßig niedrig und
hängt nicht von der Struktur des Netzwerks ab. Auf synthetischen Netzwerken, in
denen jeder Knoten Teil von mehreren (zwei bis vier) Communities ist, übertrifft
unser Algorithmus die State-of-the-Art-Algorithmen OSLOM und MOSES sowohl
hinsichtlich der Qualität als auch hinsichtlich der Laufzeit.

vi

Contents

1 Introduction 1

2 Preliminaries 5

3 Related Work 7
3.1 Non-overlapping Community Detection . 7
3.2 Overlapping Community Detection . 10

4 The Ego-Splitting Framework 15

5 Ego-Net Extension 19
5.1 Number of Edges . 21
5.2 Statistical Significance . 22

6 Connecting Personas 29

7 Community Clean-Up 33
7.1 Single Community Analysis . 34
7.2 Merge Communities . 36

8 Experimental Setup 39
8.1 Implementation Details . 39
8.2 Algorithms . 40
8.3 Graphs . 41
8.4 Evaluation Metrics . 42

8.4.1 Ego-Net Structure . 43
8.4.2 Ego-Net Clustering . 44
8.4.3 Cover . 46

9 Experimental Results 47
9.1 Ego-Net Extension . 47

9.1.1 EdgesScore . 48
9.1.2 Significance . 52
9.1.3 Original vs. Extended Ego-Net . 59

9.2 Local Clustering Algorithm . 62
9.3 Connecting Personas . 66
9.4 Global Clustering Algorithm . 68
9.5 Community Clean-Up . 72
9.6 Comparison with Other OCD Algorithms 76

10 Conclusion 83

Bibliography 85

vii

1. Introduction

In practical and theoretical applications, relations between actors can often be modeled as
a network. A network consists of a set of actors represented by nodes. The actors have
some sort of relations, represented by edges, each connecting two nodes. A community
is a strongly connected set of nodes, i.e. each node is well-connected to the other nodes
of the community. An intuitive example is the structure in a social network, where each
node represents a person. Each connection in the social network represents a relationship
between two people, and the detected communities could be social groups, families, etc.
[Fel81]. Detecting such communities (also called modules or clusters) in a network is known
as the community detection problem.
Detecting and analyzing the community structure of networks is a highly researched topic in
the last years. By understanding the structure of a network, valuable information can be ex-
tracted. There is a wide range of practical applications for this, e.g. in biological (functional
modules in protein interaction networks [PDFV05]), chemical (biochemical pathways in
metabolic networks [HHJ03]), technological (viral marketing in recommendation networks
[LAH07]), social (groups of mutual acquaintances in online social networks [MMG+07]),
and information (web communities on the internet [FLG+00]) systems. However, there
is no universally accepted definition of a community. Typically, a community detection
algorithm defines a fitness function which is then optimized to find communities. Numerous
techniques have been developed for finding disjoint communities, e.g. by using random
walks [RB08], modularity maximization [BGLL08], or label propagation [RAK07]. These
algorithms assume that the network can be partitioned into densely connected regions, with
few connections between these regions. However, real networks are often not structured
like that. For example, a person is usually part of multiple social groups, so a node in
a social network may be part of multiple communities. Consequently, communities may
overlap, i.e. the communities are not disjoint. In fact, many real-world graphs show such
characteristics [RMH11]. The problem of finding such overlapping communities is known
as overlapping community detection.

Many overlapping community detection algorithms define a fitness function and then
greedily expand communities by locally optimizing the fitness. For example, these fitness
functions can be based on stochastic models [MH10], stochastic significance [LRRF11] or
they compare the internal and outgoing connections of the community [LRMH10]. The
communities are often initialized with small random communities or fully connected sets of
nodes [LRMH10].

1

1. Introduction

Another approach is to start the community detection on a microscopic (local) level
and create global communities using the obtained local information [BKA+14, CRGP14].
Detecting local communities is much easier than directly detecting communities on the entire
graph [CRGP14, ELM+15]. Often, such a local community detection is based on ego-nets
(also called ego-networks), each consisting of the subgraph induced over the neighborhood of
a single node in the graph. Epasto et al. [ELM+15] propose that the community detection
in the ego-net can be reduced to non-overlapping community detection. This works because
even if a node is part of many communities, the chance that a neighbor is in multiple of these
communities is quite low. Based on these findings, Epasto et al. [ELPL17] introduced the
ego-splitting framework for overlapping community detection. The idea of the framework
is to use the local structures to detect overlapping communities and then “disentangle”
them into non-overlapping communities. By using this approach, they are able to reduce
the overlapping community detection problem to the simpler non-overlapping community
detection problem. The ego-splitting framework works in two steps, a local ego-net analysis
and a global community detection. In both steps, a non-overlapping community detection
algorithm is used. Such algorithms are also known as clustering algorithms. After finding
the local communities in all ego-nets, each node is split into multiple copies, called personas.
Each persona is assigned to one of the locally detected communities, and receives all edges
to nodes inside that community, resulting in the persona graph. Ideally, the persona graph
does not contain any overlapping communities. In the second step, a clustering algorithm
is used on the persona graph. To create the overlapping communities on the original graph,
each node is assigned the communities of all its personas. The ego-splitting framework
uses two clustering algorithms, the local clustering algorithm to analyze the ego-net and
the global clustering algorithm to detect the communities on the persona graph. The
algorithms can be chosen freely from the extensive amount of existing clustering algorithms,
making the framework very flexible.

Contribution

We extend the ego-splitting framework by three additional steps to improve the quality of
the community detection. First, we increase the quality of the local analysis by extending
the ego-net, i.e. adding additional nodes that strengthen the communities we want to
detect. Second, we propose to connect the personas of each node, as they possess a
relation which is not reflected in the persona graph. This provides the global clustering
algorithm with additional information, which increases the global quality. Third, we
propose an additional clean-up step after the creation of the overlapping communities. We
use statistical significance to remove weakly connected nodes from the communities and
also add strongly connected nodes.

While the ego-splitting framework is flexible, there is a lack of practical evaluation, especially
for different clustering algorithms. As testing all possible combinations of local and global
algorithms is impractical, we propose metrics to evaluate the quality of the local clustering
in isolation. This evaluation of the ego-net is also useful on its own, as ego-net analysis is
also an important part of other algorithms. We provide extensive experimental results for
the framework using various clustering algorithms that have shown to provide high quality
results. For the evaluation, we use various synthetic and real-world graphs. Additionally,
we compare our optimized ego-splitting algorithm against state-of-the-art overlapping
community detection algorithms.

Our experiments show that the additional steps of the framework improve the quality
of the detected communities, both for the ego-net analysis and the global community
detection. We show that the choice of clustering algorithms greatly influences the quality
of the detected communities. Our optimized ego-splitting algorithm improves the quality

2

drastically compared to the “basic” ego-splitting framework and outperforms other state-
of-the-art algorithms in both quality and running time on many synthetic graphs.

Thesis Outline

This thesis is structured as follows: First, we present related work and introduce the state-
of-the-art algorithms for non-overlapping and overlapping community detection. Then we
give a detailed description of the ego-splitting framework as it has been proposed by Epasto
et al. [ELPL17]. In Chapter 5, we describe multiple strategies to extend the ego-net. Next,
we describe how the personas of a node can be connected in the persona graph. Then
we present the process to clean up detected communities. In Chapter 8, we present the
configurations and graphs used in the experiments. We also present the quality measures
that we use to analyze the experiments. Then we present the experimental results and
evaluate them. In the end, we summarize our improvements and discuss possible additional
modifications to the framework.

3

2. Preliminaries

A graph G is defined as G = (V,E), where V is a set of n nodes and E ⊆ V × V is a set of
m edges. In this thesis, we will use only undirected and unweighted graphs, unless stated
otherwise. In an undirected graph, each edge between two nodes u and v is a set {u, v} of
size two. For convenience, we will use the notation (u, v) instead. A graph is called dense
if m ∈ Θ(n2) and called sparse if m ∈ O(n). An alternative way to describe the structure
of the graph is by using an n× n adjacency matrix A. Aij is equal to 1 if there is an edge
e ∈ E that connects the nodes i and j, and it is 0 otherwise. The degree of node u is
defined as ku = |{v|(u, v) ∈ E}|.

A community (or cluster) ci ⊆ V is a subset of the nodes of the graph. We say that a node u
is assigned to the community ci if u ∈ ci. A non-overlapping community detection algorithm
takes a graph G and outputs a set of disjoint communities {c1, c2, . . . , ck}, ci∩cj = ∅∀i, j 6= i.
An overlapping community detection (OCD) algorithm takes a graph G and outputs a set
of communities {c1, c2, . . . , ck}. These communities may overlap, so a node may be assigned
to more than one community. To better distinguish between the communities produced
by these two types of community detection algorithms, we use the following notation:
We refer to non-overlapping community detection algorithms as clustering algorithms. A
clustering algorithm outputs a clustering D = {d1, d2, . . . , dk} of clusters di. An overlapping
community detection algorithm outputs a cover C = {c1, c2, . . . , ck} of communities ci.

We call a graph slightly overlapping if each node is assigned to two or fewer communities,
and highly overlapping if each node is assigned to more than two communities.

Given a community c, its degree Kc is the sum of the degrees of all nodes in c. Kc can
be split into the internal degree Kin

c and the external degree Kout
c . Kin

c is the sum of the
internal degrees of the nodes in c, so it is equal to twice the number of internal edges. Kout

c

is the number of edges that have exactly one end in c, so Kout
c is equal to the size of the

cut between c and the rest of the graph.

5

3. Related Work

There are a multitude of community detection algorithms, both for non-overlapping and
overlapping communities. We will restrict ourselves to reviewing the current best algorithms
for various approaches. We also present related work that focuses on the evaluation of
ego-nets.

3.1 Non-overlapping Community Detection
Non-overlapping communities divide the nodes into disjoint subsets. As stated earlier,
we refer to these non-overlapping communities as clusters. Non-overlapping community
detection is related to the classic partition problem. The goal of a k-partition is to divide
the graph into k sub-sets of roughly even size. One of the simplest partition algorithms is
the minimum-cut algorithm, which divides the graph into a fixed number of subsets and
minimizes the cut between these subsets. In community detection however, the number of
clusters is not known beforehand, and the size of the clusters in the given graph can vary
greatly. This complicates the problem, and requires adaptive algorithms.

Girvan-Newman

A classical example for community detection is the Girvan-Newman algorithm (GN) [GN02].
The algorithm is based on the concept of edge betweenness. The edge betweenness of an
edge e is defined as the number of shortest paths, between all pairs of vertices, that pass
along e. The algorithm finds the edge with the highest edge betweenness, which is likely to
lie between two clusters, and removes that edge from the graph. The connected components
of the remaining graph are the clusters. Edges are removed iteratively until no edges
remain. The output of the algorithm is a hierarchical clustering which represents a tree
where the root is the set of all nodes and the leaves are the nodes. By cutting the tree at a
given height, we get clusters of a given resolution.

Label Propagation

Label Propagation (LP) [RAK07] is often used because of its simplicity and low running
time. Each node is initialized with a unique label. In every iteration of the algorithm, each
node adopts the label that the maximum number of its neighbors have, with ties broken
randomly. After a short time, densely connected groups should reach a consensus on one
label. At the end of the algorithm, nodes with the same label form one cluster. There is

7

3. Related Work

no specific metric or fitness function that is optimized. The algorithm terminates when
the number of nodes that changed in the last iteration is smaller than a given threshold θ.
Alternatively, the algorithm terminates when a maximum number of iterations is reached.
While the algorithm is relatively simple, it also has disadvantages. For example, in dense
graphs it is possible that all nodes get the same label, resulting in a trivial cluster that
contains all nodes.

Absolute Potts Model

Ronhovde and Nussinov introduced the Absolute Potts Model (APM) [RN10] which penalizes
for missing edges within a cluster. The cluster detection algorithm of the APM [ELPL17]
is a modified version of Label Propagation, initializing each node with its own label and
then iteratively evaluating all nodes. Suppose we are currently evaluating the node u. For
a given label l, let Nu(l) bet the number of neighbors of u with label l. Let T (l) be the
total number of nodes in the graph with label l. The following quality function is then
used to evaluate the label l:

fu(l) = Nu(l)− α · (T (l)−Nu(l)) (3.1)

where α is a parameter of the algorithm. Instead of simple taking the node that the
maximum number of neighbors have, we take the label that maximizes Equation 3.1.
Intuitively, the quality function chooses the most common label, but penalizes for all nodes
with the same label that are not neighbors. This ensures that the detected clusters are
well-connected, while the simple LP algorithm may output clusters that are internally
disconnected. The parameter α adjusts the penalty for other nodes with the label. If α is
large, only very dense clusters are detected. If α is small, clusters may be weakly connected,
and APM equals LP for α = 0.

Modularity

Modularity [CNM04] is a measure that compares the probability of an edge between two
nodes i and j with the actual number of edges Aij for a given clustering. The expected
number of edges is given by a null model (the so-called configuration model [MR95])
in which each edge is cut in half to create two stubs, and then the stubs are randomly
reconnected. Let ec be the number of edges in cluster c. The expected number of edges is
K2

c
2m , where Kc is the sum of the degrees of the nodes in c. The modularity Q of a clustering
C is given by

Q(C) = 1
2m

∑
c∈C

(
ec −

Kc
2

2m

)
.

The value of the modularity lies in the range [−1, 1]. A higher value indicates that the
clusters are better connected than expected from the null model. Networks with high
modularity have dense connections inside the clusters, but sparse connections between the
clusters. Modularity suffers from a resolution limit [FB07], which means the size of the
detected clusters depends on the size of the whole network. On a large graph, modularity
is not able to detect small clusters, because merging two small clusters may increase the
modularity even if they are clearly distinct. Introducing a resolution parameter γ [RB06]
is an approach to solve the resolution limit problem. The modularity is then given by

Q(C) = 1
2m

∑
c∈C

(
ec − γ

Kc
2

2m

)
.

Higher resolutions lead to more and smaller clusters, while lower resolutions lead to fewer
and larger clusters.

8

3.1. Non-overlapping Community Detection

Constant Potts Model

An alternative quality function, similar to modularity, is the Constant Potts Model (CPM)
[TVDN11]. The quality function of the CPM is given by

Q =
∑
ci

(
ec − γ

(
nci

2

))

where nci is the number of nodes in cluster ci and γ is a resolution parameter. The
parameter γ functions as a threshold for the detected clusters: A cluster should have a
density of at least γ and the density between clusters should be lower than γ. A higher
resolution lead to more clusters and a lower resolution lead to fewer clusters.

Louvain

Both modularity and CPM provide a quality function that can be optimized. However,
finding the clustering with the highest quality is a NP-hard problem, so algorithms that
approximate optimal solutions are necessary. The Louvain algorithm [BGLL08] was
originally defined for modularity, but it can also be used to optimize other quality functions.
The algorithm starts from a singleton clustering in which each node is in its own cluster.
The algorithm has two phases that are repeated iteratively. Given a node u, the change in
modularity is tested if it would be moved into the cluster of one of its neighbors. The node
u is then moved into the cluster with the maximum modularity increase, if the increase is
positive. This is done repeatedly for all nodes in the graph. The first phase stops when
the modularity is locally optimal, i.e. no node can be moved to increase the modularity.
The second phase creates an aggregated network, where each cluster is merged into a
single node. Edges between clusters are preserved, i.e. an edge between two clusters in the
aggregated network has a weight equal to the number of edges between the nodes of the
two clusters. Internal edges are represented by self-loops. On this aggregated network, the
modularity is again optimized locally. The two phases are repeated until the quality cannot
be increased any further, i.e. no local moves are possible on the aggregated network. The
resulting clusters are the nodes of the last aggregated graph, each representing a set of
nodes.

Leiden

The Leiden algorithm [TWvE18] uses an approach similar to the Louvain algorithm. It
is supposed to correct several shortcomings of the Louvain algorithm, e.g. that clusters
may be internally disconnected. The Leiden algorithm is also based on local optimization
and aggregation, but it is considerably more complex than the Louvain algorithm. It
uses a fast local move procedure that only revisits nodes if their neighborhood changed
in the last iteration. After the local optimization stops, an additional refinement step is
introduced. In the refinement step, each cluster may be split into multiple sub-clusters.
In the aggregated graph, each sub-cluster is then aggregated to one node. The initial
partition for the aggregate network is based on the unrefined clustering, i.e. given a cluster
c, all sub-clusters of c belong to c in the aggregated graph. This keeps the information
of the local optimization, but gives the algorithm more room for identifying high-quality
clusterings. The Leiden algorithm gives several guarantees for the clusters found, e.g. that
clusters are γ-connected, where γ is the resolution parameter of either modularity or CPM.
The Leiden algorithm is also faster than the Louvain algorithm in practical applications
[TWvE18].

9

3. Related Work

Infomap

The Infomap algorithm introduced by Rosvall et al. [RAB09] is based on the map equation
[RB08]. In contrast to modularity and CPM, which are based on the concept of a null
model, the map equation is based on a flow model. Suppose we have a random walker
on the graph, and we want to describe its movement across the nodes with the minimal
information (description length). Instead of assigning a unique code to each node, we
partition the network into clusters. Each cluster has a unique code, but the code for the
nodes can be reused across clusters, e.g. multiple clusters may have a node with code 10.
If the random walker moves inside a cluster, the description length is shorter, because we
only need to encode the nodes inside the cluster. If the random walker moves from one
cluster to another, we have to use a special code that indicates the exit from the cluster,
and another special code to indicate the entry into a cluster. The entry code is identical to
the cluster code. The exit code is not the same across clusters, so a small cluster can use a
shorter exit code. The goal of the Infomap algorithm is to compress the information, so
that we can describe the movement of a random walker with the minimal description length.
A weakly connected would often be exited, meaning we need to describe the exit and the
entry into another cluster. Small clusters are preferable to large ones, as the number of
nodes inside a cluster increase the length of the code for each node. Intuitively, a random
walker is likely to stay inside a cluster, and rarely moves between clusters. This means
that a clustering with the minimal description length gives us clusters that are strongly
connected internally and weakly connected to other clusters.

The map equation for a clustering C can be written as [HSWZ18]

L(C) = plogp
(∑
c∈C

Kout
c

KV

)
− 2

∑
c∈C

plogp
(
Kout
c

KV

)

+
∑
c∈C

plogp
(
Kout
c +Kc

KV

)
+
∑
v∈V

plogp
(
kv
KV

)
,

where plogp(x) := x log x.

3.2 Overlapping Community Detection
The overlapping community detection problem allows that one node is part of multiple
communities. This problem is considerably more difficult than the non-overlapping problem
and requires completely new approaches.

GCE

The Greedy Clique Expansion algorithm (GCE) [LRMH10] identifies distinct cliques as
seeds and expands these seeds by greedily optimizing a local fitness function. The fitness
function compares the internal degree of community to the external degree [LFK09]. Given
a community S with total degree KS and internal degree Kin

S , the community fitness is
given by

FS = Kin
S

KS
α .

The parameter α is a positive real number that can be tuned. In the experiments of Lee et
al. [LRMH10], values for α between 0.9 and 1.5 provided the best results.

The algorithm starts from a clique S (a fully connected sub-graph of G). For all neighbors
v of S, the fitness of v is calculated, i.e. how much the addition of v to S would raise the
fitness function. Let vmax be the node with the largest fitness. If vmax > 0, add it to S and

10

3.2. Overlapping Community Detection

reevaluate all neighbors, including any new neighbors of vmax. If vmax ≤ 0, the algorithm
terminates and returns S.

GCE uses as seeds all maximal cliques with at least k nodes, e.g. k = 4. After expanding
a clique to a community c, c is compared to all other previously found communities c′.
If c is too similar to a c′ it is discarded, otherwise it is accepted. The similarity of two
communities is defined as

δE(c, c′) = 1− |c ∩ c′|
min(|c|, |c′|)

where lower values mean that the clusters are more similar. c is discarded if δE(c, c′) < ε
for a given parameter ε.

OSLOM

The OSLOM algorithm (Order Statistics Local Optimization Method) [LRRF11] is based
on the concept of statistical significance [LRR10]. The statistical significance evaluates the
connection of a node i to a given community c. The statistical significance uses a null-model
in which the edges inside c are locked, but all other edges are cut into to stubs and are
then randomly reconnected. Each node retains its original degree. The null-model does not
allow self-loops. The node i is statistically significant if it is unlikely that there is a node j
in the null model with a stronger connection to c. In other words, i is stronger connected
to c as we would expect from the null model. The probability that a node from the null
model has a connection equal to or stronger than the connection of i is given by a value
r(i). OSLOM uses order statistics to compare r(i) to the best expected node j from the
null model, i.e. the node j with the lowest value r(j). At the core of OSLOM is the single
cluster analysis, which adds significant nodes to a community and removes all insignificant
nodes. The single cluster analysis takes a community c and “cleans up” c, returning a
significant community. OSLOM starts by creating a community from a single node, adding
a number of neighbors at random and then using the cluster analysis to create a significant
community. This is repeated several times, yielding a set of communities. OSLOM can
also start from a given cover C. In this case, all communities of C are cleaned up using
the cluster analysis. In both cases, OSLOM tries to find significant sub-communities. If
two communities are too similar, they are merged together if the resulting community has
a higher significance. OSLOM is also able to generate a hierarchical cover by detecting
significant communities and then detecting significant sub-communities.

MOSES

The MOSES (Model-based Overlapping Seed ExpanSion) algorithm [MH10] is based on
the concept of a Stochastic Block Model (SBM) [MH10]. The SBM is characterized by
a set of parameters. In the simplest form, the SBM takes a cover of the graph with r
communities and a symmetric r × r matrix of edge probabilities between the communities.
The graph G is considered to be a realization of a statistical model, namely an instance of
the SBM. One way to create a cover is finding the parameters that result in the maximum
posterior probability, so the parameters that are most likely to generate G. MOSES uses
an Overlapping Stochastic Block Model (OSBM) [LBA09] to include the possibility of
overlapping communities. Their model makes assumptions about the graph, e.g. it does
not explicitly model degree distribution. MOSES derives a fitness function from the model
and then greedily expands communities based on this fitness function. Initially, edges are
selected at random and a community is expanded around the two nodes of the edge. The
expansion continues even if the fitness function decreases and stops when l consecutive
expansions fail to raise the fitness function. The authors use l = 2 for their experiments.
Periodically all the communities are scanned to see if the removal of an entire community

11

3. Related Work

would increase the fitness. At the end each node is examined in a fine-tuning phase. The
node is removed from all communities and then added again to communities if this raises
the fitness.

Peacock

The Peacock algorithm [Gre09] tries to transform the overlapping problem into a non-
overlapping one. The algorithm is based on GN. Gregory et al. [Gre07] introduces the
concept of split betweenness to split vertices between communities. The split betweenness
of a node v is the number of shortest path that would pass between the two parts of v if
it were split. If a node is part of multiple communities, its split betweenness is expected
to be high. The Peacock algorithm first tries to transform the network into a larger one
that does not contain any overlapping communities. The transformation iteratively splits
nodes as follows: Calculate the split betweenness of all nodes. Choose the node with the
maximum split betweenness and split it into two, according to the best split. The best split
is the one that maximizes the split betweenness. This is repeated until the maximum split
betweenness is sufficiently small (a parameter of the algorithm). The split betweenness has
to be recalculated after each iteration, but only for some nodes that are affected by the
last split. At the end, for each split node, place an edge between the two resulting nodes.
These edges are inserted so that the graph does not break into disconnected components,
which would affect the communities that can be found on the transformed graph. On this
new network, a non-overlapping community detection algorithm is executed. Each node is
then assigned all communities of nodes that the original node was split into.

Ego-Nets

The concept of ego networks, or ego-nets for short, was first introduced by Freeman [Fre82].
The ego-net of a node u is the sub-graph induced by all neighbors of u. While the traditional
definition also contains u, this adds “noise” to the ego-net [BKA+14] while providing no
usable information. The study of ego-nets has established itself as a tool for social network
analysis [Bur09, EB05, WF+94], providing useful information on a microscopic level.
Rees and Gallagher [RG10] were the first to analyze the ego-net structure to find global
communities. They find communities in the ego-net by simply computing connected
components. The global communities are obtained by merging significantly overlapping
ego-net communities. The DEMON algorithm [CRGP14] advances this technique by using
label propagation to find the ego-net communities.
Buzun et al. [BKA+14] use ego-net communities detection in combination with a global
label propagation algorithm. The local communities influence the way the labels are
propagated in the global graph.
Liakos et al. [LND16] iteratively merge nodes in the ego-net, yielding a hierarchical
partition. This partition is then cut at the “right” level to get ego-net communities. They
focus purely on finding communities for a given node, and do not create a global cover.
Soundarjan and Hopcroft [SH15] partition the ego-net and then create a new graph H where
each node represents a detected ego-net community. They call such a ego-net community a
sub-community. Two nodes in H are connected if their associated sub-communities in G
are related in some way, e.g. their Jaccard similarity is larger than a given threshold. The
Jaccard similarity of two communities c, c′ is given by |c∩c

′|
|c∪c′| . Then they detect communities

in H using a clustering algorithm. Finally, the communities in H are converted into
communities in G by using the union of all nodes in the sub-communities. The clustering
algorithms and the metric to connect the nodes of H can be freely chosen.
Epasto et al. [ELPL17] partition the ego-nets using a clustering algorithm. Each node
is then split into its persona nodes that represent the instantiations of the node in its
communities. The personas of all nodes form the persona graph which only contains

12

3.2. Overlapping Community Detection

non-overlapping communities. Then a clustering algorithm is applied to the persona
graph, yielding a set of non-overlapping communities. Each node is then assigned to all
communities of its personas, resulting in a cover of the original graph. The local and global
clustering algorithm can be freely chosen.

13

4. The Ego-Splitting Framework

[ELPL17] introduced the ego-splitting framework. In the first step, the ego-net of each
node is partitioned using a clustering algorithm. If we analyze the ego-net of u, we call
u the ego-node. For each detected cluster, the node is split into a persona node, a copy
of the node that is associated with the nodes of the corresponding cluster. The graph is
then transformed into the persona graph G′ = (V ′, E′) that uses the personas as nodes and
maps each edge in E to one pair of personas. In the second step, a clustering algorithm
is used to obtain non-overlapping communities on the persona graph. At the end, each
node is assigned all communities that its personas are part of, resulting in overlapping
communities on the original graph.

More formally, the algorithm requires two clustering algorithms Al (the local clustering
algorithm) and Ag (the global clustering algorithm). Let Gu be the ego-net of node u. The
following five steps create the cover of overlapping communities:

• Step 1 : For each node u, use the local clustering algorithm to partition the ego-net.
Al(Gu) = {N1

u , N
2
u , . . . , N

tu
u }

• Step 2 : Create a set V ′ of personas. Each node corresponds to tu personas denoted
as ui, i = 1, . . . , tu.

• Step 3 : Add edges between the personas. For each edge (u, v) ∈ V , find ui, vj such
that v ∈ N i

u and u ∈ N j
v . Add (ui, vj) to E′.

• Step 4 : Apply the global partition algorithm to obtain clusters on G′. Ag(G′) = C ′.

a b
c

d

e

f g

h

i

j

k

(a) original graphG

a b

(b) ego-net of a

a1
a2 b

c

(c) split inga in twopersonas

c

a b d

(d) ego-net of c (onepersona) (e) personagraph

e

c

e

g

h

i

e

g

h

i

(a)

a b
c

d

e

f g

h

i

j

k

(a) original graphG

a b

(b) ego-net of a

a1
a2 b

c

(c) split inga in twopersonas

c

a b d

(d) ego-net of c (onepersona) (e) personagraph

e

c

e

g

h

i

e

g

h

i

(b)

a b
c

d

e

f g

h

i

j

k

(a) original graphG

a b

(b) ego-net of a

a1
a2 b

c

(c) split inga in twopersonas

c

a b d

(d) ego-net of c (onepersona) (e) personagraph

e

c

e

g

h

i

e

g

h

i

(c)

a b
c

d

e

f g

h

i

j

k

(a) original graphG

a b

(b) ego-net of a

a1
a2 b

c

(c) split inga in twopersonas

c

a b d

(d) ego-net of c (onepersona) (e) personagraph

e

c

e

g

h

i

e

g

h

i

(d)

a b
c

d

e

f g

h

i

j

k

(a) original graphG

a b

(b) ego-net of a

a1
a2 b

c

(c) split inga in twopersonas

c

a b d

(d) ego-net of c (onepersona) (e) personagraph

e

c

e

g

h

i

e

g

h

i

(e)

Figure 4.1: Partitioning the ego-nets, splitting the nodes into personas, and building the
persona graph. Illustration by Epasto et al. [ELPL17]. (a) shows the original
graph G. The ego-net of node a consist of two clusters (b), so a is split into two
personas a1, a2 (c). The ego-net of node c has only one cluster, so c has only
one persona c1 (d). After splitting all nodes, the persona graph is created (e).

15

4. The Ego-Splitting Framework

(a) non-overlappingpartition
of thepersonagraph

(b) overlapping clusters in
original graph

(a) The detected clusters in the persona graph.(a) non-overlappingpartition
of thepersonagraph

(b) overlapping clusters in
original graph

(b) The communities in the original graph.

Figure 4.2: Clustering of the persona graph and corresponding communities in the original
graph. Illustration by Epasto et al. [ELPL17]

• Step 5 : Create the communities in G. For each cluster c′ ∈ C ′, create the asso-
ciated community c ⊆ V formed by the corresponding nodes of V : c(c′) = {u ∈
V |∃i s.t. ui ∈ c′}. The result cover of the framework is C = {c(c′)|c′ ∈ C ′}.

Figure 4.1 illustrates steps 1 to 3 on a small sample graph, using connected components as
the local clustering algorithm. Figure 4.1b depicts Step 1 for node a: We get the ego-net
of a and partition it into two clusters. In Figure 4.1c(c), one persona is created for each
detected cluster. For example, a1 is associated with the nodes b, c, e. In Figure 4.1d, we
do the same for node c. As there is only one cluster detected, we create only one persona
c1 that is associated to all neighbors a, b, d, e. After this is done for all nodes, we build
the persona graph by adding the edges of G (Step 3). For example, the edge (a, c) in
the original graph is inserted into the persona graph as an edge between the persona of
a associated with c (a1) and the persona of c associated with a (c1). Step 4 is shown in
Figure 4.2a where we apply the global clustering algorithm on the persona graph. Finally,
we perform Step 5, depicted in Figure 4.2b, where we map the persona communities to the
nodes of the original graph.

Intuitively, we find all communities a node u is part of. Then we split u into multiple
personas, each corresponding to one of its communities. Each persona obtains the edges
between u and nodes of its associated community. Each persona is then only part of one
community, so the global clustering algorithm is able to detect all communities on the
persona graph. Transforming the graph into the persona graph increases the number of
nodes, but it keeps the number of edges constant. Since there is a one-to-one mapping of
the edge in both graphs, the clustering of the persona graph also assigns a community (or
none) to each edge. In this sense, the framework also produces an edge partition (also
called link partition).

A naive way to calculate all ego-nets could be computationally expensive, in the order of
O(mn). An optimal algorithm can create all ego-nets in time O(m3/2). In practice, the
upper bound depends directly on the number of triangles in the graph.

Noticeable is that the framework does not rely on any specific clustering algorithms. It can
be adapted to different requirements or specific graphs by choosing appropriate clustering
algorithms. The framework is able to handle weighted and/or directed graphs, provided
that Al and Ag also support this. The authors use a label propagation algorithm based
on the Absolute Potts Model [RN10] as the local and global clustering algorithm in their
experiments, because the algorithm is fast and can be run in parallel.

The ego-splitting framework relies on the fact that each node is split correctly into its
personas. This means that the local clustering is a critical part of the algorithm. If a node

16

is split into too few personas, it cannot be assigned to all of its communities, no matter how
high the quality of the global clustering algorithm is. If the local clustering algorithm is not
able to partition the ego-net into the communities of the ego-node, then the overlapping
communities are not properly entangled. If the persona graph still contains overlapping
communities, the global clustering algorithm will not be able to detect the communities
correctly. In this thesis, we will evaluate some problems of the framework in detail and
present extension of the framework to improve the quality of the detected cover.

17

5. Ego-Net Extension

The clustering of the ego-net is critical for the quality of the end result of the ego-splitting
framework. The idea of the framework is to disentangle the overlapping communities
by splitting each node in a set of personas such that each persona is associated with
one community. The communities can only be disentangled well if the local clustering
algorithm provides a high quality clustering, i.e. each community is detected as exactly
one cluster. A low quality clustering can cause multiple problems in the persona graph. If
the clustering algorithm detects to many clusters, too many personas are created. In the
persona graph, a community may then be decomposed into multiple components, or be
only sparsely connected. On the other hand, if the clustering algorithm detects too few
clusters, the communities are not properly disentangled. In this case, the persona graph
still contains overlapping communities. If a node from community a is assigned to the
cluster of community b, then community b will contain more inter-community edges in the
persona graph, while community a will contain less intra-community edges. In all cases,
the persona graph does not properly represent the disentangled communities, so the global
clustering algorithm will most likely not detect all communities correctly.

Let the node u be part of the ground-truth communities ci, i = 1, . . . , t. When we look at
the ego-net Gu of u, some nodes inside the ego-net are part of one of the ci, while other
nodes are not. A node that is not part of any of the ci is called an external node in the
context of the ego-net. Each ground-truth community ci induces a sub-community cui in
the ego-net of node u, cui = {v ∈ Gu|v ∈ ci}. In the following analysis, we assume that the
cui are disjoint. In reality, the cui may overlap, but only to a small degree. The optimal
output of the local clustering algorithm would detect each cui as one cluster and put each
external node inside a singleton cluster. Each created persona of the ego-node would then
correspond to a ground-truth community or an external node. We call cui a ego-community
of node u.

In preliminary experiments, we visualized some ego-nets and found that frequently, there
are nodes that are disconnected or sparsely connected to their ego-community. In general,
there is no guarantee that the nodes of a ego-community cui form a detectable cluster in
Gu. For example, cui may be internally disconnected, i.e. the nodes form sub-sets that
are disconnected. In this case, it is unlikely that cui will be detected as a single cluster,
as we expect any reasonable clustering algorithm to put two disconnected components
into two separate clusters. Figure 5.1a shows an example of an ego-net in which the green
community is split into multiple components. The problem lies in the structure of the
ego-net itself and not in the quality of the clustering algorithm. We use the term structural

19

5. Ego-Net Extension

(a) The original ego-net (b) The extended ego-net

Figure 5.1: Comparison of the ego-net of a node u before and after extension. The graphs
were drawn using a force-directed layout. Large nodes represent nodes of the
original ego-net, small nodes represent nodes that were added by the extension.
The colors indicate ground-truth communities of u: Green, red, and blue nodes
are part of the same community. Gray nodes are in none of the ground-truth
communities (external nodes).

quality to assess the structure of the ego-net. The structural quality indicates how easy
it is to detect the ego-communities as clusters in the ego-net. If the structural quality
is low, even the best clustering algorithm cannot detect the communities. Vice versa,
increasing the structural quality should increase the quality of the detected clusters for
most reasonable clustering algorithms. We use structural quality as a generic term. To
measure the structural quality, we have to use specific metrics, e.g. the conductance of the
communities or the ratio of intra-community edges to inter-community edges. If we increase
the structural quality considerably, most reasonable clustering algorithms should produce
a higher quality clustering. One possible approach to increase the structural quality is the
inclusion of meta-data. However, this is obviously only possible if such meta-data exist
and if the meta-data actually induces the communities we want to find, so this approach is
only useful in specific cases.

In preliminary experiments, we found that ego-nets are often very sparse, see Figure 5.1a
for an example. The colors indicate the communities cui , and gray nodes are external nodes.
Note how the green and blue community are internally disconnected and there are many
isolated nodes. We propose an extension of the ego-net to increase the structural quality.
Extending the ego-net means that we add additional nodes to the ego-net, i.e. nodes of G
that are not direct neighbors of the ego-node. Our goal is to add only nodes that are part of
one of the ground-truth communities ci that we want to detect in the ego-net. For example,
if we add a node v ∈ ci, we expect that the structural strength of ci increases. Figure 5.1b
gives an example of the extended ego-net. Both graphs were drawn by a force-directed
layout. While the communities in the original ego-net are internally disconnected, they
are well-connected in the extended ego-net. At the same time, the communities are better
separated. The force-directed layout splits the nodes into three clearly separated sets of
nodes that correspond to the ground-truth communities. We expect that most clustering
algorithms are able to detect a higher quality clustering in the extended ego-net.

To decide which nodes we add to the ego-net, we first have to get a set of candidates
J ∈ G\(Gu ∪ {u}). We use as candidates all neighbors of the nodes in the ego-net, i.e. all

20

5.1. Number of Edges

nodes that are connected to the ego-node by a path of length 2 (neighbors of neighbors
of the ego-node). In most graphs, a node has many more neighbors of neighbors than
direct neighbors, so the number of candidates is far higher than the size of the ego-net.
There are two reasons to keep the number of added candidates low: First, most of the
candidates are not part of the communities we want to find. Adding all of them would
most likely decrease the structural quality. We want to add only candidates that improve
the structural quality of the ego-net, so we need to evaluate the candidates and add only
the best ones. Second, adding nodes to the ego-net also increases the running time of the
local clustering algorithm. Adding all candidates to ego-net may increase the complexity
of the entire ego-splitting framework considerably. We limit the number of nodes that are
added to the ego-net. Since the ego-net sizes vary greatly, we choose this limit dependent
on the size of the ego-net. Let ne be the number of nodes in the ego-net. The limit for the
number of added nodes is o = α · neβ. In practice, β should be smaller or equal to 1 in
most cases, as this means that the ego-net is at most extended by a constant factor.

We present two approaches to evaluate the candidates, which we will describe in the
following sections. The first approach rates candidates with a simple scoring function based
on the number of neighbors in the ego-net. The second approach is more sophisticated and
is based on the statistical significance of the candidate.

5.1 Number of Edges
A simple way to rate the candidates is to count the number of edges into the ego-net. Let
j ∈ J be a candidate that we want to evaluate. If j is in one of the ego-communities,
we expect a comparatively large number of edges between j and the nodes of the ego-
community. Vice versa, an external node has a lower chance to be well connected to the
ego-net. This implies that a node with many edges into the ego-net has a higher chance to
be in one of the ego-communities than a node with fewer edges.

For each node v ∈ Gu, we look at all of its neighbors w. If w ∈ G\(Gu ∪ {u}), we mark w
as a candidate and increment a counter kinw , starting from 0. After this process is done for
all nodes in the ego-net, kinw gives the number of edges to the ego-net for each candidate w.
Using this value, we define a scoring function q1(j) = kinj that gives us a score for each
candidate. We calculate the score for each candidate and then extend the ego-net by adding
the o best candidates to it. However, q1 does not take into account that the candidates
may have different degrees. For example, let j and j′ be two candidates with kinj = kinj′

and kj > kj′ . Intuitively, j is a better candidate than j because j has a higher fraction of
its edges going into the ego-net. High degree nodes have a higher chance to have “random”
edges into the ego-net than low degree nodes. To facilitate the comparison of nodes with
different degrees, we can normalize kinj by dividing it by the node degree of j. This gives us

the candidate score function q2(j) = kin
j

kj
. However, q2 is not optimal in all cases. Suppose

we have two candidates j and j′ with kinj = 20, kj = 40 and kinj′ = 5, kj′ = 10. The fitness
of these candidates is q2(j) = q2(j′) = 0.5. We would prefer no candidate over the other,
but there are two reasons why we want to prefer j over j′: First, j is stronger from a
stochastic point of view. In large networks, the ego-net is much smaller than the rest of
the graph. If an edge (j, v) is drawn at random from all v ∈ G, the probability that v is a
node of the ego-net is p = |Gu|

|G| � 0.5. Let us assume that j, j′ are externals nodes with a
given chance to have an edge to any node of the ego-net. It is much more unlikely that j
has 20 of its 40 randomly connected to the ego-net than that j′ has 5 of its 10 randomly
connected to the ego-net. Second, as j has more connections into the ego-net, adding j
would increase the number of edges inside the ego-net much more than adding j′. If j is an
internal node, most of these edges are intra-community edges. j′ would most likely result

21

5. Ego-Net Extension

c

i
G \ {C ∪ {i}}kout

i

kin
i

Figure 5.2: Evaluating the statistical significance of a node i to a community c. In this
example, Kin

c = 6,Kout
c = 7,M = 13,M in = 6, kini = 2, kouti = 2.

in fewer intra-community edges, so j increases the structural quality further. We propose
the scoring function

qe(j) =
kinj

2

kj
.

This scoring function prefers candidates with many edges, but still has a penalty for high
degree nodes. The extension process is straightforward: We calculate the score qe(j) for
each candidate j ∈ J . Then we sort the candidates by their score and add the o best
candidates to the ego-net. To improve the running time, we ignore all candidates with
kinj < 3. Because such a candidate only adds very few edges to the ego-net, we can assume
that adding it would not considerably improve the ego-net structure.

5.2 Statistical Significance
A more sophisticated approach to rate the candidates is based on statistical significance
[LRR10]. The statistical significance evaluates one node i and its edges to a given community
c in G (i /∈ c). The evaluation is based on a null-model, i.e. a class of graphs without
community structure. In the null model, edges inside c are locked, but all other edges
are randomly reconnected. Each node thus retains its original degree. The null-model
does not allow self-loops. The statistical significance of i is based on the probability that
the neighbors of i were randomly drawn by the null model. Intuitively, if we reconnect
the edges of i according to the null model, then we can calculate the expected number of
neighbors in c. If i has much more neighbors in c than expected, we can assume that i is
not randomly connected to c. Instead, it has a strong connection to c (or a subset of c)
which indicates that it is part of one of the ego-communities.

Let c be a community in G and i be the node which significance we want to assess. Figure
5.2 depicts the situation. The number of neighbors of i inside c is denoted as kini , the
neighbors in the rest of G as kouti = ki− kini . The degree of c is Kc, which can be separated
into the internal degree Kin

c and the outgoing stubs Kout
c . The total degree of G\{c ∪ i} is

M and its internal degree is M in. M in is the number of stubs that are not connected to
either c or i, M in = M − (Kout

c − koutc + kinc). Given such a community c and a node i, the
probability that i has exactly kin neighbors in c according to the null-model is given by

p(kini) = A
2−kin

i

kouti !kini !(Kout
c − kini)!(M in/2)! . (5.1)

22

5.2. Statistical Significance

The normalization factor A ensures that
ki∑
x=0

p(x) = 1 .

The normalization factor is important to get the correct result, but it cannot be easily
approximated. To calculate it, we would have to use equation 5.1 and evaluate it for every
possible kini . We have to calculate this many times, so using this method would result
in a very high complexity. Lancichinetti et al. [LRRF11] propose to approximate the
distribution with another distribution that is easier to estimate. Suppose we would allow
self-loops in the null model. Then we would actually have the same null model as the
one on which the definition of modularity is based [New06]. In such a null model, the
equivalent to equation 5.1 can be calculated by a hypergeometric function. We can then
directly calculate the value without a normalization factor by using the equation

p(kini) =

(Kout
c

kin
i

)(M
kout

i

)
(M+Kout

c
ki

) .

The equation gives the number of ways the stubs can be connected for the given kini , divided
by the total number of ways to place all ki. A hypergeometric distribution describes the
probability of drawing a given number of successes without replacement. For each of the ki
edges, we draw at random an open stub. The total number of possible stubs is M +Kout

c

and the number of “successful” stubs is Kout
c . We calculate the probability of exactly kini

successful draws.

In most cases, the change in the null model does not have a large impact on the result of
the equations, so the hypergeometric distribution is a good approximation of our actual
distribution. However, if the probability of generating self-loops in the modified null model
is high, the null model and the modified null model differ considerably. In this case, the
null models may produce widely different graphs, so our approximation is not reliably
good. In the modified null model, the probability that a random stub of node i connects to
another stub of the same node is given by ki

2

2M . If ki2 > 2M , the expected number of loops
is larger than 1. In this case we calculate Equation 5.1 directly. For the network graphs we
evaluated, the equation ki2 < 2M holds true for all nodes.

Equation 5.1 gives the probability that i has exactly kini neighbors in c according to the
null model. This value alone however is not comparable for different nodes, as a higher
degree always decreases the value for a single kini . Also, the probability is not monotonically
decreasing, e.g. the chance that a node has 0 neighbors in the ego-net may be smaller than
the chance that is has 1 neighbor. Therefore, we have to calculate the probability that i
has at least kini neighbors according to the null model. This probability is given by

r(kini) =
ki∑

x=kin
i

p(x) .

We will refer to this probability as the r-score. Let ri be the r-score of i. The r-score
provides a tool to evaluate the topological relation of i and c. The r-score indicates how
likely it is that i has kini or more neighbors in c according to the null model. If i has many
more neighbors in c than expected in the null model, the r-score is low. In other words: If
a node has a low r-score, its connection to c is unexpectedly strong.

The r-score does not consider the number of external nodes, only how likely a single node
from the null model is to have at least kini neighbors in c. For example, if ri = 0.01, we

23

5. Ego-Net Extension

Algorithm 5.1: ExtendSignificance
Input: Graph G, Ego-Net Gu of u, Clustering of D of Gu, limit of added

candidates o
Data: List of candidates J, Edges between candidates and clusters e
Output: Set of significant candidates J’

1 J, e ← searchCandidates(G,Gu,D)
2 J’ ← {}
3 forall j ∈ J do
4 if |J’′| ≥ o then
5 return
6 s← checkSignificance(j, D, e)
7 if s = true then
8 J’ ← J’ ∪ {j}

can interpret this as i having a chance of 1 to 100 to be a created by the null model. If we
only have 10 external nodes, we might consider this good enough and conclude that the
node is not compatible with the null model, because it has significantly more neighbors
in c than expected. However, if there are 1000 external nodes, we expect that there are
around 1000 · 0.01 = 10 nodes created by the null model with such an r-score. In this case,
the r-score of i is not better than the r-score of an external node, so we conclude that i is
compatible with null model.

Let ne = n− |c| be the number of external nodes and ri be the r-score of the candidate i.
ri gives the probability that i has at least kini neighbors in c according to the null model.
We calculate the probability that from the ne nodes there is at least one that has lower
(better) r-score than ri. If we look at one external node, the probability that its r-score
is lower than ri is, according to the null model, ri. Examining all external nodes thus
equals a binomial distribution with a success probability of ri and a sample size of ne. The
probability that at least q of the ne nodes have a r-score smaller than ri is given by

Ωq(ri, ne) =
ne∑
j=q

(
ne
j

)
ri
j(1− ri)ne−j .

The special case for q = 1
Ω1(i) = 1− (1− ri)ne

gives us the probability that among the ne external nodes there is at least one with a better
(lower) r-score than ri. We define the s-score of a node i to a given community c as

s(i, c) = Ω1(ri, ne) .

The s-score expresses how likely it is that the neighbors of i haven been drawn randomly
according to the null model. If i is part of a ego-community, it should have more neighbors
in the ego-net than expected according to the null model, so its s-score is low. Vice versa,
if i is an external node, we expect that kini is in the range of expected values, so its s-score
is high. We call a candidate statistically significant (or just significant) if its s-score is so
low that we consider the candidate not compatible with the null model. More specifically,
we have to set a tolerance P , 0 < P � 1, for example P = 0.1. A node i is significant if
ri < P .

We use statistical significance to rate the candidates for the ego-net extension. We only
add candidates that are significant, as these are likely to be part of an ego-community.

24

5.2. Statistical Significance

Algorithm 5.2: searchCandidates
Input: Graph G = (V,E), Ego-Net Gu = (Vu, Eu) of u, Clustering D
Output: Set of candidates J, Number of Edges e(w, d) between all w ∈ J and

d ∈ D
// Initialization

1 J← {}
2 forall w ∈ V do
3 forall d ∈ D do
4 e(w, d)← 0

5 forall v ∈ Vu do
6 d← D.clusterOf(v)
7 forall (v, w) ∈ E do
8 if w /∈ Vu then
9 J.insert(w)

10 e(w, d) ← e(w, d) + 1

The significance is calculated in the global graph G. As described above, the definition
of statistical significance is based on the connection of a node to a community. When we
first build the ego-net, we do not have any information about the communities, so the
only known community we could use is the whole ego-net. A simple approach would be
to just calculate the significance of the candidate to the whole ego-net. However, if there
are multiple communities in the ego-net, we expect that even a good candidate is only
well-connected to a subset of the ego-net (usually just one community). If we just take
the significance of the candidate to the whole ego-net, the s-score would decrease if the
number of communities, and therefore the size of the ego-net, increases. This approach is
only useful if the number of communities per node is very low (≤ 2). To deal with highly
overlapping communities, we have to calculate the significance to each ego-community
separately. To accomplish this, we need an estimation of the ego-communities, which is
the same problem as finding a good clustering. Obviously, we cannot expect to get a
perfect clustering, because we would not need to extend the ego-net in this case. Instead,
we calculate the significance from an approximation of the real communities. To do this,
we first cluster the ego-net, using the local clustering algorithm. We can either simply
use the original ego-net, or we first extend the ego-net with another approach, e.g. using
the number of edges as described above. As said before, the detected clusters are not an
optimal fit to the communities we want to find. To keep it simple, we assume that each
detected cluster mostly consists of nodes from one community, as splitting detected clusters
is much harder than joining them. In our experiments, this assumption holds true for some
clustering algorithms, e.g. modularity based algorithm tend to keep communities separate,
but also split a single ground-truth community into multiple parts.

Algorithm 5.1 gives an overview of the algorithm to extend the ego-net. First, we apply
the local clustering algorithm to receive a clustering D. Next, we search for extension
candidates. The process is given in pseudo code in Algorithm 5.2. For each node v ∈ Gu,
we look at all of its neighbors w. If w ∈ G \ (Gu ∪ {u}), we mark w as a candidate. Let
d ∈ D be the detected cluster that v is part of. We increment a counter e(w, d) to remember
the edge between w and d. Then we evaluate all candidates, adding significant ones to the
ego-net.

Algorithm 5.3 shows the process of evaluating the significance of a candidate. The evaluation
of a candidate j consists of two phases. In the first phase, we calculate for j its s-score

25

5. Ego-Net Extension

Algorithm 5.3: checkSignificance
Input: Candidate j, Clustering D, Number of Edges e(j, d) between j and all

d ∈ D
Data: Map S, List of Clusters Ds

Output: true if j is significant, else false
// Significance to clusters

1 Ds ← clustersSortedByEdges(D, e, j)
2 forall d ∈ Ds do
3 s← calcSignificance(j, d, e(j, d))
4 S(d) ← s
5 if s < P then
6 return true

// Significance to merged clusters
7 Ds ← clustersSortedBySignificance(D, S)
8 dm ← {}
9 em ← 0

10 forall d ∈ Ds do
11 dm ← dm ∪ d
12 em ← em + e(j, d)
13 if calcSignificance(j, dm, em) < P then
14 return true

15 return false

s(j, d) to each detected cluster d. As described above, j is significant if s(j, d) < P for a
constant tolerance P . If we find a cluster that j is significant to, we add j to the ego-net
and terminate the evaluation of j. To increase the efficiency of the algorithm, we first sort
the clusters by the number of edges (connections) to the candidate. We expect that j is
more likely to be significant to a cluster if it has more connections. Then we calculate
the significance for each cluster, starting with the cluster with the highest number of
connections.
If we examined all clusters without finding j to be significant, the second phase of the
evaluation of j begins. Ideally, we would want to calculate the significance of j to
all ego-communities cui . As we do not have any reliable information, we consider j
significant if it is significant to any sub-group of the ego-net For each cluster d, we store
its fitness s(j, d) after we have calculated it in the first phase. We sort the clusters by
their fitness. Let di, i = 1, . . . , t be the detected clusters, sorted descending by their
fitness, i.e. d1 is the cluster with the best fitness. We create a new cluster by combining
d1 and d2. Let D2 = d1 ∪ d2 be the merged cluster. Now we calculate the significance
s(j,D2) to the new cluster. If s(j,D2) < P , we add j to the ego-net and terminate the
evaluation of j. Otherwise, we merge the next best detected cluster into D2, resulting in
D3 = D2 ∪ d3 and check the significance to D3. We iteratively merge clusters this way,
yielding Di = ⋃i

j=1 di, i = 1, . . . , t. If there is no Di with s(j,Di) < P , we consider j not
significant and discard it as a candidate.

The evaluation of a candidate as described above is repeated for each candidate, resulting
in a set of significant candidates that are added to the ego-net. As described earlier, there
is an upper bound o = α · sβ for the number of nodes that we add. If this bound is reached
after evaluating a candidate, we terminate the extension without evaluating the remaining
candidates.

26

5.2. Statistical Significance

Add significant candidates

Update candidates

Extended Ego-Net Ge
u

Create Clustering of Ge
u

Clustering D′ loop while
updated

Output: Last Ge
u

loop for
IC iterations

Create Clustering of Gu

Clustering D

Input: Ego-net Gu

Figure 5.3: Complete extension algorithm based on statistical significance. The clusterings
are created by applying the local cluster algorithm on the original/extended
ego-net. Before the clustering of the extended ego-net is used, the ego-net is
reverted back to the original, i.e. the process in the green box always starts
from the original ego-net.

To get the best candidates, we would have to calculate the significance for every candidate.
However, the calculation of the significance is relatively expensive, so we optimize the
complexity of the candidate selection. First, we discard all candidates with less than three
neighbors in the ego-net. It is unlikely that such a node would be significant, and even if it
were, adding a node with only one or two edges would not improve the structure of the
ego-net. This still leaves a great number of candidates which we have to evaluate. We have
already defined an upper limit o of the number of nodes that we extend. We define the
upper limit of evaluated candidates as ō = γ · o, γ ≥ 1. After searching for all candidates,
we sort them by the number of neighbors they have in the ego-net, and then we take the ō
best. If we would evaluate all candidates, it would be difficult to make any performance
guarantees. By using the upper limit, we evaluate at most γ · o ∈ O(ne) candidates.

After the evaluation of all candidates, we have a set of significant candidates. The number
of significant candidates may be still below the limit o. In this case, we try to add additional
candidates to the ego-net. We also iteratively search for candidates, which we describe
further below. Figure 5.3 gives an overview of the entire extension algorithm. Because
we already added some candidates, the structure of the ego-net has changed. Suppose
we have a ground-truth community ci and its corresponding ego-community cui . Now we
add a significant candidate j ∈ ci, so cui = cui ∪ {j}. Suppose that there is a candidate
j′ ∈ ci that was not considered significant and j and j′ are connected by an edge (j, j′) ∈ E.
If we recalculate the significance of j′, the s-score is likely to be better than before, as
j′ has an additional neighbor in the ego-net. With this in mind, we can recalculate the

27

5. Ego-Net Extension

significance of each remaining candidate and add all candidates that are now significant.
As the significance is calculated based on a cluster d ∈ D, we have to assign each extended
candidate j to one of the clusters. If we find a single cluster d that j is significant to in the
first phase of the candidate evaluation, we assign j to d (d = d∪{j}). If j is not significant
to a single cluster, we performed the second phase and examined the significance of j to a
merged cluster d1 ∪ d2 ∪ · · · ∪ dx. Because we sorted the clusters by their significance, d1 is
the cluster with the highest significance to j. If j is found to be significant in the second
phase, we add j to d1. Let dj be the cluster that we have assigned j to. First, we update
the information about the cluster dj . The formula of the significance depends on three
features of the inspected group: The number of outgoing stubs (Kout

dj), the open stubs in
the rest of the graph (M) and the number of nodes in the rest of the graph (ne). We can
update all values in constant time: Kout

dj = Kout
dj − kinj + koutj ,M = M − kj , ne = ne − 1.

Then we update the remaining candidates as follows. For each edge (j, j′) ∈ E, we check if
j′ ∈ J . If this is the case, we increment the number of edges e(j′, dj) between the other
candidate and the cluster of j by one. We repeat this update for all candidates that were
added to the ego-net. Then we start the evaluation of all candidates, excluding these that
were already added. This process is repeated iteratively until no new candidates are added.
With the procedure described above, we reevaluate all candidates even if they did not
receive additional edges into the ego-net. To lower the complexity of the extension, we
only evaluate candidates that were updated at the end of the last iteration. We also set an
upper bound Imax for the number of iterations.

As mentioned above, the evaluation of the significance is based on a clustering D. We
calculate D by applying the local clustering algorithm on the original ego-net Gu. One
problem is that the original ego-net may have a low structural quality, which we hope
to improve with the ego-net extension. The successful detection of significant candidates
relies partially on a good quality clustering. We assume that the structural quality of the
ego-net increases with the extension. We make use of this by applying the local clustering
algorithm on the extended ego-net Gextu , resulting in a new clustering D′. Then we revert
the extended ego-net back to the original one. Consequently, we remove all nodes j /∈ Gu
from the clusters of D′, resulting in a clustering of the original ego-net. We can now use
the clusters of D′ as the basis for the significance calculation and repeat the extension
procedure. This process can be iteratively performed, using the last extended ego-net as
the input for the local clustering algorithm. Ideally, each iteration increases the quality of
the clustering, which in turns makes the detection of significant candidates more precise.
In our experiments, the extended ego-net did not change considerably anymore after a low
number of iterations, e.g. 3.

One disadvantage of Significance is its reliance on a clustering algorithm. First, this
increases the running time of the extension process considerably. Second, if the local
clustering algorithm provides only a low quality clustering, then we might not be able to
find significant candidates.

28

6. Connecting Personas

After clustering the ego-net with the local clustering algorithm, a persona copy of the
ego-node is created for each detected cluster. Then each edge of the original graph is
inserted into the persona graph. Let ui, i = 1, . . . , p be the personas of node u. In the
persona graph, the ui are not connected by any edges. Intuitively, this makes sense because
each persona should correspond to exactly one community. By creating the personas,
we entangle the communities that overlap at node u. However, this assumes that the
assignment from personas to communities is exactly one-to-one. In this case, we have an
optimal partitioning of the ego-net. In general, we cannot assume that the output of the
local clustering algorithm is an optimal clustering. One error that the clustering algorithm
can make is creating two (or more) cluster for a single ground-truth community c. If this
happens, we create two personas u1, u2 that should belong to the same community c. In the
persona graph, the edges between u and nodes of c are split between u1 and u2. The size
of c in the persona graph increases by one compared to the optimal clustering. This makes
c weaker, e.g. the density decreases. The global clustering algorithm has no information
about u1 and u2, so it just handles them as two entirely independent nodes.

We propose to connect the personas of each node by inserting additional edges into the
persona graph. This should improve the quality of the global clustering algorithm if the
local clustering algorithm returns a non-optimal clustering of the ego-net. Connecting the
personas retains the information that they are a single node in the original graph. If we
don not connect them, the persona graph can break into disconnected components. If the
local clustering algorithm would work perfectly, this would actually be a plus, because
the global clustering algorithm would just have to take each connected component as one
community. However, the local algorithm is in general imperfect, i.e. a detected cluster
does not match a ground-truth community. When two (or more) communities are merged
into a single cluster, the ego-node can be only assigned to one of them in the global graph,
so its impossible for the global clustering algorithm to repair this error. When a community
is split, the two personas can still end up in the same detected community, so the global
clustering algorithm can (in principle) repair this kind of error. Connecting the personas
helps the global clustering algorithm, detect this kind of error. For example, the internal
density of the community increases because of the added edges.

The Peacock algorithm [Gre09] shares similarities with the ego-splitting framework. In the
first phase of the algorithm, G is transformed into a graph H containing no overlapping
communities. To create H, Peacock uses edge betweenness and split betweenness to
repeatedly split nodes. In the second phase of Peacock, a clustering algorithm is applied to

29

6. Connecting Personas

(a) Ego-net

c1

c2

c4

c3

(b) Clustering of the ego-net

c1

c2 c3

c4

2 1

2
3 6

1

(c) Ego-persona graph

Figure 6.1: Create the ego-persona graph from the ego-net clustering.

H and the detected clusters are reinterpreted as communities in G. It is obvious that H is
equivalent to the persona graph in the ego-splitting framework, i.e. both graphs should
only contain non-overlapping communities. When Peacock splits a node u, two personas
u1 and u2 are created. If a persona is split again, one new persona is created, e.g. u2 is
split into u2 and u3. At the end of the first phase, H contains a number of personas for
each node in G. The authors acknowledge the problems that follow when the personas
are disconnected. The Peacock algorithm places an edge (ui, uj) whenever a node is split
into two personas ui and uj . The authors also propose alternative ways to connect the
personas, e.g. by a clique or by connecting all personas with the original node. Because
the ego-splitting framework creates all personas at once instead of iteratively, we cannot
use the same strategy as the Peacock algorithm. Let P be the graph partition created
by the detected clustering, i.e. the reduction of the graph so that each detected cluster
corresponds to one node in P . Figure 6.1 depicts the process of creating P from the ego-net
clustering. P is a weighted graph and the edges in P are weighted according to the cut
between their corresponding clusters. Because we create one persona for each detected
cluster, P is identical to the graph of the personas of u. We call P the ego-persona graph
of u.

Given a ego-persona graph P , we can also create a modified graph P ′ that has the
same nodes as P but different edge weights. Let u1 and u2 be two personas in P . Let
q1(ui, uj) = w(u1,u2)

|u1|·|u2| , where w(u1, u2) is the weight of the edge (u1, u2). q1 gives us the
number edges between the clusters, divided by the possible maximum number of edges
(q1 ≤ 1). q1 is high if the personas u1 and u2 are strongly connected. We assign to each
edge (ui, uj) in P ′ the weight q1(ui, uj). The advantage of q1 over the size of the cut is that
q1 gives us a relative strength of the connection between two personas. The size of the cut
strongly depends on the number of nodes in the personas/clusters, so large personas tend
to have a large cut. In P , the weight of edges between small personas is very low, even if
they are strongly connected. There are many ways to normalize the connection strength in
the ego-persona graph, e.g. based on additional domain knowledge. We focus on q1, as
it appears to be a straightforward and universally usable normalization of the number of
connections.

We connect the personas by inserting additional edges into the persona graph. We propose
three strategies to decide which edges are inserted. Figures 6.2a shows a ego-persona graph
of a node. Figure 6.2 (b) - (d) depict the strategies 1 - 3:

1. Use all edges in P . For each edge (ui, uj) in P , we insert an unweighted edge (ui, uj).

2. Use all edges in P ′. Let wmax = maxi,j w(ui, uj) be the maximum edge weight in P ′.
For each edge (ui, uj) in P ′, we insert a weighted edge (ui, uj) with weight w(ui,uj)

wmax
,

i.e. we normalize the weight so that the maximum edge weight is 1.

30

1

13

2

4

2

1

2 3 1

32

1

1 3

3

1

1

(a) Ego-persona graph (b) All edges unweighted

3
4

1
6

1
6

1
3

4
9 1

3

2
3

1

(c) All edges weighted (d) Maximum spanning tree unweighted

Figure 6.2: Connect personas of the same node using different strategies. In Figure (a),
the numbers inside each node show the size of the corresponding cluster.

3. Use an unweighted maximum spanning tree of P . We apply a maximum spanning tree
algorithm to P . For each edge (ui, uj) in the spanning tree, we insert an unweighted
edge (ui, uj).

If two clusters are not connected in the ego-net, we assume that they do not belong to
the same community, so we do not need to connect their corresponding personas. In
the following, we assume that G is unweighted. For strategies 1 and 3, we only insert
unweighted edges into the persona graph. For strategy 2, we insert weighted edges into the
originally unweighted persona graph. In this case, we transform the persona graph into
a weighted graph by assigning a weight of 1 to each unweighted edge. Using strategy 2
therefore requires that the global clustering algorithm is able to handle weighted graphs.
For strategy 3, we use a spanning tree to make sure that all personas are connected to at
least one other persona, provided they are not isolated in the ego-persona graph. Intuitively,
two clusters are more likely to be in the same community if they are strongly connected.
By using a maximum spanning tree, we connect the personas that are most likely in the
same community.

By inserting additional edges into the persona graph, we increase the running time of the
global clustering algorithm. Depending on the global clustering algorithm, connecting
the personas may increase the total complexity of the ego-splitting framework. On major
difference between the strategies is the maximum number of inserted edges. Let p be the
number of personas of a given node. Strategies 1 and 2 insert up to p·(p−1)

2 edges, while
strategy 3 inserts at most p− 1 edges. Strategies 1 and 2 thus may increase the running
time of the global clustering algorithm much more than strategy 3.

Strategy 3 seems like a strong choice, as it provides multiple advantages over the other
approaches:

31

6. Connecting Personas

• The number of added edges is linear in the number of personas. Compared to
strategies 1 and 2, this should lower the computational complexity for the global
clustering algorithm. We still connect the personas that have the best connection in
the ego-net. Because we use a maximum spanning tree, each persona is connected to
the persona it has the strongest connection to.

• The added edges are unweighted. First, this is good because we keep the persona
graph unweighted (assuming that G is unweighted). This allows us to use any global
clustering algorithm that works on unweighted graphs, instead of restricting ourselves
to clustering algorithms for weighted graphs. Second, each unweighted edge provides
a strong connection between two nodes. If we use weighted edges instead, it is possible
that an edge has a low weight. Such an edge with a low weight will most likely have
no noticeable impact on the global clustering algorithm.

32

7. Community Clean-Up

We apply the global clustering algorithm to detect clusters in the persona graph. Each
persona cluster corresponds to one community in the original graph. A problem is that
most of the time, the persona graph is not optimal, because the local clustering algorithm
did not produce the optimal results. For example, a node u was split into too many
personas. If the global clustering algorithms assigns a different community to each of these
personas, then u is assigned to more communities than optimal. If a node is split into too
few personas, then global clustering algorithm can only detect too few communities for this
node. Many clustering algorithms, e.g. the modularity based Louvain algorithm, aim to
create a good partitioning of the graph. A persona with degree one is most likely assigned
to the same cluster as its neighbor. Intuitively, we would say that this persona is not part
of a community, because it only has a very sparse connection. To improve the strength of
the detected community, we want to remove such nodes. If we use a high quality clustering
algorithm to detect the communities in the persona graph, it is difficult to improve the
detected clusters. If we could improve the clusters with a process, this process could also be
included in the clustering algorithm. Instead, we evaluate the communities in the original
graph, therefore including information that the clustering algorithm does not have. We
assume that the detected communities already have a relatively high quality, and we only
add or remove some nodes. This clean-up process is then much faster than creating a
complete community from scratch.

We propose to clean up the detected communities using statistical significance. The concept
of statistical significance of a community was introduced by Lancichinetti et al. [LRR10]
and then used by Lancichinetti et al. [LRRF11] for the overlapping community detection
algorithm OSLOM. We also considered other approaches, e.g. based on a stochastic block
model [Pei15]. One disadvantage of this approach is that the evaluation is always done on
the global level, including all communities. This means that the analysis of a community is
affected by the other detected communities. On the other hand, using statistical significance
allows us to evaluate each community in isolation, independent of the rest of the cover.
We have already presented the basic definitions of statistical significance in Section 5.2,
including the r-score, on which we base our clean-up process.

The clean-up process consists of two phases. In the first phase, we analyze each community,
removing insignificant nodes and adding significant neighbors. If a community is not
significant, we discard it entirely. In the second phase, we look at all discarded communities
and try to merge them to create significant communities. We will now describe the two
phases in detail.

33

7. Community Clean-Up

(a) original
community

(b) find neighbors (c) add significant
neighbors

(d) significant
community

Figure 7.1: The single community analysis. Orange nodes are part of the community, blue
nodes are neighbors of the community. The analysis takes a community (a). In
phase 1, significant neighbors are added (b-c). In phase 2, insignificant nodes
are removed (d). The result is a community containing only significant nodes.

7.1 Single Community Analysis

The community analysis is based on the single cluster analysis of OSLOM. To decide
whether a node is significant, we have to define a tolerance P . P is a parameter of the
clean-up process, so it is constant for all communities analyses. Let c be the community
that we want to analyze.

Lancichinetti et al. make use of order statistics to solve this problem. The r-score is a
uniform random variable for nodes of the null model, so it is relatively easy to calculate
the ordered statistic distributions. The basic idea is that we compare i with the expected
best node according to the null model, i.e. the best expected node (the node with the
lowest r-score) is given by the 1st order statistic. Let nc be the number of nodes in c and
ne = n− nc be the number of external nodes. The cumulative distribution of the qth order
statistic Ωq is given by

Ωq(x, ne) =
ne∑
j=q

(
ne
j

)
xj(1− x)ne−j

The core of the analysis consists of making sure that the community only contains significant
nodes, i.e. each node u ∈ c is statistically significant to c. The Get Significant Nodes (GSN)
routine takes a community c and a set of candidates J and returns all nodes j ∈ J that
are significant to c. Algorithm 7.1 gives the routine in pseudo code. For each node j ∈ J ,
we calculate its r-score to the community c. Then we sort these candidates ascending by
their r-score, giving us the r-scores r1, . . . , rt. Let ne = |G \ c| be the number of nodes
outside c. Now, starting from q = 1, we calculate the value φq = Ωq(rq, ne). The value
φq gives the probability that the qth best node in the null model would be better (more
significant) than the qth best observed node. We calculate φq for q = 1, . . . , t until we find
a candidate with φq < P . In this case, the q examined candidates are significantly better
than expected, so they may be part of the community. We continue increasing q until we
find a candidate with φq ≥ P , indicating that the q examined candidates are not significant.
However, the previous q− 1 candidates are significant. The routine then returns these q− 1
candidates. If there is no candidate with φq < P , then all candidates are compatible with
the null model. In this case, the GSN routine returns an empty community. The GSN
routine takes a community c and a set of nodes J and returns a community c′ = GSN(c, J)
that is either statistically significant or empty.

The clean-up procedure of a given community c consists of two phases. Algorithm 7.2 gives
the procedure in pseudo code, and we will describe it below. Figure 7.1 depicts how a
community is transformed into a significant community.

34

7.1. Single Community Analysis

Algorithm 7.1: GetSignificantNodes
Input: Community c, Candidates J
Output: Set of significant candidates c′

1 c′ ← {}
2 forall j ∈ J do
3 r(j)← rScore(j)
4 {sort r ascending so that r(1) is the best r-score}
5 q ← 1
6 while q ≤ |J| do
7 s← Ωq(r(q), ne)
8 if s < P then
9 break

10 q ← q + 1
11 if q = |J|+ 1 then
12 return
13 while q ≤ |J| do
14 s← Ωq(r(q), ne)
15 if s ≥ P then
16 break
17 q ← q + 1
18 c′ ← {q − 1 best candidates}

• Phase 1: First, we find all neighbors of c, i.e. all nodes outside c that are connected
to it. Let Nc be the set of the neighbors of c. We set J = c ∪Nc and execute the
GSN routine, yielding a community cs = GSN(c, J). If cs is empty, we have found no
significant nodes. This indicates that the community is not significant. However, it
is possible that a sub-set of the community is significant, so we try to find such a
significant sub-community. Let w be the worst node in c, i.e. the node w with the
highest r-score. We remove w from c, giving us a updated community c′ = c \ {w}.
Now we run the process above again, i.e. we get the neighbors Nc′ of c′ and then
compute cs = GSN(c′, c′ ∪N ′c). We remove the worst node and run the GSN routine
until the result of the GSN routine is a non-empty community cs. Alternatively, we
stop when we have removed all nodes from the community. At the end, we either have
a significant community cs or an empty community. Note that cs may contain nodes
u ∈ Nc and thus cs may be larger than c. If cs is empty, we consider c not significant
and stop the community analysis, returning an empty community. Otherwise, we
continue with Phase 2, using cs.

• Phase 2: We repeat phase 1 with cs. However, we do not consider the neighbors of cs,
i.e. we set J = cs. We run the GSN routine, yielding a community c′s = GSN(cs, J).
If the GSN routine returns an empty community, we iteratively remove the worst
node of cs, just like in phase 1. The result of phase 2 is a community c′s that is either
significant or empty.

In phase 1, we add all neighbors that are significant to c, i.e. all nodes that are unexpectedly
well-connected to c. In phase 2, we make sure that all nodes in c are significant. This is
important because the community may have changed be adding nodes in phase 2. Suppose
a node u ∈ c has l neighbors in c. If we add additional nodes to c, but l stays the same,

35

7. Community Clean-Up

Algorithm 7.2: CommunityAnalysis
Input: Community c
Output: Significant community cs

1 cs ← {}
// Phase 1

2 while |c| > 0 do
3 Nc ← NeighborsOf (c)
4 J← c ∪Nc

5 cs ← GetSignificantNodes(c, J)
6 if |cs| > 0 then
7 break
8 w ←WorstNode(c)
9 c← c \ {w}

// Phase 2
10 c← cs
11 while |c| > 0 do
12 cs ← GetSignificantNodes(c, c)
13 if |cs| > 0 then
14 break
15 w ←WorstNode(c)
16 c← c \ {w}

then the r-score of u may decrease. Intuitively, u is not as well-connected to the larger
community c. The community c′s at the end of phase 2 is statistically significant.

The community analysis takes a community c and returns a community c′. If c′ is empty,
we consider c not significant and discard it. Discarding means that we add it to a set of
discarded communities CD, which we will use in the second phase of the clean-up. If c′ is
not empty, it is significant, i.e. all nodes outside of c′ are compatible with the null model
and all nodes inside it are not. We assume that the communities that the ego-splitting
framework detects have a good quality, i.e. they only differ from a ground-truth community
in a few nodes. However, the community analysis may add a large number of nodes to c
and/or remove a large number of nodes from it. The community c′ may be completely
different than community c, e.g. c′ might be much larger or smaller. It is even possible
that c and c′ are disjoint, i.e. no node of c is part of c′. We define a parameter δ, δ ≥ 1 that
limits the change of the community, e.g. δ = 2. If |c′| < 1

δ |c|, then c′ is shrunk to much. If
|c′| > δ|c|, then c′ is too big. In both cases, the community was changed drastically by the
clean-up process. We do not consider c and c′ to be the same community, so we discard c.
If we do not discard c, we consider c′ a successfully cleaned up community. We add c′ to
the result cover C ′. We repeat the single community analysis for each community in the
input cover. As a result, we have a cover C ′ of (cleaned) significant communities and a set
CD of discarded communities.

7.2 Merge Communities
In the first phase of the clean-up process, we analyze each community, giving us a set of
significant communities C ′ and a set of discarded (not significant) communities CD. It is
possible that by merging two or more of the discarded communities, we are able create
a significant community. Intuitively, this may happen if the global clustering algorithm

36

7.2. Merge Communities

detects one (ground-truth) community as multiple clusters. It is also possible that one of the
discarded communities contains significant sub-communities, as we discarded communities
that decrease to much in size in the single community analysis. However, searching for
sub-communities is a much more complex problem than testing if merged communities
are significant, so we focus on the latter. First, we create a graph H of the discarded
communities CD. Each node in H is one community c ∈ CD, and the edges in H are
weighted according to the number of edges between two discarded communities. We search
for communities in H by using a simple non-overlapping community detection algorithm,
which we describe in the following. On H, we assign to each node a singleton community.
Then we optimize the r-score of the communities, using local moving, i.e. we try to assign
each node to a community of its neighbors. For a node u ∈ H with neighbors vi, let
ci be the current community of vi. We calculate the r-score of u to each community ci
of its neighbors. Let rl be the lowest r-score to a neighbor community cl, i.e. u is best
connected to cl . We also calculate the r-score r0 of u to its current community. If rl < r0,
we remove u from its current community and assign it to the community cl. Each node
thus has exactly one community at all times. If rl ≥ r0, we do not change the community
assignment of u. We perform this process for each node in H in a random order. We
iteratively sweep over all nodes as just described, either until the communities do not
change anymore or a maximum number of iterations is reached. Now we have a set of
non-overlapping communities on Gu. If a community has a size of one, we ignore it, because
it just contains one discarded community. For each community of size one in H, we add the
associated discarded communities to a new set of discarded communities C ′D. Let c be a
community in H, containing the nodes u1, . . . , ut. We merge all nodes of the communities
ui in the original graph into one community c′, i.e. c′ = ⋃

ci, where ci is the discarded
community associated with the node ui. Then we clean up the community c′ using the
single community analysis, either yielding a significant community c′′ or indicating that c′
is not significant. If we get a significant community c′′, we add it to the cleaned up cover
C ′. If c′ is not significant, we add it to the new set of discarded communities C ′D. After
we have cleaned up all merged communities, we have a set of the remaining discarded
communities C ′D. From these communities, we construct a new graph H ′. We repeat the
entire process described once again on H ′, trying to find merged significant communities.
We add all communities found this way to C ′ and then terminate the process.

The output of the clean-up process is a cleaned up cover C ′ that contains only significant
communities. We only clean up single communities of C or merge discarded communities
of C into new ones, so the number of communities in C ′ is smaller than or equal to the
number of communities in C.

For the most part, our clean-up process is a simplified version of OSLOM. OSLOM can also
take a cover as a hint and output a cover of significant communities. However, the entire
OSLOM algorithm is much more complex, e.g. OSLOM searches for sub-communities and
merges similar communities. If we would use OSLOM to clean up the output of the ego-
splitting framework, OSLOM would dominate the running time of the community detection.
Our clean-up is less complex, but depends on the fact that the detected communities
already have a somewhat good quality, i.e. they are similar to the statistically significant
communities.

The clean-up process also solves a fundamental problem of the ego-splitting framework.
If the local clustering algorithm did not detect each community in the ego-net of node u
as one cluster but instead detected multiple communities as one cluster, then we create
too few personas. The persona associated with the cluster of multiple communities can be
assigned to only one of its communities by the global clustering algorithm. In the end, u
will not be assigned to all of its communities. By using our clean-up, we can assign u to
all of its communities. Let ci be a ground-truth community of u that it is not part of in

37

7. Community Clean-Up

the detected cover. Suppose that ci has been detected with a good quality, i.e. there is
a detected community c′i very similar to ci. While cleaning up community c′i, we detect
that u is strongly connected to c′i and therefore add u to c′i. This allows us to assign u
to all communities it is significant to, even if there were not enough personas created.
The opposite case might also happen, i.e. too many personas are created so u is assigned
to too many communities. By cleaning up the communities, we remove u from all of its
communities that it is not well-connected to. The clean-up process gives us a strong tool
to ensure that each detected community c is actually well-connected, i.e. each node in c is
significant to c.

The output of the clean-up process is a cover C ′. Each cluster of C ′ is statistically
significant. The clean-up process does not require any additional information provided
by the ego-splitting framework, so we can apply the clean-up process to the result of any
overlapping community detection algorithm.

38

8. Experimental Setup

In this chapter, we describe the setup of our experiments. First, we give some details
of our implementation of the ego-splitting framework. Then we present the clustering
algorithms that we use in our experiments. We consider each algorithm as the local
clustering algorithm of the framework, as well as the global clustering algorithm. Next,
we present the graphs that we use as the input for the community detection. Finally, we
describe the measures we use to evaluate the results of our experiments.

8.1 Implementation Details
We implemented the ego-splitting framework as part of NetworKit [SSM14] in C++. Our
implementation is available at https://github.com/ArminWiebigke/networkit. The
benchmarks are written in Python, using Cython to call the C++ code of NetworKit.

We create the ego-nets using an efficient triangle listing algorithm [OB14]. First, we create
a graph ~G = (V, ~E) from G. For each undirected edge (u, v) in G, we insert a directed edge
from the lower degree node to the higher degree node. If ku ≤ kv, we insert (u, v), else
we insert (v, u). To build the ego-net of a node u, we do the following: First, we find all
neighbors vi of u in G and add them to the ego-net Gu(= Vu, Eu). For each neighbor v, we
look at all of its outgoing edges (v, w) in ~G. If w ∈ Vu, we add the undirected edge (v, w)
to the ego-net (Eu = Eu ∪ {(v, w)}). By using ~G instead of G, the worst case complexity is
reduced considerably. Lin et al. [LSS12] show that the running time of this algorithm has
an upper bound of 4α(G)m, where α(G) is the arboricity of G. The arboricity of G is the
minimum number of spanning forests into which G can be decomposed. A naive algorithm,
i.e. the same algorithm executed on G instead of ~G, has an running time in Θ(kmaxm),
where kmax = maxu∈V ku is the maximum node degree in G.

After applying the local clustering algorithm, we store the clustering of the ego-net in a
map that maps each node of the ego-net to its cluster. Using a array-like data structure
(std::vector) is unfeasible, as this would require O(n) memory per ego-net and thus
O(n2) memory for all ego-nets.

Our cover clean-up process based on statistical significance is based on the implementation of
OSLOM provided by Lancichinetti [LRRF11]. OSLOM introduces a stochastic element by
randomizing the r-score calculation. Each community is analyzed multiple times and is only
considered significant if it was considered significant in more than 50% of the iterations.
According to the authors, this is important to prevent the identification of significant

39

https://github.com/ArminWiebigke/networkit

8. Experimental Setup

communities in a random graph. However, they do not provide a more detailed explanation,
and we could not detect any improvement of the detected quality of the communities. We
simply use the calculated r-score without randomization because this improves the running
time considerably. Likewise, we do not randomize the r-score calculation in the ego-net
extension variant Significance, which uses the same code.
We do not create and partition the ego-net in parallel. In theory, the parallelization is
trivial as each ego-net can be calculated and processed independently, but Python can not
trivially handle this parallelization.

8.2 Algorithms
The ego-splitting framework requires a local clustering algorithm and a global clustering
algorithm. A clustering algorithm takes a graph and returns a clustering that assigns
at most one community to each node. If the original graph is weighted, the clustering
algorithm has to be able to handle weighted graphs. The same holds true for directed
graphs. We only evaluate undirected graphs. We present a selection of clustering algorithms
with different approaches.

• PLP is a simple label propagation algorithm as proposed by Raghavan [RAK07].
PLP is implemented as part of NetworKit.
• LPPotts is a label propagation algorithm based on the Absolute Potts Model. We
implemented LPPotts as part of NetworKit.
• PLM is an implementation of the Louvain algorithm. The Louvain algorithm
iteratively optimizes the modularity locally and then aggregates the graph. PLM is
implemented as part of NetworKit.
• LeidenMod: The Leiden algorithm was proposes by Traag et al. to improve on the
Louvain algorithm. The algorithm works similar to Louvain, locally optimizing a
fitness function and then aggregating the network. The standard implementation
uses modularity as the fitness function. We use an implementation called leidenalg
that is written in C++ and provides a Python interface. (https://github.com/
vtraag/leidenalg)
• Surprise is a statistical approach to assess the quality of communities [TAD15].
Surprise can be used as a fitness function for the Leiden algorithm. We use the
implementation that is part of leidenalg.
• Infomap is a clustering algorithm based on the map equation [RAB09]. The algo-

rithms optimizes the description length of a random walk in the graph. We use the im-
plementation provided by the authors (https://www.mapequation.org/code.html)
which is written in C++ combined with a Python interface.

We compare the ego-splitting framework with other overlapping community detection
algorithms. The following algorithms have proven to provide high quality covers [XKS13]:
• GCE (Greedy Clique Expansion) greedily expands communities from maximum
cliques using a simple fitness function.
• MOSES (Model-based Overlapping Seed ExpanSion) is based on an overlapping
stochastic block model that assumes that the graph was created by a generative
model. MOSES optimizes a derived fitness function to find communities.
• OSLOM is based on statistical significance of communities. The algorithm first
creates a set of communities an then expands and removes nodes. In the end, each
community contains only statistically significant nodes.

See Section 3.2 for a more detailed description of the algorithms.

40

https://github.com/vtraag/leidenalg
https://github.com/vtraag/leidenalg
https://www.mapequation.org/code.html

8.3. Graphs

Parameter Description (1) (2) (3)
N number of nodes 2000 2000 2000
k average degree fµ(10 ·Om) fµ(10 ·Om) fµ(30)
kmax max degree fµ(20 + 10 ·Om) fµ(20 + 10 ·Om) fµ(50)
Cmin min comm. size 30 30 30
Cmax max comm. size 60 60 60
τ1 degree exponent 2 2 2
τ2 comm. exponent 2 2 2
µ mixing factor 0.25 0.25 0.1-0.8
On num. overlap nodes N 0-2000 N
Om comms per node 1-7 2 3

Table 8.1: Parameter sets for the synthetic LFR graphs. The average number of communi-
ties per node is given by Om = (Om − 1) · On

N + 1.
The average degree is given by fµ(k′) = k′

1−µ .

8.3 Graphs
Real world graphs are often used to evaluate community detection algorithms. In theory,
this makes sense because the main purpose of the algorithms is the application on real-world
networks. However, real-world graphs are often very different from synthetic graphs. The
ground-truth communities are usually extracted from meta-data of the nodes and not from
the structure of the network. There is no guarantee that these ground-truth communities
have any structural properties that allows an algorithm to detect them. [HDF14] show that
there is in fact a disconnect between structural communities and metadata groups. This
means that the desired communities often can not be extracted purely from the structure
of the graph, at least with the current modeling of communities. In contrast, synthetic
benchmarks like the LFR benchmark [LF09] generate structural communities that are in
theory perfectly recoverable. These ground-truth communities provide an important tool
to evaluate how an algorithm parameter affects the community detection. We focus our
analysis on the synthetic benchmarks, but also provide some evaluations on real-world
graphs.

We use synthetic benchmark graphs based on the LFR model. The LFR graph generator
takes a set of parameters and generates a graph and a corresponding ground-truth cover.
The size of the communities and the degree of the nodes follow a power law distribution, a
feature that is also commonly found in real-world networks. Table 8.1 shows the parameters
of the LFR graphs that we use in our experiments. We analyze three sets of graphs:
Graph set (1) scales the number of communities per node. We increase the average degree
accordingly to ensure that each node has a reasonable number of neighbors in each of its
communities. Graph set (2) scales the number of overlapping nodes. Each overlapping
node has two communities. By increasing the ratio number of overlapping nodes from 0 to
1, we increase the average number of communities from 1 to 2. The average number of
communities per node is given by Om = (Om − 1) · On

N + 1. For example, for On = 1000,
50% of the nodes are overlapping, so the average number of communities is Om = 1.5. In
our evaluations, we often give the results of the graph sets (1) and (2) in a single plot,
using the average number of communities per node as the x-axis. Graph set (3) scales the
mixing factor, i.e. the ratio of inter-community edges in the graph. For all sets, we use a
function fµ to calculate the average and maximum degree. First, we calculate the number
of average intra-community edges k′ = 10 · Om, meaning each node has on average 10
neighbors in each of its communities. The average degree is then given by k = fµ(k′) = k′

1−µ .
We use this method to ensure that the average number of neighbors per community of a

41

8. Experimental Setup

Caltech36 Smith60 Rice31 Auburn71
number of nodes 769 2970 4087 18 448
number of edges 16 656 97 133 184 828 973 918
number of communities 16 44 20 86
largest community 173 627 710 3204
average community size 77.5 117.4 359.6 242.0
average communities per node 1.61 1.74 1.76 1.19

Table 8.2: Properties of the real-world Facebook graphs.

node is independent of the mixing factor. Suppose we set an average degree k and only
increase the mixing factor. The mixing factor represents the ratio of inter-community edges
that each node has. This means that by increasing the number of inter-community edges,
we would at the same time decrease the number of intra-community edges. For example,
suppose we have a graph with om = 3, k = 40 and µ = 0.25. Each node has (on average)
0.25 ·k = 10 inter-community edges and (40−10)/3 = 10 edges into each of its communities.
Now we want to increase mixing factor to µ = 0.75 and keep the average degree the same.
Then each node has 0.75 · k = 30 inter-community edges and (40− 30)/3 = 3.3 edges into
each of its communities. As each node has fewer neighbors inside its communities, the
communities either become weaker connected or smaller. In both cases, the community
structure changes drastically. If we instead increase the average degree to k = fµ(30) = 120,
each node has 0.75 · k = 90 inter-community edges and (120− 90)/3 = 10 edges into each of
its communities. The structure of the communities should not change drastically compared
to the graph with the lower mixing factor, we just added additional inter-community edges
to the graph. The advantage of this method is that we increase the “difficulty” only in one
specific aspect. Adding more “noise” to the graphs already makes the community detection
harder without changing the communities. One problem of the standard implementation of
the LFR model is that each node has the same amount of edges into each of its communities,
regardless of the community sizes. This means that large communities are much less dense
then small communities. For example, suppose we have two communities of size 20 and
100, the average edges from a node to one of its communities is 10. The community of size
20 has an expected density of 10·20

19·20 = 0.53, while the community of size 100 only has a
density of 10·100

99·100 = 0.1. We keep the range of community sizes relatively close, between 30
and 60. This results in communities of similar properties, e.g. a similar density inside the
community.

We use four real-world networks from a set of Facebook networks [TMP12]. Table 8.2 gives
the basic properties of the graphs and their ground truth-communities. Each of these graphs
contains the data of the students of one college or university. Each student is represented
by a node and an edge in the graphs corresponds to a Facebook friendship between two
students. The data sets also include meta-data, such as the gender, major, dorm, year
of graduation and others. The meta-data induce the ground-truth communities, e.g. all
students from the same dorm form one community. We use only the two attributes dorm
and graduation year to create the ground-truth communities, as these attributes have a
close relationship with structural communities [TMP12, LC13]. We discard all ground-truth
communities with size smaller than five. From the 100 available Facebook graphs, we use
four graphs that have shown to contain well detectable communities [HRW17].

8.4 Evaluation Metrics
The ego-splitting framework consists of a number of steps that are executed successively.
We attempt to evaluate each of the steps in isolation, because it is difficult to predict how

42

8.4. Evaluation Metrics

one change, e.g. the ego-net extension, affects the end result of the framework. We present
metrics to evaluate the structure of the ego-net, the result of the local clustering algorithm,
and the cover of the graph.

8.4.1 Ego-Net Structure

We start by evaluating the ego-net extension. Applying the local clustering algorithm to the
original and the extended ego-net and then comparing the clustering quality is not optimal.
Different clustering algorithms might react differently to a change, e.g. one produces a
better clustering while the other produces a worse clustering. We define quality measures
that are based on solely on the structure of the (extended) ego-net. The ego-splitting
framework assumes that the communities of a node form disjoint clusters in the ego-net.
Given a ego-node u, its ego-net Gu = (Vu, Eu) and its ground-truth communities c1, . . . , ct,
we focus our analysis on the induced communities cui in the ego-net, cui = ci ∩ Vu. In the
best case, each induced community cui forms a cluster in the ego-net, i.e. the nodes of cui are
densely connected internally and sparsely connected externally. In the original ego-net, this
is often not the case. For example, a node belonging to one of the cui might be isolated in
the ego-net. In our preliminary evaluations, this actually happened quite often. The local
clustering algorithm has obviously no chance to connect that node to its community, as
there is just no information in the ego-net that implies this relationship. By extending the
ego-net, additional nodes are added, so the clustering algorithm gets more information to
work with. In the extreme case, the entire community is included in the extended ego-net.
The clustering algorithm should then be capable of detecting that community.

Community Fitness

Let Kc be the sum of the degree of the nodes in c, which can be split into the internal
degree Kin

c and the external degree Kout
c . A community c induces a cut between c and the

rest of the graph G \ c. The conductance of the cut is given by

ϕ(c) = Kout
c

min(Kc,KG\c)
.

If we assume that Kc < KG\c, we can simplify this formula to

ϕ′(c) = Kout
c

Kc
.

We expect a strong community to have many internal and few external edges, so the
conductance of a good community should be small. To get a fitness function that increases
for stronger communities, we simply use the complement of the conductance, yielding the
fitness function

f(c) = 1− ϕ′(c) = Kin
c

Kc
.

Lancichinetti et al. [LFK09] defined a fitness function F that is a generalization of the
above formula:

F (c) = Kin
c

Kc
α

This fitness function is used in the GCE algorithm [LRMH10]. The parameter α is a
positive real number that can be tuned. For α = 1, F (c) is identical to f(c) of a community.
Smaller values of α lead to a better fitness for large communities, while large values of α
mean that small communities are preferred. In preliminary benchmarks, we found that
if we use α < 1, the community fitness is a better indicator for the quality of the local

43

8. Experimental Setup

clustering than α ≥ 1. This indicates that large communities in the ego-net are easier to
detect. We set α = 0.8 for the evaluation. We define the community fitness of an ego-net
as the average community fitness of all ground-truth communities of the ego-net, i.e. the
fitness of the communities we hope to detect.

Coverage

The communities in the ego-net are often only a part of the entire communities, e.g. a
global community with 100 nodes has only 20 nodes in the ego-net. For a global community,
the fraction of nodes that are part of the ego-net is called the coverage [LND16]. Given a
community ci and an induced community cui in the ego-net, the coverage is defined as

cov(ci) = |c
u
i |
|ci|

.

Intuitively, increasing the coverage should improve the strength of the community. If all
nodes of a community ci are inside the ego-net (cov(ci) = 1), we expect that an optimal
clustering algorithm is able to detect that community. The coverage of an ego-net is the
average coverage of all ground-truth communities of the ego-node.

External Nodes

In most cases, not all nodes in the ego-net share a community with the ego-node. We refer
to these nodes as external nodes. If we could identify all external nodes, we could remove
them from the ego-net, most likely making the local clustering easier. External nodes
increase the difficulty of the community detection, as they add “noise”, i.e. inter-community
edges, to the ego-net. While extending the ego-net, it is important to keep the number of
added external nodes as low as possible. In the worst case, we add only external nodes,
increasing the ratio of inter-community edges and increasing the difficulty of finding the
correct communities. In the best case, we add only nodes that share a community with
the ego-node. Choosing only non-external nodes for the extension is one of the main goals
of the candidate selection algorithm, as we expect external nodes to rarely improve the
ego-net structure.

Let ne be the number of nodes in the original ego-net and n+
e be the number of nodes in

the extended ego-net. Similarly, let nx be the number of external nodes in the original
ego-net and n+

x be the number of external nodes in the extended ego-net. The fraction of
added external nodes is given by

fx = n+
x − nx
n+
e − ne

,

and the fraction of external nodes in the extended ego-net is n+
x

n+
e
. A low value of fx is

better, so an optimal ego-net extension would have fx = 0.

8.4.2 Ego-Net Clustering

The ego-net clustering is critical for the success of the ego-splitting framework. It is not
immediately clear how a low quality clustering of the ego-net affects the detection of the
global communities, as this also depends on the global clustering algorithm. In the best
case, each community creates exactly one persona, i.e. each cluster contains (only) all nodes
from one community. If we find too few local communities, not enough personas are created,
so it impossible for the global clustering algorithm to detect all communities of the node.
Also, each persona has only edges to one of the communities (excluding ’random’ edges).
Each community node that is not in the clustering means that one community-internal edge
will not be connected to the persona. This means that the global clustering algorithm has

44

8.4. Evaluation Metrics

to detect the community with fewer edges. Let c1, . . . , ct be the ground-truth communities
of the ego-node u. Each ground-truth community ci induces a community cui = ci ∩Gu in
the ego-node. Let Cu = cu1 , . . . , c

u
t be the set of induced ground-truth communities. For

convenience, we will refer to the cui simply as ground-truth communities. We propose
multiple quality measures to evaluate an ego-net clustering D by comparing it to the set of
induced ground-truth communities Cu.

Community Segmentation

We define the community segmentation, which measures to which degree the communities
are split into multiple clusters. For a given ground-truth community c ∈ Cu and a cluster
d ∈ D, we define pd(c) = |d ∩ c| as the number of nodes of c that are in cluster d. The
community segmentation

seg(c) = maxd∈D pd(c)∑
d∈D pd(c)

gives the fraction of nodes that are not inside the largest cluster the community is split
into. For example if, 70% of the nodes of c are assigned to cluster d1 and 30% of the
nodes are assigned to cluster d2, the community segmentation of c is 0.3. The community
segmentation of the entire clustering is the average segmentation of all communities c ∈ Cu.
A high community segmentation means that communities are not put into a single cluster.
This means that we create too many personas, making the community sparser and thus
harder to detect. A clustering algorithm that produces a clustering with a high community
segmentation is most likely too restrictive, splitting communities in sub-communities.

Community Merging

We define the community merging score, which measures to which degree multiple com-
munities are merged into one cluster. The community merging score of a cluster given by
d ∈ D is

merg(d) = maxc∈Cu pd(c)∑
c∈Cu

pd(c)
.

The score of the entire clustering is the average score of all detected clusters that contain
at least one node from the ground-truth communities of the ego-node, i.e. all clusters
d ∈ D with merg(d) > 0. This score describes the average fraction of nodes in each cluster
that are not from the ground-truth community with the most nodes in that cluster. For
example, given a cluster d, 80% of d are nodes from community c1 and 20% of d are nodes
from community c2. The community merging score of d is then 0.2. A high community
merging score means that multiple communities are detected as a single cluster. In this
case, we create too few personas, and the global clustering algorithm can not detect all
communities of the ego-node.

Persona Recall

Each ground-truth community should have exactly one persona. If a community is split
into many clusters by the local clustering algorithm, many personas are associated with
that community, but the connection to each persona is weak. On the other hand, many
communities might be put together in one cluster. The associated persona is then part
of multiple communities, which is the exact opposite of our goal. So a good clustering
algorithm should produce a clustering with two main qualities: First, each persona should
only be associated with one community, or at least most of its nodes should belong to
one community. Second, each community should have exactly one persona, or at least one
persona that is associated with the majority of the nodes.

45

8. Experimental Setup

We propose a measure to evaluate the quality of the created personas. For a given cluster
d ∈ D, we define the dominating community c ∈ Cu as the community with the highest
number of nodes inside that cluster, i.e. the community that maximizes pd(c). Intuitively,
we assign each persona to the community to which it has the strongest connection. If a
community c′ does not dominate a cluster, the edges inside that cluster might be lost for
the detection of c′ in the persona graph, because the associated persona is more likely to
be assigned to the dominating community c.

LetDc be all clusters that are dominated by a community c, i.e. Dc = {d ∈ D|c dominates d}.
We define the persona recall of c as

pr(c) = max
d∈Dc

pd(c)
|c|

= max
d∈Dc

|c ∩ d|
|c|

which gives us the recall of the best dominated cluster. The persona recall of the clustering
is the average persona recall of all ego-communities.

8.4.3 Cover

Comparing the detected cover with the ground-truth cover is not a trivial task. Multiple
measure have been developed to evaluate the similarity of two covers. We use the following
two:

F1

Given a detected community c and a ground-truth community c′, the F1 Score is defined
as the harmonic mean of the precision and the recall. The precision P (c, c′) = |c∩c′|

|c| is the
fraction of nodes of the detected community that are part of the ground-truth community.
The recall R(c, c′) = |c∩c′|

|c′| is the fraction of nodes of the ground-truth community that
are part of the detected community. Epasto et al. [ELPL17] use the F1 Score to compare
two covers. Given a detected cover C and a ground-truth cover C ′, the F1 Score of the
detected cover is given by

F1(C,C ′) = 1
|C|

∑
c∈C

max
c′∈C′

F1(c, c′)

For each detected community, the highest F1 Score for all ground-truth communities is
calculated. The F1 Score of the cover is the average of all detected communities.

NMI

The NMI (Normalized Mutual Information) is a measure based on information theory.
The NMI normalizes the mutual information to the interval [0, 1], 0 meaning that the
covers are totally dissimilar and 1 meaning they are identical. Lancichinetti et al. [LFK09]
introduced a method to calculate the NMI for two covers. McDaid et al. [MGH11]
improved the NMI calculation. We use a implementation provided by McDaid et al.
(https://github.com/aaronmcdaid/Overlapping-NMI).

46

https://github.com/aaronmcdaid/Overlapping-NMI

9. Experimental Results

We run each benchmark instance ten times and report the average of all runs. When we
use LFR graphs, we create a new graph with the given parameters for each iteration. The
experiments were run on a server with two 8-Core Intel processor (Xeon Skylake SP Gold
6144 @ 3.50 GHZ) and 192 GB of RAM.

We present results for the ego-splitting phases in the order that the phases are executed in
the full algorithm. First, we analyze the ego-net extension. For both extension variants, we
evaluate varying values for their parameters and then compare the two extension variants
against each other. Then we present results for the ego-net clustering, using various
clustering algorithms. Next, we evaluate connecting the personas of each node. We present
results for various global clustering algorithms. Then we evaluate the clean-up process.
At the end of each section, we conclude which of the tested variants of the ego-splitting
algorithm provided the best results. For the following benchmarks, we then use the best
(or the two best) variant, e.g. we present results for all global clustering algorithms in
combination with the two best local clustering algorithms. Finally, we compare the best
configuration of our ego-splitting algorithm with other overlapping community detection
algorithms.
We lay the focus of our evaluation on the LFR graphs with a varying number of communities
per node, as this graph set makes the graphs harder in an interesting way, i.e. the structure
of the graph changes considerably. In contrast, increasing the mixing factor does not change
the structure of the communities, and the Facebook graphs have no increasing difficulty.
However, we also evaluate the LFR graphs with varying mixing factor and the Facebook
whenever they provide interesting results.

9.1 Ego-Net Extension

We evaluate the extension of the ego-net independently of the local clustering algorithm.
We consider two strategies to extend the ego-net and test various parameters. First, we
present results for the strategy EdgesScore, where the fitness of a candidate is given by a
simple function that is based on the number of edges between the candidate and the ego-net.
Second, we give results for the strategy Significance, where the fitness of a candidate is
given by its statistical significance to a subset of the ego-net. We report the average of the
ego-net metrics over all ego-nets, unless stated otherwise.

47

9. Experimental Results

No Extension q1 q2 q3 q4

1 2 3 4 5 6 7
Communities per Node

0.0

0.2

0.4

0.6

0.8

Ad
de
d
Ex

te
rn
al

No
de
sR

at
io

(a)

1 2 3 4 5 6 7
Communities per Node

0

1

2

Co
m
m
un

ity
Fi
tn
es
s

(b)

Figure 9.1: Ego-net metrics on LFR graphs with a varying number of communities per
node. We compare the original ego-net (blue line) with different strategies to
rate the candidates for the ego-net extension using EdgesScore. Shown are
the ratio of external nodes among the extended nodes (a) and the community
fitness of the ego-net (b).

9.1.1 EdgesScore

We test variations of the extension strategy EdgesScore. First, we compare different fitness
functions that are used to rate the candidates. Second, we vary the upper bound of the
number of extended nodes. We compare the structural quality of the extended ego-net to
the original ego-net. We evaluate the results on LFR graphs with a varying number of
communities per node, from 1 up to 7 (graph set (1)).

Candidate Scores

To evaluate the candidates, we define a scoring function q that assigns a score to each
candidate. Let kinv be the number of neighbors of the candidate in the ego-net and kv be
the degree of the candidate v. We consider the following candidate scores:

• q1 = kinv

• q2 = kin
v
kv

• q3 = kin
v

2

kv

• q4 = rand(0, 1)

where rand(0, 1) is a random real value between 0 and 1. Rating the candidates by assigning
a random number gives us a baseline for the comparison, where candidates are chosen
randomly. Independent of the scoring function, we discard candidates with kinv < 3, as
these candidates are unlikely to improve the structure of the ego-net. We set the upper
bound for the number of candidates as o = 5 · ne0.5 where ne is the size of the original
ego-net. We extend the ego-net using the o candidates with the highest scores. As the
tested approaches only differ in the order of the candidates, the number of extended node
is the same for all approaches.

Figure 9.1a depicts the ratio of external nodes among the extended nodes, lower values are
better. As expected, choosing the candidates at random adds more external nodes than
using one of the other scoring functions. For more than four communities per node, the

48

9.1. Ego-Net Extension

No Extension
α = 5

α = 1
α = 10

α = 2
α = 20

α = 3

40 50 60 70 80
Ego-Net Size

0.0

0.2

0.4

0.6

0.8

Co
m
m
un

ity
Co

ve
ra
ge

(a)

40 50 60 70 80
Ego-Net Size

0.0

0.5

1.0

1.5

2.0

Co
m
m
un

ity
Fi
tn
es
s

(b)

Figure 9.2: Ego-net metrics for different ego-net sizes, using a LFR graph with 4 communi-
ties per node (graph set (1)). Shown are the values for the original ego-net (blue
line) and varying values of α for the ego-net extension using EdgesScore. Figure
(a) depicts the community coverage and Figure (b) depicts the community
fitness of the ego-net.

scoring function q4 adds more than 80% of external nodes, much more than the mixing
factor of 25%. Scoring functions q1, q2 and q3 clearly outperform q4. For all graphs, there
is a strict ordering q3 < q2 < q1 for the ratio of added external nodes, so q3 provides the
best results. For four communities per node, the scoring function q3 adds 31% external
nodes, q2 adds 34% and q1 adds 35% external nodes.
Figure 9.1b depicts the community fitness of the ego-net. As described in Section 8.4.1, the
community fitness is the average community fitness F of the ego-communities. Choosing
candidates at random improves the community fitness compared to the original ego-net for
less than four communities per node. For four or more communities, the extended ego-net
with scoring function q4 has a lower community fitness than the original ego-net. Using the
scoring function q3 provides the best community fitness for all graphs, but the difference
to q1 and q2 is small. This is expected as q3 adds the least amount of external nodes to
the ego-net. Extending the ego-net using q3, the community fitness increases by a factor
of 1.44 for one community per nodes. As the number of communities per node increases,
the advantage of the extension decreases. For six communities per node, the extension
increases the community fitness by a factor of 1.08 compared to the original ego-net.

As expected, choosing nodes at random for the extension is not a viable approach. The
results for the scoring functions q1, q2, and q3 are relatively similar, but q3 is strictly better
for both metrics on all graphs. We conclude that the scoring function q3 is the best
approach to rate the candidates. For all following benchmarks, we use q3 as the scoring
function.

Maximum Added Candidates

We set the upper bound for the extension as o = α · neβ , i.e. we add at most o candidates
to the ego-net. We choose β = 0.5 because this ensures that the ratio of extended nodes
decreases as the ego-net size increases. It is obvious that the larger the ego-net, the longer
is the running time of the local clustering algorithm. Consequently, extending the ego-net
increases the running time of the ego-net analysis. If we chose β ≥ 1, the running time
would increase even further, especially if the local clustering algorithm does not have a

49

9. Experimental Results

No Extension
α = 5

α = 1
α = 10

α = 2
α = 20

α = 3

1 2 3 4 5 6 7
Communities per Node

0

1

2

Ex
te
nd

ed
No

de
s/

Eg
o-
Ne

tS
ize

(a)

1 2 3 4 5 6 7
Communities per Node

0.0

0.2

0.4

0.6

Ad
de
d
Ex

te
rn
al

No
de
sR

at
io

(b)

1 2 3 4 5 6 7
Communities per Node

0

1

2

Co
m
m
un

ity
Fi
tn
es
s

(c)

1 2 3 4 5 6 7
Communities per Node

0

2

4

6

8

Ru
nn

ing
Ti
m
e/

(n
+

m
)[
µs
]

(d)

Figure 9.3: Ego-net metrics on LFR graphs with a varying number of communities per
node. Shown are the values for the original ego-net (blue line) and varying
values of α for the ego-net extension using EdgesScore. The figures depict the
community coverage (a), the number of extended external nodes divided by the
total number of extended nodes (b), the community fitness of the ego-net (c),
and the running time of the local clustering algorithm (PLP) (d).

50

9.1. Ego-Net Extension

running time in O(m+ n). As we see later, large ego-nets already have a better structural
quality than small ego-nets. So even if we extend the ego-net less percentage-wise, the
structural quality of the extended ego-net should still be good. We compare values for α
from 1 to 20. First, we present results that show the relation between the ego-net size and
the community structure for one graph. Second, we analyze the results on graphs with a
varying number of communities.

Figure 9.2 shows the community coverage and community fitness on the LFR graph with
four communities per node. As described in Section 8.4.1, the community coverage is the
fraction of nodes of each ground-truth community of the ego-node that are part of the
ego-net. On the x-axis of the plots is the size of the original ego-net, i.e. the degree of the
ego-node. We see that the smallest ego-nets have a size of 38 and the largest ego-nets have
a size of 80. If we do not extend the ego-net, the coverage increases from 0.18 for ego-nets
of size 38 to 0.38 for ego-nets of size 80. The community fitness also increases, from 1.17 for
the smallest ego-nets to 1.66 for the largest ego-nets. This means that the larger ego-nets
have a better structural quality, i.e. the ego-communities are easier to detect. As expected,
the community coverage increases with the number of extended nodes. Compared to the
original ego-net, the community fitness increases for all values of α. For α ≤ 5, increasing
the value of α also increases the community fitness for all ego-net sizes. For α = 5, the
community coverage increases by a factor of 1.72 for ego-net size 38 and by a factor of 1.55
for ego-net size 80. However, increasing the value of α further does not always increase the
community fitness. For ego-nets of size 80, the community fitness is identical for α = 5 and
α = 10. For the same ego-net size, α = 20 has a lower community fitness than α = 5 by a
factor of 0.94. The results show that in general, larger ego-nets have a better community
coverage and community fitness. Also, choosing β = 0.5 does not result in large ego-nets
having a worse community fitness than smaller ego-nets.

Figure 9.3a shows the ratio of extended nodes compared to the size of the original ego-net.
The ratio of extended nodes equals the number of nodes that were added to the size of the
original ego-net, e.g. a ratio of 1 means that the size of the ego-net was doubled by the
extension. As expected, increasing the value of α increases the number of extended nodes
in most cases. An exception are the graphs with less than three communities per node
if the value of α is increased from 10 to 20. In this case, no additional nodes are added,
as the number of candidates is already smaller than o. As mentioned before, we always
discard candidates that have less than three neighbors in the ego-net, so the number of
neighbors of neighbors of the ego-node may be higher than the maximum extended nodes.
Figure 9.3b gives the ratio of external nodes among the extended nodes. As the value of
α increases, the external ratio also increases. The reason is that candidates that are in
a ground-truth community of the ego-node are more likely to have a high score. As we
increase the number of extended nodes, we add nodes with a lower score and these nodes
are more likely to be external nodes.
Figure 9.3c depicts the community fitness of the ego-net. For α ≤ 5, increasing the value
of α increases the community fitness on all graphs (except for 7 communities per node).
Increasing the value of α further increases the community fitness only on some graphs. For
α = 20, the community fitness is actually equal or lower than for α = 10 on all graphs. For
the graph with four communities per node, extending the ego-net with α = 5 increases
the community fitness by a factor of 1.21. Using α = 10 instead only increases the factor
to 1.25. Compared to α = 5, α = 10 increases the community fitness only minimally,
especially if we consider the fact that double the number of nodes are extended.
Figure 9.3d gives the running time of the local clustering algorithm. For this benchmark,
we used a simple label propagation algorithm (PLP). As expected, the additional time
caused by the ego-net extension scales approximately linearly with the value of α. For
four communities per node, the running time for α = 10 is slower than the running time

51

9. Experimental Results

for α = 5 by a factor of 1.55. If a more complex algorithm is used as the local clustering
algorithm, we expect that the running time increases even faster for increasing values of α.

In conclusion, increasing the value of α increases the community fitness only up to maximum
factor, while the running time scales at least linear with α. For all following benchmarks,
we set α = 5, as this value provides a good trade-off between the community fitness on the
one hand and the running time on the other hand.

9.1.2 Significance

In this section, we present results of the ego-net extension using the extension strategy
Significance, which evaluates candidates based on their statistical significance. We set
the upper bound for the extension as o = 5 · ne0.5 for all benchmarks, the same as for
EdgesScore. In practice, this upper bound is rarely reached, so we do not test higher
upper bounds. To decide if a candidate is significant, we use the local clustering algorithm
to partition the original ego-net and then calculate the significance of the candidates to
each of the detected clusters. The extension is therefore not independent of the clustering
algorithm. We present results using LeidenMod as the local clustering algorithm, as it
provides a good quality. See Section 9.2 for detailed results. We also tested different
algorithms, but the optimal parameters are similar for all algorithms.
To facilitate a well-structured analysis of the various variants and parameters of Significance,
we use the method described below. We start with the most basic form of the Significance
extension procedure that is described as follows: We apply the local clustering algorithm
to the ego-net. For each candidate, we evaluate its significance to all detected clusters.
A candidate is added if there is at least one cluster to which the candidate is significant.
We do not add candidates iteratively, and we do not iteratively extend and partition the
ego-net. In the following sections, we compare variants of the extension as described in
Chapter 5. At the end of each section, we decide which variant (or parameter value)
performs best and incorporate it in the “current best” extension algorithm. We then use
the current best variant as the base algorithm for all following benchmarks. By using this
method, we seek to isolate the evaluation of one parameter as good as possible. First, we
present results for checking the significance of the candidates against merged clusters. Then
we test if only looking at a maximum number of candidates is sufficient for a good result.
Next, we extend the ego-net iteratively by updating the remaining candidates. After that,
we show whether only recalculating the significance of the updated candidates decreases
the quality of the extension. Finally, the extension is done iteratively, taking the result of
the clustering algorithm on the extended ego-net as the basis for the candidate evaluation.

Merge Groups

To test the significance of a candidate, we evaluate its significance to each cluster that was
detected by the local clustering algorithm. Additionally, we can merge multiple clusters
and evaluate the significance of the candidate to these merged clusters. In the following,
we compare the variant that only checks the detected clusters (Single) with the variant
that also checks the merged clusters (Merged).

Figure 9.4a depicts the ratio of extended nodes, i.e. the number of extended nodes divided
by the size of the original ego-net. Considering the merged clusters increases the ratio of
extended nodes for all graphs. For the graph with one community per node, the variant
Merged increases the number of extended nodes by a factor of 2.05. As the number of
communities per node increases, the ratio of extended nodes decreases for both variants.
For six communities per node, the variant Single extends by a factor of 0.014, while the
variant Merge extends by a factor of 0.045, so Merge increases the number of extended
nodes by a factor of 3.2. Figure 9.4b shows the ratio of added external nodes, i.e. the

52

9.1. Ego-Net Extension

No Extension Single Merged

1 2 3 4 5 6 7
Communities per Node

0.0

0.2

0.4

0.6

0.8

Ex
te
nd

ed
No

de
s/

Eg
o-
Ne

tS
ize

(a)

1 2 3 4 5 6 7
Communities per Node

0.00

0.05

0.10

0.15

0.20

Ad
de
d
Ex

te
rn
al

No
de
sR

at
io

(b)

1 2 3 4 5 6 7
Communities per Node

0

1

2

Co
m
m
un

ity
Fi
tn
es
s

(c)

1 2 3 4 5 6 7
Communities per Node

0

20

40
Ru

nn
ing

Ti
m
e/

(n
+

m
)[
µs
]

(d)

Figure 9.4: Ego-net metrics on LFR graphs with a varying number of communities per
node. The ego-net is extended with Significance, checking the significance of
the candidates either only against the detected clusters (Single) or also against
merged clusters (Merged). Shown are the number of extended nodes divided
by the size of the original ego-net (a), the number of extended external nodes
divided by the total number of extended nodes (b), the community fitness of
the ego-net (c), and the normalized running time of the extension process (d).

number of extended external nodes divided by the total number of extended nodes. The
variant Merge increases the ratio of external nodes for all graphs compared to Single. For
seven communities per node, the variant Single has a ratio of external nodes of 0.082, while
the variant Merge has a ratio of 0.204. This is an increase by a factor of 2.49. However,
even the variant Merge adds at most 20% external nodes, so the quality of the added nodes
is still high.
Figure 9.4c gives the community fitness of the ego-net. For all graphs, the variant Merge
has a higher community fitness than the variant Single. Both variants result in an extended
ego-net with a higher community fitness than the original ego-net. The variant Merge is
better than the variant Single by a factor of up to 1.12 (one community per node).
Figure 9.4d shows the normalized running time of the extension process. The variant
Merge increases the normalized running time for all graphs, up to a factor of 1.73 for seven
communities per node.

In conclusion, the variant Merge adds additional nodes to the ego-net and increases the
community fitness. On the other hand, the running time increases, but never by a factor of

53

9. Experimental Results

No Extension
γ = 5

γ = 1
γ = 10

γ = 2
γ = 20

γ = 3
All candidates

1 2 3 4 5 6 7
Communities per Node

0.0

0.2

0.4

0.6

0.8

Ex
te
nd

ed
No

de
s/

Eg
o-
Ne

tS
ize

(a)

1 2 3 4 5 6 7
Communities per Node

0

20

40

Ru
nn

ing
Ti
m
e/

(n
+

m
)[
µs
]

(b)

Figure 9.5: Ego-net metrics on LFR graphs with a varying number of communities per
node. The ego-net is extended with Significance, using varying values of γ or
evaluating all candidates (gray line). Shown are the number of extended nodes
divided by the size of the original ego-net (a), and the normalized running time
of the extension process (b).

two or greater. We conclude that the variant Merge is the better one, because it considerably
increases the number of extended nodes, so we use it for all following benchmarks.

Check Max Candidates

To improve the running time of the extension process, we limit the number of evaluated
candidates. We set an upper limit ō = γ · o, γ ≤ 1, where o is the upper bound for the
number of added nodes as described earlier (o = 0.5 · ne0.5). We sort the candidates by the
number of neighbors they have in the ego-net and only evaluate the ō candidates with the
most neighbors. In the following, we compare varying values of γ, ranging from 1 to 20.

Figure 9.5a depicts the ratio of extended nodes, i.e. the number of extended nodes divided
by the size of the original ego-net. In general, higher values of γ result in more candidates
begin extended. This is expected, as we evaluate more candidates that could potentially
be significant. If we evaluate all candidates, the number of extended nodes compared to
γ = 1 increases by a factor of up to 1.2 (for five communities per node). For higher values
of γ, the difference becomes very small. If we set γ = 10, the number of extended node is
identical to the number of extended nodes if we evaluate all candidates.
Figure 9.5b shows the running time of the extension process, normalized by the number of
nodes and edges. As expected, setting higher values of γ increases the normalized running
time, as we have to evaluate (superlineraly) more candidates. If we evaluate all candidates,
the normalized running time increases as the number of communities per node increases.
This is expected, because the average node degree increases linearly, so the average number
of candidates (neighbors of neighbors) increases quadratic with the number of communities
per node. If we instead only evaluate ō candidates, the normalized running time does
not increase beyond a given point. For γ = 10, the normalized running time for four
communities per node is 23 µs. The normalized running time does not exceed 25 µs, even
for seven communities per node. As intended, limiting the number of evaluated candidates
limits the maximum time we spend for the candidate evaluation. Using γ = 10 increases
the running time compared to γ = 1 by a factor of at most 2.2.

54

9.1. Ego-Net Extension

The results show that setting an upper limit ō improves the running time on complex
graphs. Using γ = 1 reduces the running time drastically, but it also reduces the number
of added nodes. We conclude that γ = 10 is a good choice, as this should ensure that we
evaluate practically all significant candidates, while the running time is still acceptable in
the worst case. For the following benchmarks, we set γ = 10.

Extend Iterative

After finding all significant candidates, we add them to the ego-net, which changes the
structure of the ego-net. We assign each added candidate to the group that is has the
highest significance to. Then we update all remaining candidates, adding additional edges
if they are connected to a candidate we just added. Note that we do not consider new
candidates. This process is repeated for at most Imax iterations. If no candidates were
added in the last iteration, the iterative process stops. The parameter thus only provides
an upper limit for the number of iterations. We test values of Imax between 0 and 100.
Zero iterations means that the significance is only checked once and no candidates are
updated.

Figure 9.6 depicts the ego-net metrics for varying values of Imax on the LFR graphs with
varying numbers of communities per node. Figure 9.6a shows the number of extended node
divided by the size of the original ego-net. For higher numbers of iterations, the number
of extended nodes increases. However, using more than ten iterations does not increase
the number of added nodes any further. Compared to using Imax = 0, using Imax = 10
increases the number of extended nodes by a factor of 2.5 for four nodes per community.
Figure 9.4b shows the ratio of extended external nodes. The ratio is similar for all values
of Imax, which means that the quality of the additionally extended candidates is similar to
the quality of candidates added in the first iteration. Figure 9.4c depicts the community
fitness of the ego-net. The community fitness increases with additional iterations, but only
minimally for more than three iterations. This is expected as more nodes are extended,
but the quality of the extended nodes does not decrease. For three nodes per community,
using Imax = 10 increases the community fitness by a factor of 1.1 compared to Imax = 1.
Figure 9.6d gives the running time of the extension process, normalized by the number
of nodes and edges of the graph. As expected, the running time increases if we increase
Imax. However, for Imax > 10 the running time does not increase any further. We can
assume that after about ten iterations, there is only a very small chance to find additional
significant candidates, so it is rare that more than ten iterations are executed.

In conclusion, iteratively adding candidates increases the number of extended nodes and
also increases the community fitness considerably. However, for values of Imax larger
than ten, the number of extended nodes does not change any further. For the following
benchmarks, we set Imax = 10 to ensure that we add as many nodes as possible to the
ego-net.

Check Only Updated Candidates

After we add nodes to the ego-net, we iteratively update the remaining candidates and
recalculate the significance of all candidates. To improve the running time, we can reevaluate
only the candidates that have connections to the candidates that we added in the last
iteration. We use the term improved candidates, because these candidates are more likely
to have gained a higher significance. We compare two variants, either reevaluating all
candidates (All) or only reevaluating improved candidates (Only Improved).

Figure 9.7a shows the number of extended node, divided by the size of the original ego-net.
Reevaluating only the improved candidates decreases the number of extended nodes on
some graphs. Evaluating all candidates increase the number of extended nodes by a factor

55

9. Experimental Results

No Extension
Imax = 2
Imax = 10

Imax = 0
Imax = 3
Imax = 100

Imax = 1
Imax = 5

1 2 3 4 5 6 7
Communities per Node

0.00

0.25

0.50

0.75

1.00

Ex
te
nd

ed
No

de
s/

Eg
o-
Ne

tS
ize

(a)

1 2 3 4 5 6 7
Communities per Node

0.00

0.05

0.10

0.15

0.20

Ad
de
d
Ex

te
rn
al

No
de
sR

at
io

(b)

1 2 3 4 5 6 7
Communities per Node

0

1

2

Co
m
m
un

ity
Fi
tn
es
s

(c)

1 2 3 4 5 6 7
Communities per Node

0

20

40

60

Ru
nn

ing
Ti
m
e/

(n
+

m
)[
µs
]

(d)

Figure 9.6: Ego-net metrics on LFR graphs with a varying number of communities per
node. The ego-net is extended with Significance, updating and reevaluating
candidates for a varying (maximum) number of iterations Imax. Shown are the
number of extended nodes divided by the size of the original ego-net (a), the
number of extended external nodes divided by the total number of extended
nodes (b), the community fitness of ego-net (c), and the normalized running
time of the extension process (d).

56

9.1. Ego-Net Extension

No Extension All Only Improved

1 2 3 4 5 6 7
Communities per Node

0.00

0.25

0.50

0.75

1.00

Ex
te
nd

ed
No

de
s/

Eg
o-
Ne

tS
ize

(a)

1 2 3 4 5 6 7
Communities per Node

0

20

40

60

Ru
nn

ing
Ti
m
e/

(n
+

m
)[
µs
]

(b)

Figure 9.7: Ego-net metrics on LFR graphs with a varying number of communities per node.
The ego-net is extended with Significance, either reevaluating all candidates
or only the improved candidates. Shown are the number of extended nodes
divided by the size of the original ego-net (a), and the running time of the
extension process (b).

of up to 1.23 (four communities per node) compared to evaluating only the improved
candidates. This is relatively unexpected. When we add nodes to the ego-net, the values
used to calculate the significance change, e.g. the number of external nodes and stubs. In
general, theses changes should not result in a higher significance of a candidate j if j did
not gain additional connection. However, it seems that sometimes such a candidate has a
higher significance after the update.
Figure 9.7b depicts the running time of the extension process, normalized by the number
of nodes and edges of the graph. As expected, reevaluating only the improved candidates
improves the performance. Evaluating all candidates is considerably slower for three or
more communities per node, up to a factor of 2.25 for four communities per node.
We conclude that reevaluating only the improved candidates leads to the expected improve-
ment of the running time, but with slightly less extended nodes. We consider this a worthy
trade-off, so in the following experiments, we only evaluate the improved candidates.

Cluster-Extend Iteratively

We start the extension process by clustering the original ego-net, then we calculate the
significance of the candidates to the detected clusters. After we extend the ego-net, we
apply the local clustering algorithm on the extended ego-net. We can repeat this process
iteratively, taking the new clusters as the base to calculate the significance of the candidates.
We expect that the detected clusters on the extended ego-net have a higher quality than
the clusters detected on the original ego-net. If this is the case, we expect that it becomes
easier to detect good candidates. After each iteration, we have to evaluate all candidates
again, as a candidate that was significant to the previous clustering could be not significant
to the current clustering. Let Ic be the number of iterations. Ic = 1 means that we only
cluster the original ego-net and extend with Significance once. We compare values of Ic
from 1 to 8.

Figure 9.7a depicts the number of extended node divided by the size of the original ego-net.
The number of extended nodes increases for larger values of Ic. As expected, applying the
local clustering algorithm to the extended ego-net results in a better clustering and thus
makes it easier to detect significant candidates. For four communities per node, Ic = 2

57

9. Experimental Results

No Extension
Ic = 5

Ic = 1
Ic = 8

Ic = 2 Ic = 3

1 2 3 4 5 6 7
Communities per Node

0.00

0.25

0.50

0.75

1.00

Ex
te
nd

ed
No

de
s/

Eg
o-
Ne

tS
ize

(a)

1 2 3 4 5 6 7
Communities per Node

0.00

0.05

0.10

0.15

0.20

Ad
de
d
Ex

te
rn
al

No
de
sR

at
io

(b)

1 2 3 4 5 6 7
Communities per Node

0

1

2

Co
m
m
un

ity
Fi
tn
es
s

(c)

1 2 3 4 5 6 7
Communities per Node

0

200

400

600
Ru

nn
ing

Ti
m
e/

(n
+

m
)[
µs
]

(d)

Figure 9.8: Ego-net metrics on LFR graphs with a varying number of communities per
node. The ego-net is extended with Significance, extending and clustering for
a varying number of iterations Ic. Shown are the number of extended nodes
divided by the size of the original ego-net (a), the number of extended external
nodes divided by the total number of extended nodes (b), the community
fitness of the ego-net (c), and the normalized running time of the extension and
clustering process (d).

increases the number of extended nodes by a factor of 1.25 compared to Ic = 1, while
Ic = 3 increases the number of extended nodes only by a factor of 1.05 compared to Ic = 2.
The number of extended nodes increases the most when we cluster the extended ego-net
the first time (Ic = 2). With each additional iteration, the number of extended nodes only
increases by a small amount. The difference in the result between Ic = 5 and Ic = 8 is
minimal.
Figure 9.8b shows the ratio of extended external nodes. For Ic > 1, all variants have
similar ratios of extended nodes. Using Ic = 1 adds more external nodes for less than six
communities per node, up to a factor of 1.2. For seven communities, using more than one
iteration adds more external nodes by a factor of up to 1.12.
Figure 9.8c shows the community fitness of the ego-net. With increasing values of Ic, the
community fitness increases for all graphs. For four communities per node, Ic = 3 increases
the community fitness by a factor of 1.05 compared to Ic = 1.
Figure 9.8d shows the running time of the extension process plus the running time of the

58

9.1. Ego-Net Extension

local clustering algorithm, normalized by the number of nodes and edges of the graph. As
expected, the running time scales linearly with the value of Ic. Increasing the value of Ic
from 1 to 2 approximately doubles the running time, because both the extension process
and the clustering algorithm are executed twice.

In conclusion, clustering iteratively based on the extended ego-net increases the quality
of the ego-net extension. However, after more than three iterations, the improvement is
minimal. Therefore, Ic = 3 is a good choice, and we use it for the following benchmarks.

9.1.3 Original vs. Extended Ego-Net

In the previous sections, we have optimized the strategies EdgesScore and Significance to
extend the ego-net. Now we compare the two strategies and analyze the differences of the
extended ego-nets to the original ego-net.

Figure 9.9 shows the results on the LFR graphs with varying numbers of communities per
node. Figure 9.9a gives the ratio of extended nodes. Using EdgesScore extends the ego-net
much more than Significance, especially if the graph has many communities per node. For
four communities per node, EdgesScore extends more nodes than Significance by a factor
of 2.3. For seven communities per node, this factor increases to about 12. For the harder
graphs, Significance is not able to identify many significant nodes.
Figure 9.9b gives the ratio of extended external nodes. Extending with EdgesScore adds
many more external nodes to the ego-net. For four communities per node, Significance has
a ratio of added external nodes of 0.035. For the same graph, EdgesScore has a ratio of
0.309, a factor of 8.8 higher than Significance. For seven communities per node, EdgesScore
has a higher ratio than Significance by a factor of 2.4. As expected, statistical significance
is a good indicator for candidates of high quality.
Figure 9.9c depicts the coverage of the ground-truth communities of the ego-node. For
less than four communities per node, both variants of the ego-net extension increase the
coverage considerably. For two communities per node, EdgesScore increase the coverage by
a factor of 2.16, while Significance increases the coverage by a factor of 2.05. As the number
of communities increases, the coverage for both extension variants decreases. However, the
coverage for Significance decreases more than for EdgesScore. For seven communities per
node, EdgesScore increases the coverage by a factor of 1.37, while Significance increases the
coverage by only a factor of 1.06. The reason is that on this graph, Significance extends
only a few nodes, so there are not enough nodes to considerably increase the coverage.
Figure 9.9d shows the community fitness of the ego-net. For one community per node,
using EdgesScore increases the fitness by a factor of 1.43 and using Significance increases
the fitness by a factor of 1.40. For more than two communities per node, the community
fitness for both extension variants is nearly identical. The difference between the fitness
of the original ego-net and the fitness of the extended ego-net decreases for an increasing
number of communities per node. For seven communities per node, extending the ego-net
increases the fitness by a factor of 1.04.
We have seen that EdgesScore extends many more nodes than Significance for the harder
synthetic graphs. At the same time, EdgesScore adds many external nodes on these graphs.
In contrast, Significance adds a low amount of external nodes. The statistical significance
is successful in identifying the extension candidates that belong to the ground-truth
communities.

Figure 9.10 shows the results on the Facebook graphs. EdgesScore extends more nodes
than Significance, up to a factor of 1.21 for the graph Caltech36. For the other three graphs
however, the difference is at most a factor of 1.04. The ratio of added external nodes is
similar to all graphs. This is clearly different than on the LFR graphs, where Significance
often adds a lot less external nodes. It seems that Significance is not able to detect high

59

9. Experimental Results

No Extension EdgesScore Significance

1 2 3 4 5 6 7
Communities per Node

0.00

0.25

0.50

0.75

1.00

Ex
te
nd

ed
No

de
s/

Eg
o-
Ne

tS
ize

(a)

1 2 3 4 5 6 7
Communities per Node

0.0

0.2

0.4

Ad
de
d
Ex

te
rn
al

No
de
sR

at
io

(b)

1 2 3 4 5 6 7
Communities per Node

0.0

0.2

0.4

Co
m
m
un

ity
Co

ve
ra
ge

(c)

1 2 3 4 5 6 7
Communities per Node

0

1

2
Co

m
m
un

ity
Fi
tn
es
s

(d)

Figure 9.9: Ego-net metrics on LFR graphs with a varying number of communities per
node. The ego-net is extended using either EdgesScore or Significance. Shown
are the number of extended nodes divided by the size of the original ego-net
(a), the number of extended external nodes divided by the total number of
extended nodes (b), the community coverage (c), and the community fitness
(d).

quality candidates on the Facebook graphs. Both extension variants result in a similar
community coverage and community fitness. The community fitness increases by a factor
of up to 1.59 for the graph Caltech36. In contrast, the fitness and coverage of the original
ego-net is identical to the extended ego-net on the graph Auburn71. On Auburn71, the
coverage has a value of 0.91, while the highest coverage on the LFR graphs is 0.52. At the
same time, the community fitness on Auburn71 is much lower, with a value of 0.2 compared
to values between 0.92 and 2.7 on the LFR graphs. The ego-net extension increases the
coverage on the Facebook graphs at most by a factor of 1.22. As we see from the results,
the community structure is quite different on the different Facebook graphs. Extending
the ego-net improves the structural quality only on some Facebook graphs.

Figure 9.11 gives the running times of the extension process plus the running time of the
local clustering algorithm, divided by the number of nodes and edges. Because we apply
the local clustering algorithm when extending with Significance, the running time is much
higher compared to EdgesScore. Note that the normalized running time is nearly constant
for all graphs. Extending the ego-net with EdgesScore increases the running time by a
factor of about 2.3 compared to using no extension. Extending with Significance increases

60

9.1. Ego-Net Extension

No Extension EdgesScore Significance

Caltech36 Smith60 Rice31 Auburn71
Graph Name

0.0

0.2

0.4

0.6

0.8

Ex
te
nd

ed
No

de
s/

Eg
o-
Ne

tS
ize

(a)

Caltech36 Smith60 Rice31 Auburn71
Graph Name

0.0

0.2

0.4

0.6

Ad
de
d
Ex

te
rn
al

No
de
sR

at
io

(b)

Caltech36 Smith60 Rice31 Auburn71
Graph Name

0.0

0.2

0.4

0.6

0.8

Co
m
m
un

ity
Co

ve
ra
ge

(c)

Caltech36 Smith60 Rice31 Auburn71
Graph Name

0.0

0.5

1.0

1.5

2.0

Co
m
m
un

ity
Fi
tn
es
s

(d)

Figure 9.10: Ego-net metrics on the Facebook graphs. The ego-net is extended using either
EdgesScore or Significance. Shown are the number of extended nodes divided
by the size of the original ego-net (a), the number of extended external nodes
divided by the total number of extended nodes (b), the community coverage
(c), and the community fitness (d).

the running time by a factor of 8 to 9. On the Facebook graphs, the results are quite similar.
Compared to the running time with the original ego-net, using EdgesScore increases the
running time by a factor of 2 and using Significance increases the running time by a factor
of 7 to 8.

In conclusion, EdgesScore extends many candidates with a low quality on the harder LFR
graphs, while Significance extends few high quality nodes. The disadvantage of Significance
is that it does find only very few significant candidates if the ego-net is difficulty to cluster,
e.g. the number of communities per node is high. On the real-world graphs, EdgesScore and
Significance behave much more similarly. For both the synthetic and real-world graphs, the
community fitness is nearly identical for the extension variants. The extension consistently
increases both the community coverage and the community fitness, except on one Facebook
graph. The results do not show that one of the two extensions variant is clearly superior to
the other one. We evaluate the results of the local clustering algorithms for both extension
variants in the next section.

61

9. Experimental Results

No Extension EdgesScore Significance

1 2 3 4 5 6 7
Communities per Node

0

100

200

Ru
nn

ing
Ti
m
e/

(n
+

m
)[
µs
]

(a)

Caltech36 Smith60 Rice31 Auburn71
Graph Name

0

200

400

600

Ru
nn

ing
Ti
m
e/

(n
+

m
)[
µs
]

(b)

Figure 9.11: Running times of the extension process plus the running time of the local
clustering algorithm, divided by the number of nodes and edges. The ego-net
is extended using either EdgesScore or Significance. Figure (a) shows the
results on the LFR graphs with a varying number of communities per node,
Figure (b) shows the results on the Facebook graphs.

9.2 Local Clustering Algorithm
We compare various clustering algorithm to cluster the ego-net and analyze the detected
clustering. We present results for both ego-net extension variants, EdgesScore and Signifi-
cance. For each metric, we report the average value of all ego-nets. The only exception
is the running time, where we present the (normalized) sum of the running times for all
ego-nets.

Figure 9.12 depicts the persona recall for the LFR graphs and the Facebook graphs as
described in Section 8.4.2. Figure 9.12a shows the persona recall for LFR graphs with
varying numbers of communities per node, extending the ego-net using EdgesScore. The
quality of all clustering algorithms decreases if the number of communities increases beyond
three communities per node. For less than three communities per node, Infomap provides
the best quality. For three or more communities per node, LeidenMod provides the best
quality. There is no clustering algorithm that provides a high quality for all graphs. For
one community per node, LeidenMod has a persona recall of only 0.449, the second worst
of all algorithms. For two communities per node, the persona recall increases to 0.924.
For more than four communities, the persona recall of Infomap decreases drastically. For
six or more communities, Infomap is the worst algorithm, shared with PLP. PLM has a
lower persona recall than LeidenMod for all graphs and PLP is worse than Infomap for
all graphs. LPPotts and Surprise are never the worst algorithms, but also never the best.
Both LeidenMod and PLM are based on modularity. The modularity is always maximized
by diving the ego-net, even if all nodes form a single community. Because of that, the
modularity based algorithms unnecessarily divide the ego-net for less than two communities
per node, resulting in a low the persona recall.
Figure 9.12b shows the persona recall when the ego-net is extended using Significance.
LPPotts, PLP and Surprise show the same progression as for EdgesScore. However, the
persona recall with Significance is higher for the graphs with three or more communities
per node. Compared to the extension with EdgesScore, Infomap has a noticeably higher
persona recall for five or more communities per node, up to a factor of 3. LeidenMod
performs worse for two to five communities per node compared to EdgesScore. For four
communities per node however, LeidenMod with EdgesScore has a factor of 1.1 higher

62

9.2. Local Clustering Algorithm

PLP
LeidenMod

PLM LPPotts Infomap Surprise

1 2 3 4 5 6 7.2 .4 .6 .8

Communities per Node

0.00

0.25

0.50

0.75

1.00

Pe
rso

na
Re

ca
ll

(a) Extension with EdgesScore

1 2 3 4 5 6 7.2 .4 .6 .8

Communities per Node

0.00

0.25

0.50

0.75

1.00

Pe
rso

na
Re

ca
ll

(b) Extension with Significance

0.2 0.4 0.6 0.8
Mixing Factor

0.00

0.25

0.50

0.75

1.00

Pe
rso

na
Re

ca
ll

(c) Extension with EdgesScore

0.2 0.4 0.6 0.8
Mixing Factor

0.00

0.25

0.50

0.75

1.00

Pe
rso

na
Re

ca
ll

(d) Extension with Significance

Caltech36 Smith60 Rice31 Auburn71
Graph Name

0.0

0.2

0.4

0.6

Pe
rso

na
Re

ca
ll

(e) Extension with EdgesScore

Caltech36 Smith60 Rice31 Auburn71
Graph Name

0.0

0.2

0.4

0.6

Pe
rso

na
Re

ca
ll

(f) Extension with Significance

Figure 9.12: The persona recall of the ego-net clustering for different local clustering
algorithms for LFR graphs and Facebook graphs. For the results on the left
side, the ego-net was extended using EdgesScore, on the right side Significance
was used instead.

63

9. Experimental Results

PLP
LeidenMod

PLM LPPotts Infomap Surprise

1 2 3 4 5 6 7.2 .4 .6 .8

Communities per Node

0.0

0.2

0.4

0.6

Co
m
m
un

ity
M
er
gin

g

(a) Extension with EdgesScore

1 2 3 4 5 6 7.2 .4 .6 .8

Communities per Node

0.0

0.2

0.4

0.6

Co
m
m
un

ity
Se
gm

en
ta
tio

n

(b) Extension with EdgesScore

Figure 9.13: Clustering metrics of the result of the local clustering algorithms.

persona recall than LeidenMod with Significance. The best algorithms are Infomap for up
to three communities per node and LeidenMod for more than three communities per node,
the same as for EdgesScore. If we compare the best algorithm for each graph, EdgesScore
has a higher persona recall than Significance for all graphs.

Figure 9.12c depicts the persona recall on the LFR graphs with varying mixing factor, using
EdgesScore. As expected, the persona recall becomes worse for all algorithms if the mixing
factor increases. Infomap becomes noticeably worse if the mixing factor exceeds 50%,
dropping from the second best algorithm to the worst algorithm (shared with PLP) for a
mixing factor of 60%. Infomap seems to have more problems than the other algorithms
when it is applied to difficult graphs. For all graphs, except for a mixing factor of 80%,
LeidenMod provides the highest quality. Figure 9.12d depicts the same graphs using
Significance for the extension instead. In contrast to the extension with EdgesScore, the
persona recall of Infomap does not decrease drastically for a mixing factor of more than
50%. Compared to EdgesScore, all other algorithms react similar to the increasing mixing
factor. The persona recall of LeidenMod is always higher if we use EdgesScore instead of
Significance.

Figure 9.12e and 9.12f show the persona recall on the Facebook graphs. There is no
considerable differences between EdgesScore or Significance. This matches the results of
the previous section that showed little difference between the two variants on the Facebook
graphs. For all graphs, the three best clustering algorithms are PLP, LPPotts, and Infomap.
The other three algorithms are noticeably worse, up to a factor of 0.83 for the graph Rice31.
Comparing the results on the Facebook graphs and the LFR graphs, the ordering of the
algorithms on the Facebook graphs matches the ordering on the LFR graphs with one to
two communities per node. This is not a surprise, as the Facebook actually have less than
two communities per node on average. Consequently, the modularity based algorithms
PLM and LeidenMod most likely detect to many communities. The persona recall is
noticeably lower on the Facebook graphs, never exceeding 0.6 except for PLP on one graph.
In comparison, for the LFR graphs with communities with less than two communities, the
algorithms PLP, LPPotts, and Infomap achieve a persona recall of more than 0.9. The
lower persona recall indicates that we can not detect the ground-truth communities. We
assume that the communities are not as clearly separated in the ego-net as it is the case for
the LFR graphs. Additionally, the ground-truth communities are created from meta-data,
so they do not necessarily match the structural communities.

64

9.2. Local Clustering Algorithm

PLP
LeidenMod

PLM LPPotts Infomap Surprise

1 2 3 4 5 6 7.2 .4 .6 .8

Communities per Node

0

50

100

Ru
nn

ing
Ti
m
e/

(n
+

m
)[
µs
]

(a) Extension with EdgesScore

1 2 3 4 5 6 7.2 .4 .6 .8

Communities per Node

0

200

400

Ru
nn

ing
Ti
m
e/

(n
+

m
)[
µs
]

(b) Extension with Significance

0.2 0.4 0.6 0.8
Mixing Factor

0

100

200

300

Ru
nn

ing
Ti
m
e/

(n
+

m
)[
µs
]

(c) Extension with EdgesScore

Caltech36 Smith60 Rice31 Auburn71
Graph Name

0

50

100

150
Ru

nn
ing

Ti
m
e/

(n
+

m
)[
µs
]

(d) Extension with EdgesScore

Figure 9.14: The normalized running time of the ego-net analysis for different local cluster-
ing algorithms.

We have seen which clustering algorithms provide a high persona recall on which graphs.
In the following, we analyze in more detail the properties of the clusterings of the dif-
ferent algorithms. Figure 9.13 depicts the community merging score and the community
segmentation score for LFR graphs with a varying number of communities per node. As
described in Section 8.4.2, a high merging score indicates that multiple ground-truth
communities are detected as one cluster. A high segmentation score indicates that each
ground-truth community is detected as multiple clusters, i.e. its nodes are split between
multiple clusters. For three or more communities per node, PLP has a high merging
score, but a low segmentation score. This means that many ground-truth communities
are merged together in a single cluster. Infomap has a similar progression, although the
merging score only becomes large for five or more communities per node. On the other
hand, Surprise has the lowest merging score, but the highest segmentation score for four or
more communities per node. If there are many communities per node, Surprise divides
each ground-truth community into multiple clusters. For less than two communities per
node, the modularity based algorithms PLM and LeidenMod have a high segmentation
score, so these two algorithms split the communities into multiple clusters. The reason
is that the modularity is always maximized by splitting a graph into multiple clusters,
so the communities are necessarily split if there are less than two communities per node.
For 3 communities per node, the merging score for all algorithms except PLP is very
low. At the same time, the segmentation score of Infomap and LeidenMod is also low,

65

9. Experimental Results

while the segmentation score of PLM, LPPotts and Surprise is much higher in comparison.
This confirms that Infomap and LeidenMod are the best clustering algorithms for three
communities per node, as we have already seen by the persona recall. For LeidenMod and
PLM, both scores increase linearly for an increasing number of communities per node. This
looks like a “natural” progression, meaning the detected communities become worse as the
difficulty of the detection increases. LeidenMod and PLM do not fall into an extreme as, for
example, PLP, which merges many communities into a single cluster on the harder graphs.
Because of this, LeidenMod and PLM seem like the most general-purpose algorithms, but
only if there are at least two communities per node.
Figure 9.14 depicts the running times of the ego-net analysis, normalized by the number of
nodes and edges. The ego-net analysis includes the creation of the ego-nets, the ego-net
extension and the execution of the local clustering algorithm. Figure 9.14a gives the
normalized running time on the LFR graphs with a varying number of communities per
node, if we extend with EdgesScore. The clustering algorithms can be split into two sets:
PLP, PLM, and LPPotts are relatively fast, while LeidenMod, Surprise, and Infomap
are noticeably slower. PLP is the fastest algorithm for all graphs, followed by PLM and
LPPotts. For five communities per node, PLM is slower than PLP by a factor of 1.4 and
LPPotts is slower than PLP by a factor of 2.3. For five communities per node, LeidenMod
is slower than PLM by a factor of 5.5. Figure 9.14b shows the normalized running time if
we extend the ego-net with Significance. The ranking of the algorithms is mostly identical
to EdgesScore. However, for seven communities per node, LPPotts is slower than Leiden.
Because the extension with Significance uses the result of local clustering algorithm, the
running time of the extension is also influenced by the clustering algorithm. For example,
if the local clustering algorithm creates a clustering with many clusters, we check the
significance of each candidate to each cluster (if the candidate has a neighbor in that
cluster). If the clustering algorithm instead outputs only few clusters, we have to calculate
the significance less often. The running time of Significance is higher than the running
time of EdgesScore, which is expected since Significance extends and clusters three times.
For three communities per node, the running time of LeidenMod with Significance is slower
than EdgesScore by a factor of 3. For most graphs and algorithms, using Significance
instead of EdgesScore increases the running time by a factor of 3 to 4. Figures 9.14c
and 9.14d show the running time on LFR graphs with varying mixing factor and on the
Facebook graphs. The ranking of the algorithms is similar as stated above, with PLP, PLM
and LPPotts being noticeably faster than LeidenMod, Surprise and Infomap.
In conclusion, Infomap is the best clustering algorithm for small overlaps (two or fewer
communities per node), but produces a low quality clustering for difficult graphs. LeidenMod
is the best algorithm for a high overlap, but has problems dealing with less than two
communities in the ego-net. Infomap, LeidenMod and Surprise are considerably slower
than the other three algorithms, but only by a constant factor. No algorithm detects both
slightly overlapping and highly overlapping graphs with a good quality. Comparing the
variants of the ego-net extension, EdgesScore provides a higher quality than Significance
for most graphs, especially for the LFR graphs with three to four communities per node.
Extending with EdgesScore is also considerably faster. In the following sections, we use
EdgesScore to extend the ego-net, and consider both Infomap and LeidenMod as the local
clustering algorithm.

9.3 Connecting Personas
For each node, we connect its personas by inserting additional edges in the persona graph.
We connect the personas so that the global clustering algorithm has a higher chance to
repair mistakes made by the local clustering algorithm. Let P be the ego-persona graph of
a node. We compare the following variants:

66

9.3. Connecting Personas

NoConnection SpanUnweight AllWeight AllUnweight

1 2 3 4 5 6 7.2 .4 .6 .8

Communities per Node

0.00

0.25

0.50

0.75

1.00
NM

I

(a)

0.2 0.4 0.6 0.8
Mixing Factor

0.00

0.25

0.50

0.75

1.00

NM
I

(b)

Caltech36 Smith60 Rice31 Auburn71
Graph Name

0.0

0.1

0.2

0.3

0.4

F1
Sc
or
e

(c)

1 2 3 4 5 6 7.2 .4 .6 .8

Communities per Node

0

10

20

30

40

Ru
nn

ing
Ti
m
e/

(n
+

m
)[
µs
]

(d)

Figure 9.15: Connect personas of the same node using different strategies. The benchmarks
use LeidenMod as the local clustering algorithm and Infomap as the global
clustering algorithm. Shown are the NMI of the result cover for the LFR
graphs with a varying number of communities per node (a), for the LFR graphs
with varying mixing parameter (b) and the Facebook graphs (c). Figure (d)
gives the normalized running time of the global clustering algorithm.

• NoConnection: No additional edges are inserted.

• SpanUnweight: Get a maximum spanning tree of P . For each edge of the spanning
tree, insert an edge with weight 1.

• AllUnweight: For each edge in P , insert an edge with weight 1.

• AllWeight: For an edge e = (p1, p2) with weight w in P , let d(e) = w
|p1|·|p2| . For

each edge e in P , insert an edge with weight d(e)
max′

e d(e′) .

We use LeidenMod as the local clustering algorithm, as it provides a high quality clustering
for most graphs. In this section, we compare the detected cover against the ground-truth
cover, therefore we have to choose a global clustering algorithm. We compare the choices
for the global clustering algorithm in Section 9.4. Infomap provides high quality results for
most graphs, so we us it as the global clustering algorithms for the experiments in this
section.

Figure 9.15 shows the results of the variants on the LFR and on the Facebook graphs.
Figure 9.15a gives the NMI of the result cover. For one community per node, all connection

67

9. Experimental Results

strategies improve the NMI drastically, by a factor of 4.4 to 5.4. As we use LeidenMod
as the local clustering, too many personas are created for less than two communities per
node, as we have seen in the previous section. As expected, connecting these personas
improves the quality of the global clustering algorithm. For four or more communities,
the variant AllWeight has a lower NMI than NoConnection, reaching an NMI of zero
for six communities per node. We assume that for these graphs, there are often five or
more personas per node. If these five personas are all connected in the ego-persona graph,
then they form a clique that the global clustering algorithm detects as its own community.
The strategy SpanUnweight improves the NMI for all graphs. The strategy AllWeight is
the best strategy for two to five communities per node, but is worse than SpanUnweight
for six communities per node. For seven communities per node, AllWeight is worse than
NoConnection. For four communities per node, SpanUnweight increases the NMI compared
to NoConnection by a factor of 1.06. For the same graph, AllWeight increases the NMI by
a factor of 1.09.
Figure 9.15b gives the results on the LFR graphs with varying mixing factor. For all graphs,
SpanUnweight is better than NoConnection, and AllWeight is better than SpanUnweight.
AllUnweight is worse than NoConnection for a mixing factor of 0.4 or more.
Figure 9.15c shows the F1 Score on the Facebook graphs. For all graphs, all three connection
strategies improve the F1 Score compared to NoConnection. Overall, AllUnweight provides
the highest quality, followed by AllWeight and SpanUnweight.
Figure 9.15d depicts the running time of the global clustering algorithm, normalized
by the number of nodes and edges of the graph. For some graphs with three or fewer
communities per node, connecting the personas results in a lower running time compared
to not connecting the personas on some graphs. This is not intuitive, as we have inserted
additional edges into the persona graph. As we have seen, the quality of the detected
communities is higher if we connect the personas. We assume that LeidenMod can detect
these communities faster than the communities with lower quality. For four or more
communities per node, SpanUnweight is slightly slower than NoConnection but faster than
AllWeight. For six communities per node, SpanUnweight increase the running time by a
factor of 1.1, AllUnweight by a factor of 1.26, and AllWeight by a factor of 1.41.

In conclusion, AllUnweight drastically decreases the quality on some graphs, so it is
not a viable solution. Both AllWeight and SpanUnweight increase the quality in nearly
all cases, AllWeight being slightly better for most graphs. However, AllWeight is not
the best strategy for highly overlapping graphs, where it can even decrease the quality
compared to NoConnection. AllWeight also has a higher running time than SpanUnweight.
SpanUnweight consistently improves the quality and only has a low extra cost in the
running time. Another advantage of SpanUnweight compared to AllWeight is that the
global clustering algorithm does not have to support weighted graphs. We conclude that
SpanUnweight is the most universal strategy and thus use it for all following benchmarks.

9.4 Global Clustering Algorithm
We compare the result covers for different global clustering algorithms, using either Infomap
or LeidenMod as the local clustering algorithm. Figure 9.16a gives the NMI on the LFR
graphs with a varying number of communities per node, using Infomap as the local clustering
algorithm. For less than four communities per node, Surprise is the best global clustering
algorithm, followed by Infomap. For two communities per node, Surprise has a NMI of
0.69, while Infomap has an NMI of 0.53. Both algorithms have the same quality for five or
more communities per node. For six and seven communities per node, LPPotts has the
highest NMI, although the cover has only a low quality. All other algorithms a strictly
worse than Surprise on all graphs. Figure 9.16b depicts the NMI for the same graphs, but
using LeidenMod as the local clustering algorithm. Again, Surprise provides the highest

68

9.4. Global Clustering Algorithm

PLP
LeidenMod

PLM LPPotts Infomap Surprise

1 2 3 4 5 6 7.2 .4 .6 .8

Communities per Node

0.00

0.25

0.50

0.75

1.00

NM
I

(a) Local: Infomap

1 2 3 4 5 6 7.2 .4 .6 .8

Communities per Node

0.00

0.25

0.50

0.75

1.00

NM
I

(b) Local: LeidenMod

0.2 0.4 0.6 0.8
Mixing Factor

0.00

0.25

0.50

0.75

1.00

NM
I

(c) Local: LeidenMod
2

4

6

8

10

Co
m
m
un

ity
Si
ze

(lo
g 2
)

(d) Local: LeidenMod, LFR graph with four
communities per node

PLP
LeidenMod

PLM
Ground Truth

LPPotts Infomap Surprise

Figure 9.16: Comparison of different global clustering algorithms. Figure (a) depicts the
NMI using Infomap as the local clustering algorithm. For the figures (b)-(d),
LeidenMod is the local clustering algorithm. Figure (d) shows the community
sizes of the result cover.

quality for less than four communities per node and Infomap provides the highest quality
for four or more communities per node. For five or more communities per node, the NMI of
Infomap is between 0.05 and 0.1 higher than the NMI of Surprise. All other algorithms are
strictly worse than Surprise for all graphs and strictly worse than Infomap on all graphs
with two or more communities per node.
We see that Infomap and Surprise are the best global clustering algorithms. Now we
compare the influence of the local clustering algorithm on the quality of the cover. Using
Surprise as the global clustering algorithm, Infomap as the local clustering algorithm
provides a higher quality than LeidenMod as the local clustering algorithm for the graphs
with less than two communities per node. This is expected, as we showed in a previous
section that Infomap produces a higher quality ego-net clustering for these graphs. For the
LFR graph with an average of 1.6 communities per node, using Infomap locally results
in an NMI of 0.792 while using LeidenMod locally results in an NMI of 0.651. For three
or more communities per node, using LeidenMod locally instead of Infomap produces a
higher quality for both Infomap and Surprise as the global algorithms. This confirms our

69

9. Experimental Results

PLP
LeidenMod

PLM
Ground Truth

LPPotts Infomap Surprise

2

4

6

8

10

12

Co
m
m
un

ity
Si
ze

(lo
g 2
)

(a) Local: Infomap
0.0

0.2

0.4

0.6

0.8

F1
Sc
or
e

(b) Local: Infomap

2

4

6

8

10

12

Co
m
m
un

ity
Si
ze

(lo
g 2
)

(c) Local: LeidenMod
0.0

0.2

0.4

0.6

0.8

F1
Sc
or
e

(d) Local: LeidenMod

Figure 9.17: Results on the Facebook graph Rice31, using either Infomap (a + b) or
LeidenMod (c + d) as the local clustering algorithm. Figure (a) and (c) give
the sizes of the detected communities, while Figure (b) and (d) show the F1
Score of the detected communities.

conclusion that LeidenMod produces a higher quality ego-net clustering than Infomap for
these harder graphs. For four communities per node and Infomap as the global algorithm,
using LeidenMod locally results in an NMI of 0.72, while using Infomap locally results in
an NMI of 0.516.
Figure 9.16c gives the NMI on the LFR graphs with varying mixing factor, using LeidenMod
as the local clustering algorithm. Again, either Infomap or Surprise provide the highest
quality for all graphs. For a mixing factor less than or equal to 30%, Surprise is the best
global clustering algorithm. If the mixing factor is higher, Infomap provides a better quality,
increasing the NMI by up to 0.07 compared to Surprise.
The NMI only provides a single value to measure the quality of a detected cover. To
provide further insights about the clustering algorithms, we analyze the sizes of the detected
communities as well as the number of detected communities. Figure 9.16d shows the sizes
of the detected communities for the LFR graph with three communities per node and
a mixing factor of 25%. This graph has a medium difficulty, where the local clustering
algorithm provides a high quality, but is not able do detect the local clusters perfectly.
Each point in the swarm plot corresponds to one community, the rightmost cluster showing
the ground-truth cover. We present the cover of the first iteration of the benchmark, as
depicting all ten iterations would make an evaluation difficult. We see that PLP detects

70

9.4. Global Clustering Algorithm

only a few very large communities. LPPotts detects way too many small communities
and not enough large communities, indicating that LPPotts splits communities too easily.
LeidenMod detects too few communities that are too large. The communities of PLM are
a too large, up to double the size of the ground-truth communities. PLM also detects
too few communities, indicating that multiple ground-truth communities are merged into
one detected community. Both modularity based algorithms have the tendency to detect
large communities. This may be caused by the resolution limit of modularity. Infomap
and Surprise detect communities that match the ground-truth communities well in size
and number. However, they also detect a number of small communities that have no
counterpart in the ground-truth. Still, Infomap and Surprise detect communities that
match the sizes of ground-truth communities the best, explaining their high NMI.
There is no combination of local and global clustering algorithm that provides the best
quality for all LFR graphs. For the graphs with less than three communities per node,
the combination Infomap/Surprise (local/global) detects the highest quality communities.
For three communities per node, the algorithms LeidenMod/Surprise provide the best
quality. For four or more communities per node, the highest quality is achieved by
LeidenMod/Infomap. To keep the number of possible combinations manageable, we only
consider Infomap/Surprise and LeidenMod/Infomap in the following chapters.

We now evaluate results on a Facebook graph. Because the ground-truth communities on
the Facebook graphs do not perfectly represent the structural communities, it is difficult to
compare the NMI for the algorithms on multiple graphs. Instead, we focus on one graph
and analyze the size and F1 Score of the detected communities. Figure 9.17a shows the
sizes of the detected communities on the Facebook graph Rice31, using Infomap as the local
clustering algorithm. We see that there are very few ground-truth communities, most of
them having a size between 28 and 210. As some algorithms detect many small communities
that surely have a small F1 Score, the average F1 Score is very low. To analyze the quality
of the detected communities, we look at the F1 Score of each community. Figure 9.17b gives
the F1 Score for each community, again using Infomap as the local clustering algorithm
on the graph Rice31. PLP detects very few communities and none with an F1 Score of
0.4 or more. PLM and LeidenMod detect few communities, roughly equal to the number
of ground-truth communities. LPPotts, Infomap and Surprise detect many communities,
especially small ones. As these small communities have no corresponding ground-truth
communities, they have a very low F1 Score. All algorithms except PLP detect a few
communities with a relatively high quality (F1 Score > 0.6). Figures 9.17c and 9.17d give
the community sizes and F1 Scores if we use LeidenMod as the local clustering algorithm.
The results are fairly similar to Infomap as the local clustering algorithm. The community
sizes of LPPotts, Infomap and Surprise are more evenly distributed, i.e. there are more
communities with a large size. LeidenMod provides the best quality, with most of the
communities having a F1 Score around 0.8.
We conclude that the clustering algorithm combination LeidenMod/LeidenMod provides
the highest quality on this graph. LPPotts, Infomap and Surprise detect many small
communities, but the ground-truth contains nearly no such communities. However, it is
possible that there are such small structural communities in the graph, but they are not
found in the meta-data.

In conclusion, Infomap/Surprise and LeidenMod/Infomap seem to be the best algorithm
combinations for the LFR graphs. The analysis on the Facebook graphs is difficult, as
the number of detected communities differs greatly between the clustering algorithms.
We focus our analysis in the following sections on the LFR graphs. Therefore, we only
consider the two combinations Infomap/Surprise and LeidenMod/Infomap for the following
experiments.

71

9. Experimental Results

9.5 Community Clean-Up
After executing the ego-splitting framework, we clean up the detected cover using our
proposed clean-up process based on statistical significance. We compare the following
variants:

• NoClean: No clean-up step.

• CleanRemove: We clean up each detected community. Insignificant clusters are
discarded.

• CleanMerge: We clean up each detected community. We try to merge insignificant
communities to obtain significant communities.

• OSLOM: We run the OSLOM algorithm with the detected cover as the input.

Figure 9.18a depicts the NMI of the clean-up variants for the LFR graphs with a varying
number of communities per node, using LeidenMod as the local and Infomap as the global
clustering algorithm. For all graphs, CleanMerge and CleanRemove provide a nearly
identical quality. Compared to the uncleaned cover, CleanMerge increases the NMI for
all graphs. For two nodes per community, NoClean provides an NMI of 0.551 while
CleanMerge provides an NMI of 0.989, an increase by a factor of 1.8. CleanMerge increases
the NMI by a factor of 1.6 for four communities per node and by a factor of 1.3 for six
communities per node. OSLOM also increases the NMI compared to NoClean for all graphs.
OSLOM provides a higher quality than CleanMerge for the graphs with average number of
communities less than or equal to two. For one community per node, OSLOM increases
the NMI compared to CleanMerge by a factor of 1.09. For more than two communities per
node, CleanMerge provides a higher quality than OSLOM. For six communities per node,
CleanMerge increases the NMI compared to OSLOM by a factor of 1.18.
Figure 9.18b gives the NMI using Infomap as the local and Surprise as the global clustering
algorithm. Again, CleanMerge and CleanRemove provide a nearly identical NMI for
all graphs and improve the quality considerably compared to NoClean. For two or less
communities per node, OSLOM has nearly the same quality as CleanMerge, with an NMI
that is at best better than CleanMerge by a difference of 0.015. For two to five communities
per node, CleanMerge provides a higher quality than OSLOM by a factor of up to 1.55.
For six and seven communities, OSLOM has a higher NMI than CleanMerge, but both
provide only a low quality result.
We see that the clean-up step considerably improves the quality of the detected communities,
nearly perfectly recovering the ground-truth communities for some graphs. For the graphs
with more than the two communities per node, our clean-up process provides a better
quality than OSLOM.

Since the clean-up considerably increases the quality on some graphs, it is possible that
the order of the local/global clustering algorithms changes. For example, algorithm com-
bination A provides a lower quality than algorithm combination B without the clean-up,
but the cleaned cover of A has a higher quality than the cleaned cover of B. To evaluate
if this happens for the clustering algorithms LeidenMod/Infomap and Infomap/Surprise,
we now compare the results of CleanMerge for the two algorithm combinations. For
less than two communities per node, Infomap/Surprise provides a higher quality than
LeidenMod/Infomap. This is expected because the quality of the uncleaned result of
Infomap/Surprise is already considerably higher. For one community, LeidenMod/Infomap
provides an NMI of 0.867, while Infomap/Surprise provides an NMI of 0.986. For more
than two communities per node, the quality order turns around and LeidenMod/Infomap
provides a higher quality, following the quality progression of their uncleaned covers. For
four communities per node, LeidenMod/Infomap cleaned up with CleanMerge provides
an NMI of 0.994, while Infomap/Surprise cleaned up with CleanMerge provides an NMI

72

9.5. Community Clean-Up

NoClean CleanMerge CleanRemove OSLOM

1 2 3 4 5 6 7.2 .4 .6 .8

Communities per Node

0.00

0.25

0.50

0.75

1.00

NM
I

(a) LeidenMod/Infomap

1 2 3 4 5 6 7.2 .4 .6 .8

Communities per Node

0.00

0.25

0.50

0.75

1.00

NM
I

(b) Infomap/Surprise

0.2 0.4 0.6 0.8
Mixing Factor

0.00

0.25

0.50

0.75

1.00

NM
I

(c) LeidenMod/Infomap

0.2 0.4 0.6 0.8
Mixing Factor

0.00

0.25

0.50

0.75

1.00
NM

I

(d) Infomap/Surprise

NoClean CleanMerge CleanRemove OSLOM Ground Truth

3

4

5

6

Co
m
m
un

ity
Si
ze

(lo
g 2
)

(e) LeidenMod/Infomap

3

4

5

6

Co
m
m
un

ity
Si
ze

(lo
g 2
)

(f) Infomap/Surprise

Figure 9.18: The results of the clean-up step, comparing the uncleaned cover (blue) and
the covers produced by the clean-up procedures. Shown are the NMI values
(a - d) and the community sizes (e + f). For the plots on the left, Leiden-
Mod/Infomap are the local/global clustering algorithms, for the plots on the
right Infomap/Surprise are the clustering algorithms.

73

9. Experimental Results

NoClean CleanMerge CleanRemove OSLOM

1 2 3 4 5 6 7.2 .4 .6 .8

Communities per Node

0

500

1000

1500

Ru
nn

ing
Ti
m
e/

(n
+

m
)[
µs
]

(a)

1 2 3 4 5 6 7.2 .4 .6 .8

Communities per Node

0

50

100

150

Ru
nn

ing
Ti
m
e/

(n
+

m
)[
µs
]

(b)

Figure 9.19: The normalized running times of the entire ego-splitting framework on the
LFR graphs with a varying number of communities per node, comparing the
clean-up procedures. The local clustering algorithm is LeidenMod and the
global clustering algorithm is Infomap. Figure (b) shows the running time
zoomed in on the fast versions.

of 0.847. In conclusion, the clean-up does not produce an unexpectedly high quality for
one algorithm combination. Infomap/Surprise provides a higher quality for two or less
communities per node and LeidenMod/Surprise provides a higher quality for three or more
communities per node, for both the uncleaned and the cleaned covers.
Figures 9.18c and 9.18d show the NMI on the LFR graphs with varying mixing parameter,
using either LeidenMod/Infomap or Infomap/Surprise as the local/global clustering algo-
rithm combination. For both algorithm combinations, all clean-up variants improve the
quality for all graphs. For a mixing factor of 50% and less, CleanMerge provides a higher
quality than OSLOM. Only for a mixing factor of 60% and the algorithm combination
Infomap/Surprise, OSLOM achieves a higher NMI. In this case however, even OSLOM
does not provide a high quality result with only an NMI of 0.044.
Figures 9.18e and 9.18f depict the sizes of the detected communities on the LFR graph
with three communities per node and mixing factor 25%. For both algorithm combinations,
the uncleaned cover contains to many large communities but also contains some small
communities that have no counterpart in the ground-truth. After the clean-up, the small
communities have been discarded, and the detected communities match the ground-truth
communities nearly perfectly.

Figure 9.19 depicts the normalized running time of the entire community detection, including
the clean-up process. Using the OSLOM algorithm to clean up the cover increases the
running time drastically, up to a factor of 18 for four communities per node. For four or
less communities per node, CleanMerge is slower than NoClean by a factor of at most 1.25.
For seven communities per node, CleanMerge is slower by a factor of 1.92. As expected,
CleanMerge is slower than CleanRemove because it includes an additional step. For four or
less communities per node, CleanMerge has nearly the same running time as CleanRemove,
being slower by less than 1%. For seven communities per node, CleanMerge is slower than
CleanRemove by a factor of 1.16. We see that OSLOM can drastically the running time,
while our clean-up process CleanMerge increases the running time by a factor of less than
2 for all graphs.

74

9.5. Community Clean-Up

NoClean CleanMerge CleanRemove OSLOM

Caltech36 Smith60 Rice31 Auburn71
Graph Name

0.0

0.1

0.2

NM
I

(a)

Caltech36 Smith60 Rice31 Auburn71
Graph Name

0.0

0.1

0.2

0.3

0.4

F1
Sc
or
e

(b)

NoClean CleanMerge CleanRemove OSLOM Ground Truth

2

4

6

8

10

Co
m
m
un

ity
Si
ze

(lo
g 2
)

(c) Graph: Rice31
0.0

0.2

0.4

0.6

0.8
F1

Sc
or
e

(d) Graph: Rice31

Figure 9.20: Results of the clean-up variants on the Facebook graphs. The local clustering
algorithm is LeidenMod and the global clustering algorithm is Infomap. Shown
are the NMI of the cover (a), the F1 Score of the cover (b), the sizes of the
detected communities (c), and the F1 Scores of the detected communities (d).

The above results show that the clean-up process improves the quality on the synthetic
graphs. Now we evaluate the effect of the clean-up process on the real-world graphs. We
focus our analysis on the clustering algorithm combination LeidenMod/Infomap, as it
provided the best quality on the synthetic graphs.
Figure 9.20 shows the results on the Facebook graphs, using the clustering algorithms
LeidenMod/Infomap. For all graphs except Rice31, all three clean-up variants decrease
the NMI of the cover. This shows again that the evaluation on the Facebook graph is
difficult. We do not know why the clean-up step considerably improves the NMI on the
graph Rice31, but decreases the NMI on the other graphs.
Figure 9.20b shows the F1 Score of the covers. CleanMerge increases the F1 Score on all
graphs. CleanRemove provides a worse F1 Score than CleanMerge, showing that merging
discarded communities increases the quality of the cover.
Figure 9.20c depicts the community sizes and Figure 9.20d depicts the F1 Scores of the
detected communities, both for the graph Rice31. Using OSLOM decreases the average
size of the communities, but keeps the number of communities relatively similar. The
communities produced by OSLOM are much smaller than the ground-truth communities.
Both CleanRemove and CleanMerge increase the number of large communities and decrease

75

9. Experimental Results

NoClean CleanMerge CleanRemove OSLOM

Caltech36 Smith60 Rice31 Auburn71
Graph Name

0

500

1000

1500

2000

Ru
nn

ing
Ti
m
e/

(n
+

m
)[
µs
]

(a)

Caltech36 Smith60 Rice31 Auburn71
Graph Name

0

50

100

150

200

Ru
nn

ing
Ti
m
e/

(n
+

m
)[
µs
]

(b)

Figure 9.21: The normalized running times of the entire ego-splitting framework on the
Facebook graphs, comparing the clean-up procedures. The local clustering
algorithm is LeidenMod and the global clustering algorithm is Infomap. Figure
(b) shows the running time zoomed in on the fast versions.

the number of small communities considerably, so that the sizes match the ground-truth
much better. This results in much fewer communities with a low F1 Score. However,
CleanMerge produces more large communities which have a similar size than the ground-
truth communities, thus detecting more communities with a high F1 Score. This shows
that we can create additional significant communities by merging discarded communities.
Figure 9.21 gives the normalized running time on the Facebook graphs. As was the case
for the LFR graphs, OSLOM is much slower than NoClean on some graphs, by a factor of
13 for the graph Auburn71. In contrast, CleanMerge is slower than NoClean by a factor of
less than 1.5 for all graphs.

In conclusion, the clean-up procedure CleanMerge drastically improves the cover quality
for the LFR graphs, nearly perfectly recovering the ground-truth on some graphs. On the
real-world graphs, the clean-up step improves the quality only on some graphs. On the
synthetic graphs, CleanRemove and CleanMerge provide nearly the same quality, but on
the real-world graphs CleanMerge is clearly superior. CleanMerge provides a higher quality
then the OSLOM algorithm for all graphs, while also being much faster than OSLOM.
The additional running time of CleanMerge is moderate on all tested graphs, increasing
the total running time by a factor of less than two for all graphs. We use the clean-up
procedure CleanMerge for the following benchmarks.

9.6 Comparison with Other OCD Algorithms
We compare our optimized configuration of the ego-splitting framework with other over-
lapping community detection (OCD) algorithms and two other configurations of the
ego-splitting framework. For clarity, we describe the optimized configuration in the follow-
ing: We extend the ego-net using EdgesScore with the candidate score function q(v) = kin

v
2

kv
.

The maximum number of extended nodes is o = 5 · ne0.5, the candidates are evaluated
iteratively for Imax = 10 iterations, and the extension process is repeated Ic = 3 times.
We use the local clustering algorithm LeidenMod to partition the ego-net. In the persona
graph, we connect all personas of a node based on a maximum spanning tree in the ego-net.
The global clustering algorithm is Infomap. After creating a cover from the clustering on

76

9.6. Comparison with Other OCD Algorithms

ES+
OSLOM

ESB ESF GCE MOSES

1 2 3 4 5 6 7.2 .4 .6 .8

Communities per Node

0.00

0.25

0.50

0.75

1.00

NM
I

(a)

0.2 0.4 0.6 0.8
Mixing Factor

0.00

0.25

0.50

0.75

1.00

NM
I

(b)

Figure 9.22: NMI of the detected cover on the LFR graphs for different OCD algorithms.

the persona graph, we clean up that cover using our process CleanMerge.
We test three configurations of the ego-splitting framework in our experiments:

• ES+ (Ego-Splitting Plus): Our optimized configuration as described above.

• ESB (Ego-Splitting Base): The ego-splitting framework without our proposed addi-
tional phases. The clustering algorithms are LeidenMod/Infomap, the combination
that provided the best results in previous sections.

• ESF (Ego-Splitting Fast): The implementation of the ego-splitting framework given
by Epasto et al. [ELPL17]. The local clustering algorithm is LPPotts with α = 0.1,
the global clustering algorithm is LPPotts with α = 0.

We compare ego-splitting with other OCD algorithms that have shown to provide high
quality results:

• GCE: Greedy clique expansion based on a simple community fitness function. We
set α = 1.1, because this value provided the best results in our benchmarks.

• MOSES: Seed expansion based on a stochastic block model.

• OSLOM: Local optimization to find statistically significant communities.

See Section 3.2 for a more detailed description of the algorithms.

Figure 9.22 shows the NMI of the cover detected by the different algorithms on the LFR
graphs with a varying number of communities per node. ES+ provides the best quality for
the graphs with 1.4 to 4 communities per node. For one community per node, OSLOM and
GCE recover the ground-truth communities perfectly, while ES+ has an NMI of 0.879. For
five or more communities per node, MOSES outperforms ES+ in terms of NMI. MOSES
provides an NMI of 0.85 for six communities per node, while ES+ provides an NMI of 0.41.
On the other hand, ES+ is better than MOSES for less than five communities per node,
with an NMI higher by 0.2 for two communities per node. OSLOM has a higher NMI than
ES+ for six and seven communities per node. GCE outperforms ES+ for one community
per node by a factor of 1.14, but ES+ outperforms GCE for all other graphs. For four
communities per node, GCE provides an NMI of 0.83, considerably lower than ES+ which
provides an NMI of 0.97. ESF provides an NMI of around 0.7 for the graphs with 1.6 or
less communities per nodes. For larger numbers of communities per node, the quality of
ESF decreases drastically, providing an NMI of 0.28 for two communities per node and

77

9. Experimental Results

ES+
OSLOM

ESB ESF GCE MOSES

1 2 3 4 5 6 7.2 .4 .6 .8

Communities per Node

0

5000

10000

15000

Ru
nn

ing
Ti
m
e/

(n
+

m
)[
µs
]

(a)

1 2 3 4 5 6 7.2 .4 .6 .8

Communities per Node

0

250

500

750

1000

Ru
nn

ing
Ti
m
e/

(n
+

m
)[
µs
]

(b)

0.2 0.4 0.6 0.8
Mixing Factor

0

1000

2000

Ru
nn

ing
Ti
m
e/

(n
+

m
)[
µs
]

(c)

0.2 0.4 0.6 0.8
Mixing Factor

0

200

400

600

800
Ru

nn
ing

Ti
m
e/

(n
+

m
)[
µs
]

(d)

Figure 9.23: Running times of the community detection algorithms on the LFR graphs.
Figure (b) and (d) are zoomed in graphs of (a) and (c).

providing an NMI of only 0.04 for four communities per node. ESB has an NMI of 0.26
for one community per node, drastically worse than all other algorithms. The reason is
that the used local clustering algorithm (LeidenMod) does not provide a good quality for
this graph. Without our additional phases, this low quality of the local evaluation can
not be repaired, resulting in a low quality cover. ESB provides the best quality for the
graph with an average of 1.8 communities per node, yielding an NMI of 0.69. For a higher
number of communities per node, the quality declines drastically. For four communities
per node, ESB has an NMI of 0.32. Comparing the variants of the ego-splitting framework
for the highly overlapping graphs (more than two communities per node), we see that
ESF performs extremely bad. ESB provides a higher quality, showing that the clustering
algorithms LeidenMod/Infomap improve the quality considerably compared to LPPotts.
However, ESB has still a much lower quality then ES+, with its NMI being up to 0.64
lower.
Figure 9.22b gives the NMI on the LFR graphs with varying mixing parameter. As expected,
the quality of all algorithms decreases as the mixing factor increases. For a mixing factor of
40% or less, ES+ has the highest quality of all algorithms. For a mixing factor of 30%, the
second best algorithm is OSLOM, which provides an NMI that is lower by 0.1 compared to
the NMI of ES+. For a mixing factor of 50% and more, OSLOM provides the best quality,
followed by MOSES, while ES+ and GCE have a similar quality. ESF has an extremely
low quality, with an NMI of less than 0.2 for all graphs. ESB has a higher quality than

78

9.6. Comparison with Other OCD Algorithms

ESF, starting from an NMI of 0.73 for a mixing factor of 5%. The quality of ESB increases
fast for an increasing mixing factor, providing an NMI of 0.21 for a mixing factor of 40%.
On the same graph, ES+ has an NMI of 0.95.
Figure 9.23 gives the running times of the algorithms on the LFR graphs, normalized by the
number of nodes and edges of the graph. The running time of OSLOM increases drastically
if the number of communities per node increases. For seven communities per node, OSLOM
is slower than ES+ by a factor of about 100 while it is only slower by a factor of 2 for
one community per node. GCE is faster than ES+ for four or less communities per node
by a factor of up to 30. For six communities per node however, GCE is slower than ES+
by a factor of 6. MOSES is slower than ES+ for all tested graphs. For one community
per node, MOSES is slower than ES+ by a factor of 7.8 and for seven communities per
node, it is slower by a factor of 2.7. On the graphs with varying mixing factor, OSLOM
is slower than ES+ by a factor of at least 10 for all graphs. MOSES is slower than ES+
by a factor of at least 3.4 for all graphs. GCE is faster than ES+ for a mixing factor of
40% or less, by a factor of up to 9. For a mixing factor of 60%, the running time of GCE
increases drastically and is slower than the running time of ES+ by a factor of 8.2. As
expected, ESB is faster than ES+, and ESF is faster than ESB. Compared to ESF, ESB is
slower by a factor of up to 6 and ES+ is slower by a factor of up to 11. ES+ is slower than
ESB by a factor of up to 3. We see that using “good” clustering algorithms increases the
running time considerably. The additional phases we introduced also increase the running
time considerably. However, the running time still scales well for all graphs.
Our experiments show that for a medium number of communities per node, ES+ provides
the best quality for all tested algorithms and nearly perfectly recovers the ground-truth
communities. For less than two communities per node, ES+ can not recover the ground-
truth perfectly. However, we have seen in previous sections that a different local clustering
algorithm can improve the quality on these graphs. For hard graphs, i.e. a high number
of communities or a high mixing factor, MOSES and OSLOM provide a higher quality
than ES+. However, both algorithms are considerably slower than ES+ for all graphs,
and provide a lower quality for the other graphs. GCE is faster than ES+ on the easier
graphs, but has a very high running time on some of the harder graphs. ES+ also provides
a higher quality than GCE for all but one graph. The other configurations of the ego-
splitting framework are faster than ES+, but provide a much lower quality. Both the
more sophisticated clustering algorithms and the additional phases improve the quality
considerably. In conclusion, ES+ provides the best quality for many graphs. Additionally,
ES+ has the best running time of the high quality algorithms, in the sense that the
(normalized) running time is nearly constant for all LFR graphs. In contrast, MOSES is
drastically slower for all graphs, and OSLOM and GCE require extremely high running
times on some graphs.
We have shown that ES+ performs well on the synthetic graphs. Now we evaluate the OCD
algorithms on the real-world graphs. Figure 9.24 shows the results on the Facebook graphs.
Figure 9.24a gives the NMI of the detected covers. All algorithms provide a very low NMI
on the graph Auburn71, less than 0.04. We assume that on this graph, the ground-truth
communities do not actually represent the structural communities. For such low values, we
can not compare the results in a meaningful way, so we ignore the graph Auburn71 in the
following. GCE provides the highest NMI for all graphs. ES+ is the third best algorithm
for the graphs Caltech36 and Smith60 and the second best algorithm for the graph Rice31.
OSLOM provides the second best quality on the graphs Caltech36 and Smith60. On the
graph Rice31 however, its NMI is only 0.02, meaning that the detected communities contain
nearly no usable information. ESB has a slightly higher NMI than ES+ on the graphs
Caltech36 and Smith60, but a considerably lower NMI on the graph Rice31. MOSES
and ESF provide only a low quality on all graphs. The results show that the quality of
the algorithms differs between the Facebook graphs, so there is no clear ordering of the

79

9. Experimental Results

ES+
OSLOM

ESB ESF GCE MOSES

Caltech36 Smith60 Rice31 Auburn71
Graph Name

0.0

0.1

0.2

0.3

NM
I

(a)

Caltech36 Smith60 Rice31 Auburn71
Graph Name

0

1000

2000

3000

Ru
nn

ing
Ti
m
e/

(n
+

m
)[
µs
]

(b)

ES+
OSLOM

ESB
Ground Truth

ESF GCE MOSES

2

4

6

8

10

Co
m
m
un

ity
Si
ze

(lo
g 2
)

(c) Graph: Smith60
0.0

0.2

0.4

0.6

0.8

1.0

F1
Sc
or
e

(d) Graph: Smith60

Figure 9.24: Results of the community detection algorithms on the Facebook graphs.

algorithms in terms of quality. To get more insights about the properties of the detected
covers, we analyze the detected communities. Figure 9.24c depicts the sizes of the detected
communities and Figure 9.24d depicts the F1 Score of the detected communities, both
for the graph Smith60. Most of the ground-truth communities have a size of 50 to 120,
but there are also five communities with a size of around 500. MOSES detects a large
number of communities. Most of the detected communities have a low F1 Score. OSLOM
detects mostly medium sized communities, which are smaller than most ground-truth
communities. The F1 Score of the detected communities is relatively evenly distributed.
GCE detects the lowest number of communities. Many of the communities detected by
GCE match the sizes of the ground-truth communities well, and around halve of them
have a high F1 Score. ESF detects many small communities that have no counterpart
in the ground-truth. Consequently, the algorithm detects many communities with a very
low F1 Score. Compared to ESF, ESB detects less small communities, resulting in less
communities with a very low F1 Score. Also, ESB detects more high quality communities
than ESF. ES+ detects only a few small communities, noticeably less than ESB, and also
less communities overall. Consequentially, ES+ has less communities with a low F1 Score,
compared to ESB. However, the best communities of ES+ have a lower quality than the
best communities of ESB.

80

9.6. Comparison with Other OCD Algorithms

In conclusion, GCE seems to provide the highest quality result on the Facebook graphs.
It is difficult to analyze the quality of the covers, as we can not guarantee that there are
good ground-truth communities. We have seen that ESB and ES+ clearly improve the
quality compared to ESF. The additional phases of the ego-splitting framework lead to the
detection of less low quality communities.
Figure 9.24b gives the running time of the algorithms on the Facebook graphs. MOSES
is the slowest algorithm, followed by OSLOM. For the Graph Auburn71, GCE is slower
than ES+ by a factor of 3.2. Similar to the LFR graphs, ESF is the fastest ego-splitting
algorithm, followed by ESB and lastly ES+. Compared to ESF, ESB is slower by a factor
of up to 6, and ES+ is slower by a factor of up to 13.
As we have seen before, it is difficult to evaluate the quality of a cover on the Facebook
graphs. Still, ES+ clearly provides a better quality than ESF and improves the quality
compared to ESB at least for one graph. Similar to the results on the LFR graphs, ES+
is consistently faster than OSLOM and MOSES, and sometimes faster than GCE. The
Facebook graphs are only slightly overlapping, with less than two communities per node
on average. As we have seen on the synthetic graphs, ES+ provides high quality results
even for four communities per node. We think that ES+ may outperform other algorithms
on real-world networks that are highly overlapping.

In conclusion, ES+ provides a high quality on the synthetic graphs, clearly outperforming
the other two ego-splitting algorithms. On many graphs, ES+ even has the highest quality
of all tested algorithms. At the same time, ES+ has a stable running time that is not
sensitive to the LFR graph parameters. On the Facebook graphs, we could not draw clear
conclusions about the quality, but we have seen that the running time of ES+ is also stable
and fast.

81

10. Conclusion

In this thesis, we have extended the ego-splitting framework by three steps: Ego-net
extension, persona connection, and clean-up. The ego-net extension includes additional
nodes in the ego-net, improving the structure of the communities. We connect the personas
of a node to provide the global clustering algorithm with additional information about the
relation of the nodes. The clean-up process uses statistical significance to remove weakly
connected nodes from the detected communities, while including strongly connected nodes.
Our experiments show that these additional phases increase the quality of the detected
communities considerably. At the same time, we retain a relatively low running time.
We have evaluated the ego-net extension based on the structure of the ego-net. Our results
show that the extension improves the structure of the communities, making them easier
to detect. The extension process may be included in similar algorithms that analyze the
ego-net, improving the quality of the detected local communities.
We have extensively tested different configurations of the framework, considering various
clustering algorithms that have shown to provide high quality results. In our experiments,
simple label propagation based algorithms could not compete with more sophisticated
algorithms. For the ego-net analysis, the Infomap algorithm and the Leiden algorithm, using
modularity as its fitness function, produced the highest quality results. For the community
detection in the persona graph, the Infomap algorithm and the Leiden algorithm, using
Surprise as a fitness function, discovered the best communities.
Our results show that we can improve the quality of communities considerably by adding a
clean-up phase based on statistical significance. Unlike OSLOM, an algorithm based on the
same measure, the clean-up process scales well even for complex graphs. Additionally, the
clean-up process is not directly connected to the ego-splitting framework, so it can be used
to clean up the detected communities of any overlapping community detection algorithm.

Compared to the previously proposed implementation of the ego-splitting framework, our
implementation increases the running time, but we are able to provide a much higher
quality. We have compared our implementation with state-of-the-art overlapping community
detection algorithms. Our results show that our algorithm outperforms these algorithms in
terms of quality for highly overlapping graphs. For two to four communities per node, we
are able to nearly perfectly reconstruct the communities of synthetic benchmark graphs and
outperform the state-of-the-art algorithms OSLOM and MOSES both in terms of quality
and running time. Ego-splitting is faster than the other tested algorithms for most graphs.
Moreover, the running time of ego-splitting is well predictable and does not depend on the
structure of the graph. This is in contrast to the other algorithms, which react sensitively

83

10. Conclusion

to small changes of the parameters of the synthetic graphs.
We have shown that ego-splitting is able to detect high quality communities on highly
overlapping graphs, while at the same time having a comparatively low running time. The
ego-splitting framework remains flexible, allowing one to switch the clustering algorithms
to meet quality or time constraints.

Further Work

The original ego-splitting framework is able to handle both directed and weighted graphs,
given adequate clustering algorithms. The ego-net extension process is based on an
unweighted and undirected graph. The process could be adjusted to also support weighted
and directed graphs. The persona connection strategy is also not trivially adaptable to
weighted and directed graphs, so further adjustments are needed.
For highly overlapping graphs, EdgesScore extends many external nodes, while Significance
only extends the ego-net by very few nodes. Combining the two variants could make it
possible to gain a high quality extension even for difficult graphs. To increase the number
of nodes added by Significance, one could use ordered statistics to search for significant
sets of nodes instead of evaluating each candidate in isolation, similar to the method used
in OSLOM.
Our ego-net extension process can be used in any algorithm that analyzes the local
communities of nodes. Further work could expand the evaluations of the extended ego-net,
providing additional insight in the structure of network graphs, especially on the local level.
The clean-up process is independent of the community detection algorithm. Applying the
clean-up process to other algorithms, e.g. GCE, might improve the quality of the detected
cover.
Synthetic benchmarks provide a useful tool to analyze the performance of community
detection algorithms. However, the synthetic graphs, e.g. the graphs based on the LFR
model, are still widely different than real-world network graphs. The implementation of
the LFR graph generator could be extended to allow a heterogeneous distribution of the
number of communities, as currently all nodes have the same number of communities.
This would allow the creation of synthetic graphs that better resemble real-world graphs,
bridging the gap between theoretical and practical results. Distributing the number of
neighbors in a community according to the community size could also make the graphs
more realistic.

84

Bibliography

[BGLL08] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment, 2008(10):P10008, 2008.

[BKA+14] Nazar Buzun, Anton Korshunov, Valeriy Avanesov, Ilya Filonenko, Ilya Kozlov,
Denis Turdakov, and Hangkyu Kim. Egolp: Fast and distributed community
detection in billion-node social networks. In Data Mining Workshop (ICDMW),
2014 IEEE International Conference on, pages 533–540. IEEE, 2014.

[Bur09] Ronald S Burt. Structural holes: The social structure of competition. Harvard
university press, 2009.

[CNM04] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding community
structure in very large networks. Physical review E, 70(6):066111, 2004.

[CRGP14] Michele Coscia, Giulio Rossetti, Fosca Giannotti, and Dinor Pedreschi. Un-
covering hierarchical and overlapping communities with a local-first approach.
ACM Transactions on Knowledge Discovery from Data (TKDD), 9(1):6, 2014.

[EB05] Martin Everett and Stephen P Borgatti. Ego network betweenness. Social
networks, 27(1):31–38, 2005.

[ELM+15] Alessandro Epasto, Silvio Lattanzi, Vahab Mirrokni, Ismail Oner Sebe, Ahmed
Taei, and Sunita Verma. Ego-net community mining applied to friend sugges-
tion. Proceedings of the VLDB Endowment, 9(4):324–335, 2015.

[ELPL17] Alessandro Epasto, Silvio Lattanzi, and Renato Paes Leme. Ego-splitting
framework: from non-overlapping to overlapping clusters. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 145–154. ACM, 2017.

[FB07] Santo Fortunato and Marc Barthelemy. Resolution limit in community detec-
tion. Proceedings of the national academy of sciences, 104(1):36–41, 2007.

[Fel81] Scott L Feld. The focused organization of social ties. American journal of
sociology, 86(5):1015–1035, 1981.

[FLG+00] Gary William Flake, Steve Lawrence, C Lee Giles, et al. Efficient identification
of web communities. In KDD, volume 2000, pages 150–160, 2000.

[Fre82] Linton C Freeman. Centered graphs and the structure of ego networks. Math-
ematical Social Sciences, 3(3):291–304, 1982.

[GN02] Michelle Girvan and Mark EJ Newman. Community structure in social and bi-
ological networks. Proceedings of the national academy of sciences, 99(12):7821–
7826, 2002.

85

Bibliography

[Gre07] Steve Gregory. An algorithm to find overlapping community structure in
networks. In European Conference on Principles of Data Mining and Knowledge
Discovery, pages 91–102. Springer, 2007.

[Gre09] SteveB Gregory. Finding overlapping communities using disjoint community
detection algorithms. In Complex networks, pages 47–61. Springer, 2009.

[HDF14] Darko Hric, Richard K Darst, and Santo Fortunato. Community detection in
networks: Structural communities versus ground truth. Physical Review E,
90(6):062805, 2014.

[HHJ03] Petter Holme, Mikael Huss, and Hawoong Jeong. Subnetwork hierarchies of
biochemical pathways. Bioinformatics, 19(4):532–538, 2003.

[HRW17] Michael Hamann, Eike Röhrs, and Dorothea Wagner. Local community detec-
tion based on small cliques. Algorithms, 10(3):90, 2017.

[HSWZ18] Michael Hamann, Ben Strasser, Dorothea Wagner, and Tim Zeitz. Distributed
graph clustering using modularity and map equation. In European Conference
on Parallel Processing, pages 688–702. Springer, 2018.

[LAH07] Jure Leskovec, Lada A Adamic, and Bernardo A Huberman. The dynamics of
viral marketing. ACM Transactions on the Web (TWEB), 1(1):5, 2007.

[LBA09] Pierre Latouche, Etienne Birmelé, and Christophe Ambroise. Overlapping
stochastic block models. arXiv preprint arXiv:0910.2098, 2009.

[LC13] Conrad Lee and Pádraig Cunningham. Benchmarking community detection
methods on social media data. arXiv preprint arXiv:1302.0739, 2013.

[LF09] Andrea Lancichinetti and Santo Fortunato. Benchmarks for testing commu-
nity detection algorithms on directed and weighted graphs with overlapping
communities. Physical Review E, 80(1):016118, 2009.

[LFK09] Andrea Lancichinetti, Santo Fortunato, and Janos Kertesz. Detecting the
overlapping and hierarchical community structure in complex networks. New
Journal of Physics, 11(3):033015, 2009.

[LND16] Panagiotis Liakos, Alexandros Ntoulas, and Alex Delis. Scalable link community
detection: A local dispersion-aware approach. In 2016 IEEE International
Conference on Big Data (Big Data), pages 716–725. IEEE, 2016.

[LRMH10] Conrad Lee, Fergal Reid, Aaron McDaid, and Neil Hurley. Detecting highly
overlapping community structure by greedy clique expansion. arXiv preprint
arXiv:1002.1827, 2010.

[LRR10] Andrea Lancichinetti, Filippo Radicchi, and José Jm Ramasco. Statistical
significance of communities in networks. Physical Review E, 81(4):046110,
2010.

[LRRF11] Andrea Lancichinetti, Filippo Radicchi, José J Ramasco, and Santo Fortunato.
Finding statistically significant communities in networks. PloS one, 6(4):e18961,
2011.

[LSS12] Min Chih Lin, Francisco J Soulignac, and Jayme L Szwarcfiter. Arboricity,
h-index, and dynamic algorithms. Theoretical Computer Science, 426:75–90,
2012.

[MGH11] Aaron F McDaid, Derek Greene, and Neil Hurley. Normalized mutual infor-
mation to evaluate overlapping community finding algorithms. arXiv preprint
arXiv:1110.2515, 2011.

86

Bibliography

[MH10] Aaron McDaid and Neil Hurley. Detecting highly overlapping communities with
model-based overlapping seed expansion. In 2010 International Conference on
Advances in Social Networks Analysis and Mining, pages 112–119. IEEE, 2010.

[MMG+07] Alan Mislove, Massimiliano Marcon, Krishna P Gummadi, Peter Druschel, and
Bobby Bhattacharjee. Measurement and analysis of online social networks. In
Proceedings of the 7th ACM SIGCOMM conference on Internet measurement,
pages 29–42. ACM, 2007.

[MR95] Michael Molloy and Bruce Reed. A critical point for random graphs with a
given degree sequence. Random structures & algorithms, 6(2-3):161–180, 1995.

[New06] Mark EJ Newman. Modularity and community structure in networks. Pro-
ceedings of the national academy of sciences, 103(23):8577–8582, 2006.

[OB14] Mark Ortmann and Ulrik Brandes. Triangle listing algorithms: Back from
the diversion. In Proceedings of the Meeting on Algorithm Engineering &
Expermiments, pages 1–8. Society for Industrial and Applied Mathematics,
2014.

[PDFV05] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. Uncovering the
overlapping community structure of complex networks in nature and society.
nature, 435(7043):814, 2005.

[Pei15] Tiago P Peixoto. Model selection and hypothesis testing for large-scale network
models with overlapping groups. Physical Review X, 5(1):011033, 2015.

[RAB09] Martin Rosvall, Daniel Axelsson, and Carl T Bergstrom. The map equation.
The European Physical Journal Special Topics, 178(1):13–23, 2009.

[RAK07] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time
algorithm to detect community structures in large-scale networks. Physical
review E, 76(3):036106, 2007.

[RB06] Jörg Reichardt and Stefan Bornholdt. Statistical mechanics of community
detection. Physical Review E, 74(1):016110, 2006.

[RB08] Martin Rosvall and Carl T Bergstrom. Maps of random walks on complex
networks reveal community structure. Proceedings of the National Academy of
Sciences, 105(4):1118–1123, 2008.

[RG10] Bradley S Rees and Keith B Gallagher. Overlapping community detection
by collective friendship group inference. In 2010 International Conference on
Advances in Social Networks Analysis and Mining, pages 375–379. IEEE, 2010.

[RMH11] Fergal Reid, Aaron McDaid, and Neil Hurley. Partitioning breaks communities.
In 2011 International Conference on Advances in Social Networks Analysis
and Mining, pages 102–109. IEEE, 2011.

[RN10] Peter Ronhovde and Zohar Nussinov. Local resolution-limit-free potts model
for community detection. Physical Review E, 81(4):046114, 2010.

[SH15] Sucheta Soundarajan and John E Hopcroft. Use of local group information to
identify communities in networks. ACM Transactions on Knowledge Discovery
from Data (TKDD), 9(3):21, 2015.

[SSM14] Christian Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. Networkit: An
interactive tool suite for high-performance network analysis. arXiv preprint
arXiv:1403.3005, 2014.

87

Bibliography

[TAD15] Vincent A Traag, Rodrigo Aldecoa, and J-C Delvenne. Detecting communities
using asymptotical surprise. Physical Review E, 92(2):022816, 2015.

[TMP12] Amanda L Traud, Peter J Mucha, and Mason A Porter. Social structure
of facebook networks. Physica A: Statistical Mechanics and its Applications,
391(16):4165–4180, 2012.

[TVDN11] Vincent A Traag, Paul Van Dooren, and Yurii Nesterov. Narrow scope for
resolution-limit-free community detection. Physical Review E, 84(1):016114,
2011.

[TWvE18] Vincent Traag, Ludo Waltman, and Nees Jan van Eck. From Louvain to Leiden:
guaranteeing well-connected communities. arXiv preprint arXiv:1810.08473,
2018.

[WF+94] Stanley Wasserman, Katherine Faust, et al. Social network analysis: Methods
and applications, volume 8. Cambridge university press, 1994.

[XKS13] Jierui Xie, Stephen Kelley, and Boleslaw K Szymanski. Overlapping community
detection in networks: The state-of-the-art and comparative study. Acm
computing surveys (csur), 45(4):43, 2013.

88

	Contents
	1 Introduction
	2 Preliminaries
	3 Related Work
	3.1 Non-overlapping Community Detection
	3.2 Overlapping Community Detection

	4 The Ego-Splitting Framework
	5 Ego-Net Extension
	5.1 Number of Edges
	5.2 Statistical Significance

	6 Connecting Personas
	7 Community Clean-Up
	7.1 Single Community Analysis
	7.2 Merge Communities

	8 Experimental Setup
	8.1 Implementation Details
	8.2 Algorithms
	8.3 Graphs
	8.4 Evaluation Metrics
	8.4.1 Ego-Net Structure
	8.4.2 Ego-Net Clustering
	8.4.3 Cover

	9 Experimental Results
	9.1 Ego-Net Extension
	9.1.1 EdgesScore
	9.1.2 Significance
	9.1.3 Original vs. Extended Ego-Net

	9.2 Local Clustering Algorithm
	9.3 Connecting Personas
	9.4 Global Clustering Algorithm
	9.5 Community Clean-Up
	9.6 Comparison with Other OCD Algorithms

	10 Conclusion
	Bibliography

