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Abstract
The main goal of Transmission Network Expansion Planning (TNEP) is to determine
optimal investments on transmission line additions from the candidate network to
satisfy reliability criteria under future load and generation scenarios. Up to now, most
of the current researches focus on using different methods to find optimal solution
of TNEP problem, however, how to generate the candidate network, where the new
lines can be installed, has also drawn our attentions. Hence, this thesis explores a
new design problem about using railway network to expand the power grid, which is
defined as follows. Given the current power grid and the railway network, we build
connections between both network and find, where and how many new lines along
new connections and railway edges should be added with an object of minimizing
the cost of lines construction under the electrical constraints. In order to build
connections between the power grid and railway network, the algorithm KD-tree
is proposed in our work, which can efficiently find k-nearest neighbors in railway
network for each node in the power grid. For finding an optimal solution of TNEP
problem, we have adopted mathematical models, such as mixed-integer non-linear
model, binary linear model and mixed-integer linear model, which are been discussed
in the most researches. Additionally, we have also proposed a heuristic algorithm
and compared with the mathematical model. The heuristic algorithm performs more
computational efficiency than the mathematical model.

In the end, a simple case study of 8-buses system is used to illustrate the non-linear
and linear mathematical model. Furthermore, the realistic scenarios of German
including the power grid and the railway network is implemented and tested by
using the linear mathematical model and the heuristic algorithm. The non-linear
mathematic model comparing to the linear model is easy to understand, but has lower
computational efficiency and less optimal result. On the other hand, the heuristic
model shows the highest efficiency but the result is way below the ones from linear
mathematic model.

Deutsche Zusammenfassung
Das Hauptziel von TNEP (Transmission Network Expansion Planning) ist die Ermit-
tlung optimaler Investitionen in Übertragungsleitungen aus dem Kandidatennetzwerk,
um die Zuverlässigkeitskriterien unter zukünftigen Last- und Erzeugungsszenarien
zu erfüllen. Bis jetzt konzentrieren sich die meisten aktuellen Forschungen auf die
Verwendung verschiedener Methoden, um eine optimale Lösung des TNEP-Problems
zu finden, jedoch hat es auch unsere Aufmerksamkeit auf sich gezogen, wie das
Kandidatennetzwerk zu erzeugen ist, wo die neuen Linien installiert werden können.
Die vorliegende Arbeit untersucht daher ein neues Designproblem zur Nutzung des
deutschen Schienennetzes zum Aufbau deutschen Stromnetzes. Es ist definiert wie
folgend. Angesichts des derzeitigen Stromnetzes und des Schienennetzes suchen wir
mögliche Verbindungen zwischen beiden Netzen auf und entscheiden, wo und wie
viele neue Leitungen entlang neuer Verbindungen und an der Kante hinzugefügt
werden sollten, um die Kosten für den Bau von Leitungen unter den elektrischen
Randbedingungen zu minimieren. Um Verbindungen zwischen dem Stromnetz und
dem Eisenbahnnetz aufzubauen, wird in unserer Arbeit der Algorithmus KD-Baum
verwendet, die nächste k Nachbarn im Eisenbahnnetz von jedem Knoten im Stromnetz
mit hohe Effizient finden kann. Um eine optimale Lösung des TNEP-Problems zu
finden, haben wir mathematische Modelle, wie gemischt-ganzzahliges nicht-lineares
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Modell, binäres lineares Modell und gemischt-ganzzahliges lineares Modell, die in
den meisten Untersuchungen diskutiert wurden, übernommen. Zusätzlich haben wir
einen heuristischen Algorithmus vorgeschlagen und mit dem mathematischen Modell
verglichen. Der heuristische Algorithmus führt eine höhere Recheneffizienz als das
mathematische Modell aus.

Am Ende wird eine einfache Fallstudie mit 8-Busse Systems zur Veranschaulichung
des nichtlinearen und linearen mathematischen Modells verwendet. Darüber hinaus
werden die realistischen Szenarien von Deutsch einschließlich des Stromnetzes und
des Eisenbahnnetzes implementiert und getestet, indem das lineare mathematische
Modell und der heuristische Algorithmus verwendet werden.

Das nichtlineare mathematische Modell im Vergleich zum linearen Modell ist leicht
zu verstehen, hat jedoch eine geringere Recheneffizienz und ein weniger optimales
Ergebnis. Auf der anderen Seite zeigt das heuristische Modell die höchste Effizienz,
aber das Ergebnis liegt weit unter denen aus dem linearen mathematischen Modell.
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1. Introduction

In recent years due to the high power demand growth, optimal network expansion has
become one of the hottest topics. Many studies have applied a famous optimization problem
to expand the existing power system to meet the future energy delivery requirements,
which is called Transmission Network Expansion Planning (TNEP). The TNEP is, how
to minimize the investment cost while satisfying the constraints, such as the limits of
the generator output power, the security limits and so on. TNEP faces many challenges
of abstracting from the physical constraints, which is discussed in [HHK13a]. However,
most TNEP studies consider only perfect the objective and constraints to improve the
system’s reliability and maximize the benefit. They approximate the transmission system
on the existed power grid or abstract extended lines between the distributed generation
or load buses. For these cases the environmental impact of adding new lines in power
system is difficult to avoid and estimate. In this paper, we adopt the railway network
when new lines are installed for expand the power grid. Because when the railway network
were planned, the impact of disturbing the residents has been taken into consideration.
Obviously, installing new lines in power system, which have the same paths as the railway
network, makes more sense and reasonable. In other words the application of the railway
networks in area power grid can be a attractive and similar topic on National economic
infrastructure, which has the similar function as they both both spread all around the
country and make the national power and economy healthy works, respectively.

In this thesis, the major work is adopt the widely-used DC power flow model to design the
transmission system, which contains German railway network, German power network and
connections between both networks, with mixed-integer linear programing(MILP). Our
work starts with a mix-integer non-linear programming (MINLP) on the properly handled
power system. Since the MINLP cannot provide an appealing tradeoff between solution
quality and computational efficiency, linearizing the non-linear model to a linear model
is another important part of this work, which can also support to build multiple lines to
transfer power along railway tracks. We also develop the heuristic algorithm for installing
new lines in the candidate networks to compare with the mathematical programming. In
the end, test cases of 8-buses system and the German realistic networks are involved to
evaluate the computational experiment.

In the first part of this work, the concepts of the involved networks are introduced. Besides
concepts, symbols and definitions through all the work could also been found there. In
chapter 4 we discuss how to extract the German railway network and German power grid
from OpenStreetMap and build connections between both networks, where the designed

1



1. Introduction

mathematical model (see in chapter 5) will be implemented and evaluated. In chapter 5
a mix-integer non-linear model is proposed in the DC system, furthermore, this MINLP
model is linearized to a binary linear model, which cannot support to install multiple lines
along one candidate path. In this way, the imperfection of this linear model is fixed in the
end of this chapter by involving the multiple parallel line model. In chapter 6 the heuristic
algorithm is proposed to selecting candidate edge to expand the power grid .In chapter 7
of 8-buses system and the German realistic networks are studied.
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2. Preliminaries

In this chapter the basic concepts and definitions about our work are given. In Section 2.1
the basic mathematical formulas and definitions are provided, additionally the common
scientific knowledge, which is adopted in our work, is described in details. In Section 2.2
we will introduce a number of basic graph theory terms and concepts. We talk about the
fundamental knowledge of electrical definitions and properties in Section 2.3, then they
are used to describe TNEP. Section 2.4 gives the common definitions of mathematical
optimisation programming. In the end of this chapter we present the tools, that are used
to analyze and devise solutions of our models.

2.1 Basic Concepts
In this section we give the definition and calculation formulas of the geographical distance
between two points and the nearest neighbor problem in geographic coordinate system.

2.1.1 Geographical Distance

geographical distance is the distance measured along the surface of the earth. Given
two vertices v(lat1, lon1) and w(lat2, lon2) in geographic coordinate system, we use the
following specific formula to calculate the great-circle distance Dvw between the two points
v and w, which is the shortest distance over the earth’s surface. R is the radius of the
earth, which is the approximate distance from earth’s center to its surface, normally we
set the it by 6373km. The computation of the geographical distance Dvw is expressed as
follow:

Dvw = R · c (2.1)
dlon = lon2 − lon1 (2.2)
dlat = lat2 − lat1 (2.3)

a = (sin(dlat2 ))2 + cos(lat1) · cos(lat2) · (sin(dlon2 ))2 (2.4)

c = 2 · atan2(
√
a,
√

1− a) (2.5)
(2.6)

3



2. Preliminaries

2.1.2 The nearest Neighbour

Through this work, we will concern about the nearest neighbour problem in geographic
coordinate system, in order to build the necessary data structure, which is described in
Chapter 4. The Nearest Neighbor is: Given a collection of search points V and a query
point w in geographic coordinate system, find the search point v with v ∈ V that is closest
to the query point, where Dvw ≤ Dyw,∀y ∈ V .

2.2 Graph Theory
A graph G can be defined as a pair (V,E) [Bal12], where V is a set of vertices, and E is
a set of edges between the vertices E = {(u, v)|u, v ∈ V }. If vertex u has an adjacency
relation with vertex v by one edge e = (u, v), where u, v ∈ V and (u, v) ∈ E, then vertex
v is a neighbour of vertex u. The degree of a vertex u in a graph is the number of edges
incident to the vertex u, we use deg(u) to denote the degree of a vertex v. If graph G is
directed, E is a set of ordinary pairs of vertices, called directed edges. For each directed
edge ~e = (u, v) in graph G, the vertex u is called source of edge e, the vertex v is called
target of edge e. In the case of the directed graph, for vertex u we distinguish between
in-degree deg−(u), which is the number of head ends adjacent to vertex u, and out-degree
deg+(u), which is the number of tail ends adjacent to vertex u. Either in undirected graphs
or directed graphs, the number of vertices are denoted by |V | and the number of edges
are denoted by |E|. Note that, if we do not mentioned a graph is directed, then the graph
must be undirected.

Figure 2.1: Example of a undirected graph G1 and a directed graph G2, for the undirected
graph G1 = (V1, E1), where V1 = {a, b, c} and E1 = {(a, b), (b, c), (a, c)}, deg(a),
deg(b) and deg(c) are 2, |V1| = 3, |E1| = 3. For the directed graphG2 = (V2, E2),
where V2 = {a, b, c} and E2 = {(a, b), (b, a), (b, c), (c, b), (a, c), (c, a)}, deg+(a),
deg−(a), deg+(b), deg−(b), deg+(c) and deg−(c) are 2, |V2| = 3, |E2| = 6

In an undirected graph G = (V,E), two vertices u and v are called connected if G contains
a path from u to v, where u, v ∈ V . Otherwise, they are called disconnected. If there
is a path between every pair of vertices in G, then the graph G is connected. In other
words, in a connected graph, the vertices must be reachable. A connected component of
an undirected graph is a maximal set of nodes such that each pair of nodes is connected
by a path. Connected components form a partition of the set of graph vertices, meaning
that connected components are non-empty, they are pairwise disjoints, and the union of
connected components forms the set of all vertices.

4



2.3. Electrical Network

Figure 2.2: Example of a disconnected graph G, which consist of three connected com-
ponents, G1 = (V1, E1), G2 = (V2, E2) and G3 = (V3, E3), where V1 =
{a, b, c}, E1 = {(a, b), (b, c), (a, c)}, V2 = {d}, E2 = ∅, V3 = {e, f, g},
E3 = {(e, f), (f, g), (e, g)}.

Lemma 2.1 (Connected Graph). A graph G = (V,E) with |V | vertices and |E| edges, the
number NG of connected components at least must be :

|V | − |E|

Proof. By induction on E, if |E| = 0, then each vertex v ∈ V is a connected component,
so the corollary holds. If |E| > 0, arbitrarily pick an edge(u, v) ∈ G and G′ is the graph
obtained by removing (u, v). Then G′ has at most one component more than G. By
induction hypothesis, G′ has at least v − (e− 1) connected components, so G has at least
|V | − (|E| − 1)− 1 = |V | − |E| connected components.

Corollary 2.2 (Connected Graph). A connected graph G = (V,E) with |V | vertices has
at least |V | − 1 edges.

Proof. According to lemma 2.1. If graph G has less than |V | − 1 edges, then NG >
|V | − (|V | − 1) = 1. In other words, there must be more than 1 connected components in
graph G.

2.3 Electrical Network
Our work are formulated and analysed on the electrical network, which is often used to
model real-world electrical transmission systems. The electrical network is an interconnected
network connected by lines to carry power between nodes (generators and loads) to meet
the demands and supplies of power.

Definition 2.3 (Electrical Network). An electrical network N = (G, b, cap, l, ḡ) is an
undirected graph G = (V,E), susceptance function b : E → R+

0 , capacity function cap :
E → R+

0 , load function l : V → R+
0 and an upper bound of the generated power ḡ : V → R+

0 .

The function cap represents the thermal line limits in electrical network, the function b
represents the suceptance of each line, and here the symbol s is adopted, where sv = gv− lv
potentially, where v ∈ V , g and l are function to represent the generated power and loaded
power, respectively. If sv > 0, then node v is a generator bus, if sv < 0, v is a load bus,
and we call node v transmission bus, when sv = 0. Normally when we build model on the
electrical network, it holds always with

∑
v sv = 0, where v ∈ V . Through our work we

write the function in short as the following rule: capvw for cap(vw), lv for l(v), and ḡv for
ḡ(v).
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Before we model the transmission planning on the electrical networkN = ((V,E), b, cap, l, ḡ),
graph G = (V,E) should be undirected. However, during modelling we will assign the
value of power flow f for each edge e ∈ E with flow function f : E → R+, which need to
fixed the orientation of its edge E. The directed edge ~e = (u, v), where ~e ∈ ~E represents
power flow carried from vertex u to v. We use h(~e) and t(~e) represent the head vertex v
and tail vertex u of the directed edge ~e, respectively.

Definition 2.4 (Kirchhoff’s Current Laws). A modeled electrical network N = ((V,E), b, cap
, l1, ḡ1) with a function f : E → R must always hold power balance in each vertex v ∈ V , in
short, we write fvw for f(vw):

sv +
∑

(u,v)∈ ~E

fuv −
∑

(v,w)∈ ~E

fvw = 0 (2.7)

Definition 2.5 (Kirchhoff’s Voltage Law). The Kirchhoff’s voltage law is defined in an
electrical network N = ((V,E), b, cap, l1, ḡ1) with potential θ : V → R and with a function
f : E → R, in short, we write θv for θ(v) and fvw for f(vw):

fvw − bvw(θv − θw) = 0 (2.8)

Definition 2.6 (Power Flow Function f). Given a electrical network N = ((V,E), b, cap, l1, ḡ1),
if there a function f : E → R, which can satisfy the Kirchhoff’s current laws and the Kirch-
hoff’s voltage law simultaneous. We call this function power flow function.

Note that in the flow function f : E → R+ we need to fixed the orientation of its edge E.
The directed edge ~e = (u, v), where ~e ∈ ~E represents power flow carried from vertex u to v.
We use h(~e) and t(~e) represent the head vertex v and tail vertex u of the directed edge ~e,
respectively.

Figure 2.3: Example of a electrical network, boxes denote generator buses, circles denote
load buses and filled dots denote transmission buses. The weights of edges
represent the power flow, and the arrows display the direction of power flow.

2.3.1 Calculation of Susceptance
For a given electrical network N = ((V,E), b, cap, l, ḡ), the set of suscpetance b is not
directly accessed, which is needed to be computed with the help of the available dataset of
resistance r and reactance x. The follow formulation [EH72] is used through all the project
to calculate the susceptance.

Y = 1
Z

= 1
r + jx

= r

r2 + x2 + j
−x

r2 + x2 (2.9)

b = Im(Y ) = −x
r2 + x2 (2.10)
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Y is the admittance, measured in siemens. Z is the admittance, measured in siemens.
j is the imaginary unit. b is the susceptance, measured in siemens. r is the resistance,
measured in ohms. x is the reactance, measured in ohms.

2.3.2 Per-Unit-System

When we analyze the electrical network in electrical engineering, in order to identify
incorrect data more easily, the per-unit-system [EH72] can be adopted by absorbing large
differences in absolute values into a relatively narrow range. In the per-unit-system voltage,
current, power, and impedance values are normalized with a selected base, as shown in the
computations for all related quantities below (measured by unit pu). At the beginning, we
need assume two independent base: power base and voltage base:

Pbase = 1pu (2.11)
Vbase = 1pu (2.12)

Then, the Ibase, Zbase and Ybase can be derived from power and voltage base.

Ibase = Pbase
Vbase

= 1pu (2.13)

Zbase = Vbase
Ibase

= V 2
base

IbaseVbase
= V 2

base

Pbase
= 1pu (2.14)

Ybase = 1
Zbase

= 1pu (2.15)

For example, given an electrical network N = ((V,E), b, cap, s), there is one line (v, w)
operating at 100kV with a nominal base rating of 200kV . Likewise, the capacity capvw in
the network is 80MW with a nominal base rating of 100MW , where (v, w) ∈ E. So the
line (v, w) has a per-unit voltage quantity of 0.5pu and a per-unit power quantity of 0.8pu.

2.3.3 Cost of Electricity by Source

In our model we consider the operating costs of the generating units as one part of the
objective function. The motivation is that we want to minimize the investment cost of
circuits and the operating costs of the generating units simultaneously. The distinct ways
of generation bus incur different costs, especially with the technology development and
environment impact of different energy source can lead to the operating cost changed
frequently in the future. In this case this can be an attractive topic of TNEP. Because of
the difficulty of environment impact evaluating, we consider only the energy source price,
when we simulate the operating costs of the generating units. There are several ways to
calculate the cost, here we derive the levelized cost of electricity (LCOE) [ene05], which is
an economic assessment of the average total cost to build and operate a power-generating
asset over its lifetime divided by the total energy output of the asset over that lifetime.
The factors are considered in the calculation are capital costs, fuel cost and other margin
cost. The cost is given per kilowatt-hour.

The levelized cost of electricity (LCOE) is given by:

LCOE = sum of costs over lifetime
sum of electrical energy produced over lifetime (2.16)

=
∑n
t=1(It +Mt + Ft)/(1 + r)t∑n

t=1(Et)/(1 + r)t (2.17)

It: investment expenditures in the year t.
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Mt: operations and maintenance expenditures in the year t.

Ft: fuel expenditures in the year t.

Et: electrical energy generated in the year t.

r: discount rate t.

n: expected lifetime of system or power station.

In our work we focus on the cost of electricity in Germany in the year 2018 [sou18]. The
following Table 2.1 shows the price in eurocent per kilowatt, which is computed by above
formula 2.16.

Table 2.1: Cost of electricity by source
source price (Eurocent/kW )

Brown Coal 8.4
Gas 16.8

Geothermal 8.4
Hard Coal 11.6
Multiple 18
Nuclear 8.4

Oil 8.4
Other 8.4

Run of River 10.8
Solar 18

Storage Hydro 8.4
Waste 21.5

Wind Offshore 16.9
Wind Onshore 11.4

2.4 Mathematical Optimization Program
The mathematical optimization program is the selection from the candidate solution set,
in order to find the best solution with regard to some constraints. In other words, it can
be expressed a systematic procedure of choosing input values from an allowed set and
computing the values to maximizing or minimizing a real function. The standard form of a
optimization problem is expressed as follow [Bie09]:

minimize z = f(x)
subject to :

gi(x) ≥ 0, i ∈ {1, . . . ,m},
hi(x) = 0, i ∈ {1, . . . , p},

x ∈W1 ×W2 × ...×Wn, Wi ∈ {R,Z,B}, i ∈ {1, . . . , n},m, p and n ∈ N+

where x is a vector of n decision variables x1, ..., xn, f(x) is the objective function that
is used to evaluate different solutions, and g(x) and h(x) are inequality and equality
constraints on the variable xi. B indicates the set of binary values {0, 1}. Throughout
our work, we will use the sub-class of the optimization program: Mix Integer Non-linear
Programming (MINLP), Binary Mix-Integer Linear Programming (BILP) and Mix-Integer
Linear Programming(MILP). MINLP problems combine the combinatorial difficulty of
optimizing over discrete variable sets with the nonlinear constraints. Compare to MINLP
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problems, if the object function and constraints include the linear functions with discrete
and continuous variable sets, then we can call this optimization program MILP, moreover,
if there are binary variables in the variable set, then it can be named BILP.

2.5 Tools
Throughout our work, we need to solve non-linear problem and linear problem, respectively.
So first the framwork CasAdi[AG18] is adopted in order to solve non-linear program. CasAdi
a symbolic framework for algorithmic differentiation and numeric optimization. It can
generating complete, large and sparse Jacobians and Hessians matrix, and support the inter-
face to access Bonmin(Basic Open-source Nonlinear Mixed Integer programming) [Bon17],
which is open-source project for solving MINLP problems. For solving the MILP and
BILP problems, we use the Gurobi [GO16] Optimizer, which is a state-of-the-art solver for
mathematical programming. For our work, CasAdi version 3.1.0, Bonmin version 1.8 and
Gurobi version 7.0 has been used.
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Up to now, many approaches have been worked out in TNEP area. Most of them focus
on the different aspects of the TNEP, like the view of modeling from the AC model and
DC model, and the performance of the optimization methods. The Comprehensive review
of the work on TNEP can be found in [HHK13a] or [HHK13b], which provide the past
achievements and current stage to find out further ideas in these fields. The AC model is
complete and practical, but it leads to complex and need an efficient optimization technique
to find solution. In paper [YH89] the author propose the AC optimization model, which
includes security constraints on bus voltage magnitudes, swing angles and the AC load
flow solution. Compare with the AC model, the DC model contains simplifications, so
it is simple to understand and modeling, but it can be hard to implement the result in
practice. In paper [RBH14] the author confirms the existence of the gap between the
optimal solution of TNEP produced by the DC power flow approximation and the AC
power flow heuristics, and proposes how to bridge this gap with the LPAC power flow
model. Even the complexity of TNEP is NP-hard due to the subproblem Steiner trees,
which is discussed and proved in [MPS10], the optimization technique are still rapidly
developed to find optimal solution of TNEP. The methods can be concluded into two
methods: mathematical and Meta- heuristic optimization approaches. The main works on
mathematical optimization are generalized in two area: 1. How to convert power system
equations into optimization programming model, which is much complicate and difficult,
especially in practice. 2. Because of non-efficiency calculation of non-linear programming,
lots of research works have been carried out to linearized the non-linear model.

Compared with the mathematical optimization, it is easier to use and simplify by using
the heuristic optimization, but the optimal solution is not stable and will possible fall into
local optimal. Moreover, the cost of simulation time is often high. So some other published
works try to combine the benefits of both mathematical and heuristic approaches, which is
called Meta-heuristic. In this chapter the related works concerning TNEP are listed.

3.1 Mathematical Optimisation Methods
For the reason that the networks in TNEP are various types and with different levels of
complexity, which may leads to a hight computational complexity, generally the simplified
versions by linearization and relaxations of TNEP are proposed in research works. Four
different mathematical formulations used in transmission expansion studies-transportation
models, hybrid models, DC power flow models, and disjunctive models are summerized and
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compared in [RMGH02], which are also adopted and reformulated in our work. Moreover,
the general description of DC system and the well known Garver’s six-bus network, which
is used to illustrate the proposed methods, can be found in [RMGH02].

Villasana [VGS85] conceptualize the transmission networks and proposed how the TNEP
is solved in simple, applicable way to distribution circuits. However, The downside of this
work is that, it consider TNEP in a local engineering preliminary planning level.

In general, TNEP is large-scale, mixed-integer, nonlinear, and nonconvex. Natalia Al-
guacil [AMC03] derive a mixed-integer linear formulation that simplify the problem by
linearizing and relaxing it into a MILP.

During the linearization of the NLP constraints, the big-M-notation is widely adopted
for TNEP, a survey to compute the minimal values for the big-M-notation is included in
[MPS10].

Silvio Binato [BPG01] and Shengjun Huang [HD17] have described using the Benders
decomposition approach to solve TNEP problems, which ensures finding the optimal
solution by using additional constraints, iteratively evaluated. Shengjun Huang [HD17]
also include dynamic searching and parallel implementation.

3.2 Meta-heuristic Optimisation Approaches
The classical heuristic approach are included in [Gar85], it first uses the linear programming
for network analysis, in order to find where the capacity shortages exist, then present the
algorithm to determine, where the new lines should be add to relieve the shortages. The
algorithm described in [Gar85] has a well computational speed and simplicity. However,
the disadvantage in this paper is that no mathematical link for the electrical laws in the
linear model.

The TNEP problem is considered a very complex problem due to its combinatorial and
nonconvex features. Different from using the mathematical optimization methods, some
meta-heuristic methods have been proposed to tackle it. In the paper [RGM95] simulated
annealing is proposed as a means of solving large scale problems in TNEP. It also gives the
experiment for the comparison in a larger example system between the annealing method
and a mathematical decomposition based optimization technique.

In paper [Cad09] the TNEP is included with two objectives: the transmission reliability
efficiency and the cost of installing transmission lines, and this multi-objective optimization
is solved by three different genetic algorithm.

In paper [LSRH09] two optimization tools based on artificial immune systems and differential
evolution to solve the multi-stage TEP problem are presented. Silvio Binato has proposed
using the greedy randomized adaptive search procedure in [SBdA01], which a meta-
heuristic algorithm commonly applied to combinatorial optimization problems, to solve the
transmission network expansion problem.

3.3 Summary
From the above studies, it can be seen that they mainly focus on how to install new lines in
the existing paths and find the global optimal solution under reducing the computing time
of large scale electrical network. Our work will be unique to provide the railway network as
the candidate networks for expanding the existing electrical network and apply the former
research to the combined network. This provides a unique alternative to expand the power
networks in the face of the growing energy demand.
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In the recent years most research works focus on optimal planning of power transmission,
which mainly discussed how to build lines at the known candidate edges. They did not
involved the approach about the generating process of candidate routes, along which we
can build lines to transfer power. In this chapter we want to represent the process to
extract and generate the datasets from the real word, which include the existing power
grid N1 = ((V1, E1), b1, cap1, s1), the railway network N2 = ((V2, E2), b2, cap2, s2) and the
connection network N3 = ((V,E3), b3, cap3, s3), where V = V1 ∪ V2. The existing power
grid N1 support the job for transmitting the power in order to meet the current demand
of energy. The railway network N2 and connection network N3 are adopted to be the
candidate network, which can be used to install new lines to transmit the power, when
the current transmission network N1 cannot support the future transmission task. Our
intuition is that we can take advantage of the similarity between the power grid and railway
network, such as they both are designed to resource allocation, moreover, they extended in
all directions. However, there are no connections between railway network and power grid,
building connections between both networks is necessary, we call these connections the
connection network N3. Note that in this chapter we consider mainly about the topology
graphs of the before mentioned three networks: G1 = (V1, E1), G2 = (V2, E2), G3 = (V,E3).
The electrical parameters of the networks will be discussed later, especially the network
N2 and N3, which cannot be directly accessed from real world, will be assigned by default
value. In this chapter we describe how these networks for Germany are obtained.

First, the datasets in our work builds mainly on railway network and power grid, which
extracted from OpenStreetMap(OSM), so the first part of this chapter OSM is involved, see
Section 4.1. Then Section 4.2 and Section 4.3 describe the approaches to export the power
grid and the railway network respectively. Different from the railway network, which is
generated by our work and the power grid can be obtained from project SciGRID [Med18],
which is available and can be downloaded from the SciGRID project webpage. After
extraction from OSM, the topology graphs G1, G2 and the related data (e.g.the length of
edge, electrical information and geo-location) of the power grid and the railway network
are available, we need ensure the railway network is connected, in order to transfer power
between any two buses in power grid, which is discussed in Section 4.3.2. Now the job is
to generate the connection graph G3 between graph G1 and G2, see in Section 4.4, which
is implement by KD-tree algorithm. However, to avoid unnecessary computing on our
connected network, we need to remove the vertices with degree two in the candidate graph
G2 and G3, see Section 4.4.4.
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4.1 Data Source: OpenStreetMap (OSM)
The work discussed in this chapter base on the free data, which is available from the
collaborative project OpenStreetMap (OSM)[Wik14], which creates and distributes free
geographic data for the world. The data of the railway network and power grid can be
downloaded in an XML format, which follows a certain schema definition. It has three data
primitives: nodes, ways and relations. The node present the vertex in the graph, the way,
which contains an ordered collection of nodes, shows the edge in the graph. The relations
consists of a block of ways to describe the area of special meaning, such as the building,
the park and so on. For each primitive it has special tag to describe it’s meaning and
attribute. For example, the geographical locations of the nodes are defined by tag lon and
lat, which means latitude and longitude to sepcify the location in geographical system. For
the dataset of the work we focus on the relevant for the power grid and railway network,
which are filtered separately by using the "power" tag and the "railway" tag [Wik17].

Figure 4.1: A church presented in OSM, which consists of one outer and one inner ring.
((OSM-ID=1596371))

In Fig. 4.1 there is a church, which is random extracted from the OSM. It is represented as
a multipolygon relation, which is the combination of the way ("114397140") in the role outer
(the outline) and the way ("114397134") in the role inner (the holes), see in Fig. 4.2. The
endpoints of the both ways are joined, form a closed polygon. The geographical information
of the church can be accessed from the tag in nodes.
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Figure 4.2: Display the church in OSM. (OSM-ID=1596371)

4.2 Reduced German Power Grid (SciGRID)
In this section we mainly explain how the power grid is generated by SciGRID project [Med18],
which is a free, open source project and also builds on OSM data as the extraction of
railway network. Since the current researches on the transmission network are integrated
in some undisclosed internal energy system model, it is hard for people to discuss the
underlying approaches, procedures, and results of the structure, simplifications, and the
abstraction involved in the transmission network. In such a case, SciGRID aims at building
an open source model of the electrical transmission network in Europe, which can provides
the reliable and stable dataset of transmission network.

There are four steps in the SciGRID model: OSM data download, power data filtering, data
export to a database, and data abstraction. As the approach to store the railway network,
the topology structure of the power grid and the electrical parameters are exported as
.csvdata files. In this section we explain the process to generate power grid by above
mentioned four steps. Note that, this process are described by using German power grid.

4.2.1 OSM Data Download and Filtering

The OSM data in format PBF (Protocolbuffer Binary Format). PBF is primarily intended
as an alternative to the XML format, which was designed to support future extensibility
and flexibility and can be download from the website [osm18], as described in SciGRID,
the status of the data is November 2015. After downloading the PBF file, the OSM data
can be extracted and filtered by using the java tool osmosis [Wik18], which is a command
line java application for dealing with OSM data, such as extracting data inside a bounding
box and filtering the data with respect to the specific value of the tag. In SciGRID project,
it filter the nodes, ways, and relations in OSM data, which have the "power" tag. Note
that, only relations where the voltage tag has a value of 220kV and higher are considered,
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and the relations has the tags "power=construction", "power=planned" or "power=fixme"
or has no power tag are excluded from SciGRID. Since we focus only on German power
grid, this can be done by setting the osmosis option –bounding box, which need to be
indicated the the latitudes of the top, bottom bounding box, and the longitudes of the left
and right edges of the bounding box, respectively. The German power grid is extracted
in SciGRID project by following osmosis command: "–bounding-box top=56 bottom=46
left=5 right=16". Fig 4.3 and Fig 4.4 represent a nuclear generator in OSM and how

Figure 4.3: A nuclearplant in OSM (OSM-ID=94701596)

Figure 4.4: The OSM file for a nuclearplant in OSM (OSM-ID=94701596)

it is described in OSM file, respectively. This way is filtered, when we find the tag <tag
k="power" v="generator"/>, which contains keyword "power". with the OSM file, the
useful information of each node, way and relation can be accessed by iterate all its’ tag.
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Here we can also know this building can output 1468MW power and the power type is
nuclear according to the key values "source" and "output".

4.2.2 Export to the Dtabase

After filtering the OSM data, the SciGRID project convert the OSM data to PostGIS-
enable PostgreSQL database, in order to analyse the power data. The PostgreSQL is an
object-relational database management system. PostGIS is a spatial database extender for
PostgreSQL database, it adds support for geographic objects allowing location queries to be
run in PostgreSQL. All these works are done by osm2pgsql, which is a command-line based
program. osm2pgsql can define the settings of how the OSM data are store in database by
providing a .style file, such as which columns in database are created for the tables of the
power data, and which information need to be stored and which need to be ignore.

4.2.3 Abstraction

The SciGRID project is based on the "power" relations, which has a key "route" and value
"power". Normally these relations consist of one or more substations and one or more
transmission lines. Substations are defined in OSM by the key "power" and the values
"substation", "sub_station", "station", "plant", "generator". Transmission lines are on the
other side defined by the key "power" and the values "line" and "cable". Here is the table 4.2,
which describe number of relations with key/value pair route/power in the dataset of
Germany in OSM (Status: 09.11.2015).

Table 4.1: Number of relations with key/value pair route/power in the dataset of Germany
in OSM (Status: 09.11.2015). The total number of relations is subdivided
into sets of relations with different numbers of substations or categorized as
discarded [Med18]

.

Description Number

total number of "power" relations in Germany 826
relations to be fixed / being planned / being under construction 54

relations with 0 substation 2
relations with 1 substation 11
relations with 2 substations 690
relations with 3 substations 65
relations with 4 substations 4

The SciGRID project consider the following relations: 1. Relation with only two substations
and one/several transmission lines linking them, example see in Fig 4.5. 2 Relations with
three substations, example see in Fig 4.6. 3 Relations with three substations and a T-
junction, example see in Fig 4.7. The reason to just select these kinds of relations is,
that the calculating of the transmission lines length is more easy, when we can define
which transmission lines are connected to which substation in above mentioned relations.
Relations with zero or one substation are also not considered in SciGRID as they constitute
incomplete electrical circuits.

In the abstraction of SciGRID the vertices represents the geographical center positions of
the substations and the edges represents the transmission lines without considering the
path in real word. In other words, we can get the topology of the electrical transmission
network, which are store in SQL by using two tables: the vertices table, which contains the
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Figure 4.5: Example of a relation constituted of two substations. The two red circles
are the two substations contained in the relation (OSM-ID=1637161) and the
black line are the transmission lines (this relation contains four transmission
lines)[Med18].

Figure 4.6: Example of a relation (OSM-ID=339244) containing three substations (circles),
a T-junction and seven transmission lines. Figure obtained using overpass-
turbo.eu, credits: c©OpenStreetMap contributors[Med18].

vertices of the transmission network and the links(edges) table, which contains the links of
the transmission network. Furthermore, in the links table the electrical properties of the
transmission lines: resistance r, reactance x, capacitance c, and maximum current thermal
limit f̄ . are calculated and insert to the links table for further research. In SciGRID, the
electrical properties are calculated in per km units as follows[Med18]:

rohmKm = Cr/(
wires

wirestypical
)/(cables3 ) (4.1)

xohmKm = Cx/(
wires

wirestypical
)/(cables3 ) (4.2)

cnFKm = Cc/(
wires

wirestypical
)/(cables3 ) (4.3)

f̄A = CI/(
wires

wirestypical
)/(cables3 ) (4.4)

where, wirestypical is the number of wires in a transmission cable. wirestypical as is typically
2 for transmission lines of 220kV and 4 for transmission lines of 380kV. The coefficients
used in Eq4.1-4.4 are listed in table 3 from reference [sci12].
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4.3. Generation of the German Railway Network

Figure 4.7: T-connection from relation (OSM-ID=339244). The T-node represented by the
blue filled circle, is the node at which the transmission line at the top part
of the figure branch into two parts. Figure obtained using overpass-turbo.eu,
credits: c©OpenStreetMap contributors[Med18].

Table 4.2: Electrical properties coefficients from reference[sci12]

.

Voltage level Cr (ohm/km) Cx (ohm/km) Cc (nF/km) CI (A)

380kV 0.025 0.25 0.0137 2.6
220kV 0.080 0.32 0.0115 1.3

4.2.4 Conclusion

After abstraction, the SciGRID project output all the dataset in the .csvdata file. And
it also provide the script to visualize the abstracted power grid. An example is shown in
Fig 4.8. The SciGRID user can also find the power grid for any other region by using the
previous steps.

4.3 Generation of the German Railway Network
Fortunately the German OSM data, which include the railway network, can also be
download online in format PBF. With the help of software JOSM the data in format PBF
can be transformed to XML. Then our job is to filter relative dataset (nodes, ways and
geo-location) and generate the extracted railway network.

4.3.1 Filtering the Railway Network

In OSM the railway tag is used to tag the ways for many kinds of railways including
light rail, mainline railways, metros, monorails and Trams. Besides the actual rails, it
is also used for tagging railway infrastructure. It is necessary to pick out which railway
tag can be used to filter the railway network, since the track paths are represented as the
candidate edges, along which the lines may be built. We want, that the track paths are
picked reasonable, such as it cannot be infrastructure. So the railway tracks should be
picked under the consideration of two aspects: the environmental impact and the economic
benefit. First, the citizens do not want, that in their living environment exists lots of power
lines, which are difficult to maintain and easy to cause dangers from storms and trees.
These are what kill most people in electrocution lawsuits. These are the reasons that most
power lines fall and kill an unsuspecting homeowner, child or utility worker. Depending on
these reasons we want to use the track paths, which is away from the cities. Second, the
tracks under
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Figure 4.8: Example of the plotted SciGRID abstracted model network using the plot
function available in SciGRID.py, status 09.11.2015. Credits: c©OpenStreetMap
contributors[Med18].
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construction or abandoned should not consider, while planning on the indeterminate paths
would involved unnecessary analyze, such as why these paths are abandoned. So the criteria
for picking tag are: 1. away from city, 2. already existed. All the tag value about railway
network in OSM are shown in Table 4.3. Here we adopt tag "rail" to filter the railway
network.

Table 4.3: Value of Tag "railway"
Value Comment

abandoned abandoned tracks and infrastucture removed.
construction railway under construction.

disused no longer used
funicular cable driven inclined railways.
lightrail a higher-standard tram system
miniature miniature railways
monorail a railway with only a single rail.

narrowgauge Narrow-gauge passenger.
preserved a historic railway.

rail the standard railway for the country or state.
subway A city passenger railway.
tram One or two carriage rail vehicles.

During filtering the ways (edges) of railway graph, the way relations always consists of lots
of nodes (vertices) to simulate the curve in real word. However, in our work we consider
mainly about the topology structure of railway network. So for each way relations we
simply remove all nodes between the header node and the tail node, meanwhile we sum
the real length of the way. Example see Fig. 4.9. Note that in practice computation
lenvw = Dvw v, w ∈ {a, b, c, d} (see Section 2.1.1), here we simply assume the length
by default setting without consideration of latitude and longitude, which can be easy to
understand.

Figure 4.9: Contraction nodes during filtering way
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Table 4.4: The number of edge and vertex of German railway graph
Edge Vertex

Before removing 307188 404044
After removing 53224 48263

Table 4.4 display the number of edge and vertex before and after above mentioned con-
traction. The extracted German railway graph G2 by using above mentioned approach is
shown in Fig. 4.10.

Figure 4.10: The German railway network by contract internal nodes after extracting from
OSM

4.3.2 Find the maximum connected Sub-graph in Railway Graph

However, we can find the number of vertex is larger than the number of edges, in other
words, according to lemma 2.2 the extracted railway network is disconnected. Our purpose
is, that using railway network transfer power. Consider such extreme case: after building
connections between power grid and railway network, power generators and loads are
connected with two sub-graph of railway network, which are disconnected with each other.
In other words, if we increase the demand of power load, there exists no path in railway
network to transfer power from generator to load. This may live up to our intentions.
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4.3. Generation of the German Railway Network

Figure 4.11: Example of the extreme case for the disconnected problem in the railway
graph. Boxes denote generator buses (vertices in the power grid), circles denote
load buses (vertices in the power grid) and filled dots denote transmission
buses (vertices in the railway network). The whole graph consists of the
power graph G1 = {{v1, v2, v3, v4, v5}, {(v1, v2), (v1, v3), (v4, v5)}}, the railway
graph G2 = {{v6, v7, v8, v9}, {(v6, v7), (v8, v9)}} and the connection graph
G3 = {{v2, v3, v4, v5, v6, v7, v8, v9}, {(v3, v6), (v2, v7), (v4, v8), (v5, v9)}}.

In figure 4.11, we use the example to explain the disconnected problem in railway graph.
For the existed power graph G2, since the railway graph G2 is disconnected, it cannot be
used to transmit power from the generator buses v1, v2 and v3 to load buses.

To avoid the above case, we need to find the maximum connected sub-graph in railway
graph, which is connected meanwhile has largest numbers of vertices, since the network,
which has more vertices and edges, can provide more candidate paths to build circuits.
To discover the maximal connected sub-graph, we can use a traversal algorithm, either
depth-first or breadth-first. First, we need to discover all connected sub-graph, then select
one which has most vertices. To discover all connected sub-graph, we should set all vertices
in railway network unvisited at the beginning. Then we do a traversal starting from a
random vertex v, v ∈ V2, which means we will visit all the vertices that can be reached from
v. If there are other connected sub-graph, their vertices must still be unvisited after this
traversal. We just need to start another traversal run from one of those unvisited vertices
to find another connected sub-graph. When all the vertices in graph G2 are visited, we
will have discovered all the connected sub-graphs. During each traversal we can set a flag
to record the number of vertices in the connected sub-graph to help us find the maximal
connected sub-graph. In the algorithm 4.1 we use breadth-first search to do the traversal.
The algorithm is given in pseudo-code, and the maximal connected sub-graph of German
railway network is shown in Fig. 4.12. The table 4.5 display the number of vertex and edge
in railway graph G2 when it keeps the maximum connected sub-graph and removing other
unnecessary sub-graphs.

Table 4.5: The number of edge and vertex of the maximum connected sub-graph in German
railway graph

Edge Vertex

30457 28839

23



4. Datasets Preparing

Figure 4.12: The maximal connected Sub-graph of the German railway network

4.4 Building Connections
As mentioned in the beginning, the purpose to build connections G3 between the power
graph G1 and railway graph G2 is to make the whole graph G = G1 ∪G2 ∪G3 connected,
and the disconnected problem in transmission network we have discussed when we extract
the railway graph. However, the paths to built connections is difficult to extract from real
world, in other words, these paths are not explicit existed as power grid and railway graph.
So the connections need to be create under consumptions: 1. In order to avoid unnecessary
cost, if we want to connect one vertex v, v ∈ V1 to the railway network G2, the most simply
way is to find the nearest vertex w,w ∈ V2, since the cost of building a new line along edge
(v, w) depends largely on the length of the edge (v, w). In our work we do not consider
about building the model to find the cost of installing a new line or building connections
between the power grid and railway network, but the cost on installing a new line along
connections should be larger than the cost on installing a new line along railway network,
since railway network is already existed. 2. We have two choice to building connection,
one is that for each vertex in power graph find the nearest neighbour in railway graph,
another one is that for each vertex in railway graph find the nearest neighbour in power
graph. Since the distribution of the vertex in power graph is separate, if we select second,
it can create the connections, which is longer than the connections by the first choice. Our
intuition is to keep the connection as short as possible, then the first choice seems more
reasonable to generate connections between power graph and railway graph. 3. To keep the
diversity of the selection in candidate path to transmit power by using railway network, only
considering the relation of the nearest neighbour seems not enough, so we propose for each
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Algorithm 4.1: Connected Subgraph
Input: Graph G = (V,E, )
Data: Queue Q
Output: Flag flag(i), the number of vertices in the ith connected subgraph
// Initialization

1 forall v ∈ V do
2 visited(v) = false // Mark all vertices as unvisited

// Main loop
3 i = 0

// ith connected subgraph
4 forall v ∈ V do

// If v is not yet visited, it’s the start of a newly
// discovered connected component containing v

5 if visited(v) then
// traversal of vertex v

6 flag(i)++
7 Q.clearqueue()
8 Q.enqueue(v)
9 visited(v)=true

10 while Q is not empty do
11 w ← Q.dequeue()
12 forall (w, u) ∈ E do
13 if visited(u) then
14 visited(u) = true
15 Q.enqueue(u)
16 flag(i)++

17 i+ +

vertex v, v ∈ V1 in power graph find the k nearest neighbours w1, w2...wk, w1, w2...w3 ⊂ V2
in railway graph.

4.4.1 K nearest Neighbours
K Nearest Neighbours query is given a query vertex and the positive integer K, from the
dataset to find the K closest to the query vertex, when K = 1, it becomes the nearest
neighbour query. In the general process to find K nearest neighbors (KNN) of one vertex
v, v ∈ V1, first this distances from v to all vertices in railway graph G2 are to be calculated
and then only nearest k-points can be discovered for voting. This approach is also known
as brute-force approach. When the volume of data is huge, in hundreds or thousands, this
repeated distance calculations can be very tedious and time consuming. To fasten up this
process and so as to avoid measuring distances from all the points in the dataset, some
prepossessing is necessary. This preprocessing helps to search vertices which are likely to
be close to it. There are several indexing data structures can achieve this goal, such as
vantage point tree, ball tree , k dimensional tree (kd-tree), through this work the KNN
search is mainly based on kd-tree.

4.4.2 K dimensional Tree (kd-tree)
A kd-tree is a space-partitioning data structure for storing a finite set of vertices from
a k dimensional space. A kd-tree is a binary tree. Each node in kd-tree represents a
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hyperplane, which perpendicular to the axis of the current partition dimension, and divided
the dimension space into two parts; one part in its left sub-tree, another part in its right
sub-tree. In other words, when the current node division dimension is a, where a ≤ k,
the coordinate value in a dimension of all vertices in the left sub-tree are less than all
vertices in the right sub-tree, then the process of building the tree iterates through the
dimensions to partition the sub-tree and stops when a node has less than one. During the
partitioning through the different dimensions for the different levels of the tree, normally
we use the median point for the partition, in order to make the tree balance. In our work,
since the nodes in the networks are located by the latitude and the longitude, the following
explanation are based on 2d-tree. An example of two dimensional tree is shown in fig 4.13.
It is showed that if the median of n elements were found in O(n) time, a depth-balanced
kd-tree can be built in O(nlogn) time. We use the above mentioned process to construct
the kd-tree for the set of vertices V2 from the German railway graph.

Figure 4.13: An example for two dimensional tree, here it is assumed, that the vertices
have only two dimension: the horizontal and the vertical, the initial partition
dimension is the horizontal.

4.4.3 Find k nearest Neighbors

In this section the process to find the k nearest neighbors v ∈ V2 of each given vertex w,
w ∈ V1, is represented. We are interested to get k nearest neighbors, where k can be any
value. However, we will first see how to get the closest one point. It can then be easily
extended to understand how to get more.

Suppose here is the constructed kd-tree T for the set of vertices V2 from the German
railway graph. For a given vertex w, w ∈ V1, the process of searching the closest neighbor
is given in flow:

Step 1: The query start from the root node of T , according to the comparison of the
query vertex and each node in T keep going down, until reaching the leaf node of T .
The comparison between w and the node in T refers to the comparison of the value
corresponding to the k dimension (k = 0, comparing the value of latitude, k = 1,
comparing the value of longitude). If the value of vertex w small than the compared
node corresponding to the k dimension, then the left subtree is visited, otherwise
visit the right subtree. When the leaf node l is reached, the geo-distance D(w, l)
between w and l is calculated, and record l as the current nearest neighbor, D(w, l)
as current minimum geo-distance.
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4.4. Building Connections

Figure 4.14: Building connections between buses and railway vertices, which are built
between the power grid and the railway network. Here we set k = 3. The
vertex in the power grid is drawn of the color blue, the vertex in the railway
network is drawn of the color yellow and the connection is drawn of the color
red.

Step 2: Backtracking the tree, backtracking is performed to find nearest neighbor of w.
That is, if there is a vertex in the tree T closer to w in the unvisited branch, the
distance between them is less than the D(w, l). If the distance between the unvisited
branch of the parent node of the current visited node and w is less than D(w, l), we
think that there are vertex much closer to w in the unvisited branch, then visit this
branch, the same query process as Step.1. If find much closer vertex, then update the
current nearest neighbor vertex l, and updates the distance D(w, l). If the distance
between the unvisited branch of the parent node of the current visited node and w
is greater than D(w, l)„ it indicates that there is no vertex much closer to w in the
branch. The judging process of the backtracking is from the bottom up, until it goes
back to the root node.

Instead of keeping a single nearest vertex we could maintain a priority queue (max heap)
to keep k nearest vertices. The first k vertices would be enqueued anyway. Onwards, a new
point, if better, would replace the worst of the nearest neighbors found so far. That way
we can maintain the k nearest neighbor easily.
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Figure 4.15: Remove the railway vertices with degree two in the candidate network

4.4.4 Two Degree Vertices Contraction

After building connections N3 between the power graph N1 and the railway graph N2,
to simplify the subsequent calculation, we contract the vertex v, v ∈ V2, which degree is
two. Because during the TNEP for the vertices in the railway network, they work as the
transmission bus, which generate and load none power. If the degree of the railway vertex
is two, it is not necessary to set a bus to shunt the power flow.

The Fig. 4.15 display the railway network and the connection network after contracting
the railway vertices with degree two. Here even we remove the two degree vertices in the
candidate network and the new neighborhood relations generate for the rest vertices, the
Geo-distance between two vertex in the contracted candidate network keeps original.

4.4.5 Conclusion

Here all the dataset of the railway network and the connection network are also output
in the .csvdata file, which store the topology of the candidate network and the weight of
edges. The missing electrical parameter of the candidate network are assigned default value
in the test case.

28



5. Mathematical Modeling

The transmission network expansion planning(TNEP) optimization is to determine optimal
investments on transmission line additions from the candidate network to satisfy reliability
criteria under future load and generation scenarios. In the last decades many mathematical
programming approaches have been developed and well summarized. In this chapter we
present the description of three different optimization models, which are frequently discussed
for TNEP [RMGH02]. The first model is a non-linear mixed-integer model. However, this
model has an innegligible problem, that non-linear model cannot be efficiently solved and
find possible solution on large-scale problem in practice, which means a further simplification
is needed. So another linearized mixed binary model is proposed determing which line
should be built. Since we commonly want to built multiple lines along one edge in the
candidate graph, the improved mixed-integer linear model is introduce in the end. In view
of that TNEP should ideally be performed jointly with the investment of generation, the
following models take both the cost of installing lines and power generation into account.
In the modeling of TNEP, we have the following settings: first we fixed the loaded power
of each vertex in the power grid; second the generation of each vertex is considered as
a variable but with upper bounds; at last the new lines only installed in the candidate
networks.

Note that the construction of all three models mentioned above are based on the graph
G = (V,E), which consists of the power graph G1 = (V1, E1), the railway graph G2 =
(V2, E2) and the connection graph G3 = (V,E3), where V = V1 ∪ V2 and E = E1 ∪E2 ∪E3.
The process for generating the graph G = (V,E) is described in Chapter 4. Here is the
symbols description, which are used in this chapter for building the mathematical model.
Cvw represents the cost of a line that can be built along edge (v, w). nvw and Zvw represent,
respectively along edge (v, w) the number of lines built and the decision variable, whether
line is built. The ¯nvw is the maximum value of nvw, in other words, the maximum lines
can be built along edge (v, w). gv is the generation in bus v, whose maximum value is ḡv,
Pv is the cost of the energy produced in bus v by the generating, which is measured in
e/MW . the constant lv represent the power loaded at bus v, which is already given before
optimization. fvw is the power flow from bus v to bus w, the capacity of power flow from
bus v to bus w is represented by capvw. bvw is the susceptance of a line along edge (v, w).

5.1 Mixed-integer non-linear Programming (MINLP Model)
In this section, a formulation of the TNEP problem is presented, which is a mixed-integer
non-linear problem(MINLP) [RMGH02]. In this model the DC power flow equations are
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represented with integer transmission circuit investment decision variables. Using this
model the classical TNEP problem can be written in the following form:

Minimize:

h = (1− α)
∑

(v,w)∈E2∪E3

Cvwnvw + α
∑
v∈V1

gvPv

Subject to:

gv − lv =
∑

(v,w)∈E
fvw ∀v ∈ V (5.1)

fvw − nvwbvw(θw − θv) = 0 ∀(v, w) ∈ E2 ∪ E3 (5.2)
fvw − bvw(θw − θv) = 0 ∀(v, w) ∈ E1 (5.3)
0 ≤ gv ≤ ḡv ∀v ∈ V1 (5.4)
|fvw| ≤ nvwcapvw ∀(v, w) ∈ E2 ∪ E3 (5.5)
|fvw| ≤ capvw ∀(v, w) ∈ E1 (5.6)
|nvw| ≤ ¯nvw ∀(v, w) ∈ E2 ∪ E3 (5.7)

nvw ∈ N0 integer, fvw ∈ R, gv ∈ R and θv ∈ R

The objective function consists of a weighted sum of the investment cost of new added
lines and the operating cost of the generating units. The operating cost of the generating
units is influenced by the power source type, the dataset of the generating units described
later in Section 2.3.3. Depending on the above mentioned two factors of investment: the
cost of new added lines and the operating cost of the generating units, the weighting factor
α is used to adjust the objective function in our model. The Constraint 5.1 represents the
conservation of power in each node. In other words, this is the formulation for Kirchhoff’s
current law (KCL) in the DC model. The Constraints 5.2 and 5.3 are an expression of
Ohm’s law. Constraint 5.2 models over the candidate graph, which includes connections
graph G3 = (V,E3) and railway graph G2 = (V2, E2). Constraint 5.3 models over the
existing lines (power graph) G1 = (V1, E1). Note that 5.2 is a non-linear constraint. The
Constraint 5.4 refers to generation limit. The Constraints 5.5 and 5.6 enforce the power
flow limits in transmission lines over the candidate graph G2 ∪G3 and existing graph G1
respectively. Constraint 5.7 represents the limitation of the allowable built lines.

The above formulated non-linear programming is a difficult combinational problem, espe-
cially when the problem scale is large using exhaustive search to find a feasible solution is
not efficient, not speak of the global optimization. We test this model on a 8-bus test case
the solver Bonmin [Bon17], see Section 7.1.

5.2 Binary Mixed-integer linear Programming (BLP Model)
Because of the computational ability of a nonlinear solver, we propose a binary mixed-
integer linear model(BILP) [RMGH02] for the TNEP problem. As analysed before, the
reason of the non-linearities of a DC flow model arise from the multiplication of bus voltage
angles and new lines decision variables, see eq. 5.3. In this disjunctive model the Constraint
5.3 is reformulated by applying the disjunctive binary circuit decision variable. Note that
in this model we suppose to make a further restriction of our problem, which means we
consider whether build the line between two buses (vertices) over the candidate graph,
without parallel lines. However, in the next model, this restriction can be relaxed, which
allows to build multiple lines along one edge. This linear model for TNEP problem can be
formulated as follows:
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Minimize:

h = (1− α)
∑

(v,w)∈E2∪E3

CvwZvw + α
∑
v∈V1

gvPv

Subject to:

gv − lv =
∑

(v,w)∈E
fvw ∀v ∈ V (5.8)

|fvw − bvw(θw − θv)| ≤Mvw(1− Zvw) ∀(v, w) ∈ E2 ∪ E3 (5.9)
fvw − bvw(θw − θv) = 0 ∀(v, w) ∈ E1 (5.10)
0 ≤ gv ≤ ḡv ∀v ∈ V1 (5.11)
|fvw| ≤ Zvwcapvw ∀v, w ∈ E2 ∪ E3 (5.12)
|fvw| ≤ capvw ∀v, w ∈ E1 (5.13)

Zvw ∈ {0, 1}, fvw ∈ R, gv ∈ R and θv ∈ R

Constraint 5.8 represents node power balance. Constraints 5.9 and 5.10 represent Ohm’s
law (KVL) for candidate and existing lines, respectively. Constraint 5.11 is the generation
capacity limit. Constraints 5.12 and 5.13 are transmission capacity limits for the candidate
and existing lines, respectively.

The Constraint 5.2 is linearized to Constraint 5.9 by applying the binary decision variable
Zvw and big-M constant in place of integer variable nvw. Note that Zvw, (v, w) ∈ E2 ∪E3
is equal to 0, if no circuit is built between bus v and w. On the contrary, if Zvw is equal
to 1, that only means the circuit along edge vw is selected to transfer power. Mvw is the
parameter used to avoid the appearance of non-linear constraints.

Zvw =
{

1 install line at edge (v, w)
0 install no line at edge (v, w)

So if at the candidate edge vw a line is built, the right hand side of Constraint 5.9 must
simply be 0, then the Constraint should become:

|fvw − bvw(θw − θv)| ≤ 0 ∀(v, w) ∈ E2 ∪ E3 (5.14)

The new constraint 5.16 fit the KVL over the new line correctly. In other words, no matter
how large Mvw is, the Constrains 5.9 can represent the same meaning as Constraint 5.2. In
the opposite case, the candidate edge vw is not used to transfer power, we can get follow
derivation.

fvw = 0 (5.15)

Then the constraint becomes:

|bvw(θw − θv)| ≤Mvw ∀(v, w) ∈ E2 ∪ E3 (5.16)

So if we want, that Constraint 5.16 is equivalent to the Constraint 5.2, the parameter
"big-M" Mvw must be big enough to avoid creating implicit limits over voltage angle
differences, which can lead to additional investments. However, too large value result in
numerical instabilities in practical implementation. The numerical instabilities can lead
to undesirable results: slow performance, wrong answers or inconsistent behavior. So the
problem is, how to derive the minimum value for the parameter Mvw. It must not impose
an implicit limit, and meanwhile ensure that the optimal solution can be found.
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5.2.1 Determination of a suitable "big-M"

As mentioned above, the choosing of coefficients "big-M" influence how efficiently can the
solution of the disjunctive model be found. For this reason, the upper bound for the "big-M"
coefficients should be found for any circuits in the candidate network. In paper [MPS10]
involved the theoretical derivation and practical computation for "big-M". The derivation
can simply begin with two conditions.

1. If we build lines at edge (v, w) ∈ E2 ∪ E3, then we have:

|(θw − θv)| ≤ |fvw/bvw| ≤
¯fvw
|bvw|

∀(v, w) ∈ E2 ∪ E3 (5.17)

2. If we do not build any lines at edge (v, w) ∈ E2 ∪E3, with the equation 5.16 we get the
follow expression:

|(θw − θv)| ≤
Mvw

|bvw|
∀(v, w) ∈ E2 ∪ E3 (5.18)

From Equation 5.17 we can find, that in order to get the minimum value of Mvw of edge
(v, w), the maximum possible angel difference need to be computed. Before we compute
the upper bound of the maximum possible angel difference, we need to definite the longest
path LPvw between bus v and bus w.

Definition 5.1. Given graph G = (V,E), the length lenvw of each edge (v, w) in G is
defined by:

lenvw =
¯fvw
|bvw|

(5.19)

Definition 5.2. Given vertex v and vertex w in graph G, LPvw is the maximum length of
a simple path πvw in G from vertex v to vertex w. It consists of several edges, along which
the lines are built. If the simple path πvw is present as a set of lines installed at edge e
{ev1, e12...enw}, the length of the longest path LPvw can be computed as follow:

LPvw =
∑

(a,b)∈πvw

lenab (5.20)

Now if we know the longest path πvw between bus v and bus w, we can get the follow
equation:

|θv − θw| ≤
∑

(a,b)∈πvw

|θa − θb| ≤
∑

(a,b)∈πvw

f̄ab/|bab| = LPvw (5.21)

However, we can not forecast along which line the circuits are built. So we simply find the
longest path in G by assuming, that along each line in G we build circuit. In other words,
the minimal value to obtain Mvw is how to find the longest path LPvw. As we know the
longest path problem itself is NP-complete [Gol10], which is very difficult to solve. So we
use the following approach [MPS10] to compute the alternative upper bound M for Mvw:

Step 1: Put all buses v ∈ V in the set Sv, and initiate longest path M = 0;

Step 2: Select one bus vi from the set Sv, and list all edges Ei ⊆ E connected to bus vi.
Then find the edge (vi, vj) ∈ Ei, which has the maximum cost cvi,vj = ¯fvi,vj/|bvi,vj |.

Step 3: Set M = M + cvi,vj .
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Step 4: Remove bus vi from the set Sv, and remove the edge (vi, vj) from the set E
to avoid picking up twice the same edge.

Step 5: If set Sv is not empty, go to Step 2, else end.

Now we can get the final upper bound for Mvw, by setting:

Mij = bij ·M (5.22)

This formulation of the MILP can be approached by linear solver, like Gurobi. However,
it is apparent that this model has one main disadvantage: along one candidate edge
non-multiple lines can be installed.

Figure 5.1: Install lines at edge (v, w)

5.3 Multiple Parallel Line Model (MPLP Model)
In the above section we have talked about the model, which can determine whether to
install the circuit over the candidate network, but it only allows one circuit to be built along
a candidate line. Since in construction of transmission grid may require build multiple
parallel lines along one candidate line for reliability and economic purpose, in this section
we propose an extended linear model, which allows to built multiple parallel circuit along
one candidate line[HD17]. In this thesis we use binary variable nkvw to represent, whether
the kth parallel line at edge (v, w) is built. Here is an example about building lines at edge
(v, w) ∈ E2 ∪ E3, see Fig. 5.1. In the following model we suppose to set ¯nvw = 4, and as
described before variable ¯nvw means the maximum number of lines, so k can not bigger
than ¯nvw. If we suppose to build 2 lines, any two of these binary variables(n1

vw,n2
vw,n3

vw

and n4
vw) must be setted by 1, such as n1

vw = 1 and n3
vw = 1. The variable fkvw is the flow

through the kth parallel line. So the reformulated model represents as follow.

In the objective function for the decimal disjunctive model, the unit investment cost of
installing lines becomes:

∑
(v,w)∈E2∪E3

¯nvw∑
k=1

Cvwn
k
vw
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So the whole objective function is:

h = (1− α)
∑

(v,w)∈E2∪E3

¯nvw∑
k=1

Cvwn
k
vw + α

∑
v∈V1

gvPv

Parameters fkvw, capkvw and bkvw are the power flow, the capacity and susceptance of a single
candidate line from vertex v to vertex w. the reformulation of the power balance 5.23, the
KVL 5.24 and transmission capacity constraints 5.25 are represented as below:

gv − lv =
∑

(v,w)∈E

¯nvw∑
k=1

fkvw ∀v ∈ V (5.23)

|fkvw − bkvw(θw − θv)| ≤ |Mvw(1− nkvw)| ∀(v, w) ∈ E2 ∪ E3 1 ≤ n ≤ ¯nvw (5.24)
|fkvw| ≤ nkvwcapkvw ∀(v, w) ∈ E2 ∪ E3 (5.25)

Contrary to the disjunctive model, the decimal disjunctive model prepare parallel candidate
lines to transfer power. At the same time this model can also support multiple types
of transmission candidate lines to be invested in parallel along a certain candidate edge,
since we assign independent variables for each line. However, this operation to support
multiple parallel lines can greatly increase the size of the mixed integer optimization model,
especially when the upper limit on number of parallel lines are large. The determination of
the upper limit on number of parallel lines are also needed to consider, because we cannot
install infinite lines along one candidate edge due to physical issues. It is discussed in
Section 7.1.3.1, in oder to avoid missing the global optimal solution.
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In chapter 5 we have proposed the mathematical models(MINLP, BLP, MPLP) to install
lines along candidate edges, in order to expand the existed transmission network. However,
when we focus on building the mathematical models, it is difficult to quickly obtain the
optimal solution by dealing with the large scale problem, even the non-linear model has
been linearized, finding the optimal solution for the German network(German power grid
and German railway network) would cost hours long. For this reason, in this chapter a
heuristic algorithm is proposed to select the candidate edge from the candidate network to
install lines, which is more efficient than mathematical optimization. As we know, when
the power grid face of rising demand of energy, some transmission lines in the power grid
must achieve restriction of transmission capacity, in this case, the power grid has reached
its limit of transmitted power. So if we want to let the power grid transmit more power
when it reaches the limit, the new lines should be installed. Under the condition of without
considering the candidate network, our heuristic algorithm first discovers, how much energy
the power grid can carry load, thus the transmission bottlenecks can be detected, then we
can build the new lines along the edges, which are selected from the candidate network , to
solve the transmission bottlenecks. So the process of the heuristic algorithm for TNEP can
be summed up to three steps: 1. Design the transmission plan to solve the maximum load
state problem for the transmission network. 2. Find the bottleneck edges of the designed
the transmission network. 3. Find paths in the candidate network to substitute for the
bottlenecks. We repeat the above mentioned three steps until the maximum load state of
the transmission network can not be changed any more, even when more new paths in the
candidate network are added in the transmission network. Through this chapter an simple
example is given to illustrate the heuristic algorithm.

6.1 Find the maximum Load State of the Transmission
Network

Before we discussed the method to solve the maximum load state problem for the trans-
mission network, the definitions of the increased Power Factor ε and the maximum load
state problem need to be given:

Definition 6.1 (The increased Power Factor ε). Given a electrical network
N = ((V,E), b, cap, l, ḡ) in DC model. The original loaded power is marked as loriginal,
then the current loaded power lcurrent with an increased power factor ε can be represents as
lcurrent = ε ∗ loriginal, ,and ε ≥ 1.
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Definition 6.2 (Maximum Load State Problem). Given a electrical network
N = ((V,E), b, cap, l, ḡ) in DC model. Under the conditions to meet all electrical constraints,
finding the maximum set value for the increased power factor ε, is the maximum load state
problem.

Now the question is how to find the increased power factor ε of the power grid N , according
to the definition of the maximum load state, this problem can be solved by using following
mathematical model(LP):

Maximize:

ε

Subject to:

gv − ε ∗ lv =
∑

(v,w)∈E
fvw ∀v ∈ V1 (6.1)

fvw − bvw(θw − θv) = 0 ∀(v, w) ∈ E1 (6.2)
0 ≤ gv ≤ ḡv ∀v ∈ V1 (6.3)
|fvw| ≤ capvw ∀v, w ∈ E1 (6.4)
ε ≥ 1 (6.5)

ε ∈ R, fvw ∈ R, gv ∈ R+ and θv ∈ R

Because this model do not involved integer variables, it can be efficient to find the optimal
solution. The objective function intuitively adopts the increased power factor ε and
maximum it. Constraints 6.1 forces the power balance for each vertex in the power grid by
adopting the increased power factor ε. Constraints 6.2 represents Ohm’s law(KVL) for the
transmission line. Constraints 6.3 is transmission capacity limits for the transmission lines.
Constraint 6.4 is the generation capacity limit. Constraints 6.5 force the load increased.

Figure 6.1: Example for the bottleneck detecting of the electrical network N1 = (G1 =
(V1, E1), b, cap, l, ḡ), V1 = {a, b, c}, E1 = {(a, b), (a, c), (b, c), the susceptance
(ohm/km) and capacity (MW ) : be = 1, cape = 100, where e ∈ E. Left network
is designed with original loaded power, and right network is designed with
the maximum increased power factor εmax = 1.71428. Boxes denote generator
buses, circles denote load buses and filled dots denote transmission buses.

In Figure 6.1 the original power flow is displayed on the left, where the increased power
factor εoriginal = 1. Using the above mentioned linear model we find the maximum increased
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power factor εmax = 1.71428, and the corresponding power flow is shown in right network,
from which we can find that the transmission lines (a, c) has reached the limit of the
capacity. In other words, if we want to increase the loaded power by ε > εmax, the current
power grid needs to be expanded.

6.2 Bottlenecks Detecting
In this section, our goal is to find the bottlenecks in the power grid. In our heuristic
algorithm the bottlenecks can be detected, when the power grid meet the maximum load
state. So suppose the power grid is given as N1 = ((V1, E1), b, cap, l, ḡ), and the generated
power in the power grid is large enough for the increased demand of power. When we
find the maximum setted value for the increased power factor ε of the power grid N1, we
could iterate all the transmission flow fvw of each edge (v, w), where (v, w) ∈ E1, to detect
which transmission line is the bottleneck of the further increased power factor ε. Here the
bottleneck line is defined as follow:

Definition 6.3 (The Bottleneck Transmission Line). Given an electrical network N =
((V,E), b, cap, l, ḡ) and its maximum set value for the increased power factor ε with a
feasible power flow f , a small number δ is adopted, where δ ∈ R+ and close to zero, for
each transmission line (v, w), (v, w) ∈ E1, if |fvw| > (1− δ)capvw, then the transmission
line (v, w) is a bottleneck in the network N .

In figure 6.1 after iterating all the transmission lines in the electrical network, according to
Definition 6.3 the transmission lines (a, c) can be the bottleneck edge of the power grid.
Note that in our example δ = 0.05.

6.3 Choosing Edges from the candidate Network and
redesign the Power Grid

In this section the candidate network(the railway network and the connection network)
N2 = ((V2, E2), b, cap, l, ḡ), N3 = ((V3, E3), b, cap, l, ḡ) are involved, in order to expand the
bottlenecks in power grid N1. Our idea is to find a shortest path in the candidate network
which has the same endpoints as the bottleneck edge in power grid. Then along these
edges in the path the new lines are installed and added in the power grid to expand the
transmission network. Note that the shortest path consists of edges only from the candidate
network. Here the shortest path for a bottleneck is given:

Definition 6.4 (The shortest Path for a Bottleneck). Given the electrical network N1 =
((V1, E1), b, cap, l, ḡ) the railway network and the connection network) N2 = ((V2, E2), b, cap, l, ḡ),
N3 = ((V3, E3), b, cap, l, ḡ) and the set of bottlenecks Ebottleneck ⊆ E1, let eu,w = (u,w) be
the edge incident to both u and w, for each edge eu,w ∈ Ebottleneck, the shortest path for
the bottleneck eu,w from u to w is the path SP = (ev1,v2 , ev2,v3 , ...evi,vi+1), where v1 = u,
vi+1 = w vi ∈ V2 ∪ V3, evi,vi+1 ∈ E2 ∪E3, which minimizes the

∑w
u W (evi,vi+1) by adopting

a weight function W : E → R, which represents the cost of installing new lines along each
edge. Here we consider the investment of installing new lines as the weight.
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Figure 6.2: Example of choosing the candidate edges in the railway network N2
and the connection network N3 for the bottlenecks, where G2 = {
r0, r1, r2, r3}, {(r0, r1), (r1, r2),(r2, r3), (r3, r0)}} and G3 = {{r0,r1,r2,r3, a, b, c},
{(r0, a),(r1, c),(r3, b) }}, the edges in the candidate network is drawn with the
imaginary lines, the selected candidate edges are shown in green and the weight
of each edge in G2 and G3 can be found in Figure.

In figure 6.2 shows the same power grid as in figure 6.1, As discussed in last section, the
transmission lines (c, a) is the bottleneck edge for the current power grid. there are two
paths from vertex c to vertex a in the candidate network: SP1 = (ec,r1 , er1,r0 , er0,a) and
SP2 = (ec,r1 , er1,r2 , er2,r3 , er3,r0 , er0,a). The cost of installing new lines for SP1 is obviously
smaller than the path SP2. So the shortest path for the edge (c, a) in candidate network is
SP1.

In this part the simple shortest path problem is solved by using Dijkstra algorithm[Dij59].
The Dijkstra algorithm thought is: given a graph G = (V,E), the start vertex s and
the target vertex t, where G is a weighted graph, the graph vertex set V is divided into
two groups, the first group is the vertices of the known shortest path to the start vertex
s(expressed in Q, there is only one vertex s in the set Q at the beginning ), the second set
consists of the vertices, which has not yet been found the shortest path to s, expressed by
U , according to the shortest path length in order add the vertex v from the second set Q
to S, until the target vertex t is added to the Q, the algorithm is over.

Now the power grid N1 is expanded by adding the in candidate network new installed
lines, see in Figure 6.3, however, since the power grid is changed, the new power flow in
the power grid need to be computed, which can meet all the electrical constraints. Here we
still use the LP model, which is described in section 6.2, to obtain the maximum load state.

38



6.4. Conclusion

Figure 6.3: The expanded Power Grid by adding the in candidate network new installed
lines

6.4 Conclusion
The heuristic algorithm repeat the above mentioned process, until the maximum load factor
of the transmission network can not be increased any more, even new candidate edge from
the railway network are added in the power grid. After 2 iterations the example in this
chapter can obtain the maximum load factor of the transmission network as 2.857142 and
the expanded transimission network is shown in figure 6.4.

Figure 6.4: Example of the expanded power grid by using the heuristic algorithm, the
edges in the candidate network are drawn with the imaginary lines, the selected
candidate edges to build new lines are shown in green.
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All results represented in this chapter was worked out from operation system Ubuntu 16.04.
The computer has the follow configuration: CPU: Intel core (TM) i7-2600k 3.40Hz, Memory
size: 8192 MB. The non-linear model is programed by python 2.7. The linear model was
implemented in C++. The mathematical program for non-linear model were build and
solved using the Bonmin [Bon17] and Casadi 3.2.0 package [And13]. The mathematical
program for linear model were solved using the Gurobi 7.0 package [GO16].

There are several famous test cases, which are applied in different researches, such as Garver
6-bus, IEEE 24-bus, and Brazil South 46-bus. However, these test cases did not consider
about, how to generate the candidate network. In our work we use railway network as the
candidate network to expand the power grid, in other words, the test case should consist of
two networks: existing power grid and the candidate network, which has totally different
buses and lines with power grid. For this reason we design a simple and easily computed 8
buses test case, which has 4 power buses (vertices) power gird and 4 railway buses (vertices)
railway network. The initial topology of 8 buses test case is shown in Fig. 7.1 and the
branch data is displayed in table 7.3. Since this number of vertices in this test case is not
large, the proposed non-linear model can be worked out in 5 minutes. Then we can use
this 8 buses test case to make comparison between the non-linear and linear model. In
the end the German power grid and the German railway network in practice are adopt for
evaluating the multiple parallel line model.

Figure 7.1: The initial topology of 8 buses test case, boxes denote generator buses, circles
denote load buses and filled dots denote transmission buses
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7.1 Case Studies
The proposed models MINLP and MPLP in Section 5 has been applied to the 8 buses
system and to the German realistic network. As shown in Fig. 7.1 the 8 buses system is a
network with 4 buses, 4 railway vertices (buses), 4 existed edges and 8 candidate edges.
The maximum number of the allowable installed lines for each candidate line in linear
model is constrained no more than 5 lines to avoid long time calculation. However, the test
cases with different maximum number of the allowable installed lines is adopted to discuss,
how it influence the optimal solution when it changes. The default electrical parameters of
the 8 buses system is given in Section 7.1. The cost of installing new lines is really hard to
estimate, it is influenced by many factors, such as the environmental impact, the installed
line types and the construction ways. So in our works the cost of installing new lines is
simply set by 400Euro/km. The branch data of the 8 buses system is shown in Section 7.3.
The generation and load data for 8 buses system is shown in Section 7.2.

Table 7.1: The default parameters
parameter value

investment of installing new line in the candidate network 400 Euro/km
impedance 0 ohm/km
reactance 1 ohm/km
capacity 50 MW

Table 7.2: The generation and load data for 8-buses system
Bus Maximum Generation(MW ) Load(MW ) Energy Source Type

0 500 20 Gas
1 200 100 Wind Onshore
2 0 90 -
3 0 20 -

Table 7.3: The branch data of 8-buses system
line impedance reactance length Capacity

(ohm/km) (ohm/km) (km) (MW )

bus0 − bus1 0 1 4 90
bus1 − bus2 0 1 4 90
bus2 − bus3 0 1 4 90
bus3 − bus0 0 1 4 90

railway0 − railway1 0 1 2 50
railway1 − railway2 0 1 2 50
railway2 − railway3 0 1 2 50
railway3 − railway0 0 1 2 50
bus0 − railway0 0 1 1 50
bus1 − railway1 0 1 1 50
bus2 − railway2 0 1 1 50
bus3 − railway3 0 1 1 50
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For the German realistic network, which include the German power grid, the railway
network and the connection network, the assumption of electrical parameters in the railway
network and the connection network are given in Table 7.4. The impedance, the reactance
and the capacity of the new installed line are adopted by the common value, which appears
in the power grid data.

Table 7.4: The default setting of the candidate network
Parameter Value

impedance (ohm/km) 0.025
reactance (ohm/km) 0.25

investment of installing new line in the candidate network (e/km) 400
flow capacity (MW ) 800

The motivation of our work is using the candidate network to expand the power grid, which
can meet the increasing demand of loaded power in the future. For this reason, our test
cases will focus on, how our work performs during the increasing loaded power in the power
grid. Here the symbol ε is adopted, where ε > 1, which means the increased factor. Let
the original loaded power of each bus(vertex) in the power grid is presented as loriginal,
then in our test cases the loaded power must be ltest = ε ∗ loriginal. For example, in the 8
buses system the bus1 load 100MW power, if in a test case the increased factor is set by 2,
then the loaded power of bus1 is 200MW .

7.1.1 Comparison between MINLP and MPLP in 8-buses System

In this section we fixed the increased factor ε = 2 for 8-buses, since when ε = 2, the existed
power grid cannot meet the demand of the power transmission, in other words, the new
lines are needed to be installed to expand the existed power grid. Here we do not apply the
MINLP model in the German realistic network, which can take intolerable time to find the
optimal solution. The solutions of both models MINLP and MPLP are shown in Table 7.5.
We can find, that the minimized cost of investment by NLP is larger than the one by
MPLP. Since the current algorithm for solving non-linear model cannot efficiently find
global optimization and the non-linear solver is not stable for numeric issues, the solution
of MINLP easily fall into local optimization. In the comparison test case, the maximum
allowable installed circuits can be large as 5, because the scale of the test network is not
huge. Both tests are finished in one minute. In conclusion, the MPLP performs even better
than the MINLP in obtaining the optimal solution.

Table 7.5: Comparison between MINLP and MPLP
NLP Solution MPLP Solution

Best 7600 Best 6400
n0−railway1 6 n0−railway1 4
n1−railway2 0 n1−railway2 2
n2−railway3 1 n2−railway3 0
n3−railway4 4 n31−railway4 2

nrailway1−railway2 0 nrailway1−railway2 2
nrailway2−railway3 0 nrailway2−railway3 0
nrailway3−railway4 1 nrailway3−railway4 0
nrailway4−railway1 3 nrailway4−railway1 2
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7.1.2 Increased Factor ε

In this section the MINLP model is adopted into this test, how the candidate network
performs when the increased factor ε changes. This test involve the 8-buses system and the
German realistic network, for the 8-buses system the optimal solution can be given quickly,
however, for the German realistic network the test set the time limit in 3000 seconds.
Even the global optimal solution can not be find in the short time, however, the keeping
decreasing gap can be displayed.

7.1.2.1 Test in 8-buses System

The test begin with setting up ε = 1.6, when the current power grid need to be expanded
to supply more power transmission, and ended with setting up ε = 2.8, when the network
can not transmit any more power even all edge the candidate network is applied to install
new lines or the sum of load is lager than the sum of generation. The solution is showed as
following Table 7.6. All the tests finished in 1 second. Note that the maximum allowable
installed lines ¯nvwis fixed by 5. When ε is set to 1.6, the current power grid can support
the work to meet the demand of loaded power, then there are no new installed lines in
the candidate network. Then with the increasing loaded power, in this situation, more
and more new lines along railway edges and connections are installed. And we can find
that, when ε is set to 2.8, nbus0−railway0 and nbus2−railway2 have reached the upper bound
of installing new lines, which means the hole network included the power grid and the
railway network is already saturated. And in our test, no feasible solution can be found,
when ε > 2.8.

Table 7.6: Test case in 8-buses system by the different increased factor ε
ε = 1.6 ε = 2.0 ε = 2.4 ε = 2.8

Best 0 Best 6400 Best 9600 Best 12000
nbus0−railway0 = 0 nbus0−railway0 = 4 nbus0−railway0 = 4 nbus0−railway0 = 5
nbus1−railway1 = 0 nbus1−railway1 = 2 nbus1−railway1 = 0 nbus1−railway1 = 0
nbus2−railway2 = 0 nbus2−railway2 = 0 nbus2−railway2 = 4 nbus2−railway2 = 5
nbus3−railway3 = 0 nbus3−railway3 = 2 nbus3−railway3 = 0 nbus3−railway3 = 0

nrailway0−railway1 = 0 nrailway0−railway1 = 2 nrailway0−railway1 = 3 nrailway0−railway1 = 2
nrailway1−railway2 = 0 nrailway1−railway2 = 0 nrailway1−railway2 = 3 nrailway1−railway2 = 2
nrailway2−railway3 = 0 nrailway2−railway3 = 0 nrailway2−railway3 = 1 nrailway2−railway3 = 3
nrailway3−railway0 = 0 nrailway3−railway0 = 2 nrailway3−railway0 = 1 nrailway3−railway0 = 3

7.1.2.2 Test in the German realistic Network

Since the scale of the German network is large, which has 586 buses, 9011 railway vertices
and 8702 candidate edges, to find a global optimal solution in the short time is impossible,
here the time limit is set by 3000 seconds. The German power grid can support the power
transmission, when ε = 1.0174, So the test begin with setting up ε = 1.2, ended with
setting up ε = 3.0, the pace of the growth of the increased factor is 0.24. The end condition
is set by 3.0, because when ε = 3.2, there is no feasible solution can be found in the limited
running time. The maximum number of allowable installing lines ¯nvw is fixed by 3. The
gab shown in results is defined as follow formula: gap = |ObjBound−ObjV al|/|ObjV al|,
which represents, how close the current optimal solution to the global optimal solution.

The fig. 7.2 shows the results of the MPLP model, which is implemented with the German
network. Even the increased factor ε = 3.2, the feasible solution can also be found in 3000
seconds, however, finding the global optimal solution through MPLP model still needs
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hours long for the German realistic network, when the increased factor is large. Compared
to the NLP model, which takes days long no feasible solution can be accessed, this MPLP
model has done well in the time cost.

In fig. 7.3 the first time of finding a feasible solution with the different increased factor is
represented. The gab at the end of the running time (3000s) with the different increased
factor is shown in fig.7.4. From these figures we can estimate that the time of finding a
feasible planning solution and the gab by MPLP model has no clear relation with the with
the increasing loaded power in the power grid. However, from the most test cases, we can
find that the gaps decrease rapidly in the first 2000 seconds, then the downward trend
gradually eased. So the gaps shown in 3000 seconds can be a reference optimal solution.

7.1.3 Increase the maximum Number of allowable installing Lines ¯nvw

The above test cases only consider fixing the maximum number of allowable installing lines
for each candidate edge in the railway network and connection network. Because, the upper
bound of the new installed lines determine the scale of our model, in other words, if ¯nvw is
set to a high value, which can cost long time to find a feasible solution. However, if the the
maximum number of allowable built circuits is set to a small number, the optimal solution
or feasible solution cannot be obtained. See example in Fig. 7.5. Before we illustrate the
example, the definition of the saturated edge need to be proposed first.

Definition 7.1 (The saturated edge). Given the maximum number of allowable built lines
¯nvw and the electrical network N , in an optimal planning the candidate edge e(v, w) ∈ E

is saturated when the number of the installed lines nvw equals ¯nvw. In other words, all
candidate lines along the edge e have been invested to transfer power.

In Fig. 7.5 suppose the maximum number of allowable installing lines ¯nvw = 2, the bus a
generate 10MW , the bus b and bus c load 2MW and 6MW , respectively. The capacity of
each line is 2MW . Here without consideration of the constraint Ohm’s Law, the optimal
solution of the power transmission planning for the network N1 must be: nab = 2, nac = 2,
Nbc = 1, in other words, at least five lines need to be installed for meeting the power
balance constraints. From the above definition of the saturated edge, we can find, the line
e1(a, b) and e2(a, c) are saturated. If ¯nvw is increased by 1, a better solution can be found:
nab = 1, nac = 3, nbc = 0, which just need to install four lines. Hence, it is important to
find a proper ¯nvw to find the optimal solution.

7.1.3.1 Optimal the maximum Number of allowable Installing Lines ¯nvw

However, before we compute out the solutions during optimal planning, we cannot ensure
the maximum number ¯nvw of allowable built lines is large enough to find the global optimal
solution. So the follow steps is used to find a largest enough ¯nvw:

Step 1: Initiate ¯nvw by a small number, for example ¯nvw = 1.

Step 2: Find the optimal solution for the electrical network after implement the mathe-
matical model.

Step 3: Check the solution, if no feasible solution or there is any line e(v, w) ∈ E saturated,
set ¯nvw = ¯nvw + ϕ, where ϕ is the factor every run you wan to improve ¯nvw, then go
to Step 2. If no line in the electrical network is saturated, then we find the optimal

¯nvw, this process end. Remark that large ϕ can accelerate the speed to find the
proper ¯nvw, however, it might cause a computational issue for large scale problem in
each run.
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Figure 7.2: The variations of the gab, where ¯nvw = 3, the pace of the growth of the
increased factor is 0.2
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Figure 7.3: The first time of finding a feasible solution with the different increased factor,
where ¯nvw = 3.

Figure 7.4: The gap at the end of the running time (3000s) with the different increased
factor, where N̄vw = 3.

Figure 7.5: Electrical network N1 for limitation test of maximum number of allowable built
circuits.
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7.1.3.2 Test in 8-buses System

In this test we set ¯nvw by different numbers in the 8-buses system, it begins with 1, and
is increased by 1 till 6. The increased factor of loaded power ε here must be fixed on a
certain number, here we select 2, in this case the railway network is used to expand the
power grid and the feasible solution of the test can be access in one hour, then we can
exclude the influence of the increased factor ε in our test, and focus on the the influence of
the maximum Number of allowable Installing Lines. The results of the test cases in 8-buses
System are given in Table 7.7. All the tests are finished in 1 second. From the results it is
clear that, with the increasing ¯nvw, the optimal solution going to decrease and stay the
same value in the end. So ¯nvw, which is set by 3, is already enough, when the the increased
factor of loaded power ε = 2.

Table 7.7: Increasing the maximum allowable building lines ¯nvw in the 8-buses system, here
infeasible means there are no feasible solution for ¯nvw
¯nvw = 1 ¯nvw = 2 ¯nvw = 3 ¯nvw = 4 ¯nvw = 5 ¯nvw = 6

infeasible infeasible Best 7200 Best 6400 Best 6400 Best 6400

7.1.3.3 Test in the German realistic Network

The same test has also been done for the German realistic network, ¯nvw begins with 1, and
is increased by 1 till 4, and the increased factor of loaded power ε is fixed by 2. The results
of the test cases in the German network are given in table 7.8. The limitation of the time
is set by 3000 seconds, so the optimal solution in the test are not guaranteed to be global
optimal, but from the result it can be concluded that under 3000 seconds ¯nvw = 2 is large
enough to avoid the influence of the number of the maximum allowable building lines, in
other words, even we increase ¯nvw, the invest of installing new lines will not be decrease,
only the cost of the calculation time is increased, since the scale of the mathematical model
grows up.

Table 7.8: Increasing the maximum allowable building lines ¯nvw in the German network,
here infeasible means there are no feasible solution for ¯nvw, the cost in table
represents, how much money is invested in the solution, the time represents,
how much time is spent on finding the first feasible solution.

- ¯nvw = 1 ¯nvw = 2 ¯nvw = 3 ¯nvw = 4

cost (Euro) Best 36724 Best 33378 Best 33378 Best 33378
time (s) 35 95 201 936

7.1.4 Comparison between MPLP and the heuristic Algorithm

Since in the heuristic algorithm we only consider installing one line at each edge in the
candidate network, so in this test we set ¯nvw = 1, when we compare the MPLP and the
Heuristic algorithm. Here for the German realistic network we compare the maximum
load can be increased, the running time and the investment of finding optimal solution
by fixing the same load. The result is shown in Table 7.9. Based on the experimental
data, we can get the following conclusions: First, comparing to the heuristic algorithm, the
MPLP model can fit higher energy demand with the same candidate network, since when
we find the short path in the candidate network for the bottleneck edges, it might happen
that for the same bottleneck they share the same edge in the short path. However, in
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MPLP model, the solution not only focus on the cost, but also focus the feasible solution.
Second, when setting the same increased factor ε, the heuristic model shows significant
higher computational efficiency than the MPLP model. At last, the investment to expand
the power grid usually higher for the heuristic model than the MPLP model.

Table 7.9: Comparison between MPLP and the Heuristic Algorithm
- the Heuristic Algorithm MPLP

the maximum increased loaded factor εmax 1.7649 2.3675
time (s), ε = 1.7649 15 3000 (gap = 6.4%)

cost(Euro), ε = 1.7649 657690 Best 52126

7.1.5 Introduce the operating Cost of the generating Units

In the section, we want to observe the effects of the weighting factor α to the MPLP model,
with α is used to adjust the objective function, by varying the ratio of the cost of new
installed lines and the operating cost of the generating units. To proceed the experiment,
we start by setting the factor α as 0, and increasing with a step of 0.2, till α = 1. The
starting point α = 0 means we only consider the cost of installing new lines, while α = 0
represents the cost of the generating units. In this process, we observed the number of the
new installed lines in the candidate network with the increasing of the weighting factor.
The result is shown in Table 7.10. Note that the limit of the running time is set 3000
seconds.

Table 7.10: Changing the weighting factor α
α 0 0.2 0.4 0.6 0.8 0.95

the number of new installed lines 44 66 85 100 125 354

From the table, the number of new installed lines in the candidate network shows positive
relativity to the weighting factor. Since the cost of installing a new line is cheaper than
the operating cost of the generating units, when increase the weighting factor, we tend
to install more lines in the candidate network to fulfill the transport of the energy from
the cheap generating units. And in this test, if we α to 1, the feasible solution can not
be accessed in 3000 seconds, because in this situation installing new lines is costless, the
model will the hole transmission network redesign.
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8. Conclusion

This thesis introduces a study framework and methodology of solving TNEP by using the
railway network. The framework has been implemented on the German realistic networks
to facilitate different types of future demand of loaded power. We adopt three mathematical
modeling approaches: MINLP, BLP and MPLP and innovative transmission candidate
selection algorithm (the Heuristic algorithm) for TNEP problem. The mathematical
modeling approaches, which are introduced in Chapter 5, has been applied to model the
German transmission expansion optimization problem. The heuristic algorithm also been
included for this case, resulting in finding the feasible solution more efficiently, but not
optimal than the mathematical modeling approaches. Based on the study results and
analysis in Chapter 7, we summarize the following observations and conclusions:

First, we compared the non-linear mathematic model (MINLP) with the linear mathematic
model (MPLP) by applying on the 8-buses system. Both of the model can support
installing parallel lines along one edge in the candidate networks (the railway network and
the connection network). the MINLP in contrast to MPLP is much easier to build and
understand. However the MPLP has a higher computational performance (within seconds)
with a global optimal solution than the MINLP (within minutes), which may stop when
reaching a local optimal solution.

Second, we continue apply the MPLP on the German realistic network (German power gird,
German railway network and Connection network) to study the computational performance
for the TNEP problem with different increased power factor, and the gap between the
current optimal solution to the global optimal solution is computed from Gurobi. When
the consumed power increased, the relative gap decreased rapidly in the first 2000 seconds,
then the downward trend gradually eased. In the most of our experiments, the gap can
minimize to lower than 30% within 3000 seconds.

Third, we proposed new method using the heuristic algorithm to solve the TNEP problem
with German realistic network. By comparing with the MPLP model, the heuristic
algorithm shows significant higher computational efficiency than the MPLP model. When
the increased power factor is set to 1.7649, the heuristic algorithm can receive the optimal
solution within 15 seconds, while it takes the MPLP model 3000 seconds to reach a minimum
gap at 6.4%. However the cost for the optimal solution is around 10 times more expensive
for the heuristic algorithm than the MPLP model.

At last, we studied the influence of the German realistic network by introducing the
operating cost of the generating units into the MPLP model. When the weighting factor α
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increases, in other word, when the operating cost of the generating units becomes more
important in the objective function of the MPLP model, the optimal solution computed
from Gurobi tends to install more lines in the candidate network to fulfill the transport of
the energy from the cheap generating units.

8.1 Future Work
Further work can be proposed as followed: First, in this thesis, there is a challenge to
apply the solution into the practical situations as our model is based on the DC model with
simplifications by not considering the reactive power and the power losses. These two AC
operations can be further studied by reinforce the resulted plan from our model. Second,
for both mathematic model and our heuristic algorithm, we only consider installing new
lines in the candidate network. But the existing power grid is also playing a important
role in the model and can be considered to expand the transmission network by installed
new parallel lines. Third, as the cost of installing lines in railway network is a influencing
factor to evaluate our model, we can build a separate model to estimate the total cost.
Last but not least, our heuristic algorithm can be improved by installing parallel lines in
the candidate network.
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