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Abstract

A covering number measures how “difficult” it is to cover all edges of a host graph
with guest graphs of a given guest class. E.g., the global covering number, which
has received the most attention, is the smallest number k such that the host graph
is the union of k guest graphs from the guest class. In this thesis, we consider the
recent framework of the global, the local and the folded covering number (Knauer
and Ueckerdt, Discrete Mathematics 339 (2016)). The local covering number relaxes
the global covering number by counting the guest graphs only locally at every vertex.
And the folded covering number relaxes the local covering number even further, by
allowing several vertices in the same guest graph to be identified, at the expense of
counting these with multiplicities.

More precisely, we consider a cover of a host graph H with regards to a guest class G
to be a finite set of guest graphs S = {G1, . . . , Gm} ⊂ G paired with an edge-surjective
homomorphism φ : V (G1 ·∪ . . . ·∪ Gm) → V (H). The cover is called guest-injective,
if for i = 1, . . . ,m its restricted homomorphism φ|Gi is vertex-injective. The global
covering number is thus the smallest number k such that there is a guest-injective
cover with |S| = k. The local covering number is the smallest number k such that
there is a guest-injective cover with |φ−1(v)| ≤ k for every vertex v ∈ H. And the
folded covering number is the smallest number k such that there is a (not necessarily
guest-injective) cover with |φ−1(v)| ≤ k for every vertex v ∈ H. In this thesis we
investigate the relations between these numbers.

As one result we show that the local covering number of any shift graph with regards
to bipartite graphs is at most 2, while the corresponding global covering numbers
can be arbitrarily large. This is the first known separation of local and global
covering number with a subgraph-hereditary guest class. This concludes the study
of separation results, as a separation of folded and local covering number with such
a guest class was already known, as well as the fact that such a separation is not
possible for union-closed topological-minor-closed guest classes.

Furthermore, we investigate for a, b ∈ N0 with b < 2a the classes of (a, b)-sparse
graphs as guest classes. For these the local and the global covering number always
coincide. This generalizes existing results for forests and pseudo-forests. We prove
that the global covering number with regards to these (a, b)-sparse graphs always
matches a fairly simple lower bound given by a variation of the host graph’s maximum
average degree. We moreover provide an efficient algorithm to calculate corresponding
optimal covers.

While most attention in the given framework focuses on properties for the guest
classes, we also investigate graph classes of host graphs without fixing the guest class.
Namely, we introduce a property called cover resistance. We call a class H of host
graphs (f/l/g)-cover resistant, if the (folded/local/global) covering numbers for these
host graphs usually become arbitrarily large. I.e., it is (f/l/g)-cover resistant, if for
each union-closed induced-hereditary guest class G we have host graphs in H with
arbitrarily large (folded/local/global) covering numbers, unless G contains H. For
the classes of host graphs the relaxations of folded and local covering number are
inverse, i.e., the f -cover resistance implies l-cover resistance which in turn implies
g-cover resistance. We give examples for each of these resistances. As a result of
our investigation, we characterize the induced-hereditary guest classes with bounded
folded covering number as those containing all bipartite graphs. We further show
the class of all graphs is the only induced-hereditary guest class with bounded local
covering number.
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Deutsche Zusammenfassung

Eine Überdeckungszahl misst wie “schwer” es ist alle Kanten eines Gastgebergraphen
mit Gastgraphen einer gegebenen Gastklasse zu überdecken. Die globale Überdeck-
ungszahl ist z.B. die kleinste Zahl k für die der Gastgebergraph die Vereinigung von
k Gastgraphen ist. Sie hat bisher am meisten Aufmerksamkeit erhalten. In dieser
Arbeit betrachten wir ein junges Rahmenkonzept welches die globale, die lokale und
die gefaltete Überdeckungszahl umfasst. (Knauer und Ueckerdt, Discrete Mathematics
339 (2016)). Die locale Überdeckungszahl relaxiert die globale Überdeckungszahl,
indem sie die Gäste nur lokal an jedem einzelnem Knoten zählt. Und die gefaltete
Überdeckungszahl wiederum relaxiert die lokale Überdeckungszahl, indem sie es
zulässt mehrere Knoten des gleichen Gastgraphen zu identifizieren, die dafür jedoch
auch mehrfach gezählt werden.

Genauer gesagt betrachten wir eine Überdeckung eines GastgebergraphenH bezüglich
einer Gastklasse G als Paar einer endliche Menge von Gastgraphen S = {G1, . . . , Gm} ⊂
G zusammen mit einem Kanten-surjektiven Homomorphismus φ : V (G1 ·∪ . . . ·∪Gm)→
V (H). Wir bezeichnen die Überdeckung als Gast-injektiv, wenn für i = 1, . . . ,m der
eingeschränkte Homomoprhismus φ|Gi Knoten-injektiv ist. In diesem Formalismus
ist die globale Überdeckungszahl die kleinste Zahl k, sodass es eine Gast-injektive
Überdeckung mit |S| = k gibt. Die lokale Überdeckungszahl ist die kleinste Zahl k,
sodass es eine Gast-injektive Überdeckung gibt mit |φ−1(v)| ≤ k für jeden Knoten
v ∈ H. Und die gefaltete Überdeckungszahl ist die kleinste Zahl k, sodass es eine
(nicht notwendigerweise Gast-injektive) Überdeckung gibt mit |φ−1(v)| ≤ k für jeden
Knoten v ∈ H. In dieser Arbeit untersuchen wir die Beziehungen unter diesen
Überdeckungszahlen.

Eines unserer Resultate ist, dass bezüglich bipartiter Graphen die lokale Überdeck-
ungszahl jedes Shift Graphs höchstens 2 beträgt, während die entsprechende globale
Überdeckungszahl beliebig groß wird. Dies stellt die erste bekannte Separierung
der lokalen und der globalen Überdeckungszahl mit einer Subgraph-hereditären
Gastklasse dar. Damit schließen wir die Studie der Separierungen ab, da eine
entsprechende Separierung der gefalteten und der lokalen Überdeckungszahl bereits
bekannt war, und wir zudem wissen, dass solche Separierungen nicht mit Gastklassen
möglich sind, die abgeschlossen unter disjunkter Vereinigung und dem Nehmen von
topologischen Minoren sind.

Wir untersuchen außerdem für a, b ∈ N0 mit b < 2a die Klasse der (a, b)-dünnbesetzten
Graphen als Gastklasse. Für diese Klassen fallen die lokale und die globale Überdeck-
ungszahl zusammen. Damit verallgemeinern wir bestehende Resultate für Wälder
und Pseudowälder. Wir zeigen dass die globale Überdeckungszahl bezüglich dieser
(a, b)-dünnbesetzten Graphen immer mit einer sehr einfachen unteren Schranke zusam-
menfällt, die als Variation des maximalen Durschnittsgrades des Gastgebergraphens
gegeben is. Darüberhinaus beschreiben wir einen effizienten Algorithmus mit dem
man entsprechende optimale Überdeckungen erhält.

Während der größte Teil der Aufmerksamkeit im gegebenen Rahmenkonzept auf Eigen-
schaften der Gastklassen liegt, untersuchen wir auch Graphklassen von Gastgeber-
graphen ohne die Gastklasse festzulegen. Genauer gesagt führen wir die Eigenschaft
der Überdeckungsresistenz ein. Eine Klasse H heißt (f ,l,g)-überdeckungsresistent,
wenn die (gefaltete/lokale/globale) Überdeckungszahl für diese Gastgebergraphen
gewöhnlich sehr groß werden. Genauer, die Klasse is (f ,l,g)-überdeckungsresistent,
wenn wir für jede Gastklasse G, die abgeschlossen unter disjunkter Vereinigung und
induziert-hereditär ist, Gastgebergraphen mit beliebig großen Überdeckungszahlen
finden, es sei denn G enthält H bereits. Für die Gastgeberklassen ist die Reihenfolge
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der Relaxierungen der gefalteten und der lokalen Überdeckungszahl umgekehrt. Das
heißt, die f -Überdeckungsresistenz impliziert die l-Überdeckungsresistenz, welche
wiederung die g-Überdeckungsresistenz impliziert. Wir geben für jede dieser Re-
sistenzen Beispiele. Als Resultat erhalten wir die Charakterisierung der induziert-
hereditären Gastklassen mit beschränkter gefalteter Überdeckungszahl als jene
Klassen, die alle bipartiten Graphen enthalten. Wir zeigen außerdem, dass die Klasse
aller Graphen die einzige Gastklasse mit beschränkter lokaler Überdeckungszahl ist.
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1. Introduction

In general a covering number states how “difficult” it is to cover all edges of a host graph
H by guest graphs from a given guest class G. We consider the recent framework of
the global, the local and the folded covering number that was introduced by Knauer and
Ueckerdt [KU16].

The global covering number has been investigated the most. It is the minimum number
k such there are k guests G1, . . . , Gk ∈ G with G1 ∪ . . . ∪ Gk = H. We write in short
cGg (H) = k (the index indicates the kind of covering number). Already in 1891 Petersen
showed that the global covering number of a 2k-regular host graph H with regards to
2-regular guest graphs equals k [Pet91]. Note that he actually provided a decomposition
of H into 2-regular graphs which means the guests G1, . . . , Gk are edge-disjoint. This is
not required in the setting of covers. However, if the guest class is closed under taking
subgraphs, we can transform a cover into a decomposition by removing duplicated edges
from guests. A well known global covering number is the arboricity which was investigated
by Nash-Williams and is just the global covering number with regards to forests [NW64].
Nash-Williams showed that the arboricity always meets a natural lower bound similar to
the maximum average degree. Other examples are the track number introduced by Gyárfás
and West [GW95] and the thickness introduced by Aggarwal et al. [AKL+85] corresponding
to the guest classes of interval graphs and planar graphs respectively.

The local covering number is a relaxation of the global covering number. It is the minimum
number k such that there are some guests G1, . . . , Gm ∈ G with G1 ∪ . . . ∪Gm = H such
that there are locally only k guests, i.e., every vertex v ∈ V (H) is contained in at most k of
these guests. We write in short cGl (H) = k. Fishburn and Hammer introduced the bipartite
degree which is the local covering number with regards to complete bipartite graphs [FH96].
They showed the bipartite degree can be arbitrarily large. They also considered the
corresponding global covering number called bipartite dimension and examined forbidden
induced subgraphs for graphs where the bipartite dimension (bipartite degree) is bounded.
Pinto recently showed that the bipartite degree and its decomposition variant coincide on
complete graphs, while the decomposition variant of the bipartite dimension of complete
graphs differs heavily from the bipartite dimension itself [Pin14].

The folded covering number is in turn a relaxation of the local covering number. We call
the operation of identifying non-adjacent vertices in a graph folding. The folded covering
number is the minimum number k such that there are some guests G1, . . . , Gm ∈ G such
that H is the result of folding vertices in graph G = G1 ·∪ . . . ·∪ Gm and every vertex

1



1. Introduction

v ∈ V (H) is the result of folding at most k vertices. We write in short cGf (H) = k. Eppstein
et al. recently examined the planar split thickness which is the folded covering number with
regards to planar graphs [EKK+16]. They most notably examined the planar split thickness
of complete graphs and complete bipartite graphs, and they showed determining the planar
split thickness is NP-hard. The folded covering number with regards to interval graphs
was introduced by Trotter and Harary as the interval-number and has been extensively
studied as pointed out by Butman et al. [TH79] [BHLR10].
For more examples of considered covering numbers see Knauer and Ueckerdts paper [KU16].
They examined a variety of forest classes and interval graphs as guest classes. Examples
for applications of different covering numbers are provided in the Bachelor Thesis of
Stumpf [Stu15].
Since the local and the folded covering number are relaxations of the global covering number,
we obtain for a host class H and a guest class G that cGf (H) ≤ cGl (H) ≤ cGg (H). These
inequalities give motivation to compare those parameters. Let G be the union-closure of G,
i.e., let G be the closure under taking disjoint unions. It is easy to show that cGf (H) = cGf (H)
and cGl (H) = cGl (H). For a meaningful comparison to the global covering number Knauer
and Ueckerdt considered only union-closed guest classes, i.e., guest classes that are closed
under taking disjoint unions. However, there are also meaningful global covering numbers
with regards to not union-closed guest classes. For example the size of a minimum vertex
cover of H is just the global covering number with regards to the guest class of stars. To
distinct those two cases we introduce the union covering number.
The union covering number of a host class H with regards to a guest class G is the
minimum number k such that cGg (H) = k where G is the union-closure of G. We write in
short cGu(H) = cGg (H). The union covering number fits neatly into the existing framework.
Every global covering number with regards to a union-closed guest class is also a union
covering number. Another example is the union-boxicity. The boxicity of a graph H was
introduced by Roberts [Rob69] and is the smallest number k such that H is the intersection
of k interval graphs. Cozzens and Roberts observed that this is just the global covering
number of the complement Hc with regards to cointerval graphs [CR83]. Blaesius, Ueckerdt
and Stumpf introduced the local and union boxicity which correspond to the local and
union covering number [BSU16]. In this example following the framework of Knauer and
Ueckerdt generated new parameters with meaningful geometric interpretations.
Let H be a host graph and let G be a guest class. Given the inequalities cGf (H) ≤ cGl (H) ≤
cGu(H) ≤ cGg (H), the question arises how much these covering numbers may differ. One
approach is to consider separations. For i = f, l, u, g we define the covering number of a
host class H as cGi (H) = supH∈H cGi (H). A separation is a pair of a host class H and a
guest class G such that for i, j = f, l, u, g we have cGi (H) = 2 while cGj (H) = ∞. Knauer
and Ueckerdt provided the guest class K of complete graphs and the host class L of line
graphs as separation of the local and the union covering number [KU16]. Note that here
the guest class is induced-hereditary, i.e., it is closed under taking induced subgraphs.
Stumpf provided the guest class of Bip bipartite graphs and the host class A of all graphs
(or the host class K) as separation of the folded and the local covering number in his
bachelor thesis [Stu15]. Note that Bip is even subgraph-hereditary, i.e., it is closed under
taking subgraphs. Stumpf also showed that there is no separation of the folded and the
union covering number with a topological-minor closed guest class. Therefore the question
remains whether there is a separation of the local and the global covering number with
a subgraph-hereditary guest class. In this thesis we answer this question positively by
providing the guest class of bipartite graphs and the host class of shift graphs as separation
of the local and the global covering number. Shift graphs were introduced by Erdős and
Hajnal [EH66].
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Stumpf showed in his Bachelor Thesis that we have for any induced-hereditary guest class
G that cGl (K) ∈ {0, 1,∞} [Stu15]. For other host classes of separations we provide similar
results. Note that the host graphs of the separations were not chosen to have this property
and it is not necessary for a separation. This motivates an investigation of host graphs
with this property which we introduce as the cover resistance. Let i = f, l, u, g and let H
be a host graph. We say that H is i-cover resistant, if we have for every induced-hereditary
guest class G that cGi (H) ∈ {0, 1,∞}. The name is justified by following observation: For
every host class H we have an induced-hereditary guest class G with H ⊆ G. For every
such guest class G we obtain cGg (H) ≤ 1, since every graph H ∈ H can be covered by itself.
If H is g-cover resistant, then we obtain for every guest classes G′ with H 6⊆ G′ (modulo
isolated vertices) that cG′g (H) =∞. For i = f, l, u we obtain similar results for the i-cover
resistance.

The investigation of cover resistances is related to the Induced Ramsey Theory. We say a
graph class H has the Induced Ramsey Property, if for every graph H ∈ H there is a Ramsey
graph H ′ ∈ H such that for every 2-colouring of the edges of H ′ there is a monochromatic
induced subgraph of H ′ that is a copy of H. This property can be considered as the K2-
Ramsey property which is a special case of the A-Ramsey property whose formalism was
developed by Leeb [Lee73] and Nešetřil and Rödl [NR] as cited by Nešetřil and Rödl [NR84].
If the copy of H is not required to be an induced subgraph of H ′ but only required to be
an induced subgraph within its own colour, we instead speak of the Weak Induced Ramsey
Property. We provide characterizations for the cover resistances that are very similar. As a
result we obtain that for a host class H the Induced Ramsey Property implies the g-cover
resistance which in turn implies the Weak Induced Ramsey Property.

With the inequalities cGf (H) ≤ cGl (H) ≤ cGu(H) ≤ cGg (H), we obtain a similar but reversed
hierarchy of relaxations for the cover resistances. We show for i = f, l, g that if a host class
H is not i-cover resistant, then there is an induced-hereditary guest class G with cGi (H) = 2.
If H is at the same time j-cover resistant for some j = f, l, u, g, then H and G provide a
separation of the covering numbers ci and cj . Further we show that the class of all graphs A
is l-cover resistant which means the only induced-hereditary guest class G with cGl (A) <∞
is the class of all graphs itself. Similarly we show that the class of bipartite graphs Bip
is f -cover resistant. This means every induced-hereditary guest class G with cGf (A) <∞
must contain all bipartite graphs. Since we have cBipf (A) = 2 this implies cGf (A) ≤ 2.

In contrast to separations, we also consider guest classes where the local and global covering
number coincide. Let a, b ∈ N0 with b < 2a. Lee and Streinu introduced the notion of
(a, b)-spare graphs [LS08]. A graph H is called (a, b)-sparse, if we have for every subgraph
G ⊆ H with |V (G)| ≥ 2 that |E(G)| ≤ a|V (G)| − b. Forests are for example exactly the
(1, 1)-sparse graphs. The upper bounds on the number of edges provide lower bounds
for the covering number. As indicated earlier, Nash-Williams showed that in case of
(1, 1)-sparse graphs this lower bound is always met for the union covering number [NW64].
We generalize this result for the class of (a, b)-sparse graphs. As a result we obtain that
the local and global covering number with regards to (a, b)-sparse guest graphs coincide.

Let H be a host graph. We denote the class of (a, b)-sparse graphs with G(a, b). We
further provide an algorithm that provides an optimal global G(a, b)-cover for a given graph
H = (V,E) with a runtime in O(|V | · |E|2) for a constant a. This algorithm makes use of the
pebble game algorithm introduced by Lee and Streinu which allows to determine whether a
given graph G = (V,E) is (a, b)-sparse with a runtime in O(a|E|2) [LS08]. We can also use
the pebble game algorithm to determine the global covering number ofH without computing
a cover. For k ∈ N we observe that cG(a,b)

g (H) ≤ k is equivalent to H being (ka, kb)-sparse.
With this observation we can use the pebble game algorithm of Lee and Streinu to determine
k = c

G(a,b)
g (H) with a runtime in O(k log(k)|E|2) ⊆ O(|E|3/|V |(log(|E|) − log(|V |))) for

3



1. Introduction

a constant a. Streinu and Theran advanced the pebble game algorithm to additionally
provide an (a, b)-sparsity certifying decomposition [ST09]. However, the guests in that
decomposition are all (1, 0)-sparse. Their main results characterize their decompositions of
(a, b)-tight graphs. Streinu and Theran make use of augmenting paths that were introduced
by Edmonds for the general matroid setting and are also used in our algorithm [Edm65].

This thesis is organized as follows.

In Chapter 2 we give basic definitions considered in this thesis.

In Chapter 3 we state alternative definitions of the global, the local and the folded covering
number in terms of edge-surjective graph homomorphisms and give related definitions. We
give a more detailed motivation for the introduction of the union covering number and also
introduce the notion of union covers. Further, we show that the union covering number
fits neatly into the framework of the global, the local and the folded covering umber. We
finally establish basic results used in this thesis.

In Chapter 4 we first present old and new separations of covering numbers. We especially
show that for the class S of shift graphs and the class Bip of bipartite graphs we have
cBipl (S) = 2 while cBipu (S) =∞. On the other side, we show that for a host class of bounded
chromatic number such separations are not possible for any induced-hereditary guest class,
since the union covering number is bounded by a function of the folded covering number.
We further extend known results by showing for a, b ∈ N0 with b < 2a that the local and
global covering number with regards to the guest class of (a, b)-sparse graphs coincide.

In Chapter 5 we provide for a, b ∈ N0 with b < 2a an algorithm to compute an optimal
global (a, b)-sparse cover of a given graph H = (V,E) with runtime in O(|V | · |E|2). This
algorithm builds on the pebble algorithm for detection of(a, b)-sparse graphs that was
introduced by Lee and Streinu [LS08]. This pebble algorithm is introduced first.

In Chapter 6 we shortly consider covering numbers with regards to guest classes of
bounded degree. We provide a lower bound and show it is always met by the folded
covering number while sometimes not met by the global covering number.

In Chapter 7 we introduce the cover resistances corresponding to the four kinds of
covering numbers. Then we characterize the cover resistances similar to the Induced
Ramsey Property. As a result we obtain that the Induced Ramsey Property implies the
g-cover resistance which in turn implies the Weak Induced Ramsey Property. Then we
provide results that, given a cover resistant host class, allow to construct other cover
resistant host classes. We analyse relations between the different cover resistances, i.e., for
a host class H we show which cover resistance implies which cover resistance. For each
combination of cover resistances that are possible for one host class by this implications,
we provide an example of a host class which has exactly the cover resistances of the
combination. To obtain some examples, we establish that a g-cover resistant host class
H is also l-cover resistant, if it is closed under adding universal vertices, and it is f -cover
resistant if it has bounded chromatic number. Let G be an induced-hereditary guest class.
We obtain as result that the folded covering number with regards to G is unbounded, unless
G contains all bipartite graphs. Similarly, the local covering number with regards to G is
only bounded, if G is the class of all graphs.
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2. Preliminaries

For any set S and any number n we define
(S
n

)
= {T ⊆ S : |T | = n}. For any mapping

φ : A→ B and any subset C ⊆ A we write φ(C) for {φ(c) : c ∈ C}. Further, we notate the
restriction of φ as φ|C : C → B, x 7→ φ(x). For any k ∈ N we write [k] for {i ∈ N : i ≤ k}.
Note that 0 6∈ [k].

In this thesis a graph G is a tuple (V,E) with the finite vertex set V and the edge set
E ⊆

(V
2
)
and ∀e ∈ E : ∃u, v ∈ V : u 6= v, e = {u, v}. The graph G is said to be a graph on

V . Elements of V are called vertices and elements of E are called edges. An edge {v, u}
is shortly denoted as vu. By V (G) we denote the vertex set of G and by E(G) its edge
set. Given a finite set E of sets containing two elements each, we write G(E) for the graph
(V,E), where V = {v | {u, v} ∈ E}. We often write v ∈ G for v ∈ V (G) and uv ∈ G for
uv ∈ E(G). We call |V | the order of G and it is denoted by |G|. We call |E| the size of G
and it is denoted by ||G||. A graph G is called trivial if |G| ≤ 1.

For two edges vu,wv ∈ E we call the vertices v and u adjacent, we call the edges uv and
vw adjacent and we call the vertex v and the edge uv incident. We say vu connects v and
u.

For any vertex v ∈ V its neighbourhood is defined as {u ∈ V : vu ∈ E} and denoted by
N(v). Its elements are called neighbours of v. The degree of v is defined as |N(v)| and is
denoted by degG(v) or simply deg(v). If deg(v) = 0, then v is called isolated. If deg(v) = 1,
then v is called a leaf. The maximum degree of G is defined as ∆(G) := maxv∈V deg(v)
and the minimum degree of G is defined as δ(G) := minv∈V deg(v). If δ(G) = ∆(G) =: r,
then G is called r-regular and has regularity r. The average degree avd(G) of a graph G is
Σv∈V (G) deg(v)
|V (G)| = 2|E(G)|

|V (G)| .

A graph G′ = (V ′, E′) is called subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E. The graph
G is then called a supergraph of G′ and said to contain G′ and we write in short G′ ⊆ G.
The graph G′ is called induced subgraph of G if V ′ ⊆ V and E′ = E ∩

(V ′
2
)
. We denote this

shortly by G v H. We say V ′ induces G′ in G and denote G′ by 〈V ′〉G. The graph G′ is
called spanning in G if G′ ⊆ G and V ′ = V . A subset W ⊆ V is called independent if it
induces a graph without edges. The graph induced by W is then also called independent set.
The chromatic number of G is the smallest number k such that V (G) can be partitioned
into k independent sets. We write χ(G) for the chromatic number of G. If χ(G) ≤ n
we call G an n-partite graph. In case of n = 2 we call G a bipartite graph. If its two
independent sets are fully connected, the graph G is called complete bipartite. We say a
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subset F ⊂ E induces (U,F ) in G where U is the set of all vertices incident to an edge
of F in G (U =

⋃
F ). A set of pairwise non-adjacent edges is called matching. We also

call a graph a matching if its induced by a matching. A spanning matching is called
perfect. A k-regular spanning subgraph is called k-factor. By the maximum average degree
mad(G) of a graph G we denote the maximum average degree of all induces subgraphs of
G, i.e., mad(G) = maxH⊆G avd(H). The intersection of two graphs G1 and G2 is defined
as (V (G1) ∩ V (G2), E(G1) ∩ E(G2)) and denoted by G1 ∩G2. The union of two graphs
G1 and G2 is defined as (V (G1) ∪ V (G2), E(G1) ∪ E(G2)) and denoted by G1 ∪G2.

The union of disjoint sets is itself called disjoint. If we speak of the disjoint union of graphs,
we assume their vertex sets to be disjoint (Formally, for a family {Gi : i ∈ I} of graphs
with index set I we replace for every i ∈ I every vertex v in the vertex set Vi (and all
edges) of Gi by (v, i) and speak of (v, i) (V (Gi)× {i}) as v in Gi (V (Gi)).

Let G and H be graphs. The disjoint union of G and H is denoted by G ·∪H and is defined
as the graph with vertex set V (G) ·∪ V (H) and edge set E(G) ·∪ E(H).

The complement Gc of G is defines as the graph (V,
(V

2
)
\ E).

If E =
(V

2
)
then G is called complete, a clique and to be a Kn with n = |G|. The graph G is

called a path if up to relabelling of vertices V = {v0, . . . , vn−1} and E = {vivi+1 : 0 ≤ i < n}.
Graph G is then denoted by Pn and its ends are v0 and vn−1. In a graph G we say two
vertices are connected by a path if they are the ends of a subgraph of G that is a path. The
length of Pn is n− 1 for n ∈ N and denoted by ||Pn||. A cycle Cn is a graph received from
a path Pn+1 with n ≥ 3 by identifying its ends. Note that a cycle is 2-regular. A graph is
called forest if it has no cycle as subgraph.

We say G is connected if any two vertices of G are connected by a path. If G′ is an
inclusion-maximal connected subgraph of G, then it is called a (connected) component of
G. Connected forests are called trees. A tree with one vertex adjacent to all other vertices
is called a star. A star with t leaves is denoted as St.

The line graph L(G) of G is defined as the graph (E,F ) with edge set

F = {{e1, e2} : e1, e2 ∈ E, e1 and e2 are adjacent in G}.

A planar graph is a graph G with an embedding into the plane. An embedding into the
plane is an injective mapping from the vertices of G to elements of R2 and a mapping from
the edges of G to Jordan curves such that the ends of the Jordan curves are the images of
the ends of the corresponding edges and the Jordan curves do neither intersect otherwise
nor contain images of vertices otherwise.

Let G and H be graphs. A function φ : V (G)→ V (H) is called a graph homomorphism if
vu ∈ E(G) implies φ(v)φ(u) ∈ E(H). We sometimes write in short φ : G→ H. Note that
two adjacent vertices u, v ∈ G must not be mapped onto the same vertex x ∈ H, since
this would imply an edge from x to itself, which is not possible in graphs in this thesis. If
for every xy ∈ E(H) there is an edge vu ∈ E(G) with φ(v) = x and φ(u) = y, then φ is
called edge-surjective. If this edge vu ∈ E(G) is unique for every edge xy ∈ E(H), then
φ is called edge-bijective. Let G′ ⊆ G. We write φ(G′) for the graph (φ(V (G′)), F ) where
F = {φ(e) : e ∈ E(G′)}.

A bijective, edge-bijective homomorphism is called an isomorphism. A graph G is called
isomorphic to a graph H if there is an isomorphism φ : G → H. In this case we write
G ' H. Note that ' is an equivalence relation.

In this thesis we assume all graph classes to be closed under taking isomorphic graphs.
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2.1. Hypergraphs

2.1 Hypergraphs
A hypergraph is a tuple (V,E) where V is a finite set and E is a set of subsets of V . A
hypergraph (V,E) is called d-uniform, if every set in E has exactly d elements.

2.2 Hyper Ramsey Theory
An a-hypergraph G is a tuple (V,E) where V is a set of vertices and E ⊆

(V
a

)
. By Ka

n

we denote a complete a-hypergraph, i.e., a graph (V,E) where |V | = n and E =
(V
a

)
. For

a, k, c ∈ N the hypergraph Ramsey number R(a, k, c) is the smallest number n such that
every proper colouring of Ka

n using c colours induces a monochromatic subgraph Ka
k . The

hypergraph Ramsey Theorem ensures that R(a, k, c) exists [Ram30].

2.3 Matroids
A matroid is a tuple (E, I) where E is a finite set and I is a set of independent sets that
are subsets of E with the following properties:

1. ∅ ∈ I.

2. ∀I ∈ I : ∀J ⊆ I : J ∈ I. (Hereditary Property)

3. A,B ∈ I ∧ |B| ≤ |A| ⇒ ∃x ∈ A \B : B ∪ {x} ∈ I. (Augmentation Property)

LetM = (E, I) be a matroid. A subsets J ⊆ E that is not an independent sets is called
dependent. A minimal dependent subset is called circuit.

A maximal independent set ofM is called a base. All bases ofM have the same number
of elements called the rank ofM. For F ⊆ E the tuple (F,J ) with J = {J ∈ I | J ⊆ F}
is a matroid called submatroid ofM. The rank of set F ⊆ E is the rank of the submatroid
induced by F .

2.4 Directed Graphs
A directed graph, short digraph, is a tuple D = (V,E) where V is a finite (vertex) set and for
the set of edges we have E ⊆ {(u, v) ∈ V 2 | u 6= v}. We write in short uv for the edge (u, v).
An edge uv ∈ E is said to start in u and end in v. We denote the corresponding undirected
graph with G(D), i.e., we define G(D) = (V, {{u, v} ∈

(V
2
)
| uv ∈ E}). For some purposes,

we identify a digraph D = (V,E) with graph G(D). However, a digraph D = (V,E) is only
called subgraph of a digraph H = (W,F ), if V ⊆W and E ⊆ F . For a digraph D = (V,E)
and a vertex v ∈ V we define the in-Neighbourhood N−D(v) = {u | uv ∈ E} and the
out-Neighbourhood N+

D(v) = {u | vu ∈ E}. Correspondingly we define the indegree
deg−D(v) = |N−D(v)| and the outdegree deg+(v)D(v) = |N+

D(v)|. Further we define for
U ⊆ V indegree deg−(U) =

∑
u∈U deg−(u) and outdegree deg+(U) =

∑
u∈U deg+(u) .

Finally we define for any directed graph G indegree deg−D(G) = |{uv ∈ E | v ∈ G and u 6∈
G}| and outdegree deg+

D(G) = |{uv ∈ E | v 6∈ G and u ∈ G}|.

2.5 Graph Classes
Let G be a graph class. We call G induced-hereditary if it is closed under taking induced
subgraphs. We call G subgraph-hereditary if it is even closed under taking subgraphs. We
call G union-closed if it is closed under taking disjoint unions. We denote the closure under
taking disjoint unions (or shorter union-closure) of G by G. It contains every disjoint union
of a finite number of graphs in G. Correspondingly, the induced-hereditary closure of G

7
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is denoted by Ĝ and contains for every G ∈ G every subgraph G′ ⊆ G. Graph class G
is called minor-closed, if it is subgraph-hereditary and closed under identifying adjacent
vertices. Graph class G is called topological-minor-closed, if it is subgraph-hereditary and
closed under smoothing where smoothing is the operation of deleting a vertex of degree
2 and replacing its two incident edges by an edge between its two neighbours. Let G
be a graph. We write G ∈e G, if there is a graph H ∈ G such that E(H) = E(G) and
V (G) ⊆ V (H). I.e. by removing isolated vertices of G one obtains a graph in G. This will
be helpful as we usually focus on edges. Similarly, we write for another graph class H that
G ⊆e H, if for every graph G ∈ G we have G ∈e H. Finally we usually overload functions
with the domain of graphs to have also the domain of graph classes and mapping to the
supremum over all graphs in that graph class. E.g., we define for a graph class G that
χ(G) = sup{χ(H) | H ∈ H}.

2.6 Easier Notation
Let G be a graph. We sometimes write v ∈ G instead of v ∈ V (G) and e ∈ G instead of
e ∈ E(G) if it is clear that v is a vertex and e is an edge. In several cases we specify that
something is defined with regards to a certain graph, e.g. the reach of U in graph Gi may
be noted as ReachGi(U). To avoid stacked indices in such cases we instead directly use the
index of that graph notation, e.g. we may write Reachi(U) instead. Let S be a set. Then
we write for example

⋃
S in short for

⋃
G∈S G.
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3. Covering Numbers

Knauer and Ueckerdt introduced the framework of the folded, the local and the global
covering number [KU16]. Let H be a graph and G be a graph class. In general a covering
number measures how good all edges of H can be covered by graphs in G.

To define covering numbers, we define covers which are defined in terms of graph homo-
morphisms.

Let G and H be graphs and let φ : V (G)→ V (H) be a homomorphism. Let uv ∈ E(H).
We say vertex v ∈ V (H) is covered by G (with regards to φ), if we have v ∈ φ(V (G)). We
say edge uv is covered by G (with regards to φ), if we have {φ−1(u), φ−1(v)} ∈ E(G). We
call φ edge-surjective, if every edge in E(H) is covered by G with regards to φ.

Let H be a graph and G be a graph class. A G-cover of H is a tuple (S, φ) of a finite multiset
S = {G1, . . . , Gm} ⊆ G and an edge-surjective graph homomorphism φ : V (G1 ·∪. . . ·∪Gm)→
V (H). Note that as graph homomorphism φ can not map two adjacent vertices to the
same vertex in H. See Figure 3.1 for examples. The graph H is called host graph, the class
G is called guest class, the graphs in G are called guest graphs and the graphs in S are
called guests. We call G-cover (S, φ) guest-injective, if we have for G ∈ S that φ|V (G) is
injective. In that case we usually assume for G ∈ S that G ⊆ H and for v ∈ G we have
φ(v) = v. This implies

⋃
S = H.

We call (S, φ) a k-folded G-cover of H, if we have for v ∈ V (H) that φ−1(v) ≤ k. We
call (S, φ) a k-local G-cover of H, if it is guest-injective and we have for v ∈ V (H) that
φ−1(v) ≤ k. We call (S, φ) a k-global G-cover of H, if it is guest-injective and we have
|S| ≤ k.

Let H be a host graph and G be a guest class. The folded (cGf ), local (c
G
l ), and global (cGg )

covering number of H with regards to G are defined as follows, respectively.

cGf (H) = min{k ∈ N0 | ∃k-folded G-cover of H}

cGl (H) = min{k ∈ N0 | ∃k-local G-cover of H}
cGg (H) = min{k ∈ N0 | ∃k-global G-cover of H}

Note that in the original definition of Knauer and Ueckerdt a cover (S, φ) was only a folded
cover, if one had |S| = 1. However, they considered only union-closed guest classes. If the
guest class G is union-closed and we have a k-folded G-cover (S, φ) of H, then we obtain
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f(1) l(1) g(1)

f(2) l(2) g(2)

v

u

v

Figure 3.1: A host graph H is presented in f(2). We consider the guest class of paths
denoted as G. The three columns represents from the left to the right three
G-covers (S1, φ1), (S2, φ2) and (S3, φ3). In the top row the corresponding guests
are presented. For i = 1, 2, 3 we indicate that φi maps multiple vertices to the
same vertex of H by enclosing them by an ellipse. Only non-adjacent vertices
may be mapped to the same vertex. Cover (S1, φ1) is a 2-folded G-cover of
H. Note that at most two vertices are mapped to the same guest. Further
note that the two vertices that are mapped to v are from the same guest in
S1. Therefore (S1, φ1) is not guest-injective. Cover (S2, φ2) is a 2-local 3-global
G-cover of H. First note that no two vertices of the same guest are mapped to
the same vertex. Thus cover (S2, φ2) is guest-injective and we can represent
H as union of its guests as done in l(2). Since it has 3 guests, we obtain that
(S2, φ2) is a 3-global G-cover. We note that φ2 maps at most two vertices to
the same vertex of H. Thus (S2, φ2) is a 2-local G-cover. Cover (S3, φ3) is
by analogous argumentation a 2-global G-cover of H. By Proposition 3.1 it
is thus also a 2-local and 2-folded G cover. Note that edge uv is covered by
two guests. The union of the guests is represented in g(2). Multiple edges
covering the same edge are represented by a multi-colouring of the covered edge
(here presented as multi-edge). Since H is not a union of paths, we obtain by
Proposition 3.5 that the folded G-covering number of H is at least 2. By the
existence of a 2-global G-cover we obtain cGg ≤ 2. With Proposition 3.1 this
implies cGf (H) = cGl (H) = cGg (H) = 2.

G =
⋃
S ∈ G and therefore tuple ({G}, φ) is a k-folded G-cover of H with |{G}| = 1. In

this sense that requirement had no effect. We dismiss it, to achieve that also for a not
union-closed guest class G a k-local cover is also a k-folded cover. Let H be a host graph
and G be a guest class. Note that in a guest-injective cover (S, φ) of H every vertex v ∈ H
is covered by every guest at most once. Therefore every k-local cover is also a k-global
cover.

Knauer and Ueckerdt proved these and other findings in their paper [KU16].

Proposition 3.1 (Knauer, Ueckerdt [KU16])
Let G and G′ be guest classes, let H and H′ be host classes and let H be a host graph. Let
k ∈ N0. Then each of the following holds:

(i) For H any k-global G-cover is also a k-local G-cover. Especially cGl (H) ≤ cGg (H).

(ii) For H any k-local G-cover is also a k-folded G-cover. Especially cGf (H) ≤ cGl (H).

(iii) If H ⊆ H′, then cGi (H) ≤ cGi (H′) for i = f, l, g.

(iv) If G ⊆ G′, then cG′i (H) ≤ cGi (H) for i = f, l, g.
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3.1 The Union Covering Number
When Knauer and Ueckerdt introduced the notions of the folded, the local and the global
covering number, they considered only union-closed guest classes, i.e., classes closed under
taking vertex-disjoint unions [KU16]. However, in some cases it is natural to consider
non-union-closed guest classes. For example, the vertex cover number is equal to the global
covering number with regards to stars (the centres of the stars correspond to the vertices
of the vertex cover). Another example is the intersection number which is equal to the
global covering number with regards to complete graphs [Rob85].

A third example is the boxicity. The boxicity of a graphH is the smallest number d such that
H is an intersection graph of d-dimensional axis-aligned boxes in Rd and denoted by box(H).
Interestingly, we have box(H) = cI

c

g (Hc) where Ic denotes the class of cointerval graphs
(i.e., complements of interval graphs) [CR83]. Bläsius, Stumpf and Ueckerdt considered
the local-boxicity and union-boxicity as the corresponding covering numbers cIcl (Hc) and
cI

c

g (Hc) where Ic denotes the class of vertex-disjoint unions of cointerval graphs [BSU16].

Those variants of boxicity have their own geometric interpretations. Thus, both considera-
tions - of union-closures as guest classes as well as of non-union-closed guest classes for the
global covering number - are legitimated. We hence introduce the notion of union covering
numbers as global covering numbers with regards to union-closed guest classes in general.
However, we first note that for the folded and local covering number it does not matter
whether the guest class is union-closed. This means only for the global covering number a
difference occurs.

Proposition 3.2
Let H be a host graph and G be a guest class. Let G denote the closure under taking vertex-
disjoint unions of G. Then every k-(folded/local) G-cover of H induces a k-(folded/local)
G-cover of H. For i = f, l we have especially cGi (H) = cGi (H).

Proof. By Proposition 3.1(iv) we know cGi (H) ≤ cGi (H). Now consider a k-(folded/local)
G-cover (S, φ) of H with S = {G1, . . . , Gm} as set of guests and k = maxv∈V (H)(φ−1(v)).
For every j = 1, . . . ,m, guest Gj is the disjoint union of some graphs G′j,1, . . . , G′j,r(j) in G.
We set S′ = {G′1,1, . . . , G′1,r(1), . . . , G

′
m,1, . . . , G

′
m,r(m)}. By definition of the guests in S′,

we have
⋃
· S′ =

⋃
· S. Hence, (S′, φ) is a k-folded G-cover of H.

If the cover (S, φ) is a local cover, it is guest-injective. Then the guests

G′1,1, . . . , G
′
1,r(1), . . . , G

′
m,1, . . . , G

′
m,r(m) ∈ S

′

are subgraphs of the guests G1, . . . , Gm ∈ S. Thus, the restriction of φ on each graph
G ∈ S′ is vertex-injective, since the restriction of φ on a certain supergraph of G is already
vertex-injective. Hence, the cover (S′, φ) is guest-injective and thus a k-local cover of H.
This concludes the proof.

Hence, we can only get a different value for the global covering number.

Definition 3.3
Let G be a guest class and let H be a host graph. A guest-injective G-cover (S, φ) of H is
a k-union G-cover of H, if S can be partitioned into k sets S1, . . . , Sk such that φ|⋃· Si is
vertex-injective for i = 1, . . . , k. We call those partition sets guest-unions. See Figure 3.2
for an example. We define the corresponding union G-covering number of H as

cGu(H) = min{k ∈ N0 | there is a k-union G-cover of H}.
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G2

G1

G3

G5

G4

Figure 3.2: A host graph H with two components. Let G denote the class of paths. We
see a 5-global G-cover (S, φ) of H. We define the sets S1 = {G1, G3, G5} and
S2 = {G2, G4} and observe that for i = 1, 2 the elements of Si are pairwise
vertex-disjoint. Thus S1 and S2 are guest-unions and (S, φ) is a 2-union G cover
of H. We further note that for S′ = {

⋃
S1,

⋃
S2} the tuple (S′, φ) is a 2-global

G-cover of H.

Note that, if G denotes the closure of G under taking vertex-disjoint unions, then the sets
S1, . . . , Sk correspond to k graphs G1, . . . , Gk in G.

The following proposition shows that the union covering number fits neatly between the
local and the global covering number and provides a characterization in terms of the global
covering number.

Proposition 3.4
Let G be a guest class, let G be its closure under taking vertex-disjoint unions and let H be
a host graph. Let k ∈ N0. Then each of the following holds:

(i) Any k-global G-cover is also a k-union G-cover. Especially we have cGu(H) ≤ cGg (H).

(ii) Any k-union G-cover is also a k-local G-cover. Especially we have cGl (H) ≤ cGu(H).

(iii) Any k-union G-cover corresponds to a k-global G-cover and vice versa. Especially we
have cGu(H) = cGg (H).

(iv) If G = G, then we have cGu(H) = cGg (H).

(v) Let H be a host class and let H be its closure under taking vertex-disjoint unions.
Then we have cGu(H) = cGu(H).

Proof. For any k-global G-cover (S, φ) with S = {G1, . . . , Gk}, multiset S can be partitioned
into k sets {G1}, . . . , {Gk}. The elements of each of them are pairwise disjoint, since they
contain only one graph each. The cover (S, φ) is thereby also a k-union G-cover. This
implies cGu(H) ≤ cGg (H).

Let (S, φ) be a k-union G-cover. Then S can be partitioned into k sets S1, . . . , Sk of pairwise
disjoint graphs. Hence, every vertex v in H is covered by at most one guest of each set Si
for i = 1, . . . , k. This implies (S, φ) is a k-local G-cover. Hence, we have cGl (H) ≤ cGu(H).

Let (S, φ) be a k-union G-cover ofH. Then S can be partitioned into k sets S1, . . . , Sk of pair-
wise disjoint graphs. We obtain a k-global G-cover of H by using mapping φ and considering
the new guests G1, . . . , Gk, where Gi is the disjoint union of the graphs in Si for i = 1, . . . , k.
On the other hand, let (S′, φ′) be a k-global G-cover of H where S′ = {G′1, . . . , G′k}. Then
for i = 1, . . . , k, guest G′i is the disjoint union of some graphs G′i,1, . . . , G′i,m(i) in G by
definition of G. We consider S′′ = {G′i,1, . . . , G′i,m(i), . . . , G

′
k,1, . . . , G

′
k,m(k)} as new multi-

set of guests together with the same mapping φ′ as new cover (S′′, φ′) of H. The sets
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S′i = {G′i,1, . . . , G′i,m(i)} for i = 1, . . . , k provide a partition of S′′ proving (S′′, φ′) is a
k-union G-cover. This implies cGu(H) = cGg (H).

If G = G, then we have cGu(H) = cGg (H) = cGg (H) by Item (iii).

LetH be a host class andH be its closure under taking vertex-disjoint unions. If cGu(H) =∞
then we have by Item (iii) and Proposition 3.1(iii) that cGu(H) =∞ = cGu(H). Hence, let
cGu(H) = k < ∞. Further, let H = H1 ·∪ . . . ·∪Hm ∈ H. Then for i = 1, . . . ,m the host
graph Hi has a k-union G-cover (Si, φi) with k guest-unions Si,1, . . . , Si,k. We consider
the guest-injective G-cover (S, φ) of H with S = S1 ·∪ . . . ·∪ Sm and φ = φ1 ·∪ . . . ·∪ φm, i.e.,
homomorphism φ :

⋃
· S → H is defined by φ|⋃· Si = φi for i = 1, . . . ,m. The set S can

be partitioned into k guest-unions S = S1 ·∪ . . . ·∪ Sk by setting Si = S1,i ·∪ . . . ·∪ Sm,i for
i = 1, . . . , k. Hence, it is a k-union cover which proves cGu(H) = cGu(H).

For a guest class G and a host graph H we can thus write in short

cGf (H) ≤ cGl (H) ≤ cGu(H) ≤ cGg (H).

The union covering number fits thereby neatly into the framework of the other three
covering numbers.

3.2 Basic Results
If a host graph H has a covering number of 1 with regards to a guest class G this
roughly means it must be covered by itself and is thus contained in G. We give a precise
characterization in Proposition 3.5. We use the notions of ⊆e and ∈e in terms of graph
classes and graphs: Those are roughly speaking the relations ⊆ and ∈, but ignoring
independent vertices. More precisely, we write G ⊆e H if for every graph G ∈ G we have
G ∈e H, i.e., for every graph G ∈ G there is a graph H ∈ H with H = (V (G) ·∪W,E(G))
for some vertex set W .

Proposition 3.5
Let G be a guest class. Let G be its union-closure and H be a host graph. Let i = f, l, u, g.
We have:

(i) cGi (H) = 0⇔ host graph H is an independent set.

(ii) For i = f, l, u, g, we have cGi (H) ≤ 1⇐ H ∈e G.

(iii) cGg (H) ≤ 1⇔ H ∈e G.

(iv) For i = f, l, u, we have cGi (H) ≤ 1⇔ H ∈e G.

Proof. If cGi (H) = 0, then host graph H is covered without using a guest. Therefore, no
edge is covered meaning H contains no edge. On the other hand, if no edge is contained in
H, its (empty) set of edges is covered without using a single guest.

If H ∈e G, then host graph H can be covered using H itself (after removing corresponding
isolated vertices) as the only guest. Hence, we have cGi (H) = 1.

If on the other hand, we have cGg (H) ≤ 1, then host graph H can be covered using a single
guest G. This means G contains all edges of H and may differ only by missing isolated
vertices. We thus have H ∈e G.

If cGi (H) ≤ 1 for i = f, l, u, then host graph H can be covered such that every vertex
is covered at most once. All guests are pairwise vertex-disjoint. Their union G is thus
contained in G, while G also contains all edges of H. Analogously to the previous case, we
get H ∈e G.
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3. Covering Numbers

Note that for a guest class G containing the trivial graph T = ({v}, ∅) and a host graph H
we have H ∈e G ⇒ H ∈ G, since missing isolated vertices can be added by disjoint union
with T .

Let G be a guest class and let (S, φ) be a G-cover of a host graph H. Then (S, φ) covers all
edges of H and thereby also all edges of any subgraph H ′ ⊆ H. If G allows the guests to
be restricted accordingly, we obtain a cover of H ′.

Remember that for two graphs G and H we write G v H to describe G is an induced
subgraph of H. Further note that for U ⊆ V (H) we write 〈U〉H for the subgraph induced
by U in graph H. We sometimes replace a graph in an index by its own index to avoid
index stacking.

Proposition 3.6
Let G be a guest class and let H and H ′ be host graphs.

• If G is induced-hereditary and H ′ v H, then cGi (H ′) ≤ cGi (H) for i = f, l, u, g.

• If G is subgraph-hereditary and H ′ ⊆ H, then cGi (H ′) ≤ cGi (H) for i = f, l, u, g.

Proof. Let G be induced-hereditary and Let H ′ v H. Further, let tuple (S, φ) be
a k-(folded/local/union/global) cover of H with S = {G1, . . . , Gm}. We obtain a k-
(folded/local/union/global) cover of H ′ as follows. For 1 ≤ i ≤ m let G′i denote
the graph gained by removing all vertices of Gi that are not mapped to H ′. I.e., let
G′i =

〈
{v ∈ Gi | φ(v) ∈ H ′}

〉
i
. Since G′1, . . . , G′m are induced subgraphs of G1 . . . , Gm, we

have G′1, . . . , G′m ∈ G. Let S′ = G′1, . . . , G
′
m. The restriction φ′ = φG′1 ·∪... ·∪G′m covers all

edges of H ′, since only edges to vertices in H \H ′ are removed. Thus, we have with (S′, φ′)
a cover of H ′ which is also k-(folded/local/union/global).

The case where G is subgraph-hereditary can be argued analogously using the guests
G′′i = (Vi, Ei) with Vi = {v ∈ Gi | φ(v) ∈ H ′} and Ei = {vu ∈ Gi | φ(v)φ(u) ∈ H ′} for
1 ≤ i ≤ m instead.
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4. Separability and Non-Separability

Remember we have for a host graph H and a guest class G the inequalities

cGf (H) ≤ cGl (H) ≤ cGu(H) ≤ cGg (H).

This rises the question, whether two different covering numbers can differ arbitrarily. In
the strongest case there is for i, j ∈ {f, l, u, g} a host class H and a guest class G with
cGj (H) =∞, while cGi (H) ≤ 2. In this case we speak of a separation of the covering numbers
ci and cj .

The separation of the union and the global covering number is quite easy. In Proposition 4.1
we make use of a non-union-closed guest class, in a way that is in most cases possible. Note
that by Proposition 3.4 such a separation with a union-closed guest class is not possible.

Proposition 4.1
For the guest class {K2} and the host class M of all matchings, we have c{K2}

u (M) = 1
and c{K2}

g (M) =∞.

Proof. Every matching M ∈ M can be covered using another K2 for every edge. Since
those guests are pairwise disjoint, we get c{K2}

l (M) = 1. Actually, we must cover every
edge of M using another K2 resulting in c{K2}

g (M) = ||M ||. Hence, we get c{K2}
u (M) = 1

and c{K2}
g (M) =∞.

Since this separation is easy, we are less interested in the global covering number.

In the paper that introduced the investigated framework of covering numbers, Knauer
and Ueckerdt presented a separation of the local- and the union-covering number with an
induced-hereditary guest class.

Theorem 4.2 (Knauer and Ueckerdt [KU16])
For the guest class K of complete graphs and the host class L of line graphs, we have
cKu (L) =∞ and cKl (L) = 2.

Stumpf provided in his Bachelor‘s Thesis a separation of the folded- and the local-covering
number with a guest class that is even subgraph-hereditary.
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4. Separability and Non-Separability

Theorem 4.3 (Stumpf [Stu15])
For the guest class Bip of bipartite graphs and the host class H of all graphs, we have
cBipl (H) =∞ and cBipf (H) = 2.

He further showed a separation is not possible for stronger restrictions of the guest class.

Theorem 4.4 (Stumpf [Stu15])
Let G be a topological minor-closed class of graphs. Let H be a class of graphs such that
cGf (H) = c <∞. Then there is a constant d = d(G, c) with cGu(H) ≤ d.

However, this left open the question, whether there is a separation of local- and union-
covering number with a subgraph-hereditary guest class. We answer this question positively
in Section 4.1. A result of non-separability is provided in Section 4.2. In Section 4.3 we
give an example of a family of guest classes for which folded, local and global covering
number even coincide.

4.1 Separation of Local- and Union-Covering Number with
Regards to a Subgraph-Hereditary Guest Class

Let Bip denote the class of bipartite graphs. Let C-Bip denote the class of complete
bipartite graphs.

Ueckerdt raised the following two questions in the CGI Workshop [Uec15].

Question 4.5 (Ueckerdt [Uec15])
Is there a function φ such that for every host graph H we have χ(H) ≤ φ(cC-Bipf (H))?

Question 4.6 (Ueckerdt [Uec15])
Are local and global C-Bip-covering number for every host graph H the same?

The answer to both questions is no, as we show in this section by consideration of the
host class of shift graphs. Shift graphs were introduces by Erdős and Hajnal [EH66]. As in
line graphs, vertices are edges of a given graph G and they are only adjacent if they are
adjacent in G. However, for shift graphs the graph G is directed and the edges additionally
need to be adjacent with different ends, i.e., an edge uv is adjacent to vw1 and w2u but
not to uw3 or w4v (see Figure 4.1). I.e.: Let G = (V,E) be a directed graph. The shift
graph S(G) of G is the graph (E,F ) where F =

{(
(u, v), (v, w)

)
∈
(E

2
)
| (u, v), (v, w) ∈ E

}
.

We denote the class of all shift graphs by S.

Note that for every vertex v ∈ G the incident edges in G can be divided into incoming and
outgoing edges by considering all edges directed towards the larger vertex. Those edges
induce a complete bipartite graph Bv(G) in S(G) with incoming and outgoing edges as the
two partition sets. We write Bv in short if G is given. By this observation we obtain the
following lemma.

Lemma 4.7
Let G = (V,E) be a directed graph. Then we have cC-Bipf (S(G)) ≤ cC-Bipl (S(G)) ≤ 2 as well
as cBipf (S(G)) ≤ cBipl (S(G)) ≤ 2.

Proof. It suffices to prove cC-Bipl (S(G)) ≤ 2. Then the remaining results follow by Proposi-
tion 3.1(ii) and (iv). For a 2-local cover, we consider for every vertex v ∈ G the complete
bipartite graph Bv as guest. This covers all edges of S(G) since every edge {uv, vw} ∈ F is
covered by Bv. And every edge uv ∈ E is only contained in Bu and Bv. Thus every vertex
uv ∈ S(G) is covered by at most two guests. Hence cC-Bipl (S(G)) ≤ 2 which concludes the
proof.
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4.1. Separation of Local- and Union-Covering Number with Regards to a
Subgraph-Hereditary Guest Class

a

b

c

d

e

Figure 4.1: A representation of the ordered complete graph Ko
5 where the circles represent

the vertices and the arrows represent the edges. The vertex order is a < b <
c < d < e. It also represents S(Ko

5) when the arrows represent the vertices
and the other lines represent the edges. For the given colouring of S(Ko

5) the
colours for V (Ko

5) are ∅ for a, {red(dashed)} for b, {blue} for c, {red, blue} for
d and {red, blue, green(dotted)} for e. Within every circle we have a complete
bipartite graph Bv as guest for the local cover (in a and e those are independent
sets and can be ignored). The edges ab, bc, cd, de and bd induce a cycle C5 in
S(Ko

5).

Shift graphs can have arbitrarily large chromatic number, as the following well known
lemma shows.

Lemma 4.8 (e.g. Lovász [Lov93][Problem 9.26])
For every directed graph G we have χ(S(G)) ≥ log(χ(G)).

Proof. Let S(G) be properly coloured with k colours. We construct a proper colouring of
G using at most 2k colours as follows. We colour every vertex v in G with a set cv which
contains exactly those colours that were used for incoming edges (see Figure 4.1). First
note there are only 2k different sets of this kind. Hence, we used at most 2k colours. Now
consider an edge uv in G. The colour c of uv is contained in cv since it is incoming for v.
However, colour c can not be contained in cu since all incoming edges are adjacent to uv
in S(G). Hence, vertices u and v have different colours. Therefore, the colouring of G is
proper which concludes the proof.

With Lemma 4.8, we can answer Question 4.5 negatively in Corollary 4.9.

Corollary 4.9
For every k ≥ 2 we have χ(S(K2k+1)) > k and cC-Bipf (S(K2k+1)) = cBipf (S(K2k+1)) = 2.

Proof. Follows directly by Lemma 4.7, Lemma 4.8, Proposition 3.1(ii) and Proposition 3.5,
since C5 is a non-bipartite induced subgraph of S(Ko

5), as shown in Figure 4.1.

To answer Question 4.6, we need to conclude from high chromatic number to high global
covering number. Therefore we investigate the relationship between the chromatic number
of a host graph and its guests in a global cover.
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4. Separability and Non-Separability

From a global cover with properly coloured guests we obtain a proper colouring of the host
graph, by combining the colours of the guests. This relation between chromatic number of
guests and host graph is shown in Proposition 4.10.

Proposition 4.10
Let G be a guest class and let H be a host graph. Let (S, φ) be a k-global G-cover of H with
S = {G1, . . . , Gk}. Then χ(H) ≤ rk where r = max{χ(Gi) | i = 1, . . . , k}.

Proof. For i ∈ [k], let guest Gi be properly coloured using the colours 1, . . . , r. We obtain
a colouring c of H, by colouring every vertex v ∈ H by colour (c1(v), . . . , ck(v)) where for
i ∈ [k] the colour ci(v) is the colour of v in Gi (if v is not covered by Gi, then an arbitrary
colour is chosen). Consider two vertices v and w of the same colour in H. By definition of
colouring c, the vertices v and w have the same colour within every guest. Hence, they are
not adjacent in any guest and thus not adjacent in H. Therefore c is a proper colouring.
The colours are chosen from set [r]k which has rk elements. This yields χ(H) ≤ rk.

If the guest class is not further restricted, then the reverse direction to Proposition 4.10 is
also true, allowing a characterization of the global covering number as stated in Lemma 4.11.
This especially provides a lower bound of the global covering number in terms of its chromatic
number.

Lemma 4.11
Let r ≥ 2. Let Cr be the guest class {G | χ(G) ≤ r} of all graphs witch chromatic number
at most r. Let H be a host graph. Then cCrg (H) = dlogr(χ(H))e.

Proof. Since Cr contains at least K2, there is a cCrg (H)-global Cr-cover of H. By Proposi-
tion 4.10, we obtain χ(H) ≤ rc

Cr
g (H). Hence, we have dlogr(χ(H))e ≤ cCrg (H).

It remains to show that dlogr(χ(H))e guests suffice. For χ(H) = rk we apply induction
over k. For k = 1 the host graph H can be covered by itself. Now assume k ≥ 2 and
every graph H ′ with χ(H ′) ≤ rk−1 can be globally covered by (k − 1) graphs in Cr. Let
H be a graph properly coloured with χ(H) = rk colours. We can partition V (H) into
r sets P1, . . . , P2 having only rk−1 colours each. By induction hypothesis, we can cover
〈Pi〉H globally using k − 1 guests Gi1, . . . , Gik−1, for i = 1, . . . , r. As the induced subgraphs
〈P1〉H , . . . , 〈Pr〉H are pairwise vertex-disjoint, we can cover 〈P1〉H ∪ . . . ∪ 〈Pr〉H with k − 1
guests G1

1 ∪ . . .∪Gr1, . . . , G1
k−1 ∪ . . .∪Grk−1. Let R denote the graph of the remaining edges

in H, i.e., let R = (V (H), E(R)) where E(R) = E(H) \
(
〈P1〉H ∪ . . . ∪ 〈Pr〉H)

)
. Graph

R can be properly coloured using r colours by colouring every vertex v with i, where
v ∈ Pi. We thus obtain R ∈ Cr, and we can cover H with the dlogr(χ(H))e = k guests
G1

1 ∪ . . . ∪ Gr1, . . . , G1
k−1 ∪ . . . ∪ Grk−1, R. This concludes the induction and we know for

every k and every graph H that χ(H) = rk ⇒ cCrg (H) ≤ k. Every graph H is induced
subgraph of a graph H ′ with χ(H ′) = rdlogχ(H)e (to get such a graph H ′ just repeatedly
add a vertex adjacent to all other vertices). With Proposition 3.1(iii) this concludes the
proof.

As a well known special case, we obtain Lemma 4.12.

Lemma 4.12 (e.g. Ueckerdt [Uec15])
Let H be a graph. Then cBipg (H) =

⌈
log

(
χ(H)

)⌉
.

Proof. Direct consequence of Lemma 4.11.

With Lemma 4.12 we can answer Question 4.6 negatively.
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4.1. Separation of Local- and Union-Covering Number with Regards to a
Subgraph-Hereditary Guest Class

Corollary 4.13
For the class S of shift graphs, we have

cBipl (S) = cC-Bipl (S) = 2

and
cC-Bipg (S) = cC-Bipu (S) = cBipg (S) = cBipu (S) =∞.

Proof. The first equation follows directly by Lemma 4.7, Corollary 4.9 and Proposi-
tion 3.1(iv). The second equation follows directly by Lemma 4.8, Lemma 4.12 and
Proposition 3.4(iv) observing Bip is union-closed.

With Theorem 4.3 we now have a guest class for which folded and local as well as local
and union covering number can be separated.

This is the first separation of local and union covering number not directly using line graphs
as host graphs. More importantly, this is the first separation using a guest class that is
even subgraph-hereditary.

Note that for the guest class of bipartite graphs Erdős et al. [EFH+86] stated an in some
sense stronger result. They considered graphs with proper colourings where the number
of different colours within every neighbourhood is bounded by some number r. They
constructed graphs with such colourings for r = 2 and with arbitrarily large chromatic
number. Those graphs actually also were shift graphs, implying the same upper bounds on
local covering numbers. From such a local colouring we obtain an upper bound on the local
bipartite covering number, more precisely that cBipl (H) ≤ r, as follows. If such a colouring
is given, use a guest for every pair of colours (a, b), containing all edges between a-coloured
and b-coloured vertices. Those guests are bipartite, since they are properly coloured using
only two colours. Every vertex v is covered by only r guests, as there are only r different
colours used for N(v).

4.1.1 Shift Graphs are u-Cover Resistant

In this context we provide Theorem 4.15 as a result for the later Chapter 7. Namely, we
show that certain shift graphs are, in a sense, hard to cover.

As a preparation, we make an observation which points out a similarity between shift
graphs and line graphs:

Observation 4.14
Let G and H be graphs with G ⊆ H. Then shift graph S(G) is an induced subgraph of shift
graph S(H). In short, we have S(G) v S(H).

An ordered graph G = (V,E) is a digraph with a total order < on V such that the edges in
E respect order <, i.e., for two adjacent vertices v, u ∈ V we have v < u⇒ vu ∈ E. For
n ∈ N the ordered complete graph Ko

n is the graph ([n], E) where E = {ij ∈
([n]

2
)
| i < j}.

See Figure 4.1 as an example.

We can now prove Theorem 4.15.

Theorem 4.15
Let OS denote the class of shift graphs of ordered graphs. Then for any induced-hereditary
guest class G we have either OS ⊆ G or cGg (OS) =∞.
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4. Separability and Non-Separability

Proof. This proof is inspired by the separation of interval and track-number by Milans et
al. [MSW12]. Assume there is a k ∈ N with cGg (OS) = k. Let G be an arbitrary directed
graph with |G| = n. Let r = R(3, n, k) (the hypergraph Ramsey number exists [Ram30]).
Then there is a global G-cover of S(Ko

r ) using only k guests. This induces an edge-colouring
of S(Ko

r ) using k colours by choosing one covering guest for every edge. This in turn induces
an edge-colouring of K3

r where K3
r is the complete 3-uniform hypergraph, if the following

bijection is considered: b : E(S(Ko
r )) → E(K3

r ), {uv, vw} 7→ {u, v, w}. By definition of r
as hypergraph Ramsey number, this induces a monochromatic copy of Ko

n in Ko
r . The

inverse image of this copy then is a monochromatic copy of S(Ko
n). It is further an induced

subgraph of S(Ko
r ) as all edges between the contained vertices are contained. Thus, there

is a guest G′ with S(Ko
n) v G′. Since G is a directed subgraph of Ko

n, Observation 4.14
implies also S(G) v G′. As G was chosen arbitrarily, we obtain OS ⊆ G.

4.2 Non-Separability for Host Classes of Bounded χ

In this section we show that a separation of folded- and union-covering number is not
possible for host classes of bounded chromatic number. Basically, we aim to construct a
union cover from a k-folded cover (S, φ), by partitioning the guests into subgraphs of the
host graph H to make φ guest-injective on those subgraphs.

In order to do so, we enumerate the (sub-)vertices v1, . . . , vk mapped to any vertex v ∈ H
from 1 to k. To obtain a subgraph of H, we may only chose one subvertex vi for every
vertex v ∈ H. However, without further knowledge, we need to cover for every edge uv ∈ H
all k · k possible subvertex combinations of ui and vj , to ensure the edge uivj mapped to
uv is contained in one created guest. If we could choose two subvertices of v ∈ H in each
created guest, then we could just use one created guest for every tuple (i, j) ∈ [k]2. That
created guest would be the subgraph of

⋃
S induced by the vertex set obtained by choosing

vi and vj for every vertex v ∈ H.

However, we must chose only one subvertex per vertex and thus partition the vertices of H
for that created guest into one set choosing subvertex vi and another set choosing subvertex
uj . To ensure that still for every edge the right corresponding subvertices are contained
in a common created guest, we make use of a proper colouring of H. This allows us to
partition the vertices according to their colour. We need to have for any two colours and
any two subvertex-indices a created guest assigning the given indices to the given colours.
We aim to minimize the number of created guests.

A corresponding assignation is provided in Lemma 4.16. Here the functions f1, . . . , ft
correspond to the mappings from colour to subvertex index in t created guests.

Lemma 4.16
Let a, b ∈ N. Then there are t = a2dlog(b)e functions f1, . . . , ft : [b]→ [a] such that for any
i, j ∈ [a] and m,n ∈ [b] with m 6= n, there is a k ∈ [t] such that fk(m) = i and fk(n) = j.

Proof. For l ∈
[
dlog(b)e

]
we define dl : [b] → {0, 1} as a function mapping a number y

to its l’th digit in binary representation (i.e., we set dl(y) = 1 if (y mod 2l) ≥ 2l−1 and
dl(y) = 0 otherwise).

For i, j ∈ [a] and l ∈ [dlog(b)e] we define function fi,j,l : [b] → [a] as follows: We set

fi,j,l(m) =
{
i, if dl(m) = 1
j, otherwise

.

That are a2dlog(b)e functions. We show they fulfil the statement.
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4.2. Non-Separability for Host Classes of Bounded χ

Let i, j ∈ [a] and m,n ∈ [b] such that m 6= n. Then there is a number l ∈ [dlog(b)e] such
that the binary representations of m and n differ in the l’th digit (otherwise they had the
same representation and were therefore equal). If dl(m) = 1, then we have dl(n) = 0 and
fi,j,l(m) = i as well as fi,j,l(n) = j. Otherwise, we have dl(m) = 0, then we have dl(n) = 1
and fj,i,l(m) = i as well as fi,j,l(n) = j. This concludes the proof.

We use Lemma 4.16 in Theorem 4.17 to reduce the number of unions needed for our
construction of union covers from folded-covers. This construction makes use of a proper
colouring of the host graph H and is thus dependent on χ(H).

Theorem 4.17
Let G be an induced-hereditary guest class and let H be a host graph. Let (S, φ) be a k-folded
G-cover of H with S = {G1, . . . , Gm}. Then there is a (k2dlog(χ(H))e)-union G-cover
(S′, φ′) of H, such that every guest in S′ is induced subgraph of one of the guests in S.
Especially we have cGu(H) ≤ cGf (H)2dlog(χ(H))e.

Proof. Let r be a proper colouring of H using χ(H) colours. For every vertex v in H
denote the up to k vertices of G1, . . . , Gm in φ−1(v) as v1, . . . , va(v). Every two adjacent
vertices v and w in H have two different colours r(v) and r(w). The edge vw is covered
by at least one edge xy in some guest Gj with φ(x) = v and φ(y) = w. Let x = vs and
y = wt. Then we associate vw with the 5-tuple (r(v), r(w), s, t, j). By covering all edges
associated to any such 5-tuple, we cover all edges of host graph H.

Note that the edge-set corresponding to the same 5-tuple forms an induced subgraph of
a guest and as such covers every vertex of H at most once. The colours are necessary to
decide for every vertex v, whether vs or vt is used.

An easy way to deal with all those 5-tuples is to use for every of them another guest which
contains the corresponding edges, resulting in χ(H)2k2m guests. This way only pre-images
of vertices of H having two specific colours are used in a guest. The impact of χ(H) on the
number of guests (and sets in their pairwise disjoint partition) can be drastically reduced
by using all colours in every guest. It is then necessary to assign the numbers corresponding
to colours in a clever way, e.g. by using Lemma 4.16.

By Lemma 4.16 we obtain t = k2dlog(χ(H))e functions f1, . . . , ft : [χ(H)]→ [k] such that:
for i, j ∈ [k] and r1, r2 ∈ [χ(H)] with r1 6= r2, there is an l ∈ [t] such that fl(r1) = i and
fl(r2) = j.

For each 1 ≤ i ≤ t let Di = {vx ∈ G1 ·∪ . . . ·∪Gm | x = fi(r(v))}. This definition especially
ensures φ−1

|Di(v) = 1, for every v ∈ H and 1 ≤ i ≤ t.

For each 1 ≤ i ≤ t and 1 ≤ j ≤ m we define Gj,i = 〈Di ∩ V (Gj)〉Gj . Let S′ =
{G1,1, . . . , Gt,1, . . . , G1,m, . . . , Gt,m} be the set of all those graphs. Further, let φ′ be the
corresponding function using φ as mapping, i.e. let

φ′ : G1,1 ·∪ . . . ·∪Gt,1 ·∪ . . . ·∪G1,m ·∪ . . . ·∪Gt,m → H, (v, l) 7→ φ(v).

We now show (S′, φ′) is a (k2dlog(χ(H))e)-union G-cover of H. Since Gj,i v Gj and G
is induced-hereditary, we also get Gj,i ∈ G. Let vw ∈ E(H). Then there is a guest Gj
in S containing an edge vxwy mapped to vw by φ. Since v and w are adjacent, we have
r(v) 6= r(w). Hence, there is an 1 ≤ i ≤ t such that fi(r(v)) = x and fi(r(w)) = y. This
means that vx and wy are both contained in Di and thus in Gj,i. Guest Gj,i must therefore
contain edge vxwy which is mapped to φ(vx)φ(wy) = vw. The tuple (S′, φ′) is therefore a
G-cover of H.
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4. Separability and Non-Separability

Since |φ′−1
|Gj,i(v)| ≤ |φ′−1

|Di (v)| = |φ−1
|Di(v)| = 1 for every Gj,i ∈ S′, the cover is injective. Finally,

we can partition S′ into t = k2dlog(χ(H))e sets {G1,1, . . . , G1,m}, . . . , {Gt,1, . . . , Gt,m}.
Those contain each only pairwise disjoint guests since the supergraphs G1, . . . , Gm are
already pairwise disjoint (in their disjoint union). The cover is therefore a (k2dlog(χ(H))e)-
union cover. By definition of the guests, each of them is induced subgraph of one of the
graphs G1, . . . , Gm.

We thereby obtain that a separation of folded- and union-covering number is not possible
for host classes with bounded chromatic number.

Corollary 4.18
Let G be an induced-hereditary guest class. Let H be a host class such that cGf (H) = c <∞
and let there be a number r ∈ N such that for any graph H ∈ H we have χ(H) ≤ r. Then
we have cGu(H) ≤ c2dlog(r)e.

Proof. Direct consequence of Theorem 4.17.

4.3 Non-Separability of (a, b)-Sparse Graphs
To cover a graph, every edge must be covered by at least one edge of one of the guests.
The maximum number of edges in a guest therefore provides lower bounds on the covering
numbers, as Proposition 4.19 shows.

Proposition 4.19
Let G be an induced-hereditary guest class and H be a host graph. Further let α : N→ N,
β : N→ R and γ : N→ N be three weakly monotonically increasing functions such that for
n ∈ R we have

α(n) ≥ max{||G|| : G ∈ G, |G| ≤ n},
β(n) ≥ max{avd(G) : G ∈ G, |G| ≤ n},
γ(n) ≤ min{|G| : G ∈ G, ||G|| ≥ m}

Then we have

(i)

cGg (H) ≥ max
H′⊆H

⌈ ||H ′||
α(|H ′|)

⌉

(ii)

cGl (H) ≥ max
H′⊆H

⌈avd(H ′)
β(|H ′|)

⌉

(iii)

cGf (H) ≥ max
H′⊆H

⌈
γ(||H ′||)
|H ′|

⌉

Proof. Note that, speaking of guests, the function α provides an upper bound for the
number of edges, function β provides an upper bound for twice the number of edges per
vertex (which can be interpreted as the local number of edges), and γ(H) is a lower bound
for the number of vertices needed to provide enough edges to cover H.

“(i)”: Let (S, φ) be a k-global G-cover of H. Since (S, φ) is guest-injective, we have for
G ∈ S that |G| ≤ |H|. With the definition of α we have ||G|| ≤ α(|G|) ≤ α(|H|). Since
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4.3. Non-Separability of (a, b)-Sparse Graphs

φ is edge-surjective, we have ||H|| ≤ ||
⋃
· S|| ≤ kα(|H|). Noting that k is an integer, we

obtain k ≥
⌈
||H||
α(|H|)

⌉
.

With G being induced-hereditary, the cover (S, φ) induces a k-global G-cover on every
induced subgraph of H. Hence, we have cGg (H) ≥ maxH′vH

⌈
||H′||
α(|H′|)

⌉
. Finally, observe that

for every subgraph H ′ ⊆ H we have ||H′||
α(|H′|) ≤

||〈H′〉H ||
α(|〈H′〉H |) . Thereby Statement (i) holds.

“(ii)”: Let (S, φ) be a k-local G-cover of H. Then we have |
⋃
· S| ≤ k|H|. For G ∈ S we

have |G| ≤ |H|, since (S, φ) is guest-injective. Since β is by definition weakly monotonically
increasing, we can now calculate

avd(
⋃
· S) ≤ max

G∈S
avd(G) ≤ β(|G|) ≤ β(|H|).

Next note that, for v ∈ H we have deg(v) ≤
∑
u∈φ−1(v) deg(u), since φ is an edge-surjective

homomorphism. We obtain∑
v∈H

deg(v) ≤
∑
v∈H

∑
u∈φ−1(v)

deg(u) ≤
∑

u∈
⋃
· S

deg(u).

We can now easily calculate

avd(H) =
∑
v∈H deg(v)
|H|

≤
∑
u∈
⋃
· S deg(u)
|H|

≤ k
∑
u∈
⋃
· S deg(u)
|
⋃
· S|

= k avd(
⋃
· S) ≤ kβ(|H|)

Hence, we have k ≥
⌈

avd(H)
β(|H|)

⌉
. As in the proof of Statement (i) we can conclude Statement (ii)

holds.

“(iii)”: Let cGf (H) = k <∞. Then we also have cGf (H) = k by Proposition 3.2. Hence, let
(S, φ) be a k-folded G-cover of H. Since φ is edge-surjective, we have ||H|| ≤ ||

⋃
· S||. By

definition, function γ is weakly monotonically increasing.

Then we have
γ(||H||) ≤ γ(||

⋃
· S||) ≤ |

⋃
· S| ≤ k|H|.

Hence, we have k ≥
⌈
γ(||H||)
|H|

⌉
. As in the proof of Statement (i) we can conclude State-

ment (iii) holds.

The lower bounds provided by Proposition 4.19 are only meaningful, if the number of edges
in guest graphs is significantly bounded. Strong bounds on the number of edges are given
for sparse graphs. For those we show that these lower bounds are tight and that the local
and the global covering number coincide. In some cases also the folded covering number
coincides with the local and the global covering number.

4.3.1 Covers with Regards to (a, b)-Sparse Graphs

Let a, b ∈ N0. Lee and Streinu introduced the notion of (a, b)-sparse graphs [LS08]. A
graph G is called (a, b)-sparse, if for every subgraph H = (V,E) ⊆ G with |V | ≥ 2 we have
|E| ≤ a|V | − b. In that case, if ||G|| = a|G| − b then G is called (a, b)-tight. Note that every
subgraph of an (a, b)-sparse graph is by definition also (a, b)-sparse. Further note that we
only consider simple graphs, while Lee and Streinu considered more general multigraphs.

For example, forests are (1, 1)-sparse, pseudoforests are (1, 0)-sparse and outer-planar
graphs are (2, 3)-sparse. However, not all (2, 3)-sparse graphs are outer-planar. E.g., the
forbidden minor K2,3 is (2, 3)-sparse. Note that by this definition planar graphs are not
(3, 6)-sparse, since for any subgraph H of a (3, 6)-sparse graph with 2 vertices, we get
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4. Separability and Non-Separability

||H|| ≤ 3|H| − 6 = 0. Therefore, (3, 6)-sparse graphs may not contain any edges. Indeed,
the parameters are basically always required to satisfy b < 2a.

Let G be a graph. A subgraph H ⊆ G is called an (a, b)-block, if it is (a, b)-tight. The
subgraph H is called an (a, b)-component of G if it is an inclusion-maximal (a, b)-block.
I.e., subgraph H is an (a, b)-component if it is an (a, b)-block and for every (a, b)-block
H ′ in G with H ⊆ H ′ we have H = H ′. Examples of blocks are given in Figure 4.2 and
examples of components are given in Figure 4.3. We denote the class of all (a, b)-sparse
graphs by G(a, b).

B

A

Figure 4.2: A (2, 3) sparse graph and two (2, 3)-blocks A and B. Also the subgraphs A∩B
and A ∪B are (2, 3)-blocks by Theorem 4.20, since A and B share at least 2
vertices.

Figure 4.3: A (2, 3) sparse graph decomposed into its (2, 3)-components. Since subgraphs
induced by single edges already are blocks, here every edge is contained in a
component.

A matroid is a tuple (E, I) where E is a finite set and I is a set of independent sets that
are subsets of E with the following properties:

1. ∅ ∈ I.

2. ∀I ∈ I : ∀J ⊆ I : J ∈ I. (Hereditary Property)

3. A,B ∈ I ∧ |B| ≤ |A| ⇒ ∃x ∈ A \B : B ∪ {x} ∈ I. (Augmentation Property)

In a matroid (E, I) we call subsets of E that are not independent sets dependent.

Let H be a host graph. Lee and Streinu proved that the (a, b)-sparse subsets of H are the
independent sets of a matroid on E(H). We prove the same result focusing on simple graphs
and following their results. We will use the matroid property to apply the Matroid Base
Cover Theorem by Edmonds [Edm65] to provide an upper bound for the global covering
number with regards to G(a, b). This upper bound matches the lower bound provided by
Proposition 4.19 which will show the local and global covering number coincide.
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4.3. Non-Separability of (a, b)-Sparse Graphs

As a first step, we establish the decomposition of (a, b)-sparse graphs into (a, b)-components
in Corollary 4.21. We first show Theorem 4.20 which allows to merge blocks to obtain
larger blocks (see Figure 4.2 for an example).

Theorem 4.20 (Lee and Streinu [LS08])
Let a, b ∈ N0 with b < 2a. Let H be an (a, b)-sparse graph. Let H1 and H2 be non-empty
(a, b)-blocks in H. Let one of the following statements hold:

(i) The blocks H1 and H2 have at least one common vertex and b ≤ a.

(ii) The blocks H1 and H2 have at least two common vertices,

Then H1 ∪H2 and H1 ∩H2 are also (a, b)-blocks in G.

Proof. We first observe |H1 ∪H2| = |H1|+ |H2| − |H1 ∩H2|. And further
||H1 ∪H2|| = ||H1||+ ||H2|| − ||H1 ∩H2||. We can then calculate:

||H1 ∪H2||+ ||H1 ∩H2|| = ||H1||+ ||H2|| = a(|H1|+ |H2|)− 2b
= a(|H1 ∪H2|+ |H1 ∩H2|)− 2b
= a|H1 ∪H2| − b+ a|H1 ∩H2| − b (?)

We apply case distinction. If |H1 ∩H2| ≤ 1 then the first assumption must hold and we
thus have |H1 ∩H2| = 1 and b ≤ a. This implies

||H1 ∪H2|| = ||H1 ∪H2||+ ||H1 ∩H2|| = a|H1 ∪H2| − b+ a|H1 ∩H2| − b
= a|H1 ∪H2| − b+ a− b
≥ a|H1 ∪H2| − b (??)

If |H1 ∪H2| ≤ 1, then we have H1 ∪H2 = H1 = H1 ∩H2 and the statement holds. Hence,
assume |H1 ∪H2| ≥ 2. Since H1 ∪H2 is further a subgraph of H and thereby sparse, this
means with (??) that H1 ∪H2 is an (a, b)-block and that a = b. Note a subgraph on a
single vertex is a block if and only if a = b, since 0 = a · 1− b⇔ a = b. Hence, the graph
H1 ∩H2 is also a block.

Next, if |H1 ∩ H2| ≥ 2, then we have ||H1 ∪ H2|| ≤ a|H1 ∪ H2| − b and ||H1 ∩ H2|| ≤
a|H1 ∩H2| − b, since H1 ∪H2 and H1 ∩H2 are subgraphs of the (a, b)-sparse graph H and
contain at least 2 vertices. With (?) this implies H1 ∪H2 and H1 ∩H2 are (a, b)-blocks.
This concludes the proof.

The decomposition of (a, b)-sparse graphs into (a, b)-components as stated in Corollary 4.21
is a direct consequence.

Corollary 4.21 (Decomposition into Components; Lee and Streinu [LS08])
Let a, b ∈ N0 with b < 2a. Let H be an (a, b)-sparse graph. Then H is decomposed into
(a, b)-components as well as edges and vertices, that are not contained in any block.

I.e., any two (a, b)-components of H have at most one common vertex and every edge or
vertex that is not contained in any (a, b)-component of H is not contained in any (a, b)-block
of H.

Proof. Direct consequence of the definition of (a, b)-components and Theorem 4.20.

To prove the Augmentation Property of matroids, we need a characterization of the cases
in which (a, b)-sparsity is preserved when adding an edge. The following theorem gives a
characterization in terms of (a, b)-components.
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4. Separability and Non-Separability

Theorem 4.22 (Lee and Streinu [LS08])
Let a, b ∈ N0 with b < 2a. Let H be an (a, b)-sparse graph. Further, let u and v be
non-adjacent vertices in H. Then H + uv is (a, b)-sparse if and only if no (a, b)-component
of H contains u and v.

Proof. Assume an (a, b)-component C of H contains u and v. Since it is tight, we have
||C|| = a|C| − b. The graph C + uv is subgraph of H + uv and has

||C + uv|| = ||C||+ 1 > a|C + uv| − b = a|C| − b

edges. Hence, H + uv is not (a, b)-sparse.

Next assume there is no (a, b)-component of H containing u and v. Then there is not even
an (a, b)-block B of H containing u and v since otherwise by definition of (a, b)-components
the block B must be contained in an (a, b)-component that would then contain u and v.

We therefore have for every subgraph G ⊆ H with u, v ∈ G that

||G+ uv|| = ||G||+ 1 ≤ (a|G| − b− 1) + 1 = a|G+ uv| − b.

Further, for every subgraph G′ ⊆ H with u 6∈ H or v 6∈ H, we have

||G′ + uv|| = ||G′|| ≤ a|G′| − b = a|G′ + uv| − b.

Hence, graph H + uv is (a, b)-sparse. This concludes the proof.

We can now show that the edge-sets of (a, b)-sparse subgraphs are the independent sets in
a matroid.

Corollary 4.23 (Lee and Streinu [LS08])
Let a, b ∈ N0 with b < 2a. Let further H be a graph with ||H|| > 0. Let S denote the set of
all edge-sets of (a, b)-sparse subgraphs of H. More precisely, let

S = {E(G) | G ⊆ H and G is (a, b)-sparse}

Then (E(H),S) is a matroid.

Proof. First note the trivial graph ({v}, ∅) on one vertex is subgraph of H. Hence, we have
∅ ∈ S.

Let G ⊆ H be a subgraph with E(G) ∈ S. This means G is (a, b)-sparse. Let uv ∈ E(G).
Then G− e is also (a, b)-sparse, since G− e itself and all of its subgraphs are subgraphs
of G. Hence, we have E(G) \ {e} = E(G− e) ∈ S. Therefore, the hereditary property is
fulfilled.

Let E ∈ S and F ∈ S with |E| < |F |. Let G ⊆ H be a subgraph with edge-set E(G) = E
and let G′ ⊆ H be a subgraph with edge-set E(G′) = F . Let C1, . . . , Cc be the (a, b)-
components of G. By Corollary 4.21 these components are pairwise edge-disjoint and the
set R of the remaining edges contains no edge of those components.

We have at least a
∑c
i=1 |Ci| − cb+ |R| edges in G, since every component is tight. On the

other hand, graph G′ is (a, b)-sparse. Thus, for i ∈ [c] graph G′ has at most a|Ci| − b edges
in 〈V (Ci)〉H , and it has at most |R| edges in R. Since we have |F | > |E|, by pigeon hole
principle there must be an edge uv ∈ F \ E such that u and v are not contained in the
same component of G′. By Corollary 4.22 follows G+ uv is an (a, b)-sparse subgraph of H.
Hence, we have E ∪ {uv} ∈ S and the augmentation property is fulfilled. This concludes
the proof.
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We aim to use the Matroid Base Cover Theorem of Edmonds [Edm65]. LetM = (E, I)
be a matroid. A maximal independent set of M is called a base. All bases of M have
the same number of elements called the rank of M. For F ⊆ E the tuple (F,J ) with
J = {J ∈ I | J ⊆ F} is a matroid called submatroid ofM. The rank of set F ⊆ E is the
rank of the submatroid induced by F .

Theorem 4.24 (Matroid Base Cover Theorem; Edmonds [Edm65])
Let (E,S) be a matroid. Then E can be partitioned into at most k sets in S if and only if
for every subset F ⊆ E we have |F | ≤ k r(F ), where r(F ) is the rank of F .

In order to use the Matroid Base Cover Theorem, we need to show the corresponding
inequality. Let H = (V,E) be a graph and F ⊆ E. Then we denote the subgraph of H
induced by F as G(F ), i.e., we say G(F ) = (U,F ) where U = {v ∈ V | ∃u ∈ V : uv ∈ F}.

Lemma 4.25
Let a, b ∈ N0 with b < 2a. Let H be a graph with ||H|| > 0 and let (E(H),S) be the matroid
with the (a, b)-sparse subgraphs of H as independent sets as given in Corollary 4.23. Let

k = max
H′⊆H
|H′|≥2

⌈ ||H ′||
a|H ′| − b

⌉
.

Then for F ⊆ E(H) we have |F | ≤ r(F )k, where r(F ) is the rank of F .

Proof. We first proof the statement implicitly for F ⊆ E(H) with r(F ) = a|G(F )| − b,
i.e., those edge-sets spanned by an (a, b)-block. We then use the decomposition into
(a, b)-components of a base edge-set F ′ to calculate that the rank is high enough for any
set of edges F ⊆ E(H).

Let F ⊆ E(H). By the definition of r(F ), there is a maximal subset F ′ ⊆ F such that
G(F ′) is (a, b)-sparse with |F ′| = r(F ).

Let C be an (a, b)-component of G(F ′). We consider G = 〈V (C)〉H , the induced subgraph
of H with the same vertex set as C. Since C is tight, we have ||C|| = a|C| − b = a|G| − b.
By definition of k we have ||G||/(a|G| − b) ≤ k and thus |E(G)| ≤ k(a|G| − b) = k||C||.

Let C1, . . . , Cn denote the (a, b)-components of G(F ′). By Corollary 4.21, these have
pairwise at most one vertex in common, and the edges in set R = F ′ \ E(C1 ∪ . . . ∪ Cn)
are contained in no (a, b)-component of G(F ′). Let G1, . . . , Gn denote the subgraphs of
H induced by the vertex sets V (C1), . . . , V (Cn). Since those graphs have the same vertex
sets as the components, they also have pairwise at most one vertex in common. Especially,
they are edge-disjoint.

Since F ′ is maximal, it follows by Corollary 4.22 that for every other edge uv ∈ F \F ′ both
vertices u and v are contained in a common (a, b)-component of G(F ′). Therefore, every
edge of F is contained in G1 ∪ . . . ∪Gn ∪R. I.e., we have F = E(G1) ·∪ . . . ·∪ E(Gn) ·∪R.
We can therefore calculate

|F | = |E(G1) ·∪ . . . ·∪ E(Gn) ·∪R| ≤ k||C1||+ · · ·+ k||Cn||+ |R| ≤ k|F ′| = k r(F ).

We can now characterize the global covering number of a host graph H with regards to
(a, b)-sparse graphs in terms of numbers of edges in the subgraphs of H. It coincides
with the local and union covering number. An efficient algorithm providing best-possible
G(a, b)-covers is given in Chapter 5.
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Theorem 4.26
Let a, b ∈ N0 with b < 2a. Let H be a host graph. Then we have

cG(a,b)
g (H) = cG(a,b)

u (H) = c
G(a,b)
l (H) = max

H′⊆H
|H′|≥2

⌈ ||H ′||
a|H ′| − b

⌉
= k.

Proof. By Corollary 4.23 and Lemma 4.25 there is a k-global G(a, b)-cover of H. With
Proposition 3.1 we obtain cG(a,b)

l (H) ≤ cG(a,b)
u (H) ≤ cG(a,b)

g (H) ≤ k.

We define function β : N→ R, n 7→ max(0, 2(an−b)
n ). By definition, β is weakly monotonically

increasing and one easily verifies for n ∈ N that β(n) ≥ max{avd(G) : G ∈ G(a, b), |G| ≤ n}.
With Proposition 4.19 we calculate

c
G(a,b)
l (H) ≥ max

H′⊆H
|H′|≥2


avd(H ′)

2(a|H ′| − b)
|H ′|

 = max
H′⊆H
|H′|≥2


2||H ′||
|H ′|

2(a|H ′| − b)
|H ′|

 = max
H′⊆H
|H′|≥2

⌈
||H ′||

a|H ′| − b

⌉
= k

Hence, we obtain k ≤ c
G(a,b)
l (H) ≤ c

G(a,b)
u (H) ≤ c

G(a,b)
g (H) ≤ k. This concludes the

proof.

With Proposition 4.19 we obtain that for b = 0 also the folded covering number coincides
with the global covering number. This generalizes the corresponding result of Knauer and
Ueckerdt for pseudoforests ((1, 0)-sparse graphs) [KU16]. We first state the general lower
bound obtained with Proposition 4.19.

Lemma 4.27
Let a, b ∈ N0 with b < 2a. Let H be a host graph. Then we have

c
G(a,b)
f (H) ≥ max

H′⊆H
|H′|≥2

⌈
||H ′||+ b

a|H ′|

⌉
.

Proof. Let γ : N→ R,m 7→ (m+ b)/a. This is obviously a weakly monotonically increasing
function. Further, we have for every (a, b)-sparse graph G with |G| ≥ 2 that ||G|| ≤ a|G|−b.
This means for m ≤ ||G|| we obtain m ≤ a|G| − b. This is equivalent to (m+ b)/a ≤ |G|.
We can therefore apply Proposition 4.19 and obtain the inequality we want to prove.

With Theorem 4.26 and Lemma 4.27 we can conclude that all G(a, 0)-covering numbers
coincide.

Corollary 4.28
Let a ∈ N. Let H be a host graph. Then we have

c
G(a,0)
f (H) = c

G(a,0)
l (H) = cG(a,0)

u (H) = cG(a,0)
g (H) = max

H′⊆H
|H′|≥2

⌈
||H ′||
a|H ′|

⌉
.

Proof. Direct consequence of Theorem 4.26, Lemma 4.27 and Proposition 3.1(ii).

The following theorem provides an easy example where those covering numbers do not
coincide.
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Theorem 4.29
Let a = b = 1 and let H be the graph obtained by removing one edge from K5. Then we
have cG(1,1)

f (H) = 2 < 3 = c
G(1,1)
g (H).

Proof. With Theorem 4.26 one easily verifies that

cG(1,1)
g (H) = max

H′⊆H
|H′|≥2

⌈ ||H ′||
a|H ′| − b

⌉
=
⌈ ||9||

1|5| − 1

⌉
= 3.

On the other hand there is a 2-folded G(1, 1)-cover of H as can be seen in Figure 4.4.

Figure 4.4: A 2-folded G(1, 1)-cover of K5 − e.
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5. Computing (a, b)-Sparse Covers

In Chapter 4 Section 4.3 we provide a formula for the exact global covering number with
regards to (a, b)-sparse graphs and see that the local, the union and the global covering
number coincide for all host graphs. For definitions concerning (a, b)-sparse graphs look in
that section. In this section we provide an efficient algorithm that returns optimal global
G(a, b)-covers of a given host graph H. It makes heavy use of the pebble game algorithm
provided by Lee and Streinu that identifies (a, b)-sparse graphs [LS08]. We first restate
their algorithm in a version that is restricted to simple graphs and only able to identify
(a, b)-sparse graphs. Their original algorithm was enhanced to provide additional results
with the same runtime.

5.1 Detecting (a, b)-Sparse Graphs
The basic idea is to preserve a subgraph D ⊆ H, initially an independent set, in a good
state, ensuring it is (a, b)-sparse, while adding the edges of H one by one until no more edge
can be added. If this happens before all edges are added, then graph H is not (a, b)-sparse.
The good state is realized by assigning pebbles to the vertices of D.

Recall that we define for a digraph D and a subgraph G ⊆ D the outdegree of G as
deg+

D(G) = |{uv ∈ D | u ∈ G, v 6∈ G}|.

Definition 5.1
Let a, b ∈ N0 with b < 2a. Let D = (V,E) be a directed graph and let p : V → [a] be any
map. For U ⊆ V we define p(U) =

∑
u∈U p(u). We depict function p by putting p(v)

pebbles onto every vertex v ∈ V . These pebbles in some sense count how many edges may
still be added.

We call digraph D (a, b)-pebbled by p, if we have:

(i) ∀v ∈ V : deg+(v) + p(v) = a

(ii) ∀G ⊆ D with |G| ≥ 2 : p(V (G)) + deg+(G) ≥ b

An example of a (2, 3)-pebbled digraph is given in Figure 5.1.

We first observe that every (a, b)-pebbled digraph is (a, b)-sparse. Roughly speaking,
Property (i) ensures there are at most a edges per vertex and Property (ii) ensures in every
non-trivial subgraph G there are b pebbles/edges reserved. Thereby ||G|| ≤ a|G| − b is
guaranteed.
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G
B

Figure 5.1: A (2, 3)-pebbled digraph G where pebble function p is represented by pebbles:
Each square represents a pebble and every vertex v has p(v) pebbles. For the
induced subgraph B we have p(V (B)) = 2 and deg+(B) = 1. By Lemma 5.3 it
is thus a (2, 3)-block of G.

Lemma 5.2 (Lee and Streinu [LS08])
Let a, b ∈ N0 with b < 2a. Let D = (V,E) be a digraph that is (a, b)-pebbled by function
p : V → [a]. Then D is (a, b)-sparse.

Proof. Let G ⊆ D be a non-trivial subgraph. Then we have by Property (i), that

deg+(V (G)) = a|G| − p(V (G)).

With Property (ii) we obtain that

||G|| = deg+(V (G))− deg+(G) ≤ (a|G| − p(V (G)))− (b− p(V (G))) = a|G| − b.

This concludes the proof.

If in an execution of the pebble game algorithms all edges are added successfully, then we
have D = H. And since we keep D always (a, b)-pebbled, by Lemma 5.2 the given graph
H is (a, b)-sparse.

We next provide operations required to add edges to D. Let G = (V,E) be an (a, b)-sparse
graph and let uv ∈

(V
2
)
\E. Graph G+ uv is (a, b)-sparse, if no block of G contains u and

v. In that case we call set {u, v} free in G. The (a, b)-blocks of (a, b)-pebbled digraphs are
characterized by Lemma 5.3 (see Figure 5.1 for an example). It allows us to identify a set
{u, v} as free if p(u) + p(v) ≥ b+ 1.

Lemma 5.3
Let a, b ∈ N0 with b < 2a. Let D = (V,E) be a digraph that is (a, b)-pebbled by function
p : V → [a]. Let G ⊆ D.

Then subgraph G is (a, b)-tight if and only if G v D and deg+
D(G) + p(V (G)) ≤ b.

Proof. First note that if G is not an induced subgraph, then there is an (induced) subgraph
H with more edges with the same vertex set V (G). By Lemma 5.2 subgraph H is (a, b)-
sparse and we have ||G|| < ||H|| ≤ a|H| − b = a|G| − b. Therefore G is not (a, b)-tight and
the equivalence holds.

If G is an induced subgraph of D than we have with Property (i) of (a, b)-pebbled digraphs
that ||G|| = deg+(V (G)) − deg+(G) = a|G| − p(V (G)) − deg+(G). By Property (ii)
we have p(V (G)) + deg+(G) ≥ b. We therefore have ||G|| = a|G| − b if and only if
deg+

D(G) + p(V (G)) ≤ b.

If we have ensured a set {u, v} is free, we only need to pay one pebble of u to add edge uv.
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Lemma 5.4 (Lee and Streinu [LS08])
Let a, b ∈ N0 with b < 2a. Let D = (V,E) be a digraph that is (a, b)-pebbled by function
p : V → [a]. Further let u and w be two non-adjacent vertices with p(u) ≥ 1 and

(i) {u,w} is free in D or

(ii) p(u) + p(w) ≥ b+ 1.

Then digraph D′ = (V,E ∪ {uw}) is (a, b)-pebbled by function

p′ : V → [a], v 7→
{
p(v)− 1 , if v = u

p(v) , otherwise
.

Proof. First note we have for every vertex v ∈ V \ {u} that p′(v) + deg+
D′(v) = p(v) +

deg+
D(v) = a by Property (i) of D. Further, for vertex u we have

p′(u) + deg+
D′(u) = (p(u)− 1) + (deg+

D(u) + 1) = p(u) + deg+
D(u) = a

by Property (i) of D. Hence, also D′ has Property (i).

Next Assume {u,w} is free in D. Then no block G of D contains u and w. Therefore
by Lemma 5.3 we have deg+

D(G) + p(G) ≥ b+ 1. If u and w are contained in G we have
p′(V (G)) + deg+

D′(G) = (p(V (G))− 1) + deg+
D(G) ≥ b. Otherwise we have:

p′(V (G)) + deg+
D′(G) =

{
(p(V (G))− 1) + (deg+

D(G) + 1) , if u ∈ G and w 6∈ G
p(V (G)) + deg+

D(G) , otherwise
= p(V (G)) + deg+

D(G) ≥ b

by Property (ii) of D.

Hence, also D′ has Property (ii).

Next assume p(u) + p(w) ≥ b+ 1. For every subgraph G ⊆ D with u,w ∈ G this implies
deg+

D(G) + p(V (G)) ≥ b + 1. Therefore by Lemma 5.3 no block contains u and w and
thus {u,w} is free in D. Since the statement is proven for this case, this concludes the
proof.

This means we can add an edge if the corresponding vertices provide enough pebbles.
Requirement (ii) is easily verified. By Lemma 5.5 it is possible to remove an edge without
special requirements.

Lemma 5.5
Let a, b ∈ N0 with b < 2a. Let D = (V,E) be a digraph that is (a, b)-pebbled by function
p : V → [a].

Further let uw ∈ D.

Let D′ = (V,E \ {uw}) be the digraph obtained from D by removing the edge uw. Then D′
is (a, b)-pebbled by

p′ : V → [a], v 7→
{
p(v) + 1 , if v = u

p(v) , otherwise
.

Proof. First note we have for every vertex v ∈ V \ {u} that p′(v) + deg+
D′(v) = p(v) +

deg+
D(v) = a by Property (i) of D. Further, for vertex u we have

p′(u) + deg+
D′(u) = (p(u) + 1) + (deg+

D(u)− 1) = p(u) + deg+
D(u) = a
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by Property (i) of D. Hence, also D′ has Property (i).

Next let G ⊆ D′ be a non-trivial subgraph. Then we have

p′(V (G)) + deg+
D′(G) =

{
(p(V (G)) + 1) + (deg+

D(G)− 1) , if u ∈ G and w 6∈ G
p(V (G)) + deg+

D(G) , otherwise
= p(V (G)) + deg+

D(G) ≥ b

by Property (ii) of D. Hence, also D′ has Property (ii). This concludes the proof.

After removing an edge xy, set {x, y} is free and the reverse edge yx can be inserted as
stated in the following Lemma (also see Figure 5.2). Such edge reversions can be used
repeatedly to move pebbles along edges to collect them on two vertices u and v such that
we can check whether {u, v} is free.

G′

u

v

x

Figure 5.2: Result of reversing edge vx in graph G of Figure 5.1. Note that a pebble moved
from x to v.

G′′

u

v

xp

q

r

Figure 5.3: Result of reversing the edges qp, rq and ur in graph G′ of Figure 5.2. Note
that a pebble moved from p to u.

Lemma 5.6 (Lee and Streinu [LS08])
Let a, b ∈ N0 with b < 2a. Let D = (V,E, d) be a digraph that is (a, b)-pebbled by function
p : V → [a]. Further let uw ∈ D.

Let D′ = (V,E \ uw ∪ wu) be the digraph obtained from D by reversing the direction of
edge uw and let p(w) ≥ 1. Then D′ is (a, b)-pebbled by

p′ : V → [a], v 7→


p(v) + 1 , if v = u

p(v)− 1 , if v = w

p(v) , otherwise
.

Proof. First note the outdegree of a vertex v changes only from within D to within D′, if
v = u or v = w. Those changes are counterbalanced by the changes from p to p′. Therefore
digraph D′ has Property (i).
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Next let G ⊆ D′ be a non-trivial subgraph. Then we have

p′(V (G)) + deg+
D′(G) =


(
p(V (G)) + 1

)
+
(

deg+
D(G)− 1

)
, if u ∈ G ∧ w 6∈ G(

p(V (G))− 1
)

+
(

deg+
D(G) + 1

)
, if u 6∈ G ∧ w ∈ G

p(V (G)) + deg+
D(G) , otherwise

= p(V (G)) + deg+
D(G) ≥ b

by Property (ii) of D. Hence, also D′ has Property (ii). This concludes the proof.

We can apply Lemma 5.6 repeatedly to reverse directed paths ending at some pebbles (see
Figure 5.3), bringing one pebble to the start vertex of the path. If a pebble can be reached,
such a path can be found by a depth-first search.

Let a, b ∈ N0 with b < 2a. Let D = (V,E) be a digraph that is (a, b)-pebbled by function
p : V → [a]. Further let U ⊆ V . Then the reach of U is the set of all vertices in V that can
be reached by starting in U and following directed edges. More precisely, we define the
reach by

Reach(U) = {v ∈ V | ∃ directed path P ⊆ D : ∃u ∈ U : P = (u, . . . , v)}.

We write ReachD(U) to specify that the reach in digraph D is meant. See Figure 5.4 for
an example.

G′′′

u

v

xp

q

r
〈Reach(u, v)〉G′′′ = B(u, v)

z

Figure 5.4: DigraphG′′′ resulting from collecting pebbles on u and v in graphG of Figure 5.1.
We have Reach(u, v) = {u, v, r, z}. Since p(Reach(u, v)) = p({u, v}) = b we
have by Theorem 5.8 that the subgraph induced by this reach is the minimum
block B(u, v) containing u and v.

If the vertices in U are the only vertices in Reach(U) with pebbles, then no more pebbles
can be moved from V \ U to U by applying Lemma 5.6. However, if p(U) ≤ b in that
situation, then the subgraph induced by U is already (a, b)-tight, as shown in Lemma 5.7.
While Lee and Streinu considered only the case |U | = 2, we consider also greater sets for
later use.

Lemma 5.7
Let a, b ∈ N0 with b < 2a. Let D = (V,E) be a digraph that is (a, b)-pebbled by function
p : V → [a]. Further let U ⊆ V with |U | ≥ 2 and let |p(Reach(U))| ≤ b.

Then 〈Reach(U)〉D is (a, b)-tight.

Proof. By the definition of Reach(U), the digraph H = 〈Reach(U)〉D has no outgoing edge,
i.e., we have deg+(H) = 0. Therefore we obtain deg+

D(H) + p(H) ≤ b and by Lemma 5.3
graph H is (a, b)-tight.
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We strengthen this result in Theorem 5.8. To this end, we introduce the notion of minimum
blocks. An example of a minimum Block is given in Figure 5.4.

Let a, b ∈ N0 with b < 2a. Let H be an (a, b)-sparse graph with vertex set U such that
|U | ≥ 2 and let there be a block B with U ⊆ V (B). Then we define the minimum block
containing all vertices in U as BH(U) =

⋂
{G ⊆ H | G is block}. If it is clear which H is

meant we just write B(U). By Theorem 4.20 the graph B(U) is actually a block. In case
that U = {u, v} we usually write B(u, v) instead of B({u, v}). For a directed or undirected
edge e = uv we also write B(e) instead of B(u, v).

Theorem 5.8
Let a, b ∈ N0 with b < 2a. Let D = (V,E) be a digraph that is (a, b)-pebbled by function
p : V → [a]. Further let U ⊆ V with |U | ≥ 2, let p(Reach(U) \ U) = 0 and let p(U) ≤ b.

Then we have B(U) = 〈Reach(U)〉D.

Proof. By Lemma 5.7 we know B = 〈Reach(U)〉D is a block. By Property(ii) of (a, b)-
pebbled digraphs we obtain p(U) = b. For any subgraph G ( B with U ⊆ G we have
p(G) = b and if V (G) ( V (B) then deg+(G) ≥ 1. With Lemma 5.3 this implies G is not
(a, b)-tight, unless G = B.

When edge uv is next to be added in the pebble game algorithm and there are at most b
pebbles in Reach({u, v}), then by Lemma 5.7 graph H is not (a, b)-sparse, since no edge
may be added to a tight graph. This means if p(Reach({u, v}) \ {u, v}) = 0, then we can
apply either Lemma 5.7 to show that H is not (a, b)-sparse, or we can apply Lemma 5.4 to
add uv.

As indicated earlier, we can search repeatedly for paths to pebbles in Reach({u, v}) \ {u, v}
and reverse them to move pebbles to u and v until p(Reach({u, v})\{u, v}) = 0 as described
by Algorithm 5.1.

Note that given a digraph D = (V, F ) we denote the corresponding undirected graph by
G(D), i.e, G(D) = (V,E) where E = {{u, v} ∈

(V
2
)
| (u, v) ∈ F}.

Theorem 5.9
Let a, b ∈ N0 with b < 2a. Let D = (V,E) be a digraph that is (a, b)-pebbled by function
p : V → [a]. Further let U ⊆ V .

Then a digraph D′ with G(D′) = G(D) and a function p′ : V → [a] such that D′ is (a, b)-
pebbled by p′ with p′(ReachD′(U) \ U) = 0 can be computed with a runtime in O(a|U ||E|).

Proof. A depth-first search starting from all vertices in U simultaneously allows to find
a path P from a vertex u ∈ U to a vertex v ∈ Reach({u, v}) \ U with p(v) ≥ 1, if such a
vertex exists. Otherwise, no such path is found and we know p(ReachD(U) \ U) = 0. This
depth-first search is possible with runtime in O(|E|).

If no other vertex with a pebble was found, we can return D and p. Hence, assume such a
path P was found.

By repeatedly applying Lemma 5.6, we can reverse every edge in P starting in v and move
a pebble from v along P to u. This can also be realized with runtime in O(|E|). This
increases p(U) by one. Note that we keep as invariant that D is (a, b)-pebbled by p. We
can therefore repeat these steps to further increase p(U).

Since there can be at most a|U | pebbles on U while D is (a, b)-pebbled, no new pebble can
be reached after at most a|U | path reversions. We thus obtain D′ and p′ such that D′ is
(a, b)-pebbled by p′ with p′(ReachD′(U) \ U) = 0.
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This yields a corollary for later use.

Corollary 5.10
Let a, b ∈ N0 with b < 2a. Let D = (V,E) be a digraph that is (a, b)-pebbled by a function
p : V → [a]. Let {u, v} ∈

(V
2
)
be not free in D.

Then we have BD(u, v) ⊆ 〈ReachD(u, v)〉D.

Proof. By Theorem 5.9 we obtain a graph D′ that is (a, b)-pebbled by a function p′ : V → [a]
with G(D) = G(D′) and p′(ReachD′(u, v)\{u, v}) = 0. By Lemma 5.3 we know p′({u, v}) ≤
b. With Theorem 5.8 this implies G(BD(u, v)) = G(BD′(u, v)) ⊆ G(〈ReachD′(u, v)〉D).
Digraph D′ is obtained from D by reversing paths starting in u or v alone. Since all
vertices in such a path could be reached from u or v before, no new edge ends at a vertex
out of reach. Therefore no new vertex can be reached from u or v in D′. I.e., we obtain
V (BD(u, v)) ⊆ ReachD′(u, v) ⊆ ReachD(u, v) and thus BD(u, v) ⊆ 〈ReachD(u, v)〉D.

Algorithm 5.1: Pebble-Collection on (a, b)-pebbled digraph D
Data: A digraph D that is (a, b)-pebbled by a function p : V → [a]. And a subset

U ⊆ V where pebbles shall be collected.
Result: A digraph D with G(D) = G(D) that is (a, b)-pebbled by a function

p : V → [a] such that p(ReachD(U) \ U)) = 0
1 Function collect(D, p, U)
2 D← D;
3 p← p ;
4 while ∃path P from u ∈ U to v ∈ V \ U with p(v) ≥ 1 do
5 reverse every edge in P ;
6 p(u)← p(u) + 1;
7 p(v)← p(v)− 1;
8 return (D, p);

With Theorem 5.9 we can detect (a, b)-sparse graphs: Given a graph H = (V,E) we start
with a digraph D = (V, ∅) where every vertex holds a pebbles. For every edge {u, v} ∈ E
we collect pebbles on u and v applying Theorem 5.9. If at most b pebbles could be collected,
then graph D is not (a, b)-sparse by Lemma 5.7. Since G(D) ⊆ H the given graph H is
also not (a, b)-sparse which is then returned as the result of the algorithm. Otherwise add
uv or vu by applying Lemma 5.4. If all edges could be added, graph D is (a, b)-pebbled
and G(D) = H. Therefore graph H is (a, b)-sparse. This is described in Algorithm 5.2.

Theorem 5.11 (Lee and Streinu [LS08])
Detecting whether a given graph H = (V,E) is (a, b)-sparse is possible with runtime in
O(a|E|2) ⊆ O(a3|V |2).

Proof. We have already described an algorithm to detect (a, b)-sparse graphs. It remains
to show that its runtime is in O(a3|V |2). By Theorem 5.9 we have for every edge e ∈ E a
runtime in O(a|E|) to collect the pebbles. Note that e can be added in constant time. We
therefore have a runtime in O(a|E|2). Further note we have to consider at most a|V |− b+ 1
edges, since any subgraph with more than a|V | − b edges is not (a, b)-sparse. Thus, we
have a runtime in O(a3|V |2).
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Algorithm 5.2: Algorithm deciding whether a graph H is (a, b)-sparse
Data: A graph H = (V,E)
Result: true if H is (a, b)-sparse. false otherwise

1 D← (V, ∅);
2 p← (V → [a], v 7→ a) ;
3 for {u, v} ∈ E do
4 (D, p)← collect(D, p, {u, v});
5 if p(u) + p(v) ≥ b+ 1 then // enough pebbles
6 if p(u) ≥ 1 then // add edge uv by Lemma 5.4
7 p(u)← p(u)− 1;
8 D← D + uv;
9 else // add edge vu by Lemma 5.4

10 p(v)← p(v)− 1;
11 D← D + vu;
12 else // at most b pebbles on u and v: 〈Reach{u,v}〉D already tight
13 return false;

// all edges have been added to D and D = H is (a, b)-pebbled
14 return true;

5.2 Computing Optimal Global (a, b)-Sparse Covers
For a given k ∈ N and a given host graph H we can already use Algorithm 5.2 to decide
c
G(a,b)
g (H) ≤ k by deciding whether host graph H is (ka, kb)-sparse, as the following lemma
shows.

Lemma 5.12
Let a, b ∈ N0 with b < 2a. Let H be a host graph. Further let k ∈ N. Then the following
three statements are equivalent:

(i) H is (ka, kb)-sparse

(ii) k ≥ maxH′⊆H
|H′|≥2

⌈
||H′||
a|H′|−b

⌉
.

(iii) cG(a,b)
g (H) ≤ k

Proof. Graph H is by definition (ka, kb)-sparse if and only if for H ′ ⊆ H with |H ′| ≥ 2 we
have ||H ′|| ≤ ka|H ′| − kb which is equivalent to ||H′||

a|H′|−b ≤ k. This in turn is equivalent to

k ≥ max
H′⊆H
|H′|≥2

⌈ ||H ′||
a|H ′| − b

⌉

Statement (ii) in turn is equivalent to Statement (iii) by Theorem 4.26. This concludes the
proof.

So we can check whether cG(a,b)
g (H) ≤ k by checking whether H is (ka, kb)-sparse using Lee

and Streinu‘s Pebble Game Algorithm with runtime in O((ka)|E|2) ⊆ O(|E|3/|V |). But
this does not give a k-global cover.

We provide an algorithm that returns a best-possible global G(a, b)-cover of H with runtime
in O(|V | · |E|2). The algorithm is based on the Pebble Game Algorithm used to detect
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(ka, kb)-sparse graphs where k = c
G(a,b)
g (D), i.e., parameter k is increased during the

execution. An edge-partition of D into k guests G1, . . . , Gk that are (a, b)-pebbled is
maintained. In the end this partition provides an optimal (a, b)-sparse cover of H.

Let {u, v} ∈ E be an edge that is about to be added to the digraph D. If we can collect b+1
pebbles on u and v within a single guest Gi, then we can apply Lemma 5.4 to add {u, v} to
Gi and proceed with the next edge. Otherwise, we encounter complications. Edge {u, v}
can not be added to any guest and we have only kb pebbles on u and v after collecting
pebbles only within the guests. However, there may still be a vertex w with a pebble in
ReachD

(
{u, v}

)
\ {u, v}, since all paths from u and v to w may be partitioned into more

than one guest. This is a problem, since in this case we have no single (a, b)-sparse graph
containing that path so we can not apply Lemma 5.6. Indeed, there are cases where such a
path can not be reversed correspondingly (see Figure 5.5 and 5.6).

u v

w x

y z

p

G1

G2

Figure 5.5: A (2, 2)-sparse graph H covered by two (1, 1)-sparse graphs (forests) and a
global pebble path P = (u = x1

1, p = x1
2, w = x1

3 = x2
1, y = x2

2, z = x2
3 = x3

1) of
global length 3. With guest function π such that π(1) = π(3) = 1 and π(2) = 2.

u v

w x

y z

p

Figure 5.6: Result of reversing path P in the guests of graph H in Figure 5.5. The edges
have to belong to the guest containing the corresponding pebble (eventually
obtained from the succeeding edge). Note that p, y and w induce a cycle in
one guest which is thus no longer (1, 1)-sparse.

Instead of reversing such a path directly, we use it to find an augmenting path as introduced
by Edmonds [Edm65] and described by Gabow and Westermann [GW92]. Augmenting
paths are placed in the setting of matroids. We therefore at least implicitly use the
(a, b)-sparsity matroid structure on H as provided by Corollary 4.23.

LetM = (E, I) be a matroid. Then a set J ⊂ E is called circuit inM, if it is minimal
with J 6∈ I. Let (E, I) be a matroid, let I ⊆ E and let S = {I1, . . . , Ik} ⊆ I with

⋃
S = I.

Roughly speaking, an augmenting path is a finite sequence of edges (e0, . . . , es) that allows
to add e0 by exchanging these edges between the independent sets in S: inserting e0 into
some partition set Iq creates a circuit, which is broken by removing e1 from Iq; inserting
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e1 into a different partition set creates a circuit which is broken by removing e2. This
pattern continues until es is inserted into a partition set and does not create a circuit. If
the sequence has no shortcut, i.e., if for i ∈ [s− 2] the circuit created by adding element ei
to a partition set does not contain any ej with j > i+ 1, then applying all these exchanges
adds e0 while keeping the partition of I + {e0} into independent sets.

If no such augmenting path exists, then the number of guests does not suffice and a new
guest may be added.

Consider the (a, b)-sparsity matroid of a graph H. Let G ⊆ H be an (a, b)-sparse subgraph
and let uv ∈ E(H) \ E(G). If E(G) + uv is dependent, then there is a block containing u
and v in G. In that case the created circuit consists of the edge uv and the minimum block
containing u and v which we called B(u, v). By definition of B(u, v), after removing any
edge of B(u, v) there is no block left containing u and v. Therefore, edge uv can be added
to H as replacement for an arbitrary edge in B(u, v). This fact can be used to compute an
optimal G(a, b)-cover of a graph G = (V,E) in the way described for general matroids by
Edmonds [Edm65]. We define augmenting paths accordingly:

Let a, b ∈ N0 with b < 2a. Let further G1, . . . , Gk be pairwise edge-disjoint (a, b)-sparse
graphs. Let u, v ∈ V (G1 ∪ . . . ∪Gk) with u 6= v and uv 6∈ G1 ∪ . . . ∪Gk.

We call a finite sequence σ = (uv = e0, . . . , el) a pre-augmenting path (with regards to
G1, . . . , Gk) if:

(i) ∃i ∈ [k] : for xy = el the set {x, y} is free in Gi
(ii) ∀i ∈ [l] : ∃j ∈ [k] : ei ∈ Bj(ei−1)

We call l the length of σ. We call a tuple (i, j) ∈ [l]2 a shortcut of σ, if we have j − i > 1
and that ∃r ∈ [k] : ej ∈ Br(ei) holds. A pre-augmenting path σ is an augmenting path, if it
has no shortcut. See Figure 5.7 for an example.

u v

w x

y z

G2

G1

Figure 5.7: The minimum block B1(u, v) contains all edges of the path in G1 from u to v,
especially edge wx. The minimum block B2(w, x) contains the edges wy,yz and
xz. The edge yz is free in G1. We obtain the augmenting path σ = (uv,wx, yz).
For sequence π = (1, 2, 1) we have R(π, {G1, G2}, uv, 1) = B1(u, v) and in this
case R(π, {G1, G2}, uv, 2) = G2. Since Rπ(uv, 2) contains an edge that is free
in G1, it is not nested in G1 and thus R(π, {G1, G2}, uv, 3) does not exist.

We introduce pre-augmenting paths, since they are easier to find but still yield augmenting
paths.

Lemma 5.13
Let a, b ∈ N0 with b < 2a. Let further G1, . . . , Gk be pairwise edge-disjoint (a, b)-sparse
graphs. Let u, v ∈ V (G1 ∪ . . . ∪ Gk) with u 6= v and uv 6∈ G1 ∪ . . . ∪ Gk. Let σ′ = (uv =
e′0, . . . , e

′
l) be a pre-augmenting path.
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Then σ′ is an augmenting path or there is an augmenting path σ = (uv = e0, . . . , ej) with
j < l.

Proof. We apply induction on l. If l = 0, then σ′ can not contain a shortcut and is thus an
augmenting path.

Next let j ∈ N and assume as induction hypothesis that the statement holds for l ∈
{0, . . . , j}. Let σ′ = (uv = e′0, . . . , e

′
j+1) be a pre-augmenting path. If σ′ contains no

shortcut, then it is an augmenting path and the statement holds for σ′. Otherwise, there is
a shortcut (c, d) of σ′. Then σ′′ = (uv = e′0, . . . , e

′
c, e
′
d, . . . , e

′
j+1) is also a pre-augmenting

path. It is shorter than σ′ and therefore we can conclude with induction hypothesis that
there is an augmenting path σ = (uv = e0, . . . , em) with m < j + 1. This concludes the
induction and thus the proof.

A direct adaptation of Edmonds approach to provide an optimal global (a, b)-sparse cover
of a given host graph H = (V,E) results in a runtime in O(|E|3). For the outline of this
algorithm we reference Lemma 5.15 and Lemma 5.19 which we will show later. We start with
an empty set S of guests represented as (a, b)-pebbled digraphs. We add all edges of H one
by one as follows. Lets say we are about to add edge uv. LetD be the subgraph ofH realized
by the current guests. We implicitly consider a digraph in which we search for the augmented
path: We define M = ((E(D) ∪ {uv}), F ) where F = {ef ∈ E(M)2 | ∃j ∈ [k] : f ∈ Bj(e)}.
We apply a breath-first search for an edge that is free in some guest and start that search
in uv. By Theorem 5.8 and Lemma 5.3, we can for a given edge xy and j ∈ [k] either
verify xy is free in Gj , or we have pj(Reach(x, y)) = pj(x, y) ≤ b and can thus compute
the block Bj(x, y) with a simple depth-first search. By Theorem 5.9 this state can be
reached with runtime in O(|E(Gj)|) (for constant a). Thus, one such breath-first search
has a runtime in O(|E|2). If a free edge is found, the search path σ = (e0 = uv, . . . , el) is a
pre-augmenting path by construction and has no shortcut since it has minimum length.
Thus we found an augmenting path. By Lemma 5.15 we can use σ to add uv with a
runtime in O(|V | · |E|) ⊆ O(|E|2). If no free edge is found, we need at least k+ 1 guests to
cover H by Lemma 5.19. We can thus add a new guest Gk+1 which contains edge uv. The
algorithm finishes if all edges have been added. In that case the computed guests provide
an optimal global G(a, b)-cover of H.

Note that the correctness of this algorithm was already established by Edmonds [Edm65].
We prove the needed lemmas in the setting of (a, b)-sparsity matroids and use them for an
improved algorithm for this setting. To prove Lemma 5.15, we first introduce Lemma 5.14
which ensures that the exchange of edges preserves (a, b)-sparsity and does not change
blocks that are still needed later in the process.

Lemma 5.14
Let a, b ∈ N0 with b < 2a. Let H be an (a, b)-sparse graph and let u, v ∈ H with uv 6∈ H.
Let {u, v} be not free in H and let xy ∈ BH(u, v). Further let U ⊆ V (H) with |U | ≥ 2.

Then H ′ = H − xy + uv is (a, b)-sparse. Further we have that

(i) if we have {u, v} 6⊆ U and {x, y} 6⊆ U , then 〈U〉H is (a, b)-tight if and only if 〈U〉H′
is (a, b)-tight

(ii) 〈U〉H is an (a, b)-component of H if and only if 〈U〉H′ is an (a, b)-component of H ′.

Proof. Let G = 〈U〉H and G′ = 〈U〉H′ .

If we have u, v ∈ U and {x, y} 6⊆ U , then G is not (a, b)-tight, since it would otherwise
contain BG(u, v) and thus also x and y. In this case we obtain ||G′|| ≤ ||G|| + 1 ≤
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a|G| − b− 1 + 1 = a|G′| − b. Otherwise we have {u, v} 6⊆ U or x, y ∈ U , and then we obtain
||G′|| ≤ ||G|| which implies ||G′|| ≤ ||G|| = a|G| − b = a|G′| − b. We can conclude H ′ is
(a, b)-sparse.

Assume G is (a, b)-tight. If we have u, v ∈ U then we also have xy ∈ G by definition of
BH(u, v). Therefore we can compute ||G′|| = ||G− uv+ xy|| = ||G|| = a|G| − b = a|G′| − b
meaning G′ is also (a, b)-tight. Especially, we know that subgraph B =

〈
V (BH(u, v))i

〉
H′

is
a block in H ′ containing u, v, x and y. If we have {x, y} 6⊆ U , then we obtain ||G′|| ≥ ||G||
meaning G′ is also (a, b)-tight.

Next assume G′ is (a, b)-tight. If we have {u, v} 6⊆ U and {x, y} 6⊆ U , then we have G = G′

and thus G is also (a, b)-tight. Therefore Statement (i) holds.

We next show that if G is a component, then G′ is (a, b)-tight and vice versa.

Assume G is a component. If we have {u, v} 6⊆ U and {x, y} 6⊆ U , then we know by
Statement (i) that G′ is (a, b)-tight. Otherwise we have {u, v} ⊆ U or {x, y} ⊆ U , and
then we have by Theorem 4.20 that BH(u, v) ⊆ G. In that case we have ||G′|| = ||G||
meaning G′ is (a, b)-tight. For the case that G′ is a component we argue analogously using
B instead of BH(u, v) to show G is (a, b)-tight.

We finally show Statement (ii). Assume G is a component. Then G′ is a block and thus
there is a component C ′ of H ′ with G′ ⊆ C ′. We obtain that C = 〈V (C ′)〉H′ is (a, b)-tight.
Since G is a component and we have U ⊆ V (C ′), this implies U = V (C ′) and therefore G′
is the component C ′. For the case that G′ is a component we analogously show that G is a
component. We thus obtain that Statement (ii) holds.

With Lemma 5.14 we can exchange the last edge of an augmenting path and obtain that
the remaining path is then an augmenting path. By iterating from the end to uv finally
{u, v} is free in some graph and can be added.

Lemma 5.15
Let a, b ∈ N0 with b < 2a. Let further G1, . . . , Gk be pairwise edge-disjoint digraphs with
V = V (G1) = · · · = V (Gk). Let u0, v0 ∈ V with u0 6= v0 and u0v0 6∈ H = (V,E) =
G1 ∪ . . . ∪Gk.

For i ∈ [k] let Gi be (a, b)-pebbled by a function pi : V → [a]. Let there be an augmenting
path σ = (u0v0 = e0, . . . , ulvl = el). And a function π : [l + 1] → [k] such that we have
∀i ∈ [l] : ei ∈ Bπ(i)(ui−1, vi−1) and el is free in Gπ(l+1).

Then we can compute a set of (a, b)-pebbled digraphs G′1, . . . , G′k such that

G(G′1 ∪ . . . ∪G′k) = G((V,E ∪ {u0v0})

with runtime in O(|V |) per edge in σ for constant a.

Proof. See Figure 5.8, 5.9 and 5.10 for a sketched example execution of the used algo-
rithm. By Lemma 5.3 there is a path X = (x1, . . . , xm) ⊆ Gπ(l+1) with x1 ∈ {ul, vl} and
pπ(i)(xm) ≥ 1. Such a path can be found with a depth-first search in O(|V |). By repeated
use of Lemma 5.6 we can move a pebble from xm to x1 by reversing the edges of X. Lets
assume without loss of generality that x1 = ul. Then we can add edge ulvl to the resulting
guest G′′π(l+1) by applying Lemma 5.4.

We apply induction on l. For l = 0 the steps above suffice to prove the statement. Hence,
assume as induction hypothesis that for any augmenting path σ′ = (e′0, . . . , e′l′) with
l′ = l − 1 ∈ N0 the corresponding statement holds. Then we proceed after the steps above.
Since the resulting guest G′π(l+1) covers edge el, it can be removed from Gπ(l) by applying
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5.2. Computing Optimal Global (a, b)-Sparse Covers

Lemma 5.5. By Lemma 5.14 we obtain that sequence σ′ = (u0v0 = e0, . . . , ul−1vl−1 = el−1)
is an augmenting path and we can apply the induction hypothesis. This concludes the
induction and thereby the proof.

u v

w x

y z

Figure 5.8: Graph G1 ∪ G2 of Figure 5.7 after processing yz as last edge of augmenting
path σ = (uv,wx, yz) as described in the proof of Lemma 5.15.

u v

w x

y z

Figure 5.9: Result of processing wx in Figure 5.8.

u v

w x

y z

Figure 5.10: Result of processing uv in Figure 5.9.

To prove Lemma 5.19 we first introduce the notion of range graphs. In our improved
algorithm we will first obtain a sequence π ∈ [k]l such that there is an augmenting path
σ = (e0 = uv, . . . , el) such that for i ∈ [l] we have ei ∈ Gπ(i). This sequence is then used to
find an augmenting path by constructing a sequence of range graphs. These range graphs
roughly correspond with the levels of a breath-first search respecting sequence π of guests
for the minimum blocks considered.

Let a, b ∈ N0 with b < 2a. Let G and H be (a, b)-sparse graphs such that for every edge
xy ∈ H the set {x, y} is not free in G. Then we call H nested in G and we define the range
graph R(G,H) =

⋃
xy∈H BG(x, y).
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Let further S = {G1, . . . , Gk} be a set of (a, b)-sparse graphs. Let u, v ∈ V (G1 ∪ . . . ∪Gk)
with u 6= v and uv 6∈ G1 ∪ . . . ∪ Gk. Let l ∈ N and let π be a finite sequence in [k]l.
Then we define R(π, S, uv, 0) as the graph ({u, v}, {uv}) and for i ∈ [l], if for j ∈ [i] graph
R(π, S, uv, (j − 1)) is nested in Gπ(j), we define

R(π, S, uv, i) = R(Gπ(i), R(π, S, uv, (i− 1))).

See Figure 5.7 for an example. If π, S and uv are clear, we usually just write R(i) instead
of R(π, S, uv, i).

For i ∈ [k] we denote the last range graph contained in Gi by Ri(π, S, uv), i.e., we set
t = max{j ∈ [l] | π(j) = t} and Ri(π, S, uv) = R(π, S, uv, t). The sequence π is called
terminated, if adding more elements to the sequence does not change for any i ∈ [k] the
range graph Ri(π, S, uv). I.e., sequence π is terminated, if for i, j ∈ [k] with i 6= j we
have Ri(π, S, uv) = R(Gi, Rj(π, S, uv)). Note that by definition for every range graph
R(π, S, uv, i) any edge xy ∈ R(π, S, uv, i) is contained in a block of R(π, S, uv, i). Therefore
any two consecutive elements of π can be assumed to be different. We usually write Rj
instead of Rj(π, S, uv) if π, S and uv are clear.

Note that by construction we have V (H) ⊆ V (R(G,H)), since for xy ∈ H we have
x, y ∈ BG(x, y).

Let i ∈ [l]. We have that R(i) =
⋃
xy∈R(i−1)Bπ(i)(x, y). One can therefore think of R(i) as

the result of replacing each edge xy in R(i− 1) by Bπ(i)(x, y). These minimum blocks may
share edges. However, by Corollary 4.21 the (a, b)-components of R(i) are edge-disjoint
and every edge is contained in such a component. Further, every edge xy of R(i− 1) is
spanned by Bπ(i)(x, y) and thus by a component in R(i). We can thus obtain R(i) from
R(i− 1) by replacing for every component C of R(i) the edges of R(i) that are spanned by
C by the edges of C and eventually adding missing vertices of C. Lemma 5.16 shows this
process only worsens the relation between the number of edges and the number of vertices.

Lemma 5.16
Let a, b ∈ N0 with b < 2a. Let H be a graph with ||H|| ≥ a|H| − b. Let G be an (a, b)-tight
graph. Let U = V (H)∩ V (G). Let X = (H − 〈U〉H)∪G be the graph obtained by removing
all edges from H that are spanned by G and adding all new edges and vertices of G. Let
||〈U〉H || ≤ a|U | − b.

Then we have ||X|| ≥ a|X| − b.

Proof. We compute

||X|| = ||H||+ ||G|| − ||〈U〉H || ≥ a|H| − b+ a|G| − b− ||〈U〉H || ≥ a|X| − b.

As a consequence we obtain that, if R(i− 1) is (a, b)-tight, then range graph R(i) is also
(a, b)-tight. Note that range graph R(1) = Bπ(1)(u, v) is (a, b)-tight, if it exists.

Lemma 5.17
Let a, b ∈ N0 with b < 2a. Let H be an (a, b)-tight graph and let G be an (a, b)-sparse graph
with V (H) ⊆ V (G) such that H is nested in G.

Then R(G,H) is (a, b)-tight and the minimum block BG(V (H)).
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Proof. Since G is (a, b)-sparse, also R = R(G,H) is (a, b)-sparse. By Corollary 4.21 the
components C1, . . . , Cm of R are edge-disjoint.

We define H0 = H and for i ∈ [m] we define Hi = (Hi−1 − 〈V (Ci) ∩ V (Hi−1)〉Hi−1) ∪ Ci.
Using Lemma 5.16 and the fact that the components C1, . . . , Cm are edge-disjoint, we
obtain by induction for i = 0, . . . ,m that ||Hi|| ≥ a|Hi| − b and

Hi = (H − 〈V (C1 ∪ . . . ∪ Ci) ∩ V (H)〉H) ∪ C1 ∪ . . . ∪ Ci.

Therefore we have ||Hm|| ≥ a|Hm| − b and since every edge is spanned by a block and thus
by a component, we obtain

Hm = (H − 〈V (C1 ∪ . . . ∪ Cm) ∩ V (H)〉H) ∪ C1 ∪ . . . ∪ Cm = C1 ∪ . . . ∪ Cm.

By definition of R, every vertex of R is contained in a block and thus in a component. I.e,
we have V (R) = V (C1 ∪ . . . ∪ Cm) = V (Hm). We can now calculate

||R|| ≥ ||Hm|| ≥ a|Hm| − b = a|R| − b.

Therefore R is (a, b)-tight.

For every edge xy ∈ H the block BG(x, y) must be subgraph of any block containing V (H)
and thereby x and y. Thus R is by construction the minimum block containing all vertices
in V (H).

We will use Lemma 5.18 in the proof of Lemma 5.19 to show H is (ka, kb)-tight in absence
of an augmenting path.

Lemma 5.18
Let a, b ∈ N0 with b < 2a. Let further S = {G1, . . . , Gk} be a set of pairwise edge-disjoint
(a, b)-sparse graphs. Let u, v ∈ V (G1∪ . . .∪Gk) with u 6= v and uv 6∈ G1∪ . . .∪Gk. Further
let l ∈ N and let π ∈ [k]l be a terminated sequence.

Then R1 ∪ . . . ∪Rk is (ka, kb)-tight.

Proof. For i, j ∈ [k] with i 6= j we have Ri = R(Gi, Rj). This implies V (Rj) ⊆ V (Ri).
Therefore we have V (R1) = · · · = V (Rk). Set n = V (R1). By Lemma 5.17 we have that
for i ∈ [k] reach graph Ri is (a, b)-tight, i.e., we have that ||Ri|| = an− b. Thus, we obtain
||R1 ∪ . . . ∪ Rk|| = kan − kb = ka|R1 ∪ . . . ∪ Rk| − kb. With Lemma 5.12 we conclude
R1 ∪ . . . ∪Rk is (ka, kb)-tight.

We can now show that we always find an augmenting path, if an edge can be added without
increasing the number of guests.

Lemma 5.19
Let a, b ∈ N0 with b < 2a. Let further G1, . . . , Gk be pairwise edge-disjoint (a, b)-sparse
graphs. Let u, v ∈ V (G1 ∪ . . . ∪Gk) with u 6= v and uv 6∈ G1 ∪ . . . ∪Gk.

Then graph G1 ∪ . . . ∪ Gk ∪ ({u, v}, {uv}) is (ka, kb)-sparse if and only if there is an
augmenting path σ = (uv = e0, . . . , el).

In this case we define for j ∈ [k] the guest G′j = (G−Sj)∪Tj where Sj = {ei ∈ σ | ei ∈ Gj}
and Tj = {ei ∈ σ | ei+1 ∈ Gj or (i = l and j = min{r ∈ [k] | el is free in Gr})}.

Then we have G′1 ∪ . . . ∪G′k = G1 ∪ . . . ∪Gk ∪ ({u, v}, {uv}) and for i ∈ [k] the graph G′i
is (a, b)-sparse.
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Proof. We consider a finite sequence π ∈ [k]l that repeats the sequence (1, . . . , k) at least
|G1 ∪ . . . ∪Gk|+ 2 times. If π is terminated, then by Lemma 5.18 graph R1 ∪ . . . ∪Rk is
(ka, kb)-tight. In that case graph G1 ∪ . . . ∪Gk ∪ ({u, v}, {uv}) is not (ka, kb)-sparse.

First, let s ∈ [l − 2k + 1]. Consider the range graphs R(s), . . . , R(s + 2k − 1). We have
V
(
R(s)

)
⊆ · · · ⊆ V

(
R(s+ 2k − 1)

)
.

If we have V
(
R(s)

)
= V

(
R(s+ 2k − 1)

)
, then we set U = V

(
R(s)

)
and obtain for i ∈ [k]

that R(s− 1 + i) = R(s− 1 + k + i) = Bi(U). An easy induction shows that in this case
Ri = Bi(U) and thus π is terminated.

Hence, assume that for s ∈ [l−2k+1] we have V
(
R(s)

)
+1 ≤ V

(
R(s+2k−1)

)
. Then there

either exists an i ∈ [l] and a j ∈ [k] with i 6= j such that R(i) is not nested in Gj , or for
r ∈ [l− k] that |V (R(r))|+ 1 ≤ |V (R(r+ k)|. In the second case we obtain a contradiction
since it implies V (R(l)) ≥ |G1 ∪ . . . ∪Gk|+ 1 > |Gπ(l)| while R(l) ⊆ Gπ(l). Therefore, we
have the first case and there is an edge el = xy ∈ R(i) such that {x, y} is free in Gj .

For i ∈ [l] we have by definition of R(i) that for every edge ei ∈ R(i) there is some edge
ei−1 ∈ R(i − 1) with ei ∈ Bπ(i)(ei−1), unless i = 1, in which case R(i) = Bπ(1)(u, v) or
{u, v} is itself free in Gi = G1. By induction sequence (e1, . . . , el) is a pre-augmenting
path.

Since we have l ∈ N0, and there is at least one pre-augmenting path, there is by Lemma 5.13
also an augmenting path.

Assume there is an augmenting path σ = (uv = e0, . . . , el) and let for j ∈ [k] the graph G′
be defined as above.

First note that

G′1∪. . .∪G′k = (G1∪. . .∪Gk−(S1∪. . .∪Sk))∪T1∪. . .∪Tk = G1∪. . .∪Gk∪({u, v}, {uv}).

Let j ∈ [k]. We finally show guest G′j is (a, b)-sparse. We define a sequence of graphs
which represent the exchanges of single edges leading from G = Gj to G′ = G′j . We define

G0 =
{
G+ el , if el ∈ Tj
G , otherwise

.

Further, for i ∈ [l] we define

Gi =
{
Gi−1 − el−i+1 + el−i , if el−i ∈ Tj
Gi−1 , otherwise

First note that Gl = G′. We apply induction to show for n = 0, . . . , l + 1 that

(i) Gn is (a, b)-sparse.

(ii) for xy = em ∈ Tj we have that if m < l − n holds, then we have BG(x, y) ⊆ Gn and
BGn(x, y) = BG(x, y).

For n = 0 this statement follows from the definitions of G0 and Tj and Requirement (ii) of
(pre-)augmenting path σ: If el ∈ Tj then we have that el is free in G0. Therefore graph
G+ el is (a, b)-sparse. Further Property (ii) is preserved by adding edges. We conclude the
statement holds for n = 0.
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Now assume the statement holds for n = 0, . . . , l. Let xy = el−(n+1). If el−(n+1) 6∈ Tj ,
then we have Gn+1 = Gn, i.e., the statement holds. Otherwise we have with Property (ii)
that wz = el−n ∈ BGn(x, y) = BG(x, y) and Gn+1 = Gn − wz + xy. With Lemma 5.14
we obtain that Gn+1 is (a, b)-sparse and for U ⊆ V (G) with {x, y} 6⊆ U and {wz} 6⊆ U
we have that 〈U〉Gn+1 is (a, b)-tight if and only if 〈U〉Gn is (a, b)-tight. Let m ∈ N0 with
m < l − (n+ 1) and pq = em+1 ∈ Sj .

Assume that wz ∈ BG(p, q). In that case, the sequence σ = (uv = e0, . . . , ec = pq, . . . , ed =
wz, . . . , el) has shortcut (c, d). I.e., we have a contradiction. Thus, wz 6∈ BG(p, q). Next
assume xy ∈ BG(p, q). Then by definition of BG(x, y) we also have wz ∈ BG(x, y) ⊆
BG(p, q). This is a contradiction to wz 6∈ BG(p, q).

Since blocks must be induced subgraphs, we obtain {x, y} 6⊆ V (BG(p, q)) and wz 6∈ BG(p, q).
This implies BG(p, q) ⊆ Gn+1. Further, let U ⊆ V (G) such that 〈U〉Gn+1 is (a, b)-tight,
but 〈U〉Gn is not. Since xy is the only new edge, this implies {x, y} ⊆ U and thus
〈U〉Gn+1 6⊆ BG(p, q). By definition of minimum blocks we obtain BGn(x, y) = BG(x, y).
This concludes the induction.

Hence, graph G′j = Gl is (a, b)-sparse which concludes the proof.

With Lemma 5.19 we have proven all lemmas that we used to show the correctness of the
direct adaption of Edmonds algorithm.

Let a, b ∈ N0 with b < 2a. Let H = (V,E) be a graph for which we want to find an
optimal global G(a, b)-cover. We aim to improve the runtime of the direct adaptation of
Edmonds algorithm from O(|E|3) to O(|V | · |E|2). We apply the outlined algorithm with the
difference, that we take another approach to find an augmenting path σ = (e0 = uv, . . . , el)
when we are about to insert edge uv. In the direct approach, we compute for every insertion
for possibly nearly every edge e in every guest the minimum block. The general idea of
our new approach is to compute for e only the minimum block in one guest rather than
the minimum blocks in every guest. Since a single guest has at most a|V | − b edges, this
improves the runtime for e in one insertion from a runtime in O(|E|) to a runtime in
O(|V |).

Let G1, . . . , Gk be the current guests and let uv be the edge we are about to insert. Let
D = G1 ∪ . . . ∪Gk. Assume we know a sequence π ∈ [k]l such that there is an augmenting
path σ = (e0 = uv, . . . , el) of minimum length such that we have for i ∈ [l] that ei ∈
Bπ(i)(ei−1). We can then again apply breath-first search on graph M = ((E(D)∪{uv}), F )
where F = {ef ∈ E(M)2 | ∃j ∈ [k] : f ∈ Bj(e)}. However, we only traverse an edge
ef ∈ E(M), if we have f ∈ Bπ(i)(e) where i is the level of e in the breath-first search-tree.
In this way we find σ or another augmenting path. As indicated before, the levels of this
search-tree correspond with the range graphs R(1), . . . , R(l). Let i ∈ [l]. More precisely
range graph R(i) contains all edges of level i and prior levels in guest Gπ(i). We first note
those range graphs actually exist.

Lemma 5.20
Let a, b ∈ N0 with b < 2a. Let further S = {G1, . . . , Gk} be a set of pairwise edge-disjoint
digraphs with V = V (G1) = · · · = V (Gk). Let u, v ∈ V with u 6= v and uv 6∈ H =
G1 ∪ . . . ∪Gk.

For i ∈ [k] let Gi be (a, b)-pebbled by a function pi : V → [a]. Let π ∈ [k]l+1 be a sequence
such that there is an augmenting path σ = (e′0 = uv, . . . , e′l) of minimum length such that
e′l is free in Gπ(l+1) and for i ∈ [l] we have e′i ∈ Bπ(i)(e′i−1).

Then we have for i ∈ [l] and m ∈ [k] that range graph R(i− 1) is nested in Gm. Especially,
we have that R(i) exists. Further R(l) is not nested in Gπ(l+1).
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Proof. First observe for i ∈ [l], that if R(i) exists, then we have e′i ∈ R(i) by an easy
induction. Therefore, if R(l) exists, we have e′l ∈ R(l) and R(l) is not nested in Gπ(l+1).

We can therefore define i ∈ [l] such that for j ∈ [i] the range graph R(i− 1) is nested in
Gπ(i) and R(i) is not nested in Gπ(i+1). I.e., range graph R(i + 1) does not exist. Note
that for j ∈ [i] and e ∈ R(j) there is an edge f ∈ R(j − 1) with e ∈ Bπ(j)(f). Further
note, since R(i) is not nested in Gπ(i), there is an edge xy ∈ R(i) such that {x, y} is free in
Gπ(i+1). An easy induction shows there is a pre-augmenting path (e0 = uv, . . . , ej = xy)
with j ≤ i. By Lemma 5.13 we know there is also an augmenting path (f0 = uv, . . . , fd)
with d ≤ i. If we have i < l, then this contradicts the definition of σ as an augmenting path
with minimum length. Hence, we have i = l. If there is an j ∈ [l − 1] and an m ∈ [k] such
that R(j) is not nested in Gm we can apply the same argumentation for a contradiction.
We finally note that, since e′l ∈ R(l) is not free in Gπ(l+1), we have that R(l) is not nested
in Gπ(l+1).

On the other site, we obtain a pre-augmenting path from a certain sequence of range
graphs.

Lemma 5.21
Let a, b ∈ N0 with b < 2a. Let further S = {G1, . . . , Gk} be a set of pairwise edge-disjoint
digraphs with V = V (G1) = · · · = V (Gk). Let u, v ∈ V with u 6= v and uv 6∈ H =
G1 ∪ . . . ∪Gk. For i ∈ [k] let Gi be (a, b)-pebbled by a function pi : V → [a].

Let π ∈ [k]l+1 be a sequence such that R(l) is not nested in Gπ(l+1) and for i ∈ [l] range
graph R(i− 1) is nested in Gπ(i).

Then there is a pre-augmenting path σ = (e0 = uv, . . . , el) such that el is free in Gπ(l+1)
and for i ∈ [l] we have e′i ∈ Bπ(i)(e′i−1).

Proof. Since R(l) is not nested in Gπ(l+1), there is an edge el ∈ R(l) such that el is free in
Gπ(l+1). For i ∈ [l] we have that for every edge e′i ∈ R(i) there is an edge e′i−1 ∈ R(i− 1)
with ei ∈ Bπ(i)(ei−1). By induction we obtain that for j ∈ {0, . . . , l} there is a pre-
augmenting path (el−j , . . . , el) such that el−j ∈ R(l − j) and el is free in Gπ(l+1) and for
i ∈ {l − j + 1, . . . , l} we have e′i ∈ Bπ(i)(e′i−1). This yields the statement.

A deeper analysis of the structure of the range graphs helps us to find a sequence π as
required in Lemma 5.20. With such a sequence, Lemma 5.23 allows us then to construct
the range graphs quite efficient.

Lemma 5.22
Let a, b ∈ N0 with b < 2a. Let further G1, . . . , Gk be pairwise edge-disjoint digraphs with
V = V (G1) = · · · = V (Gk). Let u, v ∈ V with u 6= v and uv 6∈ H = G1 ∪ . . . ∪Gk.

For i ∈ [k] let Gi be (a, b)-pebbled by a function pi : V → [a] such that pi({u, v}) = b and
pi(Reachi(u, v) \ {u, v}) = 0. Let π ∈ [k]l be a sequence such that for i ∈ [l] the range graph
R(i− 1) is nested in Gπ(i).

Then we have for i ∈ [l] that

R(i) = BGπ(i)(V (R(i− 1))) = 〈Reachπ(i)(R(i− 1))〉π(i)

and p(V (R(i)) \ {u, v}) = 0.
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Proof. We apply induction on i. For i = 1 we have by the definition of range graphs and
by Theorem 5.8 that

R(1) = R(Gπ(1), R(0)) = R(Gπ(1), ({u, v}, {uv}))

=
⋃

xy∈({u,v},{uv})
BGπ(1)(x, y) = BGπ(1)(u, v) = 〈Reachπ(i)(R(0))〉π(i).

By assumption we obtain that p(V (R(1)) \ {u, v}) = p(Reachπ(1)(u, v)) \ {u, v}) = 0.

Next assume i ∈ [l − 1] and the statement holds for i. Then we have by Lemma 5.17,
Lemma 5.3 and Theorem 5.8 that

R(i+ 1) = R(Gπ(i+1), R(i)) = Bπ(i+1)(R(i)) = 〈Reachπ(i+1)(R(i))〉π(i+1).

Note that Lemma 5.3 implies p(V (R(i+ 1)) \ {u, v}) = p(Reachπ(i+1)(R(i))) \ {u, v}) = 0,
since R(Gπ(i+1), R(i)) is (a, b)-tight.

This means we can iteratively compute for i ∈ [l] the range graph R(i) by a depth-first
search starting in all vertices of R(i− 1).

Lemma 5.23
Let a, b ∈ N0 with b < 2a. Let G1, . . . , Gk be pairwise edge-disjoint digraphs with V =
V (G1) = · · · = V (Gk). Let u, v ∈ V with u 6= v and uv 6∈ H = (V,E) = G1 ∪ . . . ∪Gk. Let
k ≤ |V |.

For i ∈ [k] let Gi be (a, b)-pebbled by a function pi : V → [a] Let l ∈
[
|V |
]
and let π ∈ [k]l

be a sequence such that for i ∈ [l] the range graph R(i− 1) is nested in Gπ(i).

Then we can compute the range graphs R(1) . . . R(l) with a runtime in O(|V |2) for constant
a. We further obtain edge-sets T1 . . . , Tl with Ti = E(R(i)) \

⋃
j<iE(R(j)).

Proof. We represent the range graphs by mapping every edge e ∈ E to the smallest number
r(e) with e ∈ R(r(e)). I.e., we set r(e) such that e ∈ Tr(e). For e ∈ E we initialize
r(e) =∞. Further we initialize the edge sets T ′1 = · · · = T ′l−1 = ∅. For i = 0 we initialize
U0 = {u, v} = V (R(0)).

First we collect in every guest pebbles on u and v as described in Theorem 5.9. This is
possible with a runtime in O(k|V |) ⊆ O(|V |2). Note that with Lemma 5.17 and Lemma 5.3
we obtain for i ∈ [k] that pi({u, v}) = b and pi(Reachi(u, v) \ {u, v}) = 0.

By Lemma 5.22 we can then compute for i ∈ [l − 1] the set

Ui = V (R(i)) = Reachπ(i)(V (R(i− 1))

by a depth-first search starting in all vertices in Ui−1. In this search we traverse every
edge in R(i) = 〈Reachπ(i)(V (R(i − 1))〉π(i). Therefore, for every edge wz traversed the
first time, we can set r(wz) = i and add wz to T ′i. As invariant we keep that for j ∈ [i]
we have T ′j = Tj and the contained edges are labelled correctly. If an edge wz ∈ Gj was
traversed, then also all other outgoing edges of w in Gj were traversed. We thus know that
N+

π(i)(w) ⊆ Ui ⊆ Ui+1 ⊆ . . . . As a consequence, vertex w can be considered visited in
every following depth-first search in Gj . Hence, if an edge wz with r(wz) <∞ is about
to be traversed (in a run after the i‘th run), we instead stop processing vertex w which
is then considered visited. Except for these repeated traversals, every edge is traversed
at most once. Therefore at most O(|E|) ⊆ O(|V |2) true edge-traversals are executed. For
every i ∈ [l − 1] there is at most one repeated traversal per vertex. We thus have at most
O(l|V |) = O(|V |2) false edge-traversals. We finally obtain a runtime in O(|V |2) and our
invariants ensure correctness.
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After computing the range graphs we can use them to actually find an augmenting path.
We do so by finding the edges of an augmenting path in reverse order. By knowing the
range graphs we can restrict the number of possible preceding edges in the augmenting
path. We then just compute for every possible preceding edge the corresponding minimum
block and check whether it contains the current edge. A breath-first search as indicated
earlier works as well and does not require a separate computation of the range graphs.
However, this approach appears more promising for optimization.

Lemma 5.24
Let a, b ∈ N0 with b < 2a. Let further G1, . . . , Gk be pairwise edge-disjoint digraphs with
V = V (G1) = · · · = V (Gk). Let u, v ∈ V with u 6= v and uv 6∈ H = (V,E) = G1 ∪ . . .∪Gk.

For i ∈ [k] let Gi be (a, b)-pebbled by a function pi : V → [a]. Let π ∈ [k]l+1 be a sequence
such that there is an (unknown) augmenting path σ′ = (f0 = uv, . . . , fl) of minimum length
such that fl is free in Gπ(l+1) and for i ∈ [l] we have fi ∈ Bπ(i)(fi−1).

Then we can compute an augmenting path σ = (e0 = uv, . . . , el) with runtime in O(|V | · |E|)
for constant a.

Proof. By Lemma 5.20 we have for i ∈ [l] and m ∈ [k] that range graph R(i− 1) is nested
in Gm. Further R(l) is not free in Gπ(l+1). By Lemma 5.23 we can compute edge-sets
T0, . . . , Tl with Ti = E(R(i)) \

⋃
j<iE(R(j)) in O(|V |2).

For xy ∈ Tl we collect pebbles on x and y in Gπ(l+1) as in Theorem 5.9. If this results in
at least b+ 1 pebbles on x and y in Gπ(l+1), then by Lemma 5.3 edge xy is free in Gπ(l+1)
and we can set el = xy and continue by searching a preceding edge. Otherwise we know
by the same lemma that xy is not free in Gπ(l+1). Since R(l) is not nested in Gπ(l+1) but
for i ∈ [l − 1] the range graph R(i) is nested in Gπ(l−1), there actually must be an edge in
Tl = E(R(l)) \

⋃
j<lE(R(j)) that is free in Gπ(l+1).

For i = l − 1, . . . , 0 we obtain ei ∈ Ti of our future augmenting path σ = (e0, e1, . . . , el−1)
as follows. Let p′q′ = ei+1. For pq ∈ Ti we collect pebbles on p and q in Gπ(i+1) as
in Theorem 5.9. If Reachπ(i+1)(p, q) then contains p′ and q′, then we set ei = pq and
continue with the search for the next edge of the augmenting path. Edge pq ∈ Ti ⊆ R(i)
can not be free in Gπ(i+1), since R(i) is nested in Gπ(i+1). With Theorem 5.8 we obtain
Reachπ(i+1)(p, q) = Bπ(i+1)(p, q). Thus, our choice ensures ei ∈ Bπ(i+1)(p, q).

For correctness of this algorithm it remains to show that there is actually an edge pq ∈ Ti
with ei+1 ∈ Bπ(i)(p, q). By definition of R(i + 1), there exists an edge g ∈ R(i) with
ei+1 ∈ Bπ(i+1)(g). Assume we have a ξ < i with g ∈ R(ξ). Then by repeatedly choosing
a predecessor we can construct a sequence (g0 = uv, . . . , gξ = g) such that for j ∈ [i] we
have some n ∈ k with e′j ∈ Bn(e′j−1). Together with the edges ei+1, . . . , el, we obtain a
pre-augmenting path (g0 = uv, . . . , gξ = g, ei+1, . . . , el). By Lemma 5.13 we obtain an
augmenting path with length less than l. This is a contradiction to the definition of σ′.
Therefore we have g ∈ E(R(i)) \

⋃
j<iE(R(j)) = Ti. By Theorem 5.8 we know we actually

find g or another suiting edge as the new edge ei. Since T0 contains only edge uv we finally
also obtain uv = e0. By this construction we ensure σ = (e0 = uv, . . . , el) is an augmenting
path.

Since the edge-sets T0, . . . , Tl are pairwise disjoint, we apply Theorem 5.9 at most once
per edge. In Theorem 5.9 we have a runtime in O(|E(Gi)|) where Gi is the corresponding
guest. For i ∈ [k] we have |E(Gi)| ≤ a|G| − b and therefore |E(Gi)| ∈ O(|V (Gi)|) = O(|V |).
We thus have a runtime in O(|E| · |V |) for the computation of the howl augmenting path
σ.
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We can now efficiently find an augmenting path, if we have a sequence π as required in
Lemma 5.24. We find such a sequence by searching for a certain global pebble path.

Let a, b ∈ N0 with b < 2a. Let further G1, . . . , Gk be pairwise edge-disjoint digraphs with
V = V (G1) = · · · = V (Gk). For i ∈ [k] let Gi be (a, b)-pebbled by a function pi : V → [a].

Let

P = (v1
1, . . . , v

1
n(1) = v2

1, . . . , v
2
n(2) = v3

1, . . . , v
l−1
n(l−1) = vl1, . . . , v

l
n(l)) = (w1, . . . , wt) ⊆ H

be a directed path. For i ∈ [l] we define the directed path Pi = (vi1, . . . , vin(i)).

We call P a global path starting in U ⊆ V (H) with the guest function π : [l]→ [k], if all of
the following properties are fulfilled:

(i) w1 ∈ U and wt 6∈ U

(ii) ∀i ∈ [l] : Pi ⊆ Gπ(i)

(iii) ∀i ∈ [l] : ∀j ∈ [n(i)] : pπ(i)(vij) > 0⇒ vij ∈ w1, wt

The number l is called the global length of P . We call P a global pebble path if we have
pπ(l)(wt) ≥ 1. See Figure 5.5 for an example.

Note that if P is a global pebble path, then Pl may only contain a single vertex to match
the guest in which wt has that pebble. However, it still counts towards the global length
(which is l). We will usually consider global pebble paths starting in one of the two vertices
u or v where uv is an edge to be inserted by our algorithm.

We first observe that every vertex in a range graph R(uv, i) can be reached by a global
path starting in {u, v} with global length at most i. This can be used to construct other
global paths.

Lemma 5.25
Let a, b ∈ N0 with b < 2a. Let further S = {G1, . . . , Gk} be a set of pairwise edge-disjoint
digraphs with V = V (G1) = · · · = V (Gk). Let u, v ∈ V with u 6= v and uv 6∈ H =
G1 ∪ . . . ∪Gk.

For i ∈ [k] let Gi be (a, b)-pebbled by a function pi : V → [a] such that pi({u, v}) = b and
pi(Reachi(u, v) \ {u, v}) = 0. Let π ∈ [k]l be a sequence such that for i ∈ [l] the range graph
R(i− 1) is nested in Gπ(i).

Then for i ∈ [l] and x ∈ R(i) there is a global path P = (w1, . . . , wt) of global length at
most i with w1 ∈ {u, v} and wt = x.

Proof. We apply induction on i. Let i = 1 and let x ∈ R(1). By Lemma 5.22 we have

x ∈ R(1) = 〈Reachπ(1)(R(0))〉Gπ(1) = 〈Reachπ(1)(u, v)〉π(1).

This means x ∈ Reachπ(1)(u, v). By definition this means there is a directed path P1 =
(w1, . . . , wt = x) ⊆ R(1) ⊆ Gπ(i) with w1 ∈ {u, v}. This is a global path of global length 1.

Next assume the statement holds for some i ∈ [l−1] and let x ∈ R(i+1). By Lemma 5.22 we
have x ∈ R(i+1) = 〈Reachπ(i+1)(R(i))〉π(i+1). We obtain a path (z1, . . . , zs = x) ⊆ R(i+1)
with z1 ∈ R(i) ⊆ Gπ(i+1). By Lemma 5.22 we also have z1 ∈ Reachπ(i)(R(i − 1)). If
z1 ∈ {u, v}, then Z is a global path of global length 1 ≤ i + 1. Otherwise there is an
edge wz1 ∈ 〈R(i− 1)〉π(i) = R(i) ⊆ Gπ(i). By induction hypothesis there is a global path
P ′ = (w1, . . . , ws = w, z1) of global length at most i with w1 ∈ {u, v}. We obtain the global
path P = (w1, . . . , ws = w, z1, . . . , zs = x) with global length at most i+ 1. This concludes
the induction and thereby the proof.
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On the other side, a global pebble path with minimum global length has a guest function
that provides a sequence of range graphs as required for Lemma 5.21 which provides a
pre-augmenting path.

Lemma 5.26
Let a, b ∈ N0 with b < 2a. Let further S = {G1, . . . , Gk} be a set of pairwise edge-disjoint
digraphs with V = V (G1) = · · · = V (Gk). Let u, v ∈ V with u 6= v and uv 6∈ H =
G1 ∪ . . . ∪Gk.

For i ∈ [k] let Gi be (a, b)-pebbled by a function pi : V → [a] such that pi({u, v}) = b and
pi(Reachi(u, v) \ {u, v}) = 0. Let

P = (u = v1
1, . . . , v

1
n(1), . . . , v

l
1, . . . , v

l
n(l)) = (w1, . . . , wt)

be a global pebble path starting in {u, v} with guest function π. Let P be of minimum global
length with these properties. Let j = π(l).

Then we have for i ∈ [l − 1] that range graph R(i− 1) is nested in Gπ(i). Further there is
an edge xy ∈ R(l − 1) such that {x, y} is free in Gj.

Proof. We first show for i ∈ [l− 1] that range graph R(i) is well defined. Assume otherwise,
i.e., assume there is an i ∈ [l − 1] such that R(i− 1) is not nested in Gπ(i). Then there is
an edge xy ∈ R(i− 1) with {x, y} being free in Gπ(i). By Lemma 5.3 this implies there is
a path X = (x1, . . . , xm) ⊆ Gπ(i) with x1 ∈ {x, y} and xm 6∈ {u, v} with pπ(i)(xm) ≥ 1.

By Lemma 5.25 there is a global path P = (z1, . . . , zt) of global length at most i− 1 ≤ l− 2
with z1 ∈ {u, v} and zt = x1. We obtain the global pebble path (z1, . . . , zt = x1, . . . , xm)
with global length at most l − 1. This is a contradiction to P having minimum global
length. Therefore, for i ∈ [l − 1] graph R(i− 1) is nested in Gπ(i) and we also have range
graph R(i).

Assume there is no edge xy ∈ R(l − 1) that is free in Gj . Then R(l − 1) is nested in
Gj . By Lemma 5.17 we obtain that R(l) is a block. However, we have pj(V (R(l))) ≥
pj(u) + pj(v) + pj(wt) ≥ b+ 1. By Lemma 5.3 this is a contradiction to R(l) being a block.
Therefore there is an edge xy ∈ R(l − 1) such that {x, y} is free in Gj .

With the next lemma we obtain a global pebble path from an augmenting path. We
obtain a boundary on the global length. We will use the contraposition to show that all
augmenting paths have at least a certain length. This fact can then be used to show a
pre-augmenting path of a certain length is actually an augmenting path (whose existence
we want to show).

Lemma 5.27
Let a, b ∈ N0 with b < 2a. Let further S = {G1, . . . , Gk} be a set of pairwise edge-disjoint
digraphs with V = V (G1) = · · · = V (Gk). Let u, v ∈ V with u 6= v and uv 6∈ H =
G1 ∪ . . . ∪Gk.

For i ∈ [k] let Gi be (a, b)-pebbled by a function pi : V → [a] such that pi({u, v}) = b and
pi(Reachi(u, v) \ {u, v}) = 0. Let there be an augmenting path σ = (uv = e0, . . . , el).

Then there is a global pebble path P = (w1, . . . , wt) starting in {u, v} with global length
m ≤ l + 1.

Proof. We define the function π : [l] → [k] such that for i ∈ [l] we have ei ∈ Gπ(i). We
consider the range graphs for π. Assume that for i ∈ [l] the range graph R(i− 1) is nested
in Gπ(i). Then also the range graph R(i) exists. Further, since σ is an augmenting path we
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obtain by induction that for i ∈ [l] we have ei ∈ R(i). Therefore R(l) contains the edge el
which is for some j ∈ [k] free in Gj .

Otherwise, we obtain an i ∈ [l] for which R(i− 1) contains an edge that is for some j ∈ [k]
free in Gj . By Theorem 5.8 we know i 6= 1.

Hence, there is an i ∈ [l] such that R(i) contains an edge pq that is for some j ∈ [k]
free in Gj . By Lemma 5.3 there is a path X = (x1, . . . , xn) ⊆ Gj with pj(xn) ≥ 1. By
Lemma 5.25 there is a global path (w1, . . . , ws = x1) with w1 ∈ {u, v} and global length
at most i. We obtain the global pebble path (w1, . . . , ws = x1, . . . , xn) of global length at
most i+ 1 ≤ l + 1. This concludes the proof.

For our preparation it remains to show that a global pebble path with minimum global
length can be found fast.

Lemma 5.28
Let a, b ∈ N0 with b < 2a. Let further G1, . . . , Gk be pairwise edge-disjoint digraphs with
V = V (G1) = · · · = V (Gk). Let u, v ∈ V with u 6= v and uv 6∈ H = G1 ∪ . . . ∪Gk.

For i ∈ [k] let Gi be (a, b)-pebbled by a function pi : V → [a] such that pi({u, v}) = b and
pi(Reachi(u, v) \ {u, v}) = 0.

Then we can compute a global pebble path P = (w1, . . . , wt) with a guest function π and
global length m such that w1 ∈ {u, v} and P has minimum global length, or determine no
such path exists with a runtime in O(|E(H)|).

Proof. We use a variant of a depth-first search. We define the set L0 = {u, v}. In general
we will put a vertex that is reachable with a global path of global length i into set Li.
We start with i = 1. For j ∈ [k] we compute Ri,j = Reachj(Li−1) \

⋃
l∈[i−2] Ll using

a normal depth-first search starting in all vertices of Li−1 that considers all vertices in
Mi =

⋃
l∈[i−2] Ll as visited. This is correct, since all vertices reachable from Mi in Gj are

already contained in Li−1. We check whether pj(x) ≥ 1 when a vertex x is reached. If we
have pj(x) ≥ 1, then the algorithm returns the search path to x. If no such vertex was
found for j ∈ [k], then we define Li = Ri,1 ∪ . . .∪Ri,k. If Li = ∅, then we return ∅ implying
no such global pebble path exists. If Li 6= ∅, then we repeat these steps with i increased by
one.

It is easy to verify the invariant, that for i ∈ N and x ∈ Li there is a global path of global
length i starting in {u, v} and ending in x (if Li was defined or a search path was returned
in round i). On the other hand, it is also easy to verify the invariant, that if there is a
global path of length i ∈ N starting in {u, v} and ending in x, then we have x ∈ Li ∪Mi.
If x with pj(x) ≥ 1 was found in round i, this implies there is no such global pebble path
of length less than i. We also obtain that there is no such global pebble path, if no search
path is returned.

Every edge is considered at most once like in a normal depth-first search. Further, if a
vertex x has no outgoing edge in some guest Gj , then we have pj(x) = a ≥ 1. Therefore
the runtime for checking whether a vertex has a pebble is dominated by the runtime for
processing the edges. We thus obtain a runtime in O(|E|).

We finally have everything needed to compute optimal global G(a, b)-covers efficiently.

Theorem 5.29
Computing an optimal global G(a, b)-cover of a given graph H = (V,E) is possible with
runtime in O(|E|2 · |V |) for constant a.
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Proof. Let H = (V,E) be a graph. Roughly speaking, our approach is to insert the edges
of H one by one into the guest graphs G1, . . . , Gk and increase the number of guests if
needed. The guests are represented as (a, b)-pebbled digraphs. Eventually it is necessary
to exchange edges between the guests along an augmenting path. We do obtain this
augmenting path using Lemma 5.24. However, we first need a sequence π for which an
augmenting path with certain properties exists. We obtain such a sequence π by finding a
global pebble path P .

We keep as invariants that our guests are (a, b)-sparse, cover all edges added so far, and
we only have as many guests as needed to cover all edges added so far. We start with an
empty set S = ∅ of guests and we insert the edges of H one by one.

Let uv denote the edge we are about to insert. Let H ′ =
⋃
S + uv and let k = |S|.

First we collect in every guest pebbles on u and v as described in Theorem 5.9. If {u, v} is
free in some guest Gi, then we add edge uv (or vu) to Gi as described in Lemma 5.4 and
continue with the next edge.

Next, we search for a minimum global pebble path P = (w1, . . . , wt) with global length l and
a guest function π as described in Lemma 5.28. By Lemma 5.12 we know c

G(a,b)
g (H ′) ≤ k

holds only if H ′ is (ka, kb)-sparse. By Lemma 5.19 we know this is only the case, if there
is an augmenting path starting in {u, v}. And by Lemma 5.27 in turn we know that, if
there is such an augmenting path, then we also have a global pebble path starting in {u, v}.
Therefore, if there is no such global pebble path, then we have cG(a,b)

g (H ′) ≥ k + 1. In this
case we add another guest Gk+1 = (V, ∅) to S with pebble function pk+1 : V → [a], x 7→ a.
We then add edge uv by applying Lemma 5.4 and continue with the next edge.

Hence, assume we found such a global pebble path P with guest function π. Obviously we
have l < 2|V |.

We aim to prove the mere existence of an augmenting path as required for Lemma 5.24.
By Lemma 5.26 we have for i ∈ [l − 1] that range graph R(i − 1) is nested in Gπ(i) and
R(l− 1) is not nested in Gπ(l). With Lemma 5.21 we obtain that there is a pre-augmenting
path σ = (e0 = uv, . . . , el−1) such that el−1 is free in Gπ(l) and for i ∈ [l − 1] we have
e′i ∈ Bπ(i)(e′i−1). By the definition of P with l as minimum global length, there is no
augmenting path (uv, e′1, . . . , e′m) with m < l−1, since otherwise we would obtain a shorter
global pebble path by Lemma 5.27. With Lemma 5.13 this implies σ itself is an augmenting
path. We have shown σ fulfils all requirements for Lemma 5.24. We can thus compute an
augmenting path τ = (f0 = uv, . . . , fm) with a runtime in O(|V | · |E|).

By Lemma 5.15 we can finally use augmenting path τ to insert edge uv (or vu) in our
guests with runtime in O(|V |2). Then we proceed with the next edge in H unless we
already added all edges.

Our invariants guarantee that our guests provide in the end a k-global G(a, b)-cover of
H with k = c

G(a,b)
g (H). In total we obtain a runtime in O(|E|2 · |V |). This concludes the

proof.
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In this section we consider graphs of bounded degree as guests.

Let Dd denote the class of all graphs with degree at most d. As a natural lower bound
on the Dd-covering number of a host graph H we have cDdi (H) ≥ d∆(H)/de for i = f, l, g.
By the following lemma it suffices to consider only regular host graphs for the question
whether this lower bound is always met.

Lemma 6.1 (Stumpf [Stu15])
Every graph H with maximum degree ∆ is an induced subgraph of a ∆-regular graph.

There is always an optimal folded cover considering this lower bound as following lemma
shows.

Lemma 6.2
Let Dd be the guest class of all graphs with degree at most d. Let H be a host graph with
maximum degree ∆. Then cDdf (H) = d∆/de.

Proof. We obtain a suiting guest graph G by dividing every vertex v into ddeg(v)/de new
vertices and distributing the incident edges evenly among them. By mapping every vertex
of G to the corresponding original vertex of H we obtain a folded cover covering every
vertex at most d∆(H)/de times. This concludes the proof.

For regular host graphs of degree kd a global cover with k guests is equivalent to a partition
into d-factors. Such partition does not always exist. E.g. it is NP-hard to decide whether
a given regular graph can be partitioned into 1-factors perfect matchings [Hol81]. Another
example are regular host graphs of degree 2d with an odd number of edges [Pet91]. However,
for an even maximum degree d we can always find such partition (and thereby an optimal
global cover for all host graphs by Lemma 6.1) [Pet91].

In the local case it is not known (to the best of the author‘s knowledge) whether there is
always an optimal cover considering the lower bound. For d = 1 we can use each edge as
another guest providing an optimal cover. Further, we can optimally cover all complete
graphs as following lemma shows. This is not possible with global covers, as for odd
maximum degree d we have ||K2d+1|| =

(2d+1
2
)

= (2d+ 1)(2d)/2 = (2d+ 1)d which is an
odd number of edges.
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6. Guests of Bounded Degree

Lemma 6.3
For every d ∈ N we have cDdl (Kkd+1) = k.

Proof. Partition the vertex set of Kkd+1 into one vertex x and k sets A1, . . . , Ak of d
vertices each. Consider the subgraphs induced by Ai ∪ {x} for i = 1, . . . , k as guests.
Further, for 1 ≤ i ≤ j ≤ k consider the subgraphs induced by Ai ∪Aj as guests. The first
kind of guests are copies of Kd+1 covering all edges to x and between vertices of the same
set. The second kind of guests are copies of Kd,d covering all edges between vertices of
different sets. Hence, all guests are edge-disjoint, d-regular and cover all edges. Further,
vertex x is covered by the first k guests while every other vertex is covered by one guest of
the first kind and k − 1 guests of the second kind. Thus, our cover actually covers every
vertex k times.

Such an optimal local cover of a kd-regular host graph implies a d-regular subgraph since
the guests must be vertex-disjoint d-regular subgraphs to provide enough degree in every
vertex. The existence of such a subgraph was proven by Taskinov [Tas88].
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7. Cover Resistance

7.1 Motivation
The research on covering numbers so far focused on covering numbers for fixed guest classes,
for which different host graphs or host classes where considered. In this chapter we instead
focus on covering numbers for fixed host classes, while we consider different guest classes.

Let H be a host class. We investigate for i = f, l, u, g the possible values for cGi (H) by
choosing different guest classes G.

Without restriction, we usually obtain a large number of possible values for the covering
numbers: For i = g, let k be the number of edges of some host graph Hk ∈ H. Consider
the guest class G′ containing K2 and every host graph H ∈ H with ||H|| > k. The host
graph Hk must be covered using k copies of K2 as guests. This implies cG′g (H) ≥ k. As
every host graph H ′′ with ||H ′′|| > k can be covered by itself, and every other host graph
can be covered using at most k copies of K2 as guests, we obtain cG′g (H) = k.

We can find an analogous construction of a guest class for i = f, l, u by considering the
maximum degree of host graphs instead of their size. Hence, it is easy to find host classes
for which every positive integer is a possible covering number.

Therefore we consider, on the other side, host classes with as few as possible values for their
covering numbers. However, the constructions above strongly restrict such host classes,
allowing only a small number of sizes or maximum degrees which is undesirable.

We thus consider only induced-hereditary guest classes, preventing those constructions
above.

7.2 Cover Resistance
Remember that we write G ⊆e H if for every graph G ∈ G we have G ∈e H, i.e., for every
graph G ∈ G there is a graph H ∈ H with H = (V (G) ·∪W,E(G)) for some vertex set W .
In other words it denotes a subclass property where additional vertices in graphs of the
subclass are ignored.

By Proposition 3.5 we know that for i = f, l, u, g we have cGi (H) ≤ 1 if H ⊆e G. Thus, a
covering number of 0 or 1 is always possible considering the induced-hereditary closure of
H as guest class. We consider the host classes with the least number of possible values for
some covering variant. To this end, we introduce the notion of cover resistances.
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Definition 7.1
Let i = f, l, u, g. A host class H is called i-cover resistant, if for every induced-hereditary
guest class G we have H 6⊆e G ⇔ cGi (H) = ∞ for i = g and H 6⊆e G ⇔ cGi (H) = ∞ for
i = f, l, u. By Proposition 3.5 this is equivalent to cGi (H) > 1 ⇒ cGi (H) = ∞ and to the
contraposition cGi (H) <∞⇒ cGi (H) ≤ 1.

I.e., a host class H is cover resistant, if its covering number with regards to any induced-
hereditary guest class G is only finite, if G already contains H. In this sense, host class H
resists to be covered.

By Theorem 4.15 we know the class OS of shift graphs of ordered graphs is g-cover resistant.
And by a result of Stumpf in his Bachelor‘s Thesis, we know the class K of all complete
graphs is l-cover resistant.

Theorem 7.2 (Stumpf [Stu15])
Let K denote the class of all complete graphs and let G be an induced-hereditary class of
graphs and r the smallest natural number with Kr /∈ G. Let r <∞. Then cGl (K) =∞.

An example for an f -cover resistant class is the class St of stars.

Theorem 7.3
The class St of stars is f -cover resistant.

Proof. Let G be an induced-hereditary guest class with cGf (St) > 1. Then there is a star Sr
with r leaves that is not contained in G. The guest class G does then not contain any star
with more than r leaves, as it is induced-hereditary. Let k be any positive number. Then,
a folded cover of star Srk, with x as non-leaf vertex, contains at least k stars as guests,
each covering x. This implies cGf (St) =∞.

An overview over further results on cover resistances is provided in Table 7.1.

7.3 Relation to Induced Ramsey Theory

The investigation of cover resistance is related to Induced Ramsey Theory, as we will show
in Theorem 7.5 and Corollary 7.6 below. Roughly speaking, a host class H is cover resistant,
if and only if for every graph H ∈ H there is a graph H ′ ∈ H such that every relevant
cover of H ′ has H as induced subgraph of its guests. In this sense the cover resistance of a
host class is a self-similarity.

For the g-cover resistance we think in terms of edge-colourings, allowing as usual multiple
colours per edge. The class H is g-cover resistant if and only if for every graph H ∈ H
there is a graph H ′ ∈ H such that every colouring of H ′ using two colours has H as
induced subgraph of one colour. A difference to Induced Ramsey Theory is that edges can
be coloured using multiple colours. We actually use two results of the Induced Ramsey
Theory to show the f -cover resistance of bipartite graphs in Corollary 7.24 and the l-cover
resistance of the class of all graphs in Corollary 7.28.

To prove the cover resistance of a host class H, we need to exclude all possible covering
numbers except for 0, 1 and ∞. Lemma 7.4 states that for all but the l-cover resistance
only the covering number of 2 has to be excluded. In terms of edge-colourings for the
g-cover resistance, this means only two colours need to be considered. This supports the
similarity to Induced Ramsey Theory.
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g-cover res. u-cover res. l-cover res. f -cover res.
{K2} 3 3 3 3 Thm. 7.19

matchings 3 3 3 3 Thm. 7.19
stars 3 3 3 3 Thm. 7.3

complete bipartite 3 3 3 3 Cor. 7.22
bipartite 3 3 3 3 Cor. 7.24
complete 3 3 3 7 Thm.7.2/[Stu15]
all graphs 3 3 3 7 Cor. 7.28
OS 3 3 7 7 Thm. 4.15

∆(H) > 1, |H| <∞ 7 7 7 7 Pro. 7.18
3 ≤ χ(H) <∞ 7 7 7 7 Pro. 7.17

planar 7 7 7 7 Pro. 7.17
outer-planar 7 7 7 7 Pro. 7.17
(a, b)-sparse 7 7 7 7 Pro. 7.17

forests 7 7 7 7 Pro. 7.17
χ(H) =∞ - - - 7 Thm. 4.3/[Stu15]
{K2 ·∪K2} 7 3 3 3 Pro. 7.18
K ∪ St 7 3 3 7 Thm. 7.13

K ∪ St ∪ OS 7 3 7 7 Thm. 7.13

Table 7.1: Host classes and their cover-resistances. Let H be a host class. (i) By Proposi-
tion 7.12 the f -cover resistance implies l-cover resistance which in turn implies
u-cover resistance which, if all host graphs in H are connected, implies g-cover
resistance. (ii) Further, by Proposition 7.10 and Proposition 7.11 for i = f, l, u,
if H is i-cover resistant, then the union-closure H and the induced-hereditary
closure Ĥ of H are also i-cover resistant. The later holds even for i = g. (iii)
Let i = f, l, u. By Theorem 7.9 for two i-cover resistant host classes H1 and H2
also H1 ∪H2 is i-cover resistant.
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7. Cover Resistance

Lemma 7.4
Let H be a host class and i = f, u, g. Then H is i-cover resistant if and only if there is no
induced-hereditary guest class G with cGi (H) = 2.

Proof. “⇒”: Let G be an induced-hereditary guest class. Then by the i-cover resistance of
H we have cGi (H) 6= 2.

“⇐”(Contraposition): AssumeH is not i-cover resistant. Then there is an induced-hereditary
guest class G with 1 < cGi (H) = k < ∞. Let Gk−1 = {H graph | cGi (H) ≤ k − 1}. Note
that the definition of Gk−1 depends on i. Further note that Gk−1 is induced-hereditary by
Proposition 3.6, since G is induced-hereditary. We aim to prove cGk−1

i (H) = 2 which then
concludes the proof. Since cGi (H) = k, we have H 6⊆e Gk−1 for i = f, l, u and H 6⊆e Gk−1

for i = g. With Proposition 3.5 we get cGk−1

i (H) ≥ 2.

Let H ∈ H be a host graph and (S, φ) be a k-(folded/local/union/global) G-cover of H. If
k ≤ 2 we are done. Hence, assume k > 2.

If i = g, then we have |S| ≤ k. Without loss of generality, we assume every graph in S
to be identical to its image with regards to φ. We arbitrarily choose a guest G ∈ S. As
there are only k − 1 guests in S \ {G}, their union H ′ =

⋃
(S \ {G}) is guest-injectively

covered by them. Thus, we have H ′ ∈ Gk−1 and G ∈ G ⊆ Gk−1. With G ∪H ′ = H follows
cG

k−1
g (H) ≤ 2.

If i = u, then S can be partitioned into k guest-unions S1, . . . , Sk. Let H ′ denote the
subgraph of H covered by S1, . . . , Sk−1, i.e., let H ′ = (V,E) where

E = {uv ∈ E(H) | ∃j ∈ {1, . . . , k − 1} : ∃G ∈ Sj : ∃xy ∈ E(G) : φ(x) = u and φ(y) = v}.

Let G denote the subgraph of H covered by Sk. By definition we have H ′ ∈ Gk−1 and
G ∈ G ⊆ Gk−1. With G ∪H ′ = H follows cGk−1

u (H) ≤ cGk−1
g (H) ≤ 2.

If i = f , then for every vertex v ∈ H we have |φ−1(v)| ≤ k. For every vertex v ∈ H choose
a vertex z(v) ∈ φ−1(v). We define

ψ :
⋃
· S → H ′, u 7→

{
φ(u) , if z(φ(u)) 6= u

u , otherwise
.

Where H ′ is chosen such that ψ is an edge-surjective and vertex-surjective homomorphism.
Then (S, ψ) is a (k − 1)-folded G-cover of H ′ and thus H ′ is contained in Gk−1. We can
then define cover ({H ′}, τ) where

ψ : H ′ → H,u 7→
{
φ(u) , if z(φ(u)) = u

u , otherwise
.

Since every vertex v of H has only z(v) and v itself in τ−1(v), it is a 2-folded Gk−1-cover
of H. Hence, we have cGk−1

f (H) ≤ 2.

An analogous proof of Lemma 7.4 for i = l is not possible. It would require the guests
G1, . . . , Gm of a k-local cover of a host graph H to be merged to new guests G′1, . . . , G′n
that provide a 2-local cover of H, without merging all guests that cover the same vertex v
(since the guest G′i covering v would not be (k − 1)-locally covered by G1, . . . , Gm). This
is not possible in general:

Consider the host class H that contains all line-graphs of 3-uniform complete hypergraphs.
I.e., let H be the class containing for r ∈ N the graph Hr = (V,E) with V =

([r]
3
)
and
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7.3. Relation to Induced Ramsey Theory

E = {(S, T ) ∈
([r]

3
)2
| S ∩ T = ∅}. First note that for the class K of complete graphs we

have H 6⊆e K since for r ≥ 6 there are two disjoint vertices {1, 2, 3} and {4, 5, 6}.

Let Hr ∈ H. Then we define for i ∈ [r] the complete guest graph Gi on vertex set
{v ∈

([r]
3
)
| i ∈ v}. These r guests induce a K-cover (S, φ) of Hr since two adjacent vertices

u and v share a common element i and are therefore both contained in guest Gi in which
they are also adjacent. Cover (S, φ) is further 3-local since every vertex {h, i, j} is only
covered by the three guests Gh, Gi and Gj . Therefore, the class H is not l-cover resistant.

Let K2 = {H graph | cKl (H) ≤ 2}. Since K is induced-hereditary, it follows by Propo-
sition 3.6 that K2 is also induced-hereditary. Consider graph H9. It induces the star
S3 with 3 leaves on the vertices {1, 2, 3}, {1, 4, 5}, {2, 6, 7} and {3, 8, 9}. Since every edge
must be covered by a different clique, vertex {1, 2, 3} is covered by three guests. With
Proposition 3.6 we obtain cKl (H9) ≥ cKl (S3) ≥ 3. Thus, we have for n ≥ 9 that Hn 6∈ K2.

Now assume for the sake of contradiction that there is a 2-local K2-cover (S′, φ) of H17 that
is obtained by uniting guests of the corresponding K-cover (S, φ) from above. There must
be two guests Ga, Gb ∈ S that are not united in S′ since otherwise we have H17 ∈ S′ ⊆ K2

which is a contradiction. Let G′a and G′b denote the guests in S′ containing Ga and Gb.
Consider a vertex in V (H17) of the form {a, b, x}. It is covered by G′a and G′b. Since
(S′, φ) is a 2-local cover, the guest Gx must be contained in G′a or G′b. By pigeon hole
principle one of the guests G′a and G′b must contain at least eight of the guests Gi with
i ∈ [17] \ {a, b}. Without loss of generality, lets assume that it is the case for G′a.

Then let T = {i ∈ [17] | Gi ⊆ G′a}. Set T contains at least nine elements, since it also
contains a itself. By definition of T , the induced subset 〈T 〉H17 = H9 is covered by G′a.
Since we have G′a ∈ K2 and K2 is induced-hereditary, it follows by Proposition 3.6 that
cK

2
l (H9) = 1. This in turn implies that H9 ∈ K2 which is a contradiction.

Hence, an analogous proof is not possible. We did however not show that the analogous
statement is false, since we have not considered general guest classes. The above defined
host class H appears to be at least a good candidate for a falsification.

Let H and G be graphs. Then we write H ve G if H is an induced subset of G ignoring
isolated vertices, i.e., it means H v

(
V (G) ∪ V (H), E(G)

)
.

Now we state Theorem 7.5, which characterises the covering resistances in a way similar to
Induced Ramsey Theory.

Theorem 7.5
Let H be a host class and A be the host class of all graphs.

(i) The host class H is g-cover resistant if and only if the following statement holds:

∀H ∈ H : ∃H ′ ∈ H : ∀2-global A-cover (S, φ) of H ′ : ∃G ∈ S : H ve G (?)

(ii) For i = f, u, the host class H is i-cover resistant if and only if the following statement
holds:

∀H ∈ H : ∃H ′ ∈ H : ∀2-i A-cover (S, φ) of H ′ : H ve
⋃
· S, (??)

where k-i means k-(folded/union) depending on i.

(iii) The host class H is l-cover resistant if and only if the following statement holds:

∀k ≥ 2 : ∀H ∈ H : ∃H ′ ∈ H : ∀k-local A-cover (S, φ) of H ′ : H ve
⋃
· S (? ? ?)

Remark
We need the extension to ∀k ≥ 2 in (iii), since we do not have Lemma 7.4 for the l-cover
resistance.
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Proof. “(i)”: Assume statement (?) does not hold. I.e., assume there is a host graph H ∈ H
such that for every host graph H ′ ∈ H there is a 2-global cover (S, φ) of H ′ such that for
every guest G ∈ S we have H 6ve G.

Let G = {G graph | H 6ve G}. The guest class G is by definition induced-hereditary.
Further, for each host graph H ′, our assumption provides a 2-global G-cover of H. Hence,
we have cGg (H) ≤ 2 < ∞. Since G does by definition not contain H and is closed under
adding isolated vertices, we obtain H 6⊆e G. Therefore H is not g-cover resistant.

Next assume the statement (?) holds. Let G be an induced-hereditary guest class with
cGg (H) ≤ 2. Let H ∈ H. By statement (?) there exists a host graph H ′ ∈ H such that for
each 2-global G-cover (S, φ) of H ′ we have a guest G ∈ S with H ve G ∈ S ⊆ G. Since G
is induced-hereditary this implies H ∈e G and thus cGg (H) ≤ 1. With Lemma 7.4 we can
conclude that H is g-cover resistant. This concludes the case.

“(ii)”: This case can be proven analogously to (i). On the one hand, we note that for
G = {G graph | H 6ve G} we have G = G. On the other hand, we note that, if we have a
host graph H, an induced-hereditary guest class G and a set of guests S ⊆ G such that
H ve

⋃
· S ∈ G, then we have H ∈e G, since G is induced hereditary.

“(iii)”: Assume statement (? ? ?) does not hold. I.e., assume there is a number k ≥ 2 and a
host graph H ∈ H such that for every host graph H ′ ∈ H there is a k-local cover (S, φ) of
H ′ with H 6ve

⋃
· S.

Let G = {G graph | H 6ve G}. The guest class G is by definition induced-hereditary.
Further, for each host graph H ′, our assumption provides a k-local G-cover of H. Hence,
we have cGl (H) ≤ k < ∞. Since G does by definition not contain H and is closed under
adding isolated vertices, we obtain H 6⊆e G = G. Therefore H is not l-cover resistant.

Next assume the statement (? ? ?) holds. Let G be an induced-hereditary guest class.
Assume cGl (H) = k < ∞. Let H ∈ H. By statement (? ? ?) there exists a host graph
H ′ ∈ H such that for each k-local G-cover (S, φ) of H ′ we have H ve

⋃
· S ∈ G. Since G is

induced-hereditary this implies H ∈e G and thus H ⊆e G. Therefore H is l-cover resistant
which concludes the proof.

We say a host class H has the Induced Ramsey Property, if for any graph G ∈ H we find a
graph H = (V,E) ∈ H such that for every bipartition of E we find a copy of G as induced
subgraph of H with all edges in the same partition set.

We say host class H has the Weak Induced Ramsey Property, it for any graph G ∈ H we
find a graph H = (V,E) ∈ H such that for every bipartition (A,B) of E we find a copy of
G as induced subgraph of (V,A) or (V,B).

There is a direct relation between these two properties and the g-cover resistance.

Corollary 7.6
Let H be a host class. If H has the Induced Ramsey Property, then it is g-cover resistant.
And if H is g-cover resistant, then it has the Weak Induced Ramsey Property.

Proof. Assume H has the Induced Ramsey Property. We aim to use Theorem 7.5. Let
G ∈ H. Let H ∈ H be a graph provided by the Induced Ramsey Property for G. Consider
a 2-global cover (S, φ) of H with S = {G1, . . . , G2}. Every edge of H is covered by at least
one of the guests. Thus, we can define a function f : E(H)→ {1, 2} such that for e ∈ H
we have e is covered by Gf(e). By definition of H there is a copy G′ of G with G′ v H and
(E(G′) ⊆ E(G1) or E(G′) ⊆ E(G2)). Without loss of generality assume E(G′) ⊆ E(G1).
Let F be the graph obtained from G′ by removing isolated vertices. Then we obtain
F ⊆ G1. With F v H and G1 ⊆ H this implies H ′ ve H. Therefore H is g-cover resistant.
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Next assume H is g-cover resistant. Let H ∈ H and H ′ = (V,E) ∈ H be a graph provided
by Theorem 7.5 since H is g-cover resistant. Let (A,B) be a bipartition of E. We consider
the 2-global cover of H ′ using the guests (V,A) and (V,B). By definition of H ′, we have
either H v (V,A) or H v (V,B). Therefore H has the Weak Induced Ramsey Property.

7.4 Constructing Cover Resistant Host Classes
In this section we investigate the construction of new cover resistant classes from known
cover resistant classes. We first show that the union of two cover resistant host classes is
itself cover resistant, and that the union-closure of a cover resistant host class is also itself
cover resistant. In order to do so, we first consider taking disjoint unions of covers. This is
not possible for global covers if the guest class is not union-closed.

Lemma 7.7
Let G be a guest class and H be a host class. Let i = f, l, u and cGi (H) = k <∞. Let⋃
· H denote the (possibly infinite) graph that is the disjoint union of all host graphs in H
(considering isomorphic graphs as identical).

Then there is a k-(folded/local/union) G-cover of
⋃
· H.

Proof. Since we have cGi (H) = k < ∞, for every host graph H ∈ H there is a k-
(folded/local/union) G-cover (SH , φH) of H. We construct a cover (S, φ) by merging
all those covers as follows: We set S =

⋃
· H∈H SH and we define

φ :
⋃
· S →

⋃
· H, u 7→ φH(u), where u ∈

⋃
· SH .

Less formally, we cover each graph H which is part of the disjoint union
⋃
· H using the

guests in SH in the way described by φH . Note that a copy H ′ of H may appear as
subgraph of another host graph in

⋃
· H, and that copy H ′ may be covered in another way

than H. For this proof, whenever we write H ⊆
⋃
· H, we mean a graph H which is part of

the disjoint union
⋃
· H and not just a subgraph of

⋃
· H.

Note that by the definition of S, the function φ is well defined. Let vw be an edge in
⋃
· S.

Then it is edge of a guest G ∈ S. By the definition of S, this guest G belongs to a guest-set
SH . Since φH is a homomorphism, we have

(φ(v), φ(w)) = (φH(v), φH(w)) ∈ E(H) ⊆ E(
⋃
· H).

Therefore, the function φ is a homomorphism.

Let xy be an edge in
⋃
· H. By the definition of

⋃
· H there is a graph H ⊆

⋃
· H with xy ∈ H.

Since (SH , φH) is a cover, there are two vertices v, w ∈
⋃
· SH with φ(v) = φH(v) = x and

φ(w) = φH(w) = y. Hence, the homomorphism φ is edge-surjective.

For every guest G ∈
⋃
· S we have a graph H with G ∈ SH . We further have

φ|G = (φ|⋃· SH )|G = φH |G

which is vertex-injective, if i = l, u. Hence, cover (S, φ) is guest-injective, if i = l, u.

Assume i = f, l and consider a vertex v ∈
⋃
· H. By definition of

⋃
· H, vertex v belongs to a

graph H ⊆
⋃
· H. Then we have |φ−1(v)| = |(φH)−1(v)| ≤ k, since only vertices of

⋃
· SH

are mapped onto H. Hence, cover (S, φ) is indeed a k-(folded/local) G-cover of
⋃
· H.

Next assume i = u. Then for every graph H ∈ H the set SH can be partitioned into k sets
SH1 , . . . , S

H
k such that for j ∈ [k] the restricted homomorphism φH |⋃· SHj is vertex-injective.
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For j ∈ [k], we define Sj =
⋃
· H∈H SHj . Since for every graph H ⊆

⋃
· H the vertices of⋃

· SH are only mapped onto H, we obtain for every vertex x ∈
⋃
· H with x ∈ H that

|(φ|⋃· Sj )−1(x)| = |(φ|⋃· SHj )−1(x)| ≤ 1. Hence, the restricted homomorphism φ|⋃· Sj is
vertex-injective and (S, φ) is a k-union G-cover of

⋃
· H. This concludes the proof.

Lemma 7.8 verifies that the covers provided by Lemma 7.7 are actually best-possible for
finite disjoint unions. It thus directly provides the covering number of disjoint unions.

Lemma 7.8
Let H1 and H2 be host graphs and let G be an induced-hereditary guest class. Let i = f, l, u.
Then cGi (H1 ·∪H2) = max(cGi (H1), cGi (H2)).

Proof. Since G is induced-hereditary, a k-(folded/local/union) G-cover of H1 ·∪ H2 in-
duces a k-(folded/local/union) G-cover of H1 and another one of H2. Hence, we have
cGi (H1 ·∪H2) ≤ max(cGi (H1), cGi (H2)).

On the other hand, if we have a k-(folded/local/union) G-cover (S1, φ1) of H1 and an
m-(folded/local/union) G-cover (S2, φ2) of H2, we obtain a max(k,m)-(folded/local/union)
G-cover by Lemma 7.7 considering the host class {H1, H2}.

This allows us to conclude from the cover resistance of two host classes to the cover
resistance of their union.

Theorem 7.9
Let i = f, l, u and let H1 and H2 be i-cover resistant host classes. Then H1 ∪ H2 is an
i-cover resistant host class.

Proof. First consider H1 ∪H2. Let G be an induced-hereditary guest class. If cGi (H1) =∞
or cGi (H2) =∞, then with Proposition 3.1(iii) we obtain cGi (H1 ∪H2) =∞. Hence, assume
cGi (H1) ≤ 1 and cGi (H2) ≤ 1. Now let H ∈ H1 ∪H2. Then there are two graphs H1 ∈ H1
and H2 ∈ H2 such that H = H1 ·∪H2. With Lemma 7.8 we have that

cGi (H) = max{cGi (H1), cGi (H2)} ≤ max{cGi (H1), cGi (H2)} ≤ 1.

Hence, host class H1 ∪H2 is i-cover resistant.

Lemma 7.8 also allows us to conclude from the cover resistance of one class to the cover
resistance of its union-closure.

Theorem 7.10
Let H be a host class and let H be its union-closure. Let i = f, l, u. Then H is i-cover
resistant if and only if H is i-cover resistant.

Proof. Let G be an induced-hereditary guest class. By Lemma 7.8 we obtain cGi (H) = cGi (H).
Since the covering numbers of H and H coincide for induced-hereditary guest classes, so
does their cover resistance.

With Theorem 7.10 we only have to consider union-closed host classes for cover resistance.
For other host classes their cover resistance is determined by the cover resistance of their
union-closure.

Another interesting closure for cover resistant host classes is the induced-hereditary closure.
This is especially the case, since the guest classes are required to be induced-hereditary.
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Proposition 7.11
Let H be a host class and let Ĥ be its induced-hereditary closure. Let i = f, l, u, g. Then H
is i-cover resistant if and only if Ĥ is i-cover resistant.

Proof. Assume H is i-cover resistant. Consider an induced-hereditary guest class G with
cGi (Ĥ) > 1. Then there is a graph H ∈ Ĥ with cGi (H) > 1. Since we have H v H ′ for some
host graph H ′ ∈ H, we obtain by Proposition 3.6 that cGi (H ′) ≥ cGi (H) > 1. Since H is
i-cover resistant, this implies cGi (H) =∞. With Proposition 3.1(iii) and Proposition 3.4(iii)
we obtain cGi (Ĥ) =∞.

Now assume Ĥ is i-cover resistant. Consider an induced-hereditary guest class G with
cGi (H) > 1. Then there is a graph H ∈ H ⊆ Ĥ with cGi (H) > 1. Since Ĥ is i-cover resistant,
this implies cGi (Ĥ) =∞. Therefore, for any positive integer k, there is a graph Hk ∈ Ĥ with
cGi (Hk) ≥ k. As Hk v H ′k for some host graph H ′k ∈ H, we obtain cGi (H) ≥ cGi (H ′k) = k.
Hence cGi (H) =∞.

Analogously to Theorem 7.10, Theorem 7.11 allows us to only consider induced-hereditary
host classes for cover resistance, since the cover resistances of other classes can be derived
from those.

7.5 Relations Between Different Cover Resistances
For a fixed guest class G, we have for any host classH that cGf (H) ≤ cGl (H) ≤ cGu(H) ≤ cGg (H).
These relations are reflected in implications for cover resistances, except for the g-cover
resistance which requires some extra care.

Proposition 7.12
Let H be a host class.

(i) If H is f -cover resistant, then H is also l-cover resistant.

(ii) If H is l-cover resistant, then H is also u-cover resistant.

(iii) If H is u-cover resistant, then Comp (H) is g-cover resistant,
where Comp (H) = {C | ∃H ∈ H : C is component of H}.

(iv) If H is u-cover resistant and every graph H ∈ H is connected,
then H is also g-cover resistant.

(v) If H is g-cover resistant, then H is also u-cover resistant.

Proof. “(i)”: Let H be f -cover resistant. Let G be an induced-hereditary guest class. Now
assume cGl (H) > 1. Then there is some host graph H ∈ H such that cGl (H) = k > 1. This
means H 6∈e G and with Proposition 3.5 we obtain cGf (H) ≥ cGf (H) > 1. Since H is f -cover
resistant, with Proposition 3.1(ii) this implies cGl (H) ≥ cGf (H) =∞. Hence, host class H is
l-cover resistant.

“(ii)”: Can be proven analogously.

“(iii)”: For H ∈ Comp(H) we have H 6∈e G ⇒ H 6∈e G since H is connected. Using this,
item (iii) can be proven analogously.

“(iv)”: Direct consequence of (iii), noting that Comp(H) = H.

“(v)”: Let G be an induced-hereditary guest class. Let H be g-cover resistant. Then we
have cGu(H) = cGg (H) ∈ {0, 1,∞}. Therefore H is also u-cover resistant.
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With Proposition 7.12 it suffices to state the strongest cover resistance(s) of a host class.
E.g., we know that the class OS of shift graphs of ordered graphs is g-cover resistant by
Theorem 4.15 and can conclude that it is also u-cover resistant. However, concluding from
union to global cover resistance needs extra attention, since it requires the host graphs to
be connected. That some condition like that is necessary can be seen in Theorem 7.13.

Theorem 7.13
Let K denote the class of complete graphs and let St denote the class of stars. Then
H = K ∪ St is a union-closed induced-hereditary host class that is l-cover resistant but not
g-cover resistant.

Further, let OS denote the class of shift graphs of ordered graphs as introduced at the end
of Chapter 4 Section 4.2. Let F = K ∪ St ∪ OS be the union-closure of H ∪OS. Then F
is u-cover resistant but neither g- nor l-cover resistant.

Proof. Since K and St are induced-hereditary, so is K ∪ St and H. By its definition H is
also union-closed.

Further, the class of complete graphs K is l-cover resistant by Theorem 7.2 and the class of
stars St is f -cover resistant by Theorem 7.3. This implies l-cover resistance of K and St by
Proposition 7.12. By Theorem 7.9 and Theorem 7.10 this proves that H is l-cover resistant.

Now consider the guest class G = K ∪OS. It is easy to verify that it is induced-hereditary.
Let H = Hc ·∪Hs ∈ H be a host graph where Hc ∈ K and Hs ∈ St ⊆ OS. Then H can be
covered using Hc and Hs as two guests that cover themselves. Hence, we have cGg (H) ≤ 2.
On the other hand, consider the guest H ′ = K3 ·∪ St3 where St3 denotes the star with
3 leaves. Since St3 6∈ K and K3 6∈ OS and K3 6∈ St we have H ′ 6∈ K and H ′ 6∈ OS and
H ′ 6∈ St. Hence, we obtain H ′ 6∈ G which implies H 6⊆e G, since H ′ contains no isolated
vertices. With the definition of cover resistance we conclude that H is not g-cover resistant.

By Theorem 4.15 we know OS is u-cover resistant and with Theorem 7.9 and 7.10 we
obtain that F is also u-cover resistant. Let H = Hc ·∪Hs ·∪Ho ∈ H be a host graph where
Hc ∈ K and Hs ∈ St and Ho ∈ OS. Then H can be covered using Hc, Hs and Ho as
three guests that cover themselves. Hence, we have cGg (F) ≤ 3. However, we also have
cGg (F) ≥ cGg (H) > 1. Therefore F is not g-cover resistant.

Finally consider guest class G′ = K ∪ Bip where Bip is the class of bipartite graphs.
Again it is easy to verify that G′ is induced-hereditary. By Corollary 4.13 we know
cBipl (OS) ≤ cBipl (S) = 2. With St ⊆ OS we obtain cG′l (F) ≤ 2. On the other hand, we
know that C5 v S(Ko

5) and C5 6∈ K ∪ Bip. Thus cG′l (F) ≥ cG
′

l (OS) ≥ cG
′

l (S(Ko
5)) ≥ 2.

Hence, we have cG′l (F) = 2 and thus F is not l-cover resistant.

The first construction of Theorem 7.13 is generally possible for two host classes that do
not contain each other. This is because the g-cover resistance is defined different to the
other cover resistances by demanding H ⊆e G instead of H ⊆e G, if the covering number is
infinite. This supports the approach of only considering union-closed guest classes for the
comparison of the local, folded and global covering number.

By Theorem 4.15 and Corollary 4.13, the class of shift graphs is u-cover resistant but not
l-cover resistant. By Theorem 7.2 the class of complete graphs is l-cover resistant. However,
since cBipf (K) ≤ 2 by Theorem 4.3 and K3 6∈ Bip, the class K is not f -cover resistant.

Hence, the f -cover resistance is a stronger property than the l-cover resistance, which in
turn is a stronger property than the u-cover resistance.
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However, there are many host classes for which these cover resistances are equivalent as
Corollary 7.14 shows.

We recall Theorem 4.17:

Theorem 4.17
Let G be an induced-hereditary guest class and let H be a host graph. Let (S, φ) be a k-folded
G-cover of H with S = {G1, . . . , Gm}. Then there is a (k2dlog(χ(H))e)-union G-cover
(S′, φ′) of H, such that every guest in S′ is induced subgraph of one of the guests in S.
Especially we have cGu(H) ≤ cGf (H)2dlog(χ(H))e.

Theorem 4.17 provides a non-separability of folded- and union-covering number on host
graphs of bounded chromatic number. This non-separability implies an equivalence of the
cover resistances.

Corollary 7.14
Let r ∈ N and let H be a host class with χ(H) ≤ r, i.e., let for every host graph H ∈ H
hold that χ(H) ≤ r.

Then H is f -cover resistant if and only if it is u-cover resistant.

Proof. By Proposition 7.12 we know H is u-cover resistant if it is f -cover resistant. Hence,
let H be u-cover resistant.

Let G be an induced-hereditary guest class with cGf (H) = k < ∞. Let H ∈ H. By
Theorem 4.17 we have cGu(H) ≤ cGf (H)2dlog(χ(H))e ≤ k2r < ∞. With Proposition 3.1
and Proposition 3.4 this implies cGf (H) ≤ cGu(H) ≤ 1. Therefore, host class H is f -cover
resistant.

In another case we obtain the l-cover resistance from the g-cover resistance as stated in
Theorem 7.16.

Lemma 7.15
Let H be a g-cover resistant host class and A be the class of all graphs. Then we have

∀k ∈ N∀H ∈ H : ∃H ′ ∈ H : ∀k-global A-cover (S, φ) of H ′ : ∃G ∈ S : H ve G

Proof. We prove the statement by induction on k. For k = 1 just consider H ′ = H. In
every 1-global cover of H ′ the guest G must contain all edges of H ′ and we thus have
H = H ′ ve G.

Let k ≥ 1 and the statement be true for k. Then there is a graph Hk such that every
k-global cover of Hk has a guest Gk with H ve Gk. By Theorem 7.5 there is a graph H2k,
such that in every 2-global cover of H2k there is a guest G′2k with Hk ve G′2k.

Consider a 2k-global cover (S, φ) of H2k. Now partition the set S into two sets A and B of
(at most) k guests each.

Consider the union GA of all guests in A and the union GB of all guests in B. We obtain
a 2-global cover of H2k by using GA and GB as guests with the mapping of φ. Hence, we
have Hk ve GA or Hk ve GB. Let without loss of generality Hk ve GA. By definition of
GA, this copy of Hk is globally covered by k guests in A ⊆ S. By definition of Hk this
implies there is a guest Gk in A ⊆ S with G ve Gk. Since not all guests have to be used,
also a (k + 1)-global cover of H2k contains a guest G′ with H ve G′. This concludes the
induction.
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Let H be a graph class. We call H universal-vertex-closed, if for H ∈ H adding a universal
vertex x to H that is adjacent to all vertices in H results in a graph H ′ ∈ H. I.e., if for all
H ∈ H with x 6∈ H we have (V (H) ∪ {x}, E(H) ∪ xV ) ∈ H where xV = {xv ∈

(V ∪{x}
2
)
|

v ∈ V }.

Theorem 7.16
Let H be a universal-vertex-closed g-cover resistant host class. Then H is l-cover resistant.

Proof. We aim to use Theorem 7.5. We prove the Property (? ? ?) by induction on k. For
k = 1 just consider H ′ = H and the statement holds, since all edges must be covered while
the guests must be vertex disjoint.

Let k ≥ 1 and for k let hold that

∀H ∈ H : ∃H ′ ∈ H : ∀k-local A-cover (S, φ) of H ′ : H ve
⋃
· S.

Let H ∈ H. Then there is a graph Hk such that every k-local cover of Hk has a guest G′k
with H v G′k. By Lemma 7.15 there is a graph H ′k+1, such that in every (k + 2)-global
cover of H ′k+1, there is a guest G′k+1 with Hk v G′k+1. Now let Hk+1 be the graph H ′k+1
to which a (universal) vertex x is added that is adjacent to all other vertices. I.e., we
define Hk+1 = (V (Hk+1), E(Hk+1)) where V (Hk+1) = V (H ′k+1) ·∪ {x} and E(Hk+1) =
E(H ′k+1) ·∪ {vx | x ∈ V (H ′k+1)}.

Consider a (k + 1)-local cover (S, φ) of Hk+1. There are at most (k + 1) guests G1, . . . , Gs
in S covering x. Consider the union GR of the remaining guests. We obtain a (k+ 2)-global
cover of H ′k+1 by using G1, . . . , Gs, GR as guests and the mapping of φ. By definition of
H ′k+1 there is a guest G′k+1 with Hk v G′k+1. Assume G′k+1 is one of the guests G1, . . . , Gs
covering H ′k+1. Then H v Hk v G′k+1 = Gi for some i = 1, . . . , s. Hence, assume Hk v GR.
Observe that every vertex v of H ′k+1 is adjacent to x in Hk+1. As the corresponding edge
vx is covered by a guest in {G1, . . . , Gs}, vertex v is covered by that guest and at most
k other guests. Therefore (S, φ) induces a k-local cover on GR. This cover also covers
a copy of Hk, since Hk v GR. By the definition of Hk this implies there is a guest G′k
in S with H v G′k. This concludes the induction. Therefore H is l-cover resistant by
Theorem 7.5.

7.6 Negative Results
In the preceding sections we focused on cover resistant host classes. In this section we
provide sufficient conditions for host classes to be not cover resistant and give examples of
such classes.

Plenty of host classes are not cover resistant. Those host classes include all classes whose
graphs have bounded chromatic number, but are not all bipartite, as Proposition 7.17 shows.
The perhaps most notable examples for such classes are the planar and the outer-planar
graphs. Another example are (a, b)-sparse graphs which include forests.

Proposition 7.17
Let H be a host class with max{χ(H) | H ∈ H} = r ≥ 3. Then H is not g-cover resistant
and not u-cover resistant.

Proof. We consider the guest class Bip of bipartite graphs. By Lemma 4.12 we know
for every H ∈ H that cBipu (H) ≤ cBipg (H) =

⌈
log

(
χ(H)

)⌉
≤
⌈

log(r)
⌉
. Hence, we have

cBipu (H) ≤ cBipg (H) <∞.

However, there is a host graph H ′ with χ(H ′) = r ≥ 3. This host graph H ′ is not
bipartite and therefore not contained in the guest class Bip = Bip. Especially we have
H 6⊆e Bip = Bip.
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Another negative result is that most finite classes are not cover resistant as shown in
Proposition 7.18.

Proposition 7.18
Let H be a host class containing only a finite number of elements. Then the following holds:

(i) Host class H is g-cover resistant if and only if every host graph in H has at most
one edge.

(ii) Host class H is f -cover resistant if and only if every host graph in H has maximum
degree at most 1.

Proof. First we prove (i).

“⇐”: Let every host graph in H contain at most one edge. Let G be an induced-hereditary
guest class. If H contains only independent sets, then we have cGg (H) = 0 by Proposition 3.5.
Hence, assume H contains a host graph H1 with an edge. In the first case, if there is also
a guest G ∈ G containing an edge, then K2 v G and by induced-heredity G contains K2
which can be used as singe guest (without folding) to cover the single edge of any host
graph in H. Hence, we have cGg (H) = 1. In the second case, no guest in G contains an edge.
Hence the edge of H1 can not be covered using guests in G. Therefore, we get cGg (H) =∞.
This proves H is g-cover resistant.

“⇒”: Now let H contain a graph H2 of size ||H2|| ≥ 2. We consider the guest classM1
containing only K2. Since there is only a finite number of different host graphs in H, there
exists a positive integer m > 1 which is the maximum size a host graph in H can have,
while there actually is a host graph Hm with this number ||Hm|| = m > 1.

By using another copy of K2 as guest for every edge of a host graph H ∈ H and mapping
it to the corresponding edge, we can cover every host graph with at most m guests. We
therefore have cM1

g (H) ≤ m. On the other hand, we actually needm guests to cover all edges
of Hm since every guest can only cover one edge. We therefore have 1 < m = cGg (H) <∞.
Thus, host class H is not g-cover resistant.

Now we prove (ii).

“⇐”: Let every host graph in H have maximum degree at most 1. Then let G be an induced-
hereditary guest class. If H contains only independent sets, then we have cGf (H) = 0 by
Proposition 3.5. Hence, assume H contains a host graph H1 with an edge. In the first case,
if there is also a guest G ∈ G containing an edge, then K2 v G and by induced-heredity G
contains K2. Let H ∈ H. By covering every edge of H by another copy of K2 no vertex is
covered more than once (as it has degree at most 1). Hence, we have cGf (H) = 1. In the
second case, no guest in G contains an edge. Hence the edge of H1 can not be covered
using guests in G. Therefore, we get cGf (H) =∞. This proves H is f -cover resistant.

“⇒”:Now let H contain a graph H2 with a vertex v of degree at least deg(v) ≥ 2. We
consider the guest class M1 containing only K2. Since there is only a finite number of
different host graphs in H, there exists a positive integer m > 1 which is the maximum
maximum degree ∆(H) a host graph H ∈ H can have, while there actually is a host graph
Hm with ∆(Hm) = m.

By using another copy of K2 as guest for every edge of a host graph H ∈ H and mapping
it to the corresponding edge, we can cover every host graph H ∈ H such that every vertex
v ∈ H is covered at most deg(v) ≤ ∆(H) = m times. We therefore have cM1

g (H) ≤ m.
On the other hand, there is a vertex vm in Hm with deg(vm) = ∆(Hm) = m. To cover
all edges adjacent to vm, that vertex must be covered m times, since every edge must be
covered by another guest. We therefore have 1 < m = cGf (H) <∞. Thus, host class H is
not f -cover resistant.
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7.7 f-Cover Resistance
In this section we give examples of f -cover resistant classes. Recall that this is the strongest
cover resistance, since every host class that is f -cover resistant is also l- and u-cover
resistant by Proposition 7.12.

Note that an f -cover resistant class H can only contain bipartite graphs: By Theorem 4.3
for every graph H we have cBipf (H) ≤ 2, thus we have cBipf (H) ≤ 2 <∞ for every host class
H.

Hence, only subclasses of Bip can be f -cover resistant. For the simplest subclasses of Bip
we have positive results. We start with the class of a single edge and the class of matchings
as the smallest f -cover resistant classes.

Theorem 7.19
The class {K2} and the classM of matchings are f -cover resistant and g-cover resistant.

Proof. By Proposition 7.18 the class {K2} is f - and g-cover resistant. With Theorem 7.10
we knowM = {K2} is also f -cover resistant.

Now let G be an induced-hereditary guest class withM 6∈ G and let k ≥ 2. Then there is
a smallest matching Mt 6∈ G which is the disjoint union of t copies of K2. Then consider
matching M(k−1)t+1, the disjoint union of (k − 1)t+ 1 copies of K2. The only components
of M(k−1)t+1 are copies of K2 and thus only matchings can be guests in global covers of
M(k−1)t+1. Since every matching in G contains at most t edges and all edges of M(k−1)t+1
must be covered, a global G-cover of M(k−1)t+1 contains at least k guests. Therefore, we
have cGg (M) =∞ and the classM is g-cover resistant.

The next simple class is the class St of stars, which is also f -cover resistant as stated in
Theorem 7.3.

Theorem 7.20 shows that the class St is the next larger induced-hereditary f -cover resistant
class to {K2}.

Theorem 7.20
Let H ⊆ Bip be an induced-hereditary host class with a graph H ′ ∈ H with ∆(H ′) > 1 and
St 6⊆ H. Then H is not f -cover resistant.

Proof. Since St 6⊆ H, there is a star SD that is not contained in H. Assume for the sake of
contradiction that there is a host graph H ∈ H with ∆(H) ≥ D. Then there is a vertex
v ∈ H with deg(v) ≥ D. But vertex v and D of its neighbours induce SD in H, since
H must be bipartite and the neighbours of v can not be adjacent. The host class H is
induced-hereditary, and thus, we have SD ∈ H. This contradicts the definition of SD.

Therefore, every host graph H ∈ H has maximum degree at most D− 1. Then, by Vizing’s
Theorem [Viz64], every host graph H ∈ H has a D-global M-cover. Hence, we have
cMf (H) ≤ cMg (H) ≤ D. On the other hand, we have H 6⊆e M, since ∆(H ′) > 1. Hence,
host class H is not f -cover resistant.

Another f -cover resistant host class is the class C-Bip of complete bipartite graphs. To prove
this, we consider a result by Irving which is related to the bipartite Ramsey number [Irv78].

Lemma 7.21 (Irving [Irv78])
The class C-Bip of complete bipartite graphs has the Induced Ramsey Property.

We already have everything we need to show C-Bip is f -cover resistant.
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Corollary 7.22
The class C-Bip of complete bipartite graphs is g- and f -cover resistant.

Proof. By Lemma 7.21 the class C-Bip has the Induced Ramsey Property. By Corollary 7.6
it is thus g-cover resistant. With Proposition 7.12 we obtain that C-Bip is also u-cover
resistant. Finally, by Corollary 7.14 class C-Bip is also f -cover resistant.

While Theorem 7.20 verifies there is no f -cover resistant host class between the class of
matchings M and the class of stars St, we do not provide such a statement for classes
between St and C-Bip. Indeed this is a much larger gap and it is at least not obvious
whether such a class can be f -cover resistant.
We finally consider the class Bip of all bipartite graphs itself. Since only subclasses of Bip
can be f -cover resistant, this is the largest f -cover resistant class. Our proof of the f -cover
resistance of Bip is based on Lemma 7.23, a well known result of Induced Ramsey Theory.
Lemma 7.23 (e.g. Diestel [Die05][Lemma 9.3.3])
The class Bip of bipartite graphs has the Induced Ramsey Property.
Corollary 7.24
The class Bip of bipartite graphs is g- and f -cover resistant.

Proof. This statement can be proven analogously to Corollary 7.22 using Lemma 7.23.

Corollary 7.24 presents Bip as a very special class in terms of the folded covering number.
With Theorem 4.3 it implies Bip is a necessary subclass for every induced-hereditary
guest class with bounded folded covering number for any host graph H. This is shown in
Corollary 7.26.
Lemma 7.25
Let B ∈ Bip. Then there is a connected bipartite graph B′ with B v B′ ∈ Bip.

Proof. Let the partition sets of B ∈ Bip be the sets X and Y . Then we define B′ = (V,E)
where V = V (B) ·∪ {x, y} and E = E(B) ∪ {xz | z ∈ Y } ∪ {zy | z ∈ X} ∪ {xy}. I.e., let B′
be the bipartite graph obtained by adding a vertex x adjacent to all vertices in Y and a
vertex y adjacent to all vertices in X and also adjacent to the new vertex x. Then bipartite
graph B′ is connected and we have B v B′.

Corollary 7.26
Let H be the host class of all graphs and let G be an induced-hereditary guest class. Then
we have

cGf (H) <∞⇔ Bip ⊆ G ⇔ cGf (H) ≤ 2.

Proof. By Theorem 4.3 and Proposition 3.1, we have Bip ⊆ G ⇒ cGf (H) ≤ cBipf (H) = 2 <∞.

On the other hand, let cGf (H) <∞. Especially we have cGf (Bip) <∞. By Corollary 7.24
the host class Bip is f -cover resistant and this implies Bip ⊆e G. Since Bip is closed under
adding isolated vertices, so is G. Therefore we have Bip ⊆ G. Since G is induced-hereditary,
this means G contains all connected graphs in Bip and with Lemma 7.25 we obtain that
Bip ⊆ G. This concluded the proof.

Since Bip is the class of all graphs with chromatic number at most 2, Corollary 7.26
highlights the relevance of the chromatic number for the folded covering number.
Note that we successfully applied cover resistance results to find a characterization of all
induced-hereditary guest classes with bounded folded covering number.
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7.8 The Class of All Graphs is l-Cover Resistant
The goal of this section is to find a similar characterization to Corollary 7.26 for the local
and union covering number. However, it is a kind of more negative result, since the class
of all graphs H is itself l-cover resistant. Hence, we find for every other induced-hereditary
guest class G host graphs with arbitrarily large local covering numbers.

We use the Induced Ramsey Property which was proven by Deuber et al. [Deu75].

Theorem 7.27 (Deuber et al. [Deu75]; Diestel [Die05][Theorem 9.3.1])
The class A of all graphs has the Induced Ramsey Property.

As an immediate consequence of Theorem 7.27, we obtain the g- and l-cover resistance of
all graphs.

Corollary 7.28
The host class A of all graphs is g- and l-cover resistant.

Proof. As a direct consequence of Theorem 7.27 and Corollary 7.6 we obtain that A is g-
cover resistant. We note that A is obviously universal-vertex-closed and with Theorem 7.16
we also have that A is l-cover resistant.

As in the section on f -cover resistance, we obtain a characterisation of all induced-hereditary
guest classes with bounded local covering number for all host graphs: Only classes containing
all graphs have a bounded l-cover resistance.

Corollary 7.29
Let A be the class of all graphs and let G be an induced-hereditary guest class. Then we
have

cGl (A) <∞⇔ G = A ⇔ cGl (A) = 1.

Proof. If G = A, then we have cGl (A) = 1 <∞.

Hence, assume cGl (A) < ∞. Since A is by Corollary 7.28 an l-cover resistant class, we
obtain A ⊆e G ⊆ A. Since G is closed under adding isolated vertices this implies G = A.

Let G ∈ A be a graph. Then consider the graph G′ obtained by adding a vertex x that
is adjacent to every vertex in G, i.e., let G′ = (V (G) ·∪ x,E(G) ∪ {xv | v ∈ G}). Graph
G′ is by definition connected. Since we have G′ ∈ G this implies G′ ∈ G. Hence, we have
A ⊆ G ⊆ A. This concludes the proof.

As a consequence, we find for any induced-hereditary guest class G host graphs with
arbitrarily large local covering number, unless G is the class of all graphs.
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8. Conclusion

In this thesis, we investigated the global, the union, the local and the folded covering
number of host graphs (and classes) with regards to different guest classes. Specifically, we
investigated the host class of shift graphs paired with the guest class of bipartite graphs.
For the guest class of (a, b)-sparse graphs we additionally provided an algorithm which
computes an optimal global G(a, b)-cover for a given graph H. Finally, we introduced and
investigated the cover resistances for several host classes.

8.1 Separability
We provided the host class of shift graphs with the guest class of (complete) bipartite
graphs as separation of the local and the global covering number where the guest class
is subgraph-hereditary. With Theorem 4.4 we thus have in some sense separations with
strongest possible restrictions on the guest classes.

However, Stumpf asked in his Bachelor Thesis about weaker versions of separations with
minor-closed guest classes that may still be possible [Stu15]. On the one hand, Knauer
and Ueckerdt provided a family of host graphs such that for St, the guest class of stars,
the union-covering number is about twice the local-covering number [KU16]. This raises
the question whether an arbitrarily large factor is possible.

Question 8.1 (Stumpf [Stu15])
Is there for every r > 0 a minor-closed guest class G and a host graph H such that
cGu(H) ≥ r · cGl (H)?

On the other hand, we have only one example where the folded and the local covering
number differ at all for a minor-closed guest class. Namely, for the guest class of linear
forests (i.e., disjoint unions of paths), these parameters can differ by one by a result of
Stumpf [Stu15]. Hence, even a difference by two with a minor-closed guest class would be
a new result.

Question 8.2 (Stumpf [Stu15])
Let G be a minor-closed union-closed guest class and H be a host graph. By how much can
cGf (H) and cGl (H) differ?

More questions arise in relation to cover resistances.
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8. Conclusion

8.2 The Guest Class of (a, b)-Sparse Graphs

Let a, b ∈ N0 and let b < 2a. We showed that for a host graph H we have cG(a,b)
g (H) =

c
G(a,b)
u (H) = c

G(a,b)
l (H) and we have cG(a,b)

g (H) ≤ k if and only if H is (ka, kb)-sparse. To
this end we made use of the (a, b)-sparsity matroid structure of H. By the restriction
b < 2a we ensure that the subgraph induced by a single edge is allowed. For a planar
graph P with |V (P )| ≥ 3 we have |E(Q)| ≤ 3|V (P )| − 6. Hence, a natural generalization
of the (a, b)-sparsity is the (a, b)d-sparsity which can be defined as follows. Let a, b, d ∈ N0
and let b < da. A graph H is (a, b)d-sparse if for every G ⊆ H with |V (G)| ≥ d we have
|E(G)| ≤ a|V (G)| − b. Note that b must be further restricted for d > 2 to allow more
graphs than just matchings. We obtain a corresponding lower bound. For this lower bound
we obtain an equivalence to (ka, kb)d-sparsity corresponding to the one for the known case
for d = 2.

Question 8.3
Do we have for d ∈ N that a graph H is (ka, kb)d-sparse if and only if its global covering
number with regards to (a, b)d-sparse graphs is at most k?

Unfortunately, the (a, b)d-sparse subgraphs of a graph do not induce a matroid. Thus, a new
way appears necessary for a positive answer. One may also consider a guest class G(a, b) of
(a, b)-sparse graphs for negative b. However, in that case G(a, b) is not union-closed and
small guests are beneficial. This probably requires a quite different approach.

We provided an algorithm to compute an optimal global G(a, b)-cover for a given graph
H = (V,E) with a runtime in O(|V | · |E|2). If H is rather sparse, this is significantly worse
than a runtime in O(k log(k)|E|2) where k = c

G(a,b)
g (H), since k can be considered bounded.

This runtime, however, suffices to compute k. Hence, it is open by how much the runtime
of our algorithm can be improved.

While we did not proof that the folded covering number with regards to G(a, b) always meets
the given lower bound, it appears at least very likely. Indeed, an approach of translating
our algorithm for optimal global covers into the folded setting by using corresponding
definitions of augmenting paths, range graphs and global pebble paths, with additional
steps appears very promising. If this approach works, we can find a k-folded G(a, b) cover
for every (ka, b)-sparse graph H. As a consequence we would obtain that the folded covering
number indeed always meets the given lower bound.

Finally, for investigation of the relation between local and union-covering number it would
also be interesting whether there are other guest classes for which the local and the union
covering number coincide. Especially, it would be interesting to know for which subclasses
of G(a, b) this applies. Here we have outer-planar graphs in mind, but also the class of
planar graphs for (3, 6)3-sparsity.

8.3 Cover Resistance
We introduced the cover resistances and characterized them similar to the Induced Ramsey
Property. As a consequence, we obtained that in terms of strength the g-cover resistance
neatly fits between the Induced Ramsey Property and the Weak Induced Ramsey Property.
This raises the question whether it coincides with one of these properties.

Question 8.4
Is the g-cover resistance equivalent to the Induced Ramsey Property or the Weak Induced
Ramsey Property (or both)?
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8.3. Cover Resistance

For the characterization of the cover resistances, we established for i = f, u, g, that for a
host class H that is not i-cover resistant there exists an induced-hereditary guest class G
with cGi (H) = 2. However, we gave the host class of line-graphs of 3-uniform hypergraphs
as example where our argumentation does not work for i = l. Indeed, it is questionably
whether the corresponding statement for i = l is true at all.

Question 8.5
Let L3 denote the class of line-graphs of 3-uniform hypergraphs. Is there an induced-
hereditary guest class G with cGl (L3) = 2?

In most of the known separations the host class is actually i-cover resistant, where i
indicates the kind of the covering number which becomes arbitrarily large. The host class
of shift graphs is probably not u-cover resistant. However, we have the class OS ⊆ S of
shift graphs of ordered graphs which is u-cover resistant and also provides a separation of
the local and the union covering number together with the guest class of bipartite graphs.

The host class of line-graphs L is also not u-cover resistant, since every line-graph can
be covered by a corresponding ordered shift graph and two disjoint unions of complete
graphs (one union for all incoming edges and one for all outgoing edges). However, we
claim that we have for every induced-hereditary guest class G that cGu(L) ∈ {1, 2, 3,∞}
(since cGu(L) <∞ implies that G contains all complete graphs and some kind of graphs class
similar to OS). This property is quite similar to the u-cover resistant. For i = f, l, u, g,
we call a host class H weakly i-cover resistant, if there is an l ∈ N such that for every
induced-hereditary guest class G we have cGi (H) ∈ [l]∪{0,∞}. Many of our results for cover
resistance can be translated to results for weak cover resistance. With this definition all
known separations are in some sense connected to the property of (weak) cover resistance.

Question 8.6
Is there an induced-hereditary host class H, an induced-hereditary guest class G and
i, j = f, l, u such that

1. we have cGi (H) = 2 and cGj (H) =∞

2. there is no weakly j-cover resistant host class H′ ⊆ H with H′ 6⊆ G?

However note that, since it is quite natural to use results from Ramsey Theory to obtain
host classes with arbitrarily large covering numbers, our previous results are no strong
indication for a negative answer to Question 8.6.
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