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Abstract

Solar energy is a renewable and sustainable energy, which gets more and more impor-
tant in times where humanity aims to reduce the usage of fossil fuels. Photovoltaic
modules are used to convert sun light into electricity. Often this is done in large
solar farms. We model a solar farm as layered graph, where the power generated by
the strings (several connected photovoltaic modules) needs to be conducted through
the layers of the graph. For the connection of two vertices there are different types
of cables with different capacities and costs. The problem is now to find a cable
layout with minimal costs, which does not violate cable or vertex capacities. This
optimization problem is analyzed and it is shown that the Solar Farm Cable Layout
Problem is NP-hard for several variants. For the general variant it is even NP hard to
find any feasible solution. A heuristic algorithm to solve a special but realistic variant
of the problem is proposed. It is compared and evaluated with an MILP formulation
of the problem. For large solar farms the heuristic is able to find a solution to the
problem where the MILP is not able to find one within 24 hours runtime.

Deutsche Zusammenfassung

In Zeiten, in denen die Menschheit versucht den Gebrauch von fossilen Brennstoffen zu
reduzieren, werden erneuerbare Energien und damit insbesondere auch Solarenergie
immer wichtiger. Um das Licht der Sonne in Strom umzuwandeln, werden Solarmod-
ule (auch Photovoltaikmodule genannt) verwendet. Häufig geschieht das in großen
Solarparks. Wir modellieren solche Solarparks als geschichtete Graphen, in denen der
Strom, der in den Strings (Reihenschaltung von mehreren Solarmodulen) produziert
wird, durch alle Schichten des Graphen geleitet werden muss. Damit der Strom
durch den Graphen geleitet werden kann, müssen die Knoten mit Kabeln verbunden
werden, wofür verschiedene Kabel mit unterschiedlichen Kosten und Kapazitäten
zur Verfügung stehen. Das Ziel ist nun eine Verkabelung zu finden, die minimale
Kosten hat, bei der aber keine der Kabel- oder Knotenkapazitäten überschritten
werden. Dieses Optimierungsproblem wird theoretisch untersucht und wir zeigen,
dass verschiedene Varianten des Verkabelungsproblems NP-schwer sind. Außerdem
wird gezeigt, dass es für die allgemeine Variante des Problems sogar NP-schwer ist
irgendeine beliebige gültige Lösung zu finden. Wir stellen zusätzlich einen heuristis-
chen Algorithmus vor, um eine realistische Variante des Verkabelungsproblems zu
lösen. Eine Implementierung dieses Algorithmus’ wird mit einer MILP Formulierung
des Problems verglichen. Für große Solarparks ist der Algorithmus in der Lage,
Lösungen für Instanzen zu finden, bei welchen das MILP nach 24 Stunden keine
Lösung finden konnte.
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1. Introduction

In times of climate change renewable energy sources are getting more and more important.
After hydropower and wind solar power is the third biggest renewable energy source. In
2020 11% of the energy produced worldwide by renewable energy sources was solar energy
[RR20]. Additional to that solar energy production is increasing rapidly in the last few
years. In 2010 the share of solar power in the renewable energy sources was less than 1%
[RR20]. Usually one thinks of photovoltaic systems as solar power and this is indeed the
main technology when sunlight is converted into electricity. The annually added capacity
of renewable energy in general and photovoltaics (PV) has been increasing over the last few
years [Age21a][RR20]. The world wide added capacity of photovoltaic power in 2020 was
more than 130 GW and still it is expected that this value increases in the years to come
[Age21a]. More than half of the newly installed PV capacity is contributed by utility scale
PV systems also called (large scale) solar farms. These types of PV systems are not only a
few PV-modules installed on the roof of someones private house, but cover tens of hectares
of land and supply several MW of electric energy and often a lot more. For example the
solar farm Lauingen Energy Park [AG10] in Germany can supply up to 25 MW of electric
energy. That means about 7500 households can be provided with electricity [AG10].

In a solar farm the actual conversion of sunlight to electricity is done by the solar modules
or also called PV modules. Usually the power produced by a solar farm is fed into the
public electricity grid. But PV modules cannot be connected to the grid directly, so the
electricity needs to be directed through some electrical devices before it is possible and
allowed to be fed into the grid. An example for these devices are inverters which turn
the DC power produced by the PV modules into AC power, which is the power that runs
through the grid. For the connection of the PV modules through several intermediate
points to the grid a lot of cables are needed. For Lauingen Energy Park as an example,
more than 600 km of solar cable trays were installed [AG10]. In total the costs for a solar
farm are about one to three million dollars per Megawatt of planned capacity [Lab21]
[Yac21]. It is hard to say how high the share of cable costs is exactly as they are usually
not listed explicitly as a cost factor, but combined with other hardware [Age21b] [Lab21].
Roughly estimated the share is about 3%, so the costs for cables can easily reach the million
dollar mark.

Because of that, optimizing the cable layout of a solar farm in a way that the total cost of
all cables is minimized could potentially save a lot of money. So we get an optimization
problem where we are given the positions of PV modules and the position of transformers
and the modules have to be connected by cables to the transformers via several intermediate
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1. Introduction

devices. The intermediate devices are divided into several layers, so it is only allowed to
connect devices of two consecutive layers. That means the connection of a PV module to a
transformer runs through all layers of the solar farm. There can also be further restrictions
where to lay and where not to lay cables. As all the electric devices have specified how
much electric current they can carry, we need to do the cabling such that these capacities
are not exceeded. Additional to that we also have different cable types which each have a
cost and a capacity. We need to choose which intermediate devices we want to connect
and use for the cabling. If we connect two devices a cable needs to be chosen such that
the capacity of the cable is not exceeded. In the end we want to get a cabling with low or
minimal costs.
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2. Related Work

Solar farms are a widely investigated topic. The investigations range from the question
how to find a suitable site to build a solar farm [TSAMA17][PGB19] via studies about
the impact of a solar farm on the power network [VRVD16] to analysis of the efficiency
of components used in a solar farm [APA18][LYC+19]. Many investigations around solar
farms are about the electric properties of the solar farm. For example Lui et al. propose
a new PV transformer design [LYC+19]. They implement their new design and show its
efficiency by a practical evaluation.

Other works focus on the efficiency of the maximum power point tracking (MPPT).
Maximum power point tracking is used to get the maximum possible power out of a solar
farm depending on the current and voltage that is produced by the PV modules. There
are many different MPPT algorithms. Bollipo et al. give a review of 23 different MPPT
methods and show downsides and advantages for these [BMB20].

Another source of inefficiency are the PV modules itself. PV modules produce a lot of
heat, which lets them work less efficient. That is why Glick et al. analyze the impact of
the tilt angle of PV modules to the heat transfer [GAB+20]. They propose a layout design
that improves the air flow around the PV modules and therefore could improve the power
production.

All the above mentioned works mainly focus on the efficiency of the solar farm, so they try
to increase the power that can be produced by a solar farm. Also when analyzing possible
locations for solar farms the possible power output, which depends among other things on
the solar irradiation, plays a decisive role [PGB19]. However the cost efficient construction
of a solar farm is not a much investigated field, especially regarding a cost efficient cabling.
To our best knowledge the only work that also considers the cabling layout of a solar farm
is the master thesis of Trofast [Tro20]. He optimizes the layout of a solar farm for a special
string inverter of Ampner. The thesis considers an imaginary solar farm site in Portugal
and tries to find the most cost efficient layout. For this he does not only consider the
cables but also the positions of PV modules and inverters. He proposes how many modules
should be connected to each inverter and where the inverters should be placed relative to
the modules. As the investigated case is a very special one we want to propose a model
which helps to optimize the cable layout of a solar farm in a more general way. We now
take a look at problems that are similar to the solar farm cabling problem.
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2. Related Work

2.1. Wind Farm Cabling

The cabling problem for solar farms was inspired by the wind farm cabling problem. Here
wind turbines and substations are given and the turbines need to be connected to the
substations. A wind turbine does not need to be connected directly to the substation
but can be connected via several other turbines. For the connection of the turbines there
are several cable types, which all have a different capacity and cost. The goal is now to
find a connection of the turbines to the substation with minimal cost. Where the wind
farm cabling problem has only two types of vertices, turbines and substations, the solar
farm cabling problem has more vertex types but structured into different layers. The
principle of the cabling however is the same as in the solar farm cabling problem. One
of the first problem formulations of the wind farm cabling problem was given by Berzan
et al. [BVMO11]. They additionally divide the problem into different subproblems and
compare these different variants with already existing problems. For example is the wind
farm cabling problem a generalization of the capacitated minimum spanning tree problem.
Then they propose approaches how to solve these different problems.

Gritzbach et al. propose an algorithm to solve the wind farm cabling problem, which is
based on negative cycle canceling [GUW+19]. They compare different variants of their
algorithm with solutions of an Mixed Integer Linear Programming (MILP) formulation
of the problem and a Simulated Annealing algorithm. Their negative cycle canceling
algorithm calculates solutions of similar quality in less time than the MILP and the
Simulated Annealing algorithm.

2.2. Facility Location

The structure of the facility location problem comes very close to the solar farm cabling
problem, depending on the variant of the facility location problem. In the facility location
problem there are given demand points (also called customers) and facility locations. The
task is to open facilities at the given locations such that a given demand by the demand
points is fulfilled with minimal costs. The costs result from opening facilities and from
the distance (or service costs) of the demand points to the opened facilities. Additionally
facilities can have restricted capacities and one has to assign the demand points to open
facilities such that no capacity is exceeded. This is then called the capacitated facility
location problem. There are some more varieties of this problem of which especially the
multilevel facility location problem (MFLP) is interesting as it is very similar to the solar
farm cabling problem. Here we are given k layers or levels of facilities. Each unit of
demand has to be routed to the k-th level through a facility of each level. Usually the
facility location problem as well as the MFLP is considered in its metric variant. That
means service costs are symmetric and fulfill the triangle inequality. The approximation
algorithms below also consider the metric variant of the problem.

Kratica et al. [KDS14] present an MILP formulation for the uncapacitated MFLP. They
compare their formulation among other formulations with the LP formulation of Gabor
and van Ommeren [GvO10]. Where Gabor and van Ommeren show that their LP rounding
scheme is a 3-approximation for the MFLP, Kratica et al. do not approximate the MFLP
but show that their MILP uses less variables. They show with experiments that this is an
advantage in practice.

Bumb and Kern [BK01] present a primal-dual algorithm with an approximation guarantee
of 6 for the uncapacitated MFLP and 12 for the capacitated version. The runtime of their
algorithm is O(n4 logn), where n is the number of demand points and facility locations
together [Bum02].
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2.3. General Assignment Problem

Where the papers above considered the MFLP with an arbitrary amount of layers Gendron
et al. [GKS16] consider the uncapacitated facility location problem with exactly two levels
of facilities (With the demand points together there are three levels). The problem is
additionally constrained by a single assignment restriction, that means each first-level
facility is assigned to at most one second-level facility. This restriction is also part of
the solar farm cabling problem. A solution represented as graph would then consist of a
forest of trees rooted in second-level facilities. Gendron et al. present a branch-and-bound
algorithm and show its efficiency with experimental results.
As the solar farm cabling problem also has lower bounds on some vertices (the inverters)
the work of Ahmadian and Chaitanya [AS13] shall be mentioned as they present an
approximation algorithm for the facility location problem where facilities have a lower
bound. That means if a facility is opened it has to serve a minimum amount of demand
points. Although their algorithm has a constant approximation ratio this value is very
high with 82.6.

2.3. General Assignment Problem
The general assignment problem is a generalization of the multiple knapsack problem,
which is a subproblem of the solar farm cabling problem. Given m bins with capacities
and n items which have a different weight and value for each of the bins, the task is to
pack items into the bins without exceeding their capacities such that the value of the items
in the bins is maximized. Fleischer et al. [FGMS06] present an approximation algorithm
for the general assignment problem based on LP relaxation. Their approximation ratio is
1− 1

e , but for this ratio they need an exact solution of the single knapsack problem. As
this is not possible in polynomial time unless P=NP, the approximation guarantee with a
polynomial running time is 1− 1

e − ε when using an FPTAS to solve the knapsack problem.

2.4. Contribution and Outline
As we have just seen there are on the one hand problems that are very similar or special
cases of the solar farm cabling problem. On the other hand topics around solar farms are
widely investigated. But to our best knowledge optimizing the cabling layout is not among
them.
This thesis proposes a model for the described cabling problem where a solar farm is
modeled as graph. It is shown that several variants of this optimization problem are very
difficult to solve in a sense that they are NP-hard. If no further assumptions are made even
approximating a solution for the cabling problem is NP-hard for any approximation ratio.
For an realistic variant of the problem, where the output of a device can be connected to
any following device without further restrictions, we propose an heuristic algorithm and
evaluate the performance of this algorithm by comparing it to an MILP formulation. To
compare the heuristic and the MILP, we created some test instances. The heuristic is able
to solve a large portion of the test instances, but struggles with bigger sized instances in
terms of solution quality compared to the MILP formulation. However the heuristic is able
to find solutions for large instances where the MILP is not able to find one within 24 hours.
In the next section we will give a short introduction into the typical structure of a solar
farm and some basics of graph theory and flows. After that we model the solar farm cable
layout problem in Chapter 4 and analyze its theoretical complexity in Chapter 5. We show
the NP-hardness for several different variants of the cabling problem. In Chapter 6 and
Chapter 7 some algorithms to solve the cabling problem exactly and heuristically are shown.
Of these we implement and compare a heuristic and an MILP formulation (Chapter 8).
In Chapter 9 we discuss possible problems with the model and draw a conclusion also
considering the results of our experimental comparison.
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3. Preliminaries

Before defining the problem we first explain some basics of graph theory and solar farms.

3.1. Graphs
A directed graph G is a pair (V,E) of a set of vertices V and a set of edges E with E ⊆ V ×V .
For an edge (u, v) ∈ E u is the start or initial vertex and v the end or terminal vertex.
We visualize directed graphs by drawing points for the vertices and arrows for the edges.
An edge (u, v) is represented by an arrow pointing from u to v. If an edge (u, v) ∈ E
or (v, u) ∈ E is connected to a vertex v ∈ V , this edge is incident to v. The number of
incident edges of a vertex is called the degree of this vertex. The degree of a vertex v can
be split into the in-degree, which is the number of edges ending at v, and the out-degree,
the number of edges starting at v. Edges (v, v) starting and ending at the same vertex are
called loops. The graphs we consider in this thesis do not have loops.

A list of vertices v0, . . . , vn is called path, if for all i ∈ {0, . . . , n− 1} (vi, vi+1) ∈ E. If any
pair of vertices in a graph is connected by exactly one path, this graph is called a tree.

3.1.1. Flow

As the cabling problems we want to consider below can be seen as some special kind of
flow problems, we now are going to explain flow networks.

We are given a directed graph G = (V,E) and a capacity for each edge, which is given by
a function c : E → R≥0. Additionally there are a source s ∈ V and a sink t ∈ V . A flow
f : E → R≥0 is a function which assigns a flow-value to every edge. Thereby a flow has to
fulfill the following constraints:

• capacity constraint: ∀e ∈ E : f(e) ≤ c(e)

• flow conservation: ∀v ∈ V \{s, t} : ∑(u,v)∈E f((u, v)) = ∑
(v,w)∈E f((v, w))

The total flow F between s and t can then be calculated by

F =
∑

(s,v)∈E
f((s, v))−

∑
(u,s)∈E

f((u, s)).

Given a flow network, that means a tuple (G, c, s, t) as defined above, one could ask for
example to maximize F .

7



3. Preliminaries

The Minimum Cost Flow Problem is an optimization problem very similar to the problems
considered in this thesis. Additional to the flow network a cost function cost : E → R is given.
If f(e) units of flow are sent over edge e, this results in costs cost(e) ·f(e). For the Minimum
Cost Flow Problem we want to find a flow f , where ∑(s,v)∈E f((s, v))−∑(u,s)∈E f((u, s))
is given. The goal is to find a flow with minimum costs.

3.2. Components of a solar farm

After some theoretical basics we now take a look at solar farms and their components.
The power of a solar farm is produced in photovoltaic (PV) cells and then conducted via
several components to transformers and fed into the power grid. Of course a solar farm
does not need to be connected to the grid, but we focus on large-scale solar farms that are
grid connected. Therefore the typical components and layout of such a solar farm shall be
described.

3.2.1. PV string

PV cells are the smallest power generating unit in a photovoltaic system. As the cells
produce a very small voltage of less than 1V and a small current of a few mA

cm2 [Mer20,
p. 121], several cells have to be connected together. The parallel and/or series connection
of multiple PV cells is called a PV module [ABB19, p. 9][Mer20]. A parallel connection of
cells increases the current, a series connection increases the voltage [Mer20, p. 165ff.]. But
the voltage and current of a typical PV module are still not sufficient for a large-scale solar
farm. That’s why modules are connected in series and form a so called string. In a solar
farm the modules of one string would then be mounted next to each other onto a rack and
connected in series [ABB19]. A string produces a voltage U , a current I and a power P ,
which is basically the product of the voltage and the current. So P = U · I.

3.2.2. Inverter

The current produced by PV cells and therefore also by the strings is direct current (DC)
[Wag19, p. 120]. To feed the generated power into the power grid, alternating current (AC)
is needed. An inverter converts the direct current into alternating current. In large-scale
solar farms usually two types of inverters are used: Central inverters or (multi) string
inverters. Central inverters have much higher capacity regarding the power that can be
connected. String inverters have a lower capacity and the strings are directly connected
to them whereas for central inverters additional DC combiner boxes are needed [ABB19,
p. 12f.]. Sometimes it is distinguished between string inverters, which invert the current
of exactly one string and multi string inverters, which are connected to several strings.
However multi string inverter is not a very common term, so we will use string inverter
even if we refer to inverters to which multiple strings are connected [ABB19, p. 13].

An inverter for a modern large-scale solar farm is more than just an inverter. Besides
monitoring and safety components it contains a maximum power point tracker (MPP
tracker) [Mer20, p. 203]. The MPP tracker basically adjusts the voltage to get the
maximum possible power out of the connected strings. The inverter and all the other
devices built into it bring some constraints with them. Usually this is a maximum power,
as already mentioned above, a maximum current and a minimum and maximum voltage.
The voltage range is dictated by the MPP tracker and is the range in which the tracker
can work properly [SMAb]. This voltage range determines the string length. Additionally
the number of connections is limited [SMAb].

8



3.2. Components of a solar farm

3.2.3. Combiner Box

Combiner boxes are used to connect multiple strings in parallel. This can be done on DC
side before getting to the inverter or on AC side after the inverters, but is not done on
both sides at the same time [ABB19, p. 40]. The voltage of a single string is already near
to the maximum possible voltage of the inverter. That means it is not possible to connect
two or more strings in series, as this would lift the voltage above the maximum value of
the inverter. So strings are only connected in parallel either in a combiner box or directly
in the inverter, resulting in an increase of the current only. String inverters do not need
DC combiner boxes for the few strings that are connected to them but often are used with
AC combiner boxes. As central inverters have much more strings connected to them, the
strings need to be combined before in DC combiner boxes [ABB19] [Mer20, p. 202]. It is
possible to install more than one layer of combiner boxes, the boxes of the second layer are
also called recombiner boxes [ABB19, p. 40].

Combiner boxes bring a total maximum current and a maximum current per connection
with them. Of course they have a maximum voltage, which is usually the same as for the
inverters and the amount of physical connections is also limited [SMAa]. Most combiner
boxes come with only one output channel, but there are boxes with the possibility to use
two outputs [Ele20] [SMAa].

Actually there is another method of combining strings next to combiner boxes and inverters,
which are Y-connectors or branch connectors. These connectors allow the parallel connection
of two strings (sometimes more) and can be used before connecting the cables to the combiner
boxes or string inverters [ABB19, p. 51] [Eve16]. Often they are used in combination with
thin-film PV modules, which have a lower current than the classic crystalline silicon modules
[ABB19, p. 51][Mer20, p. 174ff.][Sol21]. Connecting more than two strings is rarely possible
before reaching the combiner boxes or string inverter, because of the maximum current per
connection rating, which is usually not high enough for more than two strings. Sometimes
even two strings already have a too high current. Y-connectors could be seen as a special
type of combiner box, with a very low current capacity that is exactly the current produced
by two strings.

3.2.4. Transformer

The voltage of a solar farm is in a low voltage range of typically 1000V to 1500V , which is
the voltage a common inverter supports [ABB19][SMAb]. On the AC side the voltage is
even a bit less and below 1000V [ABB19, p. 46]. As this is far below the voltage of the
power grid a transformer is needed to step up the voltage, so that the generated power can
be fed into the power grid.

The constraints of a transformer are a maximum power and voltage [Cor15, p. 73ff.].

3.2.5. PV cables

The cables to conduct the power from the strings via combiner boxes and inverters to the
transformers have different requirements. First there are DC and AC cables. Especially
the DC cables can be installed underground or overground. Cables connecting the strings
to the combiner boxes respectively string inverters are fixed to the racks the modules are
mounted on. These cables need to withstand extreme weather conditions [ABB19, p. 50].
Between DC combiner boxes and inverters cables are often buried. On the AC side they are
mostly buried too. The cables have a maximum voltage and a current carrying capacity,
also called ampacity [ABB19, p. 53]. As the voltage is at least on DC side and AC side
of the farm constant, the current carrying capacity is the more interesting constraint. If
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Figure 3.1.: Schematic representation of a solar farm with central inverters and combiner
boxes on DC side.
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Figure 3.2.: Schematic representation of a solar farm with string inverters and combiner
boxes on AC side.

several cables are installed in the same conduit, the ampacity of these cables is decreased
because of waste heat [Nat13].

As the design of a solar farm is optimized for efficiency, that means minimizing power losses,
there are guiding values how much power may be lost in the cables [ABB19, p. 54][Mer20,
p. 184]. The losses depend on the length of the cable, where shorter is better, the material
of the conductor, the cross section of the cable, where larger is better and the current
flowing through the cable [Mer20, p. 183f.].
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4. The solar farm cabling problem

4.1. Defining the problem
Now knowing the typical layout of large-scale solar farm, our goal is now to find a theoretic
model of a solar farm with which we can optimize the cabling costs. A solar farm will
be represented as a layered directed graph G = (V,E), in which the edges E represent
the possibilities to install cables between the vertices V , which represent the solar farm
components like strings, combiner boxes and inverters. Each layer of the graph consists of
only one type of vertices.

In the following we consider each component and argue, what properties of the components
we want to model. Later in Chapter 9 we discuss what might be other properties that
could be reasonable.

4.1.1. Strings

We take strings as the basic power generating unit in our model. The set of all strings
shall be S. Usually all strings in a solar farm have the same length, which is the case
for efficiency reasons. Strings with strongly different electric properties should not be
connected to the same MPP tracker, because this would result in power losses [Whi16, p.
54]. And as different string lengths are not typical, we can assume that all strings produce
the same power. Of course strings can still have a different orientation, which could cause
different power outputs. This however is not as problematic as different string lengths
when connecting them in parallel [Whi16, p. 54]. Still one could decide to connect strings
with different orientations to the same MPP tracker. The orientation can be represented
as a function that assigns an azimuth angle to every string a : S → [0, 360]. A string facing
directly north would have a azimuth angle of 0◦, facing east would be 90◦ and so on. With
the azimuth angle we can now forbid to connect two strings to the same MPP tracker if
the difference of their angles is above a certain maximum anglemax. However strings could
also have a different tilt angle, which determines the angle of the incoming sun rays and
thereby the irradiance. In opposition to the azimuth angle, the tilt angle does not vary
very much in a large-scale solar farm. There are different methods to get the optimal tilt
angle for a specific location and one wants to install the modules with this calculated angle
[ABB19, p. 29f.] [JJ18]. Even for the azimuth angle differences in the same solar farm
are rarely the case, but for example the solar farms Bruchköbel [MK16] or Cestas [Ken15]
have modules with differing azimuth angles. In the case of different orientations string
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String

String

Module

Connection Point

Figure 4.1.: Example of string layouts and possible resulting connection points. For the
lower layout it is not reasonable to connect a cable to the middle of the string.
That is why there are two modules without a connection point.

inverters are often used instead of central inverters. String inverters can cope better with
differing conditions because they divide the PV farm into smaller partitions [ABB19, p.
40]. Within such a partition the conditions for the strings then can be very similar.

Back to the strings, we can assume that they all have the same length and the same tilt
angle, which would then result in the same maximum voltage and current for all strings.
As the voltage does not change when connecting several strings, the important value is the
current or the power which could be seen as equivalent in a model. We will use current in
the following or directly speak of flow in graphs.

The whole discussion about different orientations ignores tracking systems, where the PV
modules are fixed to single or dual axis trackers that can change the azimuth and the tilt
angle. With sinking PV module prices especially dual tracker systems are rarely built
anymore [Mer20, p. 187]. But even then tracking systems usually follow the sun, so all
strings could be seen as having the same angles.

A string consists of several modules, so each string s ∈ S has some connection points
V s
con ( V . These are the vertices, where a cable can be connected to the string and there

would be a connection point for every outer module of the string. The connection points
of one string then typically are arranged in a rectangle, but the actual arrangement is a
question of modeling a particular solar farm and does not need to be rectangular. For
two different strings the corresponding connection points are disjoint sets. All connection
points of all strings together are Vcon.

4.1.2. Inverter

The power generated by the strings has to be conducted to the inverters, which are a
subset of all vertices VI ( V . As the voltage is already fixed by the string length, we
do not need to worry about voltage constraints of the inverter. Minimum and maximum
power respectively maximum current are the more important constraints and result in two
values imin, imax ∈ N with 0 ≤ imin ≤ imax. If the inverters are different this would lead
to a function imax : VI → N and imin respectively. Current conducted to one inverter
has to be in the range of imin and imax (or of course can be zero). We call imax also the
capacity of the inverter. The minimum value, also lower bound, is there for efficiency
reasons and not necessarily because of manufacturer constraints. When designing a solar
farm one normally decides whether to undersize or oversize an inverter. Undersizing means
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connecting more power, which is more strings, to the inverter than the nominal power.
Oversizing is the opposite. This is done for efficiency reasons and usually depends on the
geographic position of the solar farm, the climatic conditions and the efficiency rating of
the inverter [Mer20, p. 215]. The efficiency of an inverter depends on the power that is
currently reaching the inverter and if this power is too low the efficiency drops significantly.
That is why there is the minimum value imin.
Additionally an inverter has a number of connections conI ∈ N. This is the number of
cables that can be connected to the inverter. If strings can only be connected with the
inverters via combiner boxes, this constraint might not be necessary because the amount
of combiner boxes and imax already limit the connections in a way. Nevertheless ignoring
this constraint could result in unrealistic cabling solutions.
In an inverter the voltage and current are usually changed, but the voltage is more or less
constant [SMAb] [Ele19]. So the current again is the important value. We say that the
output of an inverter is the same as the input. This makes it possible to use graph flows
for modeling, but is a very questionable method for AC power.
Maximum input currents for the single channels could be modeled by simply restricting
the maximum cable capacity, however we decide to not model these.
Additionally one could model the number of MPP trackers in an inverter, which would
allow to connect strings with different properties to the same inverter, in the case that the
inverter has more than one MPP tracker.

4.1.3. Combiner box
Combiner boxes are vertices VC ( V where several cables can be linked together into a
new cable. They are possible both on DC and AC side, but normally with string inverters
they would appear on AC side and with central inverters on DC side. A combiner box has
a maximum current cmax, or cmax : VC → N if there are different boxes, which is allowed
to be connected to it and each single connection also has a maximum allowed current.
However this constraint does not have to be considered if we do not allow connections
between combiner boxes because then the current coming from one cable is fixed. Either it
comes from a string, where we cannot influence the current or it comes from an inverter,
where the maximum current depends on imax. As the allowed current of one connection
is usually very small [SMAa], not allowing connections between combiner boxes is also
reasonable. When adding more layers to the model by adding recombiner boxes VR and
Y-connectors VY this could open the possibility to skip layers. As combiner boxes (and
recombiner boxes) also contain fuses and other safety devices besides only paralleling
strings, this is not really an option for safety and monitoring reasons.
As recombiner boxes and Y-connectors basically have the same constraints as combiner
boxes we only speak of combiner boxes, but they shall include recombiners and Y-connectors.
Combiner boxes, like inverters, also have a maximum number of connections. But as
current produced by the strings is fixed, this value should be integrated into cmax for DC
combiner boxes. For the AC combiner boxes we can also argue, that cmax should depend
on imin and imax. Although there are some combiner boxes which offer the possibility of
two outputs, we only allow one output per combiner box
The cabling problem could be complemented by costs for combiner boxes costC ∈ R. If a
cable is connected to a combiner box the costs have to be paid.

4.1.4. Transformer
If the cables reach the transformers VT ( V , the cabling is done. Every transformer has a
maximum capacity tmax : VT → N or if only one type tmax ∈ N.
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4. The solar farm cabling problem

There could be two layers of transformers in a solar farm, but we only model the first one.

4.1.5. Cables
Cables are needed to conduct the power produced in the strings to the transformers.
We need different cables for AC and DC side. The cables for the connection directly at
the strings are fixed, as the power generated by the strings is fixed. So if there are no
Y-connectors between strings and string inverter, we do not need to model DC cables at
all.
But usually we have a set of AC cables CAC and the two functions capAC : CAC → R and
costAC : CAC → R, which assign a capacity and cost to every cable and a set of DC cables
CDC of which each cable has a capacity capDC : CDC → R and a cost costDC : CDC → R.
The goal is to assign a cable to every edge with the constraint that a cable has to have
enough capacity for the power that is conducted through it. If an edge shall have no cable
assigned to it, we have a special cable c0 with no cost and capacity.
In a solar farm several cables can be installed in the same physical conduit, which leads to
the already mentioned problem of capacity (ampacity) derating. We do not model this
property, which is definitely a weakness. To model this, one could insert special vertices in
to the graph where several cable could meet but are not combined into a new cable. The
cables would then run parallel to each other and a function derate : N→ [0, 1] could give
the derating factor for the number of cables assigned to the same edge.
We also do not consider power losses in the cables. One could check for a cabling produced
by this model whether guiding values of how much power may be lost in the cables are
violated.

4.1.6. Resulting model(s)
Casting all the constraints above into one model is not easy, especially the difference
between string and central inverters is a problem. We also do not model every property,
but make more simplifying assumptions which then result in the model explained below.
What is always given is a directed graph G = (V,E) and a set of strings S. The vertices V
consist of:

• Vcon = ∪s∈SV s
con: the union of the connection points of every string s ∈ S

• VY : the set of Y-connectors. They have a capacity ymax ∈ N

• VC : the set of combiner boxes. Each combiner box has a capacity cmax ∈ N

• VR: the set of recombiner boxes. Each recombiner box has a capacity rmax ∈ N.
• VI : the inverters. Each inverter has a minimum and maximum allowed current
imin, imax ∈ N0

• VT : the transformers. Each transformer has a capacity tmax ∈ N

All capacity constraints could of course be modeled as functions, so that every element can
have its individual constraints. Especially Y-connectors and recombiner boxes could be
integrated into the set of combiner boxes, so we don’t have to distinguish between them as
they all have the same properties, but different values. However in the following we will
not do this. The edges of G have a length given by the function len : E → R.
To connect the components there are two sets of cables, CDC for the DC side and CAC for
the AC side. Each cable has a capacity capDC : CDC → N respectively capAC : CAC → N
and a cost costDC : CDC → R respectively costAC : CAC → R.
The main difference between string inverters and central inverters is the position of the
inverters in the graph.
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4.1.6.1. Central inverters

Central inverters are next to the transformers, so the set of edges is E ⊆ {(s, y)|s ∈ Vcon, y ∈
VY } ∪ {(y, c)|y ∈ VY , c ∈ VC} ∪ {(c, r)|c ∈ VC , r ∈ VR} ∪ {(r, i)|r ∈ VR, i ∈ VI} ∪ {(i, t)|i ∈
VC , t ∈ VT }. The graph then is a layered graph with the edges pointing upwards (see
Figure 4.2).

We can divide the edges into DC and AC edges. AC edges are the edges between inverter
and transformer EAC = E ∩ {(i, t)|i ∈ VC , t ∈ VT } and DC edges are then all the other
edges between strings and inverters EDC = E\EAC .

We want to find a solution consisting of a function f : E → R and two functions hDC :
EDC → CDC and hAC : EAC → CAC . For all edges starting at string connection points
there are only two possibilities for cables. Either there is no cable or the cable with the
lowest capacity as there can be maximal one unit of flow on such an edge and we want to
find the cheapest solution. A solution should satisfy the following constraints:

Each string should be connected at exactly one of its connection points.

∀s ∈ S : ∃! e = (v, y) ∈ E with f(e) = 1, v ∈ V s
con, y ∈ VY (4.1)

The cable capacity on each edge e ∈ EDC ∪ EAC must not be exceeded.

∀e ∈ EDC : f(e) ≤ capDC(hDC(e))
∀e ∈ EAC : f(e) ≤ capAC(hAC(e))

(4.2)

The capacities of combiner boxes, inverters and transformers must not be exceeded.

∀c ∈ VC :
∑

(v,c)∈E
f(v, c) ≤ cmax

∀r ∈ VR :
∑

(c,r)∈E
f(c, r) ≤ rmax

∀y ∈ VY :
∑

(v,y)∈E
f(v, y) ≤ ymax

∀i ∈ VI :
∑

(v,i)∈E
f(v, i) ≤ imax

∀t ∈ VT :
∑

(v,t)∈E
f(v, t) ≤ tmax

(4.3)

A minimum amount of current has to be conducted to each inverter or no current at all.

∀i ∈ VI :
∑

(v,i)∈E
f(v, i) ≥ imin ∨

∑
(v,i)∈E

f(v, i) = 0 (4.4)

Each inverter and combiner box has at most one outgoing cable.

∀i ∈ V \(Vcon ∪ VT ) : ∃! e = (i, t) ∈ E with f(e) > 0 ∨ ∀e = (i, t) ∈ E : f(e) = 0 (4.5)

No vertex except for strings or transformers shall produce or absorb flow.

∀v ∈ V \{Vcon ∪ VT } :
∑

(u,v)∈E
f(u, v) =

∑
(v,t)∈E

f(v, t) (4.6)

The goal is now to find a solution that minimizes the cost function

costcables =
∑

e∈EAC

costAC(hAC(e)) · len(e) +
∑

e∈EDC

costDC(hDC(e)) · len(e) (4.7)
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Figure 4.2.: Illustration of the solar farm graph for central inverters.

4.1.6.2. String inverters

The cabling problem with string inverters is almost the same as the one for central inverters.
The main difference is the position of the string inverters respectively the set of edges
E ⊆ {(s, c)|s ∈ Vcon, y ∈ VY } ∪ {(y, i)|y ∈ VY , i ∈ VI} ∪ {(i, c)|c ∈ VC , i ∈ VI} ∪ {(c, r)|r ∈
VR, c ∈ VC} ∪ {(r, t)|r ∈ VR, t ∈ VT }. An illustration of this layout can be seen in Figure
4.4.

The constraints and the solution are basically the same as with central inverters. When
considering subproblems of the solar farm cabling problem the differences between string
inverters and central inverters can increase, even with only small adjustments. For example
when there are no Y-connectors the cables on DC side are only the ones between strings
and inverters. This means one does not have to choose DC cables, as the cable with the
lowest cost is obviously the only option for an optimal solution.

4.1.6.3. Decision Problem

With the modeling of the optimization problem above we can formulate the decision
problem of the solar farm cabling problem. We do this again with the central inverter
model.

Definition 4.1. Let W, ymax, cmax, rmax, imin, imax ∈ N0. There is a graph G = (V,E)
with V = Vcon ∪ VY ∪ VC ∪ VR ∪ VI ∪ VT and edges of length len : E → R. EDC ( E,
EAC ( E. Additionally there are two sets of cables CAC and CDC of which each cable has
a capacity capDC : CDC → N respectively capAC : CAC → N and a cost costDC : CDC → R
respectively costAC : CAC → R. Is there a flow f : E → R and an assignment of cables to
edges hDC : EDC → CDC , hAC : EAC → CAC , such that Equations 4.1 - 4.6 are fulfilled
and costcables (as defined in Equation (4.7)) is at most W?
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Figure 4.3.: Example cabling solution for central inverters.

4.1.7. Subproblems

We have now defined the complete solar farm cabling problem. But of course not every solar
farm has Y-connectors, combiner and recombiner boxes. Often there are only combiner
boxes and no Y-connectors or recombiner boxes, which leads to less layers. An illustration
of this problem is shown in Figure 4.5 for string inverters. This special case for string
inverters is also interesting as we do not need to consider DC-cables separately. The
DC-cables are already fixed by the amount of flow coming from the strings. In the same
manner we could add or delete other layers of combiner boxes depending on the design of
the solar farm.

One problem that is considered in the next section is the problem which consists of a set of
Strings S, inverters and transformers. So for our set of vertices this means V = Vcon∪VI∪VT .
All the properties regarding strings, inverters and transformers are the same as in the
complete cabling problem. The edges connect the strings to the inverters to the transformers
and again have a length given by len : E → R. We also have a set of cables, but we do not
need DC-cables because all cables on the DC side are directly connected to the strings and
therefore transmit exactly one unit of flow.

We can also consider proper subproblems of the solar farm cabling problem. That means we
take only some of the layers of a solar farm and we can leave out more than only combiner
boxes. One subproblem shall be explained more detailed as it is used in the next section.

We will call this subproblem the two-layer cabling problem. It consists of a graph G = (V,E)
of which the vertices are either combiner boxes VC or inverters VI and E ⊆ VC × VI . The
edges have a length len : E → R. Each combiner box c ∈ VC produces p(c) units of flow,
with p : VC → N. p(c) would be the number of strings connected to the combiner box c
in a whole solar farm. The inverters have a capacity imax ∈ N and a minimum allowed
current imin ∈ N0 as usual. There is one cable with which each combiner box has to be
connected to one inverter. The costs for laying a cable on edge e is len(e). For the decision
variant of this problem an additional parameter K ∈ N is given. Is there a subset of edges
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Figure 4.4.: Illustration of the solar farm graph for string inverters.

E′ ⊆ E with ∑e∈E′ len(e) ≤ K such that each combiner box is connected to exactly one
inverter without exceeding the inverter capacity imax and without falling below imin for
each connected inverter.

Every subproblem can be easily transformed into a complete solar farm cabling problem.
For this we just add the missing layers to the graph and add the edges in a way that the
cables and the flow for the added layers is clear. We take the two-layer cabling problem for
an example. First we insert a transformer and connect every inverter to it with an edge of
length 0. Then we add recombiner boxes and Y-connectors. As in the two-layer cabling
problem the combiner boxes VC are directly in front of the inverters, we can also view them
as recombiner boxes. So we insert a combiner box and a Y-connector for every v ∈ VC ,
connect the combiner box to the recombiner box and the Y-connector to the combiner box
by an edge. Now we need to connect p(v) strings to the corresponding Y-connector of each
v ∈ VC . The result is a graph as defined above for the complete solar farm problem, but
the cabling problem itself is the same as the two-layer cabling problem.

4.1.8. Edges of String Connection Points

Before we go into the analysis of the cabling problem we first make a simple observation
regarding some edges starting at the string connection points. Until now we have not
specified any conditions for the edges between two layers, so it is possible for two layers
to be fully connected. Some edges between the string connection points and the vertices
of the layer above (usually Y-connectors) however can be deleted without changing the
problem.

Lemma 4.2. Let s be a string, v, v′ ∈ V s
con and c ∈ VY a Y-connector such that there are

two edges (v, c) and (v′, c) with len((v, c)) ≤ len((v′, c)). Then there is an optimal solution
which does not use edge (v′, c).

Proof. There are two edges (v, c), (v′, c) ∈ E with v, v′ ∈ V s
con connection points of string

s and len((v, c)) ≤ len((v′, c)). Let H be an optimal solution. There are two possible
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Figure 4.5.: Example for the simple string inverter problem with only one layer of combiner
boxes.

cases: H assigns a cable to edge (v′, c) or H does not assign a cable to (v′, c). If H does
not assign a cable to edge (v′, c) the lemma is already fulfilled. So we only consider the
first case that H assigns a cable to (v′, c). We construct a solution H ′ that assigns a
cable to (v, c) instead of (v′, c), but otherwise is the same as H. This is possible as both
H and H ′ direct the single unit of flow produced by string s to vertex c. Obviously the
only possible cost difference of H ′ and H is because of using (v, c) instead of (v′, c). As
len((v, c)) ≤ len((v′, c)) the costs for H ′ cannot be higher than the costs for H. That
means that H ′ is an optimal solution which does not use edge (v′, c) and thus the lemma
is proven.

Lemma 4.2 implicates that we can remove edges from string connection points before
applying further algorithms to the graph. If there are two edges (v, c) and (v′, c) as
described in Lemma 4.2 we can remove edge (v′, c) without increasing the costs of an
optimal solution. With the following small algorithm we can delete such edges in polynomial
time.

1. For all Y-connectors y and for all strings s check if there is more than one edge
between connections points of s and y.

2. If yes, delete all edges except for one of the shortest edges.

The naive runtime of the algorithm above is in O(∑y∈VY
(∑s∈S |V s

con|)) as we loop over
all Y-connectors y and then over all strings s for which we have to check all outgoing
edges to the current Y-connector, which are at most |V s

con|. We can simplify this term
to |VY | ·

∑
s∈S |V s

con|. Obviously |VY | ∈ O(n) where n is the number of vertices. As the
connection points are also part of the vertices ∑s∈S |V s

con| ∈ O(n). In total we then can
estimate the runtime of the algorithm as O(n2).

With Lemma 4.2 and our small algorithm we can transform every instance of a solar farm
graph into an instance where every string has at most one connection point connected to a
Y-connector y. That means if we want to direct flow from a string to a specific Y-connector
we have only one edge we can use for this. We then can get rid of the connection points
of a string and merge them into one single vertex per string. In this case the edge length
would not necessarily be the Euclidean distance between the single connection point of the
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string and the Y-connector, but the distance between the original connection point and
the Y-connector. One should be aware of this fact especially when drawing a solar farm.

In the following we will only consider solar farm instances which have one connection point
per string. That is why we will use string as equivalent term to connection point and we
will view the set of strings as part of the vertices S = Vcon ( V in these instances.
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After defining the solar farm cabling problem we now want to analyze some of its properties
especially its complexity. We actually consider different variants of the solar farm cabling
problems and analyze all of them.

First we consider the solar farm cabling problem with special conditions which can be
enhanced to the general solar farm cabling problem as defined in Section 4.1.6. On the one
hand we consider the cabling problem foregoing different cable types and capacities and on
the other hand the cabling problem where cable types are the main source of complexity. In
both of these cases we do not distinguish between AC and DC cables, but assume that AC
and DC cable types have the same capacity and costs. The same applies to other upcoming
proofs if it is not stated otherwise. Second we consider the two-layer cabling problem as
mentioned in Section 4.1.7 and then we show that it is hard to find any feasible solution for
the general cabling problem. Third we go over to a special more realistic cabling problem
where the positions of the vertices are in R2 and all layers are fully connected.

But now we want to show the NP-completeness of the general solar farm cabling problem
respectively a special variant which implicates the NP-completeness of the general problem.
For this we reduce the 3-satisfiability problem (3SAT) to a part of the solar farm cabling
problem.

3SAT: There are a set of boolean variables X = {x1, . . . , xn} and a set of clauses
C = {c1, . . . , cm}. Each clause is a disjunction of exactly three literals, the negation of a
variable or the variable itself. Is there an assignment of true and false to the variables such
that the conjunction of all clauses evaluates to true?
As one of Karp’s 21 NP-complete problems 3SAT is NP-complete [Kar72].

Theorem 5.1. The solar farm cabling problem with a set of strings, a set of inverters,
one transformer and a single type of cable, but no vertex or cable capacity restrictions is
NP-complete.

Proof. We take an instance of the 3SAT problem and transform it into a cabling problem.

We need a graph G = (V,E) with V consisting of strings (with one connection point
each), inverters and one transformer. For every variable x ∈ X there are two inverters
ix and i¬x and one string (with one connection point) sx ∈ V . There is also one string
sc ∈ V for every clause c ∈ C and in total one transformer t ∈ V . The inverters and
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Figure 5.1.: Visualization of the construction in the proof of Theorem 5. An instance
of 3SAT is transformed into a solar farm cabling problem. Clause c1 of the
corresponding 3SAT instance is x1∨x2∨¬xn, that is why string sc1 is connected
to the inverters ix1 , ix2 and i¬xn .

the transformer have no capacity restrictions. Every inverter ix or i¬x is connected by
an edge to the transformer and the corresponding string sx. Every string sc is connected
to the three inverters representing the literals in clause c. So E = {(sx, ix), (sx, i¬x)|x ∈
X}∪{(sc, ix)|x ∈ c}∪{(sc, i¬x)|¬x ∈ c}∪{(ix, t), (i¬x, t)|x ∈ X} and every edge has length
1. A visualization of this construction is shown in Figure 5.1. Additionally we have one
cable with unrestricted capacity and cost 1. This transformation is possible in polynomial
time as the graph consists of 3n+m+ 1 vertices and at most 4n+ 3m edges.

We now show that there is a solution of the 3SAT instance if and only if there is a solution
of the cabling problem with costs of at most 2n+m.

Given a solution of the 3SAT instance, we construct a solution of the cabling problem. If
the value true is assigned to a variable x, we lay a cable between sx and ix and do not use
i¬x. If x is false, we do it the other way round. For a feasible solution of 3SAT every clause
has at least one true literal. Because of our construction this means that every string sc is
connected by an edge to an inverter of which the corresponding literal is true. We can then
lay a cable along this edge. As for every variable either x or ¬x is true, we only use half of
the inverters. Each inverter is connected to t by an cable, which are then n edges with
cables. Additionally each string is connected to one inverter by a cable. There are n+m
strings and so we have to use n+m cables between the strings and inverters. Altogether
we get a feasible solution for the cabling problem with costs of 2n+m.

If we now take a solution of the solar farm cabling problem with at most 2n + m cost,
we first observe that in this solution (and every other feasible solution) n+m cables are
needed to connect all the strings to the inverters, one cable for each of the n+m strings.
As each cable has a cost of 1, these cables together have costs of n + m. This leaves at
most a cost of n for the connection between inverters and the transformer and means at
most n edges between the inverters and the transformer may be used for cables. Of each
pair of inverters ix and i¬x one inverter has to be used, as the corresponding string sx can
only be connected to one of these two inverters. So at least half of the inverters have to
be connected to the transformer, which already results in n cables between inverters and
transformer and therefore in costs of n. This means of each pair ix and i¬x exactly one
inverter is connected with a cable because more would result in costs of more than 2n+m.
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If ix is used, we set the variable x to true, if i¬x is used we set x to false. Every string sc is
now connected to one inverter of which the corresponding literal is true. Otherwise the
string would only be connected to inverters which are not connected to the transformer,
but this would not be a feasible solution for the cabling problem. So every clause c contains
a true literal and we have a solution for the 3SAT problem.

This shows that the solar farm cabling problem is NP-hard. Obviously a solution of the
solar farm cabling problem can be checked for feasibility in polynomial time, so the problem
is NP-complete.

In the proof above inverters and transformers could of course be interchanged with combiner
boxes without changing the proof. So it is not only this special subproblem with three
layers, that is NP-complete. If you take three layers of strings, combiner boxes and inverters
the problem is also NP-complete.

However in the proof above we do not really use cables as there is only one cable which is
not even capacity restricted. We want to do another NP-hardness proof which only uses
cables, but no vertex capacities and unit edge lengths.

For this proof we use the Multiple Subset Sum Problem (MSSP) [CKP00, p. 309]

Multiple Subset Sum : Let K, c ∈ N. There is a set of items N = {1, . . . , n} of which
each item i has a weight wi ∈ N and a set of bins B = {b1, . . . , bm} which all have the
capacity c. Can a subset S ⊆ N of items be packed into the bins with Sj being the set of
items in packed into bin bj , such that for all bins bj : (∑i∈Sj

wi) ≤ c and
∑
i∈S wi ≥ K ?

MSSP is strongly NP-hard [CKP00]. There are some additional assumptions we can make
for the MSSP. For every MSSP instance we can assume that wi ≤ c for all i ∈ N . Otherwise
there were items that could not be assigned to any bin. And we can assume K > m because
in the other case K ≤ m solving the MSSP would be simple. For every bin we pick an
arbitrary item (if still one left) and assign it to the bin. If the sum of the weights of the
assigned items is K or more, we have found a solution, otherwise no solution exists.

Theorem 5.2. The solar farm cabling problem with unit edge lengths, no capacity restric-
tions at the vertices, but an arbitrary amount of cable types is NP-complete.

Proof. We make a reduction from the MSSP to this special solar farm cabling problem.
So we take an MSSP instance and construct a solar farm graph and corresponding cable
types. In the graph we construct we do not model strings explicitly, but directly start with
combiner boxes which produce units of flow. These combiner boxes are implicitly connected
with as many strings as units of flow they produce (as described in Section 4.1.7).

For each item i ∈ N the solar farm graph has one combiner box ci with a production of
wi units of flow and one combiner box c̄i with c+ 1 units of flow. There is one inverter
vb for each bin b ∈ B and one inverter vi for each item i ∈ N . The combiner boxes ci
are connected to all inverters vb. Additionally each ci is connected to its corresponding
inverter vi. A combiner c̄i is only connected to its corresponding inverter vi and to no
other inverter. All inverters are connected by an edge to a single transformer t. As stated
in the theorem all edges have length 1 and neither the transformer nor the inverters have a
capacity. The solar farm graph obtained by this construction can be seen exemplarily in
Figure 5.2. Now we need to specify the cable types. Let G = ∑

i∈N wi. There is one cable
k1 with capacity c and cost 1, one cable kc with capacity c+ 1 and cost G and for each wi
for i ∈ N there is a cable kwi with capacity c+ 1 +wi and cost G+wi. We obtain a graph
with 3n+m+ 1 vertices and at most n+ 1 cable types, so the construction is possible in
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Figure 5.2.: Visualization of the construction of a solar farm graph out of a MSSP instance
with n items and m bins like done in the proof of theorem 5.2. All edges have
unit length.

polynomial time. Even if we added the strings the construction would still be polynomial
as MSSP is strongly NP-hard.

The question for the constructed cabling problem instance is: Is there a cabling solution
with costs of at most 2nG+ n+m+G−K? We show that this solution exists if and only
if there is a solution of the MSSP instance with a weight of at least K.

Given a solution of the MSSP instance, we construct a solution of the cabling problem. If
an item i is assigned to bin b, combiner box ci is connected with cable k1 to inverter vb. If
item i is not assigned to any bin ci is connected to vi with cable k1. Each combiner box c̄i
can only be connected to its corresponding inverter vi. Now each inverter is connected to
the single transformer with an appropriate cable, that is the cheapest cable with enough
capacity.

What are the costs of a so constructed solution? The connection of all combiner boxes to
an inverter costs n+ n ·G as there are n combiner boxes with less than c+ 1 units of flow
for which cable k1 is sufficient and n boxes for which we need cable kc. Each inverter vb
has at most c incoming units of flow because c is the bin capacity and this must not be
exceeded in a solution of the MSSP. Connecting the inverters vb to t therefore results in
costs of m. The interesting part is the connection of the inverters vi to t. Each vi has at
least c+ 1 incoming units of flow and if the corresponding item i is not assigned to any
bin, it has additional wi incoming units of flow. In the first case the cheapest cable to
connect vi to t would be kc and in the second case kwi . The total costs for all vi then are
n ·G+∑

i∈N\S wi which results in total cabling costs of:

n+ n ·G+m+ n ·G+
∑

i∈N\S
wi ≤ 2nG+ n+m+G−K

Now we start with a cabling solution with costs of not more than 2nG+n+m+G−K and
construct a MSSP solution with a weight of at least K. Each item i whose corresponding
combiner box is connected to inverter vb is assigned to bin b. This assignment results in a
solution of the MSSP instance and that is now shown.

We first show that a cabling solution with costs of at most 2nG+ n+m+G−K does not
assign more than c units of flow to an inverter vb. Assume that an inverter vb has more
than c incoming units of flow. The cost of connecting the combiner boxes to the inverters
always is n+ nG. Connecting the inverters vi costs at least nG as all of them need at least
cable kc. For vb we also need at least cable kc, which has costs of G as we assumed that vb
has at least c+ 1 incoming units of flow. In total the costs would be

2nG+ n+G > 2nG+ n+m+G−K
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because K > m. We now know that no inverter vb has more than c incoming units of
flow. That means that the assignment of items to bins we made above does not exceed bin
capacities.

What remains to be shown is that this constructed solution has a weight of at least K. For
this we again take a look at the cabling costs. Let S ∈ N be the set of items assigned to
bins. The cabling costs are n for the combiner boxes ci, nG for the combiner boxes c̄i, at
most m for the inverters vb and nG+∑

i∈N\S wi for the inverters vi. In total we get

2nG+ n+m+
∑

i∈N\S
wi ≤ 2nG+ n+m+G−K

⇔
∑

i∈N\S
wi ≤ G−K

⇔
∑
i∈S

wi ≥ K

which means we constructed a solution for the MSSP instance with a weight of at least K.

As we can check for a given solution of the cabling problem in polynomial time whether
cable capacities are exceeded and the cost is at most a given value, the considered solar
farm cabling problem is NP-complete.

We have now two different proofs more or less both showing the same statement. The
interesting thing is that in the first proof we showed that the solar farm cabling problem
is NP-hard without considering different cable types. In the second proof we only used
different cable types to show NP-hardness, but no capacities at the vertices. In the general
solar farm cabling problem therefore two NP-hard problems overlap.

5.1. NP-hardness of other subproblems
We can go even a step further and consider only two layers of the solar farm cabling
problem, the last layer of combiner boxes and the inverters. One could imagine that the
power generated by the strings is already at the combiner boxes, so the cabling between
strings and combiner boxes has already been done and now the cheapest cabling between
combiner boxes and inverters has to be found. We called this problem the two-layer cabling
problem (see Section 4.1.7 ). One can show that even this subproblem is NP-hard by a
reduction of the Multiple Subset Sum Problem.

Theorem 5.3. The two-layer cabling problem consisting only of one layer of combiner
boxes and one layer of inverters is strongly NP-hard.

Proof. We transform an instance of MSSP, for which we make the same assumptions as in
Theorem 5.2, into an instance of the two-layer cabling problem as described above.

We build a graph G = (V,E) with two layers. The first layer are the combiner boxes. For
each item i ∈ N we have a combiner box ci ∈ V with a production p(ci) = wi. The second
layer are inverters. For each bin bi ∈ B we have one inverter vbi

∈ V and one inverter
vi ∈ V for each item i ∈ N . All inverters have the capacity imax = c and no restriction
for a minimum current, so imin = 0. Every combiner box is connected by an edge to all
inverters vbi

∈ V with bi ∈ B. All these edges have length 1. Additionally each combiner
box ci is connected to the inverter vi for i ∈ N . These edges have length wi+ 1. To connect
combiner boxes with the inverters, there is one cable with unrestricted capacity and cost 1.
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A visualization of this construction can be seen in Figure 5.3. As the number of vertices in
the constructed graph is 2n+m, the construction is possible in polynomial time.

We now fix K ∈ N and show that a solution for MSSP exists if and only if there is a
solution for the cabling problem constructed above with cabling costs of not more than
G−K + n, where G = ∑

i∈N wi.

A solution of MSSP assigns a subset S ⊆ N of items to the bins with ∑i∈S wi ≥ K. For
the corresponding instance of the cabling problem we connect every combiner box ci to the
inverter vbj

by a cable if item i ∈ S is assigned to bin bj . As no bin capacity is exceeded in
the solution of MSSP, no inverter capacity is exceeded. All other combiner boxes ci are
connected to their corresponding inverter vi via the edge with costs of wi + 1. Again no
capacity is exceeded as wi ≤ c for all i ∈ N . The connections costs in total then are∑

i∈S
1 +

∑
i∈N\S

(wi + 1) = n+
∑

i∈N\S
wi ≤ G−K + n

which is a feasible solution for the cabling problem.

Now we take a solution for the cabling problem with maximal costs of G −K + n and
construct a solution for MSSP. We assign item i ∈ N to bin bj if combiner box ci is
connected to inverter vbj

by a cable. These items together form the subset S. Items i
of which the corresponding combiner box is connected to vi are not part of S. As each
combiner box i has wi units of flow which need to be conducted to the inverters and
no inverter capacity is exceeded, no bin capacity is exceeded either by this assignment.
Otherwise the cabling solution would not be correct. We still need to show ∑

i∈S wi ≥ K.
The cost for the cabling is calculated as above:∑

i∈S
1 +

∑
i∈N\S

(wi + 1) = n+
∑

i∈N\S
wi

Because the cost for the cabling solution is at most G−K + n, it follows that

n+
∑

i∈N\S
wi ≤ G−K + n

⇔
∑

i∈N\S
wi ≤ G−K

⇔
∑
i∈S

wi ≥ K.

Hence our constructed solution for MSSP is feasible.

Altogether this shows that the subproblem consisting only of two layers of vertices is
strongly NP-hard.

Observation 5.4. In the proof of theorem 5.3 we did not make any restrictions regarding
the units of flow produced by the combiner boxes. If we take the complete solar farm cabling
problem the values wi would be restricted by the number of strings, that means restricted
by a polynomial in the input length. But even with this restriction the two-layer cabling
problem stays NP-hard as MSSP is a strongly NP-hard problem.

In the proof above we could interchange the layer of inverters with a layer of recombiner
boxes without any difficulty and still get the same result. So the layers of the two-layer
problem do not need to be combiner boxes and inverters to make the problem NP-hard.
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Figure 5.3.: Visualization of the construction in the proof of theorem 5.3. An MSSP instance
with n items and m bins is transformed into a instance of the two-layer cabling
problem. The blue edges have length wi + 1, all other edges length 1.

5.2. Finding any solution
The preceding proofs show that it is hard to find a solution of the solar farm cabling
problem that has maximum costs of some given value. But actually one can show that
for the general case of the solar farm cabling problem it is NP-hard to find any feasible
solution without caring about the costs of the solution. That means for the following proof
we neither consider edge lengths nor cable costs.

First we need the NP-hard problem 3-Partition.

3-Partition: Let S = {s1, . . . , s3m} be a (multi)set with si ∈ N and T ∈ N with ∑s∈S s =
mT . Additionaly for each s ∈ S: T

4 < s < T
2 . Can S be partitioned into m triplets

S1, . . . Sm such that for 1 ≤ i ≤ m: ∑s∈Si
s = T?

3-Partition is strongly NP-hard [BRG89].

Theorem 5.5. It is NP-hard to find any feasible cabling for the two-layer cabling problem.

Proof. Starting with an instance of 3-Partition we construct an instance of the two-layer
cabling problem. In this proof we are only interested in finding any solution. As we do not
need to consider costs for that, we do not specify the edge lengths and the cable costs.

For each item s ∈ S there is one combiner box cs with p(cs) = s. Remember that
T
4 < s = p(cs) < T

2 . There are m inverters which each have a maximal capacity of T . All
combiner boxes are connected with all inverters by an edge. Additionally there is one cable
with unrestricted capacity. We are only interested in finding any cabling that connects
all combiner boxes to the inverters without exceeding inverter capacities. The question
for our cabling problem therefore is: Is there a cabling (with arbitrary costs) that assigns
combiner boxes to inverters without exceeding inverter capacities? As the constructed
two-layer graph has 4m vertices, the construction is possible in polynomial time.

We start with a solution of the 3-Partition instance. For each triplet Si we connect the
three corresponding combiner boxes to one inverter. As there are m inverters each triplet
of combiner boxes is connected to a different inverter. The sum of each triplet is T so the
amount of flow reaching every inverter is T as well and therefore no inverter capacities are
exceeded. Altogether we constructed a feasible cabling for the two-layer cabling problem.

Now we construct a solution of the 3-Partition problem with the help of a given solution of
the two-layer cabling problem. A feasible solution of the two-layer instance constructed
above always assigns exact T units of flow to each inverter. That is because the total
capacity of all inverters is mT which is the same as the sum of the units of flow of
all combiner boxes. T units of flow cannot be supplied by only two combiner boxes as
2 · p(c) < 2T2 = T . That means that each inverter needs three combiner boxes connected to
it to reach T units of flow. But if we are now given a solution we can simply build one
triplet Si for each inverter i which consists of the items corresponding to the combiner
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boxes connected to inverter i. As there are m inverters we get exactly m triplets and we
already argued that the sum of flow at each inverter is T , so the sum of each triplet is also
T . The so constructed triplets Si are a solution of the 3-Partition instance.

In total we then get that it is NP-hard to find a feasible cabling for the two-layer cabling
problem.

By further analyzing the proof we we can see that finding a feasible cabling (with arbitrary
costs) for the general solar farm cabling problem is NP-hard.

Corollary 5.6. Finding a feasible cabling with arbitrary costs for the general solar farm
cabling problem is NP-hard.

The construction in the proof assigns each combiner cs box some units of flow p(cs) = s.
In the general cabling problem these units of flow originate at the strings. That means we
need one string for each unit of flow. More precisely we need s strings that are connected
to combiner box cs by an edge and not connected to any other combiner box. We already
described this construction in Section 4.1.7. For the proof above we actually need 3-
Partition to be strongly NP-hard, so 3-Partition is still NP-hard if T is bounded by a
polynomial in the input size. Then each item s ∈ S is bounded by a polynomial too. The
construction including the strings then is still possible in polynomial time.

Theorem 5.5 also leads to another observation.

Corollary 5.7. There is no polynomial-time approximation algorithm with any approxi-
mation guarantee for the general solar farm cabling problem (unless P=NP).

A polynomial-time approximation algorithm would always find a feasible cabling for the
solar farm cabling problem if such a cabling existed. As we have shown, finding a feasible
cabling is NP-hard and such an algorithm would therefore show P=NP. Therefore we will
now consider the cabling problem with an additional constraint.

5.3. Vertices in R2

A real life solar farm is usually built on a plane or at least an area that comes close
to a plane. Because of this and because this might make the problem approximable in
polynomial time we want to make the further assumption that all vertices of a solar farm
graph are placed on the R2 plane. The question then is: Does this make the solar farm
cabling problem easier?

The answer to this question is “no” in a sense that the problem stays NP-hard even when
restricting vertex positions to R2 and the distances between vertices to the Euclidean
distance. In this problem each vertex of a layer can be connected by a cable with any
vertex of the next layer, the layers are fully connected.

For proving this statement we again need the 3-Partition problem (5.2).

Theorem 5.8. The solar farm cabling problem where vertex positions are in R2, all layers
are fully connected and the edge lengths are the Euclidean distance is NP-hard.

Proof. To prove this Theorem we try to adapt the proof of Theorem 5.5. For this we make
the same construction, but as the layers are now fully connected we need to make sure
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Figure 5.4.: The figure shows an exemplary sketch of the construction made in the proof of
Theorem 5.8. The filled black squares are combiner boxes, the other squares in
the middle are inverters and the small circles strings. Implicitly each string is
connected to each combiner box and each combiner box to each inverter by an
edge with the Euclidean distance as edge length. The so constructed problem
of the two-layer cabling problem is NP-hard.

that the strings have to be connected to certain combiner boxes by positioning strings and
combiner boxes very near to each other.

We start with a 3-Partition instance and construct a solar farm graph consisting of three
layers: strings, combiner boxes and inverters. We arrange the inverters in a circle with small
radius and the combiner boxes in a circle with larger radius around the center (0, 0) ∈ R2.
Then we place as many strings around one combiner box as units of flow we want to have
at this box. The following construction is visualized in Figure 5.4. In detail we place m
inverters i1 . . . im on a circle with radius ε > 0 around (0, 0). The inverters all have a
capacity of T . The second circle of combiner boxes has a radius r + ε and we place one
combiner box cj for each item sj ∈ S such that the combiner boxes are equally distributed
on the circle. ε and r will be specified later. All combiner boxes have capacity

⌊
T−1

2

⌋
and

for each combiner box cj sj strings are placed around the box in a circle with radius δ > 0.
Remember that s < T

2 , so it is always possible to connect sj strings to a combiner box.
Each string is connected with each combiner box and each combiner box with each inverter
by an edge. As already stated in the Theorem, the edge lengths are the Euclidean distances
between the vertices. Additionally there is one cable with unrestricted capacity and costs
1.

The constructed graph has 4m + mT vertices. As 3-Partition is a strongly polynomial
problem T is bounded by a polynomial and so is 4m+mT . Therefore the graph construction
is possible in polynomial time. Now we still need to specify r, ε and δ. We choose ε < 1

6m
so we get 3m · 2ε < 1. For r and δ we choose

r = 1
2 · sin( π

3m) and δ = (r + ε) · sin
(
π

3m

)
− 1

2 = ε sin
(
π

3m

)
> 0
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Figure 5.5.: In the proof of Theorem 5.8 we choose r and δ such that the distance of string
v to combiner box c′ is at least 1 + δ (red line). The red and the blue line
together are the chord of a circular segment with angle α and radius r + ε.

basically because we want to clearly separate the string circles from each other. Later this
will get clearer when we actually use r and δ. Now we want to show that there is a solution
for the 3-Partition instance if and only if there is a solution for the constructed cabling
problem with costs lower than 3mr + 1 +mTδ.

First we take a solution of the 3-Partition problem and construct a solution of the cabling
problem. Independently of the 3-Partition solution we connect the strings around a
combiner box cj to this combiner box, so that there are sj units of flow at combiner box cj .
In total this results in costs of mTδ as there are mT strings. This is also possible because
each combiner box has enough capacity as already argued above. For each triple Si we then
connect the corresponding three combiner boxes to one inverter. Each triple of combiner
boxes has exactly T units of flow so no inverter capacity is exceeded and obviously there
are enough inverters as there are 3m combiner boxes and m inverters. The distance of a
combiner box to an inverter is at most r+2ε. Connecting all combiner boxes then results in
costs of at most 3m(r+2ε). All in all the costs are at most 3m(r+2ε)+mTδ < 3mr+1+mTδ
and we obtain a solution of the cabling problem.

Now we solve the 3-Partition instance by using a given solution of the cabling problem.
The cabling solution has costs lower than 3mr + 1 +mTδ.

First of all we argue that in such a solution each combiner box has to be used. That means
each combiner box is connected by a cable to an inverter. Why is that the case? Each
inverter has a capacity of T and there are m inverters. As there are mT strings, each
inverter has to take exactly T units of flow. The maximum amount of flow one combiner
box can provide is

⌊
T−1

2

⌋
< T

2 because of their capacity constraints. It follows from this
that at least three combiner boxes are needed to provide T units of flow to one inverter.
There are m inverters and 3m combiner boxes, so each combiner box is actually used. The
cabling of combiner boxes to inverters has costs of at least 3mr as r is the distance of the
inverter circle to the combiner box circle.

With this in mind we now argue that each string is connected to its nearest combiner
box. So each circle of strings is connected to the combiner box in their middle. For this
argument we need the lower bound for the distance of a string v in the circle around a
combiner box c to another combiner box c′. This lower bound is 1 + δ and we show that
now.

All combiner boxes are placed on a circle with radius r + ε around the center. They are
all equally distributed along the circle so the distance of two combiner boxes next to each
other is given by the length of the chord of the circular segment with radius r+ ε and angle
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2π
3m . You can see that exemplary in Figure 5.5. In general the length of the chord with
radius t and angle α is given by 2t · sin

(
α
2
)
. The distance d of two combiner boxes next to

each other then is d = 2(r + ε) · sin
(
π

3m
)
. This is also a lower bound of the distance of any

two combiner boxes c and c′. The distance of string v to combiner box c is δ, so connecting
v to c′ results in costs of at least

2(r + ε) · sin
(
π

3m

)
− δ

= 2r sin
(
π

3m

)
+ 2ε sin

(
π

3m

)
− ε sin

(
π

3m

)
= 2r sin

(
π

3m

)
+ ε sin

(
π

3m

)
= 2

(
1

2 · sin( π
3m)

)
· sin

(
π

3m

)
+ δ

= 1 + δ.

With the lower bound of 1 + δ now shown, we now show that connecting string v to a
combiner box c′ instead of c is too expensive for a solution of the constructed cabling
problem.

We already determined that connecting the combiner boxes to the inverters at least costs
3mr. Connecting all other mT − 1 strings besides v to a combiner box has costs of at least
(mT − 1) · δ and as we just calculated, the cost for connecting v to c′ is at least 1 + δ. So if
in any solution of the cabling problem a string is not connected to its nearest combiner
box the resulting costs would be at least

3mr + (mT − 1) · δ + 1 + δ = 3mr +mTδ + 1.

But this would not be a solution for the constructed cabling problem as the costs have
to be strictly lower than 3mr +mTδ + 1. We then can conclude that in a solution which
fulfills the cost condition all strings are always connected to their associated combiner box.
That means the combiner box whose distance to the string is δ.

As a short recapitulation we now know that in a solution of our constructed cabling problem
each combiner box has to be used and the strings in a circle around each combiner box
actually have to be connected to this box. A combiner box cj therefore provides exactly
sj units of flow. With this information we now construct the solution of the 3-Partition
instance.

For each inverter i = 1 . . .m we build a triple Si. Each inverter is connected to three
combiner boxes, as already argued above. The three corresponding items s ∈ S form one
triple Si as their sum is exactly T (also shown above). With m inverters we get m triples
and a correct solution for the 3-Partition instance.
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6. Exact Solving

After defining the problem and showing the NP-hardness for several variants we want to
propose some algorithms which solve the solar farm cabling problem exactly or approx-
imately. First we show a dynamic program and an mixed integer linear program which
return optimal solutions of the cabling problem. In the next chapter we will then consider
a heuristic algorithm.

6.1. Dynamic Program
We first present a dynamic program which returns an optimal solution for the solar farm
cabling problem. For this we need the terms configuration and layer as we use them in the
following. The layers of a solar farm graph are S, VY , VC , VR, VI and VT , where S is the
bottom or first layer and VT is the top or last layer. The dynamic program could handle
an arbitrary amount of layers and therefore we now use generic layer names Vi.

Definition 6.1. A configuration of a layer V is a tuple (p1, ..., p|V |), pi ∈ N0, where pi
is the amount of flow at vertex vi ∈ V . The total flow in one layer equals the number of
strings:

∑|V |
i=1 pi = s, where s is the number of strings.

A configuration is feasible if no pi violates the maximum or minimum flow values for its
vertex.

The minimal cost for a configuration of layer V is the minimal cost of all feasible cablings
until layer V such that as many units flow are directed to each vertex in V as given by the
configuration.

Observation 6.2. If we take a configuration p of a layer Vi and a cabling c between Vi
and the next layer Vj, p and c together define a configuration of layer Vj. We say that
the configuration p and the cabling c result in a configuration of the next layer Vj. For an
arbitrary p and c the resulting configuration might not be feasible of course.

Now we come to our dynamic program. Algorithm 6.1 basically takes configurations of
a layer Vi and cablings to the next layer Vj to produce a partial solution of the cabling
problem up to layer Vj . More precisely the dynamic program considers every layer of
vertices, except for the first layer and every cabling between all configurations of the
previous layer and the current layer (Line 5 - Line 7). We then check whether the current
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6. Exact Solving

combination of configuration and cabling results in feasible configuration of the current
layer i (Line 8). In the case that the costs of the previous configuration and the cabling
is lower than the costs of the configuration of layer i the costs of the configuration of
layer i are updated (Line 12). So for each configuration the combination of cabling and
predecessor configuration with the lowest cost is stored. To get the solution we find the
configuration of the last layer with minimal costs. As we stored a predecessor configuration
for every configuration of each layer we can then put together the solution (Line 13 - 17).

Algorithm 6.1 uses generic layers names Vi. For a solar farm graph we would then have
V1 = S, V2 = VY and so on. So we can use the dynamic program for solar farm graphs
without problems.

Algorithm 6.1: Dynamic Program
Input: solar farm G = (V,E), with layers V1, . . . , Vk
Output: assignment of cables to edges with minimal costs

1 costsi = array of costs for configurations of layer i, initialized with ∞ for each
configuration

2 cablingi = array of cablings for configurations of layer i
3 if there is only one layer V1 then
4 return ∅
5 for i ∈ {2, . . . , k} do
6 forall feasible configurations pre_config of layer Vi−1 do
7 forall cablings s between Vi−1 and Vi do
8 if pre_config and s result in a feasible configuration c of Vi then
9 if cost(s)+ costsi−1 [pre_config] < costsi [c] then

10 predecessor (c) ← pre_config
11 cablingi [c] ← s
12 costsi [c] ← cost(s)+ costsi−1 [pre_config]

13 config ← configuration of the lowest costs in costs_k
14 do
15 solution ← solution ∪ cablingi [config ]
16 config ← predecessor (config)
17 while config is not the configuration of layer 1
18 return solution

Theorem 6.3. Algorithm 6.1 returns an optimal solution of the solar farm cabling problem.

Proof. We first show that the algorithm actually returns a feasible solution in a sense that
no cable or vertex capacities are exceeded. And second we show by induction the more
general statement that the dynamic program calculates the lowest costs for every possible
configuration of the last layer. If we then take the cheapest among these configurations, we
get the optimal solution for the whole solar farm.

The algorithm only considers feasible configurations which means no vertex capacities are
exceeded. The same applies to the cablings between to layers as the cheapest cable for a
given amount of flow (given by the configuration) is uniquely determined. So no cablings
which connect cables with too low capacity to vertices are considered. At the end we get a
solution which does not violate any capacity constraints and is therefore correct.

Second we show by induction that the algorithm calculates the minimal costs for every
possible configuration of the last layer. The base case of our induction is one layer. The
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6.1. Dynamic Program

first layer of a solar farm is the layer of the strings, so we have exactly one configuration for
this layer. As there is no cabling for a single layer, the minimal cost for the configuration
is obviously 0 and the dynamic program indeed does not return a cabling.

Our induction hypothesis is that the algorithm calculates the minimal costs and the
corresponding cabling for every configuration of layer n− 1. Now we want to show that it
then also calculates the minimal costs for each configuration of layer n. So the algorithm
considers the configurations of layer n− 1. For each configuration all cablings which result
in a feasible configuration c of layer n are taken into account (Line 8). As all combinations
of configurations of layer n− 1 and cablings between layer n− 1 and n are tried out, we
will reach all possible feasible configuration of layer n. Other feasible configurations of
layer n cannot be reached by any legal cabling. These configurations if they exist then have
infinite costs. But for the configurations c of layer n which are possible, all combinations
of configuration of layer n − 1 and cabling that result in c have been tried out and we
only store the cheapest one. So the algorithm calculates a minimum cost cabling for all
configurations of the layer n.

An optimal solution of the solar farm cabling problem includes one of all the possible
configurations of the last layer. The algorithm has calculated the solution with minimal
costs for each configuration of the last layer. Hence, if we pick the configuration of the
last layer with the lowest costs we get an optimal solution for the solar farm cabling
problem.

Although it is nice to have an algorithm that solves the solar farm cabling problem exactly,
we have not spoken about the runtime of the algorithm yet. We have already shown that
the solar farm cabling problem is NP-hard so it would be pretty surprising if the runtime
was polynomial.

Lemma 6.4. The runtime of Algorithm 6.1 is in O
(⌈

n
2
⌉bn

2 c ·
( n−1
dn−1

2 e
)
· T
)
, where T is the

time to update costs and predecessor of a configuration.

Proof. First we calculate the number of configurations of a layer. Of course there is only
one configuration for the layer of strings. Let ni be the number of vertices of a layer i and
s be the number of strings and n1 = s. If we do not take capacities into account, there are(ni+s−1

s

)
configurations for layer i. This is the number of possibilities to distribute s units

of flow to ni vertices.

The number of cablings between a layer i and a layer i − 1 with ni and ni−1 vertices
respectively is at most nni−1

i . This is the case when the two layers are fully connected.

The algorithm now iterates over all layers. For each layer every configuration is considered
and for these each cabling to the next layer. The number of combinations of configurations
and cablings then is

(ni−1+s−1
s

)
·nni−1
i . Each of these combinations result in a configuration of

layer i. Let T be the time to update a configuration (potentially new costs and predecessor).
Hence we get the runtime O

((ni−1+s−1
s

)
· nni−1

i · T
)
for one layer i. For all layers together

we then get
k∑
i=2

O

((
ni−1 + s− 1

s

)
· nni−1

i · T
)
.

The first layer in a solar farm are the strings and as every string produces exactly one unit
of flow there is only one configuration for the first layer and the runtime reduces to

O(ns2 · T ) +
k∑
i=3

O

((
ni−1 + s− 1

s

)
· nni−1

i · T
)
.
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Of course the number of vertices of each layer together are n, so ∑k
i=1 ni = n

In a solar farm graph like we defined in Section 4.1.6 there are at most k = 6 layers so
we basically have six times the term

(ni−1+s−1
s

)
· nni−1

i · T . We now want to find an upper
bound estimation for this term. For i > 1 we can roughly estimate

(
ni−1 + s− 1

s

)
≤
(
n− 1
s

)
≤
(
n− 1
dn−1

2 e

)

as ni−1 + s is at most n and a binomial coefficient
(n
k

)
gets maximal for a fixed n if

k = dn2 e or k = bn2 c. Further we can estimate nni−1
i ≤ dn2 e

bn
2 c to get a very rough runtime

estimation of

O

(⌈
n

2

⌉bn
2 c
·
(
n− 1
dn−1

2 e

)
· T
)
.

In this estimation we now assumed the upper bound n
2 for s, ni and ni−1, which is of course

impossible in case of three different layers s, i− 1 and i.

The runtime of Algorithm 6.1 is prohibitively slow. Even for small instances of solar farms
the algorithm would take years to calculate a solution, which can be seen at the following
example. A small solar farm could have about 50 strings and three combiner boxes for
the second layer. That means we have 350 possible cablings between the two layers. If
we make the unrealistic assumption that we can list one cabling per nanosecond, listing
the cablings would last 350 ns ≈ 7 · 1023 ns ≈ 21 years. That is why we now consider a
standard method to solve optimization problems: Linear Programming.

6.2. Linear Programming

In the case for solar farms we can formulate a mixed integer linear program (MILP). The
MILP formulation does not make the cabling problem less NP-hard. In general MILPs are
NP-hard as they are a generalization of integer linear programming which was shown to be
NP-hard by Karp [Kar72]. But in practice there are very optimized solvers for MILPs, so
we also give an MILP formulation of the solar farm cabling problem.

6.2.1. MILP formulation

We have variable xij ∈ R≥0 which states how much flow is directed from vertex i of layer Vl
to vertex j of layer Vl+1. Variable eijc ∈ {0, 1} states whether the edge connecting vertex i
of layer Vl and vertex j of layer Vl+1 is used for cable c. The MILP formulation below does
not distinguish between AC and DC cables to make the formulation a bit clearer. The idea
could then be adapted later. Let k be the number of layers of the solar farm graph and let
VR be layer before the inverter layer VI .

min
k∑
l=2

∑
i∈Vl

∑
j∈Vl+1

∑
c∈C

eijc · cost(c) · len(i, j) (6.1)
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s.t.
∑
j∈V2

xij = 1 ∀i ∈ V1 (6.2)

∑
i∈Vl

xij =
∑

m∈Vl+2

xjm ∀l ∈ {1, . . . , k − 2} ∀j ∈ Vl+1 (6.3)

∑
i∈Vl

xij ≤ max(j) ∀l ∈ {1, . . . , k − 1} ∀j ∈ Vl+1 (6.4)

∑
i∈VR

xij ≥ min(j) ·
∑
i∈Vl

∑
c∈C

eijc ∀j ∈ VI (6.5)

∑
j∈Vl

∑
c∈C

eijc ≤ 1 ∀l ∈ {1, . . . , k − 1} ∀j ∈ Vl+1 (6.6)
(∑
c∈C

eijc · cap(c)
)
≥ xij ∀i ∈ Vl ∀j ∈ Vl+1, l ∈ {1, . . . , k − 1} (6.7)

xij ∈ R≥0, eijc ∈ {0, 1} (6.8)

Equation (6.2) makes sure each string has an outflow of exactly one. Flow preservation
is ensured by Equation (6.3). Equations 6.4 and 6.5 make sure that no vertex capacities
are exceeded respectively no inverter lower bounds are undercut. With Equation (6.6) no
vertex has more than one outgoing cable. Equation (6.7) has two different functions. First
it makes sure no cable capacity is exceeded. Second we need to make sure that the flow
exiting a vertex does this along the one outgoing cable. If for a vertex i eijc = 1 for any
cable c, but xiv > 0 for another vertex v 6= j, then the left side of Equation (6.7) would be
0 for i and v and therefore less than xiv. Note that the variables xij are actually numbers
from N0. That is as side effect of Equation (6.6).
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We now take a step back and first try to develop an algorithm that finds any solution
without exceeding vertex or cable capacities. The problem here is that we already showed
in Theorem 5.5 that for the general solar farm cabling problem it is NP-hard to find any
feasible solution. Therefore we only consider solar farm graphs with fully connected layers
like in Section 5.3 and at first we will ignore the lower bounds of inverters. However the
algorithm we are going to develop is not limited to any kind of metric edge lengths. Again
as in the previous chapter for the dynamic program, we use generic layer names where V1
is the layer of strings.

Before we come to our algorithm we take a look at cables layouts. As already stated a
cable layout is a forest of trees rooted in the transformers. We can make the observation
that each cable layout consists of a number of paths starting at layer V1 and ending in
some layer Vi for i ∈ 2, . . . , k. Each given layout can be decomposed into all these paths by
recursively cutting out the longest path of each tree of the layout. If we then successively
add the cables defined by the paths to the fully connected solar farm graph, we get the
cable layout as result. Figure 7.1 shows an example of a decomposition of a tree into several
paths.

The height of a path is the number of unconnected vertices at the time when the path is
added to the cable layout. So e.g the first path added to an empty cable layout always has
height k. It follows that a path with height i consists of a path of i unconnected vertices
in the layers 1 to i and is connected to an already existing path in layer i+ 1.

height 4V4

V1

height 3

height 2

height 1

Figure 7.1.: The tree is decomposed into paths of different heights marked by the colors.
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A partial cable layout is a layout where not all strings are connected to a transformer.
That means only a part of the connections of the layout are already fixed. Examples for
partial cable layouts can be seen in Figure 7.2.

Now we need one last definition before we explain our algorithm: remaining capacities.

Definition 7.1. The remaining capacity ρ of a vertex v as part of a partial layout is
defined depending on a reference layer i. The layer of vertex v has to be higher than i.

The remaining capacity of a transformer t is ρ(t) = max(cap(t)− xt · c, 0), where cap(t) is
the capacity of t, xt is the number of vertices of layer i that are connected to t and c is the
capacity of the vertices of layer i.

If v is not a transformer, the remaining capacity is the minimum of the remaining capacity
of its parent vertex in the layout and max(cap(v)− xv · c, 0). xv is the number of vertices
of layer i that are connected to v.

The remaining capacity of a vertex basically states how much flow can be directed through
a vertex if all its previously connected child vertices and vertices of the same layer as the
child vertices are filled up to their capacity. Now we can finally get to Algorithm 7.1.

The basic idea of Algorithm 7.1 is to connect the strings one by one to a transformer such
that in each step as few opportunities for the strings still to be connected as possible are
destroyed. For each string we try to connect the string to as many unconnected vertices as
possible (Line 4 ). That means we first connect higher paths resulting in the cable layout
being built from top to bottom in a sense that all vertices of a higher layer are already
connected when we connect the last vertex of a lower layer. In the case that there are
no more empty vertices in a layer, the strings are connected to the vertex with the most
remaining capacity. If there is a tie of several vertices the amount of flow is considered as a
tiebreaker.

Algorithm 7.1: String connection
Input: solar farm graph G = (V,E) with layers V1, . . . Vk
Output: cable layout for the given graph

1 forall strings s ∈ V1 do
2 forall layers 2, . . . , k do
3 if there is an empty vertex in this layer then
4 choose empty vertex
5 else
6 break

7 if last chosen vertex /∈ Vk then
8 with the following priorities choose the vertex with:
9 1. the most remaining capacity

10 2. the least amount of flow (if equal do this recursively for the parent
vertices)

11 3. due to a fixed order
12 connect string to path of chosen vertices
13 if vertex capacities are exceeded then
14 return false

So there are basically three criteria how to connect a string to the top of the graph. The
first criterion is to always choose an empty vertex if there are empty vertices left in a layer.
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Layer
capacities

Figure 7.2.: The figure shows the remaining capacities of a partial cable layout. In the
left graph the remaining capacities depend on the amount of child vertices of
the middle layer, because the red vertex is not connected yet. In the right
graph all vertices of the middle layer are already connected and the remaining
capacity now depends on the bottom layer.

The second is to choose the vertex with the most remaining capacity. The third criterion
is to choose the vertex with the least amount of flow. In the case that this still does not
eliminate all but one vertex, the amount of flow of the corresponding parent vertices is
compared.

Determining the amount of flow at a vertex is pretty simple. For the remaining capacity
this is a bit more complicated, so we give an example of how the remaining capacity is
calculated in Algorithm 7.1. In the left graph of Figure 7.2 there is one vertex of the
middle layer unconnected, the red one. The remaining capacities of the left top vertex
is calculated as 7− 2 · 4 as it is connected to two vertices with capacity 4 of the middle
layer. Because the remaining capacity cannot be negative, it is then set to 0. The right
top vertex is only connected to one vertex with capacity 4 and so its remaining capacity is
7− 4 = 3. Now in the right graph there are no unconnected vertices of the middle layer
anymore, so the remaining capacity of the vertices of top and middle vertices needs to be
recalculated. Each of the middle vertices is connected to one bottom vertex. That means
the remaining capacity for them is calculated as 4− 1 = 3. The top vertices are connected
to two bottom vertices, so their remaining capacity is calculated as 7− 2 · 1 = 5. As this is
more than the remaining capacity of their child vertices, the remaining capacity of those
does not need to be changed and stays 3.

Before we continue to work with Algorithm 7.1 we need to state that we are unfortunately
not able to prove the correctness of the algorithm. That means if Algorithm 7.1 does not
return a cabling we cannot show that there actually is no cabling that does not exceed
vertex capacities (lower bounds are ignored). We believe that it works correctly though.

Conjecture 7.2. Algorithm 7.1 calculates a cabling for a given solar farm graph that does
not violate the vertex capacities iff such a cabling exists.

We will now give some reasons and examples why this seems logical and to show what
thoughts are behind the algorithm. Later when the algorithm is evaluated in practice we
will come back to this. First we consider the first criterion in the algorithm, which always
chooses an empty vertex if possible.

Algorithm 7.1 adds paths in an order of descending height to the cable layout, as we always
choose unconnected (empty) vertices for a path if they exist in a layer.
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Observation 7.3. The amount of paths of height i in the output of Algorithm 7.1 is
determined by |Vi| − |Vi+1|, with Vi being the vertices of layer i and Vi+1 of layer i + 1
respectively.

For each path that uses an vertex of layer i+ 1 a vertex of layer i is needed. So for paths
of height i we can only use the remaining vertices of layer i.

We now show that it is not worse to use longer paths in a cable layout if possible. This is
also what Algorithm 7.1 does, as it always connects empty vertices of a layer if there are
any left. So for each string a path of maximal height is connected to the existing partial
layout.

Lemma 7.4. A cable layout F can be transformed into a cable layout F ′ that consists
of a maximal amount of paths of height i or more for i = {1, . . . , k} without reducing the
capacity of F .

Proof. We have already stated above that the maximal amount of paths of at least height i
depends on the number of vertices in layer i. So if F does not consist of a maximal amount
of paths of at least length i, that means that F does not use all vertices of layer i. Let
vi−1 be the highest vertex of a path of height i− 1 (if that does not exist, we do the whole
process in layer i− 1). In F vi−1 is connected to a vertex vi which is again connected to a
vertex vi+1. We break the connection of vi−1 and vi and connect vi−1 to the empty vertex
ve instead. That means the whole subtree of vi−1 is now attached to ve and with ve we now
have a path of height i. ve is then connected to vi+1. Both new connections are possible
because ve and vi have the same capacity, so if the subtree of vi−1 could be connected to
vi, it can also be connected to ve. And the amount of flow that is directed through vi+1
does not change.

Using longer paths in a cable layout thus does not reduce the capacity.

Algorithm 7.1 tries to connect strings in a way that as few capacity and possibilities for
subsequent strings as possible are wasted. The first criterion to this, is to always choose an
unconnected vertex if such a vertex exists in a layer. We have just shown that this alone
does not destroy the possibility to get a feasible layout for a solar farm graph.

The second criterion is the remaining capacity. It shall prevent that an vertex v with high
capacity is connected to a vertex v′, where this high capacity of v cannot be fully used
because the capacity of v′ is already filled by other vertices than v. Figure 7.3 shows an
example for this. The green vertex is supposed to be connected. There are two relatively
obvious choices, marked by the red and blue dashed line. Which of these two is better
depends on the actual capacities of the vertices. We first consider the blue capacities on
the left. For these capacities the blue connection is better. Just imagine that each of the
bottom layer vertices can be completely filled because there are 12 strings which each
produce one unit of flow. With the red connection it would not be possible to get this flow
to the top as one transformer can only take 7 units of flow. If all bottom layer vertices
which are connected to the right transformer were completely filled the right transformer
would have only one unit of capacity left, but the green vertex has potential for two units
of flow. So with the red connection and the blue capacities, the potential of the green
vertex might be wasted. The blue connection is the connection that the algorithm would
choose because of remaining capacities. For the blue vertex the remaining capacity is 2,
where it is only 1 for the red vertex.

Now we consider the red capacities. In a first idea of Algorithm 7.1 the criterion to decide
to which vertex a connection is made was the amount of flow of a transformer subtree. So
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Figure 7.3.: The green vertex needs to be connected. For the blue capacities on the left, the
blue connection would be better because with that connection all bottom layer
vertices can be completely filled. For the red capacities the red connection is
the better choice.
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Figure 7.4.: The red vertex shall be connected to one of the two top vertices. Algorithm 7.1
would choose the left one because it has less units of flow than the right one.

first the transformer with the lowest amount of flow was chosen, then the child vertex with
the lowest amount of flow and so on. But this method would lead to the blue connection
even if we use the red capacities. It is again easy to see that the red connection is the
better choice. The left vertex of the middle layer can only take 5 units of flow in total.
In the case that its two already connected child vertices are completely filled, one unit of
capacity is left for the green vertex. On the other side the red connection would always
allow the green vertex to be filled with two units of flow. That is again what is described
by the remaining capacity of the red vertex.

But what happens if the remaining capacity is equal for several vertices? We then choose
the vertex with the least amount of flow. If here again are several vertices with an equal
amount we compare their parents and do this recursively until either the transformers
are reached or there is only one candidate left. For this criterion we use that we build
the layout path by path. That means that for each path that is added the flow value is
increased by one. Figure 7.4 shows an example. The red vertex is already connected to
the lower layer. Algorithm 7.1 would now connect the red vertex to the left transformer
because both transformers have remaining capacity 0, but the left one has one unit of flow
less than the right one. This is the better decision. If we take a look only at the two upper
layers one could think that connecting two vertices of the middle layer to a vertex of the
top layer is enough to fill the capacity. The problem is that we need three vertices of the
bottom layer to fill one vertex of the middle layer. Every time we do that we waste one
unit of capacity. That is why it is better to connect more than two vertices of the middle
layer to a top layer vertex. However connecting the red vertex to the right side would not
increase the amount of flow that can reach the right top vertex. If the remaining capacity
of several vertices is equal we want to equally distribute the vertices among them and that
is what is done with the flow criterion.

If both remaining capacity and the flow criterion are equal for several vertices it does not
matter which vertex we choose. All vertices that were compared with the flow criterion
then have the same amount of vertices of the current layer (the highest layer that still has
empty vertices) connected to it.

Now we take a look at the runtime of Algorithm 7.1.
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3

9
4

Figure 7.5.: The top vertices are inverters with capacity 9 and lower bound 4. The
continuous lines show a cabling that would be returned by Algorithm 7.1. This
cabling does not hold the lower bound of 4 for the right inverter. If the red
cable would be replaced by the dashed one the resulting solution would be
valid.

Theorem 7.5. The runtime of Algorithm 7.1 is in O(n3).

Proof. Each string is considered once and for each string we search a path to a transformer
which consists of as many unconnected vertices as possible. Finding this path is possible
in linear time. When the path is connected to the existing layout the vertex with the
maximum remaining capacity is searched. This is again possible in linear time. If there are
vertices with equal remaining capacity, the flow of these vertices needs to be compared. The
comparison is again a linear time operation because it might be necessary to recursively
check the parent vertices. In total we then get a quadratic time for connecting path to
the existing layout. After connecting the remaining capacities have to be updated. The
main operation here, updating children of vertices when their remaining capacity changes,
is possible with a depth first search which takes linear time in a tree. In total the runtime
then is O(n3)

7.1. Including Lower Bounds
For now we assume that Algorithm 7.1 can find a cabling for a solar farm graph, which
does not violate any vertex capacities. But we have not spoken about lower bounds of
inverters. Still we can run the algorithm several times on slightly changed input graphs to
try to find a cabling which does not violate lower bounds. But what can actually happen
when we run the algorithm only once? We might get a solution where the amount of flow
at an inverter is below the minimum allowed value. An example is shown in Figure 7.5.
The algorithm assigns two combiner boxes to the left inverter and one to the right which
then does not hold enough flow to meet the lower bound. But obviously this example graph
is solvable as we can assign all combiner boxes to only one inverter. If we input the same
graph but with only one inverter, Algorithm 7.1 would find this solution. To solve this
problem we run the algorithm several times, but with a different amount of inverters each
time. The minimum amount of inverters needed to get a solution is d s

imax
e, the maximum

amount is b s
imin
c. A solution uses an amount of inverters in between these two values. So

we just try out each possible number of inverters.

Although this method surely improves the amount of solar farm graphs on which a solution
can be found, there are still graphs where a feasible cabling is obviously possible, but not
found by the algorithm. An example is given in Figure 7.6. The trick to calculate a layout
using only two inverters does not work here as there are 9 strings, but the capacity of two
inverters is only 8. So we always need all of the inverters for a feasible cabling. To get
around this problem we simulate a lower capacity for the inverters. If we calculate a layout
for the graph of Figure 7.6 with inverter capacities of 3, Algorithm 7.1 would find a correct
solution. That is why we do not only try a range of different amounts of inverters, but also
a range of different inverter capacities. With these two tricks we can increase the amount
of solar farms where a feasible solution can be found.
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Figure 7.6.: The numbers on the left describe the vertex capacities of the corresponding
layer, the numbers separated by the horizontal line describe capacity and lower
bound of the inverters. The shown layout (excluding the red connection) would
be found by Algorithm 7.1, but it does not fulfill the lower bound of the red
vertex. With the red connection the layout would be feasible.

For the runtime of the algorithm we get an additional factor of |VI | when we check a
range of inverter numbers. When we also apply the method to check all possible inverter
capacities, we get another factor of imax − imin. Both factors are at most n and so the
runtime would increase to O(n5). With a better analysis one can probably show that the
runtime is actually lower. In practice the number of inverters is much smaller than the
number of strings (of course depending whether central or string inverters are used) and
the difference between imax and imin probably as well.

7.2. Local Improvements
With Algorithm 7.1 (and the additional methods for lower bounds) we have a way to find
a solution for a solar farm with fully connected layers, although we do not know whether
a solution exists in the case when no solution is found. If a solution is found, the only
property of this solution is that vertex capacities and inverter lower bounds are not violated.
We do not know anything about the costs of the calculated solution. Our goal is now to
design a simple heuristic algorithm that makes improvements to a given solution.

Algorithm 7.2 calculates for each vertex with an outgoing cable the cost reduction if the
cable is switched to another outgoing edge. For each vertex the best alternative outgoing
edge is stored. If an alternative edge would lead to a violation of capacities or inverter
lower bounds, this edge is not considered as possible improvement. The global best cable
switch is made. This procedure is done until no further improvement is possible. An
interesting part is when there are empty vertices in the layout, as they have many possible
outgoing edges. For such an vertex the best outgoing edge is calculated with an shortest
path algorithm (Line 10). Let x be the amount of flow of the currently investigated vertex
and let w be the empty vertex. For each path from w to the top we store how much the
costs increase when x units of flow are added to the edges. Then a shortest path algorithm
is executed starting at w. Actually the shortest path algorithm can be a breadth first
search because of the structure of the layered graph.

The cost reduction calculated for a vertex does not need to be recalculated each time after
an improvement was made. If the vertex lies higher in graph as where the changes took
place, the possible improvement does not change. In Figure 7.7 an example is shown. After
doing the improvement for the red vertex, the possible improvements for the the green
vertices do not need to be recalculated.

We now want to evaluate Algorithm 7.1 (including the additional methods for inverter
lower bounds) and Algorithm 7.2. That means we calculate a solution with Algorithm 7.1
and then try to improve its cost with Algorithm 7.2.
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Algorithm 7.2: Switching upwards paths
Input: solar farm graph G = (V,E) with cable layout
Output: returns a cable layout for G

1 costReduction = array of costs reductions, one entry for each vertex
2 alternativeEdge = array of alternative edges for each vertex
3 do
4 initialize costReduction with 0
5 set alternativeEdge to the currently used edge ∀v ∈ V
6 forall v ∈ V \VT with outgoing cable do
7 x = flow at vertex v
8 forall outgoing edges e of v do
9 c = current costs

10 if end vertex w of e is empty then
11 calculate costs of connecting w by shortest path algorithm
12 c′ = costs when using e as outgoing cable edge of v
13 costReduction (v) = max(c− c′, costReduction(v))
14 if new reduced costs then
15 alternativeEdge (v) = e

16 Switch the cables for the vertex v where costReduction is maximal
17 while max(costReduction) > 0

Figure 7.7.: If an improvement is done for the red vertex where the outgoing cable is
switched from the blue edge to the red one, the only edges where the flow
value changes are the red and blue ones. After that improvement the possible
improvements for the green vertices do not change.
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After analyzing a lot of theoretic properties of the solar farm cabling problem and algorithms
to solve the problem, we want to analyze the performance of our heuristic algorithm in
practice. That is taking a solution found by Algorithm 7.1 (if one is found) and improving
it with Algorithm 7.2. The optimization mentioned in Section 7.2 is also implemented. For
the evaluation, solar farm instances of three different sizes where generated.

8.1. Solar Farm Generation
The solar farm instances used for the experiments are randomly generated. We decided to
only use solar farms with central inverters for better comparability and because for large
utility scale solar farms central inverters are the most used solution [ABB19][PK20]. Each
solar farm has six layers as described in Section 4.1.6. We choose six layers as this is the
most complicated case.

The instances are generated in three sizes small, medium and large. For each solar farm a
rectangle with random width and height is chosen, where the ranges for width and height
were determined by rule of thumb. That means a few different values were tried until
the space of the rectangle was more or less filled by the strings. After choosing the size a
number of strings depending on the size of the solar farm is uniformly random distributed
in the rectangle. The ranges of the string numbers are given in Table 8.1.

In general the example solar farm given by ABB [ABB19][p. 120 ff.] was used as an
orientation for the instance generation, especially for the following ratio parameters. After
placing the strings - how this is done will be explained later - the amount of other vertices
(which are Y-connectors, combiner boxes, recombiner boxes, inverters, transformers) is
chosen depending on the number of strings and a random ratio within an upper and a
lower bound. The exact parameters can be seen in Table 8.1 together with references of
e.g. datasheets of PV-components. For example the ratio for strings to combiner boxes is
a number between 10 and 20. In the example solar farm of ABB a combiner box combines
13 or 14 strings [ABB19]. This is a rather low value as there are combiner boxes that
can handle more input [SMAa], but as the instances also have recombiner boxes, there is
no need for such high string to combiner ratios. Additional to that the capacity of the
generated components is not the randomly chosen ratio, but a random value that can be
up to 1.5 times the ratio (respectively the number of strings divided by the number of
components rounded up). A combiner box from LS Electric for example is available with

47



8. Experiments

12, 16 or 20 inputs and up to 500 Ampere capacity [Ele20]. The case with 20 inputs is
probably too large to be covered by the generated instances, but as already said, these
high values are not necessary with recombiner boxes.

small medium large references
number of strings 120-180 500-750 1200-1500
strings to Y-connectors 1.5-3 [Eve16]
strings to combiner 10-20 [ABB19][Ele20][SMAa]
combiner to recombiner 3 - 8 3-10* [ABB19] [Sol]
strings to inverter 1 in total 200-300 [ABB19]
inverter to transformer 1 in total 1-3 [ABB19][Gaj16]
capacity for v ∈ V \VI (min, 1.5 · min)
capacity for inverters - (min, 1.2 · min) [Mer20]
lower bound for inverter - (0.5, 0.8) · capacity [Mer20]

Table 8.1.: Parameters of the solar farm generation. The upper bounds for the combiner to
recombiner ratio for medium and large solar farms is reduced when the string
to combiner ratio is already high. The min stands for the minimum value with
which there is enough capacity for all strings.

For small solar farms the upper bound of the ratio of combiner to recombiner boxes is
a bit smaller. As the number of strings here is a bit lower, this is done to reduce the
occurrences of graphs where there is only one recombiner box in the graph. This makes
the problem a lot easier and the task of the recombiner box of combining cables could
then be done by the inverter directly. With the same argument the upper bound of the
combiner to recombiner ratio is reduced for medium and large instances when the number
of combiner boxes is already high. When the combining is potentially already done in the
combiner boxes, we do not need so many recombiner boxes anymore. The upper bound is
min(10, 26− string to combiner ratio).

How are the vertices actually placed? The first vertices to be placed are the strings
respectively the string connection points. A single string is placed by choosing a random
position in the rectangle and then placing three connection points per string on a line with
a randomly picked angle, where the angle is picked once globally for all strings. In general
the length of this line can be an arbitrary number, but of course equal for all strings. It
represents the length of a string. The generated instance have a string length of 40 units.
If a random position picked for a string is too close to another already placed string, a
new position is chosen. Too close means that the position is less than the string length
away from another string. The new position is again checked. If placing a string fails too
many times in a row or if the limit for the number of strings is reached, the placement
of the strings is stopped. Per string we chose a number of three connection points, they
shall represent the possibility to connect a cable to a string at each of both ends or in the
middle. More connection points are possible, but seem unnecessary as the distances to
other connection points of the same string gets smaller the more connection points are
used. Therefore more connection points do not make much of a difference.

The amount of vertices for the other vertices than strings is chosen as described above.
Y-connectors and combiner boxes are then placed next to randomly picked strings. They
are very small (in the case of Y-connectors only a small electric module) and can be placed
directly next to strings. The same applies to recombiner boxes. However they are placed
next to randomly picked combiner boxes. The inverters and transformers are again placed
like the strings. As these are taking much more space, they also need to be placed with
the minimum distance to the strings and other inverters and transformers.
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The capacity choice is the same for all vertices except inverters and for small instances
the capacity of the single inverter and transformer is simply set to the number of strings.
The inverter capacity is only up to 1.2 times the ratio of strings to inverters. Because of
efficiency reasons the number of inverters is much more adapted to the number of strings.
One would not want to place inverters which have a capacity that is much higher than the
number of strings [Mer20]. Inverters additionally have a lower bound also for efficiency
reasons as the efficiency varies depending on the input power [Mer20]. The lower bound is
chosen randomly between 0.5 and 0.8 times the capacity.

Of course all the capacity values strongly depend on the current rating of the chosen PV
modules, that is why among other reasons the instances are generated with the randomness
describes above. An example of a generated small solar farm can be seen in Appendix
Section A.

8.1.1. Cables

All experiments were executed with the same set of cables, which is shown in Table 8.2.
We decided to not distinguish between DC and AC cables, but argue that the cables with
high capacity are usually AC cables an the cables with lower capacity for the DC side.
As template for the cable list, PV cables by Helukabel [Hel] and faber [fab22] were used.
Unfortunately the capacity (rated current) of the cables with the highest capacity that
are sold by these two companies is not high enough for large solar farms. Due to a lack of
information regarding cables with high enough capacity the information from Helukabel
and faber was extrapolated to get cable types with a higher capacity. This applies to the
last two cables of Table 8.2. As price information is not easily available either, the costs in
Table 8.2 are proportional to the amount of copper used in the cable.

cost capacity
4 5
34 22
120 50
230 80
750 180
2300 400

Table 8.2.: Cabletypes

In detail the capacity of the cables given by Helukabel and faber was divided by 10 and
rounded. The capacity is given in Ampere and usually a string roughly produces a current
of 10 Ampere [ABB19, p. 121]. Of course this value can vary a lot depending on the PV
modules that are used in a solar farm, but 10 Ampere seems a reasonable value. For the
cost of a cable the amount of copper per kilometer cable was divided by 10 too and then
rounded. This division was just to make the cost values a bit smaller. If we take the second
cable of Table 8.2 as an example, the capacity of the original cable is 218A and 336kg
of copper are used per kilometer cable. For the two additional cable types the cost and
capacity were estimated per rule of thumb with the principle: Doubling the capacity triples
the price.

8.2. Running the Experiments
The heuristic Algorithm 7.2 together with an initial solution produced by Algorithm 7.1
shall be compared with the solution of the MILP formulation that was given in Section 6.2.1.
The MILP is solved with Gurobi version 9.5.0 [gur]. As the amount of variables is very
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high for large and medium sized solar farm instances and therefore the problem difficult to
solve for the MILP solver, the runtime for the solver was restricted to 24 hours. For the
heuristic we chose a maximal runtime of one hour.

The code was written in C++14 and compiled with GCC 10.3.0 with the -Ofast and the
-march=native flag. All experiments were run on a 64-bit architecture with four times
12-core AMD CPUs each with 2.1GHz, but both the heuristic and the MILP solver were
only run on a single core. In total there are 256GB RAM. The installed operating system
is openSUSE Leap 15.3.

As a small side note: The Open Graph Drawing Framework (OGDF) [CGJ+14] was used
to represent the solar farm graph in the code. For a cable layout two arrays were used, of
which one stores the parent vertex in the layout an the other a pointer to a list of child
vertices for each vertex.

8.2.1. Test sets

The experiments are run on three test sets, one with small, one with medium and one with
large sized solar farm instances. The instances are generated as described above. Each
set consists of 60 solar farms. None of the solar farms of the test sets were proven to be
infeasible by the Gurobi solver within 24 hours.

The set of small solar farms consists of solar farms with a string number between 120 and
180 strings and an average of 145 strings. The medium solar farms have between 518 and
750 strings with 640 strings average and the large set consists of solar farms with 1200
to 1500 strings and an average of 1266. All experiments were done with the set of six
cables that was shown above. We now take a look at the performance of the MILP and
our heuristic for all three test sets.

8.2.2. Small Solarfarms

For the small solar farms the MILP formulation is of reasonable size. The maximum
number of edges in the small instance is 20515 and the average about 10000. With six
cables being used there are 7 variables for each edge in the MILP formulation. This leads
to 70000 variables in average of which a lot can be directly set to 0. For example the
outgoing edges of strings will never use a cable type other than the cheapest type. That is
why the MILP solver is able to solve these instances optimally in the given time. Optimally
in this case means that if the cost value calculated by the MILP solver is less than 0.01%
higher than the lower bound calculated by the MILP, the solution is regarded as optimal.
Of the 60 small instances all but a single one could be solved optimally by the MILP. This
single instance was still solved very close to optimal, as the gap between the lower bound
and the calculated solution was 0.016%.

For the optimal solved instances the MILP runtime ranges from 1.6 seconds to almost
10 minutes with an average of about 43 seconds. About 80% of the instances could be
solved optimally within one minute. This makes an MILP formulation a relatively powerful
option to find a solution for small instances, as we are almost guaranteed to find an optimal
solution within a few minutes and most of the times less than a minute.

The heuristic algorithm has much shorter runtimes than the MILP, but a worse solution
quality. An example for a heuristic and a MILP solution of a small solar farm can be seen
in Appendix Section A. On average the solutions produced by the heuristic have costs of
about almost 12% more than the solution of the MILP. The runtimes range from 0.18 to
almost 12 seconds with an average of about 3 seconds. This makes the heuristic much faster
than the MILP, but it still lags behind in terms of solution quality. Most of the runtime
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Figure 8.1.: The y-axis shows the additional costs compared to the MILP solution costs for
small solar farms. The x-axis shows the percentage of solar farms that were
solved with at most the cost given by the y-axis.

(a) Runtime of the heuristic algorithm in relation
to the number of edges of the small solar
farms.

(b) Runtime of the MILP in relation to the num-
ber of edges of all small solar farms that were
solved optimally.

Figure 8.2.

of the heuristic is needed to improve the solution. The initial solution for small instances
is found within a few milliseconds, the average here is 2 milliseconds. However the cost
of the initial solution is on average 70% higher instead of 12%. Figure 8.1 compares the
solution qualities of the initial and the improved solution. One can see that where most
of the improved solutions have costs of maximal 20% higher than the MILP, there is no
initial solution with that solution quality.

There is a clear relation between number of edges and the runtime of the heuristic as can be
seen in Figure 8.2. This was to expected as Algorithm 7.2 improves the cost of a solution
by iterating over all edges of the graph. Although the number of edges directly determines
the number of variables in the MILP, the increase of the runtime depending on the number
of edges is not that obvious. Especially the instance with the most amount of edges has a
runtime of just above 20 seconds, but there are instances with far less edges and a much
higher runtime.

If we compare the capacities of the instance with the most edges and the instance with the
longest runtime, the capacities of the instance with the longest runtime are much tighter.
That means we take the minimum combined capacity of a layer of the solar farm and divide
it by the number of strings. The instance with the most edges for example has 180 strings
and the layer with the lowest combined capacity has a capacity of 208. So the capacity
tightness of this instance is 1.15. In opposition to that this value is 1.01 for the instance
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Figure 8.3.: The y-axis shows the additional costs compared to the MILP solution costs
for medium solar farms. The x-axis shows the percentage of solar farms that
were solved with at most the cost given by the y-axis.

with the longest runtime among all instances that were solved optimally. For the only
instance that was not optimally solved the capacity tightness is 1.03. This might lead to
the assumption that a tighter capacity leads to a longer runtime for the MILP. However if
we compare the average tightness of the lower quartile instances regarding the runtime to
the upper quartile instances, the average tightness of the lower quartile is actually smaller.
So there is no clear relation between the capacity tightness and the MILP runtime either.

8.2.3. Medium Solarfarms

The medium solar farms consist of much more strings than the small ones. This increased
amount of strings compared to the small solar farms causes a huge increase in the number of
edges compared to the small instances and therefore an increase of the number of variables
for the MILP. Of the 60 instances only 14 could be solved optimally by the MILP in 24
hours and for 4 instances the MILP was not even able to either calculate any solution
or prove that the instance has no feasible solution. However it is not clear to say that
the number of edges (respectively the number of variables) is the (main) cause that some
instances can be solved optimally and some not. The number of edges for all medium solar
farms is between 108000 and 346000 edges, the number of edges for the optimally solved
solar farms is between 120000 and 304000. So the optimally solved solar farms cover a
quite large range of numbers of edges. The number of edges for the four unsolved instances
is also not significantly high. Although all of the unsolved instances have edge numbers
above the average of about 200000, none of the four instances has more than 270000 edges.
But four instances are also not enough to make well-founded statements.

The instances with a feasible but not optimal solution still have a cost value which is on
average not even 1% higher than the lower bound for the cost that was calculated by the
MILP solver. To reach this solution quality though the MILP solver ran 24 hours. The
runtime for the optimally solved instances ranges from slightly more than one hour to more
than 17 hours. For solar farms of the medium test set the MILP is not anymore guaranteed
to find a optimal solution (within 24 hours), but still after 24 hours the solution quality is
very near to the optimum.

The heuristic approach is not able to solve all instances either. These were the same
instances that could not be solved by the MILP. All other instances were solved by the
heuristic. This might indicate that these four instances are actually not solvable. For the
instances that could be solved, the solution costs are between 6% and 200% higher than the

52



8.2. Running the Experiments

costs calculated by the MILP, which can be seen in Figure 8.3. The figure shows how many
solar farms could be solved with a certain quality compared to the MILP solution both
for the first and the improved solution. On average the costs for the improved solution
are about 50% more than the MILP costs. As with the MILP the runtime for medium
sized instances is much higher. For 12 of the 60 solar farms the improvement heuristic did
not finish its calculation. The lowest runtime of the solar farms with solution was just
short under two minutes. The time to find any feasible solution (if a solution is found)
is now about 120 milliseconds. Reason behind this high value is next to size of the solar
farm that there are three solar farms where the lower bounds of the inverters are not
immediately fulfilled. That means that Algorithm 7.1 is run several times. Without these
three solar farms the average runtime for finding a solution (including only solar farms
where a solution is found) is only 76 milliseconds.

Comparing these initial solutions to the MILP solutions, we see that the costs are at most
about 4 times higher than the costs of the MILP solution. This is a surprisingly low value
considered that no sort of optimization is done in Algorithm 7.1 and the runtime to get
these solutions bear no comparison with the MILP runtimes.

For medium solar farms the solution quality of the heuristic clearly decreases compared to
the solution quality of the small solar farms. The times to find a feasible solution however
are still away from the one second mark.

8.2.4. Large Solarfarms

The MILP had big problems with finding a solution for the large solar farms. 22 instances
could not be solved or proven to be infeasible within 24 hours, that is more than one third
of the test set. The number of edges of the large solar farms is accordingly high. For some
instances the number of variables in the MILP comes close to the 10 million mark. But
the number of variables is not the sole reason that instances could not be solved by the
MILP, as for example the instance with the most amount of edges (1.3 million) could be
solved whereas instances with less than half this number of edges could not be solved. And
neither could it be proven that they are infeasible.

None of the solved instances was solved optimally. The gap between the calculated lower
bound of the MILP and the cost of the solution ranges between 0.1 and 28 percent. On
average the difference between lower bound and solution is 6%, which means that the
solution quality indeed dropped compared to the medium instances, but still is in an
acceptable range.

The heuristic could solve a lot more instances than the MILP. 12 of the 22 instances that
were not solved by the MILP could be solved by the heuristic. For the other 10 the heuristic
did not find a solution either. So again the heuristic could find a solution for each instance
where the MILP found a solution.

No calculation of the heuristic finished within one hour, except for the 10 instances where
no solution was found. The solution costs were between 0.4 and 2.5 times higher than the
solution cost of the corresponding MILP instance in case that the instance could be solved.
This can also be seen in Figure 8.4. For the first found solution of the heuristic, the cost
values are actually not much higher. The maximum here is a bit less than five times the
MILP solution cost, with the difference that this solution was found in less than a second.
The average time for finding the first solution is about one second. However we can observe
the same as with the medium instances, that the main factor for an high runtime is the
case where Algorithm 7.1 does not find a solution which fulfills the lower bounds in the
first try.
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Figure 8.4.: The y-axis shows the additional costs compared to the MILP solution costs
for large solar farms. The x-axis shows the percentage of solar farms that were
solved with at most the cost given by the y-axis.

For the large solar farms the MILP solver reaches its limits, as roughly one third of the
instances could not be solved nor could be proven that these instances are not solvable.
The heuristic performs much better in that regard as it can solve 80% of the large solar
farm instances.

8.2.5. Summary

Throughout all three test sets the quality of the MILP solutions is better than the heuristic
solutions, but the heuristic could find more solutions for the large solar farms. Both MILP
and heuristic struggle more to find a feasible solution when the instances get larger. An
additional factor which makes medium and large solar farms harder to solve, is that they
have more than one inverter. That means that the lower bound of the inverters actually is
important when finding a solution. As there is only one inverter for small solar farms, the
lower bound is automatically fulfilled for each solution that does not violate the capacities.

The solution quality of the heuristic also decreases drastically when compared to the MILP
solution. Where for small solar farms the solution costs are some 10% higher it is up to
250% higher for large solar farms. Figure 8.5 compares the solution quality of all tree test
sets. The reduction in quality from small to large is clearly to see. What surprises is that
the cost of the initially found solution is not that far away from the solution cost calculated
by the MILP, as the maximum value is only 5 times the MILP costs. A reason for that
could be fact that the vertex positions for the solar farm graphs are all in the Euclidean
plane in a rectangle. So there are no outlier vertices. As a consequence it might be worth
it to try to improve Algorithm 7.1 directly instead of using a heuristic that improves a
calculated solution. A simple idea could be to not choose an arbitrary empty vertex, but
choose the vertex with the shortest distance.

That the heuristic could find a solution each time when the MILP found one, is an indicator
that Algorithm 7.1 actually is correct. But it is not more than that as only 180 instances
were tested and these additionally have special properties. There is for example never the
case that the capacity of a recombiner box is only one unit more than the capacity of a
combiner box. To investigate this topic further it would be useful to design a special MILP
formulation that just finds any feasible solution. If Algorithm 7.1 is not correct one might
find an example where the algorithm does not find a solution although a solution exists.
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Figure 8.5.: The graph shows the percentage of solar farms that were solved by the heuristic
with a solution cost relative to the MILP solution given by the y-axis for all
three test sets.
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9. Discussion and Conclusion

9.1. Discussion of the Model
We have defined and worked with our solar farm model (Section 4.1.6), but now we want
to take a look at the model again to discuss possible downsides and adaptations that could
be made. The first addition could be costs for the components of a solar farm besides the
cables. In our model it is not rewarded to use less combiner boxes for example, but as
combiner boxes are not free of costs it might be good to model their costs as well. That
means we want a function costdevices : V \S → R that returns the cost for using any device
from Y-connector to transformer. The cost function then is

cost = costcables +
∑

v∈V \S
costdevices(v) · b(v)

where b(v) =
{

1 if there is an edge e = (v, c) with f(e) > 0
0 else

.

With that we basically mixed a facility location problem into the cabling problem. However
neither the dynamic program (Algorithm 6.1) nor the Algorithm 7.1 to find any feasible
solution need to be changed much, as this addition does only change the cost function, but
not the structure of the problem.

One of the probably biggest problems of our model is efficiency. Solar farms are usually
designed in a way to maximize the power output of the solar farm. There are several
properties that affect the efficiency, some more and some less. One of these properties is
the lower bound for inverters which is already part of the model. Another one are power
losses in cables. These are not taken into account. The problem here is that the longer a
cable is the higher is its resistance and this leads to higher power losses [Mer20]. Usually
there are guiding values how high these losses should be at maximum [ABB19]. In our
model they are not considered, which is surely a downside.

Another efficiency related topic are possible different azimuth angles of the strings, as
already described in Section 4.1. Sometimes there are strings with relatively strong differing
angles, which means that the sun rays hit these strings with a different angle and this
might lead to different current outputs. A single maximum power point tracker, usually
located in an inverter, is then not able to get the maximum power out of the connected
strings. If azimuth angles of the strings would be taken into account, a : S → [0◦, 360◦]
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assigns an angle to every string. If the angle between two strings s1, s2 ∈ S is too large,
|a(s1)− a(s2)| > anglemax, they have to be connected to different inverters. However this
is more of an special case, as most large scale solar farms have the same azimuth angle for
all their strings. And if not string inverters can help with this problem as then there are
much more inverters and maximum power point trackers. Sometimes inverters even have
more than one maximum power point tracker.

There is another problem including the cables, which already has been mentioned in
Section 4.1. If several cables are laid in the same conduit, the waste heat of the cables may
reduce the ampacity of the cables. The actual positions where cables are laid are not part
of our model. One might argue that the cables can be installed in different conduits to
avoid this problem.

Now to the probably most problematic design decision. We model electric flows as graph
flows. Especially for the conversion of DC current to AC current, this is at least questionable.
For graph flows we simply apply the flow preservation property, but inverters are much
more complicated devices. Power is lost during the conversion, the voltage is changed and
reactive power might be added in the inverter. Can these properties still be modeled with
classic graph flows?

Many of the problems discussed above come from the goal to design a rather simple model,
but despite these problems we believe that the model is a basis one can work with.

9.2. Summary and Outlook
Now we want to take a look back at what has been done during this thesis. We introduced
the solar farm cable layout problem and designed a model for it. This model simplifies
some properties of a real world solar farm and we discussed possible problems with that.
Although there might be weaknesses in the model it is a basis to work with. The cable
layout problem was analyzed in different variants and even if many of the parameters
are simplified, e.g. unit edge lengths and one unrestricted cable type, the problem is still
NP-hard. This peaks in the finding that it is NP-hard to even find any feasible solution for
the general solar farm cabling problem. And from that it follows that no polynomial time
approximation algorithm with any approximation guarantee can exist for the solar farm
cabling problem unless P=NP.

Because of that we restricted the search of an algorithm that can solve the cabling problem
(in a sense of finding any solution) in polynomial time to a special variant where the layers
of the solar farm graph are fully connected. This problem even with vertices in R2 is still
NP-hard. It might be interesting to investigate what approximations are possible for this
special variant. We presented an algorithm to calculate a solution for this problem, but
we were not able to prove that this algorithm always calculates a solution if a solution
exists. Additionally the algorithm only calculated solutions which fulfill the capacities,
but not necessarily the lower bounds. Proving the correctness of the algorithm or finding
a counterexample is surely one of the next steps to be taken. If the correctness can be
proven, it would be nice to also enhance the algorithm to lower bounds.

For existing solutions of the solar farm cabling problem we designed a simple heuristic
(Algorithm 7.2) that can improve a given solution. However when testing the heuristic on
some benchmark instances, it could be seen that it was very slow. In opposite to that a
first solution could be found very fast in most of the cases. Surely the implementation of
Algorithm 7.2 can be improved, however it could also be worth to improve Algorithm 7.1 so
that the solution found here is already more optimized. Besides that the heuristic approach
could solve solar farm instances that could not be solved by an MILP. This was the case
for large instances.
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9.2. Summary and Outlook

One of the biggest questions for future work surely is the design and proof of an algorithm
that can find a solution for the variant of the cabling problem where the layers are fully
connected. Maybe there are some additional assumptions that can be made to simplify
the solving the optimizing of the cabling problem, for example are the strings of a solar
farm usually embedded in the Euclidean plane (or at least very near to that). Another
task would be to improve the runtime and the solution quality of an algorithm which tries
to solve the solar farm cabling problem. Our tested implementation was both slow and the
solution quality was at least for medium and large instances far away from a quality that
could be used in practice. Maybe it is even possible to improve the MILP formulation, as
many variables are 0 right from the start. So there are still some big question marks, but
we hope that this thesis gives as basis to solve them.
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10. Appendix

A. Generated and Solved Solar Farm

Figure A.1.: Example of a small solar farm with three connection points per string. Both
an solution by the MILP and a solution by the heuristic can be found below.
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10. Appendix

(a) Optimal solution of the cabling problem calculated by the MILP

(b) Solution of the cabling problem calculated by the heuristic.

Figure A.2.: Solutions of the solar farm above by MILP and heuristic. As explained in
Section 4.1.8 the connection points of each string are merged into one vertex
before a solution is calculated.

66


	Contents
	1 Introduction
	2 Related Work
	2.1 Wind Farm Cabling
	2.2 Facility Location
	2.3 General Assignment Problem
	2.4 Contribution and Outline

	3 Preliminaries
	3.1 Graphs
	3.1.1 Flow

	3.2 Components of a solar farm
	3.2.1 PV string
	3.2.2 Inverter
	3.2.3 Combiner Box
	3.2.4 Transformer
	3.2.5 PV cables


	4 The solar farm cabling problem
	4.1 Defining the problem
	4.1.1 Strings
	4.1.2 Inverter
	4.1.3 Combiner box
	4.1.4 Transformer
	4.1.5 Cables
	4.1.6 Resulting model(s)
	4.1.6.1 Central inverters
	4.1.6.2 String inverters
	4.1.6.3 Decision Problem

	4.1.7 Subproblems
	4.1.8 Edges of String Connection Points


	5 NP-hardness
	5.1 NP-hardness of other subproblems
	5.2 Finding any solution
	5.3 Vertices in  R2 

	6 Exact Solving
	6.1 Dynamic Program
	6.2 Linear Programming
	6.2.1 MILP formulation


	7 Heuristic Solving
	7.1 Including Lower Bounds
	7.2 Local Improvements

	8 Experiments
	8.1 Solar Farm Generation
	8.1.1 Cables

	8.2 Running the Experiments
	8.2.1 Test sets
	8.2.2 Small Solarfarms
	8.2.3 Medium Solarfarms
	8.2.4 Large Solarfarms
	8.2.5 Summary


	9 Discussion and Conclusion
	9.1 Discussion of the Model
	9.2 Summary and Outlook

	Bibliography
	10 Appendix
	A Generated and Solved Solar Farm


