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Abstract

We study the problem of finding multimodal, multicriteria journeys in transportation
networks, including a single mode of unrestricted individual transport like walking,
cycling or driven, and a schedule-based public transportation system. We use the
ideas of the ULTRA preprocessing technique (UnLimited TRAnsfers) and combine
them with a multicriteria search based on RAPTOR to produce full Pareto sets of
optimal journeys.

We examine the performance of this technique to optimize for three criteria: arrival
time, walking distance and number of rides on public transportation vehicles utilized
and show that this approach leads to a significant speed up for queries using these
criteria for transfer speeds up to driving-speeds compared to other algorithms.
Furthermore, we also examine different heuristics and their impact on both the
preprocessing and the queries in speed and quality. Using a combination of techniques,
we manage to produce journeys with good quality in 63 milliseconds for a metropolitan
area, showing that this technique is ready for use in consumer applications.

Deutsche Zusammenfassung

Wir untersuchen multimodale, multikriterielle Routenplanung in öffentlichen
Verkehrsnetzwerken mit einer Form von Transfer von und zu den Verkehrsmitteln wie
Laufen, Fahrradfahren oder Autofahren. Das öffentliche Verkehrsnetzwerk ist dabei
unbeschränkt in der Anzahl der Verkehrsmittel, welche von Zügen zu Flugzeugen
und Fähren reichen können, solange sie auf einem Fahrplan basieren.

Hierzu benutzen wir die Beschleunigungstechnik UnLimited TRAnsfers, oder ULTRA,
und erweitern diese Technik um eine multikriterielle Optimierung. Dies ermöglicht
eine größere Wahl an Routen, je nach Geschmack des Benutzers: schnellere Ankunft-
szeit, kürzere Laufwege oder weniger Umstiege.

Auf dieser Vorberechnungsbasis benutzen wir einen für uns angepassten, multimodalen
und multikriteriellen RAPTOR Algorithmus um Anfragen in weniger als der halben
Zeit zu berechnen als es bisher üblich war. Wir zeigen verschiedene Optimierungspa-
rameter und deren Auswirkungen sowie Heuristiken um sowohl die Anfragen, als auch
die Vorberechnung weiter zu beschleunigen. Schließlich ermitteln wir die Qualität
dieser Heuristiken und zeigen, dass Anfragen in Metropolregionen mit guter Qualität
in nur 63 Millisekunden beantwortet können, was die Algorithmen reif für den Betrieb
in Applikationen für Endnutzer macht.
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1. Introduction

The diversity of transportation methods available to people has increased dramatically in
the last years and while online services for journey planning have started to adopt these,
a lot of these services as well as recent research either focus on road-based journeys like
driving, cycling and walking, or on schedule-based public transit journeys like buses, trains
and flights. However there is a need for integrated journey planning, returning the best
journeys given all the transportation methods available to the user. This journey planning
problem is called multi-modal route planning.

What makes a journey the best journey though? For one user, having a slightly longer
journey may be favorable to having to switch to a different train mid-journey. One might
not mind having to walk for a significant portion of the journey if it improves the arrival
time dramatically, while that may be impossible for others. This means that different
criteria can usually not be compared to each other and algorithms were developed which
return a set of journeys where no journey is better in every criterion than any other
journey. This result is called a Pareto set, and the journey planning problem is called
multiple-criteria route planning. Most algorithms only optimize for one or two criteria,
though, as starting with four criteria, the amount of possible solutions becomes impractical.

Timetable-based public transit planning is also not very useful by itself, as most journeys
never start or end exactly at a stop covered by the network; they rather usually involve
a trip to a station, as well as a trip from a station to the destination. To accommodate
for this, time-dependent algorithms usually employ a road-based route planning algorithm
before and after their own computations, and most algorithms then also allow for transits
between stops mid-journey, making these algorithms partly multi-modal.

However most algorithms are only able to use a specific set of transfers between stops as
defined in the database, but being able to walk between any stop arbitrarily improves the
quality of journeys consistently [WZ17]. For this reason, we use combine a technique that
allows unlimited walking with a multi-criteria optimization.
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1. Introduction

1.1. Related Work
Route planning is a widely researched topic in computer science, mainly because of its
direct impact to people in the real world. The problem of route planning for a street
network can be modeled by finding a shortest path on a directed weighted graph. Almost
no route planning work gets around mentioning Dijkstra’s algorithm [Dij59] which solves
this problem in theoretically optimal time complexity. Other notable early works include
Bellmann and Ford [For56, Bel58] for their network-flow based algorithm and Hart, Nilsson
and Raphael [HNR68] for their work on heuristics for route planning, resulting in the A*
algorithm.

Even though Dijkstra’s algorithm is theoretically optimal, on large networks, it will still
take a long time to compute even on today’s computers. Improving this query time
has been a research topic since its inception. Since its publication in 1959, developing
speed-up techniques for and based on it have been an on-going effort, however only recently,
advancements in computing power have made it feasible to pre-process large networks for
vastly accelerated query times by reducing the search space.

Routing for Road Networks

Most modern speed-up techniques converged to use a common set of techniques [Sch08a,
Sch08b]: Bi-directional search, goal directed search and contraction. As an intuition,
the bi-directional search not only searches from a starting point to a target point, but it
simultaneously also searches from the target point to the starting point in a backwards
search [Dan63, GH04]. When these two searches encounter each other, their respective
paths are merged for the end result. While elegant, this technique is only easy to implement
on time-independent networks like road networks. As soon as time-dependent factors
are introduced to the network, for example public transport, the implementation of this
technique becomes non-trivial [NDLS08].

The goal directed search is a technique that uses precomputed data on the graph to guide
the search towards the target, thereby reducing the search space. Two commonly used
approaches exist to accomplish this. First, by constructing a robust heuristic for the A*
algorithm by Nilsson and Raphael [HNR68] based on the triangle inequality property on
graphs, Goldberg et al. created the landmark-approach which uses potential functions to
guide the search [GH05, GW05] and called the technique ALT.

The second approach augments edges in the graph with labels which guide the search.
These labels respresent a subset of nodes of the graph for which a shortest path starts
from the given vertex, which lets the query algorithm prune nodes which do not contain a
label for the target node [WW03]. This technique was later refined by Lauther and is now
known as Arc-Flags [Lau04]. There, the graph is partitioned into cells, with every node
receiving a label for each graph cell, which indicates whether a shortest path into at least
one target node of the respective cell starts at this node. This approach relies on a good
graph partitioning, which means that a graph should be split in a number of parts with the
least amount of connections between the parts as possible. This is an independent field of
research which is useful in many applications besides route planning.

Contraction is a technique to reduce the size of the graph in the pre-processing. The Highway
Hierarchies technique by Sanders and Schultes [SS05] uses the explicit hierarchical structure
of road networks given by different road categories, e.g., highways versus city streets, to
determine when and where to do contractions. We give a short explanation of the basic
principle of vertex-contraction in Chapter 2. A technique yielding very fast query speeds is
called Contraction Hierarchies or CH presented by Geisberger et al [Gei08, GSSD08], which
also relies on the hierarchy in road networks. However, it uses a graph-based approach to
approximate these hierarchies on a per-node basis, yielding impressive results.
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Another approach worth mentioning is the table lookup method. Obviously being able to
simply look up pre-computed distances results in a constant query time, but saving the
lookup tables for whole graphs is impractical as the size of the table would be immense. For
this reason, the technique commonly relies on selecting a good subset of nodes for which to
calculate these lookup tables beforehand, which is utilized for example in Transit Node
Routing [SS06]. Approaches to select these nodes are numerous: separators, partitioning
and nodes which turn out to be important from other techniques, e.g., CH.

A plethora of combinations of these techniques exist today with very good results, some
reducing the time for continental-scale queries down to just two microseconds [BDS+10].

Routing in Public Transit Networks

Unfortunately, the nature of public transport is that transportation vehicles like trains
rarely depart exactly when someone arrives at the departure location. Rather, they depart
at specific times or intervals, which introduces a key complication in route planning: waiting
[OR89]. Modeling these schedules in a way that Dijkstra-based techniques can be used is
also non-trivial.

Generally, there are two types of approaches to solving the route planning problem in time-
dependent graphs like a public transit network: The time-expanded and the time-dependent
approach.

The time-expanded graph approach models the graph as nodes of events. An event may be
an arrival event or a departure event and edges are added based on the trips of vehicles and
the transfers which are possible from arrival events to other departure events on the same
station. On this kind of graph, a query based on Dijkstra’s algorithm can be performed,
however as the graphs become bigger due to this modeling, the query times become slower.
Speed-up techniques mentioned previously can be applied, but it is challenging and they
have limited success as the hierarchy of train networks, which are the most researched
types of public transit networks, is not as pronounced as it is for road networks. However,
a combination of ALT and Arc-Flags has shown promise [DPW09].

The other way to approach this problem is by utilizing a time-dependent graph. In the
time-dependent graph, a node represents a stop in the network and an edge represents
a connection between the stops using a public transit vehicle. The edge weights now
correspond to time-tables, modeling when this connection departs and when it arrives
at the next stop. This results in query algorithms having to include the time factors,
which makes them more complex, but it also reduces the graph structure compared to the
time-expanded graphs and for that reason, queries on them tend to be faster.

One algorithm presented by Dibbelt et al. which solves the earliest arrival time problem for
this kind of network is the Connection Scan Algorithm (CSA) [DPSW18]. By using simple
data structures and a simple algorithm, it achieves great efficiency on modern computers
at the cost of lesser extensibility for more criteria.

The importance of incorporating and optimizing for more than just the earliest arrival
time however is more important in a public transit setting than in route planning for road
networks, as the wish of people to be able to balance the price and the convenience against
the duration of the journey is higher. Taking a longer journey for more convenience is
enticing to many, but not to all users, so the importance of algorithms to optimize multiple
criteria is greater than for road networks. While CSA can be adapted to optimize for
a multiple criteria scenario, this involves introducing dynamic data structures, thereby
greatly reducing its advantage in efficiency.

3
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There exists a different algorithm which, in addition to solving for earliest arrival time,
also solves for the number of trips taken, while remaining efficient by not needing dynamic
data structures. This is the RAPTOR algorithm, presented by Delling et al. [DPW12].
RAPTOR can also be extended to optimize for even more criteria using the McRAPTOR
variant, of which we will speak more in Chapter 3.

One common flaw with the mentioned public transit routing algorithms is that the only
use public transit. Usually, a desirable journey starts and ends at locations which are
not stops and stations. Desirable journeys rather include these parts and also allow for
transferring between different stops using other modes of transportation, e.g., walking,
bicycling or riding a taxi. An algorithm using the time-expanded graph to solve for multiple
criteria which is based on Dijkstra’s algorithm is the multi-label-correcting algorithm (MLC)
[PSWZ08]. RAPTOR and CSA allow for a number of foot-paths between stops to be
added to the graph explicitly, as long as they are transitively closed, which means that
when defining a transfer from stop a to stop b, and from b to stop c, there must also
be a transfer defined between stop a and c. Modeling transfers in this way allows the
algorithms to remain efficient. To allow for more useful transfers between stops, Delling et
al. introduce the multimodal multicriteria RAPTOR (MCR) [DDP+12], which uses both a
time-table based graph for RAPTOR, and a contracted road graph to compute journeys
which are not restricted by the duration or number of the transfers and optimize multiple
criteria, including the amount of walking involved. This added complexity comes with a
cost, though, which is paid in longer query times compared to RAPTOR and CSA, but it
is faster than MLC.

To reduce this query time while keeping the option of choosing journeys with unrestricted
transfer phases by means of walking, cycling, etc., Baum et al. introduce UnLimited
TRAnsfers for Multi-Modal Route Planning (ULTRA) [BBS+19]. This pre-processing
technique allows CSA, RAPTOR and any other public transit algorithm, to find all optimal
journeys they optimize for without a limit to a transfer distance while in some cases even
improving their respective query times slightly.

For completeness sake, it is also fair to mention that for many route-planning applications,
it is not only sufficient to compute only the first optimal journey, but to compute a range
of optimal journeys in a time span. Both CSA and RAPTOR provide such range variants,
and ULTRA makes use of this rRAPTOR variant for its pre-processing.

1.2. Contribution
We introduce theMcULTRA algorithm, which enables the multi-criteria variant of RAPTOR
to utilize unlimited transfers while optimizing for three criteria. This enables it to compute
the same multi-modal journeys as MCR [DDP+12] in less than half the time. The three
criteria we optimize are: earliest arrival, number of rides taken and walking duration. By
creating multi-criteria variants of speed-up techniques used in the ULTRA algorithm, we
pre-compute all shortcuts which would be necessary in a multi-modal scenario. Additionally,
we test combinations of heuristics for both the pre-processing, as well as the queries, to
further improve the query speeds while maintaining good quality, to just 63 milliseconds
for the London network, enabling wide-spread use of this technique in consumer software.
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1.3. Outline
In Section 1.1 we give a concise overview of the state of route planning research with a
focus on giving a rough overview of the commonly used concepts in the field and a focus
on the techniques important to this work.

A brief summary of our contribution to the field can be found in Section 1.2.

We get formal in Chapter 2 where we first define the basic building blocks required to
formulate the problem to be solved. Then we introduce a number of algorithms and explain
how they work so that an understanding of the contribution of this work is possible.

Then we introduce our work, which is split in two parts: the changes to the query algorithm
can be found in Chapter 3, while most of the work happens in Chapter 4 where we take
apart the ULTRA preprocessing technique in detail and explain how we incorporated
multiple criteria in the algorithm.

In Chapter 5, we present our experiments and conclusions, as well as give explanations
to different findings. We compare the performance of our work with related work and on
graphs of different sizes. Then, we introduce the parameters we chose for the heuristics
explained in Chapter 2 and explain how we measure the quality of the resulting journeys.
At the end of the chapter, we discuss the effects of the combinations of heuristics.

Finally, we give our conclusion, a short glance into ongoing work in the field and a look at
future research options.

5





2. Preliminaries

In this section we define the basic notation and terminology used in this work. Furthermore,
we will explain the RAPTOR, ULTRA and MCR algorithms, which are essential to
understand this work.

2.1. Problem Statement
We want to find journeys which are Pareto-optimal for the arrival time, the walking
duration and the number of rides taken. These journeys are to be unrestricted in the
walking duration their of their transfers as long as they remain optimal. They start at a
given source vertex, which can but need not be a stop, and finish at a given target vertex
which may also be a stop but need not be. Additionally, the journey must start after a
given source departure time. We aim to solve this in a faster manner than was previously
possible using an acceptable amount of pre-processing.

As many more useful criteria are imaginable and potentially useful, our goal is to present
a robust pre-processing technique that can use different or more criteria than the ones
presented. As such, we do not introduce specific optimizations towards the walking distance
criterion, even though it stands in relation to arrival time in some phases of the algorithm
and therefore, some specific optimizations may be applied. Instead, we engineer the
algorithm to be extendable with any criteria the data can supply. As the complexity of
four criteria increases dramatically according to Dibbelt et al. though [DDP+12], we focus
fully on the three-criteria problem and trying to decrease the time to compute all such
journeys to a level which makes it appealing for wide-spread usage. Filtering the journeys
using heuristics becomes necessary when using more criteria, which is not part of this work.

2.2. Definitions
Public Transit Network

A public transit network (S,R, T ,G) consists of a set of stops S, a set of routes R between
stops, a set of trips T , and a directed, weighted transfer graph G = (V, E). This transfer
graph is a representation of a street network consisting of a set of vertices V and a set of
edges E ⊆ V ×V . The weight τ∆(e) associated with each edge e ∈ E defines the travel time
between the connected vertices for transfers. Note that the travel speed can be limited by
the choice of the mode of transport, for example walking or cycling, which may result in
longer travel times for edges the lower the transfer speed limit is defined.

7



2. Preliminaries

Figure 2.1.: An example journey from s to t containing an initial transfer from s to a, an
intermediate transfer from b to c and a final transfer from d to t, as well as
three rides.

All vertices in V from which a passenger can enter a public transit vehicle or exit from one
are called a stop s ∈ S, so S ⊆ V.

A route is a sequence of stops (s1, . . . , si), i ≥ 2 that can be traversed using a single transit
vehicle in the given order.

Since many vehicles may traverse the same route each day, we define trips associated to
routes. A trip is therefore a function defined for all stops of a route, returning a pair of
arrival and departure times (τarr, τdep) for every stop representing when the vehicle arrives
at the stop and when it departs again.

Note that the departure times may be augmented with a non-negative departure buffer
time τbuf (s), s ∈ S, which intends to add a delay before being able to board a vehicle after
arriving at a stop s, modeling the time required to reach the platform and the vehicle.

Criteria

To define which journeys are better than others, we need to first take a look at criteria.
The most common criteria that users are interested in usually are the arrival time, price
and convenience. While arrival time is the most common of criteria to be optimized,
optimizing for the price is non-trivial from technical perspective since it is not easily
modeled; journeys might get cheaper as they get longer when discounts kick in or different
fare zone combinations allow for cheaper tickets. Convenience on the other hand can
include a lot of measureable criteria, which results in having to choose which ones of them
to use. For our case, we focus on two easily modelable criteria in addition to arrival time:
the number of times a passenger has to switch vehicles and the amount of walking that
has to be done. Of course the amount of criteria that could be useful is only left to the
imagination, but as Delling et al. showed [DDP+12], using four or more criteria is not
practical at this time.

Journey

A path in a transfer network like a street graph is a list of vertices so that for every
consecutive pair of vertices in the path u and v, (u, v) corresponds to an edge. However,
a path alone does not suffice to define a journey through a public transit network, as we
also need to track which vehicles to ride on and when to enter and disembark. As such, we
define a journey through a public transit network as a sequence of journey legs.

A journey leg can be either a ride, which is a sub-sequence of a trip, or a transfer which is
a path in the transfer graph. We define the departure time for a ride to be the departure
time of the trip at the first stop of the ride’s sub-sequence and the arrival time to be the
arrival time of the final stop of its sub-sequence. A transfer is not schedule dependent
so it only has a duration, which is the sum of the edge-weights of its path. We require a

8
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Figure 2.2.: A visualization of different journeys’ arrival time and walking duration criteria.
Journey b is dominated by a. However, journey c is only weakly dominated by
a and d is not dominated at all. The Pareto-optimal set of journeys is a and d.
The arrows pointing from a show the area that a dominates.

transfer’s departure time to be equal to the arrival time of the previous journey leg if there
is one, and its arrival time to be the sum of its departure time and its duration.

For any two consecutive journey legs, the arrival vertex of the first one must equal the
departure vertex of the second one, while the arrival-time of the first one must be earlier
or equal to the departure time of the second.

The first vertex of the journey is called the source vertex, and when we define a source
departure time for a journey, the departure time at the source vertex must equal or be
later than it. The last vertex of the journey is called the target vertex and its arrival time
represents the arrival time of the journey.

If the first journey leg is a transfer, we call this transfer the initial transfer. Likewise, if
the last journey leg is a transfer, we call it the final transfer. We call the other transfers
intermediate transfers. See Figure 2.1 for an example of a journey containing every kind
of transfer and two consecutive rides. Additionally, if a journey only consists of a single
transfer and no other journey legs, this transfer may be referred to as a direct transfer
since it represents directly transferring from the source to the target vertex using no public
transportation.

A journey supports the criteria of the arrival time in seconds, the number of rides and the
duration of transfers in seconds, also called walking duration throughout this work. Note
that not all algorithms presented in Section 1.1 optimize for all of these criteria.

We define a journey to be Pareto-optimal when there exists no other journey which
dominates it. A journey J dominates another journey L if it is better in every criterion
ci(J) < ci(L) (strict domination) or if it is better or equal in every criterion ci(J) ≤ ci(L)
(weak domination) We show a visual intuition of this in Figure 2.2. When not further
specified, when we speak about domination, we refer to weak domination, as there is no
reason for us to produce journeys which are equal in all criteria, rather it is important to
filter out as many journeys as possible as early as possible during the processing to speed
it up.

It is also possible to include more criteria than these three. For each journey leg l and an
arbitrary criterion cnew, define cnew(l) to be the value of the criterion at the journey leg l.
Then simply require for two subsequent journey legs l and lnext, that cnew(l) ≤ cnew(lnext)
and increase the criterion naturally.

9
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For example, it is possible to optimize the amount of fare zones passed through by all rides
by defining cfare(l) as a set of fare zones and its relation to be the subset relation. Any
ride then adds all fare zones it passes through to its set if they aren’t present already. This
way a journey is not dominated by a journey with an earlier arrival time if it uses fewer
fare zones, which would likely result in a cheaper ticket price.

2.3. Algorithms
Many route planning algorithms have Dijkstra’s algorithm at their core, however to use
it on a public transit network, the network must be expanded is not possible to run it
unaltered on a public transit network, as it is only handling time-unrestricted networks
like a transfer graph. While it is possible to expand a time restricted network to enable
running Dijkstra-based algorithms on it [PSWZ08], it is not ideal for reasons which we will
explain in this section.

To compute the time-restricted, multi-modal journeys for public transit networks efficiently,
we explain the basic idea of the RAPTOR algorithm. However, as RAPTOR requires a
transitively closed transfer graph to model every possible transfer, the ULTRA algorithm
is then explained to show how to pre-process a transfer graph to include all important
paths in a contracted form, reducing the size of the transfer graph for unlimited transfers
considerably.

To understand ULTRA better, however, we will first look into the rRaptor variant of the
RAPTOR algorithm which will be used for the ULTRA pre-processing.

Finally, to introduce multiple criteria optimization, we look at the multi-criteria variant of
RAPTOR and subsequently show how the MCR algorithm extends it to make it possible
to run it on non-transitively closed transfer graphs.

2.3.1. RAPTOR
RAPTOR solves the bicriteria problem of minimizing arrival time and number of rides
taken given a source stop s ∈ S and a source departure time τdep. In a round-based manner,
for every round k, it computes the minimum arrival time at any target stop using at most
k rides.

To do this, for every round k, every stop v is associated with a label τarr(v, k) containing
the earliest known arrival time at this round, which is initialized with the value of the
previous round, or ∞ if there is none. In the initial round, the arrival time of the source
stop, τarr(s, 0), is set to τdep.

For every following round k, the arrival times τarr(v, k) are now computed for all reachable
stops v using at most k trips, using the results of the previous rounds.

This is done by dividing each round in three phases: The first phase sets the labels τarr(v, k)
for every vertex v to equal the value of their previous round τarr(v, k − 1) to prune all
journeys which would not improve the arrival time further.

In the second phase, all relevant routes are collected at first. Each stop v which had been
improved in the previous round is processed by first collecting all routes which contain v.
For every such route a search is done for the earliest stop vr which had been both improved
in the last round, and whose arrival time τarr(vr, k − 1) allows for boarding a trip of this
route. If no such trip can be found, the route is pruned. The result of this collection step
is a list of pairs of all routes that need to be scanned in the current round and the first
stops for which the scanning can be relevant (r, vr).

For every pair (r, vr), the routes are now being scanned. First, the earliest trip T ∈ T of
route r at stop vr which departs after the arrival time τarr(vr, k − 1) is selected. Then, all
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Figure 2.3.: Visualization of the RAPTOR algorithm: starting from the source stop, in the
first round, route 1 is scanned. In the second round, both route 2 and 3 are
scanned. Finally, in the last round, route 4 is scanned and no further routes
can be scanned which would improve the arrival time at the target stop.

stops of the route are iterated in sequence starting at vi = vr, updating their arrival times
τarr(vi, k) if they are improved by the arrival time of the current trip T (vi)arr.

At every stop visited like this, it is necessary to also check whether it is possible to embark
on an earlier trip for every route we only do a single scan even if it was reached at different
arrival times at different stops in the previous round. So if a stop is encountered for which
its arrival time in the previous round allows to use an earlier trip, we use that earlier trip
for this route scan going forward.

Finally, in the third phase, transfers between routes are processed. For every stop v whose
label was improved this round, all of its outgoing edges (v, u) in the transfer graph are
collected and if the sum of the arrival time at v, τarr(v, k) and the transfer duration τ∆((v, u))
is smaller than the arrival time at the neighbour u, τarr(u, k) is updated to reflect the
arrival time using the transfer. RAPTOR relies in this step on a transitively closed transfer
graph, which means that for any two edges (u, v) and (v, w), an edge (u,w) must exist with
an edge weight which adheres to the triangle equality: τ∆((u, v)) + τ∆((v, w)) ≤ τ∆((u,w)).
If the graph does not provide this, a Dijkstra-based search must be used to traverse the
transfer graph instead.

The algorithm can stop once no more labels have been improved in a round. For a visual
example of how RAPTOR will scan routes over time, see Figure 2.3.

Local Pruning

RAPTOR uses two pruning techniques to greatly accelerate the processing. First of all,
local pruning is used, which accelerates the algorithm by removing the necessity to initialize
every round with the labels of the previous round. For every stop a new label is created,
which represents the cumulative earliest arrival over all rounds executed so far. Now,
whenever a label is going to get updated in a round, it is first checked whether the new
label would improve the local pruning label. If it does not, this implies that a journey
found in a previous round has a better arrival time already and thus the label is pruned. If
it does improve the local pruning label, both it and the label for the current round are
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updated. The result is that labels may be initialized in bulk or even before the query starts
with the default value ∞ for the arrival time.

Target Pruning

In addition to local pruning, target pruning can be used when RAPTOR is used for a
one-to-one query and thus a target stop exists. It works essentially the same way as local
pruning, by eliminating labels before they update a stop if they are worse than the target
pruning label. However in this case, only a single label representing the best arrival time at
the target stop over all rounds calculated this far is used for every stop, which incidentally
is just the local pruning label of the target stop. This is correct because as soon as the
arrival time at the target stop is smaller than ∞ for the first time, any journey that has a
later arrival time than that can obviously not improve the earliest arrival time at the target.
Note that for every following round, the number of rides taken can also never decrease, so
any journey found later in the algorithm can also not improve on this criterion.

2.3.2. MR-∞
In order to make it possible to run RAPTOR on a non-transitively closed transfer graph,
like a road graph, it is necessary to use a variant which replaces the transfer phase of the
RAPTOR algorithm with a Dijkstra-based search through the transfer graph [DDP+12].
As this MR-∞ was developed as a heuristic for researching the relevance of longer transfers,
it is possible to set a maximum transfer duration k, denoted as MR-k, at which point the
Dijkstra search will stop for the given round. This algorithm, even when restricted in
its transfer duration, finds more journeys compared to a transfer graph containing only
hand-picked transfers between stops like it is commonly used for RAPTOR, validating the
thesis that longer transfers are still useful. Unfortunately, doing this kind of search also
results in more computations during the transfer phase and therefore in a longer query
time. To reduce this query time, a contraction technique is employed, but it is still slower
than using only RAPTOR.

2.3.3. Contraction
One very effective way to speed up Dijkstra-based searches is to pre-process the transfer
graph using a technique called vertex contraction. This technique works by contracting
vertices from the graph, which means removing the affected vertex and its adjacent edges
while inserting shortcuts, which are edges that connect neighbours back together so that
shortest paths in the remaining graph keep the same length as before the contraction. See
figure 2.4 for a visual example of this. Note that some shortcuts may be unnecessary, for
example if the neighbour vertices are already connected by an edge with a lesser edge weight
than the shortcut. By strategically removing vertices in this way and removing unnecessary
shortcuts, Dijkstra-based algorithms can be accelerated significantly. A simple, yet elegant
technique that uses this approach is the Topo-Core algorithm [DSW15], which uses a
contracted core graph as an overlay and the original graph. A search is done bi-directionally
starting from the original graph. Whenever a vertex is visited which is also in the core
graph, the search will continue to only scan the core-graph from that vertex on, which
results in only scanning a small part of the original graph before, by the bi-directional
nature, meeting in the core-graph.

The MR-∞ algorithm uses a similar concept to contract the graph between stops. For all
intermediate transfers, it is only interesting to visit other stops so vertices between stops
can, but don’t need to be contracted. Contracting a graph too much results in a very high
vertex-degree of the vertices, which means that the vertices have a lot of edges to other
vertices, resulting in many scans to be performed for every vertex and defeating the purpose
of the contraction. For public transit networks, contracting up to an vertex-degree of 14 to
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Figure 2.4.: An example of a vertex-contraction operation on the center vertex. Left: before
the contraction, Right: after the contraction.

20 is reasonable. The initial and final transfers may need to start and stop from a non-stop
vertex, though. Since these will probably be eliminated from the contracted transfer graph,
another contraction-based technique is used to connect the source and target vertex to the
transfer network using the road network to do one-to-many queries from the source vertex
to the stops or in a backwards search, from the target vertex to the stops.

2.3.4. Contraction Hierarchies
The CH algorithm is a pre-processing and query technique to vastly accelerate query times
for route planning in non-time-restricted transfer networks, making use of the natural
hierarchy of e.g.road networks for a contraction strategy. There exist many extensions
to this algorithm, some of which are used in this work to calculate the initial and final
transfers efficiently, namely BucketCH [BBS+19], but need not be explained in detail to
understand this work, as they are replaceable by any other one-to-one or one-to-many
route planning algorithms, such as Dijkstra’s algorithm.

2.3.5. rRAPTOR
Realistically, it is often necessary to not just compute the earliest arrival at a destination
given a departure time, but to collect all optimal journeys given during a given time span.
It is possible to calculate this by running single RAPTOR queries in sequence for every
possible departure time at the source stop during the departure time span. However it is
possible to improve on this with the rRAPTOR variant by reusing the labels from previous
queries.

Specifically, we order all departure times from every trip originating from the source stop
in the given time span from the latest to the earliest, after which we run a query for every
one of those departure times. Thanks to this order, we can re-use the rounds and bags
from the previous iterations without clearing them. This means that every journey is
automatically pruned if its arrival time is later at some stop than from a previous query, or
in simpler terms, if an earlier departure leads to the same or worse arrival at a stop than a
later departure, it cannot result in a shorter journey and is skipped.

Note that in this way, rRaptor not only produces all optimal journeys starting in the
departure time span by arrival time and number of trips used, but it additionally optimizes
the duration of the journey. For example, a regular RAPTOR might start on an earlier
trip than rRaptor, only to arrive at the same time at the target vertex.
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Figure 2.5.: A candidate and a witness journey. If the candidate journey is not dominated
by the witness journey, the candidate will be added as a shortcut.

2.3.6. ULTRA
One big limitation of the RAPTOR algorithm, as discussed earlier, is the requirement
of a transitive transfer graph, which would result in a huge vertex-degree and quadratic
size if the graph is fully connected. Much like some shortcuts in a contraction might be
unnecessary, some edges in this transitive transfer graph can be removed as they never
appear in any optimal journey. The ULTRA algorithm is a pre-processing technique which,
in theory, enumerates every optimal journey possible and only creates shortcuts for transfers
which are contained in any of these journeys.

Obviously, collecting every optimal journey is not reasonable, so the algorithm uses
properties of optimal journeys to reduce the necessary computation. A key insight being
used is the fact that while initial and final transfers vary a lot as they depend on the
choice of the respective vertices and times, the amount of useful intermediate transfers is
only determined by the time-table of the public transit routes. By computing initial and
final transfers efficiently at query-time using a one-to many path-finding algorithm, such
as BucketCH, which is introduced for this purpose, the pre-processing can fully focus on
finding shortcuts only for intermediate transfers.

One useful property of optimal journeys is that the number of useful intermediate transfers
is limited; depending on the transfer speed, many transfers are simply not viable as it is
always faster to take a trip. As a crude example, it should never be faster to walk hundreds
of kilometers from Karlsruhe Main Station to Hamburg Main Station than to take a ride
in a train, even if the train ride involves waiting for many hours.

As Delling et al. showed [DDP+12], simply limiting the duration of a transfer by a flat
number always results in some journeys which are not found. As it is also impossible to
compute every single journey in a reasonable time, another property of optimal journeys is
used: a sub-journey, which means any number of consecutive journey legs from the original
journey, can be substituted by an optimal journey for its respective source and target
vertices as well as the source departure time. In other words, if a better journey exists for
any sub-journey of an optimal journey, replacing that sub-journey with the better journey
will keep the whole journey optimal. So the idea is to iterate the smallest kinds of journeys
which could contain a transfer which could be needed as a shortcut, which would be a
journey consisting of a ride, an intermediate transfer and another ride. Every such journey
is called a candidate journey. As soon as another journey which dominates it is found,
called a witness journey, it is certain that the shortcut from this candidate is unnecessary.

A witness journey has less restrictions than candidate journeys: it may freely make use
of initial and final transfers and is not forced to utilize exactly two rides, but it never
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uses more than two rides since it would never dominate the criterion of number of rides
taken. See Figure 2.5 for a typical candidate and witness. If a witness journey dominates
a candidate journey, the candidate journey is not optimal and can be pruned since the
witness can replace it.

These journeys are calculated by using the rRAPTOR variant for every stop and a time
span that contains every departure from that stop, but limiting the search to only two
rounds and only processing initial and final transfers for witnesses. Note that the nature of
the RAPTOR algorithm to be undirected helps by computing all shortcuts whose journeys
originate from a single stop, and that the process can easily be parallelized for all stops.
After two rounds, all non-dominated candidate journeys are collected, and their transfers
added to the shortcut graph.

This graph can then be utilized by a public transit algorithm like RAPTOR or CSA, using
a one-to-many Dijkstra-based algorithm for the initial and final transfers, to find all optimal
journeys like MR-∞ in a time comparable to an original RAPTOR.

2.3.7. McRAPTOR
While RAPTOR already solves for two criteria, it can be extended to include an arbitrary
number of additional criteria with the McRAPTOR variant. A label now not only consists
of the arrival time τarr(v, k), but also one or more other criteria c: c(v, k) which now also
need to be accounted for when determining dominance of labels over each other, whereas
before, it used to suffice to only compare the arrival times. Instead of a single label per
round and per stop, now a list of mutually non-dominating labels is kept per round and
stop. These collections of labels are generally denoted as bags. A label strictly dominates
another label if it is better in every criterion, or weakly dominates it if it is better or
equal in every criterion. This results in a set of labels for each stop which are mutually
non-dominating. Similarly, the result of every round is a set of journeys to the target
vertex. Collecting these journeys from every round results in a Pareto set of journeys.

To adapt the RAPTOR algorithm to this, during the route scanning phase, it is necessary
to track the trip for every single label in the route bag. The reason for this is that the by
the nature of having mutually non-dominating labels at one stop now, these labels can
contain different arrival times, so in order to continue to process the route in one loop, it is
necessary to update each label with its own trip every time a stop scanned.

The RAPTOR algorithm is modified in the following way: in the first phase, while scanning
a route, an empty, temporary route-bag is created to collect all of the labels which are
encountered during the route scan. While traversing the stops of the route, the scanning
phase is divided in three steps: first, the arrival times of all labels inside of the route bag
are updated according to their associated trip and the current stop. Then, the route bag is
merged into the bag of the current stop and the current round while. Merging a bag into
another bag means that the resulting bag then contains exactly all labels from both input
bags which are not dominated by any other label in the bag.

In the final step the route bag is filled with the labels from the current stop bag, but from
the previous round. To do this, the labels from the bag of the previous round at the current
stop are collected for each such label, a trip is searched which departs after the label’s
arrival time. If no such trip is found, like with the regular RAPTOR, the label is pruned,
otherwise, the trip is associated with the label and the label is merged into the route bag.
Note that in a three-criteria algorithm, where only two criteria are tracked directly using
the label, at most one label per trip is necessary to be in the route bag at a time as the
arrival time can be ignored for dominance in this case. The reason for this is rather simple,
as the arrival time of every label will be set to their trip’s arrival time for the next stop,
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they will be equal and so, when it comes to merging the labels back from the temporary
route bags into the stop bags, labels using the same trip will have the same arrival time
and hence one will always dominate every other one (unless they are equal and only weak
dominance is used).

Lastly, the transfer phase is changed as follows: instead of propagating a single label to
all neighbours, all labels from the current bag are merged into the neighbour’s bags after
updating their distances.

Local and Target Pruning

For local and target pruning, the single labels holding the best arrival times for each stop
are replaced with bags holding all non-dominated labels which have been found for their
respective stops so far. Every time a label is being updated, the updating label must first
successfully merge into the local pruning bag of the corresponding stop and it must not be
dominated by any label in the target’s local pruning bag.

2.3.8. MCR
MCR is an extension to McRAPTOR like MR-∞ is to RAPTOR; it works on an unlimited,
contracted transfer graph to create a set of Pareto-optimal journeys for three or more
criteria and multiple modes of individual transportation. McRAPTOR is extended to
handle initial and final transfers from non-stop vertices exactly like MR-∞.

Then, the transfer phase is replaced by a multi-criteria Dijkstra search. This means that,
like McRAPTOR already does in the scan phase, the Dijkstra algorithm is extended to use
labels with arbitrary criteria instead of just the arrival time. Every vertex in the transfer
graph is associated with a bag of labels instead of a single label, and whenever a vertex
is visited, all of its labels need to be merged into every neighbour after updating them
with the transfer duration. Then, every label successfully merged in that way needs to be
pushed into the priority queue as well.

This means that the priority queue will hold many labels, and keeping track of which ones
are added and which ones are dominated from a bag is a lot of work, which is why MCR
implements this by making each bag implement their own priority queue.This lets the
priority queue of the Dijkstra search track just bags instead of labels, which reduces its
size and volatility considerably as a label can dominate any amount of other labels when
merging without making it necessary to update the global priority queue for each one. It is
only required to update the global priority queue when the minimal label changes, which
provides the key for the bag in the global priority queue.

Unfortunately, using a multi-criteria Dijkstra search also usually means that it is not
possible to say for sure when the labels of a vertex cannot be improved further, depending
on the choice of criteria. The algorithm becomes label correcting, as opposed to label
setting. The reason for this is that the key for the priority queue is usually a composite key
combining multiple criteria, which usually does not result in an order which guarantess
that labels pulled from the priority queue are strictly dominated by every one label that
was pulled before. In fact, it may happen that labels which have been pulled earlier can be
dominated by labels being pulled later. For example, if only the arrival time was to be
used as a key for the priority queue, the Dijkstra search might search most of the graph
before it visits a vertex where a different criterion might be better, resulting in most of the
graph being visited again.

This problem can only be solved by choosing the composite key in a way that no label
with a higher key is not dominated by a label with a lower key. Common ways of choosing
composite keys are linear combinations or lexicographic sorting of the criteria.
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Another problem arises when trying to use more than three criteria with MCR, which is
that the result sets become impractically large, depending on the criteria. This is both
undesirable since having the choice of hundreds of journeys which are relatively similar
is not appealing for a user, and also because this slows down the query. This problem is
tackled by using heuristics to prune journeys earlier, even though they may still result in
optimal journeys, and by filtering journeys into more distinctive groups, with the intent of
only computing journeys which are sufficiently different from other journeys [DDP+12].

2.4. Heuristics
Heuristics can be used to accelerate route planning algorithms, but not all of them still
deliver optimal results. Optimizing the RAPTOR algorithm with heuristics can be done
by increasing the sub-space that a journey or journey leg dominates in the criteria space.
As shown in Figure 2.2, one journey (leg) dominates a certain sub-space. By increasing
this space beyond what is shown, the guaranteed optimality is lost, but more journeys are
dominated earlier, which improves the run-time of the algorithm. A simple and rather
ineffective example can be seen in Figure 5.5. Dibbelt et al. [DDP+12] introduce and
examine several heuristics for MCR, of which we pick two for our algorithms because of
their effectiveness.

2.4.1. Fuzzy Dominance
The first of the two heuristics is Fuzzy Dominance, which makes use of principles borrowed
from Fuzzy Logic to increase the domination area as shown in Figure 2.6. Normally, the
relational operators <, > and = are binary operators, which means that they are either
true or false, or 1 and 0 respectively. By defining fuzzy relational operators µ<, µ= and
µ< → [0, 1] instead, it is possible to determine "how much" these statements are true or
false. A statement might be considered false using the regular relational operators, but
"almost true" using fuzzy operators.

d = 0.9
d = 0.8
d = 0.7
d = 0.6
d = 0.5

Figure 2.6.: A visualization of the spaces a journey dominates with different degrees of
fuzzy-domination, compared to strict dominance (arrows).

For consistency, it is required that µ<(x, y)+µ=(x, y)+µ>(x, y) = 1 for any valid values x, y,
which is called Ruspini’s condition. The exact way these functions are defined in this paper
and in the MCR paper is by defining a single exponential function µ=(x) := exp( log(χ)

ε2 x2)
and using it to define the operators in the following way: µ=(x, y) := µ=(x−y), µ<(x, y) :=
1−µ=(x−y) if x−y < 0, otherwise 0, and µ>(x, y) := 1−µ=(y−x) if y−x > 0, otherwise
0. The parameters χ and ε are used to determine the curve of the fuzzy function and as
such, determine the fuzzyness. The fuzzy function can be roughly imagined as a Gaussian
normal distribution centered at x = 0. Then, the result of µ=(ε) should be χ.

Using these fuzzy relational operators, the fuzzy domination is defined as a degree of domi-
nation d(J1, J2) ∈ [0, 1] of journey J1 over J2. To show this function simply, the following
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functions need to be introduced first. Given that M is the number of criteria, the number
of criteria in which J1 is better than J2 is given as nb(J1, J2) :=

∑M
i=1 µi<(ci(J1), ci(J2))

the sum of the fuzzy "less than" values over all criteria. Note that a different fuzzy operator
with different χ and ε values can be used for each criterion ci: µi.

Likewise, the number of criteria in which J1 is worse than J2 is given as nw(J1, J2) :=∑M
i=1 µi>(ci(J1), ci(J2)) and finally, nb(J1, J2) uses the sum of µi=. Together, from Ruspini’s

condition, it holds that nb + nw + ne = M . The degree of dominance can now be easily
defined as nb−nw

nb
if nb > nw, or 0 otherwise. Note that for efficiency, this can be simplified

to only evaluate the exponential function µi= once for every criterion.

To interpret the values of d, for d(J1, J2) = 0, we say that J1 does not dominate J2, for
d(J1, J2) = 1, it strictly dominates J2 as defined earlier, and for d(J1, J2) ∈ (0, 1), it
fuzzy-dominates J2 with degree d(J1, J2). In Figure 2.6 we can visually interpret the effect
of different degrees of domination.

2.4.2. Discretized Dominance
A simpler yet still very effective heuristic is the Discretized Dominance or Bucket Dominance.
This heuristic uses strict dominance as is natural for the RAPTOR algorithms, however
before determining dominance, one or more criteria are rounded to the nearest value of xi
for the i-th criterion. The effect of this can be seen in Figure 2.7.
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Figure 2.7.: A visualization of how criteria are rounded to a "grid" for two criteria before
considering domination, resulting in a single Pareto-optimal journey (leg).

2.4.3. Scoring and Quality
To determine the quality of heuristics, it is necessary to define a metric. This metric should
reflect how different a journey is compared to the others, as it is important to include
meaningful choices. For example, single minute differences in different criteria between
journeys are not big enough to make these journeys meaningfully different, including one
one would suffice, while it is important to include journeys which have big differences for
example in arrival time and number of rides taken, as either the comfort of having less
rides or the importance of an early arrival may be preferable to the user, and thus the
choice is meaningful.

To this end, the principles from the Fuzzy Domination heuristic are used to construct this
metric in the following way. First, a pair of Norms is defined for the degrees of domination:
the T-Norm T , or triangular norm, and a complementary S-Norm S, or conorm. Both
are commutative, associative and monotone functions mapping [0, 1]2 → [0, 1]. The T-
Norm can be interpreted as a fuzzy conjunction ("and" in binary) while the S-Norm
can be interpreted as the according fuzzy disjunction ("or"), and is always defined as
S(x, y) := 1− T (1− x, 1− y).
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Two well known pairs of T-/S-Norms exist, the minimum and maximum norms
(min(x, y),max(x, y)), and the product norm/probabilistic sum (xy, x + y − xy). As
the scoring and quality for MCR used only the min/max norms, so will we for better
comparability.

Given a Pareto-set of journeys J1, . . . , Jn and an S-Norm, a scoring function is defined
to be sc(J) := 1− S(d(J, J1), . . . , d(J, Jn)). This score is also called the significance of a
journey.

To determine the quality of a set of journeys, the k most significant journeys are taken
from the set and are compared to the k most significant journeys from the baseline set. A
k × k matrix is filled with the similarities between these two sets of journeys where the the
location of (i, j) corresponds to the i-th journey from the first set, and the j-th journey from
the second set. The similarity for criterion ci is given as simi(J1, J2) := µi=(ci(J1)−ci(J2)).
The overall similarity sim is then defined as T (sim1, sim2, . . . , simM ).

After populating the matrix, the journeys are greedily matched by the selecting the highest
similarity of all unmatched journey pairs in the matrix until all journeys are matched. For
each match, the similarity value is then weighted by the fuzzy score of the reference journey
and finally both the weighted average similarity and the standard deviation are produced.

2.5. ULTRA
We introduced the basic concept of ULTRA already. To fully understand how we change
the ULTRA algorithm in our own work, in this section we explain it in full detail first.

Given a public transit network, ULTRA uses an rRAPTOR range query limited to two
rounds on every stop with a range enveloping all departure times from all stops to generate
shortcuts. Naturally, this process can be parallelized by running this rRAPTOR query
separately for every stop s and combining the resulting shortcuts in the end.

The first route scanning round is split and performed twice to calculate candidates and
witnesses separately. Because candidates only ever start from the source stop s, no initial
transfers need to be performed for them. Then, a regular rRAPTOR would consider every
reachable trip from the source stop for the first scanning round as described in lines 10
through 12. However this can be accelerated by not only collecting departure times of trips
starting at s in line 4, but also collecting reachable departures at other trips between these.

This is done by pre-processing every stop v so that the departure time of every trip
T departing from stop v is temporarily reduced by the distance d(s, v). Afterward, all
departure times for all stops are collected, together with their corresponding trips and
stops and sort them by the departure times. For every rRAPTOR iteration, to know which
stops to start new witness searches from, it is then only necessary to iterate over the the
list of departures which lie between the current departure time of the iteration, and the
one from the previous iteration.

This enables us to scan witness journeys efficiently in each iteration. Note that generally
it is not important for correctness that all witness journeys are successfully found, as a
missing witness can merely lead to unnecessary shortcuts being added, not to missing
shortcuts.

Using this process, the witness routes are scanned in line 16 and afterward, intermediate
transfers are calculated. This is based on a Dijkstra search in the transfer graph as described
earlier, however it is also tracked which transfers are candidates and which are witnesses.
During the intermediate transfers round, another optimization step is done which exploits
the fact that missing witnesses do not lead to invalid results. By stopping the processing
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Algorithm 2.1: ULTRA transfer shortcut computation.
Input: Public transit network (S,R, T , G), with unrestricted transfer

graph G= (V, E)
Output: Shortcut graph G′ = (S, E ′)

1 for each s ∈ S do
2 Clear all arrival labels and Dijkstra queues
3 d(s, ∗)← Compute distances from s to all stops in G
4 D ← Collect departure times of trips at s
5 for each τdep ∈ D in descending order do // rRAPTOR iteration
6 Set initial label of s to τdep
7 Collect routes serving updated stops
8 Scan routes for first RAPTOR round // track candidates
9

10 From all routes, collect trips reachable from s not scanned previously
11 for each trip t collected previously do // initial transfers
12 Find first stop u of trip t reachable from s
13 Set initial label of u to τdep + d(s, u)
14
15 Collect routes serving updated stops
16 Scan routes for first RAPTOR round // only witnesses
17 Relax intermediate transfers
18
19 Collect routes serving updated stops // second RAPTOR round
20 Scan routes for second RAPTOR round
21 Relax final transfers // only witnesses
22
23 C ← Collect undominated candidates
24 E ′ ← E ′ ∪ C

of transfers after no more candidates are in the queue, the run time of the algorithm can
be significantly reduced. This can in return lead to witnesses not to be processed further
which may dominate shortcuts in later iterations and as such, the amount of shortcuts
which are generated is increased. So a balance parameter is introduced, the witness limit.
After the last shortcut candidate is settled, witnesses continue to be processed until they
exceed the arrival time of the last shortcut candidate plus the walking limit.

Now, the second round starts in line 19 with collecting updated stops from the intermediate
transfer round and scanning their routes normally. In this round, like in the first round
the algorithm must track which vertices are candidates, and which are witnesses, so that
the shortcuts can be retrieved from the candidates later. After this, the final transfers
are calculated for witnesses only in line 21. As soon as the last candidate is pulled from
the priority queue though, this phase can be stopped, as all candidates are settled and
no witnesses remain that could dominate a candidate. In the end, all non-dominated
candidates are collected from the second round and merged into the shortcut graph.

No target pruning can be used since there is no target vertex. However, there is the
possibility to prune candidates early if the shortcut they would create is already present in
the shortcut graph, which in turn also leads to more shortcuts to be added for a faster
preprocessing time.
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As our work focuses on the pre-computation of a transfer graph, theoretically any public
transit query algorithm can be used on the resulting data as long as the query algorithm
only uses criteria which have been considered in the pre-processing.

We will now explain in detail the changes we made to McRAPTOR to accomplish unlimited
initial and final transfers from any vertex, which are similar in nature to the changes
ULTRA makes to RAPTOR. Instead of being able to answer only stop-to-stop queries, we
extend McRAPTOR using BucketCH to allow any vertex for source and target vertices
while keeping the multi-criteria optimization. We can use BucketCH for these transfers
because our third criterion is the walking distance, which is incidentally exactly what
BucketCH produces. If we were to add another criterion that may be affected during
transfers, we would need to use a multi-criteria variant for these transfers, too. Afterwards,
we explain the details of implementing McRAPTOR for our purpose and the specific ways
in which we optimized it.

3.1. McRAPTOR + BucketCH
First of all, to accomplish functional parity with the MCR algorithm, we need to add the
possibility to run the McRAPTOR query from and to non-stop vertices.

For this, we use BucketCH, which gives us single-criteria, one-to-many shortest paths on
the original road graph. Although technically any other one-to-many algorithm could be
used, this technique is a compromise of very good query speed and good pre-processing
speed.

BucketCH lets us run a query from a source vertex s to a destination vertex t, after which
we can retrieve the distances to different stops without having to re-run the query again.
Note that we are only interested in the arrival times at stops because the labels for non-stop
vertices are not important for the route-scanning phase. While adding initial distances to
non-stop vertices might improve local pruning by a little, the speed up does not compare
to the extra work of computing these distances in the first place. BucketCH gives us two
ways to retrieve distances: the forwardDistance(s) is the distance from the source vertex
to the stop s, and the backwardDistance(s) is the distance from s to the target vertex.
In both cases, the algorithm returns ∞ if there is no path or if the path is longer than the
path from the source directly to the target. This is already the first pruning step.
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We use this technique to add a label for every reachable stop from the source vertex
efficiently during the initialization. Whenever a round finishes, when we collect all vertices
which have improved in that round, we then add the backward distance to every label and
try to merge it into the target bag, as it is described in the MR-∞ and ULTRA sections.

3.2. Implementation Details
In this section, we go into detail on how we implemented the query algorithm, show what
is different compared to the formal definition of the algorithm and explain the choices we
made.

Initial Transfers

For the initial transfers, we simply collect all forwardDistance(s) for all reached stops s
and insert a label with arrival time τarr(s, 0) = τdep + forwardDistance(s) into the bag
for s for round 0. Additionally, if the source vertex is itself a stop, we will also add a label
with the source departure time at the source vertex. Note that it is not necessary to have
a bag for the source vertex if it is not a stop, because it will never be necessary to visit
this vertex again since the departure label cannot improve for non-negative weights.

Final Transfers

For final transfers, we do require a bag for the target vertex for every round, as RAPTOR
requires a bag for each round to produce journeys depending on the number of rides taken.
So if the target vertex is not by itself a stop, we will add one more stop to every round
which will represent the target vertex. Obviously this stop does not have any routes or
trips associated with it, so after every round we perform one pass over every stop s which
has been updated during that round. For each of its new labels, we try to add a final
transfer to the target stop by adding the backwardDistance(s) to its arrival time and
walking distance and then attempt to merge it into the target bag. This way, the regular
stopping mechanism of McRAPTOR also works for a destination vertex that is not a stop.

Bags

In McRAPTOR, bags are a simple construct: a dynamic array of labels with a helper
function to merge a single label into the bag. This merge function is important though,
as it is used very frequently. As such, we try to minimize dynamic data allocations in
those bags during the merge operations. In general, when we merge a label into a bag,
we have to check every label contained in the bag once for domination. However, if the
label we want to merge into the bag is dominated by any label inside the bag, it cannot
dominate any other label inside the bag as that would mean that the bag contained labels
that dominate each other in the first place.

We use this to perform only a single pass over the labels and just abort if a label dominates
the new label. While doing the pass, whenever we encounter a dominated label, we skip it
remember the amount of labels skipped like this. For all following labels, if they aren’t
skipped themselves, they are moved forward in the bag by the number of skipped labels
so far. Finally, the bag size is reduced by the amount of skipped labels, including only
the non-dominated labels and the new label is appended to the back. An alternative way
would be to swap each dominated label with the last label in the bag while decrementing
the bag size after every such swap. We implemented the first way to do this because the
alternative way does not work with the way we set up our bags for the pre-processing
explained in Chapter 4. This allows us to use re-use code between the two algorithms.
Additionally, we added one optimization which directly inserts the new label into the first
dominated label’s space if we encounter one instead of appending it to the end. We can do
this because of another result of the fact that bags only contain mutually non-dominating
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labels, which is that if a new label dominates a label in a bag, it cannot be dominated by
any following label in the bag.

Labels

For our label data structure, we opted to use a single label structure for the journey legs,
independent of them being a ride or a transfer, and also used them for the temporary
route-bag which requires the trip to be retained for each label. Technically this could be
improved by making custom tailored labels for each of those steps which only include the
data that they absolutely need for that step. However, the amount of memory that can
be saved in this way is miniscule and does not justify the non-trivial complexity increase.
So our labels include our criteria: arrival time, walking distance and the trip ID, as is
needed by the temporary labels during the route scan. For the purpose of reconstructing
journeys after the query is finished, we also need to include information to reconstruct the
journey leg. To do this, we need the route ID or the transfer ID from which is responsible
for adding this label. These IDs are mutually exclusive and when one is set, the other one
is set to an invalid value.

Finally, we also need to to know where this journey leg originated and which label came
before this one, so we save the parent stop, the parent label round and the parent label
index too. The parent stop is the stop this journey leg departed from, while the parent
label round and the parent label index are both used to address the label which should be
unpacked next. While it is technically possible to leave out the parent label round from
the label structure, it serves a dual use to also determine the number of trips taken thus
far from just the label itself, which will be necessary for the heuristics.

Rounds

Because of the fact that a transfer can dominate rides from the current round, having both
rides and transfers in the same bags will make it impossible to reliably reference to parent
labels during the transfer phase, as the positions of those labels inside of the bags can
change. For this reason, we require the bags of the rides to be read-only as soon as we start
computing transfers. For this reason, our implementation of McRAPTOR splits up the
logical round into two separate rounds in the memory. This means that route scans and
transfers now have their own rounds and hence their own bags each. This enables us to
track those parent labels reliably. As we mentioned, we track these parent labels by saving
the parent-stop, the round of the parent label and the index of the parent label inside
of the bag of the parent-stop. The reason for saving the round number is that because
of splitting up transfer and scan rounds, when a ride is followed by another ride, these
labels are two rounds apart, while a ride followed by a transfer is only one round apart.
Alternatively, adding dummy labels into each transfer round could also solve this issue,
however it would result in useless labels to be created every round, but we want to keep
the amount of labels created to a minimum.

A third way to do this is instead of changing any indexes in the bag when dominating
a label, it is possible to deactivate a label while leaving it in the bag. However, our
experiments have shown us that this increases the sizes of the bags to a degree that makes
the query unreasonably slower.

Having split a round into separate rounds in memory also leads to having to do the third
step of the route scan, copying labels from the previous round into the round bag twice:
once for the previous route scan round and once for the previous transfer round. This does
not significantly slow the algorithm down because the total amount of labels copied during
this step does not change.
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In this chapter we describe how to adapt the ULTRA pre-processing algorithm for multiple
criteria and the problems that need to be tacked while doing so. As ULTRA used MR-∞
as inspiration, we use MCR. We reference the pseudo-code of ULTRA 2.1 to make it clear
where these changes should happen.

First, we change the fact that for every round and for every stop there exists exactly one
label which describes the earliest arrival time at this stop. Instead, every vertex is now
associated with a bag of labels for every round, similarly to MCR, where every label now
uses the earliest arrival time and walking distance as criteria. As before, a bag may only
ever contain labels which don’t dominate each other.

Instead of setting single labels like we do in lines 6 and 13, we create new labels with the
arrival times and the walking distance set appropriately, and merge them into the bags of
the respective stops.

In the transfer phases in line 17 and 21, to reduce complexity and improve the run-time, we
don’t track each label individually in the priority queue. Instead, like MCR, we only track
bags. Each bag’s key is the key of it’s smallest label that is still unsettled. To achieve this,
a bag’s labels are partitioned into a heap area, where every bag manages its own internal
priority queue, and a non heap area. Whenever a label is merged into the bag, it will be
added to the heap area and the area will be sorted again if necessary because of labels
which were dominated and thus were removed. Lastly, if the bag is on the priority queue,
we update the bag’s position there.

When we need the next label from the priority queue for processing in the transfer phases,
we retrieve the bag with the lowest key from the global queue, then retrieve the lowest
label from its heap, which moves the label internally to the non-heap partition, and if the
bag’s heap area still contains labels, push the bag back into the global priority queue again.
This dramatically reduces the amount of items in the global queue.

In the scan phases, similarly to McRAPTOR, we use a temporary route bag to store all
labels collected during the route and assign trips to them. Since we are using an rRAPTOR
variant, like mentioned earlier, we cannot do local pruning, but we can get around having to
merge every bag from the previous round into the current round for every vertex. Since we
are limited to only two rounds anyways, simply checking all previous bags for domination
before attempting to merge a new label into the current round serves the same purpose.
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Like this, we have to check at most two other bags before attempting to merge a label into
a given bag. The amount of labels to be compared is increasing slightly due to this, but
only when labels are being added in the current round which would dominate the labels
from the previous rounds.

It might be curious that we only need to check at most two additional bags, since in the
McRAPTOR query, we split the transfers and the route scans into two rounds each, which
would would result in at most four bags having to be checked before beginning a merge:
the initial transfer bags, the first route scan, the intermediate transfer bag and then the
second route scan bag, before being able to merge into the final transfer bag.

The reason for this is that we include all information needed for shortcut computation in
the labels themselves, so that we do not need to backtrack journeys for shortcut generation.
This enables us to lift the restriction we had in the McRAPTOR query on the route scan
bags to be read-only. Labels which are created in the transfer phases simply retain the
information that they are representing candidates and which specific shortcut they would
create if they stay non-dominated.

The result is being able to only have three bags per stop. First, the initial transfer bag,
which holds the starting label for every iteration of the rRAPTOR query for s, as well
as the initial transfer labels for all relevant witness as described in the ULTRA Section
2.5. Then, we have one bag for the first route scan and the intermediate transfer phase.
Note that the candidate labels also recieve their shortcut information in the intermediate
transfer phase. Lastly, there is one bag for the second route scan and the final transfers,
from which the non-dominated candidates can then be collected.

4.1. Optimizations
ULTRA uses some optimizations to reduce the number of labels which need to be processed.
In this section, we examine which ones of these can be adapted and what problems might
arise doing that.

The witness limit from ULTRA only uses the arrival time for a criterion. When we allow
arbitrary criteria to be added, we need to change the way we determine the pruning limit
for the transfer rounds. We therefore created two different ways to do this: a soft limit
and a hard limit.

The soft limit simply remembers the maximum of all criteria, in this case arrival time and
walking distance, of all shortcut candidates from the previous route scan. Then, a walking
distance limit and an arrival time limit is added to each maximum respectively. In the
transfer phase, we can then simply prune labels which exceed any of those limits (strict
pruning) or all of those limits (moderate pruning).

The hard limit introduces a counting mechanism. During the transfer phase, we keep exact
count of how many shortcut candidates still are unsettled in all bags. We enhance the bags
to provide their own count and update the global number after every operation. Once we
know that all shortcuts have been settled, we simply continue to process a certain number
of labels until we stop the algorithm.

The soft limit is weaker than the hard limit because it is not known how many labels will
still be processed after the last candidate. Even when setting the soft limit to 0, there may
still be many witnesses which will be processed if only moderate pruning is employed. We
provide benchmarks for different values of the hard limit and the soft limit with moderate
pruning in the Experiments chapter.

Both of these limit techniques may result in a problem specific to multi-criteria journeys.
By pruning a witness journey before it is dominated naturally, a later rRAPTOR iteration
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Figure 4.1.: Because the multi-criteria Dijkstra phase is not necessarily just expanding the
search space, but could revisit already settled vertices, a journey which would
cross over a candidate and would prevent that candidate from becoming a
shortcut may be pruned by our optimizations midway, leaving the shortcut to
be able to be created with a detour. This is not a problem, however, as one
of two cases can happen: Either this shortcut would never have been added
anyways, then it is not important for any shortest path and will therefore never
lead to a wrong result in the queries, or it is an important shortcut, which
means that it is part of a shortest journey at some time, at which point it
will not be influenced by such a "cut" and we can simply update the shortcut
length with the proper length.

may create a shortcut which would normally not exist because it would be fully dominated
by the witness journey that we pruned earlier. This is the case for ULTRA and McULTRA
alike, but in the multi-criteria case, this may lead to shortcut candidates which have
non-optimal transfer durations. Figure 4.1 illustrates this problem.

In other words, shortcuts may be created which are too long. This only happens when the
criteria chosen for the algorithm are not label setting. It is critical when such a shortcut is
added to the graph and a later iteration finds a similar shortcut, that the edge weight of the
shortcut must now be updated to the minimum of both. In ULTRA on the other hand, it
was sufficient to simply trust that the edge weight already contained in the shortcut graph
was correct. While this sounds scary, the good part about this is that the shortcuts with
wrong distances are always shortcuts which would have been dominated anyways. This
means that if a shortcut is important for any iteration, that iteration will still happen and
it will update the shortcut graph accordingly. The result is that no important shortcuts
remain with incorrect distances in the shortcut graph.

The explanation of this problem is that specifically for multi-criteria journeys, we cannot
guarantee that a vertex visited during the transfer phase is never visited again. In ULTRA,
such a witness journey would always be pruned at the boundary of the search space. In
turn, that results in later iterations to behave normally up until the point where the witness
was pruned. Because it is at the edge of the search space, a candidate search will continue
to go outward from this point on and therefore not create wrong shortcuts. However since
the search can return into a settled part of the graph when using multiple criteria, the
end of witness journey may be inside the boundary of the search space and hence could
influence searches in later iterations.
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One more optimization that ULTRA does is to prune a label as early as possible when it is
clear that it can only lead to a shortcut that already exists in the shortcut graph. It is
easy to see why this leads to problems with the previous optimization. We adapted this
technique and tested it both for the intermediate transfer phase, which is the earliest place
to do this, and the second route scan phase, which is the latest place this optimization still
makes sense. We also provide numbers for these variants in the Experiments chapter.

4.1.1. Implementation Details
Labels

First we will take a look at the label structure. We can simplifly it quite significantly
compared to an implementation of MCR since we dont need to be able to unpack full
journeys. At the same time, we need to add more complexity to the label because they
now need to identify themselves as candidates or witnesses because a bag can contain both
without them dominating each other. As with the McRAPTOR implementation, we keep
the trip ID in the label.

Our labels thus contain the following information: arrival time, walking distance, trip id,
a shortcut candidate origin stop and a shortcut candidate destination stop, which serve
to determine which transfer was responsible for this candidate in case it will result in
a shortcut. These fields also serve as a discriminator between shortcut candidates and
witnesses, too.

Additionally, labels provide a composite key for the Dijkstra search phases.

Bags

The bags our McRAPTOR implementation are very simple, however as in MCR, they
receive more responsibilities in our implementation here. First, as with MCR, a bag now
also implements a priority queue to be able to retrieve the label with the smallest key
efficiently. Since we cannot avoid settling a stop more than once, instead we do not to settle
any individual labels more than once by dividing the bags space in settled and unsettled
labels, as described earlier.

Additionally, every bag now also tracks how many candidate labels are contained in the
its priority queue as this information is key in understanding how many candidates are
still in the global queue. Finally, whenever a bag is changed by merging a label into it, the
new label is inserted into the priority queue, which is then rebuilt since a number of labels
could have been dominated by the newly added label.

The merge operation itself is handled much like we described in the McRAPTOR variant,
however after the operation, a final check is done to see if the bag is currently contained in
the global priority queue, and if so, its position in it is updated. As with MCR, the bag’s
key for the global priority queue is the key of its smallest label.
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In this chapter we compare different values for the optimizations we have introduced and
explain our findings. We also show our benchmarks and compare them to other algorithms.

5.1. Data
We used the following transit graphs for our experiments: The public transit network of
Switzerland (GTFS data), the public transit network of Germany provided by Deutsche
Bahn, and the public transit network of London (GTFS data). See Table 5.1 for their sizes.
For the purpose of pre-processing transfers, we used contracted OpenStreetMap1 data of
the transport networks’ respective areas. If it is not otherwise stated, these transfer graphs
have been previously contracted to a vertex degree of 14 and the movement speed on them
has been limited to a casual 4.5 kilometers per hour.

5.1.1. Computer Specs
All of our pre-processing experiments, unless stated otherwise, have been run on a
Gigabyte R282-Z93 Server with 1024 GiB of DDR4 3200MHz ECC memory. It uses two
AMD EPYC 7742 CPUs with 64 cores each, which we utilized fully for the pre-processing, as
it is easily parallelized.

The experiments specifically comparing query times of McULTRA-McRAPTOR to MCR
were conducted on a Supermicro SuperServer SYS-6029UZ-TR4+ with 192GiB DDR4
2666 MHz ECC memory. It uses two 8-core Intel Xeon Skylake SP Gold 6144 CPUs
clocked at 3.5 GHz, but only a single core was utilized to run queries. Note that this server
and test-setup is comparable to the server used for the original ULTRA experiments.

1https://www.openstreetmap.org

Network Stops Routes Trips Stop events Vertices Full edges Tran. edges

London 20 595 2 107 125 436 4 970 428 183 025 347 737 3 755 200
Switzerland 25 426 13 934 369 534 4 740 929 604 167 1 847 140 4 687 016
Germany 244 055 231 089 2 387 297 48 495 169 6 872 105 21 372 360 22 645 480

Table 5.1.: Sizes of the used public transit networks and their transfer graphs (full and
transitive).
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We use the C++ programming language with the gcc compiler version 9.3.1 using
-std=c++17 and optimization flag -O3.

5.2. Pre-Processing
In this section we examine our experiments relating to the pre-processing of the shortcut
graph.

5.2.1. Key Composition
The key for the priority queue in the transfer phases can be made up of any combination of
the label’s criteria. We tested the impact of using only the arrival time, only the walking
distance, or the sum of both as keys. To our surprise, using only the walking distance as
key slightly beats the other combinations of keys when the soft limits increase. However,
the differences are still relatively insignificant, as at its best, the walking distance as key is
about one percent faster as the rest, while at its worst, it is around three percent worse
for other parameters. Using the sum of the arrival time and the walking limit provided
preprocessing times which were more stable than using single keys as the preprocessing
time remained in between the other key possibilities.

5.2.2. Prune After Last Candidate
When running the transfer phases, it is possible to stop the processing after the last
candidate has left the queue, as from that point on, there is no way that a new candidate
might appear somewhere. However, doing this will create unnecessary shortcuts in later
rRAPTOR iterations, which will not invalidate the query algorithm, but they will slow
it down. If the pre-processing time is significantly faster, though, this trade-off might be
sensible. For this reason, we examined the effect different methods and parameters have on
both run-time and number of shortcuts created on the Switzerland instance. As a baseline,
we provide the statistics with none of these optimizations enabled, and then we show the
effect of the soft limit and the hard limit. We show the full results in table 5.3.

Limit Type Limit Value Duration [min:s] Shortcuts [#]

hard limit
0 9:12 806 744

100 9:11 806 347
1000 9:31 803 355

soft limit

0 10:03 798 128
300 10:10 798 012
600 10:19 797 818

1200 10:17 797 475
3600 10:44 796 019
7200 11:18 794 234

no limit 12:52 784 045

Table 5.3.: Results of limiting the amount of labels computed after the last candidate left
the queue in the final transfer.

The soft limit, as explained earlier, simply retains the maximum for every criterion from
the previous route-scanning phase and for every settled candidate in the transfer phase
and adds a criterion-specific limit on top. Any label that exceeds any (strict pruning) or
all (moderate pruning) of those limits is pruned. For our experiments shown here, we
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chose moderate pruning. This will result in an unknown number of labels to continue to
be processed. In our case, the criteria to be considered for parameters would be a walking
distance limit and an arrival time limit. However, as both of these parameters grow linearly
in the transfer phase, there is not much reason to view them as separate parameters.

When a label’s arrival time increases by a certain amount during the transfer phase, so
does its walking distance. Therefore we did not expect a significant change when using
two parameters compared to when using a single parameter for both, as on average, a
label would always be pruned for the lower of the two parameters, making the other one
unnecessary. Our experiments showed that there is less than a half percent difference when
using wildly different values than simply using the lower value for both. Therefore, we only
use the walking distance limit parameter. However the choice of limits has to be considered
for every other criterion anew.

The hard limit simply counts how many shortcuts are still left in all bags in the queue,
and once this count reaches zero, the transfer phase will continue to visit k vertices before
halting. This is a simpler mechanism than the soft limit which is faster but also creates
some more shortcuts. At the same time, this table gives an intuition of how many shortcut
candidates are still dominated by witness journeys in the final transfer phase alone.

To test the impact of this technique when using it on the intermediate transfer, we used
a hard limit of 100 for the final transfer for every experiment so that we could observe
the direct impact the pruning has for only this part. It is easy to see in table 5.5, that
the pruning in the intermediate journeys is very effective in reducing the run-time further.
Furthermore, both of these limits are useful, whereas the hard limit allows for even shorter
preprocessing times than a soft limit of 0, the hard limit is less effective the higher the limit
is because on some iterations, it might be useful to process more labels than on others. At
a soft limit of 7200, this technique overtakes the hard limit by producing less shortcuts in
less time.

Limit Type Limit Value Duration [mm:ss] Shortcuts [#]

soft limit

0 5:55 883 732
60 5:56 883 731

120 5:57 882 649
300 5:57 879 801
600 5:58 876 575
1200 6:03 870 684
1800 6:04 865 630
3600 6:14 855 102
7200 6:34 839 808

hard limit
0 4:56 871 170
10 6:47 871 317

100 8:20 824 753

no limit 9:11 806 347

Table 5.5.: Results of limiting the amount of labels computed after the last candidate left
the queue in the intermediate transfer, with a hard limit of 100 in the final
transfer.
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Figure 5.1.: In a multi-criteria environment, pruning the shortcut that was created in the
first iteration (left) can lead to multiple shortcuts, which would have been
dominated by the first shortcut, being created in the next iteration (center),
which in turn can lead to even more shortcuts to be generated when they are
pruned in the next iteration.

Pruning Method Pre-Processing Duration [mm:ss] Shortcuts [k]

none 9:11 806
early 10:53 2,720
late 8:54 1,016

Table 5.7.: Results of pruning when an existing shortcut has already been found. The
graph instance used here is Switzerland with a contraction degree of 14 and a
speed limit of 5 km/h.

5.2.3. Prune Existing Shortcuts
The ULTRA pre-processing suggests an optimization which prunes a candidate label as
early as possible when a candidate is being processed for which there is an existing shortcut
already in the shortcut graph. Since this missing shortcut can then make way for a different
shortcut which would otherwise have been dominated, the number of total shortcuts will
likely increase. This increase in unwanted shortcuts is tolerable and a trade-off for faster
processing speed. However there is a problem with this when we take another criterion into
account. While ULTRA can only ever add a single shortcut per vertex and per rRAPTOR
iteration, McULTRA can add an arbitrary amount of shortcuts per vertex and iteration
because there may be an arbitrary amount of pairwise non-dominating candidates in the
vertex’ bag. You can see an illustration of how a pruned candidate can lead to several
more candidates in each iteration in Figure 5.1.

This means that while the amount of unwanted shortcuts that can be created per vertex
and per iteration is limited to a single one for ULTRA, in McULTRA this can actually get
out of hand, which is exactly what we observed in table 5.1.

We tried this pruning strategy in the intermediate transfer phase, pruning candidate labels
as soon as they were about to be added to a stop. This is the early pruning step. Then we
also tried this principle in the second round scanning step, to simply skip processing any
candidate which would result in a shortcut that already existed. We call this one the late
pruning step.

This was tested on the contracted Switzerland graph with a limited walking speed. The
early pruning step was quite horrible, increasing the pre-processing time by more than 20
percent, the number of shortcuts generated more than doubled. On the other hand, the
late pruning step yielded a slight decrease in pre-processing time while only increasing the
number of generated shortcuts by 25 percent. So while the early pruning step is worse in
every way, the late pruning step might be considered, although the trade-off is still large.
Note that these experiments ran using a hard limit of 100 labels for the final transfers and
no other optimizations.
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5.2.4. Transfer Speed
Originally, ULTRA had the advantage that an increasingly fast transfer speed would result
in many shortcuts being pruned simply because the arrival time using the initial transfer
becomes increasingly faster than using any public transport vehicle. This is not the case
when incorporating the walking distance as a criterion, as a journey that is fast but only
consists of a single transfer does not dominate a journey that uses one ride and a shorter
transfer, or two rides and less transfer time, etc. Our experiments show that as the speed
of transfers increases, the shortcut graphs approach an upper limit in an exponential curve,
as we illustrate in Figure 5.2.
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Figure 5.2.: Impact of transfer speed on pre-processing time and number of computed
shortcuts, measured on the Switzerland network with a core degree of 14, a
hard witness limit of 100 vertices in the final transfer and a soft witness limit
of 10 minutes in the intermediate transfer. It is easy to see that with increasing
transfer speed, the resulting shortcut graph approaches an upper limit with a
steep increase in shortcuts and preprocessing time in starting at 20km/h.

The McULTRA technique remains very effective up to a speed of 30 km/h, but loses its
advantage over MCR at speeds of 50km/h and above.

This is less the result of the McULTRA technique than the nature of the walking distance
as a criterion. We can see in Figure ?? that the majority of useful shortcuts, even at slow
speeds, are very long. So increasing the transfer speed enables even more longer shortcuts
to be created, whereas in the bicriteria ULTRA, at faster transfer speeds, transfers become
increasingly useless as they are dominated by a direct transfer, which is not the case when
using the transfer duration as a criterion, as a journey which may take longer but uses less
of a transfer duration will not be dominated. Such journeys are increasingly easy to find,
the higher the transfer speed is, which explains the explosion of created shortcuts at higher
speeds in Figure 5.2.

Unlike in ULTRA, we did not observe any significant difference in preprocessing speed or
number of shortcuts when filtering out isolated stops, which are stops which are isolated
from the transfer graph, which means that they can only be reached using at least one ride.
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Figure 5.3.: Distribution of the lengths of generated shortcuts on the Switzerland instance
restricted to walking speed. The bars with the labels 2i for i > 0 include all
shortcuts with travel time τ in the half-closed interval [2i−1, 2i). The 20 bar
represents the interval [0, 20), i.e., all shortcuts with travel time exactly zero.

5.3. Queries
To evaluate the impact of our pre-processed shortcut graph on the query performance, we
tested it with the multicriteria variant McRAPTOR on our preprocessed shortcut graph.
The experiments consist of location-to-location queries, which do not need to be stops,
with sources, targets, and departure times picked uniformly at random.

We compare our speeds to McRAPTOR without pre-processing, which computes fewer
journeys, because it can only answer stop-to-stop queries. Additionally, we compare them to
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Figure 5.4.: Impact of transfer speed on query times and travel times, measured on the
Switzerland network with a core degree of 14, an intermediate witness limit of
10 minutes and a final witness hard limit of 100. All results were averaged over
10 000 random queries. Speed limits were obeyed. Query times are divided
into route collecting/scanning, transfer relaxation, and remaining time.
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Algorithm Full
graph

Counts [k] Time [ms]

Routes Edges Merges Init. Collect Scan Transfer Total
Lo

nd
on

McRAPTOR∗ ◦ 16 20 011 59 656 2.8 3.2 135 325 476
MCR • 17 5 400 8 062 33.3 3.1 133 283 478
McULTRA +
McRAPTOR • 16 1,383 6,188 2.25 2.96 123 52.9 190

Sw
itz

er
la
nd McRAPTOR∗ ◦ 134 34 433 68 743 1 901 4.47 10.3 217 621

MCR • 139 5 946 11 273 167 12.6 228 309 820
McULTRA +
McRAPTOR • 140 4 907 13 435 4.46 9.69 217 88.9 336

G
er
m
an

y McRAPTOR∗ ◦ 3 395 308 481 1 132 828 63.5 353 7 525 6 236 14 475
MCR • 3 531 175 777 343 773 3 682 387 6 970 30 960 41 998
McULTRA +
McRAPTOR • 3 483 118 421 461 577 71.4 371 8 027 3 955 12 747

Table 5.8.: Query performance for McRAPTOR, MCR and McULTRA-McRAPTOR. Times
are divided into phases: scanning initial transfers, collecting routes, scanning
routes, and relaxing transfers. All results are averaged over 10 000 random
queries. Note that McRAPTOR (marked with ∗) only supports stop-to-stop
queries with transitive transfers, hence is not capable to produce the same
amount of journeys, whereas the other two algorithms support vertex-to-vertex
queries on the full graph.

MCR on an unrestricted transfer graph using Core-CH for initial transfers, which produces
identical journeys to our solution. The results are shown in Table 5.8.

To better understand how many operations have to be done, we also count how many merge
operations were performed. Interestingly, our solution results in more merge operations
than MCR, but the merge operation in McULTRA-McRAPTOR is simpler because MCR
needs to keep its bags ordered for its Dijkstra-phases, whereas we have simpler transfer
phases and perform less work for each merge. The graphs used for the queries for MCR,
McRAPTOR and McULTRA-McRAPTOR are identical to the ones used for the pre-
processing of McULTRA, which are contracted to degree 14 and restricted to walking
speeds as described in Section 5.1. Note that the benchmarks from Dibbelt et al. [DDP+12]
include another mode of transport: transfers by cycling, using bicycle lending stations,
which are computed by employing an MLC query before every transfer phase. While
Dibbelt et al. do not introduce a new criterion for this transfer mode, it does change the
resulting experiment numbers slightly compared to our implementation, which uses purely
walking for transfers.

Nonetheless, combining McRAPTOR queries with McULTRA preprocessing calculates
queries more than twice as fast as MCR for walking speeds.

Finally, we look at the performance of MCR and McULTRA-McRAPTOR when it comes
to different allowed transfer speeds in the transfer graph in Figure 5.4. We can see that
McULTRA-McRAPTOR is surprisingly efficient on very low speeds, but becomes slower at
a fast pace after 20km/h are reached, which coincidentally is the point where walking as a
mode of transportation is not feasible anymore. In contrast, MCR starts out with more
than double the query time of our technique, but increases slower and can handle transfer
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speeds of 140km/h significantly faster. However, at those speeds, it can be argued that the
distance travelled is not important anymore as it is usually handled by taxis, etc. So in
this case, using cost as a criterion would be better.

5.4. Heuristics
In this section we examine different heuristics to increase the speeds of the algorithm. We
score the quality of these heuristics using the system explained in Section 2.4.3 with both
a k value of 3 and 6, for a good comparison to MCR [DDP+12].

5.4.1. Overdomination
A very crude way to reduce the number of journeys produced is to make every label
dominate more space while keeping strict domination. For every criterion we decrease its
value for the purpose of domination before comparing it with another unchanged label. It
is possible to simply subtract a constant value per criterion, which is called a slack, but in
our case we decrease the value by 10% for arrival time and walking distance. The resulting
space can be seen in Figure 5.5 and in Table 5.10 we can see that while this approach is very
fast and produces the least journeys, the quality of those journeys is rather low. As such,
this method should only be considered for demonstration purposes. Note that naturally,
by doing this, the order in which labels are added matters for domination purposes.

a

0

b

c

Figure 5.5.: A journey leg over-dominates by a percentage of it’s criteria values, increasing
the area it dominates. The journey leg b is strictly dominated by a while c is
only dominated after applying the over-domination to a.

5.4.2. Fuzzy Domination
As described in Section 2.4.1, we implemented Fuzzy Domination for both the query
algorithm and the pre-processing technique. For the query algorithms, we chose the
following values for (χ, ε): For arrival time (0.8, 60), for walking duration (0.8, 300), both
values for ε in seconds, and for the number of rides we chose (0.1, 1). We chose these values
based on the work of Dibbelt et al. [DDP+12] to compare our numbers to theirs. We use
the London graph limited to a walking speed of 4.5 km/h. Note that for the pre-processing,
we only used arrival time and walking duration for computing the fuzzy degree as the
number of rides taken never rises above two. Additionally, we also tried this approach of
only using two criteria for the queries, which did not lead to faster queries and is therefore
not useful.

The speed-up of this technique for MCR is roughly a factor of 2 while the loss in quality
is minimal at just above 3% for our tests. These numbers still hold up when using the
pre-processed graph from McULTRA with McRAPTOR, also improving the query time
by a factor of 2 while keeping the same quality of journeys of 96.7%. Using the fuzzy
dominance technique for the pre-processing yields less impressive results. It barely improves
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the run-time of queries. In Table 5.9 we can see that the pre-processing is also barely faster
for walking speeds (slower for faster speeds) and that it creates 1/6th less shortcuts for
walking speeds to 1/3rd less shortcuts for a speed of 20km/h typical for cycling.

Heuristic Time [min] Shortcuts [k]

Switzerland, 20km/h
Normal 30.5 3.182
Fuzzy 38.8 2.043
Bucket 15.2 2.485

London, 4.5km/h
Normal 37.5 301
Fuzzy 37 246
Bucket 17 411

Table 5.9.: Pre-processing performance for fuzzy dominance and discretization (bucket)
heuristics for London at walking speed and Switzerland at cycling speed.

5.4.3. Discretization
When evaluating the performance for the discretization heuristic, we only used buckets for
the walking distance criterion. For efficiency, we always chose a power of two and settled on
256 for the experiments shown in Table 5.10. As can be seen, for the base MCR algorithm,
this improves the runtime by more than a factor of 3, however the quality of the produced
journeys is reduced compared to the fuzzy domination heuristic.

For queries using the McULTRA pre-processing, a similar picture is shown, improving the
query time by a factor of over 3 with slightly worse quality than the fuzzy domination.
This yields a total average query time of just 65 milliseconds which can be reduced by
slight margin when using the fuzzy-domination technique for the pre-processing to get less
shortcuts, together with buckets for the query, resulting in 63 milliseconds.

Using the bucket technique for the walking duration in the pre-processing reduces the time
it takes to generate the shortcut graph significantly, as can be seen in Table 5.9, but it
comes at the cost of producing more shortcuts, which decreases query times later.
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Pre.1 Pre.
Heuristic

Query
Heuristic

Jn.
[#]

Time
[ms] Quality-3 SD Quality-6 SD

◦ 36 486 100.00% 0.00% 100.00% 0.00%
◦ Fuzzy 10.9 226 96.76% 10.98% 97.24% 9.21%
◦ Bucket 12.3 141 94.24% 12.33% 95.23% 10.04%
• 36 207 100.00% 0.00% 100.00% 0.00%
• Fuzzy 10.6 102 96.76% 10.97% 97.23% 9.25%
• Fuzzy 2∗ 12.2 109 97.18% 10.58% 97.26% 9.33%
• Bucket 12.1 65 94.85% 11.99% 95.76% 9.84%
• Overd. 7.9 48 24.68% 30.37% 39.34% 31.05%
• Fuzzy 35.9 199 99.26% 8.15% 98.99% 8.31%
• Fuzzy Fuzzy 10.6 99 96.75% 10.97% 97.19% 9.26%
• Fuzzy Bucket 12.1 63 94.78% 12.03% 95.68% 9.87%
• Bucket 35.4 219 99.06% 8.43% 98.63% 8.59%
• Bucket Fuzzy 10.6 112 96.66% 11.07% 97.02% 9.38%
• Bucket Bucket 12.1 72 94.15% 12.39% 95.07% 10.13%

Table 5.10.: Average query performance and number of computed journeys in regards to
different heuristics for the London Network using a transfer speed of 4.5km/h.
All start and stop nodes, as well as departure times have been chosen uniformly
at random for 10 000 queries. Quality of the heuristics for k = 3 and k = 6
including their respective standard deviations.
1: Unticked means that MCR was used, while ticked means that the McULTRA
pre-processed graph was used with the McRAPTOR query algorithm.
∗: Using only arrival time and walking distance for fuzzyness.
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We presented an overview of public transit routing techniques and explained the importance
of multi-modal, multi-criteria route planning. To solve this problem, we introduced
McULTRA, a technique for calculating multi-modal, multi-criteria journeys using unlimited
transfers in walking speed. It provides a significant speedup of almost 3 towards MCR,
which has been one of the fastest techniques to solve this problem so far. Using benchmarks
and experiments, we gave an overview over different speed-up techniques and heuristics to
improve our algorithm even further, and examined their strengths and weaknesses.

Using a combination of these techniques, we accomplish high quality journeys with three
criteria: arrival time, walking distance and number of rides, in just 63 milliseconds. By
using Fuzzy Dominance in the pre-processing, we reduce the size of the generated shortcut
graph, while rounding the walking distance in the queries then accelerates the queries
dramatically.

Further research can be done to understand other criteria and the impact they have on
query and pre-processing times as well as on the sizes of the shortcut graphs. Studies can
also look into which criteria have the biggest impact on the consumer satisfaction.

There are a number of topics just finishing or currently being researched to further improve
on the ULTRA technique, which includes incorporating a tolerance for delays, adding more
complex modes for transfers (rentals, sharing, etc.), improving one-to-many performance
and utilizing more diverse public transit routing algorithms efficiently.

The goal for the future is to keep the versatility of the multi-criteria, multi-modal approach
while vastly improving its performance to make ubiquitous usage possible. By improving
the query times dramatically, we have come one step closer to that goal.
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Epilogue
I would like to thank my friends, family and special people in my life for enduring with me
and cheering me on. I would also like to thank everyone at the Institute of Theoretical
Informatics at KIT for giving me the chance to work on a very exciting and relevant topic,
especially my advisors for their endless patience and helpfulness. Finally, I want to thank
all the wonderful people around the world doing their best in this current worldwide crisis.

The world is indeed full of peril, and in
it there are many dark places; but still
there is much that is fair, and though
in all lands love is now mingled with
grief, it grows perhaps the greater.

J.R.R. Tolkien
The Fellowship of the Ring
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Appendix

A. Real World Example
In Figure A.1 we show three example journeys returned from our algorithm on a real-world
scenario and real map. The journey departs at 8:00 am from Horwerstrasse and the target
is Brambergstrasse in Luzern, Switzerland.

Yellow. The direct transfer from the source to the target arrives at 8:47 am and
accordingly, involves 47 minutes of walking.

Red. This journey contains an initial transfer to Schachenstrasse, which requires four
minutes to walk, a bus ride to Kasernenplatz and a final transfer requiring 13 minutes,
with a final arrival time of 8:33 am and a total walking time of 17 minutes. By using
public transport, the arrival time could be reduced considerably. (Multi-Modal)

Blue. This journey has an arrival time of 9:15 am, which means that its arrival time is
worse that the previous two mentioned journeys. It also requires to use two bus rides, from
Zunacher to Kantonalbank, and then from Kantonalbank to Bramberg Station, instead of
just the one ride for the red journey. This means that an algorithm that allows unlimited
transfers and only optimizes for arrival time and number of rides, e.g.MR-∞ or ULTRA-
RAPTOR, will not show this journey. However as the total walking time for this journey
only amounts to three minutes, it may be more desirable for some people, e.g., the elderly,
while other people may gladly walk for longer periods for a faster arrival time. This type of
journey is found by taken the walking duration as a criterion into consideration, as MCR
and McULTRA-McRAPTOR do.
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6. Appendix

Figure A.1.: A real example of different journeys for a single multi-modal, multi-criteria
query from Horwerstrasse (s) to Brambergstrasse (t) in Luzern, Switzerland,
with a departure time of 8:00 am.
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