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Abstract

Code, the textual representation of software, can be read and modified by humans and is
suitable for mapping the logic of a program in a way processable by computers. However,
it lacks scalability since it does not convey a broader picture, it is insufficient for the
initial exploration of software as well as the analysis of its overall condition.

We provide a general visualization for software that covers its structure and supports
both initial understanding and further maintenance. Our basic concept is derived from
the map metaphor: We interpret software artifacts as regions on a plane, emphasize
their hierarchy by nesting these regions and picture relationships as roads connecting
the regions. Geographic maps are scalable and navigable, often interactive and highly
extensible. Hence, a software visualization mimicking their behavior gains similar ad-
vantages.

We represent software with hierarchic graphs for their capabilities of reproducing the
complex structures in software accurately. We elaborate the requirements of a generic
software visualization based on the map metaphor, define a layout problem for software
graphs and introduce an algorithm to solve it. We employ force-directed methods to
place vertices, exploit the hierarchy of the graphs to bundle edges and use a geometric
heuristic to route edges. The bundling and routing of edges enables us to create a
visualization depicting both general relationships and fine details.

We provide an effective solution for visualizing software projects that preserves their
internal structures, enables its exploration and can be easily extended. We also developed
a prototype for basic tooling and integrated it into the IDE Eclipse. Furthermore, our
approach is also applicable to hierarchic graphs beyond software.
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Zusammenfassung

Quellcode, die textuelle Repräsentation von Software, kann von Menschen gelesen und
verändert werden und bildet die Logik von Programmen so ab, dass Computer sie verar-
beiten können. Text ist aber nur beschränkt dazu geeignet, ein vereinfachendes Bild zu
liefern, und erleichtert weder den Einstieg in Software noch die Analyse ihres Gesamt-
zustands.

Wir stellen eine allgemeine Visualisierung von Software vor, welche ihre Struktur be-
rücksicht und sowohl den Einstieg als auch die weitere Wartung unterstützt. Unsere
Grundidee stützt sich auf Landkarten: Wir interpretieren Softwareartefakte als Regio-
nen auf einer Ebene, betonen ihre Hierarchie, indem wir die Elemente ineinander platzie-
ren, und bilden Beziehungen als Straßen ab, die die verschiedenen Regionen verknüpfen.
Geographische Karten sind skalierbar und navigierbar, häufig interaktiv und sie können
gut erweitert werden; wir gehen davon aus, dass eine Visualisierung, die solche Karten
imitiert, ähnliche Vorzüge aufweist.

Wir repräsentieren Software durch hierarchische Graphen, da sie in der Lage sind, die
komplexen Strukturen in Software genau abzubilden. Wir arbeiten die Anforderungen
einer allgemeinen Softwarevisualisierung aus, definieren ein Layout-Problem und stellen
einen Algorithmus zur Lösung desselben vor. Wir verwenden kräftebasierte Methoden
zur Platzierung von Knoten, nutzen die Hierarchie der Graphen aus, um Kanten zu
bündeln, und berechnen mithilfe einer geometrischen Heuristik Routen für die Kanten.
Letzteres ermöglicht uns, eine Zeichnung zu erstellen, die sowohl allgemeine Beziehungen
als auch Details wiedergibt.

Wir bieten eine effektive Lösung zur Visualisierung von Softwareprojekten, die de-
ren interne Strukturen bewahrt, ihre Untersuchung ermöglicht und die leicht erweitert
werden kann. Zudem haben wir einen Prototypen für ein entsprechendes Werkzeug ent-
wickelt und in die Entwicklungsumgebung Eclipse integriert. Weiterhin ist unser Ansatz
auch auf andere hierarchische Graphen jenseits von Software anwendbar.
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1 Introduction

The development of software is a complex process. Even in a small project with less
than a hundred classes and managed by one person, the developer can easily forget the
intention of a specific block of code or lose track of the relationships between different
parts of the software. Furthermore, it is not uncommon that projects consist of thousands
of classes and millions of lines of code, and larger software is created rather by teams
than by single developers. For such reasons, software engineers first started to think
about how to read source code [13, 41] and later to look for guidelines for readable
and understandable code [29]. This is even more important because successful software
usually is maintained over a long period of time in order to fix present bugs and to
implement new features that are requested by users.

Today, the dominant representation of software is textual: Text is flexible and can
map arbitrary constructs, computers can easily process it and humans are able to un-
derstand and modify it. However, it is difficult for humans to quickly comprehend a
large amount of text, especially if it contains complex algorithms, and there are software
projects comparable to books with thousands of pages. Then again, the need to quickly
understand large amounts of code occurs frequently when new developers join the team
of an existing project and projects are taken over by different teams. In such a situation,
the disadvantage of text is its level of detail. It has to contain all the information so
that the computer is able to translate it into an executable program, but if one merely
tries to grasp the big picture, detailed text is not necessary and actually obstructive.

Modern programming languages offer additional means for structuring software; in
Java, one can use packages and classes to group functionality. Nevertheless, this struc-
ture is not very visible and a large part of the inherent interrelations such as references
or method calls stay hidden in the text. On this account, a variety of tools for visualizing
software was created to facilitate its analysis – but we found that many of them pursue
particular objectives such as the indication of bugs [12, 28] or other software metrics [5]
and an overall visualization is missing.

At this point our research starts: We aim for producing a general, two-dimensional
visualization of software that is not only easily understandable, but also applicable to
more specific use cases. We do not intend to create a tool that replaces all other visual-
ization techniques, though it should allow both the exploration of a software and basic
analyses. We think that most everyday tasks can be covered by such a visualization.
Our main idea stems from cartography; we want to generate something similar to a geo-
graphic map for software. Such maps are widely known and can be used intuitively, and
just as one keeps the map of a city in their mind, this picture can ease the imagination
of the software. Geographic maps also support arbitrary scaling, that is, they can show
a whole country as well as small villages. Furthermore, they are extensible and it is
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1 Introduction

simple to add support for interaction; for instance, we can superimpose additional layers
to display extra information and navigate through the code using the map.

Figure 1.1: Software visualization based on the
map metaphor.

We build our visualization on hier-
archic graphs for their excellent ca-
pabilities of accurately modeling the
structure of software. These graphs
are able to reproduce the hierarchy
occurring in many programming lan-
guages; for instance, in Java packages
contain other packages and classes,
and classes contain methods and pos-
sibly nested classes. Moreover, other
relationships can be pictured by edges
between the vertices representing the
software elements. According to the

map metaphor, we want to assign a region to each of these vertices and place nested
vertices inside of their parents. Then, edges can connect these locations in the form of
roads, and just as different routes share roads in reality, we can clean the map up by
bundling edges.

An example for such a layout is displayed in figure 1.1. In this work, we focus on the
basic visualization and omit the display of subsidiary information. Before giving a short
outline of the thesis, we discuss research related to our topic.

1.1 Related Work
Different kinds of software visualization have been extensively studied during the last
years; an early example is the approach by Ball and Eick [3] that concentrates on the
code and uses simple, but already scalable graphical representations like colored lines or
pixels. However, they rather display metrics than the inherent structure of a project.

1.1.1 Software Visualization and the Map Metaphor
A work that already employs the map metaphor is the paper by Young and Munro [48].
They display files and methods of a software project in a virtual, scalable and inter-
active three-dimensional environment. The software artifacts are pictured by blocks
with different colors and dimensions that are chosen according to software metrics like
method length. They also include relationships as dependencies by providing a separate
visualization.

Panas et al. [39] and Balzer et al. [6] researched similar ideas. The first group uses
cities connected by rivers and roads to represent packages and their connections and
classes are shown as buildings. They visualize both static and dynamic attributes, for
instance, the size of a building indicates the number of lines in a class and method
calls result in vehicles moving between different locations. The researchers of the second
team restricted themselves to the static structure of software; they picture packages as

2



1.1 Related Work

bubbles and classes as circular disks on which contained methods are placed. Relations
are bundled according to the package hierarchy and routed together in three dimensions
to reduce visual clutter.

Figure 1.2: Software visualized as
a city [46].

The three-dimensional city metaphor is expanded
in a variety of papers leading to results as the one
shown in Figure 1.2. Anslow et al. [2] apply the
existing description standard X3D to facilitate the
creation of suitable tools. Wettel and Lanza [46]
focused on improving the metaphor in matters of
navigation, interaction and program comprehension.
Furthermore, they researched its capabilities regard-
ing program analysis and reverse engineering of soft-
ware [45]. In contrast, Fittkau et al. [21] and Waller
et al. [44] examined its practicability for monitor-
ing the execution of software and provided appropriate tooling. Finally, Balogh and
Beszédes [4] even combined the metaphor with Minecraft, a popular computer game, to
generate a graphically appealing and easily explorable virtual world.

All these approaches offer strong abstraction, a high level of detail and are scalable
and extensible. Moreover, they show that the city metaphor is adequate for both generic
and specific visualizations. However, even though some of them include the relationships
between different software elements, they do not build the visualization around them
and in our point of view, the structure induced by these relationships is essential for
a general visualization. We also think that a two-dimensional representation is better
comprehensible and thus eases the exploration of a software project. An example for
such a visualization was given by Kuhn et al. [36]; they mapped software artifacts onto
a two-dimensional plane according to their naming. Nevertheless, they did not consider
the relations between the artifacts.

1.1.2 Graph-Based Software Visualization
If we forbear from the map metaphor and turn towards graphs, especially in the field of
the analysis of software evolution we can find many papers. Typically, vertices of such
graphs represent software artifacts like packages and classes and edges model correlations
between these elements.

Collberg et al. [11] presented GEVOL, a system that displays relationships as inher-
itance, method calls and control-flow in form of graphs that change according to mod-
ifications in the associated software project. They include detailed information about
the general structure of the software, but they only use simple drawings with points and
straight lines, and as seen in Figure 1.3a, it can be difficult to spot single components
or bigger structures.

In contrast, Beyer [10] introduced a visualization in which vertices are fattened and
drawn as spheres in two or three dimensions; an example is given in Figure 1.3b. The
vertices are placed near to each other if they are related; in this case, the relationship is
determined by how often files are modified together, but it is easy to replace it by, for

3



1 Introduction

(a) Collberg et al. [11] (b) Beyer [10] (c) German [27]

Figure 1.3: Various software graph visualization approaches.

example, method calls. However, he decided not to picture the connections between the
different elements. German [27] analyzed the same kind of relationships and, amongst
others, provided a visualization illustrated in Figure 1.3c using uniform vertices and
straight lines as edges. Like the visualization by Collberg, it tends to become cluttered
fast.

Abuthawabeh et al. [1] used a broader input to derive graphs from software and
regarded several kinds of relationships including evolutionary coupling. But even though
they created interactive visualizations, they focused on facilitating the analysis of specific
characteristics instead of giving a general map.

Another interesting approach was taken by Palepu and Jones [38]. They employed
the neural network of the brain as a metaphor for visualizing the execution of software.
Nevertheless, it is still a rather simple visualization using dots and lines of different
thickness to display vertices and edges.

Finally, we want to refer to a work by Reiss and Tarvo [42] that we deem really
interesting. They broke the union of single source files by isolating elements like methods
or small classes and displaying them in separate so-called code bubbles. These bubbles
are linked to each other, for example, if a class contains a method or if a method calls
another one. While the visualization is very detailed since it still contains the source
code, it improves the presentation of the files in an editor.

Compared to the techniques mentioned above, we follow a more generic approach. For
us it is not only important to include all information about structure and relationships
in the graph, we also want to display them simultaneously without cluttering the visu-
alization. For this reason, it is necessary to exploit the given structure to organize the
drawing. Next, we enumerate some visualization techniques for graphs not related to
software development.

1.1.3 Other Graph Visualizations
The map metaphor was also applied to graphs; Xu et al. [47] used it to compute a
three-dimensional landscape for multivariate networks. However, they aim to find and
highlight clusters of connected vertices that are similar according to additional attributes

4



1.1 Related Work

(a) Baur and Brandes [8] (b) Dogrusoz et al. [15]

Figure 1.4: Visualizations emphasizing the graph hierarchy.

and we intend to find a drawing that nicely reflects the structures given by the relation-
ships of the graph.

Since software is often organized hierarchically, visualizations of clustered graphs are
relevant to us. Eades and Feng [19] considered two-dimensional representations as insuf-
ficient and developed an algorithm that generates three-dimensional layouts for clustered
graphs. They use two-dimensional layouts for the levels in the cluster hierarchy and as-
semble these layouts in the third dimension. Later, Ho and Hong [31] contributed several
linear time algorithms with similar results.

Nevertheless, there are still methods to display these structures in two dimensions. For
instance, Baur and Brandes [8] introduced an algorithm for micro/macro layouts. More
precisely, for a given graph, the micro graph, and a partitioning, they derive a macro
graph by combining the vertices within and the edges between the different partitions.
Next, they create a layout for the macro graph with sufficient sizes for vertices and edges
so that they can place the micro graphs within the vertices of the macro graph; the edges
of the micro graph are routed through the edges of the macro graph. As illustrated in
Figure 1.4a, this results in a very tidy layout with nicely bundled edges.

Finally, Dogrusoz et al. [15] proposed a way to visualize clustered graphs with more
than two levels in the hierarchy. They use compound vertices and place vertices belonging
to a cluster inside of the vertex representing the cluster; an example layout is displayed
in Figure 1.4b. However, unlike Baur and Brandes they do not bundle edges between
clusters so that these layouts are prone to become cluttered for dense graphs. In this
work, we present an approach to visualize software with results resembling a mixture of
these two methods.
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1 Introduction

1.2 Outline
This thesis is structured as follows: In Chapter 2, we start by analyzing the structure
of software, elaborate different graph models and evaluate their applicability for repre-
senting software. Furthermore, we discuss the requirements for a general visualization
of software and give a definition for the layout problem we want to solve.

Chapter 3 deals with how to generate a sufficient layout. First, we examine the
advantages and drawbacks of different layout techniques and sketch our algorithm; we
also explain what graph transformations are necessary. The algorithm itself is divided
into two major steps, the placement of vertices and the bundling and routing of edges.
Especially the edge bundling and routing is essential for the eventual clarity of our layout.

In the next part, Chapter 4, we debate the influence of the different parameters and
describe the studies we performed in order to find adequate parameter sets for our
algorithm.

Afterwards, we present and evaluate our results, indicate points for improvement in
our algorithm and provide a perspective to future work in chapter 5, before we finally
summarize the thesis and come to a conclusion in Chapter 6.

6



2 Problem Definition
In this chapter, we accurately describe the problem we intend to solve. First, we shortly
deal with the general structure of software, and in the second part we outline different
graph models for representing a software project and evaluate their suitability to generate
a thorough visualization. Next, we elaborate the requirements of a high-quality general-
purpose software visualization using ideas originating from geographic maps. Finally,
we summarize our findings and give a brief formal problem definition.

2.1 Software Structure
In this work, we focus on imperative programming languages and use Java as an example.
Nevertheless, it should be possible to apply the principles found to most other modern
languages. For imperative languages, two major aspects are pictured in source code,
namely actions and data; in Java we refer to them as methods and variables.

In addition to these base elements, Java and many other programming languages
provide some means for structuring software artificially by grouping components like
packages, classes and methods. Often, these components already feature some kind of
hierarchy as the one for Java depicted below; the element on the left side of the arrow
may contain an arbitrary number of elements on the right side. A type could be a
class, an interface or an enum, and a procedure is a placeholder for either a method,
a constructor or an initializer.

• package → [package | type]

• type → [type | method | field]

• procedure → type

• enum → enum-constant

• [enum-constant → class | field | procedure]

This hierarchy is the part of the structure that is easy to identify in a Java project
because it is usually reflected in the folder hierarchy and the indentation of the source
code. In contrast, there are other relationships that are less visible since they are only
given textually. Below, we list relationships and their involved partners occurring in
Java, and an example is found in Figure 2.1. Next, we introduce some graph models
that may be used to represent software.

• method-call: calling and called method or constructor

7



2 Problem Definition

• method-override: overriding and overridden method

• constructor-override: overriding and overridden constructor

• field-access: accessing procedure and accessed field

• field-type: a field and its type

• inheritance: derived and base class or derived and base interface

• implementation: derived class or enum and base interface

• reference: procedure and type, e. g. for the type of a local variable in a method

1 public class Buffer {
2

3 private final StringBuilder content;
4

5 public Buffer() {
6 super();
7 this.content = new StringBuilder();
8 }
9

10 public void append(char c) {
11 this.content.append(c);
12 }
13

14 @Override
15 public String toString() {
16 return this.content.toString();
17 }
18 }

field-type

field-access

method-call

Figure 2.1: Examples for relationships in code.

2.2 Graph Model

The idea to visualize software with the aid of graphs is not new, hence we can build on
existing graph models. We focus on three similar models that mainly differ with respect
to the relationships between vertices. We start by defining these models, namely the call
graph, the reference graph and the hierarchic reference graph, and explain the correlation
between software and graph. Furthermore, we give an example for a real mapping from a
piece of software to a graph and discuss the pros and cons of the models before choosing
one of them.

8



2.2 Graph Model

2.2.1 Call Graph
The call graph of a software is the simplest and probably best-known model that is
employed to represent software; it concentrates on procedures or methods and their
relationships among themselves. We can construct the call graph G = (V,E) by creating
a vertex for each procedure in a project and inserting an edge between two vertices each
time a procedure calls another. The graph is not necessarily connected and since one
procedure may call another several times, it is a multigraph. It is possible to replace
the methods by – for instance in Java – classes or packages, the layer of abstraction can
be changed freely. Of course it is necessary to adjust the edges in this case; one could
aggregate method calls or use another kind of relationship as class inheritance.

2.2.2 Reference Graph
As stated previously, a software project does not only consist of procedures and there
are other kinds of relationships than method calls. Instead, there is usually a multitude
of elements working together, which leads us to an extended call graph, the reference
graph. Regarding Java, vertices of such a graph do not only represent methods, but also
elements like classes, packages and interfaces, and they may be connected by different
kinds of edges. Formally, we create a vertex for each software artifact, insert an edge
for the respective relations and define two mappings vt and et indicating vertex and
edge types to obtain the reference graph G = (V,E, vt, et). Apart from the types,
the reference graph does not differ from the call graph; it is also a directed, possibly
disconnected multigraph.

vt : V → {package, class, interface, method,...}
et : E → {method-call, field-access, inheritance,...}

2.2.3 Hierarchic Reference Graph
While the reference graph already contains all structural information of the software
including its hierarchy, it does not distinguish between the hierarchy and other relations.
Nevertheless, this hierarchy can be exploited to derive a clustering for the graph, which
could help to visualize the graph depending on the method used. We construct the
hierarchic reference graph G = (V,E, vt, et, r,H) similar to the simple reference graph.
The only difference is that all edges denoting affiliation are added to the hierarchy H
instead of the edge set E. An example for such an edge would be a package directly
containing a class; we already mentioned the corresponding relations for Java. H is a
tree rooted in r ∈ V that connects all vertices in V , which makes the hierarchic reference
graph a cluster graph. It inherits most characteristics of the simple reference graph, that
is, it is a directed, not necessarily connected multigraph.

This definition is sufficient to reproduce the relationships in software including the
almost arbitrary nesting of types that may happen in programming languages like Java.
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(a)

Representative 
Vertex

(b)

Figure 2.2: Representative vertex in a complex hierarchy.

However, as shown in Figure 2.2a, it is sometimes difficult to visualize edges between
child vertices and their ancestors. In this example layout all vertices are drawn as disks
and nested vertices are drawn within their parents.

To prevent this, we introduce a representative vertex for each vertex with children. As
illustrated in Figure 2.2b, such a vertex is a child of the vertex it represents. It acts as a
placeholder for its parent, that is, edges originally leading to the parent instead connect
to the representative vertex. It would be possible to differentiate between internal and
external edges so that only internal edges are redirected to the placeholder, but this could
lead to confusion, so we include all edges. As a result, edges only occur between leaf
vertices. Any hierarchic reference graph not fulfilling the representative vertex condition
can easily be transformed into a graph respecting the condition.

2.2.4 Code-Graph-Mapping

Before choosing a graph model we want to hint at how to derive a graph from source
code by giving an example. We wrote a simple formula parser in Java to determine the
requirements for a suitable software visualization. A part of this project consisting of
two classes and an interface is displayed in Figure 2.4. The associated reference graph is
displayed in Figure 2.3: Types are represented as black vertices, the package is colored
dark-green, and methods and fields are painted in blue and red, respectively.

In addition to the extended vertex set, different kinds of relationships are highlighted
by changing the appearance of the edges. While field accesses are shown by red arrows,
black arrows indicate ownership – for instance methods belonging to classes – and dashed
arrows mark interface implementations and overridden methods.

As stated before, the hierarchic and the simple reference graph vary only with regard to
their logic representation, so we do not need to adjust the graph in Figure 2.3. However,
a standard call graph would consist only of the four blue vertices and the two blue arrows
– the remaining information is neglected.
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1

2

3

4

5

6 7

8

9 10

11 12

1: it.zacherl.formula
2: Formula
3: Formula.evaluate()
4: Number
5: number
6: Number()
7: Number.evaluate()
8: Addition
9: left
10: right
11: Addition()
12: Addition.evaluate()

Figure 2.3: Reference graph corresponding to Figure 2.4.

2.2.5 Evaluation
The three graph models differ mainly in two points, namely information density and
structure. The call graph focuses on the relationships of the basic elements of a software.
Hence, it may deliver the most accurate visualization, but as we could see in the example,
it only pictures a part of the relationships and components of a software, so that it is
not sufficient as a basis for a general software visualization.

In contrast, the reference graph provides a comprehensive representation of software
because the number of different elements and relations is not restricted. However, this
model lacks structure: If all relationships are equal, one has to introduce another kind of
structure or otherwise the quality of the visualization can decrease drastically for larger
graphs. For this reason, we choose the hierarchic reference graph, which emphasizes the
artificial hierarchy imposed by software developers.

So far, we defined our graphs close to Java by using real types for vertices and edges,
but it is still far from complying with the rules that have to be obeyed. In a valid Java
program it is, for instance, impossible to create a method directly within a package, it
always has to be within a class, and a method call must originate from another method.
However, for us it is only important that we are able to depict a program using a graph –
we do not care if it is possible to create a graph representing an invalid piece of software.
Furthermore, we do not adjust the layout depending on vertex or edge types, so we
can neglect them. We only need to distinguish between hierarchic and non-hierarchic
relationships. Hence, from now on we use G = (V,E, r,H) to refer to the hierarchic
reference graph.

2.3 Visualization
After deciding which graph model to employ, we can eventually elaborate the require-
ments for a high-quality software visualization. We first refer to the map metaphor,
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1 package it.zacherl.formula;
2

3 public class Number implements Formula {
4

5 private final int number;
6

7 public Number(int number) {
8 super();
9 this.number = number;

10 }
11

12 @Override
13 public int evaluate() {
14 return this.number;
15 }
16 }

1 package it.zacherl.formula;
2

3 public interface Formula {
4 int evaluate();
5 }

1 package it.zacherl.formula;
2

3 public class Addition implements Formula {
4

5 private final Formula left;
6 private final Formula right;
7

8 public Addition(Formula left, Formula right) {
9 super();

10 this.left = left;
11 this.right = right;
12 }
13

14 @Override
15 public int evaluate() {
16 int left = this.left.evaluate();
17 int right = this.right.evaluate();
18 return left + right;
19 }
20 }

Figure 2.4: Example code from a small software project.

12



2.3 Visualization

which we deem especially useful for creating well understandable graphical representa-
tions of software. In the next step we construct a first layout, point out its deficiencies
and elucidate how to improve it. Finally, we show a practical example based on a real
project, which we have manually designed according to the requirements given before.

2.3.1 Map Metaphor

We already mentioned the map metaphor in the introduction. Maps have been used by
humans for a long time, they are understood immediately by most people and they can be
easily applied to many subjects. If we relate to maps, we mean two-dimensional drawings
of geographic places such as maps of cities or countries. Usually, they contain locations
connected with each other by roads and they are partitioned into colored regions like
forests, villages, fields and lakes.

Another point concerns the usage of maps. Sometimes it is helpful to change the
scale of a map if one wants to see more or less details. For traditional maps drawn on
paper this was achieved by providing different maps, but nowadays it is possible to freely
interact with computer maps by zooming in and out or moving the currently displayed
section.

Furthermore, maps are often modified in order to suit them to other purposes and they
may be more or less abstract; an example is the display of the population of countries by
distorting the regions accordingly [26]. Since we are looking for a visualization of software
that can be comprehended quickly, it seems promising to build on such a widespread
technique.

2.3.2 Basic Layout

Due to the size of most software projects it is hard to visualize them manually. Therefore
we have written a parser for mathematical formulas, a small Java program consisting
only of two packages and a few classes and unit tests, which we transformed into a graph.

Figure 2.5: Simple graph lay-
out consisting of circular ver-
tices and straight arrows.

First, we simply tried to draw disks for each ver-
tex, placed them somewhere and connected them with
straight lines as displayed in Figure 2.5. Such a visual-
ization reflects the relationships between two elements
most accurately since one ignores any existing structure
that could separate them. However, it is easy to imagine
that such a drawing becomes cluttered for denser graphs
with more vertices. It would be possible to indicate char-
acteristics like class affiliation using intelligent coloring,
but the capabilities of such a technique are limited be-
cause components in the graph can be torn apart. For
example, if two methods of the same class are related
neither directly nor indirectly, it is likely that they are placed at a great distance.

This probably occurs in case the natural clustering induced by the method’s rela-
tionships does not conform to the artificial class structure. On the other hand, the
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disruption of a project can be seen as a clue about its state. It would be desirable for
a neatly programmed software project to feature a nice graph shape. Nevertheless, a
tool that creates a general-purpose map for software does not meet its requirements if
the generated map is confusing, especially since such a tool might be used as starting
point when legacy software projects, which may be of poor quality, are analyzed. In
contrast, a good base map can easily be enriched with information such as the inner
cohesion of elements by overlaying different views, a technique that is already common
for geographic maps.

Method

Class

Package

Field

Figure 2.6: Example layout for a hi-
erarchic reference graph.

Next, we applied the map metaphor by regard-
ing the vertices as locations that may contain other
locations. By exploiting the hierarchy we con-
structed a clustering and drew a layout as shown in
Figure 2.6. The hierarchy of the software project
is emphasized by placing child vertices – for exam-
ple the methods of a class – inside their parents;
hence it serves as a natural zoning. Prior condition
is a two-dimensional, non-overlapping and non-
touching visualization of the vertices, but this also
favors the map metaphor since the regions repre-
senting the vertices can be interpreted as states,
cities or even parts of cities that are connected by roads. Due to nested regions, such
a map inherently supports arbitrary scalability; it is suitable for interactive exploration
and features like zooming can be implemented without effort.

Nonetheless, there are some drawbacks; the visualization concentrates on an artificial
clustering, meaning that vertices can no longer be placed in discretionary fashion and
allowing relationships to be pictured suboptimally. In Figure 2.7a, the hierarchy forces
one of the method vertices in the middle class to be positioned far away from its only
neighbor, even though it is not connected to other vertices in its class. Another example
is illustrated in Figure 2.7b, here the strong size difference of vertices leads to a drawing
where edges between child vertices are stretched. Furthermore, it is still difficult to track
relationships in general as the edges may form a nontransparent entanglement in more
complex graphs.

In the next few sections, we address these issues as well as other details and show possi-
bilities for improving the visualization. However, we focus on enhancing the edge layout
by bundling and routing edges and retain the nested vertex placement. In our opinion,
the advantages of an actively displayed hierarchy prevail compared to its weaknesses
regarding the edge layout.

2.3.3 Vertex Visualization

As stated above, vertices must be drawn as two-dimensional objects so that children can
be positioned within their parents; Figure 2.8 shows a few examples of vertex shapes. We
choose disks since they are simple, space efficient, rotation-invariant geometric elements
for which it is easy to detect collisions. Arbitrary polygons or even more complex shapes
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(a)

(b)

Figure 2.7: Vertex placement suboptimal regarding the relationships of the vertices.

could lead to interesting visualizations, but also increase the difficulties of designing
suitable algorithms.

It is feasible to include specific information such as labels – usually, software elements
like classes and methods are named – or manipulate the vertex size according to soft-
ware metrics. However, even though labels might contain some information about the
structure of software [36], we inferred that including text is impeding the construction
of the main layout because it consumes too much space. In addition, the map metaphor
provides a solution; the labeling of maps is a well-researched problem in cartography
that can be applied to the labeling of a graph layout [43]. If an interactive map is pro-
vided, it is not only unnecessary, but also confusing to display all labels at all times.

Vertex Label

Figure 2.8: Example node shapes.
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Likewise, we do not consider additional characteristics such as software metrics, as our
goal is to create a general-purpose map rather than a specific visualization. Moreover,
the software map can still be altered later on; a good example is the already mentioned
distortion of geographical maps known from cartography.

2.3.4 Edge Length and Thickness
In software projects, not all references are of the same importance. For instance, there
are basic classes, like String in Java, which appear in a huge number of classes, but are
not essential for the project itself. Hence, it could be beneficial to thicken and shorten
meaningful edges. However, since we use a multigraph, strongly related elements are
connected by several edges, and as described in the next section, we can combine these
edges to thicker links. Besides, the most limiting factor for the edge length is probably
the hierarchy, so it is arguable whether the length of edges can be significantly adjusted.

2.3.5 Crossing Reduction and Compaction

Figure 2.9: Compaction
of vertices.

A serious problem in the visualization of graphs derived from
software is the sheer number of edges, which can easily ruin the
clarity of any layout, and it is especially easy to lose track of
edges at crossings with other edges. However, software graphs
are not necessarily planar, so in most cases it is not possible
to draw them without crossings. Of course, the amount of
crossings should be reduced as much as possible, but we touch
on this topic only briefly because edge bundling techniques
seem to be more promising.

Another difficulty is the space efficient visualization of deep hierarchies. Supposing
that nested vertices consume a lot of space, lower levels become hardly visible. For this
reason, it is desirable to compact nested vertices as shown in Figure 2.9. In particular,
linear structures such as chains of vertices, which consume a lot of space, can be strongly
condensed.

2.3.6 Edge Bundling and Routing
It is also possible to enhance the visualization of edges by bundling them appropriately
so that they follow common routes instead and cannot spread over the whole drawing.
Again, this supports the map metaphor: First, we only described the aggregation of
vertices to cities or regions; at this point edges form wider streets or highways that may
converge with other edges or branch out. Furthermore, this simplifies the exploration
of major relationships between packages or classes as well as fine connections between
methods or fields. In this work, we focus on exploiting the hierarchy to derive a bundling
as seen in Figure 2.10 by combining edges that share an end vertex. Additionally, it might
be useful to combine even unrelated edges that are located near to each other.

So far, we have only required that vertices are not overlapping with other vertices
while ignoring edges colliding with vertices, but if edges are bundled into wider paths,
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(a) Drawing edges individually. (b) Grouping edges with similar targets.

Figure 2.10: Bundling edges.

(a) Edge bundle colliding with a vertex. (b) Routing around the obstructing vertex.

Figure 2.11: Routing edges.

it becomes increasingly important to prevent these collisions as well since vertices could
be hidden behind edges. Figure 2.11a illustrates a partially concealed vertex; 2.11b
shows a possible edge routing avoiding this collision. Precondition for this solution is
that there is enough space between vertices for feeding edges through them and, ideally,
these spaces grow according to the vertex sizes to scale with the layout size.

The bundling and routing presented in this section should make it easy to recognize
relationships between different vertices at several zoom levels. Nevertheless, it is easy
to lose track of single edges, so an interactive tool for exploring the map should provide
features like highlighting edges and edge bundles.

2.3.7 Example Project

Based on the needs described previously we manually created a layout for our sample
project, the formula parser; the result is displayed in Figure 2.12. Even though the layout
is clearly improvable, not only relationships between different packages or classes, but
also connections within classes and different types of vertices and edges can be recognized
easily. Moreover, we even succeeded in optimizing the software itself: For example, when
we analyzed the layout, we recognized duplicated code within the formula-package on
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the right side. After rewriting some parts of the code, we were able to create the layout
in Figure 2.13, where the package is less cluttered.

2.4 Summary
The hierarchic reference graph is suitable for representing the complex structures occur-
ring in software projects. In the previous sections we informally described the require-
ments for a visualization of high quality. To conclude, we want to state the problem
that is to be solved. Our input is a hierarchic reference graph G = (V,E, r,H). As
defined before, such a graph is a possible disconnected multigraph with vertices V and
edges E, the hierarchy H is a tree rooted in r ∈ V that covers all vertices and edges
start and end only at leaf vertices. The last condition is very restrictive, but it is easy
to transform an arbitrary hierarchic multigraph by introducing representative vertices
as described in a previous part of this chapter. In this thesis, we construct a layout for
this graph featuring the qualities listed below.

• Vertex shapes: Vertices are represented by disks.

• Edge shapes: Edges are represented by a series of lines or curves.

• Hierarchy: Parent vertices enclose child vertices.

• Collision-free layout: No vertex v overlaps with or touches another vertex or
an edge that is not incident to v.

• Edge bundling: Edges with a similar origin or target should be routed together.

• Vertex placement: While related vertices should be placed near to each other,
unrelated vertices should be pulled apart. The distance between vertices should
scale with the vertex size, that is, larger vertices should be placed further away
than smaller ones.

• Edge routing: Edges should not deviate strongly from their ideal route and
unnecessary crossings should be avoided.

The first four requirements are special in that they are either fulfilled or not, they
cannot be optimized. In our layout, they are regarded as hard constraints, that is, we
want to achieve them at any cost. However, it is easy to imagine a drawing with these
properties. In contrast, the last three requirements are rather vague and it is more
difficult to evaluate them; we try to optimize these attributes. In the next chapter, we
design an algorithm that generates a layout according to these constraints.
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1. Addition
2. left
3. right
4. Addition()
5. evaluate()

1. Subtraction
2. left
3. right
4. Subtraction()
5. evaluate()

1. Multiplication
2. left
3. right
4. Multiplication()
5. evaluate()

1. Division
2. left
3. right
4. Division()
5. evaluate()

1. Formula
2. evaluate()

1. NumberTest
2. NumberTest()
3. numberEvaluatesCorrectly()

1. Number
2. number
3. Number()
4. evaluate()

1. AdditionTest
2. AdditionTest()
3. additionEvaluatesCorrectly()

1. Operator
2. SUBTRACT
3. SUBTRACT.combine()
4. ADD
5. ADD.combine()
6. DIVIDE
7. DIVIDE.combine()
8. MULTIPLY
9. MULTIPLY.combine()
10. parse()
11. combine()

1. FormulaParserTest
2. FormulaParserTest()
3. parsesArbitraryNumber()
4. ignoresSpaces()
5. parsesAddition()
6. parsesSubtraction()
7. parsesMultiplication()
8. parsesDivision()
9. parsesBrackets()
10. parsesComplexFormula()

1. Tokenizer
2. formula
3. position
4. Tokenizer()
5. hasNext()
6. nextOperand()
7. nextOperator()
8. nextDigit()
9. nextFormula()
10. isMinus()
11. isDigit()
12. isOpeningBracket()
13. isClosingBracket()
14. parseNumber()

1. TokenizerTest
2. TokenizerTest()
3. hasNext()
4. next()
5. parsesNegativeNumber()
6. parsesBrackets()
7. parsesNestedBrackets()

1. FormulaParser
2. FormulaParser()
3. parse()
4. parseFormula()

1. MultiplicationTest
2. MultiplicationTest()
3. multiplicationEvaluatesCorrectly()

1. DivisionTest
2. DivisionTest()
3. divisionEvaluatesCorrectly()

1. SubtractionTest
2. SubtractionTest()
3. subtractionEvaluatesCorrectly()

Figure 2.12: Manual layout for a simple formula parser.



4
1

8

79

6

23

5

1110

6

5

1 3

27

4

3 2

1

3

1

2

4

1

6

4

2

3

5

1 2
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2. evaluate()
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3. numberEvaluatesCorrectly()

1. Number
2. number
3. Number()
4. evaluate()

1. Operator
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10. parse()
11. apply()

1. FormulaParserTest
2. FormulaParserTest()
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4. ignoresSpaces()
5. parsesAddition()
6. parsesSubtraction()
7. parsesMultiplication()
8. parsesDivision()
9. parsesBrackets()
10. parsesComplexFormula()

1. Tokenizer
2. cursor
3. Tokenizer()
4. nextOperand()
5. isFormula()
6. nextFormula()
7. nextNumber()
8. nextOperator()
9. hasNext()

1. TokenizerTest
2. TokenizerTest()
3. hasNext()
4. next()
5. parsesNegativeNumber()
6. parsesBrackets()
7. parsesNestedBrackets()

1. FormulaParser
2. FormulaParser()
3. parse()
4. parseFormula()
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1. Buffer
2. content
3. Buffer()
4. append()
5. toString()

1. Cursor
2. text
3. position
4. Cursor()
5. isAtEnd()
6. move()
7. getChar()

1. OperatorTest
2. OperatorTest()
3. parseAddition()
4. parseSubtraction()
5. parseMultiplication()
6. parseDivision()
7. parseAny()
8. additionEvaluatesCorrectly()
9. subtractionEvaluatesCorrectly()
10. multiplicationEvaluatesCorrectly()
11. divisionEvaluatesCorrectly()

1. Operation
2. operator
3. left
4. right
5. Operation()
6. evaluate()

1. NumberFinder
2. cursor
3. NumberFinder()
4. find()
5. isMinus()
6. isDigit()
7. parseNumber()

1. FormulaFinder
2. cursor
3. FormulaFinder()
4. find()
5. isOpeningBracket()
6. isClosingBracket()

1. CursorTest
2. EMPTY
3. CursorTest()
4. getChar()
5. move()
6. emptyCursorIsAtEnd()
7. nonEmptyCursorIsNotAtEnd()
8. movedCursorIsAtEnd()
9. cannotMoveAtEnd()
10. cannotGetCharAtEnd()

1. BufferTest
2. BufferTest()
3. emptyBuffer()
4. append()
5. bufferWithContent()

1. OperationTest
2. OperationTest()
3. operationIsEvaluated()

Figure 2.13: Manual layout for the refactored formula parser.



3 Algorithm

In this chapter we design an algorithm that computes a complete layout for an hierarchic
reference graph as defined in the previous chapter. First, we introduce our approach,
then we describe the steps leading to the final layout. We end by giving a short summary.

3.1 Concept
Graph visualization is a well-researched topic and there already exist many more or less
specialized layout methods. In our algorithm we apply force-directed techniques that
have been proven suitable for arbitrary graphs. They not only provide layouts of high
quality, but are also very flexible; it is easy to adjust them to different requirements [34].
We briefly describe the basic idea behind these algorithms and evaluate a few more
sophisticated approaches. Finally, we sketch our algorithm and define terms used in the
further work.

3.1.1 Force-Directed Algorithms
As denoted by the name, in force-directed algorithms forces are applied to vertices,
usually repulsive forces between all vertex pairs and attractive forces between adjacent
vertices. The layout is created by iteratively computing the forces and moving the
vertices so that these forces are minimized. Thus, one can achieve a layout in which
connected vertices are placed in each other’s neighborhood, while unrelated vertices are
pulled apart [34]. These techniques are also able to deal with unconnected graphs, for
example by using a gravity force pulling all vertices to the center. However, the plain
algorithms have a quadratic running time and already for graphs with more than a few
hundred vertices the resulting layout may be a local minimum of low quality; many
extensions were therefore researched to improve scalability and quality. For instance,
simulated annealing is used to reduce the forces over time: At first, strong movements
are allowed to avoid local minima, and in the end, the forces tend to zero and the
layout stabilizes. Another factor that strongly influences the convergence quality of
these algorithms is the initial layout.

3.1.2 Global Methods
Simple force-directed algorithms like the algorithm of Fruchterman and Reingold [23]
operate globally, that is, they include all vertices in each iteration. Having said that,
our small sample project already contained over one hundred vertices; in real-world
projects, tens of thousands are common. As mentioned earlier, there exist more advanced
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algorithms such as GRIP [24] that can deal with these graphs. Nevertheless, an even
more serious problem is the definition of forces that support the hierarchic layout. If
all vertices are adjusted at the same time, then both parents and children are moved
together. Since children have to be embedded inside their parents, the parents’ size
depends on the children and their positions, hence the disks representing the parents
must be computed dynamically. But due to the simultaneous movement, it becomes
increasingly difficult to ensure that not only do children not leave their parent vertex in
an arbitrarily deep hierarchy, but also that parent vertices do not overlap. Furthermore,
disconnected graphs pose the challenge of placing nonconnected vertices inside a parent.
One could solve this issue, for example, by introducing multiple dynamically positioned
centers of gravity. However, this would add to the high overall complexity. For these
reasons, we concentrate on the local layouts presented in the following sections.

3.1.3 Local Methods

In contrast to global methods, we can derive an intuitive solution for our layout prob-
lem by using local methods. In primitive force-directed algorithms repulsive forces are
computed between all vertex pairs, which leads to a quadratic running time. A simple
optimization is to compute these forces only locally, that is, only for vertex pairs placed
near to each other. The respective pairs can be found by partitioning the layout, for
example with quadtrees [7].

Figure 3.1: A partial layout.

In our case, it is not possible to apply
such a method directly. The main prob-
lem of the indicated global approach is to
fulfill the constraints given by the hierar-
chy – and these constraints have to be han-
dled locally as well as globally. Neverthe-
less, the hierarchy is the characteristic we
exploit to create an easy algorithm for our
layout task. The most important require-
ment is that vertex pairs that are not in
a parent-child-relationship may not overlap;
as already mentioned, parents have to en-
close their child vertices. This requirement
also implies that the areas covered by the partial layouts given by the children of such
a vertex pair are independent. With partial layout we refer to the layout given by the
children of a specific vertex and the edges between them. As shown in Figure 3.1, the
parent vertex, children of the child vertices and other vertices are excluded; the partial
layout is a subset of a single layer of the hierarchy. Accordingly, the subgraph covered
by the partial layout is denoted by partial graph.

Just as quad trees are employed to partition the layout of a graph, we employ the
partial graphs induced by the hierarchy to divide our problem. For each vertex, we
individually compute the partial layout, and combine the layouts into one global layout.
In these subproblems, we do not need to consider the hierarchy, so that we are able to
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3.1 Concept

adjust already existing force-directed algorithms. By regarding only a fraction of the
complete graph in each step, we accept that the final layout may be of lower quality;
instead, we gain a much simpler model that is still sufficient for producing high-quality
layouts. Furthermore, our decision is supported by the software graphs we analyzed:
While the overall amount of vertices and edges may be arbitrarily high, the size of
the partial layouts seems to be bounded. We examined five real-world projects with
vertex numbers between a few thousand and tens of thousands: Even though some
partial layouts contained more than a hundred vertices, the average number of children
was below ten. Therefore, it is not necessary to use a sophisticated, highly scalable
algorithm to create the complete layout.

Now, we start by outlining the algorithm used for computing the partial layout; we
explain it in detail later in this chapter. Moreover, we discuss three approaches – bottom-
up, top-down and mixed – to compose a complete layout out of the given partial layouts.

Partial Layout Algorithm

As mentioned previously, a partial layout is computed over a non-hierarchic subgraph
of the whole software graph. Primitive force-directed algorithms typically use point-
shaped vertices connected via direct lines and neglect multiple edges. In our case vertices
may contain other vertices, meaning that we have to deal with two-dimensional vertices
of different sizes; we assume that the sizes of the vertices in the partial layout are
given. In addition, we have to consider that vertices may be connected by more than
one edge. However, we show that our directed multigraph can be transformed into
an ordinary undirected graph by bundling edges in advance. Still, each edge should
be drawn individually, but it is sufficient to regard edge bundles as thick edges and
handle the drawing of single edges separately. Along with the requirement to prevent
vertices from overlapping or touching, two-dimensional vertices and thick edges pose
another challenge: Edges drawn over vertices may conceal vertices or their children, so
that it becomes extremely important to route edges. It is also necessary to route edges
connecting internal vertices with external ones, that is, vertices inside and outside the
subgraph. These external edges may as well be considered in placing the vertices; it is
preferable if vertices with many external edges are placed near the border of their parent
vertex.

Bottom-Up Computation

The vertex hierarchy not only partitions the layout of the graph, it can also be used
to deduce a natural order in which the partial layouts can be computed, with the most
striking orders likely being top-down and bottom-up. Of these, the latter is especially
suitable since the partial layout for leaf vertices is empty; it is only necessary to assign a
size to them. This size can easily be chosen as a fixed value or according to the degree of
the specific vertex. In the next step, it is possible to assign a size to the parent vertex of
the leaves by computing their partial layout. Hence, by processing all vertices bottom-
up, starting from the leaves and placing vertices relative to their parent vertices, a global
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Figure 3.2: Approximation of the position of external vertices.

layout can be constructed. However, even though proper vertex sizes are available to the
partial layout algorithm, at the time the partial layout is created the absolute positions
of external vertices are unknown, so that external vertices cannot be considered in the
computation of the partial layout.

Top-Down Computation

In contrast to the bottom-up order, it is easy to handle external vertices in the top-down
order: For the children of the root vertex, the partial layout can be easily computed as
there are no external vertices. On a lower level, for a vertex with external edges the
top-down order guarantees that all higher levels are completely processed so that the
position of either the external vertex or one of its parents – which is not a direct or
indirect parent for the original vertex – is already fixed and can be used by the partial
layout algorithm to place the vertex. An example is given in Figure 3.2: We want to
compute the partial layout highlighted in blue assuming that all vertices with continuous
lines have been placed before. Vertex v is adjacent to the vertex u, whose position is
not yet known, however, the position of its parent p is determined.

There remains a serious problem with this approach. Because the size of a vertex
depends on its not yet computed partial layout, the partial layout algorithm has to
predict the children’s sizes; this may cause errors such as overlapping vertices along with
quality issues due to unused space.
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Figure 3.3: Parent layout deteriorating the edge routing.

Mixed Computation

Bottom-up and top-down orders manifest different problems: Whereas the former facili-
tates the size computation of vertices, the latter allows the inclusion of external vertices
in the partial layout computation. It stands to reason to combine the two orders, for
example by computing a bottom-up layout at first and refining it in top-down order.
Nevertheless, even if large buffers are regarded, the top-down order cannot guarantee
a drawing without overlapping vertices as the size of child vertices might increase ar-
bitrarily. Since the bottom-up order does not possess this deficit, one could start with
a top-down layout using fixed sizes or intelligent size estimations. However, finishing
with a bottom-up layout may render any effort to consider external vertices useless. As
shown in Figure 3.3, because the children’s layout is computed prior to the parent’s
layout, parent vertices can strongly alter their positions.

Nonetheless, a mixed approach remains promising. Just as it is used in force-directed
algorithms to weaken changes, annealing could be applied to the global layout described
here. One could, for example, distribute the computation of the partial layout on several
runs of a bottom-up global algorithm. That means that if the partial algorithm runs for
1000 steps, at first 100 steps are executed for each partial layout in bottom-up order,
then the next 100 steps and so on until all steps are completed. Of course, it is necessary
to decrease the temperature over all 1000 steps. In this way, changes decrease towards
the last bottom-up run so that a situation as in Figure 3.3 is less likely to occur. One
could also mix runs in bottom-up and top-down orders, but due to the annealing it is
probably sufficient to rely only on bottom-up runs. Yet it might be useful to execute the
bottom-up run in breadth-first order, as explained for the top-down order, to optimize
the quality of the layout.

3.1.4 Simplifications

We neglect some previously mentioned possibilities to simplify the process of creating
the software map without losing track of the main requirements. First, we briefly discuss
external vertices, but we only compute a simple bottom-up layout and ignore their influ-
ence on vertex placement. We also disregard edge weights, and even though combining
vertex placement and edge routing might lead to better results, we isolate these steps in
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our algorithm. At the moment, we cannot imagine a unified approach that is practical.
Moreover, we only bundle edges that share a target or origin and leave out edges only
related by vicinity. It is possible to bundle edges repeatedly, but we do not use nested
bundles. Edge routing could be implemented with line segments or curves; we choose
line segments for their low complexity. However, we use Bézier curves to render the
drawing in order to give an impression of a smoother layout. Finally, we do not reduce
crossings except for edges merged into the same bundle.

3.1.5 Algorithm Sketch

Our algorithm for the complete layout is divided into three major and several smaller
steps. First, it is necessary to transform the input multigraph into an ordinary graph by
bundling edges. The next step is to construct a collision-free vertex layout by computing
the partial layout for each vertex; the vertices are processed in a bottom-up order. The
subalgorithm used for creating the partial vertex layout builds a simple layout using
an adapted tree-layout algorithm and adjust it with a modified Fruchterman-Reingold
algorithm. Afterwards, a heuristic is applied to iteratively route edge bundles while
crossings between neighboring bundles are removed via anew bundling. Neighboring
bundles are inside the same vertex, target a similar vertex and converge, when they
leave a vertex. Finally, the course of each single edge is fixed according to the routing
of the bundles and crossings between edges within a bundle are reduced.

1. Graph transformation (including edge bundling)

2. Vertex layout

• Generate initial partial layout for each vertex

• Refine partial layout for each vertex

• Combine partial layouts to global layout

3. Edge layout

• Route bundles and reduce bundle crossings

• Route edges and reduce edge crossings

For a better understanding, we define some terms used repeatedly in this thesis before
progressing to the description of the algorithm. We already introduced partial layouts
and partial graphs in contrast to the global layout and graph. We also mentioned internal
and external vertices or edges for a specific partial layout. With parent, child and root
vertex we refer to the relative position of a vertex in the hierarchy of the software graph.
Furthermore, the parent vertex of the vertices in a partial graph is usually denoted as
enclosing vertex.
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3.1.6 Data
The software maps shown in the later parts of the thesis are based on data that stem from
several Java projects. We use the Eclipse compiler and the Eclipse Java development
tools [22] to analyze the projects and extract the reference graph used as input for our
layout algorithm. Nevertheless, these algorithms are neither restricted to Java nor to
software graphs; any hierarchic multigraph may be visualized. As for the vertices of the
graph, the mapping from code to vertices and edges is done as described in the previous
chapter. Still, we limit vertices and edges to code available in text files, along with
test code, and neglected code packaged in libraries. In Java, for example, especially
regarding smaller projects it would clog the graph if the Java Runtime Library was
included. Although it is possible to consider only the parts of libraries that are actually
used in a project, these libraries are commonly developed separately from the project,
so their relevance is restricted. Of course this decision only concerns the input data; it
is not relevant for our layout algorithm and could be changed in another context.

3.2 Graph Transformation
In this section we explain how to transform the hierarchic reference graph into an ordi-
nary graph. Our input is a directed clustered multigraph G = (V,E, root,H) as defined
in the preceding chapter, and our objective is to find an undirected graph that bundles
the edges of the original graph and hence has no parallel edges. The reason for this is
that by computing a layout for the transformed graph, we can also compute a layout for
the original graph.

To obtain the bundling, we have to segment the edges as illustrated in Figure 3.4 in
order to detect sections of edges that traverse the same vertices. The segmentation is
also necessary since edges in our hierarchic reference graph are not local: They may
connect any pair of leaf vertices and span several levels of the hierarchy. By segmenting
the edges, we can assign the respective parts of the edges, the segments, to the traversed
vertices. Moreover, a connection between two vertices also implies a relation between
the parents of the vertices, and this information is given by the segmentation.

We denote the transformed graph SG = (N,S, nv, se) as segment graph with vertices
or nodes N and edges or segments S ∈ N × N . Because segments are undirected, a
segment s1 = (u, v) is equivalent to the segment s2 = (v, u). As illustrated in the
figure, each edge is split at vertex borders and parts that have a similar target and
traverse the same vertex are assigned to the same segment. In contrast to edges, no
segment spans more than one level in the hierarchy. Segments connecting two vertices
of the same level are referred to as root segments, other than segments between parent
vertices and child vertices that are directed towards the border of the parents. Each
vertex of the original graph is represented by several nodes, more precisely, by one node
for each segment beginning or ending at the respective vertex. These nodes are only
moved indirectly when vertices are displaced. They serve as join points for internal
segments pointing towards the border of the vertex; edges leaving vertices are split at
these points. Node and edge associations are given by the mapping functions nv : N → V
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seg
ment

root segmentnode

Figure 3.4: Graph with nodes and segmented edges.

and se : S → P(E). While segments may bundle several edges, a node is always related
to exactly one vertex. We assume that the information given by the original graph, in
particular the vertex set V , the edge set E and the hierarchy (r,H), is also incorporated
into the segment graph.

Next, we describe how to construct the node and segment sets. As for the segment
set, each edge can be converted into a sequence of single-edge segments by using the
hierarchy of the graph. For the edge e = (u1, v1) displayed in Figure 3.5, let pe =
{u1, u2, ..., ui, p, vj , ..., v2, v1} denote the sequence of parents of u1 and v1, where the
following conditions hold:

∀k ∈ {1, ..., i− 1} : (uk, uk+1) ∈ H

(ui, p) ∈ H

(uj , p) ∈ H

∀k ∈ {1, ..., j − 1} : (vk, vk+1) ∈ H

Next, we explain how to derive the segments for edge e via pe. We refer only to
the segments for vertices uk as the vertices vk can be treated accordingly. Since parent
vertices always enclose their children, each vertex uk ∈ pe besides u1 and p indicates
that the edge e crosses the border of vertex uk. Because p encloses all vertices in pe
and u1 is an end vertex of e, the borders of these vertices are not crossed. Let n(uk, e)
denote the node for vertex uk to which a segment of e outside of uk connects as sketched
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pe = {u1, u2, u3, p, v2, v1}

Figure 3.5: Segmentation of a single edge.

in Figure 3.5. For k > 1, each node n(uk, e) is placed on the border of vertex uk and
marks the point at which an inner segment and an outer segment connect. Thus, we
can form a sequence of segments S(u,e) = {(n(uk), n(uk+1), {e}) : k ∈ {1, ..., i}} for edge
e. Finally, we can connect the sequences S(u,e) and S(v,e) to the complete sequence Se

with the root segment sr = (n(ui), n(vj), {e}). This segment joins the only two vertices
sharing the same parent and thus the vertices and the segment are placed inside the
parent. Contrary to the other segments, the root segment is also the only segment that
does not connect two levels of the hierarchy.

Finally, we can find the common segments for different edges by comparing their parent
sequences pe1 and pe2 . As shown in Figure 3.6, two edges e1 and e2 share segments if and
only if they have the same root segment; we omit proofs at this point. Assuming that the
edges e1 and e2 possess the same root segment, then their parent sequences pe1 and pe2
both contain a partial sequence pe1+e2 = pe1 ∩ pe2 = {uk, uk+1, ..., ui, p, vj , ..., vl+1, vl}
for k, l ≥ 1. If we derive the respective segment sequences S′

e1 and S′
e2 for pe1∩e2 as

described above, we can merge two segments se1 = (n(um, e1), n(um+1, e1), {e1}) and
se2 = (n(um, e2), n(um+2, e2), {e2}) for k ≤ m ≤ (i− 1) – again accordingly for vertices
v∗ – in two steps. First, we have to merge the nodes n(um, e1) and n(um+1, e1) with their
counterparts for e2. We denote the merged nodes as n(um, e1+e2) and n(um+2, e1+e2).
Second, we can merge the segments se1 and se2 to the segment se1+e2 = (n(um, e1 +
e2), n(um+2, e1 + e2), {e1, e2}).
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pe1+e2 = {u3, p, v2}

Figure 3.6: Segmentation and bundling of two edges.

The bundling technique presented in this section is similar to the one proposed by
Holten [32] as seen in Figure 3.7. Nevertheless, we only use it to segment the graph and
convert it to a graph without multiple edges; we use a different method to compute a
routing according to the requirements given in the previous chapter.

Now, we can compute the complete segment graph by simply iterating over all edges
and repeatedly merging the segments and nodes created by these edges. The algorithm
we used is clearly not optimal, but its execution time was still largely dominated by the
computation of the layouts, which is why we did not try to find a better or even optimal
algorithm.

3.3 Initial Layout

As mentioned in the first section, a force-directed algorithm is used to compute the
main layout. If exceptional cases like vertices located on the same position are handled,
such an algorithm is able to produce a proper layout starting from any other layout.
However, these algorithms do not necessarily perform well for arbitrary initial layouts,
so for example random placement of vertices could lead to slower convergence and may
degrade the quality of the final layout. In contrast, an initial layout that already reflects
the main properties of the underlying graph is more likely to accelerate convergence and
generate high-quality layouts [24]. In this work, the following requirements should be
met by an initial layout:
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Figure 3.7: Edges (red) and their projections onto the hierarchy (blue).

• Radii: The radius of each vertex should be big enough to contain all children.

• Parent-child-relationships: All child vertices should be placed inside their par-
ent.

• Vertex collisions: No two vertices should overlap.

• Graph structure: Thicker segments – segments containing more edges – should
cause the connected vertices to be placed near to each other.

While the first three properties are clear, the last criterion is rather vague. As ex-
plained later, we intend to fulfill it using minimum spanning trees. Segment collisions,
that is segments overlapping with vertices, and segment crossings may occur in the ini-
tial layout, and segments connecting external vertices are ignored. The general idea is
to compute the global layout bottom-up starting with the leaf vertices; for the partial
layout of each vertex a simple radial tree layout is used.

Leaf vertices only need to be assigned a radius r, which could be chosen as a fixed
constant R. However, it is not preferable that segments starting in a vertex are wider
than the vertex itself, so for setting the radius the number of edges with this vertex as
end point should be considered. According to the segment width definition given later,
the actual radius of leaf vertices is chosen as the maximum of R and the width of a
segment bundling all edges ending at this vertex:

r = max(R,deg(v) ·WIDTH + (deg(v)− 1) · SPACE)

For each other vertex, the partial layout is generated by computing a tree containing
all children of the vertex and computing a radial tree layout. Finally, the radius of the
enclosing vertex can be adjusted so that all child vertices are located within the disk
defined by the vertex.
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By using Kruskal’s algorithm [35] we obtain a minimum spanning forest for the local
graph. Since we want thicker segments to be included in this forest, we choose the
segment weights such that segments with more edges have smaller weight:

weight(s) = 1

|edges(s)|

Furthermore, for each tree of the forest, we choose a vertex of the Jordan center [30,
p. 35] of the tree to be its root. The Jordan center of a graph G = (V,E) is the set of all
vertices with lowest eccentricity. For a vertex u, the eccentricity e(u) is the length of the
longest path from the shortest paths to all other vertices v ∈ V . If path(u, v) denotes
the shortest path between two vertices u and v, then the eccentricity can be defined as
follows:

e(u) = max
v∈V

(|path(u, v)|)

So a Jordan center is a vertex with the smallest distance to all other vertices in the
graph. In the end, one of these roots is placed in the center of the enclosing vertex,
for which reason it is desirable to choose such a vertex. However, for computing the
Jordan center we need a means to compute the distance between connected vertices. We
use a function dpref : V × V → R>0 to map two vertices onto their preferred distance.
This function is defined in detail in a later section; for now, we simply assume that two
vertices u and v can not collide if their distance is greater than or equal to dpref(u, v).

Although the Jordan Center could already be computed, a slight redefinition of the
shortest path between two vertices u and v is beneficial. As can be seen in Figure 3.8,
the Jordan center is the vertex v between u and w. But even though the eccentricity of
the vertex v is minimal, the enclosing disk centered at u would be much smaller than
that centered at v due to the larger radius of u. By simply adding the radius of the
target vertex to the length of the path we can change the Jordan center to u so that it
reflects the actual distance to the border of the graph:

e′(u) = max
v∈V

(|path(u, v)|+ rv)

It should be mentioned that this function is no longer symmetric; path(u, v) might
yield a different result than path(v, u). Finally, to find a Jordan center vertex in the tree
we compute the eccentricity for each vertex by enumerating the distances to all other
vertices and select a vertex with minimal eccentricity.

In a third step, the forest is merged by choosing one tree and adding the roots of
all other trees as children to its root. Here it is important to note that for the rest of
this section, we do not indicate the hierarchy of the complete graph by using the terms
parent or child, but instead vertices with respect to their position in the tree. The main
tree could be selected arbitrarily; however, since its root is centered in the end, it should
be advantageous if the largest tree is chosen. Hence, we define a heuristic size as follows
and select a tree t′ with maximum size.
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Figure 3.8: Selecting the Jordan center.

size(T ) =
∑
∀v∈T

rv

Finally, we can compute the partial layout for the enclosing vertex by applying a
radial tree layout, in our case a modified level-based algorithm [18]. Similar to known
approaches, we distribute the child vertices radially around the root by assigning an
angle to each child and placing the subtree rooted at it in the area determined by the
angle. Commonly, the angle is chosen according to the number of vertices in the subtree,
but since we use two-dimensional vertices, we apply the heuristic size definition given
above. If Tv denotes the subtree rooted in a vertex v, then for a parent vertex p with an
assigned angle of φp, the angle assigned to a child c of p is defined as follows:

φc = φp ·
size(Tc)

size(Tp)

For obvious reasons, the angle for the root vertex is 2π. In the original algorithm,
the angle for children may be restricted further to prevent crossings in the tree layout.
Nevertheless, our initial layout is not the final layout; actually it is not a pure tree layout
and the inclusion of the remaining edges might cause other crossings so that the effort
put into such a condition is wasted. In contrast, we have to deal with another problem
concerning vertex collisions: Because we use two-dimensional vertices instead of zero-
sized points, it is not possible to place the child vertices at arbitrary distances from their
parents or they may overlap. Moreover, we have to avoid collisions between children of
different parents by placing them inside of the wedge defined by the respective parents’
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Figure 3.9: Space estimation for child vertices.

angle. However, let φc denote the angle for a child c with radius rc, then the following
conditions for the distance between c and its parent p allow for a collision-free layout:

dist(p, c) ≥ dpref(p, c)

(φc < π)→ dist(root, c) ≥ 2rc
tan(0.5φc)

We assumed that two vertices can not overlap if their distance is greater or equal
to their preferred distance, so p and c may never overlap. If φc ≥ π holds, the angle
for c spans more than half a circle, the subtree Tc is completely enclosed in the wedge
with angle φc and collisions between vertices outside of the subtree Tc cannot occur.
Otherwise, we can assume a situation as illustrated in Figure 3.9. Clearly, the base of
the shown triangle is longer than 4rc if we fulfill the constraints defined before, and hence,
the wedge contains the child c completely. Consequently, we can avoid any collision if
we choose the distance as follows:

34



3.4 Vertex Layout

dist(root, c) =

dist(root, p) + dpref(p, c) if φc ≥ π

max
(

dist(root, p) + dpref(p, c),
2rc

tan(0.5φc)

)
if φc < π

Finally, Algorithm 3.1 computes the radial tree layout for a given tree. The root
vertex is placed in the center of the enclosing vertex and the position of a child vertex c
is computed relative to the enclosing vertex by rotating the vector e⃗ based on the angles
of the respective wedge; φstart denotes the angle at which the wedge begins. e⃗ is an
arbitrary, but fixed unit vector. We can obtain the correct length by multiplying it with
the distance between c and the root vertex.

After computing the layout, we have to adjust the size of the enclosing vertex so that
its partial layout fits inside. Since this step is also necessary in the force-directed layout,
we describe it in detail in the next chapter.

Algorithm 3.1 Radial tree layout
1: procedure Layout(root)
2: pos(root)← (0, 0)
3: Layout(root, root, 0, 2π)
4:
5: procedure Layout(root, v, φstart, a)
6: if v is leaf then
7: return
8: sv ← size(Tv)− rv
9: for each child c of v do

10: φc ← a · size(Tc)
sv

11: d← Distance(root, v, c, a)
12: pos(c)← rotate

(
e⃗ · d, φstart +

φc

2

)
13: Layout(root, c, φstart, φc)
14: φstart ← φstart + φc

15:
16: function Distance(root, v, c, a)
17: d← dist(root, v) + dpref(v, c)
18: if a ≥ π then
19: return d

20: return max
(
d, 2rc

tan(0.5φc)

)

3.4 Vertex Layout
In this section, we describe how to refine the vertex placement given by the initial layout.
As for the initial layout, we only deal with the positioning of vertices, the edge layout is
covered in the next section. First, we explain how to compute the global layout assuming
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that we are able to compute the partial layout for each vertex, and in the second part
we detail the algorithm constructing the partial layout.

3.4.1 Global Layout Algorithm
As described in the first section, we construct the complete layout by traversing the
hierarchy, creating the partial layouts and assembling them; the corresponding code is
displayed in Algorithm 3.2. We assume that the original graph G = (V,E, root,H) as
well as the transformed graph SG = (N,S, nv, se) are accessible in the algorithm without
being explicitly specified as parameters; the initial call to compute the layout for graph
G is Layout(root).

Algorithm 3.2 Global layout algorithm
1: procedure Layout(v)
2: if c is leaf then
3: return
4: for each child c of v do
5: Layout(c)
6: PartialLayout(v)
7: Resize(v)

Because we do not consider external vertices, it is sufficient to traverse the hierarchy
H in a deep-first bottom-up order. Obviously, leaf vertices do not possess a partial
layout and since we have already assigned a proper size to them in the initial layout,
we do not need to process them again. However, we have to adjust the size of a vertex
v after we applied the partial layout algorithm as the space needed by its children may
have increased or reduced.

Algorithm 3.3 describes the method we currently use to resize vertices. Supposing
that the child vertices are positioned relative to the position of the enclosing vertex
v, a disk with radius rv centered at the origin of v encloses a child c if and only if
rv ≥ |pos(c)| + rc as seen in Figure 3.10. Accordingly, we can compute the minimum
radius for the enclosing disk by computing the maximum of |pos(c)|+rc over all children.
Moreover, we add a buffer b ≥ 1 to the radius to prevent that the border of a child
coincides with the border of v.

Algorithm 3.3 Resizing of vertices
1: procedure Resize(v)
2: r ← 0
3: for each child c of v do
4: if r < |pos(c)|+ rc then
5: r ← |pos(c)|+ rc

6: rv ← r
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Figure 3.10: Preferred radius for a parent vertex.

3.4.2 Partial Layout Algorithm

In this section, we describe the force-directed algorithm that is responsible for the vertex
placement. We employ the method of Fruchterman and Reingold [23] and adapt its force
definitions to our purposes. Algorithm 3.4 shows the original layout procedure.

The algorithm computes the layout with respect to a frame given by width W and
length L. Furthermore, it tries to distribute the zero-sized points representing the ver-
tices evenly on the area; the variable k denotes the optimal distance for each pair of
vertices and is used for determining the repulsive and attractive forces. These forces are
defined such that repulsion and attraction are balanced for a connected pair of vertices
if their distance is k. To ensure that vertices are not placed next to each other, frep
goes to infinity as the distance shrinks to zero. Similarly, the quadratic function fattr
prevents adjacent vertices from being pulled apart too far.

In the main loop, the forces are computed for each edge and vertex and the vertices
are moved accordingly. In each iteration, the temperature t is decreased to manipulate
the vertex movements: Initially, vertices may be displaced by a greater distance to avoid
local minima, whereas in the end vertices are only shifted slightly to improve the layout
locally. Often, a linear function is applied to compute the annealing.

While this algorithm performs well for simple graphs, in its present form it is not
applicable to our partial graph, so we detail the requirements of the partial layout
hereafter.
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3 Algorithm

Algorithm 3.4 Fruchterman-Reingold [23]
1: procedure Layout(G = (V,E))
2: area←W · L ◃ frame: width W and length L
3: initialize G ◃ place vertices at random
4: initialize t ◃ initialize temperature t

5: k ←
√

area
|V | ◃ compute optimal pairwise distance

6: for i← 1 to iterations do
7: for each v ∈ V do ◃ compute repulsive forces
8: disp(v)← 0 ◃ initialize displacement vector
9: for each u ∈ V do

10: if u ̸= v then
11: ∆← pos(v)− pos(u)
12: disp(v)← disp(v) + ∆

|∆| ·frep(|∆|)

13: for each (v, u) ∈ E do ◃ compute attractive forces
14: ∆← pos(v)− pos(u)
15: disp(v)← disp(v)− ∆

|∆| ·fattr(|∆|)
16: disp(u)← disp(u) + ∆

|∆| ·fattr(|∆|)

17: for each v ∈ V do ◃ displace vertices within frame
18: pos(v)← pos(v) + disp(v)

|disp(v)| ·min(|disp(v)|, t)
19: pos(v).x← min

(
W
2 ,max

(
−W

2 ,pos(v).x
))

20: pos(v).y ← min
(
L
2 ,max

(
−L

2 ,pos(v).y
))

21: t← cool(t)
22:
23: function frep(distance)
24: return k2

distance

25:
26: function fattr(distance)
27: return distance2

k
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3.4 Vertex Layout

Problem Definition

Let SGw = (Nw, Sw, nv, se) denote the possibly disconnected partial segment graph for
a vertex w, with the respective subsets only containing the relevant nodes and segments
and Vw being the set of vertices that are children of w. Our input for the partial layout
algorithm is SGw plus the positions and sizes for all vertices in Vw as determined by
the initial layout. As before, positions are considered relative to the origin of w, not
globally. For the vertex placement, we want to meet the following requirements:

• Vertex collisions: No two vertices should overlap.

• Graph structure: While adjacent vertices should be placed near to each other,
unrelated vertices should disperse.

• Vertex distance: The distance between vertices should grow with their size,
moreover, there should be enough space for the later edge routing.

• Layout compaction: No vertex should be placed too far from the other vertices
of the partial graph.

• Circular layout: Since the shape of the parent vertex is a disk, the partial layout
should approximate a disk as well.

In comparison to the characteristics of the initial layout, most modifications and ad-
ditions should be intuitive. The third point is especially important because we separate
vertex and edge layout: If we lead edges around vertices without moving vertices, we
have to ensure that there is enough space between vertices. The algorithm given before
does indeed respect the graph structure, that is, it positions connected vertices closely
and pulls disconnected ones apart. Edges are regarded as unweighted, but this does not
pose a problem since we also neglect edge weight as stated in the beginning of this chap-
ter. However, there are several flaws in the algorithm and it is not capable of producing
a layout complying with our demands.

The first issue is that the algorithm of Fruchterman and Reingold is designed for
zero-sized vertices. Taking two-dimensional vertices into account, the algorithm does
not keep vertices from overlapping, which makes it necessary to redefine repulsion and
attraction. By redefining these forces we can also change the optimal distance according
to the radii of vertices. Furthermore, we choose a minimum size for leaf vertices and due
to nesting, the size of parent vertices may grow arbitrarily, so that it is difficult to predict
the size required for the layout of a graph. On this account, we do not dictate a frame
size and treat the layout as unbounded, which again influences repulsion and attraction.
Lacking a frame, we also have to reconsider the temperature: Concerning partial graphs
with larger vertices, we have to allow for much stronger movements to overcome local
minima; if the temperature is too low, it might even happen that overlapping vertices are
moving too slowly to escape each other. Finally, the input graph may be disconnected,
and in the given algorithm unrelated vertices are placed on the border of the frame.
Even more, since we do not intend to bound the layout a drawing with disconnected
subgraphs would fall apart.
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ru b · (cmin min(ru, rv) + cmax max(ru, rv)) rv

Figure 3.11: Preferred distance between two vertices.

Preferred Distance

Prior to moving on to forces, we specify the already mentioned preferred distance between
two vertices; the redefined forces strongly rely on it. In the standard algorithm of
Fruchterman and Reingold, the parameter k is computed using the frame size and denotes
the optimal pairwise distance with respect to an even vertex distribution. Instead, we
define the function for the preferred distance of two vertices u and v as below:

dpref(u, v) = ru + rv + b · (cmin min(ru, rv) + cmax max(ru, rv)), b ≥ 1, cmin, cmax > 0

The addition of the radii ru and rv ensures that vertices do not overlap if they conform
to the preferred distance. Furthermore, such vertices do not touch each other due to
the positive summand b · (cmin min(ru, rv) + cmax max(ru, rv)) as seen in Figure 3.11.
The parameters cmin and cmax are handles for controlling how the radii of the vertices
influence the preferred distance. A simpler option would be to use the average radius for
computing the preferred distance, however, it is helpful to amplify the influence of the
smaller radius. We discuss how to choose the parameters and their effect in detail in the
next chapter. The last parameter, b, is a means to regulate the distance between vertices
in general; we use it for adjusting the forces in the following section. By adjusting these
paramters, we can achieve an appealing vertex layout with enough space for routing the
edges.

Force Definition

Let dactual(u, v) = |pos(u)− pos(v)| denote the distance for two vertices u and v. In the
original algorithm, repulsion and attraction are in equilibrium for two adjacent vertices
u and v if dactual(u, v) = k. The easiest way to adjust this equilibrium to the preferred
distance defined above is to just replace k in the original force equations by dpref(u, v):

frep(u, v) =
dpref(u, v)

2

dactual(u, v)

fattr(u, v) =
dactual(u, v)

2

dpref(u, v)
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3.4 Vertex Layout

Now, frep(u, v) = fattr(u, v) holds as wished for dpref(u, v) = dactual(u, v) so that u
and v are positioned in their preferred distance – provided that there are no other forces
interfering. The problem is that for example in a complete graph with more vertices
additional attractive forces pull the vertices together, and since the repulsive force given
above still only goes to infinity if the distance shrinks to zero, the vertices may happen to
overlap. For this reason, we redefine the forces such that while the equilibrium distance
is unchanged, the repulsion grows infinitely as soon as the distance shrinks to a fixed
minimum distance. We derived this distance directly from the given function dmin(u, v)
with cmin ≥ 0, cmax ≥ 0 and cmin + cmax = 1:

dmin(u, v) = ru + rv + bmin · (cmin min(ru, rv) + cmax max(ru, rv)), bmin ≥ 1, cmin

dpref(u, v) = ru + rv + bpref · (cmin min(ru, rv) + cmax max(ru, rv)), bpref > bmin

Using the functions dmin(u, v) and dpref(u, v), we then can redefine the repulsive and
attractive forces as follows:

d′X(ru, rv) = dX(ru, rv)− dmin(ru, rv), X ∈ {pref, actual}

frep(ru, rv) =


d′pref(ru,rv)

2

d′actual(ru,rv)
if 0 ≤ d′actual(ru, rv)

∞ otherwise

fattr(ru, rv) =


d′actual(ru,rv)

2

d′pref(ru,rv)
if 0 ≤ d′actual(ru, rv)

0 otherwise

Here, d′X(ru, rv) serves as simplification for the difference between preferred and min-
imum distance. These forces behave almost as in the original algorithm, the only dif-
ference is that they ensure a minimum distance between every vertex pair as illustrated
in Figure 3.12. Although this minimum does not guarantee enough space for routing
the edges, it was sufficient for computing good layouts in practice. Later, we give a
parameter configuration that we successfully used to generate a drawing for real-world
graphs.

So far, we considered the first three of our five requirements. We still have to deal
with disconnected graphs and a circular-shaped layout. While the first criterion is really
important because it prevents the layout from falling apart, the latter is rather a cosmetic
issue. We can treat both issues by introducing a third, gravitational force as done in
other algorithms. Possible choices are forces that are linear or quadratic with respect
to the distance to the origin of the enclosing vertex, which leads us to the more general
definition given below:

fgrav(v) = g · |pos(v)|p, g > 0, p ≥ 0
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ru rv

dmin

dpref

(a) Vertex pair placed in optimal distance.

d

f

fattr

frep

fattr + frep

k

(b) Original force function.

d

f

fattr

frep

fattr + frep

dmin dpref

(c) Redefined force function.

Figure 3.12: Vertex distance and course of the force function.
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3.5 Edge Layout

Even though this kind of gravitational force does not necessarily produce optimal
results, it is simple and scales properly for larger graphs; we discuss its characteristics
in the next chapter.

Temperature and Vertex Displacement

In the original algorithm given by Fruchterman and Reingold, the temperature is an
absolute boundary that is equal for every vertex. This is sufficient if vertices are rep-
resented by points and the layout area is fixed, but in our case vertices are represented
by disks and we want to compute a proper layout without dictating the area. For this
reason, we parametrize the temperature by the current radius of the enclosing vertex,
which can be computed in each iteration as in the procedure Resize((v)). Let par(v)
denote the parent of a vertex v, then we can update the position for c as follows:

pos(v)← pos(v) + disp(v)
|disp(v)| ·min(|disp(v)|, t · rpar(v))

Other than in the original algorithm, the maximum displacement depends on the
current layout and the temperature t only scales the movements. This also means that
even if the temperature is a strictly monotonic decreasing function, the step width might
increase due to changes in the layout.

Refined Algorithm

Even though the input for our partial layout algorithm is the segment graph SG, we
defined forces and other equations with respect to vertices, not nodes, since we only deal
with root segments and move vertices. The vertex associated with a node n is denoted
as ver(n). Due to our initial layout, we do not need to initialize vertices as in the original
algorithm, and we neglect segments other than root segments. Finally, the modifications
for the algorithm of Fruchterman and Reingold, which we described above, lead us to
Algorithm 3.5.

3.5 Edge Layout
In the next section, we describe how to compute the edge layout after the vertices have
been placed. We first define the input and the goals we want to achieve. Next, we refer to
solutions for similar problems found by other researchers and discuss their applicability.
Finally, we sketch our solution, detail the individual steps and specify an algorithm that
solves the given problem.

3.5.1 Problem Definition

At this point, we start with a layout that already meets most of the requirements given
in the first chapter: Vertices are represented by disks, they do not overlap, the hierarchy
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Algorithm 3.5 Partial layout algorithm
1: procedure Layout(SGw = (Nw, Sw, nv, se), Vw)
2: initialize t ◃ initialize temperature t
3: for i← 1 to iterations do
4: for each v ∈ Vw do ◃ compute repulsive and gravitational forces
5: disp(v)← 0 ◃ initialize displacement vector
6: for each u ∈ Vw do
7: if u ̸= v then
8: ∆← pos(v)− pos(u)
9: disp(v)← disp(v) + ∆

|∆| ·frep(u, v)

10: disp(v)← disp(v)− pos(v)
|pos(v)| ·fgrav(v)

11: for each (nv, nu) ∈ Sw do ◃ compute attractive forces
12: if (nv, nu) is root segment then
13: v ← ver(nv)
14: u← ver(nu)
15: ∆← pos(v)− pos(u)
16: disp(v)← disp(v)− ∆

|∆| ·fattr(u, v)
17: disp(u)← disp(u) + ∆

|∆| ·fattr(u, v)

18: for each v ∈ V do ◃ displace vertices
19: pos(v)← pos(v) + disp(v)

|disp(v)| ·min(|disp(v)|, t · rw)

20: t← cool(t)
21:
22: function frep(u, v)
23: if 0 > d′actual(ru, rv) then
24: return ∞
25: return d′pref(ru,rv)

2

d′actual(ru,rv)

26:
27: function fattr(u, v)
28: if 0 > d′actual(ru, rv) then
29: return 0

30: return d′actual(ru,rv)
2

d′pref(ru,rv)

31:
32: function fgrav(v)
33: return g · |pos(v)|p, g > 0, p ≥ 0
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3.5 Edge Layout

is respected and related vertices are placed near to each other. To complete the layout,
we have to fulfill the four remaining constraints listed below.

• Edge shapes: Edges are represented by a series of lines or curves.

• Collision-free layout: No vertex v overlaps with or touches an edge not incident
to v.

• Edge bundling: Edges with a similar origin or target should be routed together.

• Edge routing: Edges should not deviate strongly from their ideal route and
unnecessary crossings should be avoided.

While the edge bundling is nearly covered by the transformation to the segment graph,
we still have to draw the single edges according to this bundling. Besides that, the main
point is to introduce a suitable, non-overlapping polyline for each segment.

3.5.2 Known Approaches
We already referred to the hierarchic bundling introduced by Holten [32], which is similar
to our graph transformation. In addition to this technique, in a joint work with van
Wijk [33] Holten presented another method to bundle edges of non-hierarchic graphs;
they use forces to pull edges together locally. Gansner et al. [25] showed a different
approach for bundling edges according to a proximity metric and Ersoy et al. [20] find
common routes for edges by carving a skeleton out of a graph. Moreover, Pupyrev et
al. [40] introduced a technique for both routing and bundling edges by minimizing path
length.

Respective to edge routing, an early work is the paper by Dobkin et al. [14] in which
edges are represented by obstacle-avoiding paths consisting of splines. More recent
approaches were presented by Dwyer et al. [16]: A first work deals with the embedding
of edge routing in a force-directed algorithm; it also tries to minimize crossings. Later,
Dwyer [17] contributed to a second paper in which simplified visibility graphs are used
to route edges of large graphs.

Besides the first mentioned work by Holten, all techniques refer to non-hierarchic
graphs and could be used for computing the partial layout. However, for simplicity
we mostly ignore edge bundling in the partial graphs apart from the already described
hierarchic bundling. Furthermore, we show an alternative method for routing edges by
employing an easy geometric heuristic.

3.5.3 Algorithm Sketch
We start with a layout in which each segment is represented by a straight line between
its end nodes, whose thickness is determined by the amount of edges associated with the
respective segment. The basic idea is to incrementally modify this graph by checking
segments for collisions with vertices and inserting new nodes avoiding these collisions
until all collisions are removed. Besides, we remove crossings of segments that were

45



3 Algorithm

n

u v

pos(n) = pos(u)

(a) Node centered.

n

u v

pos(n) = ru · pos(v)−pos(u)
|pos(v)−pos(u)|

(b) Node placed on border.

Figure 3.13: Node positions for root segments.

introduced by inserting nodes. Finally, we convert the routing of the segments into a
corresponding edge routing that is – assuming that the segment routing is collision-free
– collision free as well. In this work, we limit ourselves to computing a routing consisting
of a series of lines instead of curves.

3.5.4 Bundle Routing
We already computed the positions and radii for all vertices. To obtain a straight-line
drawing with segments, we only have to define the positions of their end nodes and
connect them with a thick line. For root segments, we could simply use the centers of
the involved vertices as node positions. However, as seen in Figure 3.13a this would not
lead to a satisfying result considering the connections to child vertices. Instead, we place
the nodes at the border of the respective vertex; this position can easily be computed as
shown in Figure 3.13b.

If we go back to the projection of segments onto the hierarchy, then it is easy to see that
the end nodes of a root segment can be regarded as roots of two trees consisting of the
segments ending at the root segment as depicted in Figure 3.14. For a non-root segment
s = (nu, nv) connecting the vertices u and v, we then can compute the node positions
of nu and nv as sketched in Figure 3.15. It is important to mention that s = (nu, nv)
is not necessarily the only segment connecting the vertices u and v as indicated in the
figure by the nodes n′

u and n′
v; this condition only holds for root segments.

Based on that, we can compute all node positions recursively starting from the root
segments’ positions. Let s = (nu, nv) denote a segment that is either a root segment or,
without loss of generality, for which v is the unique parent of u. The position of the node
nu is then given by the formula below; in contrast to previous definitions, henceforth we
use absolute positions abs(∗) for vertices and nodes.

abs(nu) = abs(u) + ru ·


abs(v)−abs(u)
|abs(v)−abs(u)| if n is a root node
abs(nv)−abs(u)
|abs(nv)−abs(u)| otherwise

abs(v) =
{
0 if v = root

pos(v) + pos(par(v)) otherwise
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Figure 3.14: Projection of edges on the hierarchy and their corresponding segment trees.
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Figure 3.15: Positions for non-root nodes.
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(a) Simple transition. (b) Corrected transition.

Figure 3.16: Transition between single segments and a thicker bundle.

With this definition for the positions of segment nodes, we can route each segment
by inserting nodes at specific positions; these nodes are denoted as intermediate or split
nodes. For finding appropriate positions, we first detect collisions between a segment and
vertices. Since the partial layouts do not overlap, it is sufficient to compare the vertices
of the partial graph enclosing the segment. Collisions can be determined by replacing
segments with rectangles and computing the intersection between this rectangle and
the disk representing the vertex; there exist plenty of suitable algorithms [37]. We
should note that we compute only collisions with vertices not incident to a segment.
Moreover, we introduce a metric for collisions to identify the vertex most obstructing for
the respective segment. Finally, we insert a new node outside of the critical vertex and
split the segment, connecting its end nodes by two new segments with the inserted node.
Because the new segments might overlap with vertices as well, we repeat this process
for the created segments until no collision is found. The complete procedure is outlined
in Algorithm 3.6; with Gs and SGs we refer to the partial graph and segment graph,
respectively.

Algorithm 3.6 Segment routing
1: procedure Route(s = (nstart, nend), SGs = (Ns, Ss, nv, se), Gs = (Vs, Es))
2: nsplit ←FindSeverestCriticality(s, Gs)
3: if null = nsplit then
4: return
5: Remove s from SGs

6: Add split node nsplit to SG
7: Add s1 = (nstart, nsplit) to SG
8: Add s2 = (nsplit, nend) to SG
9: Route(s1, SGs, Gs) ◃ SGs1 = SGs2 = SGs

10: Route(s2, SGs, Gs)

For computing the criticality we still have a slight problem since multiple segments
leaving a vertex with the same target are bundled into one thicker segment. As seen
in Figure 3.16a, using the same node position for all these segments spoils the transi-
tion between the non-bundled and the bundled segments. However, we can correct the
transition by offsetting the incoming bundles as shown in Figure 3.16b.
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abs(nu) abs(nv) + offset(nv , s)

a

b c

d

norm: normal vector of abs(nv)+offset(nv,s)−abs(nu)
|abs(nv)+offset(nv,s)−abs(nu)|

norm · width(s)
2 width(s)

Figure 3.17: Rectangle for a segment s = (nu, nv).

The transition is still not perfect, but we show how to create smooth transitions when
we route single edges. This leads to slightly different edge routes, for which we do not
prove that they are free of collisions. Nevertheless, in practice we did not experience
collisions in layouts generated by our algorithm. Let s = (nu, nv) denote a segment that
is either a root segment or, without loss of generality, for which v is the unique parent
of u. Furthermore, let norm denote the normalized normal vector for the vector from
nv to nv as illustrated in Figure 3.17. Then we can compute the rectangle rect(s) for s
as follows:

rect(s) = (a, b, c, d)

a = abs(nu) + norm · width(s)
2

b = abs(nu)− norm · width(s)
2

c = abs(nv) + offset(nv, s)− norm · width(s)
2

d = abs(nv) + offset(nv, s) + norm · width(s)
2

The width for a segment s can be computed by the number of edges |s| associated
with it; the constants WIDTH and SPACE in the equation below denote the width of a
single edge and the required space between two edges so that the edges can be drawn in
parallel.

width(s) = |s| ·WIDTH + (|s| − 1) · SPACE

Regarding the offset, we again have to differentiate between root and non-root seg-
ments. If s is a root segment, then the offset is zero as indicated in Figure 3.18a. If s is
not a root segment, we can compute the offset using the idea given in Figure 3.18b and
3.18c. Let sui = (nui , nv) for i ∈ {1, ..., n} denote the incoming non-root segments for a
node nv and sv = (nv, nw) the bundled segment leaving for another node nw. Assuming
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nu nv

(a) Root segment.

v
w

nv
su1

su2

su3

sv

u1

u2

u3

(b) Non-root segments.
su1

su2

su3

nv sv nw width(sv)
|offset(nv , su3 )|

width(su2 )/2

SPACE

(c) Offset for non-root segments.

Figure 3.18: Determining the segment offset.

that the nodes nui are sorted according to their angle towards nv, the offset is the result
of the following equations:

offset(nv, suk
) = normsv ·

(∑
i<k

(width(sui) + SPACE) +
width(suk

)− width(sv)
2

)

normsv : normal vector of abs(nw)− abs(nv)

|abs(nw)− abs(nv)|

v w
nv

φu1

su1su2

su3

sv

u1

u2

u3

Figure 3.19: Sorting nodes radially.

The sorting of incoming nodes nui is done as
illustrated in Figure 3.19. For the rare case of
nodes with the same angle – this can happen due
to vertices being placed behind each other – we
can simply use the distance of the nodes to the
bundling node vn as a secondary sorting criterion.
Since vertices are not overlapping, this induces a
unique order on the incoming nodes.

Finally, we are able to determine the criticalities
for segments. In Figure 3.20, a segment s repre-
sented by a rectangle and intersecting a few vertices is displayed. It is easy to see that
even though the vertex u is bigger than the vertex v, the latter one is more obstructive.
An intelligent way to route the segment around a colliding vertex v is to insert a split
node nsplitv outside of v that lies on the line given by v and the reference point pv. As-
suming that we already know how to compute the position of the respective split nodes,
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nsplitv

nsplitu

v

u

pv

Figure 3.20: Critical points for a segment.

a simple metric to measure the severity of a criticality cv for a vertex v is to compute
the distance of the split node nsplitv to the collision’s reference point pv, that is, the
deviation from the previous route:

sevv = |abs(nsplitv)− pv|

The severest criticality of a segment may then be computed as in Algorithm 3.7.
Regarding the position of nsplitv , we use the equation given below; in the rare case that
pv = abs(v), that is, the center of the vertex and the reference point coincide, one can
use the normal unit vector of s. The formula ensures the distance between the split node
and the vertex is great enough so that the new segments do not collide with the vertex
at their end points. However, as illustrated in 3.21 there could still be collisions between
the same vertex and the new segments that need to be removed.

nsplitv = abs(v) + pv − abs(v)
|pv − abs(v)| · (rv + width(s)/2 + SPACE + min(rv,width(s)))

v

Figure 3.21: New collisions after rout-
ing a segment.

Figure 3.22: Overlapping neighboring
segments.

3.5.5 Crossing Reduction and Rebundling

The problem with the given heuristic is that as illustrated in Figure 3.22 it may cause
unnecessary crossings between neighboring segments with the same target. With target,
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Algorithm 3.7 Finding criticalities
1: function FindSeverestCriticality(s, Gs)
2: sev ← −∞
3: nsplit ← null
4: for each v ∈ Vs do
5: if intersect(s, v) then
6: nsplitv ←FindSplitNode(s, v)
7: sevv ← |abs(nsplitv)− pv|
8: if sev < sevv then
9: sev ← sevv

10: nsplit ← nsplitv
11: return nsplit

12:
13: function FindSplitNode(s, v)
14: pv ← ... ◃ computation of pv omitted
15: dir ← pv−abs(v)

|pv−abs(v)| ◃ direction towards pv
16: if |dir| = 0 then
17: dir ← normal unit vector of s
18: return abs(v) + dir · (rv + width(s)/2 + SPACE + min(rv,width(s)))

we do not mean the end node of the segments, but the first node at which the paths
indicated by the segments join. The main reason for these crossings is that split nodes
for segments with greater width are placed in greater distance from obstructing vertices.
We eliminate these crossings by merging the involved segments roughly at the point at
which they cross. The input for this step is a valid routing, that is, there are no vertices
overlapping with segments.

The basic procedure is to create the merge node, connect it with a new segment to
the first node that is passed by both segments, the target node, and remove obsolete
segments and intermediate nodes. However, as seen in Figure 3.23 there may be another
segment joining one of the merged segments before the target node; we have to connect
these segments to the target node as well since the intermediate node will be removed.
We remove the segments in between since the thickness of the merged segments increases
and this might lead to new vertex collisions; afterwards, we again compute a routing
for the new segments. In contrast, segments that are not subject to change do not have
to be rerouted. As in the vertex layout and the segment routing, we can remove the
crossings separately for each partial layout.

To check if two segments cross each other we simply compute the intersection of the
rectangles introduced in the previous section. Nevertheless, we bundle only segments
converging at some point, hence it is not necessary to check all segment pairs in the
partial segment graph. We limit ourselves to the segments in the tree given by segments
targeting the same exit node in a partial layout as exemplified in Figure 3.24. We do
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unrelated segment

target node

(a) Before removal.

merge node

(b) After removal.

Figure 3.23: Unrelated segments joining segments that will be removed.

not go into detail about how to find crossings between segments efficiently, one could for
example employ a modified Bentley-Ottmann algorithm [9].

Figure 3.24: Segment tree for
an exit node.

Now, we only need to explain how to place the merge
node to remove a crossing. A possible solution is to re-
place the segments with simple lines and use the nearest
point between them as merge point. These lines do not
necessarily cross, so it is not sufficient to just compute
their intersection. However, if these lines cross, we en-
counter another issue: On the intersection point, the
segments overlap completely, and after a merge at this
point they would use less space than before. To avoid
this, we choose the nearest point between the inner lines
of a segment. For the rectangles of two segments, the

inner lines are the sides that overlap first if we move towards the final merge node on the
border of the partial layout; an example is given in Figure 3.25a. Furthermore, we cor-
rect the merge position respective to the width of the involved segments as demonstrated
in Figure 3.25b; we omit the geometric details at this point. Finally, in Algorithm 3.8
the complete procedure of finding and removing an intersection between segments is
sketched.

intersection

(a) Inner lines of the rectangles representing
the segments.

merge node

(b) Merge node with offset.

Figure 3.25: Merge node computation.

3.5.6 Complete Segment Routing
The two steps described before lead us to Algorithm 3.9. We compute the layout sep-
arately for each partial graph and employ a queue to save segments for which we have
to find a routing and remove crossings. We initialize the queue by adding all segments
of the partial layout and process them in two steps. First, we route and remove all seg-
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Algorithm 3.8 Crossing removal
1: procedure RemoveCrossing(SGw = (Nw, Sw, nv, se), Gw = (Vw, Ew))
2: s1 = (nu1 , nv1), s2 = (nu2 , nv2)← ... ◃ find a crossing in SGw, Gw

3: if no crossing found then
4: return
5: nmerge ← ... ◃ merge node for s1 and s2
6: ntarget ← ... ◃ target node for s1 and s2
7: Sobs ← ... ◃ segments leading from u1 and u2 to ntarget
8: Nobs ← {n|n is an end node for s ∈ Sobs} \ {nu1 , nu2 , ntarget}
9: Sinc ← {(nu, nv) ∈ Sv \ Sobs|nv ∈ Nobs}

10: remove Sobs ∪ Sinc from Sw

11: remove Nobs from Nw

12: add ntarget to Nw

13: add (nu1 , nmerge), (nu2 , nmerge) and (nmerge, ntarget) to Sw

14: for each (nu, nv) ∈ Sinc do
15: add (nu, ntarget) to Sw

ments in the queue; in this process, new segments may be inserted due to old segments
being split up. When the queue is empty, crossings in the partial layout are removed,
if possible. Since the route of the segments might be modified by merging segments in
this second step, we have to repeat the complete process as long as segments remain to
be routed or an unnecessary crossing is found. Even though we omitted the queue in
the previous algorithms, we assume that any new segment is added to the queue by the
respective subprocedure in which it is created. In the end, we obtain a layout in which
no segment overlaps with a vertex.

Algorithm 3.9 Segment routing
1: procedure Route(SG = (N,S, nv, se), G = (V,E, root,H))
2: for each v ∈ V do ◃ segment routing in every partial layout
3: Gv = (Vv, Ev)← partial graph for v
4: SGv = (Nv, Sv, nv, se)← partial segment graph for v
5: Q← Sv ◃ initialize segment queue
6: while Q is not empty do ◃ compute segment routing
7: while Q is not empty do
8: s← pop(Q)
9: Route(s, SGs = SGv, Gs = Gv, Q)

10: RemoveCrossing(SGv, Gv, Q)

3.5.7 Edge Routing
After routing the segments and removing all unnecessary crossings, we can draw single
edges. Most of their route is already fixed by the segment routes, we only have to draw
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Figure 3.26: Inevitable crossings. Figure 3.27: Edges within a segment.

them properly within their segments. Therefore, we have three requirements: Edges
should be mainly confined to the space assigned to their segments, they have to be
connected at segment transitions and we want to minimize the number of edge crossings
within segments. As seen in Figure 3.26 we cannot completely avoid crossings; however,
we show that it is possible to draw non-root segments without crossings and we reduce
the number of crossings within root segments.

If we start with a simple segment, we can draw the edges by choosing a start and an
end position for each of them and connecting these points with a straight line as seen
in Figure 3.27. The position can be computed according to the width of the respective
segment; before, we already reserved space such that the edges could be drawn in parallel
without touching. Let i denote the index of an edge e in a segment s = (nu, nv), then
its start position can be computed using the start node as base as in the formula below.
Here, dir denotes the normal unit vector for the vector from nu to nv. The end positions
can be obtained by permuting the indices and applying the same equation with the nodes
of the segment switched.

start(s = (nu, nv), i) = |abs(nu)|+ dir · (i ·WIDTH + (i− 1) · SPACE− 1

2
width(s))

For connecting edges at segment transitions, we just have to ensure that the end
positions of one segment are consistent with the start position of the other. Recalling
the segment tree defined before, it is easy to see that the start positions for leaf segments
may be chosen freely since they do not depend on incoming segments. Assuming that we
fixed the start positions, we can choose the end positions accordingly such that all edges
are drawn in parallel and hence without crossings. Next, we can determine the positions
for bundling segments by deriving them according to their incoming segments to connect
the edges as illustrated in Figure 3.28; again, the edges are parallel to each other. Of
course, segments usually arrive in different angles, but if we use the start positions of the
bundle segment for the end positions of the incoming segments, we achieve a drawing
with suitable transitions that is still free of crossings at the cost of slightly distorted
rectangles. We continue this up to the root segment, for which we have to derive the
positions of incoming edges at both sides. The root segment is also the only segment at
which crossings between internal edges may occur.

The last step is to reduce the amount of crossings within the root segment by changing
the order of the edges at the leaf segments. This also induces a different edge order in all
other segments. We found two types of edge crossings that can easily be avoided: Inter-
sections of multiple edges between the same vertices and crossings of edges originating
from the same vertex. Most, if not all other crossings are caused by the routing of the
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(a) (b)

Figure 3.28: Segment transitions.

segments and thus cannot be prevented. The first case is illustrated in Figure 3.29 and,
provided that the edges are sorted equally for both vertices, can be fixed by inverting
the order at which edges leave a vertex for one of the two vertices. Supposed that a
unique index is assigned to each vertex, we can decide whether to invert the order for a
vertex or not by simply comparing it with its current counterpart.

Figure 3.29: Crossings
between multiple edges.

An example for the second case is given in Figure 3.30: As
illustrated, it is possible to draw the edges of a segment s end-
ing at the vertex v such that they never cross each other. To
achieve this, it is not only necessary to invert the order for
multiple edges, but also to sort the edges according to the seg-
ment routing. A suitable order can be computed as described
in Algorithm 3.10. We start with the root segment sr and
determine the partial order for each incoming segment on the
opposing side of v recursively. Segments without incoming

segments are end segments and we can draw all involved edges in parallel as denoted
before. For other segments, we form the complete order by assembling the partial or-
ders of their incoming segments in radial order. We already used this order to find an
appropriate offset for connecting segments, an example was given in Figure 3.19 on page
50. Finally, we are able to compute all the remaining edge positions – and thus the
complete layout – as detailed in the first part of this section, the start positions at the
leaf segments are derived from the order given by this algorithm.

3.6 Conclusion
In this chapter, we described how to compute a complete layout for a hierarchic graph
using force-directed methods and routing heuristics. We omitted proofs and cannot
guarantee that the algorithm produces a collision-free layout corresponding to our re-
quirements. It is also possible that the heuristic given for routing the edges does not
terminate. However, even though our algorithm is not very efficient so far, there is
room for improvement and it is effective; as explicated in a later chapter, the layouts we
created are of high quality.
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v

sr

Figure 3.30: Edges originating at the same vertex.

Algorithm 3.10 Edge order
1: function EdgeOrder(v, s)
2: ev ← ... ◃ edges ending at v
3: Sinc ← ... ◃ incoming segments opposite to v
4: if Sinc = ∅ then
5: u← ... ◃ end vertex of s
6: ev∩u = ev ∩ eu ◃ edges between u and u
7: if indexu < indexv then
8: return list of ev∩u in arbitrary order
9: else

10: return list of ev∩u in inverted order
11: liste ← ∅
12: for each sinc ∈ Sinc do ◃ assume Sinc sorted according to their angles
13: listes ← EdgeOrder(v, sinc)
14: liste ← liste + listesreturn liste
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4 Parameter Studies

In this chapter we detail the effect of the different parameters for our algorithm and derive
values that lead to good layouts. We start with basic factors that primarily determine
local correlations of vertices and edges, that is, attraction and repulsion. Next, we
deal with the gravity needed for disconnected graphs and discuss how to choose the
temperature and the number of iterations. Finally, we briefly recapitulate our findings
and enumerate all parameters with suitable values.

Before we go any further, there are three parameters that dictate the minimum scale
of our layout, namely edge width, edge spacing and the minimum radius for vertices.
Clearly, if the space between edges or the minimum radius is much greater than the edge
width, the layout is destroyed since it is hardly possible to see edges between vertices.
Having said that, if we regard this, their impact on the layout quality is insignificant so
we do not address them further. Our layouts are computed with 1 for the edge width, 4
for the edge spacing and 20 for the minimum radius.

4.1 Attraction and Repulsion

The most important parameters are the ones concerning repulsive and attractive forces
because they determine the local layout and thus also the global layout; the respective
equations are displayed below. We have to consider three major factors: The stability
of the forces, the general distance between vertices and the weight of the radii.

dX(u, v) = ru + rv + bX · (cmin min(ru, rv) + cmax max(ru, rv))
X ∈ {min,pref}
bpref > bmin ≥ 1

cmin, cmax ≥ 0

cmin + cmax = 1

d′X(ru, rv) = dX(ru, rv)− dmin(ru, rv), X ∈ {pref, actual}

frep(ru, rv) =


d′pref(ru,rv)

2

d′actual(ru,rv)
if 0 ≤ d′actual(ru, rv)

∞ otherwise

fattr(ru, rv) =


d′actual(ru,rv)

2

d′pref(ru,rv)
if 0 ≤ d′actual(ru, rv)

0 otherwise
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By the term stability of forces we refer to the behavior of vertices that are moving
towards each other. If their distance falls below the minimum distance, the attractive
force becomes zero and the repulsive force infinity resulting in a strong force pulling
them apart. However, the closer bpref is to bmin, the weaker the repulsive force becomes
and the stronger the attractive force because d′pref(ru, rv) approaches zero. This means
that whenever the actual distance is bigger than the minimum distance, the vertices
are strongly contracted, and the vertices are likely to oscillate without finding a stable
position during the algorithm. The solution for this is to increase the size of the window,
that is, the size of bmin in comparison to bpref.

d′pref(ru, rv) = (bpref − bmin) · (cmin min(ru, rv) + cmax max(ru, rv))

The next issue is the distance between vertices that depends on the size of bpref and
bmin. If these parameters are too large, we obtain a layout where the vertices are strongly
scattered and it becomes difficult to spot vertices in deeper levels. In contrast, the layout
clogs in case we choose a small value for these parameters so that there is not enough
space between the vertices to route the edges; colliding edges are highlighted in red. As
illustrated in Figure 4.2, bmin ∈ [2, 6] and bpref = 2bmin lead to the best results in our
experiments.

The last parameter pair, cmin and cmax, is only important if vertices of strongly diver-
gent size are member of the same partial graph. If we weigh the radii equally or favor the
bigger one, a layout as in Figure 4.1a forms. However, the layout of Figure 4.1b, where
smaller vertices are placed nearer to bigger vertices, is much more space-saving. This is
especially important for graphs with deep hierarchies since the size of child vertices is
propagated to their parents. We accomplished to generate a balanced layout by setting
cmin = 0.05 and cmax = 0.95.

These four parameters are essential for the layout quality. For instance, if there is not
enough space between vertices to route the edges, it is possible to adjust the parameters
to distribute them on a larger area.

(a) cmin ≤ cmax (b) cmin >> cmax

Figure 4.1: Parameter configurations for the ratio between vertex radii.
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(a) bmin = 0.0625 (b) bmin = 0.125

(c) bmin = 0.25 (d) bmin = 0.5

(e) bmin = 1 (f) bmin = 2

(g) bmin = 4 (h) bmin = 8

(i) bmin = 16 (j) bmin = 32

Figure 4.2: Parameter configurations for the vertex distance with bpref = 2bmin.
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Figure 4.3: Compaction by gravity.

4.2 Gravity

The third force, the gravity, ensures that our layout does not collapse, if the graph is
disconnected, and that it is compacted. It is crucial that the force is neither too weak
nor too strong, otherwise the layout disintegrates or implodes as illustrated in Figure
4.4a and 4.4c. The parameter p determines the scalability of the gravity: The higher
it is, the faster the gravity will grow with the layout size. The parameter g is merely
a tuning factor that ensures that the gravity is adequate for the layouts on the lowest
levels of the hierarchy. We obtained the best results with a quadratic gravity; the layouts
displayed in Figure 4.3 and 4.4b were generated using g = 0.001 and p = 2.

fgrav(v) = g · |pos(v)|p, g > 0, p ≥ 0

4.3 Number of Iterations and Temperature

The last parameters concerning the vertex layout are the temperature and the number of
iterations. For a vertex v, the step size is restricted by t ·rpar(v), that is, the temperature
times the radius of its parent. Since the parent vertex encloses all of its children, each
child can be moved to any other position within its parent if t ≥ 2, hence it is sufficient
to choose t < 2 as initial temperature. In fact, the layout seemed to deteriorate for a
temperature near 2; we found that starting with t = 1 leads to stable results. Further-
more, we selected a function decreasing linearly over the number of iterations leading us
to the function given below with tstart = 1.

t(i) = tstart ·
(
1− i

n

)
, i = 1, ..., n

Finally, we have to fix the number of iterations denoted by n. While a few hundred
steps did not always lead to good results, after a few thousand steps the layouts stabilized;
in Figure 4.5 the effect is illustrated. It is important to remark that the figures do not
show one execution of the algorithm at different steps: Each figure represents a complete
run of the algorithm with the respective value of n.
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(a) g = 0.1, p = 1

(b) g = 0.001, p = 2

(c) g = 1, p = 2

Figure 4.4: Gravity parameter configurations.
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(a) n = 10 (b) n = 20

(c) n = 40 (d) n = 80

(e) n = 160 (f) n = 320

(g) n = 640 (h) n = 1280

(i) n = 2560 (j) n = 5120

Figure 4.5: Number of iterations.
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4.4 Summary
We applied our algorithm to different real-world instances and succeeded in generating
nice-looking layouts by employing the parameter set introduced before; all the parame-
ters are listed in Table 4.1. Sometimes it was necessary to adjust the parameters for the
vertex distance in order to enable the edge routing, but in most cases we could use the
exact same set.

Parameter Letter Value
basics WIDTH 1

SPACE 4
RADIUS 20

frep, fattr bmin 2-6
bpref 2bmin
cmin 0.95
cmax 0.05

fgrav g 0.001
p 2

iterations n 1000-5000
temperature tstart 1

Table 4.1: Parameters for the layout algorithm.
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5 Evaluation

Before concluding our work, we evaluate the results of our research in this chapter. First,
we present our results, and afterwards, we show some shortcomings in our approach and
discuss options for improving the algorithm in the future.

5.1 Results
We conducted experiments on one artificial project, the mentioned formula parser, and
a few real-world instances. The algorithm designed in this work is capable of creating
high-quality layouts for each of them. We start by reviewing the layouts of our example
project in detail and continue by touching on the other projects. Finally, we introduce
two prototypes for tools employing our algorithm that can be used to analyze software.

5.1.1 Example Projects

Figure 5.1: Detailed section of the refac-
tored layout.

For the two hand-drawn example layouts we
also created an automatic layout, which is
pictured in Figure 5.2a and 5.2b, respec-
tively. Even though the automatic layouts
do not reflect the symmetries as nicely as
the manual layouts, they still resemble each
other and it is possible to find the code du-
plication in the automatic layout as well.
Besides, they preserve a high level of de-
tail: In Figure 5.1, a section of the refactored
graph is magnified. Here, class vertices and
their representative vertices are colored in
black, method vertices in blue, field ver-
tices in orange and constructor vertices in
teal. The different edge types are also dis-
tinguished; black edges are references, class
extension or interface implemention, blue
edges represent method calls and orange edges indicate field accesses.

It is easy to understand that the layouts strongly reflect the structure originally im-
posed by the developer. For instance, the program logic of the formula parser is dis-
tributed on two packages: While the left one deals with the parsing of actual text, the
right one models formulas mathematically. Furthermore, this finding is not only limited
to our artificial example, but also applies to other real-world projects. In Figure 5.3, a
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(a) Original project.

(b) Refactored project.

Figure 5.2: Automatic layout of the formula parser.
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Figure 5.3: Project A.

small command-line tool is displayed that is split into two parts, namely the application
and framework classes that are not specific to the code. An even better example is the
project illustrated in Figure 5.4; its three main components are the graphical user inter-
face, the domain model and utility classes. Finally, a software written according to the
model-view-controller pattern is shown in Figure 5.5. The small external disk contains
only framework classes and the biggest, which represents the application, consists of a
model package, a package for the view and one for the controller.

5.1.2 Tooling

In addition to designing the algorithm, we also developed a tool so that we could employ
the algorithm to real-world software. In general, it provides an interactive visualization
of the graph that allows pan and zoom; Figure 5.6 is a screenshot of the application.
Furthermore, as illustrated in Figure 5.7, the user is able to select a vertex to highlight
it together with its associated edges. Because very thin lines vanish if the user zooms
out, vertices and edges are drawn with thicker or thinner lines depending on the current
scale so that it is possible to recognize connections between vertices even though they are
quite small. Of course, on a large scale single edges may no longer be visible. As stated
previously in this work, we replaced the straight lines by Bézier curves to smoothen the
layout; however, they may induce extra collisions with vertices.

In the next step, we integrated our tool into Eclipse, a well-known IDE, as shown
in Figure 5.8. By this means we can link the source code directly with its graphical
representation, which helps us, for example, to quickly grasp the inherent structure of
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Figure 5.4: Project B.

Figure 5.5: Project C.
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Figure 5.6: Tool for exploring a software graph.

a class or to inspect its external dependencies without having to read the complete file.
Moreover, we can use it to display additional information like software metrics.

5.2 Future Work

Even though our algorithm provides satisfying results, there are still some deficiencies.
Furthermore, we found different problems that have to be solved before we can de-
velop functional tools. In this section, we discuss weak spots in the algorithm, address
the challenges concerning the rendering of the layouts and enumerate opportunities for
improving the tools.

5.2.1 Algorithm

While we focused on the effectiveness of the algorithm, we did not try to improve its
performance as long as the layouts were generated in a reasonable amount of time.
However, especially for very large graphs it would be beneficial to analyze and optimize
the time complexity of the algorithm. Especially the heuristic for the edge routing should
be improvable.

Apart from that, there are more specific opportunities to enhance the algorithm. Our
initial layout is by far the least time-consuming part of the algorithm; nevertheless, a
more subtle approach might reduce the number of iterations needed during the vertex
layout without significantly prolonging the computation. One could even think about
combining the initial layout and the vertex layout in one step by applying more sophis-
ticated techniques like GRIP [24] instead of simple force-directed methods.

71



5 Evaluation

Figure 5.7: Highlighting of a vertex and its corresponding edges.

Figure 5.8: Integration of the tool in Eclipse.
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As for the quality of the layout, we ignore external edges while placing the vertices.
A simple and not invasive way to improve the layout would be to rotate vertices so that
the distance of their children’s external edges is minimized. Admittedly, its effectiveness
is restricted since the relative placement of the children towards their parent is not
changed. A more promising method would be to apply the forces also to external edges
or to introduce different forces for them, but this method is not only more complicated,
but also causes different partial layouts to depend on each other.

Figure 5.9: Vertex with suboptimal use of space.

Another mentionable issue concerns
the gravity. As illustrated in Fig-
ure 5.9, we found that in some cases
vertices consume a lot of space even
though they are mainly empty; this re-
sults from the algorithm we currently
employ to determine the radius of the
parent vertex. Instead, we could also
compute the minimal enclosing disk
for all children and move them so that
the center of the minimum enclosing
disk coincides with the position of the
parent vertex. This does not change
the positions of the children relative to
each other and thus the internal lay-
out is not affected. However, if exter-
nal edges are involved in the compu-
tation, the forces become hard to control and might oscillate. We hope that these issues
can be eliminated for example by using an adaptive gravity.

Figure 5.10: Edge bundles
overlapping while leaving a
vertex.

The next topic we want to touch on is the edge rout-
ing. We believe that crossings between different edge
bundles can be reduced further, whether or not these
crossings occur at the border of vertices as shown in
Figure 5.10 or not. In this context one could also try
to bundle independent bundles that overlap or take sim-
ilar routes. Another major issue is the space between
vertices: We already mentioned that in some cases it is
necessary to increase it so that all edges can be routed.
Certainly, in the current form of the algorithm it is only
possible to increase the space globally for all vertices,
but most space problems in edge routing are limited to
single vertices. Since the partial layouts can be com-

puted independently, one could adjust the parameters of the force-directed algorithm
locally so that the global layout remains compact.

Finally, due to the modular structure of our algorithm we can easily replace parts as the
edge routing by different techniques, and it might even be feasible to combine the vertex
placement and the edge routing into one procedure. Furthermore, it would be interesting
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Method

Class

Field

Package

Figure 5.11: Class-centered layout for a hierarchic reference graph.

to combine various techniques for arranging the higher levels of the hierarchy differently.
In Java, elements like classes usually possess a high cohesion, but the content of packages
may vary strongly. For this reason, it might prove useful to ignore packages within the
hierarchy so that types – excluding internal types such as nested classes – can be placed
arbitrarily. As illustrated in Figure 5.11, packages could be visualized by partitioning
the resulting layout using, for example, Voronoi diagrams, while classes, methods or
fields are displayed hierarchically. In contrast to the pure hierarchic approach, this kind
of visualization does not guarantee that packages are drawn monolithically.

Again, the map metaphor is reflected nicely. However, since child packages use the
complete space of their parent packages, new difficulties emerge; an example would be
how to indicate the hierarchy of packages.

5.2.2 Rendering

As from now, the biggest obstacle that prevents us from developing a nicely working
tool is not the computation of the layout, but the visualization of it. If we provide an
interactive map for exploring the software, we have to adjust the layout to the currently
displayed section of the graph every time something changes; this also includes zooming
and panning and something like a user selection. These changes may occur repeatedly
within seconds or milliseconds and because the user interface has to respond immediately,
it is too slow if one just tries to render the complete layout. These problems are common
to geographic maps and it should be possible to apply their solutions in this context.
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5.2.3 Tooling and Analysis
The last issue we want to bring up is the application of our findings. We already devel-
oped a prototype for exploring software and integrated it into an IDE, but it provides
only basic functionality. For instance, it would be nice to display metrics on top of the
layout as to analyze the overall condition of the software. Another interesting ques-
tion is whether one can identify problems in the software by automatically analyzing
the graph; the code duplication we found in our example project manifested itself in
multiple identical structures and should be easily recognized.
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6 Conclusion
In this thesis, we studied how to create a general-purpose visualization of software
projects represented as graphs. While there already are a lot of different visualiza-
tion techniques for software, these usually serve a specific purpose and do not intend
to provide universal insights. We chose graphs for their capabilities of describing the
structures in software and because it is simple to draw them two-dimensionally. For the
visualization itself, we employed principles known from cartography since geographic
maps are easily understandable.

We briefly introduced the structures inherent in software and discussed the applica-
bility of three graph models, namely the call graph, the simple reference graph and the
hierarchic reference graph. Based on the last model, we elaborated the requirements for
a general visualization of software and defined the layout problem we intended to solve.
Our goal was to draw a layout in which the hierarchy of a graph is emphasized since
it is the part of the software structure that usually reflects the design intended by the
developer. We also considered that we wanted an interactive and fully scalable map;
by using the hierarchy we can support features like zoom and the clarity of the map is
improved with the help of intelligent edge bundling.

Next, we analyzed the capabilities of different layout methods. We selected force-
directed techniques because they can easily be adjusted to special needs. We proposed
an algorithm that is able to compute a suitable layout in several smaller steps. Each
vertex is processed independently to generate a partial layout for its children disregard-
ing external vertices. Since the partial layouts cover only one level of the hierarchy, this
strongly reduces the complexity of our original problem. By handling the vertices in
bottom-up order, we can incrementally assemble the global layout of the graph. Fur-
thermore, we isolated the vertex placement and the edge routing in partial layouts.
Vertices are placed by a modified Fruchterman-Reingold algorithm that can deal with
two-dimensional vertices. For the bundling of edges, we again used the hierarchy of the
graph and the edge routing is computed through a simple geometric heuristic.

Afterwards, we examined the effects of the parameters of the algorithm on the layout
and explained them with practical examples. In particular, we rated the importance of
the specific parameters and derived instructions on how to choose a proper parameter
set. We also presented our results, pointed out deficiencies and suggested how to build
on our visualization.

To summarize, we are able to produce nice layouts that facilitate the exploration of
software projects. However, we found significant problems in rendering the graphs in real
time: These issues have to be solved if we want to create the corresponding interactive
visualization tools. Besides, the algorithm we designed is effective, but not very efficient
and could be enhanced in terms of performance as well as quality.
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