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Abstract

Time-dependent routing is becoming practical, as more detailed GPS traces of car
rides become available. But using more detailed data for time-dependent routing
means using more memory for applying speedup techniques. Customizable Contrac-
tion Hierarchies are a robust variant of Contraction Hierarchies that can cope with
difficult metrics. They have the disadvantage of higher memory consumption, but
allow for a very fast metric-dependent customization. In this work, we expand the
CCH with time-dependent edge weights. We propose an optimization scheme for the
input weight functions to reduce the space consumption of the TDCCH, while keeping
the index exact on the optimized metric. We argue, that our weight optimization
introduces only very small significant errors, while mostly staying below the noise of
the input data.

Deutsche Zusammenfassung

Zeitabhängige Routenplanung wird momentan praktikabel, da mehr und mehr GPS-
Daten über Autofahrten verfügbar werden. Aber die Nutzung von detaillierteren
Daten für Zeitabhängige Routenplanung führt auch zu höherem Speicherverbrauch für
Beschleunigungstechniken. Customizable Contraction Hierarchies sind eine robustere
Variante von Contraction Hierarchies, die auch mit schwierigen Metriken umgehen
können. Sie haben den Nachteil des höheren Speicherverbrauch, erlauben aber eine
sehr schnelle metrikabhängige Customization. In dieser Arbeit erweitern wir die
CCH mit zeitabhängigen Kantengewichten. Wir stellen ein Optimierungsschema für
die Eingabefunktionen vor, um den Speicherverbrauch einer exakten TDCCH auf den
optimierten Eingabedaten zu verringern. Wir argumentieren, dass unser Gewichtsop-
timierungsschema nur sehr kleine signifikante Fehler einfügt, und größtenteils unter
dem Rauschen in den Eingabedaten bleibt.

v





Contents

1. Introduction 1
1.1. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Exact Approach 5
2.1. Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1. Representation of Road Networks . . . . . . . . . . . . . . . . . . . . 5
2.1.2. Interpretation of Input Data . . . . . . . . . . . . . . . . . . . . . . 12

2.2. The Exact TDCCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1. Building an Exact TDCCH . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2. Exact Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3. Exact Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4. Exact Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.5. Problems with the Exact Approach . . . . . . . . . . . . . . . . . . . 23

3. Approximate Approach 25
3.1. Phase Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2. Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.3. Space Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2. The Approximate Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1. Cover Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2. Maximizing the Cover Potentials by Approximation . . . . . . . . . 34

3.3. Linking of Phase Functions with Optimal Result Size . . . . . . . . . . . . . 43
3.3.1. Phase Function Views . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2. Covering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.3. LMC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.4. Computing an Optimal Link . . . . . . . . . . . . . . . . . . . . . . 52

3.4. Merging of Phase Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.1. Phase Merge Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5. Weight Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.1. Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.2. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4. Experiments 57
4.1. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1. Time-Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.2. TDCCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.1. Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.2. Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vii



Contents

4.3. Comparison & Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.1. Other techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.2. TCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.3. Potentially Systematic Errors . . . . . . . . . . . . . . . . . . . . . . 68

5. Conclusion & Outlook 71

Bibliography 73

Appendix 75
A. Experiment Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Commit d03b306 viii Compiled on 2019/02/28 at 19:20:30



1. Introduction

The basic problem in routing is finding a shortest path with respect to some metric between
two locations in a network. This metric can be distance, fuel usage, power usage, travel
time or anything else one can imagine. When travel time is used as metric, and the network
is a road network, then a problem arises. Travel times in road networks are not constant,
but they vary from hour to hour, depending on the current traffic situation. This prohibits
calculating correct optimal routes in a graph with a scalar travel time metric, because after
a short time of ride, the travel times might have changed already.

In practice, traffic follows certain basic patterns that rarely change. For example, many
people commute every morning and evening to and from work, and this is the most
dominant source of traffic. These basic patterns allow the prediction of the behavior of
traffic throughout the week with measurements of the past. This opens up the gates for
time-dependent routing to improve the accuracy of shortest path queries in real-world road
networks.

In static routing, the algorithmic goal is to answer shortest path queries fast. Since the
network and the metric are static, expensive preprocessing is possible that allows for queries
in the order of microseconds or even less. An increment to this is dynamic routing, that
expands static routing with the requirement to change the metric fast to dynamically react
to changing traffic situations. In this scenario, expensive metric-dependent preprocessing is
prohibited, but the preprocessing from static routing techniques can be split up in metric-
independent, and cheaper metric-dependent preprocessing. Solutions to the dynamic
routing problems are often called customizable, where the metric-dependent preprocessing
is called the customization.

In time-dependent routing, the basic problem is finding a shortest path in a static road
network, but with time-dependent edge weights. A time-dependent shortest path query
asks for the shortest path from node s to node t, when departing from s at time τ . The
algorithmic challenge of time-dependent routing is to answer shortest path queries fast,
but with time-dependence.

1.1. Related Work
There exist some speedup techniques for time-dependent, static and dynamic routing that
we discuss in this section. In general, there are two problems related to time-dependent
shortest paths. The first is to compute the length of a time-dependent shortest path given
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1. Introduction

a source, a target, and a departure time. This is called an earliest arrival time query. The
second is to compute the length of all time-dependent shortest paths throughout a certain
time frame, given a source and a target. This is called profile search.

The problem of finding a shortest path, or a shortest path profile in a time-dependent
road network can be solved using a slightly modified version [CH66, Dre69] of Dijkstra’s
algorithm [Dij59], if the road network fulfills certain properties [OR90].

There are many existing speedup techniques for static routing. Goal-directed search
techniques include ALT [GH05] and Arc-Flags [BD08]. Hierarchy-based techniques include
single- and multi-level overlays, Reach [Gut04], and continuous overlays like Contraction
Hierarchies [GSSD08] and Customizable Contraction Hierarchies [DSW16]. There are also
other techniques like Hub Labeling [ADGW11] and combinations of these [BDG+16].

For dynamic routing, Customizable Route Planning (CRP) [DGPW11], which is a special
form of multi-level overlays, and Customizable Contraction Hierarchies are important
techniques.

Some speedup techniques for time-independent routing have been adapted to time-dependent
routing. They include TD-ALT [NDLS12], TD-Arc-Flags [Del11], different approaches to
TDCHs [BGSV13, KLSV10] and TDCRP [BDPW16]. From the best of our knowledge,
there is no publication expanding CCHs to time-dependent routing yet.

TD-ALT utilizes the A*-algorithm and the triangle inequality to direct the Dijsktra search
towards landmarks that are behind the destination node. Combining this with contraction
(TD-CALT) yields reasonable query times for country-sized instances and also allows fast
dynamic traffic updates [NDLS12]. The basic idea of Arc-Flags is to divide the road network
into regions and store flags for each road segment that state if the road segment is part of
a shortest path into a region or not. Combining time-dependent Arc-Flags with landmarks
and hierarchical regions (TD-L-SHARC) yields reasonable query times as well, while also
allowing for profile searches [Del11]. Contraction Hierarchies build a continuous overlay
over the graph for a certain node order, which is greedily determined during the building
process. The node order is optimized to reduce the complexity of the overlay, while keeping
the maximum length of paths that only move up in the node order short. In [BGSV13],
the authors adapt this approach to the time-dependent scenario (TCH), allowing for
significantly faster exact queries than other approaches on country-scale road networks with
reasonable preprocessing time, but also with significantly higher space consumption. This
prohibits using the index on continent-scale road networks with modern travel time data.
Building only approximate overlays (ATCH) and using the approximation to determine a
small corridor for exact querying reduces the memory usage of TDCHs significantly, down
to the level of TD-L-SHARC, while increasing query time by less than a factor of two.
The query times of the ATCH are still significantly better than those of TD-L-SHARC. A
recent alternative is TDCRP [BDPW16]. The basic idea is to separate the road network
into regions with a small amount of boundary nodes. For each region, a complete graph
between the boundary nodes is introduced as overlay. This process is repeated for multiple
layers of overlays. TDCRP allows for fast updates of the time-dependent metric and fast
query times on continental scale road networks. But to keep space consumption reasonable,
it uses approximation and introduces small query errors.

In a theoretical work, the authors the complexity of profiles of time-dependent shortest
paths in graphs with piecewise linear arrival time functions as edge weights [FHS11]. They
prove that the worst-case boundary for the complexity of a profile is superpolynomial in
the size of the graph. There are graphs for which this is still true, if the edge weights are
just linear arrival time functions. They also prove that the worst case complexity over all
graphs can be reduced to a boundary, that is only linearly dependent on the total amount
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1.2. Our Contribution

of breakpoints for all weight functions in the graph, if the slopes of the weight functions
are restricted to 0, 1 and ∞.

1.2. Our Contribution
In this work, we evaluate time-dependent customizable contraction hierarchies (TDCCHs)
with restricted slopes on country-scale road networks, and give an optimization scheme to
reduce their memory consumption. The optimization scheme takes the form of a separate
customization step, in which the input weights are slightly modified within a user-defined
threshold. On the modified weights, we build an exact TDCCH, and thus our accelerated
queries are exact on the modified input weights. We show that the errors, with respect to
the original metric with unrestricted slopes, introduced by the optimization scheme, are
small.

Our optimization scheme is based on the observation that in practice, link operations
introduce most of the points that make up the memory consumption of a TDCCH. We
theoretically examine the behavior of piecewise linear functions in link operations, focusing
on the size of the resulting link. With the results from this examination, we propose the
phase model for piecewise linear functions that allows for optimization of the link size. We
devise an algorithm that solves a related interval cover problem optimally in linear time to
optimize the size of a link. We apply this algorithm in the weight optimizing customization,
which modifies the input functions within a user-defined boundary when they are linked.
This reduces the size of the customized exact TDCCH by 50% compared to a customized
exact TDCCH on the same input data with restricted slopes, but without optimization.

1.3. Outline
In Chapter 2, we introduce the representation and interpretation of our data and describe
how to build an exact TDCCH. We also give proof on the correctness of an algorithm
for linking piecewise linear functions. In Chapter 3, we introduce the phase model and
an algorithm to link near-optimally in this model. We also examine the link operation
in detail and introduce the weight optimization scheme. In Chapter 4, we describe our
implementation of the link and merge algorithms in the phase model, and the results of
our experiments on different graphs. In Chapter 5, we recapitulate our results and give a
prospect on what further research we want to do to expand on our contribution.
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2. Exact Approach

In this chapter, we introduce the input data to our algorithms, and describe how to build
an exact TDCCH. We particularly prove the correctness of an algorithm to link piecewise
linear functions to allow arguing about the link in more detail in Chapter 3.

2.1. Input Data

In this work, we want to optimize the memory consumption and customization speed
of a TDCCH. We base our research on data about real-world road networks of different
countries and regions kindly provided by the PTV Group in 2017. The data has a certain
format, that we describe in detail in Subsection 2.1.1. Also, since we work with real-world
data, we discuss its accuracy and interpretation in Subsection 2.1.2.

2.1.1. Representation of Road Networks

Road networks are modeled as directed graphs. Each node with degree larger than two
represents a crossing in the road network. Nodes with degree two split a road segment into
two, and nodes with degree one are dead ends. Edges represent the road segments that
connect the nodes. Since we want to do shortest path queries with a metric, the edges are
weighted. We have three different metrics for our graphs.

First is the distance metric, it weighs each road segment according to its length in meters.
Second, the time-independent travel time metric, which gives the time in seconds it takes
to travel along a road segment, assuming no other traffic is present. Third and last, the
time-dependent travel time metric. It is an estimation of the travel time along a road
segment, depending on the time of day the road segment was entered. We have different
metrics for each day of the week, except that there is only one for Tuesday to Thursday.
The departure time is always given in seconds since midnight, and the travel time in
seconds.

All of these metrics have in common that they are non-negative. While the first two metrics
are scalar, the time-dependent travel time metric is functional. Its functions are piecewise
linear, so they are made up of a set of linear functions.

Definition 2.1 (Linear Function). A linear function f : D ⊆ R→ R is a function defined
on an interval D with constant slope s(f) and offset t(f). For x ∈ D : f(x) := s(f) ·x+t(f).
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2. Exact Approach

A piecewise linear function is a set of linear functions defined on certain intervals. The linear
pieces are interrupted by what we call breaks. Breaks can also be positive discontinuities,
but we ignore negative discontinuities when defining breaks, since we do not need them in
this work, as elaborated below.

Definition 2.2 (Break). Let f be a real function and f ′ its derivative. Then, an x ∈ R,
such that

lim
ε→0

f ′(x− ε) 6= lim
ε→0

f ′(x+ ε), (2.1)

or

lim
ε→0

f(x− ε) < lim
ε→0

f(x+ ε) (2.2)

is called a break of f .

With the notion of breaks, we define piecewise linear functions.

Definition 2.3 (Piecewise Linear Function). A piecewise linear function f : D ⊆ R→ R
is a function defined on an interval D that is linear on D \B with B ⊂ R being a finite set
of breaks.

We also define the sequence of linear pieces of a piecewise linear function that we use
further below.

Definition 2.4 (Sequence of Linear Pieces, Linear Piece). Let f : D ⊆ R → R be a
piecewise linear function that is linear on D \ B with B := (x1, . . . , xn) being a finite
sequence of breaks. Then L := (f |(−∞,x1)) · (f |(xi,xi+1))i · (f |(xn,∞)) is its sequence of linear
pieces, with · being the sequence concatenation. Each element l ∈ L is called a linear piece.

Note that joining two linear pieces never yields another linear piece.

Throughout this work we use a notation for subsequences that we define here.

Definition 2.5 (Subsequence Notation). Let S := (s1, . . . , sn) be a sequence. Let P : S →
F2 be a predicate. Then T := (s | s ∈ S ∧ P (s) = 1) is a subsequence of S. With this
notation, T is defined to be sorted according to S, meaning that if a, b ∈ T , such that a is
before b in T , it holds that a is before b in S.

In this work, we represent piecewise linear functions by sorted sequences of support points
that we call support sequence. The sequence is first sorted by increasing x. We only
need piecewise linear functions that have positive discontinuities, because we work with
piecewise linear functions that are FIFO in this work, as defined further below. A positive
discontinuity, or jump, at some x0 in some function f is a discontinuity with positive
infinite slope, such that limε→0 f(x0 − ε) < limε→0 f(x0 + ε). So in the support sequence,
support points with the same x value are sorted by their y value. Note that the following
definition also allows the support sequence to contain support points that can be removed
without altering the derived piecewise linear function of the support sequence as defined
below.

Definition 2.6 (Support Sequence, Support Point). Let S := ((x1, y1), . . . , (xn, yn)) ∈
(R2, . . . ,R2) be a sequence of n ∈ N≥1 points such that ∀i < j : xi ≤ xj and ∀i < j : xi =
xj ⇒ yi ≤ yj . Then S is called a support sequence. The points in S are called support
points.
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2.1. Input Data

The points in a support sequence are ordered, and we often refer to this ordering in this
work by calling a point left or right to another.

Definition 2.7 (Leftness and Rightness). Let S be a support sequence. Let pi, pj ∈ f be
the i-th and j-th point in S.

• If i < j, then pi is left of/before pj and pi < pj.

• If i > j, then pi is right of/after pj and pi > pj.

For deriving a piecewise linear function from a support sequence, we need a notion of inter-
polation between two points and from a point with a given slope. We use the interpolation
between two points for defining the function between points, and the interpolation with a
point and a slope for defining the function before the first and after the last point.

Definition 2.8 (Interpolation Based on Points). Let p := (px, py) and q := (qx, qy) be
points such that px ≤ qx. Let x ∈ [px, qx]. Then the interpolated value of p and q at x is
y := (qx − x) · py + (x− px) · qy.

Definition 2.9 (Interpolation Based on a Point and a Slope). Let p := (px, py) be a
point and m ∈ R a slope. Let x ∈ R. Then the interpolated value of p and m at x is
y := py + (x− px) ·m.

Since we define piecewise linear functions on R, but allow the support sequence to be
finite, we need to define how the function behaves before the first and after the last point.
We introduce the implicit slopes for that, which are the slopes of the first and last linear
segment of a piecewise linear function.

Definition 2.10 (Implicit Slopes). Let f be a piecewise linear function with a finite amount
of breaks. Then the implicit slope ml(f) is the slope of the first linear segment of f . And
the implicit slope mr(f) is the slope of the last linear segment of f .

From a support sequence S and slopes ml and mr, we derive a piecewise linear function
fS . In most parts of this work ml and mr are implicitly 1, so we do not include them in
the subscript of f .

Definition 2.11 (Derived Piecewise Linear Function). Let S be a support sequence and
ml,mr ∈ R. Then fS is the derived piecewise linear function of S and ml and mr, such
that fS(x) is defined for each x ∈ R as follows.

Let p := (px, py) be the rightmost point in S with px < x. Let q := (qx, qy) be the leftmost
point in S with x ≤ qx.

• the interpolated value y of p and q at x if both exist, or

• the interpolated value y of p and ml at x if q does not exist, or

• the interpolated value y of q and mr at x if p does not exist.

This is well-defined, because support sequences contain a minimum of one point, so either
p or q exists. Note that the definition of p and q causes a derived piecewise linear function
fS to attain the left-sided limit limε→0 f(x0 − ε) of a discontinuity at some x0. So derived
piecewise linear functions are always left-continuous. If S contains only one point and
ml = mr, then the derived piecewise linear function fS is linear.

We sometimes refer to the function trace of a piecewise linear function. Since we only work
with piecewise linear functions with positive discontinuities in this work, we define the
function trace only for piecewise linear functions without negative discontinuities.
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2. Exact Approach

Definition 2.12 (Function Trace). Let f : D ⊆ R → R be a piecewise linear function.
Then the sequence F (f) := sort({(x, y) | x ∈ D ∧ y ∈ [limε→0 f(x− ε), limε→0 f(x+ ε)]})
that is sorted lexicographic first by x and then by y is its function trace.

We note, that all support points in a support sequence are in the function trace of its
derived piecewise linear function.

Lemma 2.13 (Support Points are on the Function Trace). Let S be a support sequence.
Let fS be its derived piecewise linear function. Let F (fS) be its function trace. Then
S ⊆ F (fS).

Proof. Let p := (x, y) ∈ S. Then fS is defined on x and y ∈ [limε→0 f(x−ε), limε→0 f(x+ε)].
So p ∈ F (fS).

Since we want to reduce the memory usage of the contraction hierarchy, it is important
that we can refer to piecewise linear functions derived from support sequences that do not
contain redundant points. Redundant points are all points that can be left out of a support
sequence, without altering the derived piecewise linear function. Those are duplicate
points and points that are not breakpoints. Duplicate points are points p := (px, py) and
q := (qx, qy) with px = qx and py = qy. Breakpoints are and expansion of breaks and
defined as follows.

Definition 2.14 (Breakpoint). Let f be a piecewise linear function and f ′ its derivative.
Let p := (x, y) ∈ F (f) be a point on the function trace of f . Then p is called a breakpoint,
if

lim
ε→0

f(x− ε) = lim
ε→0

f(x+ ε) (2.3)

∧ lim
ε→0

f ′(x− ε) 6= lim
ε→0

f ′(x+ ε) (2.4)

or

lim
ε→0

f(x− ε) < lim
ε→0

f(x+ ε) (2.5)

∧
(
y = lim

ε→0
f(x− ε) ∨ y = lim

ε→0
f(x+ ε)

)
(2.6)

Equations (2.3) and (2.4) demand that a breakpoint p ∈ F (f), if f is continuous at p,
marks a change in the slope of f . Equations (2.5) and (2.6) demand that a breakpoint
p ∈ F (f) that is at a jump in f , marks the beginning or end of that jump. We split the
definition into two cases to avoid the special case of a jump that does not change the slope.
A piecewise linear function with breakpoints is depicted in Figure 2.1

We prove the relationship between breakpoints and breaks.

Lemma 2.15 (Breakpoints are an Expansion of Breaks). Let f be a piecewise linear
function without negative discontinuities.

f has a break at x ⇐⇒ f has a breakpoint (x, y) at some y

Proof. The equivalence follows directly from the definitions of breaks and breakpoints,
Definition 2.2 and 2.14.

Piecewise linear functions that have breakpoints are also called nonlinear piecewise linear
functions, and piecewise linear functions that do not have breakpoints are linear functions.
We prove a lemma about the origin of breakpoints in derived piecewise linear functions.
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2.1. Input Data

Figure 2.1.: An exemplary piecewise linear function with implicit slopes of one. Its function
trace is depicted as solid and dashed lines. The breakpoints of the function
are circled. The dashed line represents a jump. Values on the dashed line
are never attained, since the function is left-continuous. The function trace
contains the points around and including the second breakpoint as well, but
we do not draw it here to emphasize the left-continuity.

Lemma 2.16 (Origin of Breakpoints in Derived Piecewise Linear Functions). Let S be a
support sequence and ml and mr be implicit slopes. Let fS be their derived piecewise linear
function. If fS has a breakpoint p := (x, y), then p ∈ S.

Proof. Let S := ((x1, y1), . . . , (xn, yn)) be a support sequence and ml and mr be implicit
slopes. Let fS be their derived piecewise linear function.

Let q := (qx, qy) be a breakpoint of fS such that q /∈ S. Let p := (px, py) be the rightmost
point in S with p ≤ q. Let r := (rx, ry) be the leftmost point in S with r ≥ q.

The points p and r exist because by Definition 2.11 fS is linear for x < x1 and x > xn.

If p = q or q = r then q ∈ S. Otherwise, p < q < r.

• If px < qx < rx. Then fS(qx) and all its neighbors are determined by interpolation
between px and rx. So fS is linear around qx. So q is not a breakpoint in fS .

• If px = qx = rx, then py < qy < ry. So Equations (2.3) and (2.6) do not hold for q.
So q cannot be a breakpoint.

• If px < qx = rx. Then qy < ry. Then fS has a jump at x = rx that starts at y = qy.
But then, for x0 ∈ (px, rx), the interpolated value y0 of p and r at x0 would fulfill
fS(x0) < y0. That contradicts the definition of fS . So q cannot be a breakpoint of
fS .

• If px = qx < rx. Then py < qy. Then fS has a jump at x = px that ends at y = qy.
But then, for x0 ∈ (px, rx), the interpolated value y0 of p and r at x0 would fulfill
fS(x0) > y0. That contradicts the definition of fS . So q cannot be a breakpoint of
fS .

So, in all these cases, q is not a breakpoint of fS .

We define a symbol for the sequence of characteristic support points of a piecewise linear
function.
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Definition 2.17 (Characteristic Support Sequence). Let f be a piecewise linear function.
Then the support sequence B(f), that contains all pairwise distinct breakpoints of f , or, if
f has no breakpoints, one point (0, f(0)), is its characteristic support sequence.

The characteristic sequence of a linear function together with the implicit slopes ml and
mr are necessary and enough to uniquely define it, as we show in the following.

Lemma 2.18 (Equality of Piecewise Linear Functions). Let f and g be piecewise linear
functions. Then B(f) = B(g)∧ml(f) = ml(g)∧mr(f) = mr(g) ⇐⇒ ∀τ ∈ R : f(τ) = g(τ).

Proof. Assume, B(f) = B(g) ∧ml(f) = ml(g) ∧mr(f) = mr(g).

• If f and g are nonlinear, then the breakpoints and the implicit slopes uniquely define
the linear segments of f and g. So ∀τ ∈ R : f(τ) = g(τ).

• If f and g are linear, then they are equal if they are equal in one point and have the
same slope. This is fulfilled, so ∀τ ∈ R : f(τ) = g(τ).

• If f is linear but g is nonlinear (or the other way around), then B(f) 6= B(g),
ml(f) 6= ml(g) or mr(f) 6= mr(g) — a contradiction.

So, in all cases, it holds that B(f) = B(g) ∧ml(f) = ml(g) ∧mr(f) = mr(g)⇒ ∀τ ∈ R :
f(τ) = g(τ)

Let ∀τ ∈ R : f(τ) = g(τ). Then ml(f) = ml(g) ∧mr(f) = mr(g).

Assume, B(f) 6= B(g). Because equality is symmetric, we can assume that ∃p := (xp, yp) ∈
B(f) \ B(g). Then f has a break at x = x0. Since B(f) and B(g) are of countable
cardinality, ∃ε > 0 : ∀x0 ∈ [xp − ε, xp + ε] : gdoesnothaveabreakatx = x0.

But then, either f(xp − ε/2) 6= g(xp − ε/2) or f(xp + ε/2) 6= g(xp + ε/2) — a contradiction.
So, B(f) = B(g).

So, it holds that ∀τ ∈ R : f(τ) = g(τ) ⇒ B(f) = B(g) ∧ ml(f) = ml(g) ∧ mr(f) =
mr(g).

We can define a support sequence without redundant points as follows.

Definition 2.19 (Minimal Support Sequence). Let S be a support sequence and ml and
mr implicit slopes. Then S is minimal, if for all support sequences T such that |T | < |S|:
fS 6= fT .

And we observe, that the characteristic support sequence of a piecewise linear function is a
minimal support sequence.

Lemma 2.20 (The Characteristic Support Sequence is Minimal). Let f be a piecewise
linear function, B(f) its characteristic support sequence and ml := ml(f) and mr := mr(f).
Then B(f) is a minimal support sequence.

Proof. Assume there is a support sequence T such that |T | < |B(f)| and f = fT . But
then, by Lemma 2.16, |B(fT )| < |B(f)|. And therefore, by Lemma 2.18, f 6= fT .

Above, we talk about storing weight functions in travel time representation without defining
it, so we do that here. We keep in mind that travel times are non-negative. Travel time
functions are then defined as follows.
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Definition 2.21 (Travel Time Function). Let G = (V,E) be a graph. Let e ∈ E be an
edge. The travel time function TT (e) is a function TT (e) : R→ R≥0 that maps from the
departure time τ on e to the travel time TT (e)(τ) along e.

While our input comes in travel time representation, there is also the arrival time represen-
tation. It is more convenient to define and execute the link operation that we introduce in
Section 2.2. So in most parts of this work, we use the arrival time representation.

Definition 2.22 (Arrival Time Function). Let G = (V,E) be a graph. Let e ∈ E be an
edge. The arrival time function AT (e) is a function AT (e) : R → R that maps from the
departure time τ on e to the arrival time AT (e)(τ).

Our arrival time functions are piecewise linear with a finite set of breakpoints, and implicit
slopes ml(f) = mr(f) = 1.

Travel time functions can be translated to arrival time functions and back by adding and
subtracting the identity function. Since travel times are non-negative, we get the following
lemma for arrival time functions.

Lemma 2.23 (Arrival Time Functions do not Decrease the Input). Let f be an arrival
time function. For all τ ∈ R : τ ≤ f(τ).

Proof. Let f : R → R≥0 be an arrival time function and g := f − id the corresponding
arrival time function. Let τ ∈ R. Then f(τ) = g(τ) + id(τ) ≥ id(τ) = τ .

We only work with arrival time functions that respect the first-in first-out (FIFO) property
in this work.

Definition 2.24 (FIFO). An arrival time function f is called FIFO, if it is weakly
monotonous increasing. A travel time function f is called FIFO, if the corresponding
arrival time function f + id is FIFO.

The FIFO property means that waiting at a node never leads to an earlier arrival time at
an adjacent node. If our edge weights were not FIFO, the problem of finding a shortest
path in a graph would be at least NP-Hard. This can be shown by reducing from the
Subset-Sum problem [Dea04].

Each weight function f in our input maps from the time of day in seconds to the arrival time
in seconds and fulfills certain properties. Its support sequence S := {(x1, y1), . . . , (xn, yn)}
consists of an uneven amount of support points of which the first one is always at x = 0
and all others have x-values in [0, 86400). The linear pieces of f alternate between having
an ascend of 1 and being a traffic change.

Definition 2.25 (Traffic Change). Let f be a piecewise linear arrival time function and L
its set of linear pieces. A linear piece l ∈ L is a traffic change, if its constant ascend l′ is
not equal to one.

In our input graphs, weight functions only have traffic changes that are shorter than 15
minutes and that end on a quarter of an hour. We call functions in our input graphs input
functions.
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Figure 2.2.: An exemplary travel time function.

2.1.2. Interpretation of Input Data

The source of our data is the company PTV Group. They provided travel time prediction
data for Western Europe in 2006 and 2017. The data from 2017 is the data we actually
work with, but we include the data from 2006 for comparability with older publications.
We know by word of mouth that they aggregated this data from different sources, but we
do not know what these sources are and how the aggregation works. But we assume that
the data matches current industry standards. An exemplary travel time function for a
street segment in Luxembourg is depicted in Figure 2.2. The morning and evening rush
hour is well visible.

The data has certain inaccuracies. It holds that every traffic change ends on a time point
that is divided by 15 minutes. And every traffic change is at most 15 minutes long. This
gives us the hint that the data’s resolution is 15-minutes for departure times.

Furthermore, this kind of data about street networks is only a very rough estimate of
reality. When looking at real GPS traces of cars, the travel times usually scatter a lot
around the average for a certain point in time. One can imagine that, especially in cities,
there are many events that can occur during a ride that alter travel times. For example, a
driver might need to wait for pedestrians to cross, or wait at a crossing for other cars, or
might be stuck behind two trucks overtaking each other. This all is noise that is introduced
in the real world, and our data contains the average of this noise depending on time. But
this means, that if we introduce noise into the input data, as long as it is not dominating
all other sources of noise, it does not make our routes more inaccurate in the real world
than they already are. We assume, that input data is shipped with random independent
noise, that gives us a certain leeway for its interpretation.

We alter the interpretation of the data by restricting slopes of the input arrival time
functions to zero, one and infinity. Since traffic changes are rounded to 15 minutes, this
should not introduce relevant errors. Then, we allow the traffic changes to change position
in terms of departure time within their 15 minute buckets. That means, it has to start at
most 15 minutes before its original end, and not end after its original end, and it must still
be consecutive with a slope of zero or infinity. This might introduce small notable errors
for short queries. But, as long as the errors introduced on different street segments are
small and independent, they should be hidden by the noise in the input data.
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2.2. The Exact TDCCH

A TDCCH is a time-dependent version of the CCH [DSW16], where the scalar edge weights
are replaced by weight functions that depend on time. In Section 2.1, we introduced travel
time and arrival time representations for those weight functions. For usage in a TDCCH,
we need the evaluation, and the link and merge operations for the weight functions, as
explained below. For evaluation and merging, none of the two representations yields special
advantages. But linking is easier to express with arrival time functions, so we choose this
representation for the remainder of this section. We represent the arrival time functions as
support sequences, and we set their implicit slopes to 1.

In the remainder of this section, we describe how to build an exact TDCCH in general in
Subsection 2.2.1. We explain how to evaluate, link and merge exact arrival time functions
based on their support sequence in Sections 2.2.2 to 2.2.4. We discuss the problems that
arise from the exact approach in Subsection 2.2.5.

2.2.1. Building an Exact TDCCH

Building a TDCCH for an input graph consists of two steps. The first is building the
topology and the second is customizing the topology with a given input metric. The
advantage of a TDCCH is that the search space for querying can be restricted a lot. Below,
we describe the preprocessing, customization and query.

Preprocessing

Given an undirected input graph G = (V,E), the topology is built by contracting nodes out
of the graph in a nested dissection order. A nested dissection order is built by recursively
separating G in two node induced subgraphs GA := (VA, EA), GB := (VB, EB) and a
separator S ⊂ V .

Definition 2.26 (Node Induced Subgraph). Let G = (V,E) be a graph. Let V ′ ⊆ V . Then
G|′V := (V ′, E′ := {{u, v} ∈ E|u, v ∈ V ′}) is the node induced subgraph of V ′ of G.

Definition 2.27 (Separator). Let G = (V,E) be a graph. Let S ⊆ V . Let VA ⊆ V and
VB ⊆ V such that S, VA and VB are pairwise disjoint and S ∪ VA ∪ VB = V . If there is no
edge between VA and VB in G, then S is a separator in G.

The nodes in the top level separator S are the highest in the nested dissection order. The
nodes in the separators of GA and GB are the second highest, and so on.

Nodes are contracted out of the graph starting with the lowest until the graph is empty.
Contracting a node n out of a graph G means removing the node and adding shortcuts for
all length-2-paths that have n as middle node.

Definition 2.28 (Node Contraction). Let G = (V,E) be a graph. Let n ∈ V be a node.
Then G− n := (V \ {n}, {{u, v} ∈ E|u 6= n 6= v} ∪ {{u, v}|{u, n}, {n, v} ∈ E}) is the result
of contracting n out of G.

All shortcuts are added to G. The result T := (V,ET ) := G + shortcuts is the CCH-
topology of G.
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Customization

Given a metric m : −→E → F for the directed expansion of the undirected input graph G,
with F being a set of weights, G’s CCH-topology T can be customized.

Definition 2.29 (Directed Expansion). Let G := (V,E) be an undirected graph. We define
−→
G := (V,−→E := {(u, v), (v, u) | {u, v} ∈ E}) as its directed expansion.

For that, the metric is expanded to −→E T by defining m(e) := ⊥ for e ∈ −→E T \
−→
E . In the case

of a TDCCH, the weights are piecewise linear arrival time functions.

The metric m is modified by traversing the nodes of T in the same nested dissection order
as in the preprocessing. For a node n, all outgoing edges e with a higher end node are
iterated. For each e, all lower triangles (e0, e1, e) are enumerated.

Definition 2.30 (Lower Triangle). Let G = (V,−→E ) be a graph. Let e := (u,w) ∈ −→E . Let
v ∈ V . We define a lower triangle (e0 := (u, v) ∈ −→E , e1 := (v, w) ∈ −→E , e) of e as a tuple of
edges such that v < u ∧ v < w in the nested dissection order.

For each lower triangle (e0, e1, e), the weights m(e0) and m(e1) are linked. The weights
are never ⊥ because of the order the nodes, edges and lower triangles are processed. The
link describes first driving over edge e0 and then driving over edge e1. For piecewise linear
arrival time functions, it is defined as follows.

Definition 2.31 (Linking). Let f and g be weakly increasing piecewise linear functions.
Then the link of f and g is the function f ⊕ g defined as:

∀τ ∈ R : (f ⊕ g)(τ) = g(f(τ))

We try to reduce the memory usage of a TDCCH, so we introduce another term that refers
to a link with minimal support sequence.

Definition 2.32 (Minimal Link). Let S and T be support sequences such that their derived
piecewise linear functions fS and fT are weakly increasing. Let S ⊕m T be a minimal
support sequence such that ∀τ ∈ R : fS⊕mT (τ) = (fS ⊕ fT )(τ). Then S ⊕m T is called the
minimal link of S and T .

The minimal link l := m(e0)⊕m(e1) is stored in m(e). But m(e) might already store a
weight. In this case, there are at least two alternatives of paths that e can represent. Since
we are searching for shortest paths, we take the minimum of those alternatives and store it
in m(e).

Definition 2.33 (Merging). Let f and g be piecewise linear functions. Then the merge of
f and g is the function minm{f, g} defined as:

∀τ ∈ R : min
m
{f, g}(τ) = min{f(τ), g(τ)}

For the merge operation we introduce a term for a merge with minimal support sequence
as well.

Definition 2.34 (Minimal Merge). Let S and T be support sequences and fS and fT their
derived piecewise linear functions. Let minm{S, T} be a minimal support sequence such
that ∀τ ∈ R : fminm{S,T}(τ) = min{fS , fT }(τ). Then minm{S, T} is called the minimal
merge of S and T .
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Linking and merging of piecewise linear functions are expensive operations compared to the
addition and minimization of ordinals. So before we customize the TDCCH with weight
functions, we customize the CCH one time with the lower bounds of all functions and one
time with the upper bounds. The bounds are taken in travel time representation. Then,
we only link m(e0) and m(e1) if the sum of their lower bounds is lower or equal to the
precomputed upper bound of m(e). And we only take the minimum, if the bound intervals
of the weight functions intersect. We update the precomputed upper bound of m(e) if the
minimum was taken.

Query

Building the TDCCH as described above yields a graph G that fulfills the CCH-invariant.

Definition 2.35 (CCH-Invariant). Let G = (V := (v1, . . . , vn), E) be an edge-weighted
graph with ordered nodes. Let va, vb ∈ V be a pair of nodes. Let l be the length of the
shortest path from va to vb in G. Let V ′ := (vk, . . . , vn) ⊆ V be a subsequence of V such
that k ≤ min{a, b}. Let G′ be the node induced subgraph of V ′ of G. Let l′ be the length of
the shortest path from va to vb in G′.

If l = l′ for all choices of va, vb and V ′, then G is defined as fulfilling the CCH-invariant.

A TDCCH is queried with a bidirectional Dijkstra [Dij59]. The CCH-invariant allows us to
prune all edges incident to a node that lead to lower nodes in the nested dissection order.
This pruned search is called upward search. The upward search is done with forward edges
from the departure node, and with backward edges from the destination node.

When having time-dependent weights, a problem arises. It is not possible to do the
backward search from the destination node, because the arrival time is unknown. This
makes it impossible to evaluate the weights of the backward edges correctly.

A solution to that is enumerating all edges than can be reached by a backward upward
search from the destination node. Then Dijkstra is run on the forward and the backward
search space combined.

In a CCH, the upward search can be run without queue. This is called an elimination tree
query.

Definition 2.36 (Elimination Tree). Let G = (V,E) be an undirected graph with ordered
nodes. Let T = (V,ET ) be the CCH-topology of G. For each v ∈ V , let parent(v) :=
min{w|{v, w} ∈ ET , w > v}. Then, the elimination tree of T is defined as the tree
L := (V, {{u, v}|v = parent(u)}).

Walking the elimination tree upwards from a node n ∈ V visits exactly the nodes in the
upward search space of n [DSW16]. For a node n ∈ V , the parent in the elimination tree
is the lowest neighbor that is higher than n. So when doing the upward query, instead of
fetching the next node from the queue, the next node is the parent in the elimination tree.
This way, the whole upward search space of n is traversed.

For the downward search to the destination node, first, the upward facing outgoing edges
for nodes in the upward search space are enumerated. Then, after doing the upward forward
search from the departure node, the reverses of the enumerated edges are relaxed in reverse
order.

When relaxing an edge e from node u to node v, we evaluate its weight function m(e)
conditionally based on its lower bound. If traversing e from u cannot decrease the length
of the shortest known path to v, then we skip evaluating m(e). If we evaluate m(e), we
use binary search to find the correct pair of support points for interpolation.
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Algorithm 2.1: evaluate
Input: Support sequence S := {(x1, y1), . . . , (xn, yn)}, implicit slopes ml and mr

and some τ ∈ R
Output: fS(τ) with fS having implicit slopes ml and mr

1 if τ ≤ x1 then
2 return y1 −ml · (x1 − τ)
3 if τ > xn then
4 return yn +mr · (τ − xn)
5 foreach Pair of points ((xi, yi), (xi+1, yi+1)) ∈ S do
6 if xi ≤ τ ≤ xi+1 then
7 return (xi+1 − τ) · yi + (τ − xi) · yi+1

Algorithm 2.2: evaluateInv
Input: Support sequence S := {(x1, y1), . . . , (xn, yn)}, implicit slopes ml and mr

and some τ ∈ R
Output: f−1

S (τ) with fS having implicit slopes ml and mr

1 if τ < y1 then
2 return x1 − (y1 − τ)/ml

3 if τ ≥ yn then
4 return xn + (τ − yn)/mr

5 foreach Pair of points ((xi, yi), (xi+1, yi+1)) ∈ S in reverse do
6 if yi ≤ τ ≤ yi+1 then
7 return (yi+1 − τ) · xi + (τ − yi) · xi+1

2.2.2. Exact Evaluation

The evaluation of piecewise linear functions represented as support sequences is formalized
in Algorithm 2.1. Note that it evaluates the derived function left-continuous, conforming
to Definition 2.11.

Algorithm 2.2 evaluates the inverse of a piecewise linear function fS with support sequence
S at a point τ . A piecewise linear function f and its inverse f−1 have the can be represented
by the same support points, but with swapped coordinates. If fS is left-continuous, then
f−1 is right-continuous. Since we never need the inverse of a function itself, we never
calculate it.

The correctness of the algorithms is easy to see by comparing them to the definitions
of interpolation and the derived piecewise linear function. The relevant definitions are
Definition 2.8, 2.9 and 2.11.

Algorithm 2.1 and 2.2 run in linear time. It is also possible to use binary search for finding
these consecutive supports to get the result in logarithmic time.

With the functions represented exactly with supports, the link and merge operations can
also be implemented exactly as explained in the two subsections below.

2.2.3. Exact Linking

Algorithm 2.3 takes two support sequences S and T and produces their link S ⊕ T . The
algorithm is applied on two exemplary support sequences in Figure 2.3. It treats the
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Algorithm 2.3: link
Input: Support sequences S and T such that fS and fT are arrival time functions
Output: Support sequence L such that fL = fS ⊕ fT

1 Let S and T be iterators over their points
2 while (a, b)← S.current() ∧ (c, d)← T.current() do
3 if b ≤ c then
4 L.insert((a, fT (b)))
5 advance(S)
6 else
7 L.insert((f−1

S (c), d))
8 advance(T )

9 while (a, b)← S.current() do
10 L.insert((a, fT (b)))
11 advance(S)
12 while (c, d)← T.current() do
13 L.insert((f−1

S (c), d))
14 advance(T )
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Figure 2.3.: Link of two exemplary support sequences. The support points are marked
by circles. Support point (2, 3) ∈ S produces the support point (2, fT (3)) =
(2, 4) ∈ L. Support point (2, 2) ∈ T produces the support point (f−1

S (2), 2) =
(1, 2) ∈ L. The other support points are handled accordingly.

support sequences as iterators for easier notation. The current method copies the point
that is at the current position of the iterator. The assignment from a call to current
returns true if the iterator points into the support sequence, and false if it ran over the end
of the sequence. The lists are sorted lexicographic first by x-value, then by y-value.

We say a point p in a link support sequence link(S, T ) originates from pS ∈ S, if it is
added in Line 4 or 10. We say a point p in a link support sequence link(S, T ) originates
from pT ∈ T , if it is added in Line 7 or 13. If a point p in a link fS ⊕ fT originates from a
point q in S or T , then we say that q produced p.

Note that this algorithm does not ensure that the output is a minimal link. Algorithm 2.4
takes a support sequence and minimizes it.

Both the link and the clean algorithm run in linear time. The function evaluations in link
run in constant time, since only the current and the last point of the corresponding iterator
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Algorithm 2.4: clean
Input: Support sequence S that represents an arrival time function
Data: Support sequence T , a slope s
Output: The characteristic support sequence U of fS
// Remove redundant supports

1 foreach Point p := (x, y) ∈ S do
2 if |T | > 0 then
3 in a link f ⊕ g if T.last() 6= p then
4 T.insert(p)

5 else
6 T.insert(p)

// Remove consecutive collinear triples
7 foreach Pair of points (p1, p2) ∈ T do
8 s← slope(p1, p2)
9 if |U | > 0 then

10 if ¬isCollinear(U.last(), p1, p2) then
11 U.insert(p1)

12 else if s 6= 1 then
13 U.insert(p1)

14 if |U | = 0 ∨ (|T | ≥ 2 ∧ s 6= 1) then
15 U.insert(T.last())
16 if |U | = 1 then
17 U [0] = (0, fU (0))

are required for evaluation. If there is no last point, then the current point is interpolated
with ascend 1, as defined in Definition 2.9.

In the following we prove the correctness of the link and clean algorithm. We argue for
the correctness of link by arguing that it produces a function with the correct breakpoints.
We start with proving that link produces a weakly increasing support sequence.

Lemma 2.37 (link Produces a Weakly Increasing Support Sequence). The output of
link is a weakly increasing support sequence.

Proof. Let S and T be support sequences as required by the algorithm.

The output L := link(S, T ) is a sequence of points. By Definition 2.6, L is a support
sequence, if its support points are sorted lexicographic by first x and then y. And it is
weakly increasing, if the support points are sorted by x and y independently.

Let < be the partial order on support points ordering them by x and y independently. The
input support sequences S and T are sorted by <. The result L is sorted by <, if for each
pair of distinct points p < q ∈ L it holds that p is added before q.

In the loop, the algorithm is processing the points (a, b) ∈ S and (c, d) ∈ T . It chooses
between adding s := (a, fT (b)) or t := (f−1

S (c), d) to U . In later iterations, since S and T
are sorted, and fS and fT are weakly increasing, only points that are not smaller than s
and t will be added. So it is enough to prove that the s or t added in an iteration is a
locally smallest.
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• If b ≤ c, s is added first. Then a ≤ f−1
S (b) ≤ f−1

S (c). The first inequality holds,
because (a, b) ∈ S and f−1

S is right-continuous. The second inequality holds, because
fS is weakly increasing.

Also, fT (b) ≤ fT (c) ≤ d. The first inequality holds, because fT is weakly increasing.
The second inequality holds, because (c, d) ∈ T and fT is left-continuous. So s is a
locally smallest point.

• If c < b, t is added first. Since (a, b) ∈ S with c < b and fS weakly increasing,
f−1
S (c) ≤ a. Since (c, d) ∈ T with c < b and fT weakly increasing, fT (b) ≥ d. So t is
a locally smallest point.

Since the support points from S and T are sorted correctly, and the algorithm merges the
points in the correct order, the output L is a weakly increasing support sequence.

Below, we prove a lemma similar to Lemma 2.1 from [FHS11]. This strongly restricts the
space the breakpoints of h can originate from.

Lemma 2.38 (Breakpoints Originate from Support Points). Let f , g be weakly increasing
piecewise linear functions. Let h := f ⊕ g be their link. If h has a breakpoint (a, d), then
either f has a breakpoint at a or g−1 has a breakpoint at d.

Proof. Assume, h has a breakpoint (a, d), such that f is linear around a, and g−1 is linear
around d.

• If g−1 is not constant around d, then g(f(a)) = h(a) is linear around a, so (a, d) is
not a breakpoint in h.

• If f is not constant around a, then f−1(g−1(d)) = h−1(d) is linear around d, so (a, d)
is not a breakpoint in h.

• Assume, g−1 is constant around d and f is constant around a. Then g has a jump at
f(a) such that g(f(a)) < d. And since f is constant around a, g(f(a)) < d around
a. But then, h(a) < d around a, so (a, d) is not on the function trace of h - a
contradiction.

With this we can prove that each breakpoint in h is generated by the link-algorithm.

Note that for a breakpoint (a, d) to exist in h it is not necessary that h(a) = d or h−1(d) = a.
When we say that a point (a, d) is not on h, we mean that it is not on the function trace
of h.

We define two special subsequences of a support sequence to easier express the results of
the following lemma and later results.

Definition 2.39 (Sub Support Sequence). Let S be a weakly increasing support sequence.
Then for x0 ∈ R, Sx=x0 := ((x, y) ∈ S|x = x0). And for y0 ∈ R, Sy=y0 := ((x, y) ∈ S|y =
y0). Both have the same order as S. We call Sx=x0 and Sy=y0 sub support sequences.

Lemma 2.40 (Each Breakpoint in h is Generated by the link-Algorithm). Let S and T
be support sequences such that fS and fT are arrival time functions. Let h := fS ⊕ fT be
their link. Let L := link(S, T ) be the result of Algorithm 2.3 applied to S and T . If h has
a breakpoint (a, d), then (a, d) ∈ L.
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Proof. Let h have a breakpoint (a, d). Then by Lemma 2.38, fS has a breakpoint at a or
f−1
T has a breakpoint at d.

Let ((a, b1), . . . , (a, br)) := Sx=a. Let ((c1, d), . . . , (cs, d)) := Ty=d.

• If only S has support points at x = a. Then f−1
T is linear around d. Let c := f−1

T (d).

– If c /∈ [b1, br], then (a, d) is not on h.

– If c ∈ (b1, br), then f−1
S is linear around c. So f−1

T ⊕ f
−1
S is linear around d. But

then, h cannot have a breakpoint at y = d.

– If c = b1 ∨ c = br.

∗ If fT (c) = d, then (a, d) originates from (a, b1) or (a, br).

∗ If fT (c) < d. Then f−1
T is constant around d. Then, f−1

T ⊕ f
−1
S is constant

around d, so h cannot have a breakpoint at y = d.

• If only T has support points at y = d. Then fS is linear around a. Let b := fS(a).

– If b /∈ [c1, cs], then (a, d) is not on h.

– If b ∈ (c1, cs), then fT is linear around b. So fS ⊕ fT is linear around a. But
then, h cannot have a breakpoint at x = a.

– If b = c1 ∨ b = cs.

∗ If f−1
S (b) = a, then (a, d) originates from (c1, d) or (cs, d).

∗ If f−1
S (b) > a. Then fS is constant around a. Then, fS ⊕ fT is constant

around a, so h cannot have a breakpoint at x = a.

• If S has at least one support point at x = a and T has at least one support point at
y = d.

– If [b1, br] ∩ [c1, cs] = ∅, then (a, d) is not on h.

– If b1 ∈ (c1, cs], then fT (b1) = d, so (a, d) originates from (a, b1).

– If br ∈ (c1, cs], then fT (br) = d, so (a, d) originates from (a, br).

– If c1 ∈ [b1, br), then f−1
S (c1) = a, so (a, d) originates from (c1, d).

– If cs ∈ [b1, br), then f−1
S (cs) = a, so (a, d) originates from (cs, d).

– If br = c1.

∗ If fT (br) = d, then (a, d) originates from (a, br).

∗ If f−1
S (c1) = a, then (a, d) originates from (c1, d).

∗ Else, fT (br) =: d0 < d ∧ f−1
S (c1) =: a1 > a. But then fS is constant on

(a, a1] with value br. So

lim
ε→0

h(a+ ε) = lim
ε→0

fT (fS(a+ ε)) = fT (br) = d0 < d.

And
h(a) = fT (fS(a)) = fT (br) = d0 < d.

So (a, d) is not on the function trace of h.

So in each case, if (a, d) is on the function trace of h, then (a, d) ∈ L.
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By Lemma 2.40, Algorithm 2.3 outputs a function that has all necessary breakpoints. So
for its correctness, we need to make sure, that it does not add any breakpoints besides
these.

Lemma 2.41 (link does not Add Wrong Breakpoints). Let S and T be support sequences
such that fS and fT are arrival time functions. Let h := fS ⊕ fT be their link. Let
L := link(S, T ) be the result of Algorithm 2.3 applied to S and T . Let p ∈ L such that it
is not a breakpoint in h. Then p is on a linear piece of h, including jumps.

Proof. Let p := (a, d) ∈ L such that it is not a breakpoint of h. Let q0 := (a0, d0) and
q1 := (a1, d1) be the first breakpoint before p and the first breakpoint after p of h.

If q0 or q1 does not exist, then add a ghost point left or right of p that obeys the implicit
slope of h and call it a breakpoint for the sake of this proof, even though it is not. Every
time we use the breakpoint property on a ghost point, the result is the same.

We show that p is on the line between the breakpoints of h before and after it.

• If a0 = a1, since by Lemma 2.37, L is sorted, a = a0. And since q0 and q1 are
breakpoints in h but p is not, d ∈ (d0, d1). So p is on the line between q0 and q1.

• If d0 = d1, since by Lemma 2.37, L is sorted, d = d0. And since q0 and q1 are
breakpoints in h−1 but p is not, a ∈ (a0, a1). So p is on the line between q0 and q1.

• If a0 < a1 and d0 < d1, then h is linear on (a0, a1) and a ∈ (a0, a1). And h−1 is linear
on (d0, d1) and d ∈ (d0, d1).

– If p originates from (a, b) with fT (b) = d, then fS(a) ≤ b.

∗ If fS(a) = b, then d = fT (fS(a)) = h(a). So p is on the line between q0 and
q1.

∗ If fS(a) < b, then fS has a jump at a from b0 to b1 such that b ∈ (b0, b1].
But h does not have a jump at a. So fT needs to have a constant at b0 to at
least b1 with value fT (b) = d. Also, fT does not have a jump at fS(a) = b0.
So, fT (b0) = fT (b) = d.

But then, h(a) = fT (fS(a)) = fT (b0) = d. So p is on the line between q0
and q1.

– If p originates from (c, d) with f−1
S (c) = a, then f−1

T (d) ≥ c.

∗ If f−1
T (d) = c, then a = f−1

S (f−1
T (d)) = h−1(d). So p is on the line between

q0 and q1.

∗ If f−1
T (d) > c, then f−1

T has a jump at d from c0 to c1 such that c ∈ [c0, c1).
But h−1 does not have a jump at d. So f−1

S needs to have a constant at c0
to at least c1 with value f−1

S (c) = a. Also, f−1
S does not have a jump at

f−1
T (d) = c1. So, f−1

S (c1) = f−1
S (c) = a.

But then, h−1(d) = f−1
S (f−1

T (d)) = f−1
S (c1) = a. So p is on the line between

q0 and q1.

So since p is on the line between the breakpoints in h before and after it, it is on a linear
piece of h, including jumps.

Using the lemmas above, we prove the correctness of Algorithm 2.3.
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Theorem 2.42 (Correctness of link). Let S and T be support sequences such that fS
and fT are arrival time functions. Let h := fS ⊕ fT be their link. Let L := link(S, T ) the
result of Algorithm 2.3 applied to S and T . Then ∀τ : h(τ) = fL(τ).

Proof. Since fS and fT are piecewise linear functions, their link h is also piecewise linear.
By Lemma 2.37, L is a support sequence.

By Lemma 2.40, each breakpoint in h is also a support point in L. And by Lemma 2.41, each
support point p ∈ L, that is not a breakpoint in h, is on a linear piece of h, including jumps.
So B(h) = B(fL). Also, since the implicit slopes of arrival time functions are always 1, they
are invariant under the link algorithm. So, by Lemma 2.18, ∀τ ∈ R : h(τ) = fL(τ).

Below we prove the correctness of Algorithm 2.4.

Theorem 2.43 (Correctness of clean). Let S be a support sequence such that fS is an
arrival time function. Then U := clean(S) the characteristic support sequence of fS.

Proof. Let T be the intermediate result calculated by clean. Then fT is equivalent to fS ,
since ∀pS ∈ S : ∃pT ∈ T : pS = pT and ∀pT ∈ T : ∃pS ∈ S : pT = pS .

The result U contains no collinear triples and either just one point or the endpoints are
breakpoints. Also, U contains no duplicate points. So U is a characteristic support sequence.
Also, U contains all breakpoints of fS and no points were added, and their implicit slopes
are the same, so fS = fU .

With the correctness of both link and clean, the algorithm clean ◦ link, which is the
consecutive execution of first link and then clean, produces the minimal link support
sequences of its input support sequences.

2.2.4. Exact Merging

The exact merging is done with Algorithm 2.5. The general idea is to scan the line
segments and support points of both functions from left to right, such that relevant pairs
are compared. The minimum of two piecewise linear functions is a piecewise linear function,
that can contains support points from both functions, and support points that are created
by crossing line segments. So relevant pairs that need comparison are each support point
with the line segment it is above or below of or on, and each pair of line segments from
different input functions that might intersect.

In the algorithm the startpoint and endpoint functions are used, but the first line
segment of a piecewise linear function has no start point, and the last has no endpoint.
If a line segment l has no startpoint, then startpoint(l) behaves like (−∞,−∞) in
comparisons, in that it is smaller than everything else. If a line segment l has no endpoint,
then endpoint(l) behaves like (∞,∞) in comparisons, in that it is larger than everything
else. The function isBelowOrOn checks if the calling point is below or on the given line
segment. A point p := (x, y) is below or on a line segment l := (p0 := (x0, y0), p1 := (x1, y1)),
if x0 ≤ x ≤ x1 and y ≤ yx, with yx being the interpolated value of p0 and p1 at x. The
function intersection returns the unique intersection point between two line segments,
or ⊥, if it does not exist.

Only one line segment is advanced per iteration, and as soon as both reach the end, the loop
terminates. So in Line 5, always one of the endpoints exists, and the function advance is
never called on last line segments. Also, in Line 7 and Line 13, the startpoint always exists.
So the algorithm is well-defined.
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Algorithm 2.5: merge
Input: Nonempty support sequences S and T such that fS and fT are arrival

time functions.
Data: Line segments s and t.
Output: Support sequence M such that fM = min{fS , fT }.

1 s← First line segment of fS
2 t← First line segment of fT
3 e← NIL
4 while ¬(s and t are the last line segments of fS and fT ) do
5 if endpoint(s) ≤ endpoint(t) then
6 advance(s)
7 if startpoint(s).isBelowOrOn(t) then
8 M.insert(startpoint(s))
9 if intersection(s, t) 6= ⊥ then

10 M.insert(intersection(s, t))

11 else
12 advance(t)
13 if startpoint(t).isBelowOrOn(s) then
14 M.insert(startpoint(t))
15 if intersection(s, t) 6= ⊥ then
16 M.insert(intersection(s, t))

We argue shortly for the correctness of the algorithm. Since the line segments are traversed
in order of their endpoints, all possible intersections are checked, except for the first and
last one. But the first is between the first line segments with ascend one, and the last
between the last line segments with ascend one, so they cannot intersect in a single support
point. The intersections are added at the correct position. Also, each support point is
compared against the correct line segment with isBelowOrOn in the correct order. So
all correct support points are added to M in the right order. So fM = minm{fS , fT }.

2.2.5. Problems with the Exact Approach

While the exact approach yields exact results for the given metric, it has a problem with
memory consumption. As discussed in Chapter 4, customizing a TDCCH for the German
road network with realistic data from 2017 with limited slopes takes around 202GiB of
memory, while the input graph takes only 2.3GiB. Customizing a time-dependent road
graph of Western Europe exactly is not possible on a machine with 252GiB of RAM.
Furthermore, an exact TDCCH not only requires expensive machines with lots of RAM,
but also customization time suffers from linking and merging the large support sequences
higher in the hierarchy. Our exact customization takes five hours for the Germany graph,
which is too slow to enable real-time updates.
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In Chapter 2, we describe how to build an exact TDCCH, and that it leads to high memory
consumption. In this chapter, we introduce a different approach to build a smaller TDCCH.
The index is still exact on the given weights, but we alter the input weights a bit to reduce
memory consumption. For that, we introduce the phase model in Section 3.1. In Section 3.2,
we introduce cover potentials as a way to describe the size of a linked function. With
this we propose an algorithm to calculate an optimized link based on user-defined degrees
of freedom for the input functions in Section 3.3. We describe an algorithm to merge in
the phase model in Section 3.4. Using the optimized link and the merge algorithm, we
describe a scheme to optimize the input weights for less space consumption in an exact
customization in Section 3.5.

3.1. Phase Representation
Our model does not operate on the support sequences as they are, but converts them to a
different format that we call phase function. The phase function representation focuses
on the traffic changes of the input function. Converting a support sequence to a phase
function, we convert each traffic change to a phase. Where a support sequence is a set
of support points, a phase function is a sequence of phases. Traffic changes and phases
contain nearly the same information, but a phase only knows its height difference, not its
absolute position on the y-axis. When interpreted as travel time function, a phase function
is implicitly constant between the phases, like the input function is between traffic changes.
When interpreted as arrival time function, a phase function has ascend one between the
phases. We first define phases and related terms.

Definition 3.1 (Phase, Phase Interval/Start/End/Length/Height, Height Bound). A
phase p is a tuple ([a, b], h), with [a, b] being the (closed) phase interval, and h the height
of the phase.

• The height of the phase is the y-difference between the start and the end of the phase
in travel time representation.

• The opening bound a of the phase interval is called the start of the phase, and the
closing bound b is called the end of the phase.

• The length of a phase p is defined as the length of the phase interval len(p) := b− a.

• A phase must fulfill the height bound −h ≤ b− a.
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Figure 3.1.: Exemplary support sequence with highlighted phases. It contains the phases
p1 = ([2, 3],−0.5) and p2 = ([4, 4.5], 0.5) in arrival time representation. The
support points are marked by circles.

The height bound originates from the FIFO property of our input functions. If a phase
would not fulfill the height bound, it would represent a section of a travel time function that
contains a descend smaller than −1, violating the FIFO property for travel time functions.
Phases might have height 0, but then they would not need to be stored. We allow height 0
nevertheless, because it might appear as a result of some computation and it is well-defined.
Figure 3.1 displays a piecewise linear function and its phases.

Before we define phase functions, we need terms to describe the valid relative positioning
of phases towards each other. Since phases describe slopes, they cannot intersect in more
than one point, because otherwise the height of the phases is not well-defined anymore.

Definition 3.2 (Intersecting/Touching/Disjoint Phases). Let p1 := ([a1, b1], h1) and p2 :=
([a2, b2], h2) be phases.

• Phases p1 and p2 are called intersecting, if [a1, b1] ∩ [a2, b2] 6= ∅.

• Phases p1 and p2 are called disjoint, if [a1, b1] ∩ [a2, b2] = ∅.

• Phases p1 and p2 are called touching, if a1 = b2 ∨ b1 = a2.

Phases have a natural ordering, that is defined as follows.

Definition 3.3 (Natural Ordering of Phases). Let p1 := ([a1, b1], h1) and p2 := ([a2, b2], h2)
be phases that are disjoint or touching. Then p1 is left of p2, if b1 ≤ a2 and p1 is right of
p2, if a1 ≥ b2.

Whenever we refer to sorted sequences of phases, we mean sorted by the phases’ natural
ordering. We define phase functions as ordered sequence of phases.

Definition 3.4 (Phase Function, Zero). A phase function f : R → R is a tuple (P, z)
where P is a sorted sequence of pairwise disjoint or touching phases and z the value of
limx→−∞ f(x) in travel time representation. z is also called zero.

Definition 3.5 (Phase Function Size). Let f := (P, z) be a phase function. Then |f | := |P |
is its size.

Phase functions are not bound to be travel time or arrival time functions, since they do
not contain explicit y-values. The interpretation can be chosen on evaluation or when the
phase function is converted to a different format.

To understand what a phase within a phase function is actually doing to the input space
when applied, we introduce the notion of the output interval.

Commit d03b306 26 Compiled on 2019/02/28 at 19:20:30



3.1. Phase Representation

Definition 3.6 (Phase Output Interval). Given a phase function f = (P, z), a phase
p = ([a, b], h) ∈ P and ĥ, which is the sum of z and the heights of all phases before p. Then
its phase output interval under the phase function f is fout(p) := [a+ ĥ, b+ ĥ+ h].

The output interval can be understood as the image of the phase interval under the phase
function when interpreted as arrival time function.

Having defined this representation, two questions arise. First, how do we evaluate a phase
function for a certain time point τ? And second, how do we convert between the input
and the phase representation?

3.1.1. Evaluation

Algorithm 3.1: Evaluate Phase Function as Arrival Time Function
Input: Phase function f = (P, z), time point τ
Data: Current y-value
Output: f(τ)

1 y ← z + τ
2 foreach Phase ([a, b], h) ∈ P do
3 if τ ≤ a then
4 return y

5 else if τ ≤ b then
// Interpolate within phase

6 return (y · (b− τ) + (y + h) · (τ − a))/(b− a)
7 else
8 y ← y + h

9 return y

A phase function can be evaluated as arrival time function by sweeping over the phases, as
shown in Algorithm 3.1. This is linear in the amount of phases, and can be slow for large
amounts of phases.

If we do not store the height of a phase, but the y-value of the start of the phase, then
we can calculate the height of a phase using its y-value and the y-value of the next phase.
This enables us to use binary search for evaluation, which should result in speedups for
large amounts of phases. But since we never evaluate phase functions, we do not do this.

3.1.2. Conversion

To work with phase functions, we need to be able to convert into and out of this format.

Algorithm 3.2 converts a support sequence representing an arrival time function to a phase
function. Note that we loose the information about the implicit slopes in this process. But
we only construct phase functions from arrival time functions, so they are always 1.

The conversion from a phase function back to a support sequence is done with Algorithm 3.3.
It uses the end of the last phase e to ensure that it does not create duplicate points if
phases touch. Note that the resulting support sequence represents an arrival time function.

When the algorithm processes phase p, it inserts two support points if they do not exist.
We refer to those as the support points corresponding to p.

With these conversion rules, we can define all operations, that we define on support
sequences, also on phase functions. The phase functions are converted to support sequences
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Algorithm 3.2: phaseFunction(·)
Input: Support sequence S := ((x1, y1), . . . , (xn, yn)).
Data: Current y-value.

End of last phase e.
Output: Phase function f := (P, z).

1 z ← y1 − x1
2 foreach ((xi, yi), (xi+1, yi+1)) ⊆ S do
3 if xi+1 − xi 6= yi+1 − yi then
4 P.append(([xi, xi+1], (yi+1 − yi)− (xi+1 − xi)))

Algorithm 3.3: supportSequence(·)
Input: Phase function f := (P, z).
Data: Current y-value.

End of last phase e.
Output: Support Sequence S.

1 y ← z
2 if |P | = 0 then
3 S.append((0, y))
4 else
5 e← −∞
6 foreach Phase ([a, b], h) ∈ P do
7 if e 6= a then
8 S.append((a, y))
9 y ← y + h

10 if a 6= b ∨ h 6= 0 then
11 S.append((b, y))
12 e← b

first, then the operation is applied, and then the results are converted back to phase
functions, if applicable.

3.1.3. Space Requirements

Depending on the function, the phase function representation can consume more or less
memory than the support sequence representation. A support sequence with n support
points takes 2n units of memory. If phases are disjoint, then pairs of support points that
take four numbers only take three in phase representation. Then, the same function in
phase representation takes only 1 + 3(n− 1)/2. For n towards infinity, we get a factor of

1 + 3(n− 1)/2
2n = 3n− 1

4n
n→∞−−−→ 3

4

for memory consumption.

If a phase is touching another phase on both ends, then these three phases take nine
numbers, while the four points required to describe the same section in support sequence
representation take only eight numbers. A section of n touching phases takes n + 1
support points in support sequence representation, so 2n+ 2 units of memory. In phase
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representation, it takes n phases, so 3n + 1 units of memory. For n towards infinity we
then get a factor of

3n+ 1
2n+ 2

n→∞−−−→ 3
2

for memory consumption.

Since phases never touch in our input data, we save space with phase representation for
our input data.

3.2. The Approximate Approach

The idea for the actual approximation originates from the link operation. When linking
two functions, support points can cover each other, meaning that only one of them needs
to be stored for the linked function. But we can go even further. In this subsection
we will introduce a different interpretation of phase functions that allow them to cover
whole intervals of input or output space. For that, in Section 3.2.1, we first introduce
the term cover potential for piecewise linear arrival time functions that are represented
as support sequences. It is a subset of the input or output space of a function such that
breakpoints that are mapped into these subsets on composition become redundant in the
link support sequence of the composed function. In Section 3.2.2, we use the insights from
cover potentials to devise an approximation for phase functions that maximize their cover
potentials. With that, we prove a theorem about the size of a link of squashed phase
functions.

3.2.1. Cover Potentials

Cover potentials exist for both travel time and arrival time functions, but they are easier
to describe with arrival time functions. Since the translation from travel time to arrival
time functions and back is simple, it is enough to work with arrival time functions in this
section.

We define cover potentials together with cover potential conditions that help us define and
argue about cover potentials.

Definition 3.7 (Weak/Strong Input/Output Cover Potential (Condition) of Weakly
Increasing Support Sequences). Let S be a weakly increasing support sequence. Let fS :
D → R be its derived piecewise linear function with domain D and range R and implicit
slopes of 1. Let T be the set of all weakly increasing minimal support sequences.

We define D′ as the weak input cover potential of fS, and R′ as the weak output cover
potential of fS. And we define D′′ as the strong input cover potential of fS, and R′′ as
the strong output cover potential of fS.

• Let x0 ∈ D. Let T ∈ T . If the link support sequence link(T, S) contains exactly one
redundant support point that originates from a non-redundant support point p ∈ Ty=x0 ,
or all p ∈ Ty=x0 are redundant, then T fulfills the weak input cover potential condition
for S and x0. If all T ∈ T fulfill the weak input cover potential condition for fS and
x0, then x0 ∈ D′.

If each p ∈ Ty=x0 produces a redundant support point in the link support sequence
link(T, S), then T fulfills the strong input cover potential condition for S and x0.
If all T ∈ T fulfill the strong input cover potential condition for fS and x0, then
x0 ∈ D′′.
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Figure 3.2.: The cover potentials of a support sequence. Cover potentials drawn towards
the x-axis are input cover potentials, and cover potentials drawn towards the
y-axis are output cover potentials. The support points are marked by dashed
circles.

• Let y0 ∈ R. Let T ∈ T . If the link support sequence link(S, T ) contains exactly
one redundant support point that originates from a non-redundant support point
p ∈ Tx=y0, or all p ∈ Tx=y0 are redundant, then T fulfills the weak output cover
potential condition for S and y0. If all T ∈ T fulfill the weak output cover potential
condition for fS and y0, then y0 ∈ R′.

If each p ∈ Tx=y0 produces a redundant support point in the link support sequence
link(S, T ), then T fulfills the strong output cover potential condition for S and y0.
If all T ∈ T fulfill the strong output cover potential condition for fS and y0, then
y0 ∈ R′′.

The following lemmas describe the structure of the cover potentials of weakly increasing
support sequence in detail. The cover potentials of an exemplary support sequence are
displayed in Figure 3.2. We first define specific function behaviors that we need in the
lemmas below.

Definition 3.8 (Function is Constant on Interval). Let f : D ⊆ R→ R ⊆ R be a function.
Then f is constant on an interval I ⊆ D, if ∃y ∈ R : ∀x ∈ I : f(x) = y.

Definition 3.9 (Function Jumps over Interval). Let f : D ⊆ R → R ⊆ R be a function.
Then f jumps over an interval I ⊆ R, if ∃x ∈ D : ∀y ∈ I : f(x) = y.

Definition 3.10 (Function is Constant around Ordinal). Let f : D ⊆ R → R ⊆ R be
a function. Then f is constant around an ordinal x0 ∈ D, if ∃ε > 0 : ∃y ∈ R : ∀x ∈
[x0 − ε, x0 + ε] : f(x) = y.

Definition 3.11 (Function Jumps over Ordinal). Let f : D ⊆ R→ R ⊆ R be a function.
Then f jumps over an ordinal y0 ∈ R, if ∃ε > 0 : ∃x ∈ D : ∀y ∈ [y0 − ε, y0 + ε] : f(x) = y.

Lemma 3.12 (Support Points are Weak Cover Potential). Let S be a weakly increasing
support sequence. Let fS be its derived piecewise linear function and D′ its weak input cover
potential and R′ its weak output cover potential. Then for all support points (x0, y0) ∈ S:

(a) fS is not constant on [x0 − εS , x0] for any εS > 0 ⇒ x0 ∈ D′,

(b) fS does not jump over [y0, y0 + εS ] for any εS > 0 ⇒ y0 ∈ R′.

Proof. Let (x0, y0) ∈ S.
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(a) Let fS not be constant on [x0 − εS , x0] for any εS > 0. Let T be the set of all weakly
increasing minimal support sequences. Let T ∈ T . Let L := link(T, S).

– Assume, |Ty=x0 | = 0. Then T fulfills the weak input cover potential condition
for fS and x0.

– Assume, |Ty=x0 | = 1. Let (p1 := (a1, x0)) := Ty=x0 . Since T is minimal, p1 is
not redundant.

Then, p1 produces (a1, fS(x0)) ∈ L.

Since (x0, y0) ∈ S, it follows that (x0, fS(x0)) ∈ S. Then, (x0, fS(x0)) produces
(f−1
T (x0), fS(x0)) = (a1, fS(x0)) ∈ L.

So, p1 produces a redundant support point in L. So, T fulfills the weak input
cover potential condition for fS and x0.

– Assume, |Ty=x0 | = 2. Let (p1 := (a1, x0), p2 := (a2, x0)) := Ty=x0 . Since T is
minimal, p1 and p2 are not redundant.

Since f−1
T (x0) = a2, p2 produces a redundant support point in L by the same

argument as for |Ty=x0 | = 1 above.

We give proof for p1 producing the non-redundant point p′1 := (a1, fS(x0)) ∈ L
by proving that p′1 is not duplicate and a breakpoint.

The support point p′1 is not duplicate in L because:

∗ If T contains a support point (a1, x̌) with x̌ < x0, then, since fS is not
constant on [x0 − εS , x0] for any εS > 0, fS(x̌) < fS(x0). So, the product of
(a1, x̌) in L is not equal to p′1.

∗ T cannot contain a support point (a1, x̂) with x̂ > x0, since p1 6= p2.

∗ If T contains a support point p with x 6= a1, then the product of p in L is
not equal to p′1.

∗ If S contains a support point (x̌, fS(x0)) with x̌ < x0, then fS would be
constant on [x0 − εS , x0] for some εS > 0, but by definition it is not.

∗ If S contains a support point (x̂, fS(x0)) with x̂ > x0, then f−1
T (x̂) ≥ a2 > a1.

So, the product of (x̂, fS(x0)) in L is not equal to p′1.

∗ If S contains a support point p with y 6= fS(y0), then the product of p in L
is not equal to p′1.

So, only p1 can produce a point that is equal to p′1.

We prove that p′1 is a breakpoint.

Since p1 is the first point with y = x0 in T , fT is not constant on [a1 − εT , a1]
for any εT > 0. So, fT (ǎ) < x0 for ǎ < a1. Also, since fS is not constant on
[x0 − εS , x0] for any εS > 0, fS(x̌) < y0 for x̌ < x0. So, fL(ǎ) < y0 for ǎ < a1.

But since fT is constant on (a1, a2], fL is constant on (a1, a2] with value fS(x0).
So, p′1 is the starting point of this constant. So, p′1 is a breakpoint in fL.

So T fulfills the weak input cover potential condition for fS and x0.

– Assume |Ty=x0 | > 2. This is a contradiction to the minimality of T .

So all T ∈ T fulfill the weak input cover potential condition for fS and x0. So
x0 ∈ D′.
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(b) Let fS not jump over [y0, y0 + εS ] for any εS > 0. Let T be the set of all weakly
increasing support sequences that have at least one support point x = y0. Let T ∈ T .
Let L := link(S, T ).

– Assume, |Tx=y0 | = 0. Then T fulfills the weak output cover potential condition
for fS and y0.

– Assume, |Tx=y0 | = 1. Let (p1 := (y0, b1)) := Tx=y0 . Since T is minimal, p1 is
not redundant.

Then, p1 produces (f−1
S (y0), b1) ∈ L.

Since (x0, y0) ∈ S, it follows that (f−1
S (y0), y0) ∈ S. Then, (f−1

S (y0), y0) produces
(f−1
S (y0), fT (y0)) = (f−1

S (y0), b1) ∈ L.

So, p1 produces a redundant support point in L. So, T fulfills the weak output
cover potential condition for fS and y0.

– Assume, |Tx=y0 | = 2. Let (p1 := (y0, b1), p2 := (y0, b2)) := Tx=y0 . Since T is
minimal, p1 and p2 are not redundant.

Since fT (y0) = b1, p1 produces a redundant support point in L by the same
argument as for |Tx=y0 | = 1 above.

We give proof for p2 producing the non-redundant point p′2 := (f−1
S (y0), b2) ∈ L

by proving that p′2 is not duplicate and a breakpoint.

The support point p′2 is not duplicate in L because:

∗ If T contains a support point (ŷ, b2) with ŷ > y0, then, since fS does not
jump over [y0, y0 + εS ] for any εS > 0, f−1

S (ŷ) > f−1
S (y0). So, the product

of (ŷ, b2) in L is not equal to p′2.

∗ T cannot contain a support point (y̌, b2) with y̌ < y0, since p1 6= p2.

∗ If T contains a support point p with y 6= b2, then the product of p in L is
not equal to p′2.

∗ If S contains a support point (f−1
S (y0), ŷ) with ŷ > y0, then fS would jump

over [y0, y0 + εS ] for some εS > 0, but by definition it does not.

∗ If S contains a support point (f−1
S (y0), y̌) with y̌ < y0, then fT (y̌) ≤ b1 < b2.

So the product of (f−1
S (y0), y̌) in L is not equal to p′2.

∗ If S contains a support point p with x 6= f−1
S (y0), then the product of p in

L is not equal to p′2.

So, only p2 can produce a point that is equal to p′2.

We prove that p′2 is a breakpoint.

Since p2 is the last point with x = y0 in T , fT does not have a jump at y0 such
that limε→0 fT (y0 + ε) > b2. So, f−1

T (b̂) > y0 for b̂ > b2. Also, since fS does not
jump over [y0, y0 + εS ] for any εS > 0, f−1

S (ŷ) > x0 for ŷ > y0. So, f−1
L (b̂) > x0

for b̂ > b2.

But since f−1
T is constant on [b1, b2), f−1

L is constant on [b1, b2) with value
f−1
S (y0). So, p′2 is the ending point of this constant. So, p′2 is a breakpoint in fL.

So, T fulfills the weak output cover potential condition for fS and y0.

– Assume |Tx=y0 | > 2. This is a contradiction to the minimality of T .
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So all T ∈ T fulfill the weak output cover potential condition for fS and y0. So
y0 ∈ R′.

Lemma 3.13 (Constants and Jumps are Strong Cover Potential). Let S be a weakly
increasing support sequence. Let fS be its derived piecewise linear function and D′′ its
strong input cover potential and R′′ its strong output cover potential. Then

(a) ∀x0 : fS is constant on [x0 − εS , x0] for some εS > 0 ⇒ x0 ∈ D′′ and

(b) ∀y0 : fS jumps over [y0, y0 + εS ] for some εS > 0 ⇒ y0 ∈ R′′.

Proof. Let T be the set of all weakly increasing minimal support sequences.

(a) Let x0 ∈ R such that fS is constant on [x0− εS , x0] for some εS > 0. Let T ∈ T with
support point (a, x0) for some a. Let L := link(T, S).

Since fS is constant on [x0 − εS , x0] for some εS > 0, (x̌, fS(x0)), (x̂, fS(x0)) ∈ S for
x̌ < x0 and x̂ ≥ x0.

So, (a, fS(x0)), (f−1
T (x̌), fS(x0)), (f−1

T (x̂), fS(x0)) ∈ L. It holds that f−1
T (x̌) ≤ a and

f−1
T (x̂) ≥ a.

But then, either L contains duplicate points or (a, fS(x0)) is not a breakpoint in fL,
so L contains a redundant point that originates from (a, x0) ∈ T . So each T ∈ T
fulfills the strong input cover potential condition for fS and x0. So x0 ∈ D′′.

(b) Let y0 ∈ R such that fS jumps over [y0, y0 + εS ] for some εS > 0. Let T be a weakly
increasing support sequence with support point (y0, b). Let L := link(S, T ).

Since fS jumps over [y0, y0 + εS ] for some εS > 0, (f−1
S (y0), y̌), (f−1

S (y0), ŷ) ∈ S for
y̌ ≤ y0 and ŷ > y0.

So, (f−1
S (y0), b), (f−1

S (y0), fT (y̌)), (f−1
S (y0), fT (ŷ)) ∈ L. It holds that fT (y̌) ≤ b and

fT (ŷ) ≥ b.

But then, either L contains duplicate points or (f−1
S (y0), b) is not a breakpoint in

fL, so L contains a redundant point that originates from (y0, b) ∈ T . So each T ∈ T
fulfills the strong output cover potential condition for fS and y0. So y0 ∈ R′′.

Lemma 3.14 (Everything Else Never Covers). Let S be a weakly increasing support
sequence. Let fS be its derived piecewise linear function, D′ and D′′ its weak and strong
input cover potential and R′ and R′′ its weak and strong output cover potential.

(a) Let x0 ∈ R such that fS not constant around x0 and ∀(a, b) ∈ S : x0 6= a. Then
x0 /∈ D′ ∪D′′. Moreover, for all weakly increasing support sequences T with unique
breakpoint p := (c, x0) for some c, the product of p in link(T, S) is not redundant.

(b) Let y0 ∈ R such that fS does not jump over y0 and ∀(a, b) ∈ S : y0 6= b. Then
y0 /∈ R′ ∪R′′. Moreover, for all weakly increasing support sequences T with unique
breakpoint p := (y0, d) for some d, the product of p in link(S, T ) is not redundant.

Proof.
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(a) Let x0 ∈ R such that fS not constant around x0 and ∀(a, b) ∈ S : x0 6= a. Then fS
has an ascend in (0,∞) around x0, so it is bijective around x0.

Let T be a weakly increasing support sequence with unique breakpoint p := (c, x0).
Then L := link(T, S) has a support point p′ := (c, fS(x0)) which is the product of p
in L.

Since S is bijective around x0 and S contains no support point at x = x0, S contains
no support point with y = fS(x0). Since p is a unique breakpoint in T and S is
bijective around x0, T does not contain a support point (c, x′0) with fS(x0) = fS(x′0).
So p′ is a unique support point in L.

Also, p′ is a breakpoint, since p is a breakpoint in T and the ascend before and after
p is changed by the same linear factor when linking. So p′ is not redundant in L.

(b) Let y0 ∈ R such that fS does not jump over y0 and ∀(a, b) ∈ S : y0 6= b. Then fS has
an ascend in (0,∞) around x0 := f−1

S (y0), so it is bijective around x0.

Let T be a weakly increasing support sequence with unique breakpoint p := (y0, d).
Then L := link(S, T ) has a support point p′ := (f−1

S (y0), d) which is the product of
p in L.

Since S is bijective around x0, and S contains no support point at y = y0, S contains
no support point with x = x0. Since p is a unique breakpoint in T and S is bijective
around x0, T does not contain a support point (y′0, d) with f−1

S (y0) = f−1
S (y′0). So p′

is a unique support point in L.

Also, p′ is a breakpoint, since p is a breakpoint in T and the ascend before and after
p is changed by the same linear factor when linking. So p′ is not redundant in L.

The cover potentials describe where points are saved on link. Note that redundant points
never produce non-redundant points on link. So with cover potentials, an upper bound for
the size of the link can be given. But we use cover potentials with phases, because there we
can give a more accurate bound, and we use the phase model for our optimization scheme.

3.2.2. Maximizing the Cover Potentials by Approximation

We have seen that for creating strong cover potentials, an arrival time function is required
to have constants and jumps. But our input functions do not have these features, their
traffic changes are not as steep. We approximate the input functions by defining phases to
not have a uniform slope, but to contain a jump or constant somewhere within the phase.

Then, our weight functions have slopes restricted to 0, 1, and ∞. As discussed in [FHS11],
this reduces the worst case complexity of our shortcut weights from K · nO(logn) to O(K),
where n is the amount of nodes in the graph and K the total amount of breakpoints in all
weight functions. While this is just a worst case bound, it is a hint that we reduce the size
of the TDCCH with restricted slopes compared to unrestricted slopes.

Since we try to reduce memory consumption, we restrict each phase to have exactly one jump
or constant. Otherwise, we would need more space to store the lengths and the locations of
multiple jumps or constants. A phase p := ([a, b], h) gets expanded to ([a, b], h, c), where c
describes the position of the jump or constant. We do not store c explicitly, as we only need
it temporarily in our optimization algorithm for the phase function link. The condition
for maximum absolute slopes means, that phases with positive height are approximated
with jumps, and phases with negative height are approximated with constants. If a phase
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Figure 3.3.: From exact phases to approximate phases. In Subfigure (a), the original increas-
ing phase is displayed. In Subfigure (b), (c) and (d), possible approximations
of the same phase are displayed.
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Figure 3.4.: From exact phases to approximate phases. In Subfigure (a), the original increas-
ing phase is displayed. In Subfigure (b), (c) and (d), possible approximations
of the same phase are displayed.

with negative height would be approximated by anything with a negative slope, then the
function would not be a FIFO arrival time function anymore. In Figures 3.3 and 3.4, we
give an example for the approximation. Note that all approximations displayed are valid
for the displayed exact phase.

With this approximation, we gain degrees of freedom for optimizing the result size of a
link. In the remainder of this subsection, we examine how phases behave on link, and we
conclude the section by giving a formula for the size of the link depending on its input
functions.

We define the terms for the approximation we describe above.

Definition 3.15 (Approximated Phase). Let p := ([a, b], h) be a phase. Let c ∈ [0, b −
max{0,−h}]. We define p̄ := ([a, b], h, c) as its approximated phase with offset c.

Using approximated phases, we define approximated phase functions.

Definition 3.16 (Approximated Phase Function). Let f := (P := (p1, . . . , pn), z) be a
phase function. Let c := (c1, . . . , cn) be a real sequence. We define f̄ := ((p̄i with offset c |
pi ∈ P ), z).
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The offset determines the positioning of the jump or the constant that approximates the
phase. We call this jump or constant a phase core.

Definition 3.17 (Input Phase Core, Output Phase Core). Let f = (P, z) be a phase
function, p := ([a, b], h) ∈ P be a phase and [a′, b′] := fout(p) its phase output interval. Let
p̄ := ([a, b], h, c) be an approximation of p. We define p̄in := [a+ c, a+ max{0,−h}+ c] as
its input phase core and p̄out = [a′ + c, a′ + max{0, h}+ c] as its output phase core.

Since approximated phases are either constants or jumps, either their input phase core or
their output phase core is an interval with one element.

We can restrict a phase to its core, such that it is equal to its approximation.

Definition 3.18 (Squashed Phase (Function)). Let f = (P, z) be a phase function and f̄
its approximated phase function. For a phase p := ([a, b], h) we define ›p‹ := (p̄in, h) as
its squashed phase, where p̄in is the input phase core of p. We define the squashed phase
function of f as ›f ‹ := ((›p‹ | p ∈ P ), z).

The squashed phase function ›f‹ is a phase function. It can be translated back into a
support sequence S such that its derived piecewise linear function fS contains only ascends
of zero, one and infinity. We describe the translation in Algorithm 3.3 further above.

A squashed phase function ›f‹ := (P, z) has a unique approximated phase function, such
that for each p := ([a, b], h) ∈ P , it holds that p̄ = ([a, b], h, 0). So for squashed phase
functions we can use the terms input phase core and output phase core without giving an
approximation as context.

With squashed phases, we can define the product of a phase under the link operation.

Definition 3.19 (Phase Product). Let f := (Pf , zf ) and g := (Pg, zg) be squashed phase
functions. Let S := supportSequence(f) and T := supportSequence(g). Let p ∈ Pf .
Let p1 and p2 be its corresponding support points in S. Let L be the link support sequence
of linking S and T in any order.

Then, the phase p′ corresponding to the products of p1 and p2 in L is called the product of
p.

The phase product is only well-defined, if the products of p1 and p2 describe a phase. We
prove this in the following lemma.

Lemma 3.20 (Phase Product is sound). Let f := (Pf , zf ) and g := (Pg, zg) be squashed
phase functions. Let S := supportSequence(f) and T := supportSequence(g). Let
p ∈ Pf . Let p1 := (x1, y1) and p2 := (x2, y2) be its corresponding points in S. Let L be the
link support sequence of linking S and T in any order. Let p′1 := (x′1, y′1) and p′2 := (x′2, y′2)
be the products of p1 and p2 in L.

Then, p′1 and p′2 describe a jump or a constant.

Proof.

• Assume x1 = x2.

– If L = link(S, T ), then x′1 = x1 = x2 = x′2. So, p′1 and p′2 describe a jump
phase.

– If L = link(T, S), then x′1 = g−1(x1) = g−1(x2) = x′2. So, p′1 and p′2 describe a
constant phase.
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Figure 3.5.: Cover groups for exemplary squashed phase functions and their products in
the link. Phases of the same cover group are highlighted by the same color.

• Assume y1 = y2.

– If L = link(S, T ), then y′1 = g(y1) = g(y2) = y′2. So, p′1 and p′2 describe a jump
phase.

– If L = link(T, S), then y′1 = y1 = y2 = y′2. So, p′1 and p′2 describe a constant
phase.

• If neither x1 = x2 nor y1 = y2, then p would not be a squashed phase.

So, in all cases, p′1 and p′2 describe a jump phase or a constant phase.

From a specific approximation f̄ for f , we also get specific unique cover potentials for the
derived piecewise linear function ›f‹S of its squashed counterpart. Moreover, the set of
input and output cores of ›f‹ corresponds to the strong input and output cover potential
of fS . So, we can investigate how phases that fall into the cover potential of another phase
in a link behave. We introduce terms for this kind of phase group.

Definition 3.21 (Covering, Coverer, Coveree, Input/Output Cover Group, Cover Group
Size). Let f := (Pf , zf ) and g := (Pg, zg) be squashed phase functions. Let p ∈ Pf . Let
pin := [x1, x2] be its input phase core and pout := [y1, y2] be its output phase core.

(a) If x1 6= x2, let Cin(Pg, p) := {q ∈ Pg | qout ⊆ pin}. Then we say that p covers each
q ∈ Cin(Pg, p) when linking g ⊕ f . We call p the coverer and each q ∈ Cin(Pg, p) a
coveree. We call (Cin(Pg, p), p) the input cover group of p. We call |(Cin(Pg, p), p)| :=
|Cin(Pg, p)| its size.

(b) If y1 6= y2, let Cout(p, Pg) := {q ∈ Pg | qin ⊆ pout}. Then we say that p covers
each q ∈ Cout(p, Pg) when linking f ⊕ g. We call p the coverer and each q ∈
Cin(p, Pg) a coveree. We call (p, Cout(p, Pg)) the output cover group of p. We call
|(p, Cout(p, Pg))| := |Cout(p, Pg)| its size.

In Figure 3.5, an exemplary pair of squashed phase functions and their cover groups are
displayed.

Definition 3.22 (Cover Group Set). Let f := (Pf , zf ) and g := (Pg, zg) be squashed
phase functions. We define coverGroups(f, g) := {(p, Cout(p, Pg)) | p ∈ Pf ∧ p is jump ∧
Cout(p, Pg) 6= ∅} ∪ {(Cin(Pf , q), q) | q ∈ Pg ∧ q is constant ∧ Cin(Pf , q) 6= ∅} as the cover
group set of f and g.

An intuition of covering is that the covering phase swallows all coverees in the link, and
thus each covered phase leads to one less phase in the link.

Note that this intuition of covering only works, if the phases of each function are pairwise
disjoint within the function. By Lemma 3.13, the startpoint of a constant is not part of the
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Figure 3.6.: Example for touching phases prohibiting a covering between unrelated phases.
The functions are displayed with parallel axes, where f maps from x to y and
g from y to z. The phases are displayed as triangles, where a triangle with its
tip at the top is a jump, and a triangle with its tip at the bottom is a constant.
In Subfigure (a), even though the output phase core of a intersects the input
phase core of c, they produce separate phases in the link. In Subfigure (b),
the cores intersect and thus a and c form a cover relationship and produce one
common phase.

strong input cover potential and the endpoint of a jump is not part of the strong output
cover potential. In effect, if a constant is preceded by a jump, then the constant does not
cover constants that fall into its startpoint from input side. And if a jump is followed by a
constant, then the jump does not cover jumps that fall into its endpoint from output side.
But if jumps and constants are isolated, then their end- or startpoints only being weak
cover potential does not prevent them from covering other phases in that point. The case
of a jump following a constant is displayed in Figure 3.6.

We make the intuition of covering more concrete in the following lemma.

Lemma 3.23 (Phase Cover Group). Let f := (Pf , zf ) and g := (Pg, zg) be squashed phase
functions such that the phases in Pf are pairwise disjoint and the phases in Pg are pairwise
disjoint. Let S := supportSequence(f) and T := supportSequence(g). Let p ∈ Pf .

(a) If p is a constant with value y1, let (Cin(Pg, p), p) be the input cover group of p.
Let L := link(T, S). Then the products p′1 and p′2 of the support points p1, p2 ∈ S,
p1 < p2, corresponding to p and the products q′1 and q′2 of the support points in
q1, q2 ∈ T , q1 < q2, corresponding to each q ∈ Q are collinear in L with y = y1.

(b) If p is a jump at x1, let (p, Cout(p, Pg)) be the output cover group of p. Let L :=
link(S, T ). Then the products p′1 and p′2 of the support points p1, p2 ∈ S, p1 < p2,
corresponding to p and the products q′1 and q′2 of the support points in q1, q2 ∈ T ,
q1 < q2, corresponding to each q ∈ Q are collinear in L with x = x1.

Proof.

(a) Let p be a constant with value y1. Let (Cin(Pg, p), p) be the input cover group of p.
Let L := link(T, S).

Then it holds that p1 = (x1, y1) and p2 = (x2, y2) with x1 < x2 and y1 = y2. And
since the phases in Pf are pairwise disjoint, fS does not have a jump at x1. So fS is
constant on pin with value y1.

For q ∈ Cin(Pg, p), let (a1, b1) := q1 and (a2, b2) := q2. Then it holds that b1, b2 ∈ pin,
since qout ⊆ pin. So, q′1 and q′2 are at y = y1. Also, p′1 and p′2 are at y = y1. So, q′1,
q′2, p′1 and p′2 are collinear.
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(b) Let p be a jump at x1. Let (p, Cout(p, Pg)) be the output cover group of p. Let
L := link(S, T ).

Then it holds that p1 = (x1, y1) and p2 = (x2, y2) with y1 < y2 and x1 = x2. And
since the phases in Pf are pairwise disjoint, fS does not have a constant with value
y2. So f−1

S is constant on pout with value x1.

For q ∈ Cout(p, Pg), let (a1, b2) := q′1 and (a2, b2) := q′2. Then it holds that a1, a2 ∈
pout, since qin ⊆ pout. So, q′1 and q′2 are at x = x1. Also, p′1 and p′2 are at x = x1. So,
q′1, q′2, p′1 and p′2 are collinear.

So, the products of the support points of all phases in a cover group are collinear. The
resulting phase of an input cover group is almost always a constant phase, and the resulting
phase of an output cover group is almost always a jump phase in the link. The exception
to that are exact cover groups. Their product has height zero.

Lemma 3.24 (Exact Cover Group). Let f := (Pf , zf ) and g := (Pg, zg) be squashed phase
functions such that the phases in Pf are pairwise disjoint and the phases in Pg are pairwise
disjoint. Let p ∈ Pf . Let (Cin(Pg, p), p) be the input cover group of p, if it exists, and
(p, Cout(p, Pg)) be the output cover group of p, if it exists.

(a) If
⋃
q∈Cin(Pg ,p) qout = pin, then the products of all support points corresponding to

(Cin(Pg, p), p) are equal in the link.

(b) If
⋃
q∈Cout(p,Pg) qin = pout, then the products of all support points corresponding to

(p, Cout(p, Pg)) are equal in the link.

Proof.

(a) Assume,
⋃
q∈Cin(Pg ,p) qout = pin. Then, since phases do not touch, |Cin(Pg, p)| = 1.

Let {q} := Cin(Pg, p).

The support points corresponding to p and q are of the form q1 := (x, y1), q2 := (x, y2),
p1 := (y1, z) and p2 := (y2, z) such that y1 < y2. But then, since phases do not touch,
their products are all (x, z).

(b) Assume,
⋃
q∈Cout(p,Pg) qin = pout. Then, since phases do not touch, |Cout(p, Pg)| = 1.

Let {q} := Cout(p, Pg).

The support points corresponding to p and q are of the form p1 := (x, y1), p2 := (x, y2),
q1 := (y1, z) and q2 := (y2, z) such that y1 < y2. But then, since phases do not touch,
their products are all (x, z).

We look at all other possible positionings of phase cores and their behaviors on link.

Lemma 3.25 (Free Phases). Let f := (Pf , zf ) and g := (Pg, zg) be squashed phase
functions such that the phases in Pf are pairwise disjoint and the phases in Pg are pairwise
disjoint. Let S := supportSequence(f) and T := supportSequence(g). Let p ∈ Pf .
Let [x1, x2] := pin and [y1, y2] := pout.

(a) If ∀q ∈ Pg : qout ∩ pin = ∅ ∨ (qout = pin ∧ x1 = x2), then the support points p1 :=
(x1, y1), p2 := (x2, y2) ∈ S that correspond to p produce the consecutive breakpoints
p′1 := (g−1(x1), y1), p′2 := (g−1(x2), y2) ∈ L := link(T, S).
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(b) If ∀q ∈ Pg : qin ∩ pout = ∅ ∨ (qin = pout ∧ y1 = y2), then the support points p1 :=
(x1, y1), p2 := (x2, y2) ∈ S that correspond to p produce the consecutive breakpoints
p′1 := (x1, g(y1)), p′2 := (x2, g(y2)) ∈ L := link(S, T ).

Proof.

(a) Let L := link(T, S). Let p1 := (x1, y1), p2 := (x2, y2) ∈ S be the support points that
correspond to p. Let p′1 := (g−1(x1), y1), p′2 := (g−1(x2), y2) be their products in L.
Let ∀q ∈ Pg : qout∩pin = ∅∨(qout = pin∧x1 = x2). The condition (qout = pin∧x1 = x2)
holds for at most one q ∈ Pg and contradicts qout ∩ pin = ∅.

– If @q ∈ Pg : qout = pin ∧ x1 = x2, then g−1 has an ascend of 1 on [x1, x2]. Then,
p′1 and p′2 are consecutive breakpoints in L.

– Otherwise, g contains a constant phase q with value x1 = x2. Then, the support
points corresponding to q are of the form q1 := (a1, x1) and q2 := (a2, x1) with
a1 < a2. And because p is a jump at x1, it holds that y1 < y2.

The products of q1 and q2 are q′1 := (a1, f(x1)), q′2 := (a2, f(x1)) ∈ L. There
are no other support points with x = x1 in S and no other support points with
y = x1 in T . So f(x1) = y1 and g−1(x1) = a2. So link produces the consecutive
support points q′1 = (a1, y1), q′2 = (a2, y1), p′1 = (a2, y1), p′2 = (a2, y2) ∈ L.

We prove, that they are all breakpoints in L.

∗ Since the listed products are consecutive, q′2 = p′1 are breakpoints in L.

∗ Since phases are disjoint, ∃ε > 0 : ∀δ ∈ (0, ε) : f(x1 + δ) = f(x1) + δ. And,
since phases are disjoint, ∃ε > 0 : ∀δ ∈ (0, ε) : g(a2 + δ) = g(a2) + δ = x2 + δ.
So, ∃ε > 0 : ∀δ ∈ (0, ε) : (g⊕f)(a2 +δ) = (g⊕f)(a2)+δ. So, the right-sided
derivative of (g ⊕ f) is 1 at a2. So, p′2 is breakpoint in L.

∗ By an analogous argument, q′1 is breakpoint in L.

(b) Let L := link(S, T ). Let p1 := (x1, y1), p2 := (x2, y2) ∈ S be the support points that
correspond to p. Let p′1 := (x1, g(y1)), p′2 := (x2, g(y2)) be their products in L. Let
∀q ∈ Pg : qin ∩ pout = ∅ ∨ (qin = pout ∧ y1 = y2). The condition qin = pout ∧ y1 = y2
holds for at most one q ∈ Pg and contradicts qin ∩ pout = ∅.

– If @q ∈ Pg : qin = pout ∧ y1 = y2, then g−1 has an ascend of 1 on [y1, y2]. Then,
p′1 and p′2 are consecutive breakpoints in L.

– Otherwise, g contains a jump phase q at y1 = y2. Then, the support points
corresponding to q are of the form q1 := (y1, b1) and q2 := (y1, b2) with b1 < b2.
And because p is a constant with value y1, it holds that x1 < x2.

The products of q1 and q2 are q′1 := (f−1(y1), b1), q′2 := (f−1(y1), b2) ∈ L. There
are no other support points with y = y1 in S and no other support points with
x = y1 in T . So f−1(y1) = x2 and g(y1) = b1. So link produces the consecutive
support points p′1 = (x1, b1), p′2 = (x2, b1), q′1 = (x2, b1), q′2 = (x2, b2) ∈ L.

We prove, that they are all breakpoints in L.

∗ Since the listed products are consecutive, p′2 = q′1 are breakpoints in L.

∗ Since phases are disjoint, ∃ε > 0 : ∀δ ∈ (0, ε) : g(y1 + δ) = g(y1) + δ. And,
since phases are disjoint, ∃ε > 0 : ∀δ ∈ (0, ε) : f(x2 +δ) = f(x2)+δ = y1 +δ.
So, ∃ε > 0 : ∀δ ∈ (0, ε) : (f⊕g)(x2 +δ) = (f⊕g)(x2)+δ. So, the right-sided
derivative of (f ⊕ g) is 1 at x2. So, q′2 is breakpoint in L.

Commit d03b306 40 Compiled on 2019/02/28 at 19:20:30



3.2. The Approximate Approach

x

y

z

f

g

x

z

f ⊕ g
O

Figure 3.7.: An exemplary link of squashed phase functions with overlapping phases. The
overlap O is marked by a heavy line on the y-axis.

∗ By an analogous argument, p′1 is breakpoint in L.

By Lemma 3.25, free phases have one product in the link.

The basic situation of the lemma below is depicted in Figure 3.7.

Lemma 3.26 (Partially Overlapping Phases). Let f := (Pf , zf ) and g := (Pg, zg) be
squashed phase functions such that the phases in Pf are pairwise disjoint and the phases in
Pg are pairwise disjoint. Let S := supportSequence(f) and T := supportSequence(g).
Let p ∈ Pf . Let [x1, x2] := pin and [y1, y2] := pout.

(a) For q ∈ Pg such that Oq := qout ∩ pin 6= ∅, qout 6= Oq and pin 6= Oq, let (xp, yp) ∈ S
be the support point in S that corresponds to p with xp ∈ Oq and (xq, yq) ∈ T be
the support point in T that corresponds to q with yq ∈ Oq. Then their products
lp, lq ∈ L := link(T, S) are equal. The product of p is constant and touches the
product of q that is a jump.

(b) For q ∈ Pg such that Oq := qin ∩ pout 6= ∅, qin 6= Oq and pout 6= Oq, let (xp, yp) ∈ S
be the support point in S that corresponds to p with yp ∈ Oq and (xq, yq) ∈ T be
the support point in T that corresponds to q with xq ∈ Oq. Then their products
lp, lq ∈ L := link(S, T ) are equal. The product of p is a jump and touches the product
of q that is constant.

Proof.

(a) Let q ∈ Pg such that O: = qout ∩ pin 6= ∅∧ qout 6= Oq ∧ pin 6= Oq. Then, p is a constant
and q is a jump.

Let L := link(T, S). Let (xp, yp) ∈ S be the support point in S that corresponds
to p with xp ∈ Oq and (xq, yq) ∈ T be the support point in T that corresponds to q
with yq ∈ Oq. Then, f is constant on Oq with value yp. And, g−1 is constant on Oq
with value xq.

Then, the product of (xp, yp) ∈ S in L is lp := (g−1(xp), yp) = (xq, yp). And, the
product of (xq, yq) ∈ T in L is lq := (xq, f(yq)) = (xq, yp). So, it holds that lp = lq.
And, the product of p and the product of q in L touch.

Let (x′p, yp) ∈ S be the support point in S that corresponds to p with x′p /∈ Oq and
(xq, y′q) ∈ T be the support point in T that corresponds to q with y′q /∈ Oq. Then, the
product of (x′p, yp) ∈ S in L is l′p := (g−1(x′p), yp). And, the product of (xq, y′q) ∈ T
in L is l′q := (xq, f(y′q)).

Since x′p /∈ Oq and phases in Pg do not touch, it holds that g−1(x′p) 6= g−1(xp). So,
the product of p in L is a constant. Since y′q /∈ Oq and phases in Pf do not touch, it
holds that f(y′q) 6= f(yq). So, the product of q in L is a jump.
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(b) Let q ∈ Pg such that Oq := qin ∩ pout 6= ∅ ∧ qin 6= Oq ∧ pout 6= Oq. Then, p is a jump
and q is a constant.

Let L := link(S, T ). Let (xp, yp) ∈ S be the support point in S that corresponds to
p with yp ∈ Oq and (xq, yq) ∈ T be the support point in T that corresponds to q with
xq ∈ Oq. Then, f−1 is constant on Oq with value xp. And, g is constant on Oq with
value yq.

Then, the product of (xp, yp) ∈ S in L is lp := (xp, g(yp)) = (xp, yq). And, the product
of (xq, yq) ∈ T in L is lq := (f−1(xq), yq) = (xp, yq). So, it holds that lp = lq. And,
the product of p and the product of q in L touch.

Let (xp, y′p) ∈ S be the support point in S that corresponds to p with y′p /∈ Oq and
(x′q, yq) ∈ T be the support point in T that corresponds to q with x′q /∈ Oq. Then, the
product of (xp, y′p) ∈ S in L is l′p := (xp, g(y′p)). And, the product of (x′q, yq) ∈ T in
L is l′q := (f−1(x′q), yq).

Since y′p /∈ Oq and phases in Pg do not touch, it holds that (y′p) 6= g(yp). So, the
product of p in L is a jump. Since x′q /∈ Oq and phases in Pf do not touch, it holds
that f−1(x′q) 6= f−1(xq). So, the product of q in L is a constant.

By Lemma 3.26, a pair of partially overlapping phases produces two touching phases in
the link.

With these results about the behavior of squashed phases under the link operation, we can
give a rule to calculate the amount of phases in a link, depending on the phases in the
input functions.

Theorem 3.27 (Size of a Phase Link). Let f := (Pf , zf ) and g := (Pg, zg) be squashed phase
functions such that the phases in Pf are pairwise disjoint and the phases in Pg are pairwise
disjoint. Then |f ⊕ g| = |f |+ |g| −

∑
c∈coverGroups(f,g) |c| − |exactCoverGroups(f, g)|.

Proof. We prove the equality by proving that phases that are coverees or that are exact
coverers do not appear in the link, but all others do.

Let c ∈ coverGroups(f, g). Then, by Lemma 3.23, the products of all points correspond-
ing to G are collinear in the link. So they can be described by one phase. So each cover
group c saves |c| phases. If c is exact, then, by Lemma 3.24, its product is a phase of height
0. Then, c saves |c|+ 1 phases.

If a phase is free in the link, then, by Lemma 3.25, it has a product in the link. If a phase is
overlapping another phase in the link, then, by Lemma 3.26, both of them have a product
in the link.

By Theorem 3.27, given two approximate phase functions, we can minimize the size of
their link by moving their cores into positions that maximize the sum of the sizes of all
cover groups and the amount of exact cover groups. Exact cover groups are rare, and they
complicate the problem of minimization, since they introduce priorities between possible
coverings. So, we give an optimal solution to the more uniform problem of maximizing the
amount of coverees.
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3.3. Linking of Phase Functions with Optimal Result Size
We want to link two phase functions f and g, such that the resulting phase function has
minimal size, without removing phases with height zero. Phases with height zero are phases
that are products of exact cover groups, or phases that had height zero in one of the inputs
of the link. For this section, we interpret phase functions as arrival time functions. By
Theorem 3.27, minimizing the size of the result f⊕g means maximizing the sum of the sizes
of the cover groups coverGroups(f, g), if height zero phases are kept. Since restricting
phase functions to not contain touching phases gives us a simple notion of covering, this
restriction applies for this section.

3.3.1. Phase Function Views

For the algorithm we introduce in this section, we introduce phase function views that
strip all information from phase functions that is unnecessary for this section, and add
information that makes our formulations shorter.

We note that covering has a symmetric nature. When linking phase functions f ⊕ g, then
phases from f can cover phases from g and the other way around. For phases from phase
function f , only the output core is relevant for forming cover groups, and for phases from
phase function g, only the input core is relevant for forming cover groups.

We define phase views by constructing them from phases.

Definition 3.28 (Phase Input/Output View, Phase View Interval, Phase View Length,
Phase View Core, core(·), Phase View Core Length). Let f = (P, z) be a phase function.
Let p := ([a, b], h) ∈ P . Let [aout, bout] := fout(p) be its phase output interval.

We define the phase input view of p as ([a, b],max{0,−h}), and the phase output view as
([aout, bout],max{0, h}).

Let p′ := ([a′, b′], c) a phase input or output view. Then [a′, b′] is its (closed) phase view
interval denoted by interval(p′), and c is the length of the core of the phase view. The
length of p′ is defined as len(p′) := b′ − a′.

The core core(p′, o) of p′ is a closed interval [a′ + o, a′ + c+ o] ⊆ [a′, b′] for o ∈ [0, b′ − c].

x

y

y

z

f

g

(a) Phase Functions

y

y

f

g

(b) Phase Function Views

Figure 3.8.: Converting phase functions to phase function views. The brackets represent
the phase intervals.

Then we can define phase function views by constructing them from phase functions. An
exemplary pair of phase functions and their phase function views is displayed in Figure 3.8.

Definition 3.29 (Input/Output Phase Function View, fn(·)). Let f = (P, z) be a phase
function.

The input phase function view of f is defined as f ′ := (p′ | p′ is phase input view of p ∈ P ).
The output phase function view of f is defined as f ′ := (p′ | p′ is phase output view of p ∈
P ). For a given phase view p′, we denote by fn(p′) the phase function view that contains p′.
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Figure 3.9.: Valid and invalid covers for a set of phase function views. In Figure 3.9(a),
the phase view cores cannot be placed such that both cover relationships are
fulfilled, so the cover is invalid. In Figures 3.9(b) to 3.9(d), the phase view
cores can be placed such that both cover relationships are fulfilled, so the
covers are valid.

With these views, and knowing that covering has a symmetric nature, for finding a maximum
set of cover relationships, as defined in Subsection 3.3.2, the order of the phase function
views is irrelevant.

3.3.2. Covering

We study covering in Subsection 3.2.2. For the algorithm we introduce in this section,
we need more detailed terms for covering. The algorithm uses the geometric properties
of phase views only when processing single phases. On larger scale, it constructs a set of
cover relationships that is of maximum size for the given phase function views.

Definition 3.30 (Cover Relationship, Coverer, Coveree, Possible/Valid Cover Relationship,
rel(·)). Let f ′ and g′ be phase function views. Let p′ ∈ f ′ and q′ ∈ g′. We call p′q′ a cover
relationship, where p′ is the coverer, and q′ the coveree. For a phase r′, we can write
r′ ∈ p′q′, if r′ = p′ or r′ = q′.

Cover relationship p′q′ is possible, if ∃oq, op : core(q′, oq) ⊆ core(p′, op).

The cover relationships that are possible in a set of phase views P from at most two phase
function views can be written as rel(P ).

Because of the subset relationship in cover relationships, a phase view can cover an arbitrary
amount of other phase views, while it can only be covered by one other phase view. For a
phase view p′, that covers multiple phase views q′i, it is not enough that each single cover
relationship is possible on its own. The cover relationships introduce restrictions to the
positionings of the phase cores, that might contradict for multiple cover relationships.

We define a set of cover relationships and when it is valid. An example of valid an invalid
covers is given in Figure 3.9.

Definition 3.31 (Cover, Valid Cover, phaseViews(·)). Let f ′ and g′ be phase function
views. We define a cover C as a set of cover relationships p′q′ between f ′ and g′, where the
coverer can be in f ′ or in g′.

A cover C is called valid, if there exists an op for each phase p ∈ f ′ ∪ g′, such that each
cover relationship in C is valid.

The set of phase views in the relationships in a cover C can be written as phaseViews(C) :=
{p′ | ∃r ∈ C : p′ ∈ r}.

Our algorithm works on cover relationships, and searches for a leftmost maximum cover
between two phase function views, as defined below. Since a cover is a set of cover
relationships, a maximum cover can naturally be defined as a valid set of cover relationships
of maximum cardinality.
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Definition 3.32 (Maximum Cover, maxCover(·)). Let C be a valid cover for two phase
function views f ′ and g′, such that there is no other valid cover C′ with |C′| > |C| where | · |
is the set cardinality.

We call such a C a maximum cover of f ′ and g′.

We denote the set of maximum covers of a set of phase views P ′ from two phase function
views as maxCover(P ′).

While finding a maximum cover is technically enough to solve our problem, our algorithm
computes a leftmost maximum cover. This allows an inductive calculation of a maximum
cover in linear time.

Cover relationships can be uniquely sorted from left to right, since they do not cross. From
this partial ordering we can define a partial ordering on covers by looking at their rightmost
cover relationship.

Definition 3.33 (Leftness of Phase Views). Let r′ := ([ar, br], cr) and s′ := ([as, bs], cs) be
phase function views.

We define r′ < s′, if br < as. We call r′ left of s′, if r′ < s′.

Definition 3.34 (Leftness of Cover Relationships). Let f ′ and g′ be phase function views.
Let r′, s′ ∈ f ′ and u′, v′ ∈ g′. Let a be a possible cover relationship between r′ and u′ and b
be a possible cover relationship between s′ and v′.

We define a < b, if r′ ≤ u′ ∧ s′ ≤ v′ ∧ (r′ < u′ ∨ s′ < v′). We call a left of b if a < b.

Definition 3.35 (Leftness of Covers). Let C1 and C2 be covers.

We define C1 < C2, if max C1 < max C2. We call C1 left of C2, if C1 < C2.

With this notion of leftness, a leftmost maximum cover of a pair of phase views can naturally
be defined.

Definition 3.36 (Leftmost Maximum Cover, lmc(·)). Let C be a maximum cover of a set
of phase views P ′ from two phase function views, such that there is no other maximum
cover C′ ∈ maxCover(P ′) with C′ < C.

We call such a C a leftmost maximum cover (LMC) of P ′.

We denote an LMC of a set of phase views P ′ as lmc(P ′).

3.3.3. LMC Algorithm

We define a few terms to describe the algorithm. We need a notion of intersection for phase
views to restrict the list of candidate cover relationships for each phase.

Definition 3.37 (Intersecting Phase Views, Phase View Neighborhood). Let f ′ and g′
be phase function views. Let p′ ∈ f ′. Then intersecting(p′) := (q′ ∈ g′| interval(p′) ∩
interval(q′) 6= ∅) are the intersecting phase views of p′.

Let P ′ ⊆ f ′ ∪ g′. Then intersecting(P ′) := (q′ ∈ f ′ ∪ g′|∃p′ ∈ P ′ : q′ ∈ intersecting(p′)) are
the intersecting phase views of P ′. And P := P ′ ∪ intersecting(P ′) is the neighborhood of
P ′.

The algorithm greedily processes phase views in a certain order.
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Algorithm 3.4: LeftmostMaximumCover
Input: Phase function views f ′ and g′
Data: Cover C, cover relationship rs
Output: LMC C of f ′ and g′

1 foreach p′ ∈ reducedPhaseViewOrderSequence(f ′, g′) do
2 if C.isEmpty() then
3 C.append(phaseLMC(p′))
4 else
5 r ← C.last()
6 if r.role(p′) 6= Independent then
7 C.popLast()
8 C.append(phaseLMC(p′))
9 else

10 C.append(phaseLMCWithoutPrevious(p′))

Figure 3.10.: An exemplary leftmost maximum cover for a pair of phase function views.
The arrow heads indicate a cover relationship. The cores of the phase views
are placed to give visual proof for the validity of the cover.

Definition 3.38 (Phase View Order). Let f ′ and g′ be phase function views. Let p′, q′ ∈
f ′ ∪ g′. Let [ap, bp] := interval(p′) and [aq, bq] := interval(q′). Then, we define p′ < q′, if
(ap ≤ aq ∧ fn(p′) = f ′) ∨ (ap < aq ∧ fn(p′) = g′), and call this partial order on f ′ ∪ g′ the
phase view order of f ′ and g′.

Definition 3.39 (Phase View Order Sequence). Let f ′ and g′ be phase function views.
The phase view order sequence of f ′ and g′ is phaseViewOrderSequence(f ′, g′), which is
f ′ ∪ g′ ordered by their phase view order.

For the algorithm it is enough to look at a subsequence of the phase view order sequence.

Definition 3.40 (Reduced Phase View Order Sequence). Let f ′ and g′ be phase function
views. Let P ′ := phaseViewOrderSequence(f ′, g′) be their phase view order sequence. Let
P ′i be the consecutive subsequence of P ′, that starts from the first element in P ′ and ends
with the i-th. Then, reducedPhaseViewOrderSequence(f ′, g′) := (p′i ∈ P ′|Pi 6= Pi−1) is the
reduced phase view order sequence of f ′ and g′, where Pi is the neighborhood of P ′i .

The reduced phase view order sequence skips all phase views that do not add any new phase
views to the neighborhood. We do not need them, since our algorithm works by inductively
finding LMCs for the current’s and all previously processed phase views’ neighborhood,
and phase views that do not expand the neighborhood do not change the LMC.

We propose Algorithm 3.4 (LeftmostMaximumCover) for calculating an LMC of two
phase function views. In Figure 3.10 we give an exemplary LMC for and exemplary pair of
phase function views. Cores in the figure are placed to show that the cover is valid.

It uses the subroutine phaseLMC(p′) which calculates the LMC of a single phase view with
its intersecting phases in linear time. The subroutine phaseLMCWithoutPrevious(p′)
only considers phase views that are after p′ in phase view order. These two subroutines
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calculate the LMC by trying all candidates in linear time in the amount of intersecting
phase views of p′. For this, the core of p′ is shifted from left to right within its interval, and
for each positioning, all valid cover relationships are enumerated. The leftmost position
with a maximum cover is the returned LMC.

The algorithm runs in linear time O(|f ′|+|g′|). It iterates over the reduced phase view order
sequence, which skips phase views p′ that intersect another phase view q′, such that they are
not first or last in intersecting(q′). So phaseLMC and phaseLMCWithoutPrevious
look at each phase view in reducedPhaseViewOrderSequence at most thrice, once when it
is the first intersecting phase of another phase, once when it is the last intersecting phase
of another phase and once when it is processed itself. And they look at each phase view
not in reducedPhaseViewOrderSequence at most once, when its intersecting phase view is
processed. All other operations are in O(1) and are executed at most O(|f ′|+ |g′|) times.

For proving the correctness of this algorithm, we need some definitions.

Definition 3.41 (Variables for this section). In this section, the following definitions are
used:

• Let f ′ and g′ be phase function views.

• Let (p′1, . . . , p′n) := reducedPhaseViewOrderSequence(f ′, g′) be their reduced phase
view order sequence.

• Let P ′i := (p′1, . . . , p′i).

• Let Pi := P ′i ∪ intersecting(P ′i ).

• Let S := Si := rel(Pi) be the set of possible relationships in Pi and Ŝ an LMC of S.

• Let Si+1 := rel(Pi+1) be the set of possible relationships in Pi+1.

• Let T := Si+1 \ Si be the set of new possible relationships in Pi+1 and T̂ an LMC of
T .

Note that with these definitions, it holds that ∀i : rel(Pi) ⊆ rel(Pi+1). This makes covers
stay valid between iterations. The following lemma tells us, that the algorithm considers
all relationships between f ′ and g′.

Lemma 3.42 (Completeness of Pn). Let f ′, g′ and Pn be defined as in Definition 3.41. It
holds that Pn = f ′ ∪ g′.

Proof. Clearly, Pn ⊆ f ′ ∪ g′, so let p′i ∈ f ′ ∪ g′, and we shall show that p′i ∈ Pn by
contradiction. Assume, p′i /∈ Pn. Assume, p′i is the leftmost such phase view. It can
not be leftmost in phaseViewOrderSequence(f ′, g′), since the leftmost is always part of
reducedPhaseViewOrderSequence(f ′, g′) ⊆ Pn.

Let p′j be the leftmost phase in intersecting(p′i). If p′j does not exist, then Pi 6= Pi−1, so
p′i ∈ reducedPhaseViewOrderSequence(f ′, g′) ⊆ Pn. If p′j does exist, then Pj 6= Pj−1, so
p′j ∈ reducedPhaseViewOrderSequence(f ′, g′), so p′i ∈ Pn.

So Pn = f ′ ∪ g′.

The following lemma tells us, that in reduced phase view order sequence, we always process
a phase that is at least as right as everything we considered before. We display the two
cases of the proof in Figure 3.11.

Lemma 3.43 (Each p′i+1 is Rightmost in PI ∪ {p′i+1}). Let f ′, g′, Pi and p′i+1 be defined
as in Definition 3.41. Then p′i+1 is rightmost in Pi ∪ p′i+1.
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Figure 3.11.: The situation in the two cases of the proof for Lemma 3.43. The lines are the
intervals of the respective phase views.
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Figure 3.12.: The situation described in the proof of Lemma 3.45.

Proof. Assume for the sake of contradiction there is a phase view q′ ∈ Pi such that p′i+1 < q′.
Then by Definition 3.41, q′ /∈ Pi, so ∃r′ ∈ Pi : q′ ∈ intersecting(r′). Since r′ ∈ Pi and
p′i+1 ∈ Pi+1 \ Pi, r′ is left of p′i+1.

(a) Assume, fn(p′i+1) = fn(q′). Then, since r′ intersects q′ and r′ is left of p′i+1, r′
intersects p′i+1 as well.

But then, the interval of p′i+1 is a subset of the interval of r′. So, Pi = Pi+1, which
contradicts the construction the Pi+1.

(b) Assume, fn(p′i+1) 6= fn(q′). Then, fn(p′i+1) = fn(r′).

Let x be the start of the interval of p′i+1. Then, since r′ < p′i+1 < q′, the interval of r′
ends left of x, and the interval of q′ starts at or right of x. But this is a contradiction
to q′ ∈ intersecting(r′).

So, in all cases, we found a contradiction to the premise.

Definition 3.44 (Phase View is Free in Cover). Let P ′ be a set of phase views of at most
two different phase function views. Let C be a valid cover of P ′. Let p′ ∈ P ′. Then, p′ is
free in C, if ∀r ∈ C : p′ /∈ r.

The following lemma tells us, that there is only one relationship in contact between the
newly considered phases and all old phases, so we have to backtrack at most one relationship
in each iteration. Since our covers are always leftmost, backtracking one step keeps the
cover maximum on everything before the backtracked relationship. The leftmost property
is lost though, but since we add relationships on the right anyways, it is simple to make
the result of the iteration leftmost again. The situation in the proof of the following lemma
is depicted in Figure 3.12.

Lemma 3.45 (Only Rightmost Relationships Can Contain the Next Phase). Let Pi, S
and p′i+1 be defined as in Definition 3.41. Let r ∈ S. Then p′i+1 ∈ r ⇒ r is rightmost in S.

Proof. Assume, there is a relationship r ∈ S, such that p′i+1 ∈ r but r is not rightmost in
S. Let s be a rightmost relationship in S. Since p′i+1 ∈ r, and, by Lemma 3.43, p′i+1 is
rightmost in Pi ∪ p′i+1, p′i+1 ∈ s.
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Figure 3.13.: The structure of the set T as proven in Lemma 3.46.

So, there are two phase views x′, y′ ∈ Pi, x′ < y′ that intersect with p′i+1. Then, fn(x′) =
fn(y′) 6= fn(p′i+1), so x′ ∩ y′ = ∅. But then, the interval of y′ has to start inside the interval
of p′i+1. But then, y′ can not be touched by any phase before p′i+1, so y′ /∈ Pi. So, there
can not be two different phase views in Pi that intersect p′i+1.

But then, since p′i+1 ∈ s, p′i+1 /∈ r.

Note that there can be up to two rightmost relationships in Pi, since the relationships can
have an inverse that is equal in context of the leftness ordering. So when backtracking one
relationship we also have to drop its inverse from the domain of the maximum if it exists.

The following lemma tells us how the newly considered relationships in an iteration look
like. In Figure 3.13, we depict the structure of T that is proven in the following lemma.

Lemma 3.46 (Structure of T ). Let f ′, g′, Pi, p′i+1, S and T be defined as in Definition 3.41.
Let u ∈ T be a possible relationship. Then

(1) p′i+1 ∈ u,

(2) ∃q′ ∈ u with q′ 6= p′i+1 and q′ ∈ Pi+1 \ Pi and

(3) ∀r ∈ S : r < u.

Proof.

(1) Assume there is u ∈ T such that p′i+1 /∈ u. Then ∃q′ ∈ u : q′ ∈ Pi+1 \ (Pi ∪ {p′i+1}).

By definition, Pi+1\Pi = {p′i+1}. So, ∀q′ ∈ Pi+1\(Pi∪{p′i+1}) : q′ ∈ intersecting(p′i+1)∧
fn(q′) 6= fn(p′i+1). So, since by Lemma 3.43, p′i+1 is rightmost in Pi+1 ∪ {p′i+1}, only
the leftmost such q′ can intersect a phase view other than p′i+1.

So ∃q′ ∈ u such that q′ is leftmost in Pi+1 \ (Pi ∪ {p′i+1}) and ∃r′ ∈ intersecting(q′) :
r′ 6= p′i+1. Then, q′ < p′i+1. But then, when constructing the reduced phase view
order sequence of f ′ and g′, q′ would be chosen as successor of p′i instead of p′i+1 — a
contradiction.

So, p′i+1 ∈ u and thus Statement (1) holds.

(2) Assume there is u ∈ T such that q′ ∈ u with q′ 6= p′i+1 and q′ /∈ Pi+1 \ Pi. Then,
q′ ∈ Pi. Since, by Statement (1), p′i+1 ∈ u, it holds that p′i+1 ∈ intersecting(q′).

Since q′ ∈ Pi and q′ 6= p′i+1, by Lemma 3.43, it holds that q′ < p′i+1. But then, when
constructing reducedPhaseViewOrderSequence(f ′, g′), p′i+1 would not be chosen as
successor of p′i — a contradiction.

So, q′ ∈ Pi+1 \ Pi and thus Statement (2) holds.

Commit d03b306 49 Compiled on 2019/02/28 at 19:20:30



3. Approximate Approach
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Figure 3.14.: The situation described in Theorem 3.48 in case p′i+1 is coverer or coveree
in rs. For phase views we only show their intervals, ignoring what the cores
might look like. The relationship rs is drawn solid, since it is definitely there
in the situation. The other relationships might or might not be there. For
the other relationships of q′, we know that they have q′ as coverer.

(3) Let u ∈ T . Then, by Statement (1) and (2), q′, p′i+1 ∈ u with q′ 6= p′i+1 and
q′ ∈ Pi+1 \ Pi.

Since q′ ∈ Pi+1 \ Pi, if q′ < p′i+1, q′ would be chosen as successor of p′i instead of
p′i+1, when constructing reducedPhaseViewOrderSequence(f ′, g′). So, since q′ 6= p′i+1,
p′i+1 < q′. So, since by Lemma 3.43, p′i+1 is rightmost in Pi ∪ {p′i+1}, q′ is right of all
phase views in Pi. So, u is right of all relationships in S.

So, Statement (3) holds.

Lemma 3.47 (Subsets of valid covers are valid covers). Let C ⊆ rel(P) be a valid cover of
a set of phase views P. Then, ∀C′ ⊆ C : ∀P ′ ⊆ P : C′ ⊆ rel(P ′)⇒ C′ is valid cover of P ′.

Proof. Let C, C′,P and P ′ be defined as in the statement. Assume that C′ is not valid.
Then, there is no positioning of the cores of the phase views in P ′, such that all relationships
of C′ are fulfilled. Take one of these phase views p′ that is a coverer, but that cannot cover
all its coverees assigned by C′. Let p′q′i ∈ C′ be the relationships in which p′ is coverer of
a q′i ∈ P ′. Then, adding more relationships to C′ does not allow p′ to cover all q′i. Also,
adding more phases to P ′ does not allow p′ to cover all q′i.

So, in all cases, C would be an invalid cover of P, which contradicts the premise.

The lemmas above are the building blocks to prove the correctness of LeftmostMaxi-
mumCover. The basic situation that is described in the dependent case of the theorem
below is depicted in Figure 3.14.

Theorem 3.48 (Correctness of LeftmostMaximumCover). LeftmostMaximum-
Cover calculates a leftmost maximum cover of the phase function views f ′ and g′.

Proof. We induct over the reduced phase view order sequence (p′1, . . . , p′n) of f ′ and g′.

We prove, that for each i ∈ {1, . . . , n}, LeftmostMaximumCover calculates a leftmost
maximum cover of Pi.

i = 1: X

iy i+ 1: Let Ci be an LMC of Pi. We construct an LMC Ci+1 of Pi+1.

Let rs be the rightmost relationship in Ci. If rs does not exist, then Ci+1 := Ci ∪ lmc(p′i+1)
is LMC of Pi+1.

We check the role of p′i+1 in rs.
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• Assume p′i+1 is independent of rs.

– We prove the validity of Ci+1.

By Lemma 3.45, p′i+1 is not part of any other relationship in Ŝ. So, p′i+1 is free
in Ŝ. Also, by Lemma 3.46, all relationships in T contain p′i+1 and one phase
view that is part of Pi+1 \ Pi. So, all phase views in relationships in T are free
in Ŝ. So Ci+1 := Ŝ ∪ T̂ is a valid cover.

– We prove the maximality of Ci+1.

Assume there exists a valid cover C̃i+1 ⊆ rel(Pi+1) with |C̃i+1| > |Ci+1|. Then,
because rel(Pi+1) = S ∪ T , it follows that |C̃i+1 ∩ S| > |Ŝ| or |C̃i+1 ∩ T | > |T̂ |.

We assume |C̃i+1 ∩ S| > |Ŝ|. But then, by Lemma 3.47, C̃i+1 ∩ S would be a
valid cover of S, which contradicts the maximality of Ŝ.

The case |C̃i+1 ∩ T | > |T̂ | is analogous. So, Ci+1 is a maximum cover of Pi+1.

– We prove the leftmostness of Ci+1.

Assume, there is a maximum cover C̃i+1 ∈ maxCover(Pi), that is more left than
Ci+1. Then, since Ci+1 ∩ T = T̂ is LMC of T , Ci+1 ∩ S = Ŝ is not maximum.
But it was chosen maximum, so Ci+1 is LMC of Pi+1.

The LMC Ŝ = Ci, and T is the set of relationships taken into account when calculating
phaseLMCWithoutPrevious in LeftmostMaximumCover. So, phaseLM-
CWithoutPrevious calculates T̂ , so LeftmostMaximumCover calculates exactly
Ci+1, which is LMC of Pi+1.

• Now assume p′i+1 is coverer or coveree in rs.

We define S′ := S \ {rs, sr} and T ′ := T ∪ (S \ S′). Then, Pi+1 = S′ ∪ T ′. Also, we
define Ŝ′ := Ŝ ∩ S′ and T̂ ′ as an LMC of T ′. Furthermore, let q′ be the partner of
p′i+1 in rs.

– We prove the validity of Ci+1.

All cores of phases that are part of relationships of either only Ŝ′ or only T̂ ′ can
be placed correctly for Ci+1. So, we need to make sure, that cores of phases that
have relationships in both Ŝ′ and T̂ ′ can be placed correctly.

By Lemma 3.46, all relationships in S are lefter than T and all relationships in
T contain p′i+1. Since p′i+1 ∈ rs, by Lemma 3.45, it holds that rs is a rightmost
relationship in S, and that rs is lefter than all relationships in T . From this we
can deduct, that

∗ all relationships in S′ are lefter than T ′,

∗ all relationships in T ′ contain p′i+1,

∗ by Lemma 3.45, no relationship in S′ contains p′i+1 and

∗ rs is the unique leftmost relationship in T ′.

Since rs is leftmost in T ′, phases that have relationships in both S′ and T ′

need to be part of rs. Those phases are q′ and p′i+1. But, no relationship in S′
contains p′i+1. So, we only need to prove that Ci+1 is valid for relationships that
include q′.

∗ If q′ is free in Ŝ′, then Ci+1 is valid, because T̂ ′ is valid.
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∗ If q′ is not free in Ŝ′, then q′ is in at least one relationship in Ŝ′, and in
rs /∈ Ŝ′. So, q′ is coverer, and p′i+1 is coveree in rs.

But then, since phases do not touch, the length of the core of q′ is greater
than the length of the core of p′i+1.

So, since by Lemma 3.46(1), ∀uv ∈ T : p′i+1 ∈ uv, p′i+1 is the only phase
view that q′ can relate with in T ′. So, q′ cannot be coveree in relationships
in T̂ ′.

So, q′ can either be free or a coverer in relationships in T̂ ′.

· If q′ is coverer in a relationship in T̂ ′, then T̂ ′ = {rs}, so Ci+1 = Ci, and
thus, Ci+1 is valid by induction.

· If q′ is free in T̂ ′, then all phases in relationships in T̂ ′ are free in S′, so
Ci+1 is valid.

So, in all cases, Ci+1 is valid.

– We prove the maximality of Ci+1.

The cover relationship set Ŝ′ is a maximum cover of S′, because if it was not, Ŝ
would not be an LMC of S.

Assume, there exists a valid cover C̃i+1 ⊆ rel(Pi+1) with |C̃i+1| > |Ci+1|. Then,
because Pi+1 = S′ ∪ T ′, it follows that |C̃i+1 ∩ S′| > |Ŝ′| or |C̃i+1 ∩ T ′| > |T̂ ′|.

We assume |C̃i+1 ∩ S′| > |Ŝ′|. But then, by Lemma 3.47, C̃i+1 ∩ S′ would be a
valid cover of S′, which contradicts the maximality of Ŝ′.

The case |C̃i+1 ∩ T ′| > |T̂ ′| is analogous. So, Ci+1 is a maximum cover of Pi+1.

– We prove the leftmostness of Ci+1.

Assume, there is a maximum cover C̃i+1 ∈ maxCover(Pi) that is lefter than Ci+1.
Then, since Ci+1 ∩ T ′ = T̂ ′ is LMC of T ′, Ci+1 ∩ S′ = Ŝ′ is not maximum. But
it was chosen maximum, so Ci+1 is LMC of Pi+1.

The cover relationship set Ŝ′ is the set C in Line 8 after executing popLast and T ′
is the set of possible relationships that the call to phaseLMC considers. So, in this
case, LeftmostMaximumCover calculates exactly Ci+1, the LMC of Pi+1.

Since a phase can only be coverer or coveree in a relationship or independent of the
relationship, the algorithm calculates Ci+1 ∈ lmc(Pi+1) in all cases.

The end result is Cn ∈ lmc(Pn). By lemma 3.42, Pn = f ′ ∪ g′. So, Cn, as returned by the
algorithm, is an LMC of f ′ ∪ g′.

One special case of this algorithm can be handled more efficiently than in the algorithm
definition. That is, if p′ in Line 1 is coverer in rs, then there exists no more left or better
solution that has p′ as a coveree. Thus, when calculating the LMC of p′ in Line 8, only
candidates with p′ as a coverer need to be checked.

3.3.4. Computing an Optimal Link

Given two phase functions f := (Pf , zf ) and g := (Pg, zg). We want to calculate their
link L := f ⊕ g. We first compute their phase function views f ′ and g′ and use them to
calculate an LMC with Algorithm 3.4.
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Figure 3.15.: Exemplary restriction of cover groups.

From this LMC, we extract the cover groups by grouping relationships, that have the same
coverer, together. We then restrict the phases inside these cover groups, such that their
relationships are enforced in the link. To aid our description of the restriction, we give an
example in Figure 3.15.

For this, first, the coverer is restricted. Let the coverers phase view be p′ := ([a, b], c).
Let its first coverees phase view be p′1 := ([a1, b1], c1), and its last coverees phase view be
p′2 := ([a2, b2], c2). The coverers phase view core is forced to intersect all coverees phase
view intervals by setting b := min{b, b1 − c1 + c}, and squashing it to the right by setting
a := b− c.

Then, the coverees are enforced to be inside of p′. This is done by setting a1 := max{a1, a}
and b2 := min{b2, b}.

At this point, the cover groups are enforced. The next step is to resolve phase views that
are overlapping.

For this, the phase views are iterated in phase view order. If a phase view overlaps its
predecessor, then first their phase view intervals are restricted to remove the overlap. Since
the LMC algorithm requires phases to not touch within a function, the overlap is removed
completely, such that their phase view intervals do not intersect. It might happen that the
phase view intervals cannot be restricted enough to remove the overlap.

The restrictions to the phase views are then applied to their corresponding phases.

At this point, the composition of the two phase functions can be computed uniquely. Phases
that have slack are either covered or can be copied into the link after shifting their intervals
by some offset. Phases that do not have slack have a unique product in the link.

In the composition, phases are iterated in their phase views’ order. An offset s for the
positioning of phases from g is updated each time a phase from f is processed. The offset
starts as the zero zf of f , and the heights of phases from f are added after they are
processed.

Processed phases from f are added to L as they are. Processed phases from g are added to
L after subtracting the offset from their interval bounds.
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When a phase from a cover group is processed, the whole cover group is processed at once.
The heights of the coverees are added to the coverer. Then the coverer is added to L like
other phases, depending on if it is from f or g. The offset is updated as if the phases in
the cover group were processed normally.

When a phase p is added to L, it might touch its predecessor. This is called a conflict. In
this case, since the cover is unique, the phases both do not have any slack. The phases
are then separated by reducing their absolute heights by the length of the intersection.
In a conflict, one phase always has to be a jump and the other one a constant, because
otherwise there would be a cover relationship between them. The jump’s interval stays the
same, but the constant’s interval is reduced to remove all slack introduced by reducing its
absolute height. If p is the constant, then it is squashed to the right. If p is the jump, then
its predecessor is squashed to the left. This process results in touching phases.

After adding all phases to L, a cleaning step is performed where touching phases are
separated, and zero-height phases are removed. Phases are separated by shifting the righter
one one unit to the right, or a fixed ε > 0 in the continuous case. This might cause phases
to intersect in more than one point in a later iteration of the cleaning loop, but those are
nevertheless separated.

The zero of the link is the sum of the zeros of the linked functions.

The result of this procedure is a phase function that represents a link of f and g, but with
separated phases.

3.4. Merging of Phase Functions
f := ((p1 := ([2, 5], 2), p2 := ([6, 8],−1)), 1)
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Figure 3.16.: The geometry phase merging is based on. The phases are the union of their
traces in travel time representation.

The merging of two phase functions is based on the geometry of their function trace.
We calculate the merge interpreting the phase functions as travel time functions. Their
phases are two-dimensional shapes on the union of all function traces of all possible phase
positionings. Jumps are axis-aligned rectangles, and constants are parallelograms, that are
parallel to the x-axis and the function y = −x. The phase cores are straight lines within
the phase shapes. A jump phase connects to the function on the lower left corner and the
upper right corner. A constant phase connects to the function on the upper left corner and
the lower right corner. The merge geometry of an exemplary phase function is displayed in
Figure 3.16.

When merging, not only phases can cover other phases, but also segments of the function
without traffic changes. This is because when minimizing, support points that are above
the other function are excluded from the merge. When phase shapes intersect in the
two-dimensional space, then it might be possible to shift their cores such that one phase
covers the other, or not.

From preliminary experiments we know that merging does not introduce a relevant amount
of support points to the shortcut weights. So, we do not optimize the result size when
merging, but perform the merge in an arbitrary correct way.
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3.4.1. Phase Merge Algorithm

We want to merge two phase functions f := (Pf , zf ) and g := (Pg, zg). The merge is
computed by sweeping over the resulting functions trace from left to right and searching
for intersections with phases of one of the functions.

We start at point (−∞, z), where z := min{zf , zg}. From there, we search for the first
intersection with a phase shape. This phase shape is processed, such that it possibly covers
shapes that it intersects or gets covered. The processing is done from left to right as well.
Intersecting phases from the other function are iterated from left to right, and phases that
can enter a cover relationship with the processed phase are restricted to enforce the cover
relationship. The processed phase is restricted as well. If the processed phase is covered,
then its coverer becomes the new processed phase, and the old processed phase is not added
to the merge. When there are no phases intersecting with the processed one left, then
the processed phase is added to the merge. When phases are added, their height might
need to be reduced. This is the case if the other function enters the phase shape on its left
boundary, or exits the phase shape on its right boundary.

When a phase is processed to completion, then the resulting functions trace is swept again.
The lower function might be the same as before, or it might be the other function.

When there are no more phases left to intersect with the swept result, then the algorithm
is done. The zero of the resulting phase function is set to z. The restrictions found for
each phase are also applied to the input functions.

3.5. Weight Optimization
We use the phase representation with the optimized phase link and the phase merge
algorithm to devise a weight optimization scheme. The goal of this scheme is to alter the
input weights slightly, to reduce the memory consumption of the TDCCH built with them.
There are two variants of this scheme. One is the weight optimization, and the other the
expanded weight optimization. We describe those schemes together.

3.5.1. Scheme

We assume we have a preprocessed input graph and a time-dependent metric. We convert
the input weight functions into phase functions. For our experiments, we evaluate two
different variants of input data. For one, we convert the input weight functions into phase
functions, and then feed them into the scheme as they are. For the other, we expand the
phase functions after conversion, by shifting the left opening interval bound of each phase,
to fix the phases’ length to 15 minutes. To do that, given a phase p := ([a, b], h), we set
a := min{a, b− 15minutes}.

With these phase functions, we customize the preprocessed graph inexactly. The inexactness
stems from the fact, that we restrict phases on links and merges, but we do not propagate
these restrictions. Phases can have multiple products in different phase functions in the
hierarchy. If we update one of them, then we need to update them all for consistency.
Otherwise, the same input phase is restricted differently in different operations, and possibly
restricted in conflicting ways. We explain our decision for an inexact Phase Customization
in Subsection 3.5.2 below.

When we perform an optimized link operation, we do not only keep the result, but we also
keep the changes to the input functions as yielded from the optimization. But, when we
perform a merge operation, we do not keep the changes to the input functions, because we
never merge functions that we store as weight for some edge directly. They are linked with
another function first.
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Input edges, which are edges that were not introduced by the CCH preprocessing, are
a special case. After executing our scheme, we want to extract the input edges’ weight
functions, and convert them back to support sequences for exact customization. So, we
need them to be valid concerning the allowed slack on their input weights. This means,
that we cannot arbitrarily merge into them, because our Customization is inexact, and
thus we would then also merge inexactly created phase functions into them. This possibly
leads to a weight function, that does not respect the restrictions of the phase intervals in
the input data. Since we cannot control in what way the Customization is inexact, our
only option is to not merge into input edges’ weights.

After doing this customization, we extract the weights on all input edges, and squash their
phases to the right. This is done by placing their phase cores as right as possible and then
squashing them. The resulting squashed phase functions are converted back to support
sequences. These support sequences represent the optimized weights.

3.5.2. Discussion

In both variants of the weight optimization scheme, we only restrict phase functions that
are input of a link operation. But we do not propagate changes of the merge following the
link to the input functions, or of any further operations performed on the merge result.
If we would do that, we would need to be able refer from each phase to its source that
produced it, and to all of its products.

If phase functions are not produced from an input function, they are either product of
a link, or a set of merge operations. In a merge, phases have at most one source that
produced them. In a link, phases might have more than one source. This is the case if
a cover group is formed. But then, only the coverer, and the first and last coveree are
relevant sources. So a phase has three sources in this case. The elementary link and merge
operations take two input functions. But in the CCH, we only store functions that are
merges of multiple links. The intermediate results do not need to be stored. Referring
to phases that are not stored would pose some difficulties, since they cannot be easily
referred to by their location in memory. But phases that are not stored do not require
updating, so they can be skipped when propagating restrictions. So, for referring back to
the source of a phase, we refer directly to phases that we actually store, such that they
have a valid identifier. In effect, a weight function in the CCH has an arbitrary amount of
source functions, but each phase in a weight function has at most three source phases.

Furthermore, phases also need to know about their products, since if they are restricted
themselves, their products might need to be restricted as well. A phase can have an
arbitrary amount of products in an arbitrary amount of phase functions, since it can be
used arbitrarily often in other weights. And it can even appear twice in the same weight
function, if the weight function is once linked with a very long other weight function and
then merged with itself linked with a very short weight function.

We do not store phase sources, products or propagate changes. But as explained further
below in 5, this might be a possible future research direction.
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We conduct our experiments on a 2x8-core Intel R© Xeon R© E5-2680 @ 2.70GHz system with-
out hyperthreading and 252GiB of RAM.We implemented our algorithms in Rust using Rust
1.34.0-nightly (865cb7010 2019-02-10) and compiled with link-time-optimization, de-
bug symbols, optimization level 3 and with target-cpu=native. All our implementations
are single-threaded.

4.1. Implementation
In this section we describe our implementation in detail.

4.1.1. Time-Expansion

While our theoretical results are for non-recurring functions, we interpret our input data
as periodic. We only allow support points to have their x-coordinate within day one.

In effect, the evaluation is preceded by a modulo operation to translate the input into day
one. And it is succeeded by adding the time that was removed from the input back to the
output.

For the link of support sequences, the periodicity means, that support points, that have
an x-value outside of day one after linking, need to be translated back into day one. The
periodicity also causes the value at the beginning of day one to be the same as at the end
of day one. Therefore, the link always has support points within an x-interval of one day,
and the support points in the link are still sorted. This x-interval might be shifted though,
so the support points need to be wrapped, such that they all lie within day one modulo
one day.

The link of phase functions cannot be performed as optimal as in the non-recurring case
by our algorithm, but it is still near optimal. We allow phases to only start and end
within day one. But when building the phase views, output views are shifted to the right
compared to their phases input intervals, and might be shifted out of day one. Those are
wrapped such that the input and output phase views all start within day one, except for
one possible output view p′, that might cross the midnight boundary. This phase view
is not wrapped, such that it starts within day one, but ends outside. In this case, p′ is
processed suboptimally by the LeftmostMaximumCover algorithm. Phase views at the
beginning of the second function within day one are covered by p′ if possible in a separate
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step. Then, the resulting LMC is optimal, if it is restricted to all phase views besides p′.
The resulting phase function might contain a phase that ends outside of day one. This
phase is split, such that one part stays at the end of day one and the other part is moved
to the beginning. Also, it is ensured that the phases at the boundaries of day one do not
touch in the periodic interpretation.

For the merges of support sequences, we adapt Algorithm 2.5. Merges do not alter the
x-coordinates of their structures, but wrapped functions allow the slope between the last
and the first support point to be different to 1. This allows the line segments that cross
the midnight boundary to intersect in a single point. We handle this intersection with a
separate check.

For merges of phase functions, since phases do not cross the midnight boundary, and
their x-coordinates are not altered by the merge, the phase merge algorithm described in
Subsection 3.4.1 is applied without modification.

For the efficient implementation of the link and merge algorithms for support sequences,
we referred to the open-source version of KaTCH [BGSV13, Bat18] implemented by Batz.

4.1.2. TDCCH

We do a standard metric-independent preprocessing as in [DSW16] to acquire an unweighted
CCH graph for the input graph. First, we complete the graph into an undirected graph by
adding reverse edges to all directed edges. For general efficiency in the customization and
query, we order the nodes by their rank in the nested dissection order. We store the graph
topology as adjacency array for all outgoing edges. Since the graph is undirected, we do
not need a separate adjacency array for incoming edges. For a more efficient query, we also
store a mapping from each edge to its reverse.

The basic schemes for the preprocessing and the customization of our CCH is taken
from [DSW16]. The nested dissection order in the preprocessing is calculated by Flow-
Cutter [HS15]. We contract the nodes one by one, and insert the undirected shortcuts
generated by the contraction into a separate sorted set. The contraction is performed on
the union of the graph with the edges from the sorted set. Only from time to time, they
are inserted into the adjacency array, which needs to be rebuilt for the insertion. This
rebuild happens every 2 million new shortcuts, or, if there are more than 10 000 nodes left
to contract, and half of the nodes since the last rebuild have been contracted.

In the customization, we iterate the upward facing edges ordered first by their input node
and then by their higher output node. We iterate over the lower triangles of each of these
edges.

Support Sequence Customization

As described in Section 2.2.1, we first do a time-independent precustomization, where we
customize the CCH one time with the lower bounds of the travel times along the input
edges, and one time with the upper bounds. In the main customization, we can then skip
links or merges if the result would be completely above the upper bound of its destination
edge. The upper bounds are updated after each merge into the edge. We link and merge
with the algorithms we describe in Section 2.2. We observe, that merging a function into
another, such that the lower bound of one function is higher than the upper bound of the
other, can be optimized out, since the result would be the function with the lower upper
bound. When linking, functions with just one support point can be linked efficiently, by
copying and updating one of the coordinates of the support points of the other function.
And when merging, functions with just one support point can be merged more efficiently,
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Graph #Nodes #Edges % TD Edges Avg. Points per TD Edge
Germany 2006 5.1M 11M 7.2% 25.7
Luxembourg 2017 54k 120k 34% 47.4
Germany 2017 7.2M 15.8M 29% 45.5

Figure 4.1.: Statistics about the graphs used for evaluation.

as the function can be viewed as a constant in travel time representation. Linking is more
complex in the implementation than in theory, because in the implementation we have to
account for the wrapping of time. This means, that, if support points fall out of this one
day range, the linked function needs to be wrapped. After linking or merging, we perform
a clean operation, to ensure, that the results of merges and links are minimal support
sequences.

Phase Customization

The phase customization is similar to the support sequence customization. We first do
a precustomization with upper and lower bounds, and update these bounds during the
customization. As in the support sequence customization, these bounds allow us to skip
links and merges in many cases. We exchange the algorithms for linking and merging
support sequences with algorithms for linking and merging phase functions. Those are the
algorithms we describe in Section 3.3 and Section 3.4 further above. As in the support
sequence customization, links with linear phase functions, that are phase functions without
phases, can be optimized. The zero of the phase function with phases needs to be updated
in this case, and the phase intervals require shifting, if the phase function with phases is
the second in the link. As we describe in Section 3.5, we restrict the input functions of the
link and merge operations.

Query

We do a standard elimination tree query as in [DSW16] without early abort condition.
We cannot do a reverse search though, since we do not know the arrival time at the
destination node in advance. Alternatively, we first search the elimination tree upwards
from the destination node. During the search, we collect all downward-facing input edges
for each visited node. Then we do an upward search from the source node s. Last, we do a
downward search using the collected edges. As described in Section 2.2.1, when relaxing
an edge (u, v), we only evaluate its weight function f if l(u) + b ≤ l(v), with b being the
lower bound of the travel time representation of f and l(·) being the current lower bound
travel time from s.

4.2. Results
We test our algorithm on three different input graphs. One of them is an old time-dependent
graph of the German road network from 2006. The other two are new time-dependent
graphs with travel time functions for cars from 2017. One is for Germany, the other for
Luxembourg. The data was kindly provided by the PTV Group for research purposes.
Due to the small size of the country, we refer to the Luxembourg graph is a city-sized
instance. The Germany graphs are country-sized instances. We show some statistics about
the graphs in Table 4.1. The Germany 2006 graph has long segments with ascend not equal
to one in arrival time representation. As defined in Definition 2.25, we call those segments
traffic changes. When we convert them to phases, we do not limit their maximum length.
This makes the Germany 2006 graph exert slightly different behavior in our experiments,
besides being less time-dependent. A continent-scale instance of Western Europe does not
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fit into the 252GiB of RAM of our hardware when trying to customize it, so we exclude it
from our experiments.

We use three different variants for the customization, and four different resolutions for the
weight functions. The default variant of the customization uses the input data as-is, but
restricts slopes to 0, 1 and ∞ by squashing the traffic changes. The optimized variant does
a basic weight optimization step as described in Section 3.5 in advance, while using phase
functions as they are. The expanded variant is similar to the optimized variant, but it
expands the phases to the left, such that the phase intervals have a length of 15 minutes.
We use the resolutions 1, 10, 100 and 1 000 milliseconds.

For each of the three input graphs, we generate 10 000 shortest path queries for each
Dijkstra rank 26, 27, 28, . . . , 2r, where r := max{r | 2r ≤ n}, where n is the amount of
nodes in the graph. For each of these queries, we measure the resulting exact minimum
travel time with Dijkstra in the input graph with unsquashed traffic changes, and use the
results as ground truth for our error plots. Using unsquashed traffic changes as the ground
truth means that queries for the default variants are inexact as well.

4.2.1. Customization

We customize each input graph once for each variant of the customization and for each
resolution. The customization times and the sizes of the customized graphs are displayed
in Tables 4.1(a) to 4.1(c).

For both the Luxembourg and the Germany 2017 graph, we note that the optimized variant
yields slight advantages in terms of memory consumption. The customization time doubles
compared to the default variant though. This is mainly caused by the weight optimization
step taking so long. The exact customization takes less time than before, because the
functions that are linked and merged are less complex.

While the optimized variant gives the traffic changes a little slack, the expanded variant
sets this slack to 15 minutes for every traffic change. This yields a much better memory
consumption with reductions of up to 50%. The customization time also improves because
of the lower function complexity of weights on overlay edges that consist of many original
edges.

For the Germany 2006 graph, we note that both the optimized and the expanded variant
yield good improvements in terms of memory consumption. The customization time is worse
in both cases. The optimized and the expanded variant are nearly equal, because most
phases in the optimized variant are 15 minutes long without expansion. The customization
of the Germany 2006 graph is much faster than the customization of the Germany 2017
graph in all cases, because it contains much less time-dependent edges, and its time-
dependent edges are less complex. Compared to the much lower complexity of the Germany
2006 graph, its memory savings of 41.3% seem quite high, keeping in mind that the Germany
2017 graph saves 50.6% at most.

The resolution has a strong effect on the results. Travel times along single edges are usually
short. Non-zero edges have an average travel time of 12.3 seconds at midnight in the
Germany 2017 graph. Also, the absolute heights of traffic changes are very small, with
an average of 0.23 seconds. This causes the function complexity to be greatly reduced by
setting the resolution to 1 or 0.1 seconds. And, this also explains, why there is next to no
difference in space consumption between a resolution of 10ms and 1ms. They are both well
below the resolution of the input data.

By using a resolution of 1 second and the default variant, we save 78.7% of space compared
to a resolution of 1ms for the Luxembourg default variant, and 84.8% for the Germany
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Table 4.1.: Customization times and sizes of the customized graphs. O is the time for
the weight optimization and E is the time for the exact customization with
the optimized weights. The phase space is the memory consumed by the
customized phase TDCCH after the weight optimization step. The unit KiB/n
means Kibibytes per node. The space reduction is calculated for each variant
compared to the default variant with the same resolution.

(a) Luxembourg 2017

Variant Time Time Phase Space Space Space Reduction
[s] O + E [s] [KiB/n] [KiB/n] [%]

Default 1s 3.4 - - 2.39 0
100ms 11.8 - - 8.51 0
10ms 16.4 - - 11.04 0
1ms 15.3 - - 11.21 0

Optimized 1s 8.7 5.5+3.2 1.67 2.25 5.5
100ms 27.0 17.0+10.0 4.91 7.24 14.9
10ms 34.4 21.0+13.4 5.95 9.01 18.3
1ms 33.3 20.7+12.6 6.01 9.08 19.0

Expanded 1s 6.7 3.7+3.0 1.18 2.07 13.5
100ms 17.4 9.7+7.7 2.98 5.59 34.3
10ms 21.6 12.1+9.5 3.57 6.47 41.4
1ms 20.7 11.8+8.9 3.58 6.50 42.0

(b) Germany 2017

Variant Time Time Phase Space Space Space Reduction
[h:m] O + E [h:m] [KiB/n] [KiB/n] [%]

Default 1s 0:40 - - 4.17 0
100ms 2:55 - - 18.42 0
10ms 4:37 - - 26.65 0
1ms 4:51 - - 27.45 0

Optimized 1s 1:39 1:01+0:38 2.77 3.96 4.9
100ms 6:16 3:48+2:28 9.99 15.68 14.9
10ms 8:52 5:11+3:41 13.12 21.23 20.3
1ms 8:55 5:08+3:47 13.34 21.69 21.0

Expanded 1s 1:12 0:38+0:34 1.84 3.61 13.3
100ms 3:42 1:58+1:44 5.46 11.27 38.8
10ms 4:50 2:36+2:14 6.95 13.44 49.6
1ms 4:52 2:35+2:17 7.03 13.57 50.6

(c) Germany 2006

Variant Time Time Phase Space Space Space Reduction
[min] O + E [min] [KiB/n] [KiB/n] [%]

Default 1s 21 - - 3.50 0
100ms 37 - - 6.07 0
10ms 39 - - 6.27 0
1ms 39 - - 6.27 0

Optimized 1s 36 20+16 1.46 2.61 25.3
100ms 51 29+22 2.10 3.62 40.3
10ms 52 30+22 2.14 3.68 41.3
1ms 52 30+22 2.14 3.68 41.3

Expanded 1s 36 20+16 1.46 2.61 25.3
100ms 51 29+22 2.10 3.62 40.3
10ms 52 30+22 2.14 3.68 41.3
1ms 52 30+22 2.14 3.68 41.3
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Variant Luxembourg 2017 Germany 2017 Germany 2006
Default 1s 78.7 84.8 44.2

100ms 24.1 32.9 3.2
10ms 1.5 2.9 0.0
1ms 0.0 0.0 0.0

Optimized 1s 75.2 81.7 29.1
100ms 20.3 27.7 1.6
10ms 0.8 2.1 0.0
1ms 0.0 0.0 0.0

Expanded 1s 68.2 73.4 29.1
100ms 14.0 16.9 1.6
10ms 0.5 1.0 0.0
1ms 0.0 0.0 0.0

Table 4.2.: Total space saved in percent by reducing the resolution, per graph and cus-
tomization variant.

2017 default variant, as displayed in Table 4.2. For the Germany 2006 graph, the same
comparison shows a saving of 44.2% of space. The savings for the Germany 2006 graph
are lower than the savings for the other two graphs, because the Germany 2006 graph is
less time-dependent. For the 2017 graphs, reducing the resolution has a much stronger
effect than using the expanded customization with 1ms resolution. But, as analyzed below,
using a resolution of 1 second introduces a median query error of about 5% for all three
customization variants for the Luxembourg graph, while using a resolution of 1 or 10ms
keeps those errors below 0.1% for all three variants. A resolution of 0.1s still keeps the
median errors below 1%. The median errors on the Germany 2017 graph are of similar
nature. Reducing the resolution from 1ms to 100ms reduces absolute space by another
17.0% for the expanded variant of Germany 2017. For the Germany 2006 graph, the median
errors are similar again, but with around 1% significantly higher for higher resolutions.
The higher error is caused by the long traffic changes of this graph, that introduce higher
errors when squashed. Also, the 1.6% of space saved by reducing the resolution from 1ms
to 100ms in the expanded variant is much lower than for the Germany 2017 graph. This is
caused by the lower time-dependence of the Germany 2006 graph.

We also measure the size of the customized phase TDCCH for all three graphs. It is
lower than the size of the customized support sequence TDCCH. The difference cannot be
explained by the different representation, as converting a support sequence TDCCH to a
phase TDCCH must not reduce size by more than 25%, as explained in Section 3.1.3. But
it can be explained by the fact that we do not propagate phase restrictions in the weight
optimization, so products of the same phase might be restricted differently.

4.2.2. Query

For each customized graph, we execute the generated queries and measure the runtime
and the relative error. The plots in this section are scaled small, such that they do not
consume too many pages and related plots fit onto one page. This causes the readability of
the plots to suffer. Therefore, in Appendix A, we include larger versions of the plots for
each variant and for each resolution.

There are time and error plots. The time plots use the unit milliseconds and log scale. We
give boxplots for each customization variant and Dijkstra rank. We also run Dijkstra’s
algorithm without any speedup techniques on the squashed input graph with the respective
resolution. This variant is called Dijkstra. We do not include the times for Dijkstra in the
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Figure 4.2.: Query times on the different graphs with 1ms resolution.

small plots in this section, since they reduce the readability, and its runtime simply scales
linear with the Dijkstra rank. Refer to Appendix A for the complete plots. There is one
time plot per input graph and per resolution.

The error plots show the relative deviation to the ground truth and use log scale. We give
boxplots for each customization variant and Dijkstra rank. We choose log scale, because
our median and maximum errors differ by more than two orders of magnitude per Dijsktra
rank, and we want to show this difference accurately. As for the time plots, there is one
error plot per input graph and per resolution.

In both plot variants, the boxplots are calculated normally and then transformed into
log scale, opposing to first taking the logarithm of all values and then calculating the
boxplot. The whiskers of the boxplots show the lowest and highest date still within 1.5
times interquartile range. This is a common variant of boxplots introduced by [Tuk77].

Query Times

The query times do not vary significantly between the different resolutions for a single
graph, so we only show the highest resolution here in Figure 4.2. The other plots are shown
in the appendix.

As displayed in Figure 4.2(a), the query times for the city-scale instance are very good,
even for the highest resolution. Comparing with other resolutions, the query times are
about the same, as visible in the appendix in Figures A.1 to A.3. While Dijkstra has a
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Figure 4.3.: Query errors on the Luxembourg 2017 graph with different resolutions. We cut
off each plot at 0.01%, as we consider errors lower than that as not relevant,
especially compared to the maximum errors.

runtime linear to the Dijkstra rank, the elimination tree queries have the same runtime
independent of the rank of the query. This is caused by having no early abort condition
for the elimination tree queries, but always searching the whole elimination trees. The
query times are not spread out a lot, but some variance is visible. The query times for
the Germany 2017 graph are plotted in Figure 4.2(b) and in the appendix in Figures A.9
to A.11. The median query time is about six milliseconds and the speedup more than
two orders of magnitude. The query times for the Germany 2006 graph are plotted in
Figure 4.2(c) and in the appendix in Figures A.17 to A.19. The median query time of
about four milliseconds is a little bit lower than the median query time for the Germany
2017 graph. This is caused by the lower time-dependence of the graph.

Query Errors

The median errors for the Luxembourg graph with a resolution of 1s are around 5%, but
fall below 1% for 100ms and below 0.1% for 10ms for all three variants, as displayed in
Figure 4.3. For the Germany 2017 graph, the errors exert the same behavior. We plot
them in Figure 4.4. For the Germany 2006 graph, the errors exert a similar behavior, but
the median errors, even for the highest resolution, are at 1%, as displayed in Figure 4.5.
This is due to the long traffic changes in this graph, that introduce larger errors when
being squashed than the short traffic changes of the other two graphs.
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Figure 4.4.: Query errors on the Germany 2017 graph with different resolutions. We cut
off each plot at 0.01%, as we consider errors lower than that as not relevant,
especially compared to the maximum errors.

In the Luxembourg graph, the maximum query errors are as high as 5%, even for long
queries for the expanded variant with 1ms resolution, while being below 0.5% for the default
variant, as shown in Figure 4.3(d). This strong deviation even for long queries possibly
hints to some system behind the errors as we discuss in Section 4.3. These potentially
systematic errors seem to happen only rarely, because the 75-percentile of relative errors is
0.1% for the expanded variant. The maximum errors on the Germany 2017 graph have
the same properties, while being a little bit lower overall as visible in Figure 4.4(d). The
maximum errors on the Germany 2006 graph only exert these properties for long queries,
but the graph is less time-dependent, which weakens any systematic errors. This is visible
in Figure 4.5(d).

Looking at the maximum errors for lower resolutions in Figures 4.3(a) to 4.3(c), it is visible,
that the potentially systematic errors are mostly dominated by the errors introduced by
a resolution of 1 second. But for a resolution of 100ms, there are a lot of outliers in
the boxplots already, and especially more extreme outliers for the expanded variant than
for the default variant. This hints that a resolution of 100ms is too high to hide the
potentially systematic errors. The outliers become more dominant for higher resolutions.
The maximum errors on the Germany 2017 graph for lower resolutions have the same
properties again, while being a little bit lower overall, as displayed in Figures 4.4(a) to 4.4(c).
Again, the maximum errors on the Germany 2006 graph for lower resolutions only exert
these properties for long queries, as visible in Figures 4.5(a) to 4.5(c).

Commit d03b306 65 Compiled on 2019/02/28 at 19:20:30



4. Experiments

6 8 10 12 14 16 18 20 22
Dijkstra rank

10 4

10 3

10 2

10 1

Re
la

tiv
e 

er
ro

r [
1]

Germany 2006 1s

Default
Optimized
Expanded

(a) 1s resolution

6 8 10 12 14 16 18 20 22
Dijkstra rank

10 4

10 3

10 2

10 1

Re
la

tiv
e 

er
ro

r [
1]

Germany 2006 100ms
Default
Optimized
Expanded

(b) 100ms resolution

6 8 10 12 14 16 18 20 22
Dijkstra rank

10 4

10 3

10 2

10 1

Re
la

tiv
e 

er
ro

r [
1]

Germany 2006 10ms
Default
Optimized
Expanded
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Figure 4.5.: Query errors on the Germany 2006 graph with different resolutions. We cut
off each plot at 0.01%, as we consider errors lower than that as not relevant,
especially compared to the maximum errors.

4.3. Comparison & Evaluation

In this section, we evaluate our results and compare them to those of other authors. The
expanded variant with a resolution of 100ms is the most competitive variant of our scheme.
So we evaluate this variant against others.

In this variant, the TDCCH uses 11.27B/n for the Germany 2017 graph and takes 4:52
hours to customize. The median query time is around 5ms, with a median error of around
0.7%, and a maximum error of around 4% for longer queries.

In Section 4.3.1, we compare our results to those of other authors. In Section 4.3.2, we
compare our results to the TCH, which is the most similar acceleration technique to the
TDCCH that already exists, and that might benefit from our results. In Section 4.3.3, we
argue about the errors our technique introduces.

4.3.1. Other techniques

Conveniently, the authors of the publications we introduce in Section 1.1 all evaluate
their algorithms on the Germany 2006 graph. So we can compare their results with
ours, assuming that they did their experiments on similar hardware than we did. The
publications we took their results from are all younger than ten years, and our hardware
was released around five years ago, so we suspect that the difference is not too high.
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With exact TD-ALT, query times of 100ms can be achieved [NDLS12]. Combining TD-ALT
with contraction (Core-TD-ALT) yields query times of 5ms with a preprocessing time of
9 minutes and a memory consumption of 50B/n [NDLS12]. Combining Arc-Flags with a
hierarchy (TD-SHARC) yields query times of 25ms with a preprocessing time of 76 minutes
and a memory consumption of 150B/n [Del11]. Adding landmarks (TD-L-SHARC) yields
query times of 6ms with a preprocessing time of 78 minutes and a memory consumption of
220B/n. The TCH yields query times of 1.2ms with a preprocessing time of 25 minutes or
5 minutes with 8 threads and a memory consumption of 1KiB/n [BGSV13]. The ATCH
yields query times of 1.5ms with a preprocessing time of 25 minutes or 5 minutes with 8
threads and a memory consumption of 120B/n [BGSV13]. Using a distributed variant of
the customization of a TDCH yields a preprocessing time of less than 3 minutes using 64
processes [KLSV10].

All these techniques calculate queries exactly. TDCRP, the time-dependent expansion of
CRP, uses approximation that leads to errors in time-dependent shortest path queries of
0.68% on average and a maximum error of 3.6% [BDPW16]. It allows for query times of
1.2ms with a preprocessing time of 8 seconds using 16 threads and a memory consumption
of 77B/n.

Of these techniques, Core-TD-ALT, TD-L-SHARC and the variants of the TDCH are
comparable to or better than our technique in terms of query times. We suspect that by
optimizing our query more, we would get query times around those of the ATCH, but
definitely better than Core-TD-ALT and TD-L-SHARC. But the big advantage of the
two goal-directed techniques is the low memory consumption compared to the TDCCH,
and Core-TD-ALT has a really fast preprocessing. We talk about the TDCHs more in
Section 4.3.2.

TDCRP is another direct competitor, but it is not exact. Still, our maximum query errors
are slightly higher than those of TDCRP, while our median is similar to their average. So,
TDCRP seems to be on the same level error-wise. But, we are able to simply characterize
and restrict our errors. TDCRP uses much less memory and customizes within 8 seconds
on 16 cores, which is much lower than our customization time, even when rolled out to
8s ∗ 16 = 128s for one core.

Concluding this subsection, for the old data, TDCRP and the ATCH seem to be the
techniques of choice for time-dependent road network routing. TDCRP is superior to
the ATCH in terms of stability against difficult metrics and in terms of dynamic routing
capabilities. The ATCH is superior to TDCRP in terms of query errors, as it is exact.

4.3.2. TCH

Even though we successfully reduced the memory usage of the customized TDCCH, it does
not compete against the TCH [BGSV13]. We evaluated their open-source implementation
of the TCH [Bat18] on our machine. Our experiments show, that the TCH uses 4.2KiB/n
of memory for the Germany 2017 graph with 100ms resolution and its preprocessing takes
79 minutes without parallelization, while the TDCCH uses 11.3KiB/n of memory in the
expanded variant with the same resolution. We did not optimize our query algorithm as
much as [BGSV13], so it is unknown if we could beat their query times. Also, the TCH
does not restrict slopes to 0, 1 and ∞, and thus potentially solves a more complex problem.

The TCH achieves lower memory consumption by optimizing the contraction order greedily,
by contracting out those nodes first, that produce a low amount of support points and
overlay edges, together with other criteria. Contrary, the TDCCH cannot do that, as it
determines the order without knowledge of the metric. The TCH beats the TDCCH in
the customizable aspect, as its whole preprocessing is faster than the customization of the
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TDCCH on the same graph. But, the TDCCH has a metric independent preprocessing,
that makes it more robust against difficult metrics. And, the TDCCH is efficient in
terms of inserted edges, as long as the input graph has small separators. On the contrary,
CHs have proven to be less robust against difficult metrics, including metrics with turn
costs [DGPW11], so the TCH inherits the lack of robustness.

It is an open question if restricting slopes and applying our optimization scheme would
improve the TCH significantly in terms of preprocessing time or memory consumption.

4.3.3. Potentially Systematic Errors

Giving the phases a lot of slack produces much more significant errors than simply squashing
them on the 2017 graphs. We did not conduct experiments to figure out what effects lead
to high errors. But we have some hypotheses.

The far outliers might be caused by the higher variation of errors that we introduce by
shifting the traffic changes instead of squashing them in-place. A traffic change might be
up to 15 minutes off, and if a query hits multiple such cases, then it becomes significantly
erroneous. This effect causes a random variation of the errors.

Also, the more erroneous queries might be those, that run during the rising traffic of the
morning rush our, or the falling traffic of the evening rush hour. At these times, the amount
of traffic changes that influence the query is especially high. This effect causes a stronger
variation in the query errors.

These two effects do exist, but we did not conduct experiments to measure their strength.
They also do not introduce systematic errors, despite errors being higher at certain times
of day.

There is a candidate effect for introducing more systematic errors. In a real-world road
network, consecutive road segments of main streets usually have correlated traffic. This
means, that there are paths, that all have traffic changes at for example 8 o’clock in the
morning. In our optimization scheme, we squash them. The result of that is displayed in
Figure 4.6(a). When performing the optimized link, if the edges of the path are processed
consecutively, their 8 o’clock traffic changes will be moved on top of each other. This is
displayed in Figure 4.6(b). Then, when linking the complete path, the shortcut gets only
one traffic change for the 8 o’clock traffic changes of all road segments on the path. In the
figure, it is visible, that for the traffic changes to actually cover each other, the first one
needs to be earlier than the last one. This might make single queries hit a lot of weight
functions at an erroneous departure time. We call this effect the systematic path effect.

If our optimization scheme does not optimize this one path, a situation similar to that
in Figure 4.6(c) might occur. This can be caused by actually placing the traffic changes
at random, or optimizing for other links than this one path. This is the situation we
would want for non-independent errors, but not for an optimal solution in terms of space
consumption.

We did not conduct experiments to verify the strength of the systematic path effect. But
this is an effect that does introduce systematic, non-independent errors, that would void our
argument for the accuracy of our technique, as discussed in Section 2.1.2. We stated, that
our technique can only be called accurate, if it only introduces minor random independent
noise into the input functions. This gives us a direction for future research, as it might
prove or disprove the accuracy of our technique.

Nevertheless, our data shows, that the amount of systematic errors is small, if they exist.
So our technique is accurate enough in practice.

Commit d03b306 68 Compiled on 2019/02/28 at 19:20:30



4.3. Comparison & Evaluation

8 o’clock

(a) Not optimized

8 o’clock

(b) Optimized

8 o’clock

(c) Uncorrelated

Figure 4.6.: A path with squashed phases that can cover each other. Phases are displayed
as grey triangles. In Subfigure (a), the phases’ positions are not optimized.
Driving along the path is fast in that case, as visible by the solid line from
left to right. In Subfigure (b), the phases’ positions are optimized. In this
case, departing at the same time at the start of the path yields a much higher
travel time than in the unoptimized variant. But, when linking the path, the
optimized variant yields just one phase, while the optimized variant does not
allow any cover relationships. In Subfigure (c), the phases’ positions are changed
at random. So their relative position towards each other is uncorrelated. This
yields less cover relationships than the optimized variant, but also lower errors.
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In this work, we expanded the CCH with time-dependent edge weights. We examined it
from a theoretical and a practical perspective.

Our theoretical results include a proof for the correctness of an algorithm to link non-
decreasing and non-continuous piecewise linear functions. We introduced the phase model
and used cover potentials to examine how support points and phases behave on link.
With the knowledge gained from the cover potentials, we proposed an algorithm to link
functions in the phase model with near-optimal size. Using this algorithm, we introduced
an optimization scheme that modifies the input weight functions within a user-defined
threshold. We evaluated this scheme in practice.

The optimization scheme reduces the memory consumption of the TDCCH by up to 50% on
country-scale instances, while keeping queries efficient and query errors small. We argued
that it is okay to introduce more noise into the input data, as long as it does not dominate
the noise it already contains. Under this aspect, we reduced the memory consumption of
the TDCCH while keeping queries exact. In the current state our TDCCH does not achieve
competitive performance to the TCH or TDCRP, both in terms of memory consumption
and customization time.

In the future, we would like to examine, if the errors introduced into the input data by the
optimization scheme are systematic. And, we would like to apply our weight optimization
scheme to the TCH, and assess, if it also yields improvements. Moreover, we also would
like to compare a TDCCH with restricted slopes to a TDCCH with unrestricted slopes, to
figure out how much memory is saved by restricting slopes alone.

For the theoretical part, we introduced a very simple optimization scheme, that opens up a
lot of possibilities for improvements. We would like to propagate phase restrictions and
make the link algorithm work with touching phases as well, to allow for an exact phase
customization. For this, we would like to examine cover potentials in more detail. It is
unclear how an exact phase customization would affect customization times. On one hand,
we could drop the exact support sequence customization step, and thus make the overall
customization time faster. On the other hand, it might also increase customization times,
as at the moment linking phase functions is slower than linking support sequences, and
the inexact phase customization leads to smaller functions than an exact one would. It
might also be possible to abort the weight optimization early, for example by ignoring
weight functions with phases that do not have slack, possibly reducing customization time.
Another direction for improvement is computing optimal weights not just for a single link,
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but also for paths. And, including the merge operation as well, compute optimal weights
for directed acyclic graphs and general graphs.
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Appendix

A. Experiment Plots
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Figure A.1.: Query times on the Luxembourg 2017 graph with 1s resolution.
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Figure A.2.: Query times on the Luxembourg 2017 graph with 100ms resolution.
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Figure A.3.: Query times on the Luxembourg 2017 graph with 10ms resolution.
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Figure A.4.: Query times on the Luxembourg 2017 graph with 1ms resolution.
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Figure A.5.: Query errors on the Luxembourg 2017 graph with 1s resolution.
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Figure A.6.: Query errors on the Luxembourg 2017 graph with 100ms resolution.
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Figure A.7.: Query errors on the Luxembourg 2017 graph with 10ms resolution.
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Figure A.8.: Query errors on the Luxembourg 2017 graph with 1ms resolution.
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Figure A.9.: Query times on the Germany 2017 graph with 1s resolution.
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Figure A.10.: Query times on the Germany 2017 graph with 100ms resolution.
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Figure A.11.: Query times on the Germany 2017 graph with 10ms resolution.
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Figure A.12.: Query times on the Germany 2017 graph with 1ms resolution.
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Figure A.13.: Query errors on the Germany 2017 graph with 1s resolution.
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Figure A.14.: Query errors on the Germany 2017 graph with 100ms resolution.
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Figure A.15.: Query errors on the Germany 2017 graph with 10ms resolution.
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Figure A.16.: Query errors on the Germany 2017 graph with 1ms resolution.
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Figure A.17.: Query times on the Germany 2006 graph with 1s resolution.
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Figure A.18.: Query times on the Germany 2006 graph with 100ms resolution.
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Figure A.19.: Query times on the Germany 2006 graph with 10ms resolution.
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Figure A.20.: Query times on the Germany 2006 graph with 1ms resolution.
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Figure A.21.: Query errors on the Germany 2006 graph with 1s resolution.
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Figure A.22.: Query errors on the Germany 2006 graph with 100ms resolution.
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Figure A.23.: Query errors on the Germany 2006 graph with 10ms resolution.
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Figure A.24.: Query errors on the Germany 2006 graph with 1ms resolution.
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