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Abstract

A graph class G has geodesic structure if there exists a constant 𝑘 such that every 𝐺 ∈ G has
a partition P of 𝑉 (𝐺) into geodesics such that 𝐺/P has treewidth at most 𝑘 . A graph class
G has product structure if there exists a constant 𝑘 such that every 𝐺 ∈ G has a layering L
and a partition P of layered width 1 such that 𝐺/P has treewidth at most 𝑘 . Each set in a
partition P of layered width 1 is allowed to contain at most one vertex in each layer in L. The
topic of this thesis is to investigate the relationships between these two variants and other
related concepts. We show that product structure does not imply geodesic structure. For
geodesic structure with 𝑘 = 1, we show that it implies product structure. We also compare
other variants of product structure and investigate the relationships between bounded layered
treewidth, Baker treewidth and bounded local treewidth, which are all necessary conditions
for product structure. Lastly, we show that some known results for product structure also hold
for geodesic structure. For example, linear local treewidth is necessary for geodesic structure
and calculating the geodesic treewidth is NP-hard. However, contrary to product structure,
for graphs with treewidth 2, calculating the geodesic treewidth is possible in polynomial time.

Zusammenfassung

Eine Graphklasse G hatGeodesic Structure, wenn es ein 𝑘 gibt, sodass jedes𝐺 ∈ G eine Partition
P von𝑉 (𝐺) in Geodesics hat, sodass𝐺/P Baumweite höchstens 𝑘 hat. Eine Graphklasse G hat
Product Structure, wenn es ein 𝑘 gibt, sodass für jedes𝐺 ∈ G ein Layering L und eine Partition
P mit layered width 1 existieren, sodass 𝐺/P Baumweite höchstens 𝑘 hat. Jede Menge in
der Partition P mit layered width 1 darf aus jeder Schicht in L höchstens einen Knoten
enthalten. Das Thema dieser Arbeit ist die Untersuchung der Zusammenhänge zwischen
diesen beiden Varianten von Product Structure und den Zusammenhängen mit anderen
verwandten Konzepten. Wir zeigen, dass Product Structure nicht Geodesic Structure impliziert.
Für Geodesic Structure mit 𝑘 = 1 zeigen wir, dass es Product Structure impliziert. Wir
vergleichen auch andere Varianten von Product Structure und untersuchen die Beziehungen
zwischen Bounded Layered Treewidth, Baker Treewidth und Bounded Local Treewidth,
welche alle notwendige Bedingungen für Product Structure sind. Auch zeigen wir, dass einige
bekannte Ergebnisse für Product Structure auch für Geodesic Structure gelten. Beispielsweise
ist Linear Local Treewidth notwendig für Geodesic Structure und die Berechnung der Geodesic
Treewidth ist NP-schwer. Im Gegensatz zu Product Structure ist die Berechnung der Geodesic
Treewidth, für Baumweite 2 Graphen, in polynomieller Zeit möglich.
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1 Introduction

The treewidth of a graph vaguely describes how similar a graph is to a tree. Small treewidth
is very useful for various applications, however, there are also many important graph classes
with unbounded treewidth, for example, planar graphs. In this work, we consider and compare
various generalizations of bounded treewidth that hold even for important graph classes with
unbounded treewidth. We first introduce some of the more important generalizations and
their relations to treewidth.
A graph class G has product structure if there exists a constant 𝑘 such that every 𝐺 ∈ G

has a partition P into sets of layered width 1 such that 𝐺/P has treewidth at most 𝑘 . This
means a graph class has product structure if and only if, for each graph in the class, we can
contract sets of layered width 1 such that the resulting graph has small treewidth. Given a
layering L of 𝐺 , sets of layered width 1 are sets that each contain at most one vertex from
each layer. A simple example of a graph 𝐺 with a layering and a partition P of layered width
1 is given in Figure 1.1. The corresponding graph 𝐺/P is also shown. It can be seen that, by
definition, every graph class with bounded treewidth has product structure. Thus, product
structure is a generalization of bounded treewidth. However, for example, planar graphs
[1 , 2] and various beyond planar graph classes have product structure even though they have
unbounded treewidth. Similar to bounded treewidth, product structure has also been used to
prove and improve various bounds for parameters for the graph classes that admit product
structure.

A different, but very similar, generalization of bounded treewidth is geodesic structure. It can
be seen as the historic predecessor of product structure. The definition of geodesic structure
has many similarities to the previous definition of product structure. As before, a graph class
has geodesic structure if and only if, for each graph in the class, we can contract some sets
such that the resulting graph has low treewidth. The only difference is in what type of sets
we are allowed to contract. With product structure we contract sets of layered width 1. With
geodesic structure we are allowed to contract only geodesics, where geodesics are shortest
paths in a graph. Thus, a graph class G has geodesic structure if there exists a constant 𝑘 such

L1

L2

L3

L4

Figure 1.1: On the left a graph 𝐺 with a layering L = {𝐿1, 𝐿2, 𝐿3, 𝐿4} and a partition P into
sets of layered width 1. On the right the corresponding graph𝐺/P resulting from contracting
each set in P .
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1 Introduction

Figure 1.2: On the left a graph 𝐺 with a partition P into geodesics. On the right the corre-
sponding graph 𝐺/P resulting from contracting each geodesic in P .

that every 𝐺 ∈ G has a partition P into geodesics such that 𝐺/P has treewidth at most 𝑘 . A
simple example of a graph𝐺 with a partition P into geodesics is given in Figure 1.2 together
with the corresponding graph 𝐺/P .

Another similar variant of product structure that we define is BFS structure, which is
product structure where the layerings of the graphs have to be breadth first search layerings1
and the sets in the partition have to be connected. The sets that we contract in this case are
vertical paths2 in BFS layerings.

It can be seen that these generalizations have quite a few similarities in how they are defined.
Additionally, historically they have been used in a similar context and are also known to exist
for overlapping graph classes. Thus, we are interested in the exact relationships between
these product structure variants. Other generalizations that we consider are various necessary
conditions of product structure like bounded layered treewidth, linear local treewidth, bounded
local treewidth and bounded Baker treewidth3.

1.1 Outline

We begin by giving an overview of the related work on different variants of product structure
and on the various necessary conditions for product structure in Section 1.2. We summarize
our most important results in Section 1.3. In Chapter 2 we introduce basic notations and
concepts and define the variants of product structure that we compare. In Chapter 3 we
investigate the relationships between various variants of product structure with a focus on
comparing geodesic structure and product structure. In Chapter 4, to better understand
where product structure and geodesic structure behave the same, and where they differ, we
investigate if some known results for product structure also apply for geodesic structure.
In Chapter 5 we then investigate the relationships between various necessary conditions
of product structure with a focus on comparing Baker treewidth and linear local treewidth.
Lastly, in Chapter 6 we conclude this thesis by discussing our results. We also list open
questions that could be the topic of future work.

1A breadth-first search layering of a graph results from a breath-first search, originating from a root vertex 𝑟 ,
where each vertex is placed in layers based on their distance to 𝑟 .
2A vertical path in a BFS layering is a path that contains at most one vertex from each layer.
3We give definitions for Baker treewidth and other necessary conditions for product structure in Section 2.3.
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1.2 Related Work

1.2 Related Work

In this section, we give an overview of the related work on product structure and various
other variants of product structure.

Geodesic Structure. Of the product structure variants that we compare in this paper,
geodesic structure was used at the earliest point in time and also directly inspired the other
variants. Pilipczuk and Siebertz [3] first published the concept and show that planar graphs
and bounded-genus graphs have geodesic structure. For planar graphs in particular, they
show that every planar graph 𝐺 has a partition P of 𝐺 into geodesics such that 𝐺/P has
treewidth at most 8. Such a partition can be found in time 𝑂 (𝑛2). Note that they define and
use geodesic structure as a concept, but do not give it a name. The name geodesic structure was
chosen by us to more closely align with the name product structure that is widely used for the
most popular graph structure variant. Pilipczuk and Siebertz [3] use the geodesic structure of
planar graphs and bounded-genus graphs to show bounds for polynomial centered colourings
for planar graphs, bounded-genus graphs and proper minor-closed graph classes. For planar
graphs in particular Ueckerdt, Wood, and Yi [2] consider a variant of product structure that
encompasses geodesic structure, and thus they improve the upper bound for the geodesic
treewidth of planar graphs to 6. The lower bound of the geodesic treewidth of planar graphs
has not been explicitly considered, however, the construction used for the lower bound of the
row treewidth of planar graphs should, with some small changes to the arguments, also work
here, and thus there is a planar graph with geodesic treewidth exactly 3 [2].

Product Structure. The concept of geodesic structure and its application directly inspired
the idea of product structure. Dujmović, Joret, Micek, Morin, Ueckerdt, and Wood [1] first
define the concept and show that planar graphs, bounded-genus graphs and proper minor-
closed graph classes have product structure. For planar graphs in particular they show that
every planar graph 𝐺 has a partition P of layered width4 1 such that 𝐺/P has treewidth at
most 8. Thus, planar graphs have row treewidth at most 8. This bound for the row treewidth
of planar graphs was improved by Ueckerdt, Wood, and Yi [2], who show that every planar
graph has row treewidth at most 6. They also consider the lower bound and provide a planar
graph that has row treewidth exactly 3.

The idea of product structure became more widespread and many additional graph classes
have been shown to admit product structure. The following graph classes have been shown
to have product structure: 𝑘-nearest-neighbour graphs, (𝑔, 𝑘)-planar graphs, 𝑑-map graphs,
(𝑔,𝑑)-map graphs [4], ℎ-framed graphs [5], (𝑔, 𝛿)-string graphs [4 , 6], 𝑘-th powers of planar
graphs with bounded maximum degree [4 , 6 , 7], fan-planar graphs, 𝑘-fan-bundle graphs [7]
and 𝑘-matching-planar graphs [8]. The results on product structure have been used to inves-
tigate different graph parameters and concepts in the following areas: adjacency labelling
schemes [9 , 10 , 11], nonrepetitive colourings [12], 𝑝-centered colourings [13], clustered colour-
ings [14 , 15], vertex rankings [16], queue layouts [1], reduced bandwidth [17], comparable
box dimension [18], neighbourhood complexity [19], twin-width [5 , 20] and odd-colouring
numbers [21 , 22].

It has also been shown that determining the row treewidth of graphs is NP-hard [23]. This
is the case even for treewidth-2 graphs where the row treewidth is either 1 or 2.

4A detailed definition for partitions of layered width 1 and product structure in general is given in Section 2.2.
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1 Introduction

Stronger Variant of Product Structure. While product structure has been shown for
many graph classes, in the first work on product structure Dujmović, Joret, Micek, Morin,
Ueckerdt, and Wood [1] actually show that an even stronger property holds for planar graphs
and bounded-genus graphs. For planar graphs in particular, they show that every planar
graph 𝐺 has a connected5 partition P with layered width 1 such that 𝐺/P has treewidth at
most 8. Moreover, there is such a partition for every BFS layering of 𝐺 . It can be seen that
the partition is a partition into sets of layer width 1 while at the same time being a partition
into geodesics. Therefore, this stronger variant of product structure encompasses geodesics
structure and product structure. The improvement by Ueckerdt, Wood, and Yi [2] that lowered
the upper bound for the row treewidth of planar graphs to 6 preserves the BFS properties and
thus also proves this stronger variant of product structure has an upper bound of 6.

Necessary Conditions for Product Structure. Product structure has also been investi-
gated in relation to various broader generalizations of bounded treewidth. Bounded layered
treewidth is one such generalization introduced by Dujmović, Morin, and Wood [24]. Among
other results, they show that bounded genus graphs have bounded layered treewidth and that
bounded layered treewidth implies the existence of layered separations of bounded width.
Already in the first paper on product structure Dujmović, Joret, Micek, Morin, Ueckerdt, and
Wood [1] show that bounded layered treewidth is a necessary condition for product structure.
Dujmović, Morin, and Wood [24] show that bounded layered treewidth implies linear local
treewidth and thus linear local treewidth is also a necessary condition for product structure.
Bounded local treewidth is, of course, a further generalization of linear local treewidth. Linear
local treewidth, as a necessary condition for product structure, has been used to show that
graph classes do not admit product structure [1 , 7 , 25].
While it has been shown that these generalizations of bounded treewidth are necessary

conditions for product structure, there is not much work on separating these concepts and
proving that the broader generalizations are, in fact, weaker properties. The one defining
work in this area is by Bose, Dujmović, Javarsineh, Morin, and Wood [26] who show that
bounded layered treewidth does not imply product structure. However, for the case of proper
minor closed graphs, Dujmović, Morin, and Wood [24] use the graph minor structure theorem
of Robertson and Seymour [27] to prove that bounded local treewidth, linear local treewidth
and bounded layered treewidth are all equivalent.

Baker treewidth relates to the previously named necessary conditions for product structure
because it can be seen as a precursor to linear local treewidth that originates from Baker’s
technique [28]. It is based on the observation that deleting every 𝑘-th BFS layer from a
planar graph leaves components of bounded treewidth. The technique was used to design
approximation algorithms for maximum independent set, partition into triangles, minimum
vertex cover, minimum dominating set, minimum edge dominating set and more [28]. The idea
was also used to construct subgraph isomorphism, connectivity, and shortest path algorithms
[29]. Baker Treewidth and Baker’s technique were also applied to other graph classes like
(𝑔, 𝑘)-planar graphs [30], minor-closed classes [31] and bounded-degree 𝐻 -induced-minor-
free graphs [32]. While Hickingbotham [32] explicitly defines Baker treewidth, most other
works do not formally define it as a graph parameter and instead use Baker’s technique as an
approach for designing approximation algorithms.

5A partition is connected if every set in the partition induces a connected subgraph.
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1.3 Contributions

1.3 Contributions

In this section, we introduce the most important results in this thesis. An overview of these
results is given in Figure 1.3 where the arrows mean that one property of a graph class
implies another property for the graph class. The figure also includes the known relationships
between the properties with references in the caption.

The main topic of this thesis is comparing different variants of product structure. We begin
by comparing product structure to its historic predecessor, geodesic structure, and get the
following results:

Theorem 1.1: [Section 3.1] Product structure does not imply geodesic structure.

Theorem 1.2: [Section 3.2] Every graph class with geodesic treewidth 1 has row treewidth at
most 7.

It is still an open question whether geodesic structure implies product structure in general
or not. While comparing product structure and geodesic structure, we also get the following
results that can be of independent interest:

Corollary 1.3: [Section 3.1] Bounded layered treewidth does not imply geodesic structure.

Observation 1.4: [Section 3.1.1] The class of 1-planar graphs does not admit geodesic structure.

Observation 1.4 in particular implies that many beyond planar graph classes that admit
product structure, like 𝑘-planar graphs, fan-planar graphs and fan-bundle planar graphs, do
not admit geodesic structure.
Next, we compare BFS Structure, as defined in Chapter 2, to the previous two variants of

product structure. We show that BFS structure is stronger than both product structure and
geodesic structure:

Theorem 1.5: [Section 3.3] There are graph classes with geodesic structure but no BFS structure.

Theorem 1.6: [Section 3.3] There are graph classes with product structure but no BFS structure.

Furthermore, to better understand what product structure and geodesic structure have in
common and what differences there are, we investigate whether or not some known results
for product structure also hold for geodesics structure. This gives us the following results on
geodesic structure:

The best known lower bound for the row treewidth of planar graphs is 3 [2]. For geodesic
structure, we show that the lower bound is at least 5:

Theorem 1.7: [Section 4.2] There is a planar graph that has geodesic treewidth at least 5.

This also implies that the lower bound for BFS structure is at least 5.
It is known that determining the row treewidth of graphs is NP-hard [23]. The same holds

for the geodesic treewidth of graphs:

Theorem 1.8: [Section 4.3.1] Determining if a given graph has geodesic treewidth at most 𝑘 is
NP-hard for 𝑘 ≥ 2.

In contrast, while for row treewidth even determining the row treewidth of treewidth-2
graphs is NP-hard [23], it is in polynomial time for geodesic treewidth:

5



1 Introduction

Theorem 1.9: [Section 4.3.2] The geodesic treewidth of treewidth-2 graphs can be determined in
time 𝑂 (𝑛5).

Lastly, the question arises how we prove that a graph class does not admit product structure
or geodesic structure. Bounded local treewidth and linear local treewidth, which are necessary
conditions for product structure [1 , 24], are commonly used tools, to show that a graph class
does not admit product structure [1 , 7 , 25]. We show that linear local treewidth is also a
necessary condition for geodesic structure.

Theorem 1.10: [Section 4.1] If a graph class admits geodesic structure, then it has linear local
treewidth.

Bounded layered treewidth is an even stronger necessary condition for product structure.
We also consider Baker treewidth, as defined in Section 2.3, which is an alternative necessary
condition to linear local treewidth. Lastly, we investigate the relationships between the
mentioned necessary conditions for product structure and get the following results:

Theorem 1.11: [Chapter 5] If a graph class has bounded layered treewidth, then it has bounded
Baker treewidth.

Since bounded layered treewidth is a necessary condition for product structure this also
implies that bounded Baker treewidth is a necessary condition for product structure. Next,
we show that, just like linear local treewidth, bounded Baker treewidth implies bounded local
treewidth:

Theorem 1.12: [Chapter 5] For a graph class with bounded Baker treewidth with function 𝑓 (𝑙),
the local treewidth is bounded by 𝑓 (2𝑘 + 1).

We also compare bounded Baker treewidth to linear local treewidth and prove that:

Theorem 1.13: [Chapter 5] There are graph classes with bounded Baker treewidth but without
linear local treewidth.

Lastly, we show that unbounded layered treewidth is still a stronger condition than bounded
Baker treewidth.

Corollary 1.14: [Chapter 5] There are graph classes with bounded Baker treewidth but un-
bounded layered treewidth.

6
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Bounded Layered Treewidth

Product Structure Geodesic Structure

BFS Structure

G planar: 3 ≤ rtw(G) ≤ 6

row treewidth is NP-hard

G planar: 5 ≤ gtw(G)≤ 6

geodesic treewidth is NP-hard

G planar: 5 ≤bfstw(G)≤ 6

?

?

?

we show
known
definition

open

⋆

⋆ holds for geodesic
treewidth 1

1-planar: no geodesic structure

Bounded Local Treewidth

Bounded Treewidth

1-planar: product structure

?

Linear Local TreewidthBounded Baker Treewidth

Figure 1.3: An overview of our results on the relationships between variants of products
structure and their necessary conditions. Exact statements for all our results are given in
Section 1.3. Here, we also give some short citations for the known results that have been
shown by others:

Bounded Local Treewidth ≠⇒ Bounded Baker Treewidth: 𝑛×𝑛×𝑛 grids with diagonals
have unbounded Baker treewidth [33 , 34]

Bounded Layered Treewidth =⇒ Linear Local Treewidth: [24]

Product Structure =⇒ Bounded Layered Treewidth: [1]

Bounded Layered Treewidth ≠⇒ Product Structure: [26]

BFS Structure ≠⇒ Bounded Treewidth: Planar graphs have BFS structure [1]
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2 Preliminaries

In this chapter, we introduce and define all concepts that we use in this thesis. We begin by
introducing the notation and giving definitions for basic concepts like quotients, treewidth
and layerings. In the last two sections of this chapter, we define the variants of product
structure that we compare and the various necessary conditions for product structure.

2.1 Basic Concepts

All graphs that we consider are undirected graphs with no loops and no multi-edges. The
set of vertices of a graph 𝐺 is called 𝑉 (𝐺) and the set of edges is called 𝐸 (𝐺). For an edge
{𝑢, 𝜈} ∈ 𝐸 (𝐺) we refer to it as 𝑢𝜈 ∈ 𝐸 (𝐺).
A graph 𝐺 ′ is a subgraph of 𝐺 if and only if 𝑉 (𝐺 ′) ⊆ 𝑉 (𝐺) and 𝐸 (𝐺 ′) ⊆ 𝐸 (𝐺).
For a vertex 𝜈 in a graph 𝐺 the 𝑘-th neighbourhood 𝑁𝑘 [𝜈] of 𝜈 is the set of vertices that

have distance at most 𝑘 from 𝜈 . This also includes 𝜈 itself.
In a graph 𝐺 we can contract an edge 𝑢𝜈 by removing the edge 𝑢𝜈 and merging the

corresponding vertices 𝑢 and 𝜈 . All neighbours that were previously neighbours of either 𝑢 or
𝜈 are now neighbours of the newly merged vertex.

We say a graph𝑀 is aminor of𝐺 if it can be obtained from𝐺 by contracting edges, deleting
vertices and deleting edges.

For a graph 𝐺 and a partition P of 𝑉 (𝐺) into sets, the quotient 𝐺/P is defined as follows.
The graph𝐺/P has the sets in P as vertices and two sets 𝑃1, 𝑃2 ∈ P are connected by an edge
if and only if there exist vertices 𝜈1 ∈ 𝑃1 and 𝜈2 ∈ 𝑃2 such that 𝜈1𝜈2 ∈ 𝐸 (𝐺). Thus, the quotient
𝐺/P corresponds to the graph obtained from 𝐺 by merging each set in P into a single vertex.

A layering L = {𝐿1, 𝐿2, . . . } of 𝐺 is a partition of 𝑉 (𝐺) into layers 𝐿1, 𝐿2, . . . such that for
every edge 𝑢𝜈 ∈ 𝐸 (𝐺) with 𝑢 ∈ 𝐿𝑖 , 𝜈 ∈ 𝐿 𝑗 it holds that |𝑖 − 𝑗 | ≤ 1.
A tree decomposition (𝑇,X = {𝑋1, . . . , 𝑋𝑡 }) of a graph 𝐺 is a tree 𝑇 where the vertices

of 𝑇 are the sets {𝑋1, . . . , 𝑋𝑡 } and the sets in X themselves are subsets of 𝑉 (𝐺). The sets
{𝑋1, . . . , 𝑋𝑡 } are called the bags of the tree decomposition. Additionally, (𝑇,X = {𝑋1, . . . , 𝑋𝑡 })
has to fulfil the following conditions to be a tree decomposition of 𝐺 :

1 Each vertex of 𝐺 is in at least one bag.

2 For each edge 𝑢𝜈 ∈ 𝐸 (𝐺) there is at least one bag that contains both 𝑢 and 𝜈 .

3 For a vertex 𝜈 of 𝐺 the subgraph of 𝑇 , that is induced by all bags containing 𝜈 , is
connected.

The width of a tree decomposition (𝑇,X ) is the size of the largest bag in X minus one. The
treewidth of a graph 𝐺 is the minimum width of a tree decomposition of 𝐺 .

9



2 Preliminaries

2.2 Variants of Product Structure

In this section, we define the variants of product structure that we compare in this thesis. For
some variants, we also need to define some auxiliary concepts.

Product Structure. A graph class G has product structure if there exists a constant 𝑘
such that every 𝐺 ∈ G has a partition P of 𝑉 (𝐺) into sets of layered width 1 such that 𝐺/P
has treewidth at most 𝑘 . Here, a partition P of 𝐺 into sets of layered width 1 is a partition of
𝑉 (𝐺) such that there is a layering L of 𝐺 such that each set in the partition contains at most
one vertex from each layer in L.
We define the row treewidth rtw(𝐺) of a graph 𝐺 as the minimum 𝑘 for which 𝐺 has a

partition P of𝑉 (𝐺) into sets of layered width 1 such that𝐺/P has treewidth at most 𝑘 . Thus,
for a graph class, product structure is equivalent to bounded row treewidth.
We will mostly be using the previous definition of product structure in this thesis, as it

most closely aligns with the definitions of the other variants of product structure. There
is, however, an equivalent definition of product structure that is more widely used. This
equivalent definition uses the strong product of graphs to define product structure. The
strong product 𝐺1 ⊠𝐺2 of two graphs 𝐺1,𝐺2 is a graph 𝐺 with 𝑉 (𝐺) = 𝑉 (𝐺1) ×𝑉 (𝐺2) and
(𝑢, 𝜈), (𝑥,𝑦) ∈ 𝑉 (𝐺) are adjacent if and only if either 𝑢 = 𝑥 and 𝜈𝑦 ∈ 𝐸 (𝐺2) or 𝜈 = 𝑦 and
𝑢𝑥 ∈ 𝐸 (𝐺1) or 𝑢𝑥 ∈ 𝐸 (𝐺1) and 𝜈𝑦 ∈ 𝐸 (𝐺2). A graph class G has product structure if and only
if there exists a constant 𝑘 such that for every𝐺 ∈ G there exists a path 𝑃 and a graph 𝐻 such
that 𝐺 ⊆ 𝑃 ⊠ 𝐻 and 𝐻 has treewidth at most 𝑘 .

BFS Structure. We define BFS structure as a variant of product structure. A graph class G
has BFS structure if there exists a constant 𝑘 such that every𝐺 ∈ G has a connected partition P
of𝑉 (𝐺) into sets of layered width 1 such that𝐺/P has treewidth at most 𝑘 and the partition P
is a partition into sets of layered width 1 for some breadth-first search layering of𝐺 . Every set
in a connected partition induces a connected subgraph of 𝐺 . A breadth-first search layering
of a graph results from a breadth-first search, originating from a root vertex 𝑟 , where vertices
are placed in layers based on their distance to 𝑟 . There is also a variant of BFS structure that is
used in literature where the existence of such a partition P is required for every BFS layering
of 𝐺 . Here we just require that there exists such a partition P for some BFS layering of 𝐺 .
This makes separating this concept from the other related variants of product structure more
interesting. In both variants, the sets in the partitions P are vertical paths in a BFS layering.
A vertical path in a BFS layering is a path that contains at most one vertex from each layer.

We define the BFS treewidth bfstw(𝐺) of a graph 𝐺 as the minimum 𝑘 for which 𝐺 has a
connected partition P of 𝑉 (𝐺) into sets of layered width 1 such that 𝐺/P has treewidth at
most 𝑘 and the partition P is a partition into sets of layered width 1 for some breadth-first
search layering of 𝐺 . Thus, for a graph class, BFS structure is equivalent to bounded BFS
treewidth.

Geodesic Structure. A graph class G has geodesic structure if there exists a constant 𝑘
such that every 𝐺 ∈ G has a partition P of 𝑉 (𝐺) into geodesics such that 𝐺/P has treewidth
at most 𝑘 . A geodesic is a shortest path in 𝐺 .

We define the geodesic treewidth gtw(𝐺) of a graph 𝐺 as the minimum 𝑘 for which 𝐺 has a
partition P of 𝑉 (𝐺) into geodesics such that𝐺/P has treewidth at most 𝑘 . Thus, for a graph
class, geodesic structure is equivalent to bounded geodesic treewidth.

10



2.3 Necessary Conditions for Product Structure

2.3 Necessary Conditions for Product Structure

In this section, we define bounded layered treewidth, linear local treewidth and bounded
local treewidth. All three concepts have been shown to be necessary conditions for product
structure [1 , 24]. We also define Baker treewidth for which we show in Chapter 5 that it is
also a necessary condition for product structure.

Bounded Layered Treewidth. A graph class G has bounded layered treewidth if there
exists a constant 𝑘 such that for each𝐺 ∈ G there exists a tree decomposition 𝐷 and a layering
L of 𝐺 such that the intersection between any bag 𝐵 in 𝐷 and any layer 𝐿 ∈ L is at most 𝑘 .

Local Treewidth. A graph class G has bounded local treewidth if there exists a function
𝑓 such that for every graph 𝐺 ∈ G and every vertex 𝜈 ∈ 𝑉 (𝐺) the treewidth of the graph
induced by the 𝑘-th neighbourhood 𝑁𝑘 [𝜈] of 𝜈 is at most 𝑓 (𝑘). If the function 𝑓 is a linear
function, then we say that G has linear local treewidth.

Baker Treewidth. A graph class G has bounded Baker treewidth if there exists a function
𝑓 such that for every graph𝐺 ∈ G there exists a layering L of𝐺 such that each graph induced
by the union of 𝑘 consecutive layers in L has treewidth at most 𝑓 (𝑘).

11





3 Product Structure vs. Geodesic Structure

In this chapter, we compare the variants of product structure. The main focus lies on investi-
gating the relationship between product structure and geodesic structure.

3.1 Product Structure does not imply Geodesic Structure

We show that product structure does not imply geodesic structure by observing how geodesic
structure and product structure behave differently when subdividing edges.

Let G be a class of graphs. For each𝐺 ∈ G, let𝐺 ′ be the result of some number of subdivisions
of each edge of𝐺 . The number of subdivisions of each edge does not have to be the same. We
define G′ = {𝐺 ′ | 𝐺 ∈ G} and thus G′ contains, for each graph from G, some subdivision of
that graph.

In general, subdividing the edges of a graph can reduce the row and geodesic treewidth of
the graph. We first illustrate this using the class of complete graphs:
The class of complete graphs G does not have product structure. For 𝐾𝑛 ∈ G let 𝑃 be a

hamiltonian path of 𝐾𝑛 . We construct 𝐾 ′
𝑛 by subdividing each edge 𝑢𝜈 ∉ 𝑃 of 𝐾𝑛 as often as

the distance of 𝑢 and 𝜈 on 𝑃 plus one. It can be seen that G′ has product structure since every
𝐾 ′
𝑛 ∈ G′ is a subgraph of 𝑃 ⊠ 𝑆 where 𝑆 is a star. An example of this is given in Figure 3.1.

Since every graph can be embedded in a complete graph, the following observation holds.

Observation 3.1: For every graph class G, there exists a graph class G′ resulting from subdivision
as defined above that has product structure.

The class of complete graphs G also does not have geodesic structure. For 𝐾𝑛 ∈ G let 𝑃 be a
hamiltonian path of 𝐾𝑛 . We construct 𝐾 ′

𝑛 by subdividing each edge 𝑢𝜈 ∉ 𝑃 of 𝐾𝑛 as often as
the distance of 𝑢 and 𝜈 on 𝑃 minus one. Thus, 𝑃 is a geodesic in 𝐾 ′

𝑛 . Let P be a partition into
geodesics consisting of 𝑃 and one additional geodesic for each edge of 𝐾𝑛 that is not on 𝑃 . It
follows that 𝐺𝑛/P is a star and thus has treewidth 1.

Observation 3.2: For the class of complete graphs G, there exists a graph class G′ resulting from
subdivision as defined above that has geodesic treewidth 1.

P

S S S S S

Figure 3.1: Subdivided 𝐾5 that is a subgraph of 𝑃 ⊠ 𝑆 , where 𝑆 is a star.
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P

(a) 𝐾5 (b) 𝐾5/P

Figure 3.2: Subdivided 𝐾5 that has geodesic treewidth 1.

However, row treewidth and geodesic treewidth still behave very differently under subdi-
vision. In particular, if each edge is subdivided at least 𝑛2 times, where 𝑛 is the number of
vertices in the graph, then the resulting graph is 1-planar. Since 1-planar graphs have row
treewidth at most 28 [4, Theorem 3] the following observation follows:

Observation 3.3: Let 𝐺 be a graph and 𝐺 ′ be the result after subdividing each edge of 𝐺 at
least |𝑉 (𝐺) |2 times. Then 𝐺 ′ has row treewidth at most 28.

For geodesic treewidth, it is, however, not the case that enough subdivisions of each edge
lead to small geodesic treewidth. We prove this in the following lemma:

Lemma 3.4: Let G be a graph class that does not admit geodesic structure. Let G′ be the graph
class resulting from subdividing each edge 𝑘 times for each graph in G. Then G′ also does not
admit geodesic structure.

Proof. Assume G′ does admit geodesic structure with geodesic treewidth 𝑐 . For 𝐺 ∈ G, let 𝐺 ′

be the graph resulting from subdividing each edge 𝑘 times. Thus 𝐺 ′ is in G′ and therefore
there exists a partition P ′ of 𝐺 ′ into geodesics such that 𝐺 ′/P ′ has treewidth at most 𝑐 . We
consider a geodesic 𝑝′ ∈ P ′ and define 𝑝 = 𝑝′ ∩𝑉 (𝐺). We show that 𝑝 is a geodesic in𝐺 . If 𝑝
is not a geodesic in𝐺 , then there exists a shorter path 𝑠 from the start of 𝑝 to the end of 𝑝 . Let
𝑠′ be the path corresponding to the path 𝑠 in𝐺 ′. However, since𝐺 ′ is the result of subdividing
each edge 𝑘 times, it holds that 𝑠′ is a shortcut for 𝑝′. Since this is impossible, it holds that 𝑝
is a geodesic in 𝐺 . Therefore, P = {𝑝′ ∩𝑉 (𝐺) | 𝑝′ ∈ P ′} is a partition of 𝐺 into geodesics. It
holds that 𝐺/P is a minor of 𝐺 ′/P ′ and thus has treewidth at most tw(𝐺 ′/P ′) = 𝑐 . Thus, the
geodesic treewidth of 𝐺 is at most 𝑐 . Therefore, G′ admitting geodesic structure implies that
G admits geodesic structure.

There are even graph classes that do not have geodesic structure, no matter how often
each edge is subdivided, unlike in the previous proof, where each edge is subdivided an equal
number of times.

This difference in how row treewidth and geodesic treewidth behave under subdivision is
used in the following to define two graph classes that admit product structure but no geodesic
structure. Thus proving the following:

Theorem 1.1: Product structure does not imply geodesic structure.

The first graph class with product structure but no geodesic structure is defined as follows.
Let 𝐾 ′

𝑛 be the graph resulting from subdividing each edge 𝑛2 times in the complete graph 𝐾𝑛 .

Lemma 3.5: The graph class of all 𝐾 ′
𝑛 for 𝑛 ∈ ℕ admits product structure but not geodesic

structure.
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3.1 Product Structure does not imply Geodesic Structure

v v

W1 W2 W3

W 1 W 2 W 3

W 1 W 2 W 3

Figure 3.3: The graphs𝑊1,𝑊2,𝑊3.

Proof. By Observation 3.3 it holds that this graph class admits product structure. Since
complete graphs do not admit geodesic structure by Lemma 3.4, it follows that the graph class
of all 𝐾 ′

𝑛 also does not admit geodesic structure.

Thus, product structure does not imply geodesic structure.

In the following, we give a different graph class that does not admit geodesic structure,
regardless of the number of subdivisions of each edge. Using Observation 3.1 this thus also
results in a graph class that admits product structure but not geodesic structure. The proof and
graph class is inspired by the proof that subdivisions do not efficiently reduce row treewidth
by Bose et al. [26].
For three graphs 𝐺1,𝐺2,𝐺3, we construct graphs 𝐺★

1,2,3 as follows: connect a disjoint copy
of 𝐺1,𝐺2 and 𝐺3 by a universal vertex 𝜈 and subdivide the edges adjacent to 𝜈 an arbitrary
number of times. Each edge adjacent to 𝜈 can be subdivided a different number of times. We
prove:

Lemma 3.6: If 𝐺1,𝐺2 and 𝐺3 each have geodesic treewidth at leasts 𝑘 then 𝐺★
1,2,3 has geodesic

treewidth at least 𝑘 + 1.

Proof. We prove that gtw(𝐺★
1,2,3) ≥ 𝑘 + 1. Let P★ be any partition of 𝐺★

1,2,3 into geodesics. Let
𝜈 be the universal vertex in 𝐺★

1,2,3 and 𝑃𝜈 ∈ P★ be the geodesic containing 𝜈 . Since 𝑃𝜈 is a
path either𝐺1,𝐺2 or𝐺3 does not intersect 𝑃𝜈 . Assume without loss of generality that𝐺1 does
not intersect 𝑃𝜈 and let P★ constrained to 𝐺1 be called P1. It holds that 𝐺1/P1 has at least
treewidth 𝑘 since gtw(𝐺1) ≥ 𝑘 . Let𝐺 ′

1 be the graph𝐺1/P1 with an additional universal vertex.
It is known that adding a universal vertex to a graph increases the treewidth by at least one,
and thus 𝐺 ′

1 has treewidth at least 𝑘 + 1. The graph 𝐺★
1,2,3/P★ has a 𝐺 ′

1-minor consisting of
𝐺1/P1 and the vertex corresponding to 𝑃𝜈 if the additional vertices from subdivisions are
contracted into the vertex corresponding to 𝑃𝜈 . Thus, 𝐺★

1,2,3/P★ has treewidth at least 𝑘 + 1
and thus gtw(𝐺★

1,2,3)) ≥ 𝑘 + 1.

We iteratively construct the following graph class W =
⋃
𝑊𝑖 . We define𝑊1 as a single

vertex. For 𝑖 ≥ 2, the graph𝑊𝑖 is defined as the graph consisting of three disjoint copies
𝑊 1,𝑊 2,𝑊 3 of𝑊𝑖−1 and a vertex 𝜈 that is adjacent to all other vertices. An example of this is
shown in Figure 3.3.

LetW ′ be a graph class resulting fromW by subdivision as defined at the beginning of this
section. We prove that every W ′ does not admit geodesic structure.

Lemma 3.7: Every W ′ resulting from W by subdivision does not admit geodesic structure.
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Proof. We use induction to prove that𝑊 ′
𝑖 ∈ W ′ has geodesic treewidth at least 𝑖 − 1. For the

base cases,𝑊 ′
1 is a single vertex and thus trivially has geodesic treewidth 0. For𝑊 ′

𝑖 and 𝑖 > 1,
it can be seen that𝑊 ′

𝑖 consists of three graphs that have treewidth at least 𝑖 − 1 connected
with a universal vertex 𝜈 where the edges adjacent to 𝜈 are possibly subdivided. Thus, using
Lemma 3.6 it follows that𝑊 ′

𝑖 has geodesic treewidth at least 𝑖 − 1. Therefore, the graph class
W ′ does not admit geodesic structure.

We have shown that product structure does not imply geodesic structure. Since product
structure implies bounded layered treewidth [12] we get the following corollary.

Corollary 1.3: Bounded layered treewidth does not imply geodesic structure.

3.1.1 Beyond-planar graphs do not have geodesic structure

In Section 3.1 we define the graph class of all 𝐾 ′
𝑛 that consists of complete graphs where each

edge is subdivided 𝑛2 times. This graph class is 1-planar, however, it does not admit geodesic
structure. Therefore, we make the following observation:

Observation 3.8: The class of 1-planar graphs does not admit geodesic structure.

However 1-planar graphs are part of many beyond-planar graph classes. Thus, for all
these beyond-planar graph classes, it follows that they do not admit geodesic structure. Some
examples of such beyond-planar graph classes that do not admit geodesic structure but have
been shown to admit product structure are: (𝑔, 𝑘)-planar graphs, fan-planar graphs, fan-bundle
planar graphs and 𝑘-gap planar graphs [7].

3.2 Does geodesic structure imply product structure?

In this section, we show that graph classes with geodesic treewidth 1 have product structure.
However, whether geodesic structure implies product structure in general remains an open
question.
A graph class G admits product structure if there exists a constant 𝑘 such that for every

𝐺 ∈ G there exists a path 𝑃 and a graph 𝐻 with treewidth 𝑘 such that𝐺 is a subgraph of 𝐻 ⊠𝑃 .
An equivalent definition for product structure is that there exists a constant 𝑘 such that for
every 𝐺 ∈ G there is a partition P of layered width 1 such that 𝐺/P has treewidth at most 𝑘
[1].

We observe that for all paths 𝑃 and all constants 𝑐 it holds that 𝑃𝑐 = 𝑃∪𝑃2∪· · ·∪𝑃𝑐 ⊆ 𝑃⊠𝐾𝑐 .
If we consider a graph class G for which there exist constants 𝑘 and 𝑐 such that for every
𝐺 ∈ G there exists a path 𝑃 and a graph 𝐻 with treewidth 𝑘 such that 𝐺 is a subgraph of
𝐻 ⊠ 𝑃𝑐 it thus follows that G admits product structure with row treewidth (𝑘 + 1) · 𝑐 - 1. Using
the equivalent definition G admits product structure if there exist constants 𝑘 and 𝑐 such that
for every 𝐺 ∈ G there is a partition P of layered width 1 with regard to some 𝑐-layering L
such that 𝐺/P has treewidth at most 𝑘 . A 𝑐-layering L is an ordered partition (𝐿0, 𝐿1, . . . ) of
𝑉 (𝐺) such that for every edge 𝜈𝑤 ∈ 𝐸 (𝐺) with 𝜈 ∈ 𝐿𝑖 and𝑤 ∈ 𝐿 𝑗 we have |𝑖 − 𝑗 | ≤ 𝑐 .

Let G be a graph class that admits geodesic structure with geodesic treewidth 𝑘 , i.e. for
each graph 𝐺 ∈ G there exists a partition P into geodesics such that 𝐺/P has treewidth at
most 𝑘 . In this section we investigate whether there exists a constant 𝑐 for G such that every
𝐺 ∈ G has a 𝑐-layering L such that P is a partition of layered width 1 with regard to L. This
would imply that G also admits product structure.
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Lemma 3.9: Let 𝐺 be a graph with a partition P of 𝐺 into geodesics such that 𝐺/P is a tree.
Then there exists a 4-layering L of𝑉 (𝐺) such that P is a partition of layered width 1 with regard
to L.

Proof. Let 𝐺 be a graph with a partition P of 𝐺 into geodesics such that 𝐺/P is a tree. If
|P | = 1 then trivially there exists a 4-layering L of𝐺 such that P is a partition of layered width
1 and for each 𝑃 ∈ P the vertices of 𝑃 are embedded in consecutive layers of L according to
their order in 𝑃 . Assume that the same holds for |P | < 𝑛. We show that for |P | = 𝑛 there
exists a 4-layering L of 𝐺 such that P is a partition of layered width 1 and for each 𝑃 ∈ P the
vertices of 𝑃 are embedded in consecutive layers of L according to their order in 𝑃 .

Let Γ,Δ ∈ 𝑉 (𝐺/P) with Γ being a leaf adjacent to Δ. Let 𝑃Γ and 𝑃Δ be the geodesics
corresponding to Γ and Δ respectively with 𝑃Γ = (𝜈0, 𝜈1, . . . , 𝜈𝑚) and 𝑃Δ = (𝑤1,𝑤2, . . . ,𝑤𝑛).
Let L = (𝐿0, 𝐿1, . . . ) be a 4-layering of 𝐺 − 𝑃Γ such that P \ 𝑃Γ is a partition of layered width
1 and for each 𝑃 ∈ P \ 𝑃Γ the vertices of 𝑃 are embedded in consecutive layers of L according
to their order in 𝑃 . Note that in the following construction some layers may be assigned
negative indices.

Lx+3 :

Lx+1 :

Lx+2 :

Lx−2 :

Lx−1 :

P∆ PΓ

w2 v1Lx :

w1

w0
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w3
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v3

v4
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w2 v1

w1

w0

w5

w4

w3 v0
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Lx+1 :
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Figure 3.4: Layering L1 on the left and layering L2 on the right. The green edge is the
alignment edge 𝑒 = 𝜈𝑖𝑤 𝑗 .

Since Γ is a leaf adjacent to Δ, there exists an 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛] such that 𝑒 = 𝜈𝑖𝑤 𝑗 ∈ 𝐸 (𝐺).
We use this edge 𝑒 to align the path 𝑃Γ . Let 𝐿𝑥 be the layer in L that contains𝑤 𝑗 . We construct
two potential layerings L1,L2 of 𝐺 from L. To construct L1 we take L and for every 𝑙 ∈ [𝑚]
we place the vertex 𝜈𝑙 in the layer 𝐿𝑥+(𝑙−𝑖 ) . To construct L2 we take L and for every 𝑙 ∈ [𝑚]
we place the vertex 𝜈𝑙 in the layer 𝐿𝑥−(𝑙−𝑖 ) . Thus, L2 only differs from L1 in that the path 𝑃Γ
is mirrored in the layering. An example of the two possible resulting layerings can be seen in
Figure 3.4. For both layerings, it can be seen that P is a partition of layered width 1 and that
for each 𝑃 ∈ P the vertices of 𝑃 are embedded in consecutive layers according to their order
in 𝑃 .

It remains to show that L1 or L2 is a 4-layering of𝐺 . For any layering L′ let a 𝑘-steep edge
be an edge with endpoints in layers 𝐿𝑎, 𝐿𝑏 of L′ and |𝑎 − 𝑏 | ≥ 𝑘 . For the layerings L1 and L2,
let a crossing edge be an edge with endpoints in layers 𝐿𝑎, 𝐿𝑏 of L1 or L2 respectively and
𝑎 < 𝑥 < 𝑏, i.e. edges that cross the alignment edge 𝑒 in the embedding shown in Figure 3.4.
Note that as the vertices of 𝑃Γ are embedded in consecutive layers according to their order
in 𝑃Γ , edges in 𝑃Γ can not be 2-steep edges. Furthermore, non-crossing edges 𝑒′ can not be
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P∆ PΓ

wj vi

e′

e

Figure 3.5: If a non-crossing edge 𝑒′ is 3-steep, then together with the alignment edge 𝑒 , this
results in a shortcut for one of the two geodesics – in this example a shortcut on 𝑃Γ that is
highlighted green.

3-steep edges since else 𝑒 and 𝑒′ result in a shortcut for one of the two geodesics 𝑃Γ or 𝑃Δ as
shown in Figure 3.5. Thus, if L1 contains no 5-steep crossing edge, then no 5-steep edge exists
in the layering L1 and it is thus a valid 4-layering.
Assume now that there is a 5-steep crossing edge 𝑒′′ = 𝜈𝑞𝑤𝑟 in L1. We prove that in this

case it follows that L2 has no 5-steep edges and is thus a valid 4-layering. Similar to L1, edges
in 𝑃Γ can not be 2-steep edges and non-crossing edges can not be 3-steep edges in L2. Thus,
it only remains to show that L2 contains no 5-steep crossing edge.

P∆ PΓ
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vqwb

va

e

Figure 3.6: If 𝑎 ≥ 𝑞 then since 𝑒′ is not steep the edges 𝑒′′ and 𝑒′ result in a shortcut for 𝑃Γ
that is highlighted in green.

Every crossing edge in L1 is non-crossing in L2. Thus, we consider non-crossing edges in
L1 which correspond to crossing edges in L2. Let 𝑒′ = 𝜈𝑎𝑤𝑏 be such a non-crossing edge in L1.
We already know that 𝑒′ is not 3-steep in L1. Without loss of generality, let 𝑎 ≥ 𝑖 and 𝑏 ≥ 𝑗 and
𝑞 > 𝑖 and 𝑟 < 𝑗 , meaning that 𝑒′ is below the alignment edge 𝑒 in the embedding of L1 shown
in Figure 3.4. If 𝑎 ≥ 𝑞 then since 𝑒′ is not 3-steep the edges 𝑒′′ and 𝑒′ result in a shortcut as

18
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shown in Figure 3.6. Thus, we assume now that 𝑎 < 𝑞. Let 𝐸′ = {𝑒′ = 𝜈𝑎𝑤𝑏 | |𝑖−𝑎 |+ | 𝑗−𝑏 | < 5}.
Then, the edges in 𝐸′ are not 5-steep in L2. The edges in 𝐸′ correspond to the yellow edges in
Figure 3.7.

wj vi

e′′

wr
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e
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P∆ PΓ

Figure 3.7: In yellow on the left are the edges 𝑒′ = 𝑤𝑏𝜈𝑎 ∈ 𝐸′ which are not 5-steep edges in
L2. In green on the right are the edges 𝑒′ = 𝑤𝑏𝜈𝑎 ∈ 𝐸′2 with |𝑎 − 𝑖 | ≤ 3 that together with 𝑒′′
result in a shortcut for 𝑃Δ. Highlighted are in green are the edges 𝜈𝑖+2𝑤 𝑗+3 and 𝜈𝑖+3𝑤 𝑗+2 which
dominate the remaining edges. Combined the yellow and green edges are all non-3-steep
non-crossing edges with |𝑎 − 𝑖 | ≤ 3.

P∆ PΓ

wj vi

e′′

wr

vq

e

q − i

j − r

Figure 3.8: If 𝑞 − 𝑖 > 𝑗 − 𝑟 + 2 then 𝑒′′ and 𝑒 are a shortcut for 𝑃Γ as shown in blue.

Lastly, we need to consider edges 𝑒′ = 𝜈𝑎𝑤𝑏 below the alignment edge 𝑒 with 𝑎 < 𝑞 and
𝑒′ ∉ 𝐸′ that could still be 5-steep crossing edges in L2. It holds that 𝑞 − 𝑖 ≤ 𝑗 − 𝑟 + 2 else 𝑒′′
and 𝑒 are a shortcut for 𝑃Γ as shown in Figure 3.8. Let 𝑆 be the path from 𝑤𝑟 to 𝑤𝑏 using
edges 𝑒′′ and 𝑒′ and the path 𝑃Γ . An example for such a path 𝑆 with all relevant distances
is given in Figure 3.9. Note that 𝑆 has length 2 + 𝑞 − 𝑎. Thus, for 𝑎 − 𝑖 > 3 it follows that
2 + 𝑞 − 𝑎 < 𝑞 − 𝑖 ≤ 𝑗 − 𝑟 + 2 ≤ 𝑏 − 𝑟 . Thus, 𝑆 is a shortcut for 𝑃Δ from𝑤𝑟 to𝑤𝑏 .
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Figure 3.9: The shortcut 𝑆 from𝑤𝑟 to𝑤𝑏 using edges 𝑒′′ and 𝑒′ is highlighted in green.

Finally, we consider the edges 𝐸′2 = {𝑒′ = 𝜈𝑎𝑤𝑏 | 𝑎 − 𝑖 ≤ 3 ∧ 𝑒′ ∉ 𝐸′}. These edges
can be seen in Figure 3.7 on the right. For 𝜈𝑖+2𝑤 𝑗+3 the path 𝑆 has length 𝑞 − (𝑖 + 2) + 2 ≤
𝑗 − 𝑟 + 2 < 𝑗 − 𝑟 + 3 and is thus a shortcut from𝑤𝑟 to𝑤 𝑗+3. For 𝜈𝑖+3𝑤 𝑗+2 the path 𝑆 has length
𝑞 − (𝑖 + 3) + 2 ≤ 𝑗 − 𝑟 + 1 < 𝑗 − 𝑟 + 2 and is thus a shortcut from𝑤𝑟 to𝑤 𝑗+2. The remaining
edges in 𝐸′2 are dominated by 𝜈𝑖+2𝑤 𝑗+3 and 𝜈𝑖+3𝑤 𝑗+2, meaning that if these two edges result in
a shortcut when combined with 𝑒′′ then the remaining edges in 𝐸′2 also result in a shortcut.
Thus, the edges in 𝐸′2 would result in a shortcut for 𝑃Δ and are thus not in the graph. Therefore,
L2 has no 5-steep crossing edges and is a 4-layering.

Theorem 1.2: Every graph class with geodesic treewidth 1 has row treewidth at most 7.

Proof. For each 𝐺 ∈ G Lemma 3.9 gives us a 4-layering L of 𝐺 such that P is a partition of
layered width 1. Thus G admits product structure with row treewidth (1 + 1) · 4 − 1 = 7.

This construction works for graph classes where the quotient 𝐺/P is a tree. However, if
the quotient 𝐺/P contains a cycle, a similar approach does not work in general. Consider
the graph class consisting of all 𝐶3𝑘 for 𝑘 ∈ ℕ. Assume a constant 𝑐 exists for this graph
class such that for every 𝐶3𝑘 and every partition P into geodesics there exists a 𝑐-layering
where P is a partition of layered width 1 and for each 𝑃 ∈ P the vertices of 𝑃 are embedded
in consecutive layers of L according to their order in 𝑃 .

For 𝐶3𝑘 we consider the partition P = {𝑃1, 𝑃2, 𝑃3} of the vertices into geodesics where each
𝑃𝑖 is a path of length 𝑘 as shown in Figure 3.10. Let L be a 𝑐-layering for 𝐶3𝑘 where P is a
partition of layered width 1 and for each 𝑃𝑖 the vertices of 𝑃𝑖 are embedded in consecutive
layers of L according to their order in 𝑃𝑖 . Thus, the orange edges 𝑒 and 𝑓 in Figure 3.10 are
at most 𝑐-steep in L. However, this implies that 𝑔 is at least 𝑘 − 2𝑐-steep and thus for large
enough 𝑘 the given L is not a 𝑐-layering. This contradicts our assumption and therefore
for the graph class consisting of all 𝐶3𝑘 no such constant 𝑐 exists, for which we can find a
𝑐-layering as described in the proof of Lemma 3.9.
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Figure 3.10: Graphs 𝐶3𝑘 where each 𝑃𝑖 is a path consisting of 𝑘 vertices.

3.3 BFS Structure - Sufficient for Geodesic Structure and
Product Structure

In this section, we compare BFS structure, as defined in Section 2.2, to the other variants of
product structure. First, we observe that by definition BFS structure implies geodesic structure
and product structure. Then we show that the reverse is not true in either case.
If a graph 𝐺 has BFS treewidth 𝑘 , then there exists a BFS layering of 𝐺 and a connected

partition P of𝑉 (𝐺) into sets of layered width 1 with regard to L such that𝐺/P has treewidth
at most 𝑘 . Since this partition is a partition of layered width 1, it holds that 𝐺 also has row
treewidth at most 𝑘 . Therefore, BFS structure for a graph class implies product structure.
Since P is a connected partition, this means that every part in the partition is a path. More
specifically, it is a vertical path in a BFS layering, which is also a shortest path. Therefore, P
is a partition into geodesics and 𝐺 has geodesic treewidth 𝑘 . Thus, BFS structure for a graph
class also implies geodesic structure.

In the following, we show that geodesic structure does not imply BFS structure by proving
that the graph class we define has geodesic structure but no BFS structure.

We consider the graphs G = {𝐺𝑛 | 𝑛 ∈ ℕ even} where 𝐺𝑛 is obtained from two 𝑛 × 𝑛-grids
connected by a universal vertex 𝜈 . In addition, all edges adjacent to 𝜈 are subdivided 𝑛/2 times.
To simplify notation, we only consider the case that 𝑛 is an even number. An example of such
a graph is shown in Figure 3.11.

v

← sudivided n/2 times

n

n

n

n

Figure 3.11: Graphs with geodesic structure and product structure but no BFS structure.

We first show that G has no BFS structure.
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3 Product Structure vs. Geodesic Structure

Lemma 3.10: The graph class G does not admit BFS structure.

Proof. Let 𝐺𝑛 ∈ G and 𝐺 ′,𝐺 ′′ be the two 𝑛 × 𝑛-grids in 𝐺𝑛 . We consider any BFS layering of
𝐺𝑛 . Without loss of generality, assume that the start of the breadth-first search is inside of 𝐺 ′

or on any path from 𝐺 ′ to 𝜈 . At some point, the breadth-first search reaches 𝜈 and from then
on spreads evenly towards 𝐺 ′′. Thus, 𝐺 ′′ is contained in a single layer in the BFS layering.
Let P be any partition of the vertices of 𝐺𝑛 into vertical paths of the BFS layering. It holds
that each path in P contains at most one vertex in 𝐺 ′′. Thus 𝐺/P contains a 𝑛 × 𝑛-grid and
has treewidth at least 𝑛. Therefore, G has no BFS structure.

For a 𝑛 × 𝑛-grid consisting of 𝑛 columns and 𝑛 rows, let the partition of the vertices where
the columns of the grid are chosen as parts be called the canonical partition. An example of a
canonical partition of a grid is shown in Figure 3.12.

Next, for any 𝐺𝑛 ∈ G let 𝐺 ′,𝐺 ′′ be the two 𝑛 × 𝑛-grids in 𝐺𝑛 . We define the following
partition P𝑛 of 𝑉 (𝐺𝑛). Let P𝑛 contain the canonical partitions of 𝐺 ′ and 𝐺 ′′ and every other
vertex of 𝐺𝑛 is in a part of its own. We show:

Lemma 3.11: For 𝐺𝑛 ∈ G the graph 𝐺𝑛/P𝑛 has treewidth 2.

Proof. The graphs 𝐺𝑛 and 𝐺𝑛/P𝑛 are shown in Figure 3.13. Note that deleting the vertex that
corresponds to the part {𝜈} ∈ P𝑛 results in a forest and thus 𝐺𝑛/P𝑛 has treewidth 2.

We use the previous results to show that G has geodesic structure but no BFS structure.

Theorem 1.5: There are graph classes with geodesic structure but no BFS structure.

Proof. We show that the graph class G has geodesic structure but no BFS structure.

In Lemma 3.10 we show that G has no BFS structure.

For 𝐺𝑛 ∈ G let 𝐺 ′,𝐺 ′′ be the two 𝑛 × 𝑛-grids in 𝐺𝑛 . We consider the partition P𝑛 of 𝑉 (𝐺𝑛)
that contains the canonical partitions of𝐺 ′ and𝐺 ′′ and where every other vertex of𝐺𝑛 is in a
part of its own. We show that this is a partition of 𝑉 (𝐺𝑛) into geodesics. Firstly, the parts in
the canonical partitions are columns in the grids and are thus paths. Secondly, since the paths
between 𝜈 and the grids have length 𝑛/2 and the paths in the canonical partitions of the grids
𝐺 ′ and 𝐺 ′′ have length 𝑛 it follows that the paths in the canonical partitions of the grids 𝐺 ′

and𝐺 ′′ are still geodesics in 𝐺𝑛 . All remaining parts in P𝑛 are single vertices and thus also
geodesics. Therefore, P𝑛 is a partition of 𝑉 (𝐺𝑛) into geodesics. In Lemma 3.11 we show that
𝐺𝑛/P𝑛 has treewidth 2. Therefore, every 𝐺𝑛 ∈ G has geodesic treewidth 2.
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Figure 3.12: A 8 × 8-grid and its canonical partition {𝑃1, . . . , 𝑃8}.

v

n

n

n

n

Gn Gn/Pn

n

n

n/2

Figure 3.13: On the left: the graph 𝐺𝑛 . On the right: the corresponding graph 𝐺𝑛/P𝑛 where
the vertex resulting from the contraction of {𝜈} is in the centre, connected to two paths of
length 𝑛 by subdivided multi-edges.

Next, we observe that the partitionP𝑛 is also a partition of layered width 1 for some layering
and thus G has product structure. Thus, the following theorem holds:

Theorem 1.6: There are graph classes with product structure but no BFS structure.

Proof. We show that the graph class G has product structure but no BFS structure.
In Lemma 3.10 we show that G has no BFS structure.
For 𝐺𝑛 ∈ G let 𝐺 ′,𝐺 ′′ be the two 𝑛 × 𝑛-grids in 𝐺𝑛 . We consider the partition P𝑛 of 𝑉 (𝐺𝑛)

that contains the canonical partitions of 𝐺 ′ and 𝐺 ′′ and where every other vertex of 𝐺𝑛 is in
a part of its own. We show that this is a partition of 𝑉 (𝐺𝑛) into sets of layered width 1 for
some layering. We define a layering L of 𝐺𝑛 . In L we place the 𝑖-th rows of the two grids in
𝐺𝑛 in layer 𝐿𝑖 and we place 𝜈 in layer 𝐿𝑛/2. Since the paths from the grids to 𝜈 have length at
least 𝑛/2, we can place the remaining path vertices in layers in L such that L is a layering of
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3 Product Structure vs. Geodesic Structure

𝐺𝑛 . Note that the columns of the grids are sets of layered width 1 in L. Thus P𝑛 is a partition
into sets of layered width 1. In Lemma 3.11 we show that𝐺𝑛/P𝑛 has treewidth 2. Therefore,
every 𝐺𝑛 ∈ G has row treewidth 2.
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4 Investigating Geodesic Structure

In this chapter, we investigate whether some known results for product structure also apply
for geodesic structure.

4.1 Necessary condition: Linear Local Treewidth

It is known that linear local treewidth is a necessary condition for product structure [1]. Here,
we prove that linear local treewidth is also a necessary condition for geodesic structure.

Theorem 1.10: If a graph class admits geodesic structure, then it has linear local treewidth.

Proof. Let G be a graph class that admits geodesic structure with geodesic treewidth 𝑐 and
let 𝐺 ∈ G. Thus, there exists a partition P of 𝐺 into geodesics such that 𝐺/P has treewidth
at most 𝑐 . Let (X ,𝑇 ) be a tree decomposition of 𝐺/P with width at most 𝑐 . Let 𝜈 ∈ 𝑉 (𝐺)
be any vertex of 𝐺 and 𝑁𝑘 [𝜈] be the 𝑘-th neighbourhood of 𝜈 . We now construct a tree
decomposition (X ′,𝑇 ′) of 𝐺 [𝑁𝑘 [𝜈]]. For each vertex 𝑥 ∈ 𝑉 (𝐺/P) let the corresponding
geodesic be called 𝑃𝑥 . We construct the bags X ′ by replacing in each bag from X each vertex
𝑥 ∈ 𝑉 (𝐺/P) with 𝑉 (𝑃𝑥 ) ∩ 𝑁𝑘 [𝜈]. Assume 𝑃 ∈ P is a geodesic with 𝑉 (𝑃) ∩ 𝑁𝑘 [𝜈] > 2𝑘 + 1.
Let 𝑥,𝑦 be the two outermost vertices on 𝑃 that are contained in 𝑁𝑘 [𝜈]. It can be seen that 𝑃
between 𝑥 and 𝑦 has at least length 2𝑘 + 1. However, the shortest path from 𝑥 to 𝜈 and the
shortest path from 𝜈 to 𝑦 have at most length 𝑘 . Thus 𝑃 between 𝑥 and 𝑦 does not constitute
a shortest path between 𝑥,𝑦 and therefore 𝑃 is not a geodesic. It follows that the number of
vertices of a geodesic inside 𝑁𝑘 [𝜈] is at most 2𝑘 + 1. Thus the maximum bag size in X ′ is
at most (2𝑘 + 1) (𝑐 + 1). Note that some bags may be empty after the replacement, however,
these bags can be removed, still resulting in a connected 𝑇 ′. Since P is a partition of 𝐺 , every
vertex of 𝑁𝑘 [𝜈] is contained in at least one bag of X ′. For each edge 𝑥𝑦 ∈ 𝐸 (𝐺 [𝑁𝑘 [𝜈]]) it is
either part of a geodesic in P and thus 𝑥,𝑦 are in a shared bag or it is between two geodesics
𝑃𝑥 ′, 𝑃𝑦′ ∈ P where 𝑥 ′, 𝑦′ are the corresponding vertices in𝐺/P . Since 𝑥 ′ and 𝑦′ are in a shared
bag in X , it follows that 𝑥 and 𝑦 are in a shared bag in X ′. Lastly, since the subgraph induced
by bags in X containing a vertex 𝑥 ∈ 𝐺/P is connected, the subgraph induced by bags in X ′

containing a vertex 𝑥 ′ ∈ 𝑁𝑘 [𝜈] is also connected. Thus, (X ′,𝑇 ′) is a tree decomposition of
𝐺 [𝑁𝑘 [𝜈]] and 𝐺 [𝑁𝑘 [𝜈]] has treewidth at most (2𝑘 + 1) (𝑐 + 1) − 1 for every 𝜈 ∈ 𝑉 (𝐺) and
and every 𝑘 ∈ ℕ.

4.2 Lower Bound for Geodesic Treewidth of Planar Graphs

Ueckerdt, Wood, and Yi [2] show that every planar graph has BFS treewidth at most 6. Thus 6
is also an upper bound for the row treewidth and geodesic treewidth of planar graphs.
Dujmović et al. show that 3 is a lower bound for the row treewidth of planar graphs by

constructing a planar graph with row treewidth 3 [1]. We remark that the graph they construct
also has geodesic treewidth 3 and thus 3 is also a lower bound for the geodesic treewidth of
planar graphs.
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4 Investigating Geodesic Structure

In this section, we improve this bound for the geodesic treewidth of planar graphs by
constructing a planar graph 𝐺 that has geodesic treewidth at least 5.

Theorem 1.7: There is a planar graph that has geodesic treewidth at least 5.

Proof. In the following, we construct a planar graph 𝐺 with gtw(𝐺) ≥ 5. During the con-
struction, we note Observations (i)-(iv) about the geodesics in 𝐺 . For this purpose, we fix a
partition P of 𝐺 into geodesics.
Whenever we add new vertices to 𝐺 , we take care to respect the following property: every

shortest path between two previously added vertices stays a shortest path and no path of the
same length between them is newly created. This makes sure that the observed properties
(i)-(iv) also hold at the end of our construction.

We start the construction of𝐺 with a triangle with vertices 𝜈0, 𝜈1 and 𝜈2. Since 𝜈0, 𝜈1 and 𝜈2
form a triangle, it follows that:

(i) At least two vertices of 𝜈0, 𝜈1 and 𝜈2 are not part of the same geodesic in P .

r0 r3 r6 r9 r12 . . .l0l3l6l9l12. . .

v0

Figure 4.1: The right fan is highlighted in green and the left fan in blue. A possible geodesic
containing 𝜈0 is drawn in red. Note that every geodesic has at most three vertices in a fan.
Thus, the thick/labelled vertices that are not red belong to pairwise distinct geodesics.

We add two fans at each 𝜈𝑖 , where 𝜈𝑖 is the centre. In the following, we only describe the
construction of the fans containing 𝜈0, however, disjoint copies of the same fans are added at
𝜈1 and 𝜈2 too. The vertices of the right fan with centre 𝜈0 are called 𝑟0, 𝑟1, . . . and the vertices
of the left fan 𝑙0, 𝑙1, . . . . We will discuss the exact fan sizes at the end of the proof. These
vertices together with 𝜈0 form fans, meaning that 𝑟 𝑗𝑟 𝑗+1 and 𝑙 𝑗𝑙 𝑗+1 are edges in𝐺 . An example
of 𝜈0 and the adjacent fans is shown in Figure 4.1. Observe that every geodesic has at most
three vertices in a fan and thus the geodesic containing 𝜈𝑖 contains at most two other vertices
in a fan with centre 𝜈𝑖 . Thus it holds that:

(ii) The geodesics containing every third vertex in a fan with centre 𝜈𝑖 , excluding the
geodesic containing 𝜈𝑖 , are pairwise distinct.

At this point in the construction, we thus know that for each fan the graph𝐺/P contains a
cycle of arbitrary length if the fan is large enough.
Next, for each 𝑖 ∈ [0, 2] we add vertices adjacent to the right fan of 𝜈𝑖 . Again, we only

describe the construction for 𝜈0, however, equivalent disjoint copies are added for 𝜈1 and 𝜈2.
For 𝜈0 we add vertices 𝑧0, 𝑧1, . . . where each vertex 𝑧𝑘 is adjacent to 𝑟6𝑘+3. Each vertex 𝑧𝑘 is
also connected by disjoint paths of length 6 to the vertices 𝑟6𝑘 and 𝑟6(𝑘+1) . An example of

26



4.2 Lower Bound for Geodesic Treewidth of Planar Graphs
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Figure 4.2: The right fan with its 𝑧0, 𝑧1, . . . vertices. Note that for all 𝑘 , either 𝑧′𝑘 or 𝑧′′
𝑘
are

part of a geodesic that contains no vertices in the fan.

𝜈0 and its right fan with its 𝑧0, 𝑧1, . . . vertices is shown in Figure 4.2. The first vertex on the
length-6 path from 𝑧𝑘 to 𝑟6𝑘 is called 𝑧′

𝑘
and the first vertex on the length-6 path from 𝑧𝑘 to

𝑟6(𝑘+1) is called 𝑧′′𝑘 . Observe that for all vertices 𝑧
′
𝑘
and 𝑧′′

𝑘
the shortest path to any vertex in

the right fan of 𝜈0 includes the vertex 𝑟6𝑘+3. Hence, there is no geodesic containing all three
vertices 𝑟6𝑘+3, 𝑧′𝑘 and 𝑧′′

𝑘
. Thus, it follows that:

(iii) Either 𝑧′
𝑘
or 𝑧′′

𝑘
are part of a geodesic that contains no vertices of the right fan that they

are adjacent to.

Figure 4.3: A cycle with tips.

At this point in the construction, we thus know that for each right fan, if the fan is large
enough, the graph 𝐺/P contains a minor that consists of a cycle of arbitrary length with tips
as shown in Figure 4.3. The tips result from vertices 𝑧′

𝑘
or 𝑧′′

𝑘
as shown in Observation (iii).

Lastly for 𝑖 ∈ [0, 2] and any 𝑘 we connect 𝑧′
𝑘
of the copy containing 𝜈𝑖 to 𝑙12𝑘 and 𝑙12𝑘+3 of

copy containing 𝜈𝑖+1 using two disjoint paths of length 6. We also connect 𝑧′′
𝑘
of the copy

containing 𝜈𝑖 to 𝑙12𝑘+6 and 𝑙12𝑘+9 of the copy containing 𝜈𝑖+1 using another two disjoint paths
of length 6. Here, the lower index of 𝜈𝑖+1 is always taken modulo 3. A sketch of the resulting
graph is given in Figure 4.4 and there it can also be seen that𝐺 is planar. By construction, the
paths are long enough such that the shortest path between 𝑧′

𝑘
and 𝑙12𝑘 or 𝑙12𝑘+3 is of length 5

and contains 𝜈𝑖 and 𝜈𝑖+1. An analogous observation holds for 𝑧′′
𝑘
. It thus follows that:
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v0

v1 v2

Figure 4.4: The planar graph with geodesic treewidth 5. The right fans are highlighted in
green and the left fans are highlighted in blue.

(iv) If 𝜈𝑖 and 𝜈 𝑗 are not part of the same geodesic then there is no geodesic that both contains
vertices of the right fan with centre 𝜈𝑖 (including the vertices 𝑧𝑘 and paths connecting
to the right fan) and vertices of the left fan with centre 𝜈 𝑗 .

For any sub-fan 𝐹 of the right fan with centre 𝜈𝑖 we define the adjacent sub-fan of 𝜈𝑖+1 as
the sub-fan of the left fan with centre 𝜈𝑖+1 that contains 𝜈𝑖+1 and all vertices that are connected
using the length 6 paths to a vertex 𝑧′

𝑘
or 𝑧′′

𝑘
with 𝑧𝑘 adjacent to 𝐹 .

The construction of 𝐺 is now completed and we use the Observations (i)-(iv) to analyse
𝐺/P and aim to show that 𝐺/P contains the graph 𝐻 in Figure 4.8 as a minor. The graph 𝐻
is known to have treewidth 5.
Observation (i) is that at least two of the vertices 𝜈0, 𝜈1 and 𝜈2 are not part of the same

geodesic. Let without loss of generality 𝜈0 and 𝜈1 not be part of the same geodesic and 𝑃𝑖 be
the geodesic containing 𝜈𝑖 for 𝑖 ∈ {0, 1}. Since 𝑃0 contains at most three vertices in the right
fan of 𝜈0, the geodesic 𝑃0 splits this fan into at most three sub-fans. If we choose the right fans
large enough, then by pigeonhole-principle one of the three sub-fans is large enough such
that it contains 𝑟6𝑘 , 𝑟6𝑘+3 and 𝑟6(𝑘+1) for at least 14 consecutive 𝑘 . Let this sub-fan be called
𝐹 ′. The geodesic 𝑃1 contains at most two vertices, besides 𝜈1, in the left fan of 𝜈1. Therefore
since 3 · 4 + 2 = 14 it holds that there is a sub-fan 𝐹 ′′ of 𝐹 ′ that is large enough that it contains
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Figure 4.5: In green the right sub-fan of 𝜈0 and in blue the left sub-fan of 𝜈1. Subdivision
vertices are not drawn for better readability. In purple the geodesics containing 𝜈0 and 𝜈1 that
do not intersect the sub-fans besides in 𝜈0 and 𝜈1.

𝑟6𝑘 , 𝑟6𝑘+3 and 𝑟6(𝑘+1) for at least four consecutive 𝑘 and the adjacent sub-fan of 𝜈1 does not
intersect 𝑃1 outside of 𝜈1. Let the four consecutive 𝑘 be 𝑘, 𝑘 + 1, 𝑘 + 2 and 𝑘 + 3. A sketch of
the sub-fan 𝐹 ′′ and the adjacent sub-fan of 𝜈1 is given in Figure 4.5. We calculate that a fan
size for the right fans of (14 · 3 + 4) · 6 + 1 = 277 suffices, which corresponds to a fan size of
(14 · 3 + 4) · 4 · 3 − 2 = 550 for the left fans. Observation (iii) states that for any 𝑘 , either 𝑧′

𝑘

or 𝑧′′
𝑘
are part of a geodesic that contains no vertices in the right fan of 𝜈0 . Without loss of

generality let the geodesics containing 𝑧′
𝑘
, 𝑧′

𝑘+1
, 𝑧′

𝑘+2
and 𝑧′

𝑘+3
not contain any vertex that is

part of the right fan of 𝜈0. Lastly using Observations (ii) and (iv) we can thus conclude that
the geodesics of every third vertex in the right sub-fan of 𝜈0, of every third vertex of the left
fan of 𝜈1 and of 𝑧′

𝑘
, 𝑧′

𝑘+1
, 𝑧′

𝑘+2
and 𝑧′

𝑘+3
are all pairwise distinct. The mentioned vertices are

shown in Figure 4.6.
With the geodesics of all these vertices being distinct, we compare Figure 4.6 and the

alternative drawing of 𝐻 in Figure 4.7. It can easily be seen that 𝐺/P contains a 𝐻 -minor
where the geodesics containing 𝑧′

𝑘
, 𝑧′

𝑘+1
, 𝑧′

𝑘+2
, 𝑧′

𝑘+3
correspond to 𝑏1, 𝑏2, 𝑏3, 𝑏4. The vertices

𝑎1, 𝑎2, 𝑎3, 𝑎4 form by contracting some geodesics in the left fan of 𝜈1 and the vertices𝑎1, 𝑎2, 𝑎3, 𝑎4
by contracting some geodesics in the right fan of 𝜈0. Since 𝐻 has treewidth 5 it thus follows
that 𝐺 is a planar graph that has geodesic treewidth at least 5.
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v0
v1

z′
k̂

z′
k̂+1

z′
k̂+2

z′
k̂+3

Figure 4.6: In green the right sub-fan of 𝜈0 and in blue the left sub-fan of 𝜈1. Subdivision
vertices are not drawn and only every third vertex of the fans is drawn for better readability.
All the drawn vertices of the fans and 𝑧′

𝑘
, 𝑧′

𝑘+1, 𝑧
′
𝑘+2 and 𝑧

′
𝑘+3 are all part of pairwise distinct

geodesics. The edges and paths in light grey are not needed for the 𝐻 minor.

a1c3

c4

c2

a3

a4

a2

b1

b2

b3

b4

c1

Figure 4.7: Alternative drawing of graph 𝐻 that is known to have treewidth 5. Note that 𝑐1
and 𝑎1 are vertices that are drawn as half-circles to match the embedding of𝑔 in Figure 4.6. The
graph 𝐻 is a minor of Figure 4.6 where the geodesics containing 𝑧′

𝑘
, 𝑧′

𝑘+1
, 𝑧′

𝑘+2
, 𝑧′

𝑘+3
correspond

to 𝑏1, 𝑏2, 𝑏3, 𝑏4. The vertices 𝑎1, 𝑎2, 𝑎3, 𝑎4 form by contracting some geodesics in the left fan of
𝜈1 and the vertices 𝑎1, 𝑎2, 𝑎3, 𝑎4 by contracting some geodesics in the right fan of 𝜈0.
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a1 c1 c3

c4

c2

a3

a4

a2

b1 b2

b3b4

Figure 4.8: Graph 𝐻 that is known to have treewidth 5.

4.3 Computing Geodesic Treewidth

4.3.1 Computing the Geodesic Treewidth is NP-Hard

For row treewidth, it is known that computing the row treewidth of treewidth 2 graphs is
NP-hard [23]. In the following, we prove that computing the geodesic treewidth of graphs is
also NP-hard.

Theorem 4.1: Determining whether a given graph has geodesic treewidth at most 2 is NP-hard.

Proof. To show that this problem is NP-hard, we give a reduction from a SAT variant that is
known to be NP-complete. Tovey [35] has shown that SAT is NP-complete if every clause
contains 2 or 3 variables and every variable occurs at most trice. In particular, in their reduction,
they show that SAT is NP-complete if every clause contains 2 or 3 variables and every variable
occurs at most once in a clause of size 3 and at most twice in clauses of size 2. We consider such
an instance 𝐼 of SAT and construct the following graph. We begin with a path 𝑃 of length 2𝑛+1
where 𝑛 is the number of variables 𝑉 in 𝐼 . Let the first vertex on this path be called 𝑠 and the
last 𝑡 . Beginning with the vertex adjacent to 𝑠 we now duplicate every other vertex on the path,
meaning we add new vertices with the same neighbourhood as the vertices we are duplicating.
Let the resulting graph be called 𝐺1 and let {(𝑥𝑖 , 𝑥𝑖) | 𝑥𝑖 ∈ 𝑃 ∧ 𝑥𝑖 is the duplicate vertex of 𝑥𝑖}
be the pairs of vertices that were duplicated. An example of such a graph 𝐺1 is shown in
Figure 4.9 on the left. For a 𝑠-𝑡-path 𝑆 , we say 𝑥𝑖 ∈ 𝑉 is true if and only if 𝑥𝑖 ∈ 𝑆 , thus every
path 𝑆 corresponds uniquely to a truth assignment of the variables 𝑉 . For each clause 𝐶 of
𝐼 and literals 𝑙1, 𝑙2 ∈ 𝐶 we add the edge 𝑙1𝑙2 to 𝐺1 to construct 𝐺2 as shown in Figure 4.9 in
the centre. In addition for each clause 𝑐 = {𝑙1, 𝑙2} ∈ 𝐶 of size 2 we add five new vertices
𝑝1, . . . , 𝑝5 that are adjacent to 𝑙1, 𝑙2 and 𝑠 . The resulting graph 𝐺3 can be seen in Figure 4.9
on the right. Lastly to construct 𝐺4 every edge 𝑒 ∈ 𝐸 (𝐺3) \ 𝐸 (𝐺1) is subdivided 2𝑛 times.
As a result, every shortest path from 𝑠 to 𝑡 in 𝐺4 only uses edges of 𝐺1 and thus we retain
the unique correspondence between shortest paths from 𝑠 to 𝑡 and truth assignments of the
variables.
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x3 x3

x4 x4
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Figure 4.9: On the left an example of 𝐺1 with a shortest 𝑠-𝑡-path highlighted in green that
uniquely corresponds to a truth assignment 𝜑 of the variables where 𝜑 (𝑥4) = 𝑡 and 𝜑 (𝑥𝑖) = 𝑓
for 𝑖 ∈ [3]. In the centre a corresponding 𝐺2 with a SAT instance consisting of two clauses.
On the right a corresponding 𝐺3, the dark blue vertex has four additional copies with the
same neighbourhood.

For a graph 𝐺 with 𝑠, 𝑡 ∈ 𝑉 (𝐺), let a 𝑠-𝑡-partition of 𝐺 into geodesics be a partition into
geodesics that contains a shortest 𝑠-𝑡-path. We show that 𝐼 is satisfiable if and only if there
exists a 𝑠-𝑡-partition P of 𝐺4 into geodesics such that 𝐺4/P has treewidth at most 2.

Firstly, let us assume that 𝐼 is a non-satisfiable instance. Let P be a 𝑠-𝑡-partition of 𝐺4 into
geodesics with 𝑆 ∈ P being a shortest 𝑠-𝑡-path. We prove that tw(𝐺4/P) ≥ 3. Since 𝐼 is
non-satisfiable, there exists a clause 𝑐 ∈ 𝐶 such that no literal in 𝑐 is on 𝑆 . Assume 𝑐 is a clause
of size 3 and let 𝑐 = {𝑙1, 𝑙2, 𝑙3}. We show that the graph 𝐺4/P contains a 𝐾4 minor obtained
from 𝑆 and the geodesics in P containing 𝑙𝑖 . This is the case since for any two 𝑙𝑖 , 𝑙 𝑗 ∈ 𝑐 with
𝑙𝑖 ≠ 𝑙 𝑗 it holds that 𝑙𝑖 and 𝑙 𝑗 are not part of the same geodesic in P since every shortest path
between 𝑙𝑖 and 𝑙 𝑗 includes vertices in 𝑆 . Therefore, the vertices in 𝐺4/P corresponding to
the geodesic 𝑆 and the geodesics containing 𝑙1, 𝑙2 and 𝑙3 respectively form a 𝐾4 minor. Else if
𝑐 = {𝑙1, 𝑙2} is a clause of size 2 then the graph 𝐺4/P also contains a 𝐾4 minor. Indeed, there
are five vertices 𝑝𝑖 that are connected to 𝑙1, 𝑙2 and 𝑠 in 𝐺4 and it can be seen that at most four
of them can be part of the same geodesic as 𝑙1 or 𝑙2. Thus, without loss of generality, let 𝑝1
not be part of the geodesics corresponding to 𝑙1 and 𝑙2. Recall that since 𝑆 ⊆ 𝐺1 it holds that
𝑝1 ∉ 𝑆 . Additionally, as before, it holds that 𝑙1 and 𝑙2 are not part of the same geodesic in P
since any shortest path between 𝑙1 and 𝑙2 includes vertices in 𝑆 . Therefore, the vertices in
𝐺4/P corresponding to the geodesic 𝑆 and the geodesics containing 𝑙1, 𝑙2 and 𝑝1 respectively
are part of a 𝐾4 minor. Thus, assuming that a shortest path between 𝑠 and 𝑡 is a geodesic that
gets contracted, the geodesic treewidth of𝐺4 is at least 3 if the corresponding SAT instance is
non-satisfiable.

Secondly, let us assume that 𝐼 is a satisfiable instance. We show that in this case the geodesic
treewidth of 𝐺4 is at most 2. Let 𝜑 be a satisfying truth assignment for 𝐼 and let 𝑆 be the
corresponding 𝑠-𝑡-path. It holds that for every 𝑐 ∈ 𝐶 at least one literal of 𝑐 is on 𝑆 . We
first consider the graph 𝐺 ′

2, which results from 𝐺2 by contracting 𝑆 . Let 𝜎 be the vertex
corresponding to 𝑆 in 𝐺 ′

2. We consider the graph 𝐺 ′
2 − 𝜎 . Let 𝑙1 be a vertex in 𝐺 ′

2 − 𝜎 and
thus 𝜑 (𝑙1) = 𝑓 . Next, we observe that 𝑙1 has degree at most 1 in 𝐺 ′

2 − 𝜎 . This is the case since
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v1 v2

v3 v4

G

Figure 4.10: 𝐾4 with vertices 𝜈1, 𝜈2, 𝜈3, 𝜈4 where each highlighted edge gets replaced by a
copy of 𝐺4.

𝜑 (𝑙1) = 𝑓 , so for every clause 𝑐 = {𝑙1, 𝑙2} the literal 𝑙2 is true and thus 𝑙2 ∈ 𝑆 . Thus, edges
introduced for clauses of size 2 do not contribute to the degree of 𝑙1 in 𝐺 ′

2 − 𝜎 . Similarly, for
every clause 𝑐 = {𝑙1, 𝑙2, 𝑙3} either 𝑙2 or 𝑙3 is true and thus 𝑙2 ∈ 𝑆 or 𝑙3 ∈ 𝑆 . Since 𝑙1 occurs in at
most one clause of length 3 it holds that 𝑙1 has degree at most 1 in 𝐺 ′

2 − 𝜎 . Since every vertex
in𝐺 ′

2 − 𝜎 has at most degree 1,𝐺 ′
2 − 𝜎 is the disjoint union of edges and singletons. Therefore,

the treewidth of 𝐺 ′
2 − 𝜎 is 1 and thus 𝐺 ′

2 has at most treewidth 2.
Next, we lift the argument to 𝐺3. For this, let 𝐺 ′

3 be the graph resulting from 𝐺3 by
contracting 𝑆 . The graph 𝐺 ′

3 compared to 𝐺 ′
2 only has the additional vertices 𝑝𝑖 for 𝑐 ∈ 𝐶 .

However since for any 𝑐 = {𝑙1, 𝑙2} ∈ 𝐶 either 𝑙1 or 𝑙2 is on 𝑆 it holds that the neighbourhood
𝑁𝐺 ′

3
(𝑝𝑖) of 𝑝𝑖 is either an edge or a vertex for all 𝑐 ∈ 𝐶 and 𝑖 ∈ [5]. Thus, 𝑝𝑖 can be added to the

tree decomposition by adding a bag containing 𝑝𝑖 and 𝑁𝐺 ′
3
(𝑝𝑖) adjacent to a bag containing

𝑁𝐺 ′
3
(𝑝𝑖). Therefore, the treewidth of 𝐺 ′

3 is at most 2.
Finally, we lift the argument to 𝐺4. For this, let 𝐺 ′

4 be the graph resulting from 𝐺4 by
contracting 𝑆 . It can be seen that 𝐺 ′

4 differs from 𝐺 ′
3 only by adding subdivisions and multi-

edges, however, since these do not increase the treewidth beyond 2, the graph 𝐺 ′
4 also has

treewidth at most 2. Lastly we define the following partition into geodesics P = {𝑆} ∪ {{𝜈} |
𝜈 ∈ 𝐺4 − 𝑆}. It holds that 𝐺4/P = 𝐺 ′

4 and thus the geodesic treewidth of 𝐺4 is at most 2. Note
that we can guarantee that 𝐺4/P has treewidth 2 while P consists only of a path from 𝑠 to 𝑡
and other geodesics of length 1.
Finally, we will use 𝐺4 as a gadget to construct 𝐺 , a graph for which it holds that 𝐼 is

satisfiable if and only if𝐺 has geodesic treewidth at most 2. For this purpose, we take a 𝐾4
with vertices 𝜈1, 𝜈2, 𝜈3, 𝜈4, subdivide each edge twice and replace the resulting six edges whose
endpoints are subdivision vertices each by a copy of 𝐺4 where 𝑠 and 𝑡 correspond to the two
subdivision vertices. A sketch of this construction is given in Figure 4.10.
We claim that 𝐺 has geodesic treewidth at most 2 if 𝐼 is a satisfiable instance and geodesic

treewidth at least 3 if 𝐼 is a non-satisfiable instance.
First, let 𝐼 be a satisfiable instance. As shown before𝐺4 thus has geodesic treewidth at most

2 and we can guarantee that 𝐺4/P has treewidth 2 for P = {𝑆} ∪ {{𝜈} | 𝜈 ∈ 𝐺4 − 𝑆} where 𝑆
is a shortest path from 𝑠 to 𝑡 . Note that the geodesics corresponding to the geodesics in P are
also geodesics in𝐺 since every path between two vertices in the same copy of𝐺4 that uses
vertices outside this copy has length at least 4𝑛. We define a partition P ′ of 𝐺 into geodesics
as follows. Let P ′ contain the geodesics of P for all copies of 𝐺4. Let 𝑆𝑖, 𝑗 be the geodesic
corresponding to the 𝑠-𝑡-path in the copy of 𝐺4 between 𝜈𝑖 and 𝜈 𝑗 . Finally we extend 𝑆1,2 by
𝜈1 and 𝜈2 and 𝑆3,4 by 𝜈3 and 𝜈4 to get P ′. Let 𝜎𝑖, 𝑗 be the vertex in 𝐺/P ′ corresponding to the,
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{σ1,2, σ3,4, σ1,3}

{σ1,2, σ3,4, σ1,4}

{σ1,2, σ3,4, σ2,3}

{σ1,2, σ3,4, σ2,4}

tree decomposition
of G4/P between

v1 and v3

tree decomposition
of G4/P between

v1 and v4
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of G4/P between

v2 and v3
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v2 and v4
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Figure 4.11:On the top left is an approximation of a graph𝐺 with the geodesics 𝑆𝑖, 𝑗 highlighted
in green. On the top right is the corresponding graph 𝐺/P ′. On the bottom it is shown
how to append the tree decompositions of the copies of 𝐺4/P such that it results in a tree
decomposition of 𝐺/P ′ with bag size 3.
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possibly extended, geodesic 𝑆𝑖, 𝑗 . It holds that𝐺/P ′ has treewidth 2 since we can append the
tree decompositions of the copies of 𝐺4/P to the tree decomposition given in Figure 4.11 to
get a tree decomposition of𝐺/P ′. Thus𝐺 has geodesic treewidth at most 2 if 𝐼 is a satisfiable
instance.

Finally, let 𝐼 be a non-satisfiable instance. Let P ′ be any partition into geodesics of 𝐺 . If no
two vertices 𝜈𝑖 and 𝜈 𝑗 for 𝑖 ≠ 𝑗 are contracted in 𝐺/P ′, then 𝐺/P ′ contains a 𝐾4 minor and
thus has treewidth at least 3. If 𝜈𝑖 and 𝜈 𝑗 are contracted in 𝐺/P ′ then let P be the geodesics
of P ′ restricted to the copy of 𝐺4 between 𝜈𝑖 and 𝜈 𝑗 . It thus holds that P is a 𝑠-𝑡-partition
into geodesics of 𝐺4. In addition 𝐺4/P is a subgraph of 𝐺/P ′, so if 𝐺/P ′ has treewidth at
most 2 then 𝐺4/P also has treewidth at most 2. However, as shown before, assuming that
a shortest 𝑠-𝑡-path is a geodesic in P , the geodesic treewidth of 𝐺4 is at least 3 given that
𝐼 is non-satisfiable. Thus, the geodesic treewidth of 𝐺 is at least 3 if 𝐼 is a non-satisfiable
instance.

Recall that for three graphs 𝐺1,𝐺2,𝐺3 the graph 𝐺★
1,2,3 is defined as follows: connect a

disjoint copy of 𝐺1,𝐺2 and 𝐺3 by a universal vertex 𝜈 and subdivide the edges adjacent to 𝜈
an arbitrary number of times. Each edge adjacent to 𝜈 can be subdivided a different number
of times. For a graph 𝐺 with geodesic treewidth 𝑘 let 𝐺 = 𝐺1 = 𝐺2 = 𝐺3 and let each edge
adjacent to 𝜈 be subdivided exactly |𝑉 (𝐺) | times. In this special case let the resulting graph
𝐺★
1,2,3 be called 𝐺

★.
Lemma 3.6 gives us that𝐺★ has geodesic treewidth at least 𝑘 + 1. In the following, we show

that 𝐺★ has geodesic treewidth exactly 𝑘 + 1.

Lemma 4.2: If 𝐺 has geodesic treewidth 𝑘 then 𝐺★ has geodesic treewidth at most 𝑘 + 1.

Proof. We prove that gtw(𝐺★) ≤ 𝑘 + 1. Let P be a partition of𝐺 into geodesics such that𝐺/P
has treewidth 𝑘 . The geodesics in P are also geodesics in𝐺★ since any possible shortcut using
𝜈 has length at least 2|𝑉 (𝐺) |. We thus define a partition P★ of 𝐺★ into geodesics consisting
of P for each copy of 𝐺 and {{𝑥} | 𝑥 ∈ 𝑉 (𝐺★) \ (𝑉 (𝐺1) ∩𝑉 (𝐺2) ∩𝑉 (𝐺3))}. Thus P★ has all
geodesics corresponding to P for the copies of𝐺 and all other vertices are geodesics of length
0. We consider the graph𝐺 ′ that consists of three disjoint copies of𝐺/P joined by a universal
vertex 𝜈 . It is known that adding a universal vertex to a graph increases the treewidth by at
most one and thus 𝐺 ′ has treewidth at most 𝑘 + 1. Observe that 𝐺★/P★ is isomorphic to 𝐺 ′

with some additional subdivisions and thus tw(𝐺★/P★) ≤ 𝑘 + 1. Therefore, 𝐺★ has geodesic
treewidth at most 𝑘 + 1.

The following theorem follows from Theorem 4.1, Lemma 3.6 and Lemma 4.2.

Theorem 1.8: Determining if a given graph has geodesic treewidth at most 𝑘 is NP-hard for
𝑘 ≥ 2.

4.3.2 Computing the Geodesic Treewidth of Treewidth-2 Graphs in
Polynomial Time

Computing the row treewidth of treewidth-2 graphs is NP-hard [23]. In Section 4.3.1 we
show that computing the geodesic treewidth in general is also NP-hard. Here we show that,
different from row treewidth, computing the geodesic treewidth of graphs of treewidth 2 is
not NP-hard.

We first give an algorithm that determines the geodesic treewidth of series-parallel graphs,
which we will then use as a part of our algorithm for treewidth-2 graphs in general.
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We define series-parallel graphs as follows. A single edge is a series-parallel graph where
one vertex is the source 𝑠 and the other the sink 𝑡 . Given two disjoint series-parallel graphs𝐺1
and 𝐺2 we can combine them using parallel composition by identifying the sources of 𝐺1 and
𝐺2 to create the source of the new graph and identifying the sinks of 𝐺1 and 𝐺2 to create the
sink of the new graph. We can also combine𝐺1 and𝐺2 using series composition by identifying
the sink of 𝐺1 with the source of 𝐺2. The source of 𝐺1 is the source of the new graph and the
sink of 𝐺2 is the sink of the new graph. A series–parallel decomposition 𝐷 of a series-parallel
graph 𝐺 is a recursive decomposition tree that records how 𝐺 can be constructed from single
edges via series compositions and parallel compositions. Such a series-parallel decomposition
of 𝐺 can be calculated in linear time [36].
The following theorem by Bodlaender [37] gives an intuition for why our algorithm for

series-parallel graphs might be useful for treewidth-2 graphs.

Theorem 4.3 (Bodlaender [37]): A graph 𝐺 has treewidth at most 2, if and only if every
biconnected component of 𝐺 is a series-parallel graph.

Lemma 4.4: The geodesic treewidth of series-parallel graphs can be determined in time 𝑂 (𝑛5).

Proof. We give an algorithm that determines the geodesic treewidth of a series-parallel graph
𝐺 in time 𝑂 (𝑛5).

The first step of the algorithm is to pre-compute and store the all-pair-shortest-path dis-
tances in the given graph 𝐺 . This can be done in at most time 𝑂 (𝑛2), using for example 𝑛
breadth-first searches.
The second step is to compute a series–parallel decomposition 𝐷 of 𝐺 in linear time [36].
Our algorithm for determining the geodesic treewidth of series-parallel graphs is a DP

algorithm that processes the subgraphs along a bottom-up order in the series-parallel decom-
position 𝐷 .
We first define the following concepts that our algorithm relies on:
Let 𝐺 ′ be a subgraph of 𝐺 in 𝐷 with source 𝑠 and sink 𝑡 . For a partition P ′ of 𝐺 ′ into

geodesics and a vertex 𝑥 ∈ 𝐺 ′ let the geodesic containing 𝑥 in P ′ be called 𝑃 ′𝑥 . We define
𝜈 (𝑃 ′𝑥 ) as the vertex in 𝐺 ′/P ′ that corresponds to the geodesic 𝑃 ′𝑥 . Next, we define a valid
partition P ′ of 𝐺 ′ as a partition of the vertices of 𝐺 ′ into geodesics such that the geodesics
in P ′ are also geodesics in 𝐺 and additionally 𝐺 ′/P ′ fulfils one of the following conditions.
Either𝐺 ′/P ′ is a tree or identifying 𝜈 (𝑃 ′𝑠 ) with 𝜈 (𝑃 ′𝑡 ) in𝐺 ′/P ′ results in a tree. If𝐺 ′/P ′ fulfils
the first condition, then P ′ is a case 1 valid partition and if 𝐺 ′/P ′ only fulfils the second
condition, then P ′ is a case 2 valid partition.

For a valid partitionP ′ of𝐺 ′ we define the corresponding valid configuration as the following
set of information:

degP ′ (𝑠) the number of neighbours of 𝑠 that are in the same geodesic as 𝑠 in P ′, this
value is in {0, 1, 2}

degP ′ (𝑡) the number of neighbours of 𝑡 that are in the same geodesic as 𝑡 in P ′, this
value is in {0, 1, 2}

if degP ′ (𝑠) = 1, then the other endpoint of the geodesic starting at 𝑠 , there are at most
𝑛 possible endpoints

if degP ′ (𝑡) = 1, then the other endpoint of the geodesic starting at 𝑡 , there are at most
𝑛 possible endpoints
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whether P ′ is a case 1 or case 2 valid partition

length 𝑙 of the longest 𝜈 (𝑃 ′𝑠 )-𝜈 (𝑃 ′𝑡 )-path in 𝐺 ′/P ′, we only store the exact distance for
𝑙 ∈ {0, 1, 2}, else we just store value greater than 2, we define 𝑙 = 0 if 𝑃 ′𝑠 = 𝑃 ′𝑡

Note that different valid partitions of the graph can result in the same valid configuration.
It can be seen from the definition of valid configurations that the following claim holds.

Claim 1. The number of valid configurations that exist for a subgraph𝐺 ′ is at most 32 ·𝑛2 · 2 · 4.

We prove that the following claim also holds:

Claim 2. The geodesic treewidth of𝐺 is 1 if and only if there exists a valid case 1 configuration
of 𝐺 . Else, the geodesic treewidth of 𝐺 is 2.

Proof. Assume there is a valid case 1 configuration of 𝐺 . This implies that there exists a
partition P of 𝐺 into geodesics such that 𝐺/P is a tree. Thus 𝐺 has geodesic treewidth 1.
Assume𝐺 has geodesic treewidth 2 and therefore there is no partition P of𝐺 into geodesics

such that 𝐺/P is a tree. Since such a partition P is a case 1 valid partition of𝐺 , it thus holds
that no valid case 1 configuration of 𝐺 exists.

Since series-parallel graphs have treewidth 2, it holds that𝐺 has geodesic treewidth at most
2.

Claim 2 means that if we are able to determine all possible valid configurations of𝐺 , then
we know the geodesic treewidth of 𝐺 .

Our DP algorithm that processes the subgraphs along a bottom-up order in the series-
parallel decomposition 𝐷 calculates and stores all valid configurations of the current subgraph
𝐺 ′ in each step.

There are three possible cases for 𝐺 ′:
Case 1: A single edge. The current subgraph 𝐺 ′ is the simplest series-parallel graph, an

edge 𝑠𝑡 . Then there are only two valid partitions of 𝐺 ′. One where 𝑠 and 𝑡 are part of one
geodesic and one where 𝑠 and 𝑡 are not part of the same geodesic. Thus, the following claim
holds:

Claim 3. If 𝐺 ′ is an edge 𝑠𝑡 , we can compute all valid configurations in time 𝑂 (1).

For the cases that 𝐺 ′ is a series composition or a parallel composition of two children, we
show the following:

We first describe how to decide in time𝑂 (1), given some valid configurations of the children
of the current subgraph, if the combination of these two valid configurations results in a valid
configuration for 𝐺 ′. We then show that the approach of testing all combinations of valid
configurations for the children indeed finds all valid configurations for the current subgraph.

Case 2: Series composition. The current subgraph𝐺 ′ is the result of the series composition
of two solved subgraphs 𝐺1 and 𝐺2, where we identify the sink 𝑡1 of 𝐺1 with the source 𝑠2 of
𝐺2. We define how we combine a valid partition P1 of𝐺1 and a valid partition P2 of𝐺2 into a
partition of 𝐺 ′.
Let 𝑃𝑠1 and 𝑃𝑡1 be the geodesics in P1 that contain 𝑠1 and 𝑡1 respectively. Let 𝑃𝑠2 and 𝑃𝑡2

be the geodesics in P2 that contain 𝑠2 and 𝑡2 respectively. Lastly, let 𝜈 (𝑃𝑠𝑖 ) and 𝜈 (𝑃𝑡𝑖 ) be the
vertices in 𝐺𝑖/P𝑖 that correspond to 𝑃𝑠𝑖 and 𝑃𝑡𝑖 respectively for 𝑖 ∈ {1, 2}.
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We combine a valid partition P1 of 𝐺1 and a valid partition P2 of 𝐺2 into a partition P ′

of 𝐺 ′ by taking the geodesics in P1 and P2 and combining 𝑃𝑡1 and 𝑃𝑠2 into a single part. We
describe how to check if P ′ is a valid partition of 𝐺 ′. During the description, note that if P ′

is valid or not depends only on properties of P1 and P2 that are stored in the corresponding
valid configurations. Thus, our algorithm will check for pairs of valid configurations of the
children if they result in a valid configuration of 𝐺 ′ instead of having to test pairs of valid
partitions.
Claim 4. In the case of series composition, we can check if P ′ is a partition into geodesics that
are also geodesics in𝐺 , in time𝑂 (1) using only information stored in the valid configurations
corresponding to P1 and P2.

Proof. P ′ is a partition into paths if and only if degP1
(𝑡1) + degP2

(𝑠2) < 3. If this is the
case then we check if P ′ is a partition of 𝐺 ′ into geodesics that are also geodesics in𝐺 . All
geodesics that do not contain the vertex 𝑖 resulting from the identification of the sink 𝑡1 of
𝐺1 with the source 𝑠2 of 𝐺2 are in P1 or P2 and thus geodesics in 𝐺 . Let 𝑥1 and 𝑥2 be the
endpoints of the geodesics starting at 𝑡1 and 𝑠2 in P1 and P2 respectively. For the path in
P ′ that contains the identification vertex 𝑖 we check if it is a geodesic in 𝐺 by checking if
𝑑 (𝑥1, 𝑖) +𝑑 (𝑥2, 𝑖) ≤ 𝑑 (𝑥1, 𝑥2) where 𝑑 (𝑢, 𝜈) refers to the precomputed lengths of shortest paths
between the vertices. If this is the case, then P ′ is a partition of 𝐺 ′ into geodesics that are
also geodesics in 𝐺 .

Claim 5. In the case of series composition, let P ′ be a partition into geodesics that are also
geodesics in 𝐺 . We can check if P ′ is a valid partition and compute the corresponding
valid configuration in time 𝑂 (1) using only information stored in the valid configurations
corresponding to P1 and P2.

Proof. Let P ′ be a partition into geodesics in 𝐺 . If P1 and P2 are case 1 valid partitions then
𝐺1/P1 is a tree and 𝐺2/P2 is a tree and thus 𝐺 ′/P ′ is also a tree. Therefore, P ′ is a case 1
valid partition of 𝐺 ′.

Consider the case that P1 is a case 2 valid partition. In this case𝐺1/P1 is not a tree however
if the vertices 𝜈 (𝑃𝑠1) and 𝜈 (𝑃𝑡1) in 𝐺1/P1 are identified then this results in a tree. Observe
that P ′ is a valid partition if the source and sink of 𝐺2 are in the same geodesic in P2. In
this case, P ′ is a case 2 valid partition for 𝐺 ′. Else if the source and sink of 𝐺2 are not in the
same geodesic in P2 then P ′ is not a valid partition since 𝐺 ′/P ′ is not a tree and identifying
𝜈 (𝑃 ′𝑠 ) with 𝜈 (𝑃 ′𝑡 ) in 𝐺 ′/P ′ will also not result in a tree. Whether the source and sink of 𝐺2
are in the same geodesic or not can be checked using only information stored in the valid
configurations in time 𝑂 (1) by checking if the length 𝑙2 of the longest 𝜈 (𝑃𝑠2)-𝜈 (𝑃𝑡2)-path in
𝐺2/P2 is 0. An analogous statement is true if P2 is a case 2 valid partition. If both P1 and P2
are case 2 valid partitions, then P ′ is not a valid partition.

Combining Claim 4 and Claim 5 gives us the following result:
Claim 6. In the case of series composition, we can check if P ′ is a valid partition and compute
the corresponding valid configuration in time𝑂 (1) using only information stored in the valid
configurations corresponding to P1 and P2.

Case 3: Parallel composition. The current subgraph 𝐺 ′ is the result of the parallel compo-
sition of two solved subgraphs 𝐺1 and 𝐺2, where we identify the two sources 𝑠1, 𝑠2 and the
two sinks 𝑡1, 𝑡2. We define how we combine a valid partition P1 of 𝐺1 and a valid partition P2
of 𝐺2 into a partition of 𝐺 ′.
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Let 𝑃𝑠1 and 𝑃𝑡1 be the geodesics in P1 that contain 𝑠1 and 𝑡1 respectively. Let 𝑃𝑠2 and 𝑃𝑡2
be the geodesics in P2 that contain 𝑠2 and 𝑡2 respectively. Lastly, let 𝜈 (𝑃𝑠𝑖 ) and 𝜈 (𝑃𝑡𝑖 ) be the
vertices in 𝐺𝑖/P𝑖 that correspond to 𝑃𝑠𝑖 and 𝑃𝑡𝑖 respectively for 𝑖 ∈ {1, 2}.

We combine a valid partition P1 of 𝐺1 and a valid partition P2 of 𝐺2 into P ′ by taking the
geodesics in P1 and P2. Then we combine 𝑃𝑠1 and 𝑃𝑠2 into a single part and also combine 𝑃𝑡1
and 𝑃𝑡2 into a single part. We describe how to check if P ′ is a valid partition of 𝐺 ′. During
the description, note that if P ′ is valid or not depends only on properties of P1 and P2 that
are stored in the corresponding valid configurations. Thus, our algorithm will check for pairs
of valid configurations of the children if they result in a valid configuration of 𝐺 ′ instead of
having to test pairs of valid partitions.

Claim 7. In the case of parallel composition, we can check ifP ′ is a partition into geodesics that
are also geodesics in𝐺 , in time𝑂 (1) using only information stored in the valid configurations
corresponding to P1 and P2.

Proof. P ′ is a partition into paths if and only if degP1
(𝑠1) + degP2

(𝑠2) < 3 and degP1
(𝑡1) +

degP2
(𝑡2) < 3. The only exception to this is if the merged geodesics are a cycle. However,

we detect this cycle when checking if the merged geodesics are a geodesic in 𝐺 . Without
loss of generality, let us consider two geodesics merged at the source 𝑠 of 𝐺 ′ with endpoints
𝑥1, 𝑥2. The merged path is a geodesic in 𝐺 if and only if 𝑑 (𝑥1, 𝑠) + 𝑑 (𝑥2, 𝑠) ≤ 𝑑 (𝑥1, 𝑥2) where
for two vertices 𝑢, 𝜈 the distance 𝑑 (𝑢, 𝜈) refers to the precomputed lengths of shortest paths
between the vertices 𝑢, 𝜈 . This can be checked using only information stored in the valid
configurations in time 𝑂 (1). An analogous statement is true for paths merged at the sink of
𝐺 ′. All other geodesics in P ′ are also geodesics in P1 or P2 and are thus geodesics in 𝐺 .

Claim 8. In the case of parallel composition, let P ′ be a partition into geodesics that are
also geodesics in 𝐺 . We can check if P ′ is a valid partition and compute the corresponding
valid configuration in time 𝑂 (1) using only information stored in the valid configurations
corresponding to P1 and P2.

Proof. Let 𝑙1 be the length of the longest 𝜈 (𝑃𝑠1)-𝜈 (𝑃𝑡1)-path in𝐺1/P1, where 𝜈 (𝑃𝑠1) and 𝜈 (𝑃𝑡1)
refer to the vertices corresponding to the geodesics containing 𝑠1 and 𝑡1 respectively. Let
𝑙2 be the length of the longest 𝜈 (𝑃𝑠2)-𝜈 (𝑃𝑡2)-path in 𝐺2/P2, where 𝜈 (𝑃𝑠2) and 𝜈 (𝑃𝑡2) refer to
the vertices corresponding to the geodesics containing 𝑠2 and 𝑡2 respectively. In the case of
parallel composition, let P ′ be a partition into geodesics that are also geodesics in 𝐺 . First
assume that𝐺1/P1 is a tree, and𝐺2/P2 is a tree. The case that𝐺1/P1 or𝐺2/P2 is not a tree is
handled afterwards.
We show that if 𝐺1/P1 is a tree, and 𝐺2/P2 is a tree then 𝐺 ′/P ′ is also a tree if and only if

𝑙1+𝑙2 = 2. Else if𝐺 ′/P ′ is not a tree, it results in a tree if we identify the vertices corresponding
to 𝑃𝑠 and 𝑃𝑡 if and only if 𝑙1 ≤ 2 and 𝑙2 ≤ 2.
We prove this by checking all cases.
The first case is that 𝑙1 = 𝑙2 = 1. An example for the geodesics in this case is Case 1 in

Figure 4.12. Since 𝑙1 = 1 it holds that 𝜈 (𝑃𝑠1) and 𝜈 (𝑃𝑡1) are adjacent in𝐺1/P1. Since 𝑙2 = 1 it
holds that 𝜈 (𝑃𝑠2) and 𝜈 (𝑃𝑡2) are adjacent in 𝐺2/P2. Thus, 𝐺 ′/P ′ is the result of identifying
two edges from two trees with each other, which results in a tree.
The second case is that, without loss of generality, 𝑙1 = 2 and 𝑙2 = 0. In this case, 𝑠 and

𝑡 are connected by a geodesic in P2 and thus also in P ′. An example for the geodesics in
this case is Case 2 in Figure 4.12. In 𝐺1/P1 the vertices 𝜈 (𝑃𝑠1) and 𝜈 (𝑃𝑡1) have distance 2 and
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Figure 4.12: Cases to prove that if P ′ is a partition into geodesics, 𝐺1/P1 is a tree and 𝐺2/P2
is a tree then𝐺 ′/P ′ is also a tree if and only if 𝑙1 + 𝑙2 = 2. From left to right: Case 1: 𝑙1 = 𝑙2 = 1,
Case 2: w.l.o.g. 𝑙1 = 2 and 𝑙2 = 0, Case 3: 𝑙1 + 𝑙2 ≤ 1 and Case 4: 𝑙1 + 𝑙2 ≥ 3

thus identifying them results in a tree. The graph 𝐺 ′/P ′ can then be constructed by first
identifying the vertices 𝜈 (𝑃𝑠1) and 𝜈 (𝑃𝑡1) in 𝐺1/P1 and then identifying the resulting vertex
with the vertex 𝜈 (𝑃𝑠2) = 𝜈 (𝑃𝑡2) in the tree 𝐺2/P2. Thus 𝐺 ′/P ′ is a tree.
The third case is that 𝑙1 + 𝑙2 ≤ 1. An example for the geodesics in this case is Case 3 in

Figure 4.12. In this case, the geodesics adjacent to the sinks and sources are all merged into a
single geodesic in P ′. This implies that there is a cycle in 𝐺 ′ where all vertices are part of a
single geodesic, which is a contradiction. Thus, the third case never occurs, since P ′ is not a
partition into geodesics in 𝐺 which we detect in a previous step.
The fourth case is that 𝑙1 + 𝑙2 ≥ 2. An example for the geodesics in this case is Case 4 in

Figure 4.12. In this case, in 𝐺 ′/P ′ there are two internally disjoint paths between the vertices
corresponding to 𝑃𝑠 and 𝑃𝑡 and thus 𝐺 ′/P ′ is not a tree.
In the case that 𝐺 ′/P ′ is not a tree, we check if it is a tree if we identify the vertices

corresponding to 𝑃𝑠 and 𝑃𝑡 . This is the case if and only if 𝑙1 ≤ 2 and 𝑙2 ≤ 2. An example for
the geodesics in this case is shown in Figure 4.13.
For the case that 𝐺1/P1 is a tree and 𝐺2/P2 is a tree, we described how to check if P ′ is a

valid partition and if it is a case 1 or case 2 valid partition. It remains to consider the case that
𝐺1/P1 or𝐺2/P2 is not a tree and thus P1, P2 or both are case 2 valid partitions. We show that
if 𝑠 and 𝑡 are connected by a geodesic in P ′, then P ′ is a case 1 valid partition of𝐺 ′. If 𝑠 and 𝑡
are not connected by a geodesic in P ′, then P ′ is a case 2 valid partition of 𝐺 ′ if and only if
𝑙1 ≤ 2 and 𝑙2 ≤ 2.

First, if 𝑠 and 𝑡 are connected by a geodesic in P ′, then in at least one of the two subgraphs
𝐺1 or𝐺2 the sink and source are connected by a geodesic. Without loss of generality let 𝑠2 and
𝑡2 in 𝐺2 be part of the same geodesic in P2 and therefore 𝑃𝑠2 = 𝑃𝑡2 . Thus identifying 𝜈 (𝑃𝑠2)
with 𝜈 (𝑃𝑡2) makes no difference and therefore P2 is a case 1 valid partition and 𝐺2/P2 is a
tree. Since P1 is a case 2 valid partition identifying 𝜈 (𝑃𝑠1) and 𝜈 (𝑃𝑡1) in𝐺1/P1 results in a tree.
Therefore 𝐺 ′/P ′ is a tree since𝐺 ′/P ′ is the result of identifying 𝜈 (𝑃𝑠1) and 𝜈 (𝑃𝑡1) in 𝐺1/P1
and then identifying the resulting vertex with the vertex 𝜈 (𝑃𝑠2) = 𝜈 (𝑃𝑡2) of the tree 𝐺2/P2.
Thus P ′ is a case 1 valid partition of 𝐺 ′.
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Figure 4.13: Example where 𝐺 ′/P ′ is not a tree, however it is a tree if we contract 𝑃𝑠 and 𝑃𝑡 .
This corresponds to 𝑠 and 𝑡 being part of the same geodesic outside the current subgraph.

Secondly, assume 𝑠 and 𝑡 are not connected by a geodesic in P ′ and 𝑙1 ≤ 2 and 𝑙2 ≤ 2. Then
𝐺 ′/P ′ is still a tree if we identify 𝜈 (𝑃 ′𝑠 ) and 𝜈 (𝑃 ′𝑡 ) since both 𝐺1/P1 and 𝐺2/P2 result in a
tree if we identify 𝜈 (𝑃𝑠1) with 𝜈 (𝑃𝑡1) and 𝜈 (𝑃𝑠2) with 𝜈 (𝑃𝑡2). If we assume that 𝑠 and 𝑡 are not
connected by a geodesic in P ′ and 𝑙1 > 2 or 𝑙2 > 2 then P ′ is not a valid partition since if we
do not identify 𝜈 (𝑃 ′𝑠 ) with 𝜈 (𝑃 ′𝑡 ) then 𝐺 ′/P ′ contains a cycle in the subgraph with a case 2
valid configuration and if we do identify 𝜈 (𝑃 ′𝑠 ) with 𝜈 (𝑃 ′𝑡 ) then 𝐺 ′/P ′ contains a cycle in the
subgraph 𝐺𝑖 where 𝑙𝑖 > 2.

Combining Claim 7 and Claim 8 gives us the following result:

Claim 9. In the case of parallel composition, we can check if P ′ is a valid partition and
compute the corresponding valid configuration in time𝑂 (1) using only information stored in
the valid configurations corresponding to P1 and P2.

Combining the results for both the series composition with Claim 6 and the parallel com-
position with Claim 9 gives us the following claim:

Claim 10. We can check if P ′ is a valid partition and compute the corresponding valid config-
uration in time 𝑂 (1) using only information stored in the valid configurations corresponding
to P1 and P2.

Our algorithm checks for all pairs of valid configurations of the two children whether a
valid configuration for𝐺 ′ results. Since there are at most 𝑂 (𝑛2) valid configurations for each
subgraph (Claim 1) and we can check each pair in time 𝑂 (1) (Claim 10), this requires a time
of 𝑂 (𝑛4).

The last step is to prove that checking all pairs of valid configurations of the children results
in us finding all valid configurations of the current subgraph.

Claim 11. If P ′ is a valid partition of 𝐺 ′ and 𝐺 ′ has two children 𝐺1 and 𝐺2 in 𝐷 , then there
are valid partitions P1 and P2 of𝐺1 and𝐺2, respectively, such that the combination of P1 and
P2 results in P ′.
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Proof. Let P ′ be a valid partition of 𝐺 ′. Let 𝑃 ′𝑠 and 𝑃 ′𝑡 be the geodesics in P ′ containing the
source 𝑠 and the sink 𝑡 of 𝐺 ′, respectively. Let 𝜈 (𝑃 ′𝑠 ) and 𝜈 (𝑃 ′𝑡 ) be the vertices in 𝐺 ′/P ′ that
correspond to 𝑃 ′𝑠 and 𝑃 ′𝑡 respectively. We define P1 and P2 as the partitions of 𝐺1 and 𝐺2 into
geodesics that result from restricting P ′ to these subgraphs.
Without loss of generality, assume that P1 is not a valid partition of 𝐺1. Let 𝑠1 and 𝑡1 be

the source and sink of 𝐺1 and 𝑃𝑠1, 𝑃𝑡1 be the geodesics containing 𝑠1 and 𝑡1 respectively in P1.
Let 𝜈 (𝑃𝑠1) and 𝜈 (𝑃𝑡1) be the vertices in 𝐺 ′/P ′ that correspond to 𝑃𝑠1 and 𝑃𝑡1 respectively. We
consider the two cases that 𝑠1 and 𝑡1 are connected by a geodesic in P ′ or not.
First, let 𝑠1 and 𝑡1 be connected by a geodesic in P ′. The graph 𝐺1/P1, after identifying

𝜈 (𝑃𝑠1) with 𝜈 (𝑃𝑡1), contains a cycle 𝐶 as otherwise 𝑃1 is a case 2 valid partition. Observe that
𝐶 is also a cycle in 𝐺 ′/P ′ after 𝑠1 and 𝑡1 are connected by a geodesic in P ′. Thus, in this case
P ′ is not a case 1 valid partition of𝐺 ′. It remains to show that identifying 𝜈 (𝑃 ′𝑠 ) with 𝜈 (𝑃 ′𝑡 ) in
𝐺 ′/P ′ does not result in a tree and thus P ′ is also not a case 2 valid partition of 𝐺 ′. Note that
the geodesics corresponding to the vertices in 𝐶 only interact with the rest of the graph 𝐺 ′ in
𝑠1 and 𝑡1. Since 𝑠1 and 𝑡1 are connected by a geodesic in P ′, the corresponding vertex in 𝐶 is
the only vertex in 𝐶 that is affected by identifying 𝜈 (𝑃 ′𝑠 ) with 𝜈 (𝑃 ′𝑡 ) in 𝐺 ′/P ′. Thus the cycle
𝐶 remains a cycle in 𝐺 ′/P ′ after identifying 𝜈 (𝑃 ′𝑠 ) with 𝜈 (𝑃 ′𝑡 ) which implies that P ′ is also
not a case 2 valid partition of 𝐺 ′. This, however, contradicts the assumption that P ′ is a valid
partition of 𝐺 ′.
Secondly, assume that 𝑠1 and 𝑡1 are not connected by a geodesic in P ′. The graph 𝐺1/P1

contains a cycle 𝐶 , as otherwise 𝑃1 is a case 1 valid partition. Observe that 𝐶 is also a cycle in
𝐺 ′/P ′ if 𝑠1 and 𝑡1 are not connected by a geodesic in P ′. Thus, in this case P ′ is not a case 1
valid partition of 𝐺 ′. To reach a contradiction, it remains to show that P ′ is also not a case 2
valid partition of 𝐺 ′. Assume that 𝑠1 ∉ 𝑃 ′𝑠 or 𝑡1 ∉ 𝑃 ′𝑡 . In this case identifying 𝜈 (𝑃 ′𝑠 ) with 𝜈 (𝑃 ′𝑡 )
does not remove 𝐶 from𝐺 ′/P ′. Therefore, in this case, P ′ is not a case 2 valid partition of𝐺 ′.
Thus we assume that 𝑠1 ∈ 𝑃 ′𝑠 and 𝑡1 ∈ 𝑃 ′𝑡 . In this case identifying 𝜈 (𝑃 ′𝑠 ) with 𝜈 (𝑃 ′𝑡 ) in 𝐺 ′/P ′

corresponds to identifying 𝜈 (𝑃𝑠1) with 𝜈 (𝑃𝑡1) in 𝐺1/P1. This, however, also results in a cycle
since P1 is not a case 2 valid partition. Therefore, P ′ is also not a case 2 valid partition of 𝐺 ′.
Thus, in all cases P ′ is not a valid partition of 𝐺 ′, which contradicts our assumption.

Claim 11 guarantees that if a valid configuration exists for the current subgraph, then we
find it by checking all pairs of valid configurations of the children.

Since the algorithm tests at most 𝑂 (𝑛4) combinations for at most 𝑂 (𝑛) composition steps,
the algorithm can find all valid configurations of the graph 𝐺 in time 𝑂 (𝑛5).

We now extend the algorithm to treewidth-2 graphs in general. In the extended algorithm,
we consider the block-cut tree of the given graph. The block-cut tree is a tree where the
vertices are the biconnected components and cut vertices of𝐺 . An edge between a biconnected
component and a cut vertex exists in the block-cut tree if and only if the cut vertex is part of
the biconnected component. For calculating the runtime of the extended algorithm, we also
need the following property of block-cut trees:

Lemma 4.5: The block-cut tree of a graph 𝐺 has at most |𝑉 (𝐺) | + 𝑛𝑐 vertices, where 𝑛𝑐 is the
number of cut vertices in 𝐺 .

Proof. We first show that a graph 𝐺 contains at most 𝑛 biconnected components. Consider
the block-cut tree of 𝐺 and root it in a biconnected component. Assign each cut vertex to
its parent block. Thus, all blocks, besides the blocks that are leaf blocks in the block-cut
tree, are assigned at least one cut vertex. The leaf blocks contain at least one non-cut vertex.
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Figure 4.14: On the left: a graph 𝐺 where the biconnected components are highlighted. Let
the central green biconnected component 𝐵 be the biconnected component that is processed
in the current step of the algorithm. The vertices 𝑥1, 𝑥2 and 𝑥3 are the cut vertices of 𝐺 in 𝐵.
The vertex 𝑥1 is the parent cut vertex of 𝐵. On the right the subgraph𝐺𝐵 that is rooted at 𝐵 is
shown.

Thus, there are at most 𝑛 biconnected components. Since vertices in the block-cut tree are
either cut vertices or biconnected components of𝐺 it holds that the block-cut tree has at most
|𝑉 (𝐺) | + 𝑛𝑐 vertices.

Theorem 1.9: The geodesic treewidth of treewidth-2 graphs can be determined in time 𝑂 (𝑛5).

Proof. We first describe how the algorithm works and then prove that it is correct.
Given a treewidth-2 graph 𝐺 , we begin by calculating the block-cut tree of 𝐺 in linear

time [38]. Theorem 4.3 says that a graph 𝐺 has treewidth at most 2, if and only if every
biconnected component of 𝐺 is a series-parallel graph. Thus, the biconnected components in
the block-cut tree of 𝐺 are series-parallel graphs.
Our algorithm processes the block-cut tree in bottom-up order. Let 𝐵 be the biconnected

component that is processed in the current step. An example of a graph and a current
biconnected component is shown in Figure 4.14. We define the subgraph 𝐺𝐵 of 𝐺 that is
rooted at 𝐵 as follows: 𝐺𝐵 consists of all biconnected components of 𝐺 for which 𝐵 is on the
path to the root of the block-cut tree. Let 𝑥1, 𝑥2, . . . be the cut vertices of𝐺 that are in 𝐵. Let 𝑥1
be the parent cut vertex of 𝐵 and all other cut vertices are children of 𝐵. For 𝑖 ≥ 2 and a child
cut vertex 𝑥𝑖 , let 𝐵1𝑖 , 𝐵

2
𝑖 , . . . be the adjacent biconnected components in the block-cut tree that

are not 𝐵. Let the subgraphs 𝐺𝐵1
𝑖
,𝐺𝐵2

𝑖
, . . . be the subgraphs of 𝐺 that are rooted at 𝐵1𝑖 , 𝐵

2
𝑖 , . . .

respectively for 𝑖 ≥ 2. The subgraphs 𝐺𝐵1
𝑖
,𝐺𝐵2

𝑖
, . . . were processed before the current step

since we are working in bottom-up order.
For each subgraph𝐺𝐵 rooted at a biconnected component 𝐵, that we have solved, we store

the following information:

whether or not there exists a partition P𝐵 of this subgraph 𝐺𝐵 into geodesics such that
𝐺𝐵/P𝐵 is a tree

across all such possible partitions P𝐵 we store the minimum number of neighbours 𝑛𝐵
of 𝑥1 that are in the same geodesic as 𝑥1 in P𝐵 where 𝑥1 is the parent cut vertex of 𝐵
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We call a partition P𝐵 of a subgraph 𝐺𝐵 , where the number of neighbours of 𝑥1 that are in
the same geodesic as 𝑥1 in P𝐵 is exactly 𝑛𝐵 , a minimum degree partition of 𝐺𝐵 .

Since the biconnected components in the block-cut tree of𝐺 are series-parallel graphs [37],
the graph 𝐵 is a series-parallel graph. We apply the algorithm from Lemma 4.4 to 𝐵 with some
slight alterations. Let P be a valid partition that the algorithm considers in some step. We
additionally require that for all 𝑖 ≥ 2 the number of neighbours of a cut vertex 𝑥𝑖 that are in
the same geodesic as 𝑥𝑖 in P plus 𝑛𝐵1

𝑖
+ 𝑛𝐵2

𝑖
+ . . . is at most 2. Only if these degree restrictions

are fulfilled, P combined with minimum degree partitions of 𝐺𝐵1
𝑖
,𝐺𝐵2

𝑖
, . . . for 𝑖 ≥ 2 results

in a partition into geodesics. Lastly, we store the number of neighbours of 𝑥1 that are in the
same geodesic as 𝑥1 in P as part of the valid configuration as well. This allows us, if the
algorithm succeeds, to determine the minimum number of neighbours of 𝑥1 that are in the
same geodesic as 𝑥1 such that a case 1 valid partition of 𝐺𝐵 exists. This minimum number is
then stored as the value 𝑛𝐵 for the current solved subgraph.

If no case 1 valid partition of 𝐵 exists that fulfils the additional degree restrictions, then the
algorithm fails and determines that 𝐺 has geodesics treewidth 2.
Else if we have solved the last biconnected component in the block-cut tree using this

altered algorithm and found a valid case 1 configuration at the root, then we say 𝐺 has
geodesic treewidth 1.
We now prove that the algorithm for treewidth-2 graphs is correct.
We consider a step in the algorithm at a biconnected component 𝐵 that solves the subgraph

𝐺𝐵 . Let the cut vertices and relevant other subgraphs be defined as described in the algorithm.
We first show that a case 1 valid partition P of 𝐵, combined with minimum degree partitions

P𝐵1
𝑖
,P𝐵2

𝑖
, . . . of 𝐺𝐵1

𝑖
,𝐺𝐵2

𝑖
, . . . for 𝑖 ≥ 2, results in a case 1 valid partition of 𝐺𝐵 if for all 𝑖 ≥ 2

the number of neighbours of a cut vertex 𝑥𝑖 , that are in the same geodesic as 𝑥𝑖 in P , plus
𝑛𝐵1

𝑖
+ 𝑛𝐵2

𝑖
+ . . . is at most 2. An example of a case 1 valid partition P of 𝐵 that gets combined

with case 1 valid partitions of the subgraphs, that correspond to the biconnected components
connected to 𝐵 at child cut vertices, is shown in Figure 4.15.

Let P𝐵 be the partition resulting from combining the partition P of 𝐵 with minimum degree
partitions of 𝐺𝐵1

𝑖
,𝐺𝐵2

𝑖
, . . . for 𝑖 ≥ 2. If for all 𝑖 ≥ 2 the number of neighbours of a cut vertex

𝑥𝑖 that are in the same geodesic as 𝑥𝑖 in P plus 𝑛𝐵1
𝑖
+ 𝑛𝐵2

𝑖
+ . . . is at most 2 then P𝐵 is a

partition of 𝐺𝐵 into paths. The paths in P𝐵 are geodesics when restricted to biconnected
components. However, any shortcut inside such a path would have to be inside a biconnected
component, which is not possible. Thus, P𝐵 is a partition of𝐺𝐵 into geodesics. Additionally,
the graph 𝐺𝐵/P𝐵 is a tree since it is the result of identifying the tree 𝐵/P with the trees
𝐺𝐵1

𝑖
/P𝐵1

𝑖
,𝐺𝐵2

𝑖
/P𝐵2

𝑖
, . . . at a single vertex each. Thus, P𝐵 is a case 1 valid partition of 𝐺𝐵 .

We next show that if there exists a case 1 valid partition of 𝐺𝐵 then there exists a case 1
valid partition of 𝐵 that fulfils the additional degree restrictions.

Now assume that there exists a case 1 valid partition P𝐵 of 𝐺𝐵 . We show that in this case
the algorithm finds a case 1 valid partition of 𝐵 where the number of neighbours of 𝑥𝑖 that
are in the same geodesic as 𝑥𝑖 in P plus 𝑛𝐵1

𝑖
+ 𝑛𝐵2

𝑖
+ . . . is greater than 2 for every 𝑖 ≥ 2. For

𝑖 ≥ 2 and 𝐺𝐵1
𝑖
,𝐺𝐵2

𝑖
, . . . let P𝐵1

𝑖
,P𝐵2

𝑖
, . . . be P𝐵 restricted to the corresponding subgraphs. Note

that P𝐵1
𝑖
,P𝐵2

𝑖
, . . . are case 1 valid partitions for the subgraphs𝐺𝐵1

𝑖
,𝐺𝐵2

𝑖
, . . . . Thus, for all 𝑗 and

𝑖 ≥ 2 it holds that 𝑛
𝐵
𝑗

𝑖
is at most the number of neighbours of 𝑥𝑖 that are in the same geodesic

as 𝑥𝑖 in P
𝐵
𝑗

𝑖
. Let P be the result of restricting P𝐵 to 𝐵. Since P𝐵 is a partition into geodesics it

follows that for 𝑖 ≥ 2 the number of neighbours of 𝑥𝑖 that are in the same geodesic as 𝑥𝑖 in P
combined with 𝑛𝐵1

𝑖
+ 𝑛𝐵2

𝑖
+ . . . is at most 2. This implies that P is a case 1 valid partition for 𝐵

which fulfils all additional degree restrictions.

44



4.3 Computing Geodesic Treewidth

B

x1

x2 x3

GB1
2

GB1
3

GB2
3

Figure 4.15: A subgraph 𝐺𝐵 of 𝐺 that is rooted at a biconnected component 𝐵. The vertices
𝑥1, 𝑥2 and 𝑥3 are the cut vertices of𝐺 in 𝐵. The vertex 𝑥1 is the parent cut vertex of 𝐵. For 𝐵 and
for the subgraphs𝐺𝐵1

𝑖
,𝐺𝐵2

𝑖
, . . . corresponding to the biconnected components connected to 𝐵

at child cut vertices, some case 1 valid partitions are given. The geodesics in these partitions
are highlighted in red. These partitions combine into a case 1 valid partition of 𝐺𝐵 even
though the partition of 𝐺𝐵2

3
is not a degree minimum partition. Note that this partition of

𝐺𝐵2
3
can be replaced by a degree minimum partition of𝐺𝐵2

3
and the combined partition of 𝐺𝐵

remains a case 1 valid partition into geodesics. The number of neighbours of 𝑥1 that are in
the same geodesic as 𝑥1 is 1. If there are no case 1 valid partitions of 𝐺𝐵 where this value is
smaller then it holds that 𝑛𝐵 = 1.

This proves that the algorithm is correct. In the altered algorithm for series-parallel graphs
that we apply to a biconnected component 𝐵, we need to check for the cut vertices 𝑥2, 𝑥3, . . .
that the number of neighbours of 𝑥𝑖 that are in the same geodesic as 𝑥𝑖 combined with
𝑛𝐵1

𝑖
+ 𝑛𝐵2

𝑖
+ . . . is at most 2. However, we only need to perform this check if a child cut

vertex 𝑥𝑖 is the current sink or source, for which we already store the needed values in the
corresponding valid configuration. For internal vertices, this check was passed at an earlier
point and the number of neighbours that are in the same geodesic does not increase afterwards.
Thus, this check, combined with storing the number of neighbours of the parent cut vertex
𝑥1 that are in the same geodesic as 𝑥1, does not increase the runtime significantly. A single
biconnected component is still solved in time 𝑂 (𝑛5).
We claim that applying the algorithm bottom-up to all biconnected components of 𝐺 is

still in 𝑂 (𝑛5). For this purpose we first estimate the sum 𝑆𝑉 = |𝐵1 | + |𝐵2 | + . . . of the sizes of
all biconnected components 𝐵1, 𝐵2, . . . of𝐺 . Each vertex that is not a cut vertex contributes at
most 1 to this sum. The cut vertices contribute as much to this sum as the number of edges in
the block-cut tree. Lemma 4.5 gives us that the block-cut tree has at most 𝑛 + 𝑛𝑐 vertices and
thus also at most 𝑛 + 𝑛𝑐 edges, where 𝑛 = |𝑉 (𝐺) | and 𝑛𝑐 is the number of cut vertices in 𝐺
(Lemma 4.5). Thus 𝑆𝑉 is at most 2|𝑉 (𝐺) |. Since it holds that ∑𝑖 |𝑉 (𝐵𝑖) | ≤ 𝑆𝑉 it follows that∑

𝑖 𝑂 ( |𝑉 (𝐵𝑖) |)5 ≤ 𝑂 (𝑆𝑉 )5 ≤ 𝑂 (2𝑉 (𝐺))5 = 𝑂 (𝑛5).
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5 Baker Treewidth vs. Linear Local
Treewidth

In this chapter, we investigate the relationships between bounded layered treewidth, linear
local treewidth, bounded local treewidth and bounded Baker treewidth. It is known that
bounded layered treewidth is a necessary condition for product structure [1]. Dujmović,
Morin, and Wood show that bounded layered treewidth implies linear local treewidth [24],
and by definition, linear local treewidth implies bounded local treewidth. Thus, linear local
treewidth and bounded local treewidth are necessary conditions for product structure as
well. In Section 4.1 we show that linear local treewidth and thus bounded local treewidth are
necessary conditions for geodesic structure, too.
We begin by proving that bounded layered treewidth implies bounded Baker treewidth.

This also implies that bounded Baker treewidth is a necessary condition for product structure.
The proof is very similar to the proof that bounded layered treewidth implies linear local
treewidth by Dujmović, Morin, and Wood [24].

Theorem 1.11: If a graph class has bounded layered treewidth, then it has bounded Baker
treewidth.

Proof. Let G be a graph class where every graph𝐺 ∈ G has layered treewidth at most 𝑘 . Thus,
there exists a layering L of 𝐺 and a tree decomposition T of 𝐺 such that the intersection
between any layer 𝐿 ∈ L and any bag of T has size at most 𝑘 . Let 𝐺 ′ be a graph induced by 𝑙
consecutive layers in the layering L of 𝐺 . By removing the vertices not in 𝐺 ′ from T , we get
a tree decomposition of 𝐺 ′ where each bag has size at most 𝑙 · 𝑘 . Therefore, G has bounded
Baker treewidth with function 𝑓 (𝑙) = 𝑙 · 𝑘 .

Next, we show that bounded Baker treewidth implies bounded local treewidth.

Theorem 1.12: For a graph class with bounded Baker treewidth with function 𝑓 (𝑙), the local
treewidth is bounded by 𝑓 (2𝑘 + 1).

Proof. Let G be a graph class with bounded Baker treewidth with function 𝑓 (𝑙). Thus, for
𝐺 ∈ G there exists a layering L such that the subgraph induced by 𝑙 consecutive layers of L
has treewidth at most 𝑓 (𝑙). Let 𝜈 be a vertex in𝐺 and𝐺 ′ be the subgraph induced by the 𝑘-th
neighbourhood of 𝜈 . It holds that 𝐺 ′ is contained in at most 2𝑘 + 1 consecutive layers of L
thus, the treewidth of 𝐺 ′ is at most 𝑓 (2𝑘 + 1).

It is known that bounded local treewidth does not imply linear local treewidth. An example
for this is the 3D grid, which has quadratic local treewidth but no linear local treewidth. We
observe that bounded local treewidth also does not imply bounded Baker treewidth.
Consider the graph 𝑈𝑛 obtained from a 𝑛 × 𝑛 × 𝑛 grid by adding all diagonals to its unit

subcubes. Berger, Dvořák, and Norin [33] show that for every 𝑘 and any partition 𝐴1, 𝐴2 of
the vertex set of 𝑈𝑛 , either 𝐴1 or 𝐴2 induces a subgraph of treewidth at least 𝑘 if 𝑛 is large
enough. Dvořák [34] considers the partition of 𝑈𝑛 into odd and even numbered layers and
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Figure 5.1: The graph 𝐺3. In purple all disjoint paths of length 2 between non-adjacent
vertices 𝑝𝑢, 𝑝𝜈 where ⌊𝑢/(22 + 1)⌋ = ⌊𝜈/(22 + 1)⌋. In green all disjoint paths of length 4
between non-adjacent vertices 𝑝𝑢, 𝑝𝜈 where ⌊𝑢/(23 + 1)⌋ = ⌊𝜈/(23 + 1)⌋.

observes that the result of Berger, Dvořák, and Norin thus prevents the existence of bounded
treewidth layerings of 𝑈𝑛 . Since the layering considered by Baker treewidth is a bounded
treewidth layering, where the graph induced by a layer 𝐿 has treewidth at most 𝑓 (1), it thus
follows that𝑈𝑛 does not have bounded Baker treewidth.

Lemma 5.1 (Berger, Dvořák, and Norin [33] and Dvořák [34]): The graphs 𝑈𝑛 do not have
bounded Baker treewidth.

We observe that the graphs 𝑈𝑛 have quadratic local treewidth and thus bounded local
treewidth. Together with Lemma 5.1 this proves that bounded local treewidth does not imply
bounded Baker treewidth.

The relations of bounded Baker treewidth to bounded local treewidth and bounded layered
treewidth are quite similar to the known relations of linear local treewidth to bounded local
treewidth and bounded layered treewidth. Thus, the last question we investigate in this
section is how linear local treewidth relates to bounded Baker treewidth.

Theorem 1.13: There are graph classes with bounded Baker treewidth but without linear local
treewidth.

Proof. We construct a graph class G that has bounded Baker treewidth but no linear local
treewidth. For every ℎ ∈ ℕ we begin the construction of𝐺ℎ ∈ G with a path 𝑃 = 𝑝1, . . . , 𝑝2ℎ

consisting of 2ℎ vertices. For any non-adjacent vertices 𝑝𝑢, 𝑝𝜈 on this path let 𝑖 be the smallest
integer such that ⌊𝑢/(2𝑖 + 1)⌋ = ⌊𝜈/(2𝑖 + 1)⌋. Connect 𝑝𝑢 to 𝑝𝜈 by a disjoint path of length
2(𝑖 − 1). An example of a graph 𝐺3 is shown in Figure 5.1. This results in all pairs of vertices
of 𝑃 being connected by independent paths. However, the size of the resulting subdivided
cliques is small if we disconnect the longer independent paths.
The graph 𝐺ℎ has diameter at most 2ℎ. However, it contains a subdivided clique of size 2ℎ

and thus has treewidth at least 2ℎ . Therefore, G does not have linear local treewidth.
We show that G has bounded Baker treewidth with function 𝑓 (𝑙) = 2𝑙 . For each 𝐺ℎ ∈ G

we construct a layering L as follows. A vertex 𝜈 ∈ 𝐺 is assigned to layer 𝐿𝑑𝜈 in the layering
where 𝑑𝜈 is the shortest distance from 𝜈 to the path 𝑃 . An example of this layering is shown
in Figure 5.2.
We consider a graph induced by 𝑙 consecutive layers in L. If the consecutive layers do not

include 𝐿0, then the induced graph is a disjoint union of paths and thus has treewidth 1. If
the consecutive layers include 𝐿0, then we can split the vertices of the path 𝑃 into 2ℎ−𝑙 sets
consisting of 2𝑙 consecutive vertices. Between two different sets, there are no connecting
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Figure 5.2: The graph 𝐺3 with layering L where the layer of a vertex is determined by its
distance from 𝑃 .

disjoint paths besides 𝑃 since the longer disjoint paths have vertices outside the 𝑙 consecutive
layers. A single set of path vertices, together with all vertices reachable using no path vertices
from outside the set, is a subdivided clique of size 2𝑙 with some more disjoint paths connected
only at one end to the clique. Thus, the graph induced by 𝑙 consecutive layers has treewidth
at most 2𝑙 and thus G has bounded Baker treewidth.

Since bounded layered treewidth implies linear local treewidth [24] and bounded Baker
treewidth does not imply linear local treewidth, we get the following corollary.

Corollary 1.14: There are graph classes with bounded Baker treewidth but unbounded layered
treewidth.

We have shown that bounded Baker treewidth does not imply linear local treewidth,
however, it is still possible that linear local treewidth implies bounded Baker treewidth.
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6 Conclusion

In this thesis, we compared product structure, geodesic structure and BFS structure. We also
investigated the relationships between bounded layered treewidth, Baker treewidth, linear
local treewidth and bounded local treewidth. We also translated many results known only for
product structure to geodesic structure or showed that they do not hold. However, there are
some relationships between these variants of product structure and related concepts that are
still unknown. An overview can be seen in Figure 6.1. We give some detailed questions that
could be the basis of future work:

Question 6.1: Does geodesic structure imply product structure?

We only answered this question for graph classes with geodesic treewidth 1. For these, we
showed that they also admit product structure. In general, it is unknown if geodesic structure
implies product structure. This might also be due to the lack of graph classes for which we
know that they admit geodesic structure. As a first step, we could observe graph classes for
which the geodesic treewidth is significantly smaller than the row treewidth. However, we
only found some ideas for graph classes where the row treewidth is twice as high as the
geodesic treewidth, which is not sufficient for separating geodesic structure from product
structure.

Question 6.2: Does geodesic structure imply bounded layered treewidth?

If Question 6.1 could be answered positively, then Question 6.2 is also true. Reversely,
if geodesic structure does not imply bounded layered treewidth, then geodesic structure
also does not imply product structure. Thus, answering Question 6.2 would either solve
Question 6.1 or at least be a step in the right direction.

Question 6.3: Does geodesic structure imply bounded Baker treewidth?

This is another open question that we have not considered in this work. If Question 6.2
holds, then this question also holds and geodesic structure implies bounded Baker treewidth.
However, it may be easier to answer this question first.

Question 6.4: Does linear local treewidth imply bounded layered treewidth?

It is known that bounded layered treewidth implies linear local treewidth [24]. However, it
is currently not known if the reverse also holds. If linear local treewidth also implies bounded
layered treewidth, then the two concepts would be one and the same, which would be a very
surprising result. This open question also relates to the next open question:

Question 6.5: Does linear local treewidth imply bounded Baker treewidth?

We showed that the reverse does not hold. Note that if Question 6.4 is true, then Question 6.5
is also true since we have shown that bounded layered treewidth implies bounded baker
treewidth.
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Linear Local TreewidthBounded Baker Treewidth

?

Figure 6.1: The relationships between variants of product structure and related concepts that
are still open are drawn in red.
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An interesting observation is that all these open questions have a common structure.
Geodesic structure and linear local treewidth are defined without connections to any layering
of the graphs, while product structure, bounded layered treewidth and Baker treewidth all
use layerings. Thus, to answer the open questions, we are always required to either find
a convenient layering or to show that there exists no such convenient layering, which has
turned out to be quite difficult.

Another interesting area of research is to investigate how the relationships of the variants
of product structure change if we only consider proper minor-closed graphs.

Question 6.6:What are the relationships between the variants of product structure for minor
closed graph classes?

This question is interesting because for proper minor-closed graph classes it is known
that product structure, bounded layered treewidth, linear local treewidth and bounded local
treewidth are all equivalent [1 , 39]. Since geodesic structure implies linear local treewidth,
it follows that geodesic structure implies product structure for proper minor-closed graph
classes. This answers Question 6.1 positively for proper minor-closed graph classes. However,
the reverse question is still open for proper minor-closed graph classes.

Lastly, we could continue investigating geodesic structure and check if more known results
for product structure also hold for geodesic structure. For example, we could investigate
whether or not bounded degree planar graphs have geodesic structure, where the quotients
also have bounded degree. For product structure, it is known that this is not the case [40].

Question 6.7: Do bounded-degree planar graphs have geodesic structure where the quotients
also have bounded degree?

Additionally, the algorithm from Section 4.3 for computing the geodesic treewidth of
treewidth-2 graphs could be improved in runtime. Our algorithm only aims to show that the
problem is solvable in polynomial time. The question if the problem is solvable in linear time
could be of separate interest.

However, further research into geodesic structure is hard to justify with the current limited
known applications for it. In some cases, we think that the bounds for parameters shown
for graph classes with product structure could be translated for graph classes with geodesic
structure. However, to justify using geodesics structure we would either have to find graph
classes that have geodesic structure and no product structure (Question 6.1) or show that
geodesic structure results in better bounds for some parameters:

Question 6.8: Are there applications where geodesic structure performs better than product
structure?
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