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Abstract

This thesis deals with the rectilinear crossing minimization problem, which is NP-hard
[BD93]. More precisely, we propose a heuristic for computing a straight-line drawing
of a general graph G which realizes a small rectilinear crossing number. Inspired
by Gutwenger et al. [GMW05], we pursue an approach which extracts a planar
subgraph that includes as many edges of G as possible and iteratively reinserts the
missing edges into G. After each edge insertion nodes are moved in order to reduce
the number of crossings in the current drawing. We fix the position of all nodes but
one node v and move v to a position, that minimizes the number of crossings in the
drawing. This position can be computed in an O((m ·dmax)2) time-bound, with dmax
denoting the maximum degree of a node in G. We evaluate several configurations
of this algorithm, which use different strategies to avoid local optima. We compare
these configurations to the spring embedder of Fruchterman and Reingold [FR91] on
a variety of different graph classes and observe that each of our configurations yields
drawings with a significantly lower rectilinear crossing number than the commonly
used spring embedder. Furthermore, our algorithm finds solutions which are close to
optimal on the complete graphs Kn for n ≤ 30.

Deutsche Zusammenfassung

Diese Arbeit beschäftigt sich mit dem rectilinear crossing minimization problem,
das NP-schwer ist [BD93]. Wir schlagen eine Heuristik für das Berechnen einer
geradlinigen Zeichnung eines beliebigen Graphen G vor, sodass diese Zeichnung
eine kleine geradlinige Kreuzungszahl realisiert. Wir verfolgen einen Ansatz, der
von Gutwenger et al. [GMW05] inspiriert ist. Unser Algorithmus extrahiert einen
planaren Subgraph, der möglichst viele Kanten von G enthält. Die übrigen Kanten
fügt der Algorithmus iterativ wieder hinzu. Nach jedem Einfügen einer Kante werden
Knoten verschoben, um die Kreuzungszahl der Zeichnung zu reduzieren. Wir fixieren
die Position von allen Knoten, bis auf einen Knoten v und positionieren v sodass die
Anzahl an Kreuzungen in der Zeichnung minimiert wird. Diese Position kann in einer
Laufzeit von O((m · dmax)2) gefunden werden. Wir evaluieren einige Konfigurationen
dieses Algorithmus mit unterschiedlichen Strategien zum Vermeiden lokaler Optima.
Diese Konfigurationen vergleichen wir mit dem Spring-Embedder von Fruchterman
und Reingold [FR91] auf unterschiedlichen Graph-Klassen und stellen fest, dass
unsere Konfigurationen Zeichnungen mit signifikant weniger Kreuzungen erzeugen als
der üblicherweise benutzte Spring-Embedder. Außerdem findet unser Algorithmus
Lösungen, die auf den vollständigen Graphen Kn für n ≤ 30 fast optimal sind.

v





Contents

1 Introduction 1
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contribution and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 9
2.1 Geometric Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Graph Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Statistical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 A Framework for Rectilinear Crossing Minimization 13
3.1 Finding the locally Optimal Position of a Node . . . . . . . . . . . . . . . . 14
3.2 Running Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Finding a Rectilinear Drawing with a Low Crossing Number 19
4.1 Node Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Moving a Subgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 PrEd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Edge Order Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Evaluation and Experiments 29
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.1 Graph Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.2 Comparison Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.4 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.1 Statistical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.2 Pairwise Comparison of Configurations . . . . . . . . . . . . . . . . . 35
5.2.3 Comparison to Edge Insertion . . . . . . . . . . . . . . . . . . . . . . 37
5.2.4 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.5 Complete Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Running Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Conclusion 45
6.1 Outlook and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Bibliography 47

vii





1. Introduction

Graph drawing has applications in many scientific fields like chemistry, biology, computer-
science and social sciences. Whenever data and the relations between data points need to
be visualized and interpreted by a human, graph drawing is useful. A few examples where
graph drawing is used are: protein-protein interaction graphs and phylogenetic trees in
biology, social networks, UML-diagrams in software engineering and integrated circuits in
VLSI-design. Furthermore, there are some applications which are more relevant in daily
life, for example drawing metro maps. In most of these cases the main objective of drawing
a graph is to draw it well arranged such that a human can easily percept its structure and
conclude the important information from it. Nevertheless, there are situations in which
the purpose of drawing a graph is not only facilitating human perception. For example in
VLSI-design drawing a graph in the plane corresponds directly to placing transistors on a
chip, which are connected by wires. For the purpose of designing a chip, it is important
that wires do not cross. But not every design is planar. This problem is usually solved by
using multiple layers for one chip. One routing strategy is the following: all transistors are
placed on one layer. If two wires cross, one wire is routed to the second layer immediatly
before the crossing and routed back to the first layer directly after the crossing. This
way crossings between wires are avoided. Nevertheless, this work around for crossings
increases the overall wire length and the number of wires between different layers needs to
be minimized due to technical reasons. Therefore, minimizing the crossings of a drawing is
benificial in VLSI-design. In summary the quality criteria for drawing a graph differ from
application to application.

Nevertheless, there are some metrics for graph-drawing aesthetics like crossing minimization,
bend minimization and symmetry which have proved themselves. Purchase found in her
study, that minimizing the number of crossings has a great positive effect on human
perception and that bend minimization is also benificial for this purpose [Pur97]. In this
thesis we focus on the problem of finding a straight-line drawing of a graph G, which has
the smallest rectilinear crossing number among all possible drawings of G. We refer to
this problem as rectilinear crossing minimization throughout this thesis and the respective
rectilinear crossing number is denoted with cr(G).

This problem can also be interpreted as optimizing a drawing of a graph according to the
following two aesthetic criteria:

1. minimize the number of edge bends, i.e. fix this number to zero.
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1. Introduction

2. minimize the rectilinear crossing number.

Gutwenger et al. designed a heuristic for finding a drawing of G, which has the smallest
possible crossing number. Note, that in this case the drawing which realizes this smallest
crossing number can have edges with bends and thus does not need to be straight-line.
Such a drawing is called topological. This problem is named crossing minimization and
the respective crossing number is denoted with cr(G). Both of these problems, rectilinear
crossing minimization and crossing minimization, are NP-hard according to Garey and
Johnson [GJ83]. Moreover, the crossing number cr(G) is not an approximation for cr(G),
which means that the heuristic by Gutwenger et al. does not necessarily minimize cr(G).
In fact Bienstock and Dean showed, that for each k ∈ N, k ≥ 4 there is a graph G with
cr(G) = 4 and cr(G) = k. In other words, the difference cr(G)− cr(G) can be arbitrarily
high [BD93].

In fact the heuristic by Gutwenger et al. does not necessarily minimize the rectilinear
crossing number of a graph G. This motivates our intention to design a heuristic for
rectilinear crossing minimization.

1.1 Related Work
As already mentioned, in this thesis we focus on the problem of rectilinear crossing
minimization, which means finding a drawing D∗ of a graph G, such that D∗ has the
smallest rectilinear crossing number cr(D∗) among all possible drawings of G. The crossing
number cr(D∗) associated to this problem is called the rectilinear crossing number of G
and is denoted with cr(G). Note, that we use the same notation cr both for the rectilinear
crossing number of a graph, which is NP-hard to find [GJ83] and the rectilinear crossing
number of a drawing, which can be found in polynomial-time [SH76].

Pach gives a summary on the different crossing-number problems [PT00]. We mainly make
the same assumptions on a graph G of which we want to determine the crossing number or
the rectilinear crossing number as Pach in his summary [PT00]:

1. No two edges cross more than once in their interior.

2. There are at most two edges that cross at a specific intersection point.

3. There are no edges, which pass a node of G.

4. The nodes are in general position, which means that no three nodes of G are collinear.

Not all of these properties are necessary for every result on the topic. But to avoid confusion,
we make these presumptions.

Before we give a brief overview on the different research directions related to rectilinear
crossing minimization, we shortly describe a problem related to our approach of mini-
mizing the crossings of a straight-line drawing. As explained before, rectilinear crossing
minimization can also be described as successively optimizing a drawing according to two
metrics. The first metric is the number of bends, whereas the second metric is the number
of crossings. A related approach is to first compute a topological drawing with a minimum
number of crossings and subsequently minimize the number of bends. This approach
addresses the same two metrics but swaps their priorities and is referred to as drawing a
planarization. Minimizing the number of edge bends of a topological drawing is related to
the problem simple stretchability by Mnëv and Shor which is NP-hard [Sho]. Radermacher
finds a heuristic for drawing a planarization which works well in practice [Rad15].

In the following we summarize some findings related to rectilinear crossing minimization
and crossing minimization. These include the complexity of the problem, upper- and

2



1.1. Related Work

lower-bounds for the rectilinear crossing number of general graphs and interesting graph
classes like the complete graphs. Furthermore, we summarize the findings of force directed
graph drawing. Moreover, we describe some heuristics and approximation algorithms for
crossing minimization and rectilinear crossing minimization.

Complexity

Computing the crossing number cr(G) of a graph G was proven to be NP-complete by
Garey and Johnson [GJ83]. Bienstock proved that computing the rectilinear crossing
number is NP-hard [Bie91]. Furthermore, Bienstock proved that there exists an infinite
family of graphs {Gn}n∈N such that for each drawing which realizes the rectilinear crossing
number cr(Gn), the coordinates of the nodes require more than polynomially many bits
[Bie91, Theorem 3]. Until now it is not decided whether computing the rectilinear crossing
number lies in NP or not.

Schäfer showed that computing the rectilinear crossing number is ∃R-complete [Sch09].
This means computing the rectilinear crossing number is as hard to solve as the existential
theory of the reals. More precisely, Schäfer recognized that Bienstock already proved
∃R-hardness of computing the rectilinear crossing number by reducing simple stretchability
which is ∃R-complete to computing the rectilinear crossing number. Furthermore, Schäfer
proved that computing the rectilinear crossing number lies in ∃R.

Computing the rectilinear crossing number differs from rectilinear crossing minimization in
that the latter involves computing a straight-line drawing of a graph a minimum number
of crossings, whereas the first only computes this minimum number of crossings but does
not necessarily compute a respective drawing. Nevertheless, like computing the rectilinear
crossing number, rectilinear crossing minimization is NP-hard. This follows from an easy
reduction.

Because of the complexity of computing the rectilinear crossing number, there are three
main directions of research concerning this problem. There are many proven upper and
lower bounds for the rectilinear crossing number of specific graph classes, but also some
results for general graphs. Further, there are several heuristics for computing a low
rectilinear crossing number, for example there are many variants of force directed graph
drawing. Moreover, there is a polynomial-time approximation algorithm. Nevertheless, this
algorithm is only an asymptotic approximation and we are not aware of an approximation
algorithm which differs from an optimal solution only by a constant factor.

General Bounds

It is obvious, that cr(G) ≥ cr(G). Subsequently lower-bounds for cr(G) also apply to cr(G).
One of the most important lower-bounds for cr(G) and hence also for cr(G) is the Crossing
Lemma, which was discovered independently by Ajtai, Chvátal, Newborn and Szemerédi
[ACNS82] and Leighton [Lei83]:

cr(G) ≥ 1
33.75 ·

e3

n2 ,

where e is the number of edges of G and n denotes the number of nodes of G. Nevertheless,
cr(G) is not a good lower-bound for cr(G). In particular, Bienstock and Dean showed, that
for each k ∈ N, k ≥ 4 there is a graph G with cr(G) = 4 and cr(G) = k. In other words,
the difference cr(G)− cr(G) can be arbitrarily high [BD93].
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1. Introduction

Approximation Algorithms for the Crossing Number

Bhatt and Leighton found an O((cr(G) + n) · B2(n) · log2(n)) approximation algorithm
for the crossing minimization problem, where B(n) is the bisection width of the respective
graph [BL84]. The bisection width of a graph is the minimum number of edges which
have to be removed in order to divide the graph into two connected components of equal
size. The idea of Bhatt and Leigton was to recursively bisect G into two equally sized
subsets V1 and V2, such that a minimum number of edges proceed between V1 and V2 until
a subset includes at most one node. With their work on balanced cuts Leighton and Rao
could improve Bhatt and Leighton’s algorithm to a O((cr(G) + n) · log4(n)) approximation
algorithm for a bounded-degree graph. The currently best known approximation algorithm
for bounded degree graphs is the O((cr(G) + n) · log2(n)) approximation algorithm by
Arora, Vazirani and Rao [ARV09].

An Approximation Algorithm for the Rectilinear Crossing Number

Recently Fox et al. used findings on order types to develop an approximation algorithm
for the rectilinear crossing number problem. A survey on order types can be found in
the book “New trends in discrete and computational geometry” [Pac12, chapter 5]. The
important property that makes order types so useful for applications in rectilinear crossing
number minimization can be found in Theorem 5.2 of the book, which is adopted from
the book “The Banach-Tarski Paradox” by Wagon [Wag93]. Based on this property Fox
et al. remark, that cr(G) can be computed in an 2O(n3) time-bound by brute-forcing over
all order-types [FPS16, Lemma1]. Furthermore, Fox et al. give the first polynomial-time
approximation-algorithm for computing the rectilinear crossing number.

Lemma 1.1 (Theorem 2 in [FPS16]). There is a deterministic n2+O(1)-time algorithm for
constructing a straight-line drawing of any n-vertex graph G in the plane with

cr(G) +O
(
n4/(log logn)δ

)
crossing pairs of edges, where δ > 0 is an absolute constant.

Moreover Fox, Pach and Suk [FPS16] state, that for the dense graphs Kn their algorithm
approximates cr(Kn) by a factor of (1 +O(1)) [FPS16, Corollary 1].

Bounds for Complete Graphs

There has been much effort to compute or at least approximate the rectilinear crossing
number cr(Kn) of the graphs Kn. For a detailed overview of the research on the rectilinear
crossing number of complete graphs, see [ÁFMS13]. The search for bounds on cr(Kn) is
devided into estimating cr(Kn) from above and from below. The currently known best
upper-bound for cr(Kn) was discovered by Fabila-Monroy and López [FML14].

Theorem 1.2 (Theorem 1.1 in [FML14]).

cr(Kn) < 0.38047223873 ·
(
n

4

)
+O(n3)

Fabila-Monroy and López use an approach, that tries to find a drawing with a low rectilinear
crossing number for a small graph and expand the result to arbitrary n with a recursive
formula. Fabila-Monroy and López use the following reccurence.
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Theorem 1.3 (Theorem 4 in [ÁCFM+10]). Let m < n be a natural number.

cr(Kn) ≤ 24 cr(Km) + 3m3 − 7m2 + (30/7)m
m4 ·

(
n

4

)
+O(n3).

For the purpose of finding a low crossing-number for complete graphs Kn with small n,
Fabila-Monroy and López took the currently best known drawing for Kn from the web-page
of the rectilinear crossing number project [Aic13] and improved its rectilinear crossing
number by choosing vertices randomly and moving them to points in proximity, if this
yields a lower rectilinear crossing number. To this end Fabila-Monroy designed an O(n2)
algorithm for computing the rectilinear crossing number of a drawing.

The best currently known lower-bound for cr(Kn) was discovered by Ábrego and Férnandez-
Merchant [ÁFMLS08].

Theorem 1.4 (Corollary 3.5 in [ÁFMLS08] ).

cr(Kn) > 0.379972 ·
(
n

4

)
+O(n3)

In summary the ratio between the best known lower-bound and the best known upper-
bound for Kn is currently above 0.9986. Moreover, cr(Kn) up to a size of n = 28 have been
computed exactly.

Planar Subgraphs

There are two problems concerning planar subgraphs, which we are interested in. Maximum
planar subgraph consists of finding the lowest number of edges edel which have to be deleted
from a graph G such that the resulting subgraph G∗ is planar. This problem is NP-complete
[LG77] and more precisely MAX SNP-hard [CFFK98].
MAX SNP-hardness implies, that the optimal solution OPT(G) of maximum planar
subgraph cannot be approximated in polynomial time arbitrarily good, with absolute
guarantees, unless P = NP . The concept of MAX SNP-hardness was established by Arora
et al. [ALM+98]. The best currently known polynomial-time approximation algorithm for
the maximum planar subgraph problem is a 4/9-approximation algorithm discovered by
Călinescu [CFFK98] with a running time of O(m

3
2n · log6(n)).

Nevertheless, the problem maximal planar subgraph can be solved in polynomial time.
This problem only requires to compute a maximal planar subgraph G∗ of G, which means
adding an edge e ∈ E\E∗ to G∗ results in a non-planar graph. There are several known
polynomial-time algorithms, which compute a maximal planar subgraph. The theoretically
fastest currently known such algorithm was discovered by Djidjev [Dji06]. It computes a
maximal planar subgraph in O(m+ n) time.

The first correct polynomial-time algorithm, which solves maximal planar subgraph was
discovered by Chiba, Nishioka and Shirakawa [CHI79]. It terminates in an O(mn) time-
bound and is based on the planarity-testing algorithm by Hopcroft and Tarjan [HT74].
Jayakumar et al. proposed an O(n2)-time algorithm [JTS89], but Kant recognized that the
algorithm by Jayakumar et al. does not necessarily compute a maximal planar subgraph
and proposed some modifications which seemed to fix Jayakumar’s algorithm. Subsequently
Mutzel et al. recognized that both Kant’s modified algorithm as well as Jayakumar’s original
approach do not necessarily compute a maximal planar subgraph [JLM98]. Nevertheless,
according to Chimani et al. the PQ-tree based approach by Jayakumar et al. is “one of
the best heuristics for the NP-hard maximum planar subgraph problem” [CGJ+11, p.549].
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1. Introduction

Edge Insertion

Gutwenger’s edge insertion algorithm [GMW05] is a heuristic for computing the crossing
number of a graph G = (V,E). The approach of Gutwenger consists of two steps.

1. Computing a planar subgraph G∗ = (V ∗, E∗) of G preferably with a high number of
edges.

2. Iteratively reinserting the missing edges in E\E∗ into G∗ optimally.

With this heuristic Gutwenger simultaneously solved the optimal edge insertion problem in
polynomial time. Gutwenger et al. use SPQR-trees to represent the different combinatorial
embeddings of a graph G. Each node of an SPQR-tree is associated to a biconnected graph.
Gutwenger et al. observed, that determining the embeddings of these biconnected graphs
already fixes the embedding of G. Furthermore, Gutwenger et al. show, that inserting an
edge e = (s, t) into an embedded graph G optimally can be achieved by computing the
shortest path e1, ..., ek in the extended dual-graph GeD of G. The edge e can then be drawn,
such that it crosses exactly e1, ..., ek.

With these tools at hand, Gutwenger et al. discovered a linear-time algorithm for solving
the optimal edge insertion problem and the currently best known heuristic for crossing
minimization.

Force Directed Graph Drawing

Force directed drawing algorithms are commonly used for computing rectilinear drawings
of a graph. The concept of force directed graph drawing goes back to Eades [Ead84].
According to the idea of Eades, the nodes of a graph are modeled as steel rings, whereas
edges are springs. Initially the nodes are placed somehow in the plane. The adjacent
springs then pull the nodes to different positions until the system reaches a stable state.
More precisely the approach of Eades is to iteratively calculate attractive and repellent
forces between certain pairs of nodes and to move them according to these forces until
only minor changes occur. Attractive are computed between all pairs of nodes which are
connected by edges, whereas repellent forces are computed between all pairs of nodes in
the approach of Eades.

The spring embedder by Fruchterman and Reingold is a refined version of this algorithm
[FR91]. Unlike Eades algorithm, the spring embedder by Fruchterman and Reingold uses
forces which depend linearly on the distance of two nodes. This is more physically accurate
but the nodes may not reach a stable state in this scenario. Therefore, Fruchterman and
Reingold introduce a temperature that decreases over time. This temperature defines the
maximal distance d a node can be moved. This temperature decreases alongside with d
in each iteration. A detailed summary on force directed graph drawing was given by Di
Battista et al. [DBETT94].

1.2 Contribution and Outline
Due to the complexity of rectilinear crossing minimization we have no hope to find a
polynomial-time algorithm which produces a drawing that realizes the minimum rectilinear
crossing number of G. Therefore, we develop a heuristic which computes a straight-line
drawing of G with a low crossing number in polynomial time. in polynomial time. Our
algorithm is inspired by the heuristic of Gutwenger et al. for crossing minimization
[GMW05]. Our algorithm consists of two phases:

6
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1. Find a planar subgraph G∗ of G, which includes as many edges of G as possible.

2. Draw G∗ and iteratively reinsert all edges not included in G∗ into G∗ while keeping
the rectilinear crossing number low.

The task of the first phase is commonly known as maximum planar subgraph problem. As
explained in section 1.1, this problem has been investigated by many researchers and there
are several good heuristics for solving the maximum planar subgraph problem. In this
thesis we mainly concentrate on the second phase of the algorithm and restrict ourselves
on already existing heuristics for the first phase.

Our idea is to move nodes to a good position after each edge reinsertion to reduce the
rectilinear crossing number. In section 3 we find a way to compute a good position for a
single node v. More precisely, we show how to compute the rectilinear crossing minimal
position of v given that all other nodes have a fixed position. This is a purely geometric
operation. In section 4 we discuss strategies to escape from local optima and different
orders in which nodes are moved. Furthermore, we connect these different components
and propose an algorithm with several variants. In section 4.1 we discuss which nodes
shall be moved in which order. We develop several ordering strategies and see that a finite
number of node movements according to each strategy results in a locally optimal drawing.
This means no single node can be moved such that the rectilinear crossing number of the
drawing is improved. Thereupon, we develop a strategy to escape local optima in section
4.2. In particular we propose to move a whole subgraph to a good position at once. Moving
these subgraphs can result in nodes being very close together. This is why we use a force
directed algorithm after each edge insertion step, which pulls apart nodes that are too
close but does not affect the rectilinear crossing number. This algorithm by Bertault is
called PrEd [Ber99] and it is shortly described in section 4.3. Furthermore, we propose
some post-processing strategies, which delete and reinsert some edges in a certain order in
4.4. In chapter 5 we choose some open parameters like the heuristic for finding a planar
subgraph and the initial drawing of this planar subgraph. Subsequently we experimentally
evaluate the configurations of our algorithm and compare them to one another and to the
commonly known spring embedder by Fruchterman and Reingold on several different graph
classes [FR91]. In the following chapter 2 we will explain and determine some fundamental
terms in graph drawing, geometry and statistical testing.

7





2. Preliminaries

In the following chapter we introduce some preliminaries which are needed throughout this
thesis.

2.1 Geometric Definitions
Let a, b, c be points in the euclidean plane R2. A line segment S(a, b) is a set of points
S(a, b) = {t(b− a) + a | t ∈ [0, 1]}. We call a and b endpoints of the line segment. A line
L(a, b) is a set of points L(a, b) = {t(b− a) + a | t ∈ (−∞,∞)}. A ray R(c, a) is a set of
points R(c, a) = {t · c+ a | t ∈ (0,∞)}. We call c direction and a startpoint of R(c, a).
The generic term for line segments, lines and rays is linear curve. A half-plane H(a, b)
with respect to a line L(a, b) is a set of points, such that all vectors v ∈ H lie to the left of
L(a, b), i.e. the vector b− a forms a left-turn with v.

The points a, b, c in the euclidean plane are said to be collinear, if and only if there is a
line that passes through all three points a, b and c. A set of points P ⊂ R2 is said to be in
general position if and only if no three points a, b, c ∈ P are collinear.

2.2 Graph Drawing
An undirected graph is a tuple (V,E) where V denotes a set of nodes and E a set of edges
with E ⊆ V × V . We call an edge e = (v1, v2) ∈ E adjacent to v1 ∈ V and v2 ∈ V . We say
v1 and v2 are the endpoints of e.

A drawing D of a graph G = (V,E) is an injective mapping of every node v ∈ V to a point
in R2 and each edge e ∈ E to an open Jordan-Curve Ce, such that D fulfills the drawing
properties and such that the adjacent nodes u, v of edge e are mapped to the endpoints of
the Jordan-Curve Ce. In the following, we will identify a Jordan-Curve with its associated
edge and a point with its associated node. Throughout this thesis, we will use the terms
interchangeably in the context of a drawing. We say two edges e1, e2 cross if they intersect
in a point which is not an end-point of e1 or e2. With this notation at hand, we can now
state the drawing properties:

1. for all nodes v there exists no edge e such that e passes through v.

2. the nodes are in general position, which means no three nodes have collinear positions.

3. at each intersection of edges, there are at most two edges which cross.

9
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We also say a graph is drawn in the plane. An intersection point is a point belonging
to two different edges which is not an end-point of an edge. The crossing number of a
drawing is the number of intersection points. A drawing is called straight-line, if all edges
are mapped to line segments. Note that a straight-line drawing of G is fully determined
by the positions of all nodes v ∈ V . In the following we will always consider straight-line
drawings, when we talk about drawings unless otherwise stated. A drawing is called planar
if no two edges cross. A graph is called planar if it has a planar drawing. A planar drawing
parts the euclidean plane R2 into regions, which we call faces. Each of these faces f is
bordered by a set of edges. These edges are called incident to the face f . We also say that
e borders f . Moreover, two faces f and g are incident to each other, if there is an edge e
such that both faces f and g are incident to e. A node v is called incident to a face f , if v
is incident to an edge e which borders f .

Let D be a planar drawing of GD. The planar drawing D parts the plane into regions,
which we call faces. The dual graph GD of D contains a node vf for each face f induced
by D. Each face f is said to be the dual face of vf . Two nodes vf , vg of GD are connected
by an edge e = (vf , vg) if and only if f and g are adjacent faces in D.
The extended dual graph Gs,tD of the dual graph GD with two nodes s and t is obtained from
GD by adding the nodes s and t to GD and adding an edge e = (s, vf ) for each vf ∈ VD
such that the dual face of vf is incident to s or incident to t.

(a)

s

t

(b)

Figure 2.1: The left figure shows the dual graph GD and the graph G. The dual graph GD
is drawn with blue nodes and dashed edges, whereas G is drawn with green
nodes and normal edges. The right figure shows the extended dual graph Gs,tD .
The red nodes s and t belong to G and to Gs,tD . The edges which make the
difference between GD and Gs,tD are drawn red and dashed.

A planarization GP of a drawn graph G = (V,E) is a graph defined as follows. Let D be
the drawing of G. The graph GP contains one node for each node of v ∈ V . Furthermore,
each edge e ∈ E which has no crossing in the drawing D is also contained in GP . Moreover,
the graph GP contains a node vc for each crossing c of two edges e ∈ E in the drawing D
and an edge e = (vc, va) between each such node vc and each node va that is incident to
an edge involved in the crossing c. Intuitively, GP is obtained by placing a node at each
crossing of D and each edge passing such crossings is split at these points.
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2.3. Statistical Tests

Figure 2.2: On the left side a drawing D of the graph G is shown. The drawing on the
right side shows a drawing of the planarization GP of D. The nodes in which
GP differs from G are drawn blue.

An arrangement A(S) is the planarization of a drawn graph GA induced by a set of linear
curves S. The drawn graph GA is obtained from the set of linear curves S as follows.

1. Place a node at each intersection point of two linear curves l1, l2 ∈ S.

2. Construct a bounding rectangle R, which includes each intersection point of two
linear curves l1, l2 ∈ S. Add the line segments which are contained in the boundary
of R to S. Place a node at each intersection point of a linear curve l ∈ S with R.

3. Add an edge (u, v) to GA for each two nodes such that there is a linear curve l which
contains u and v.

2.3 Statistical Tests
In this section we describe the binomial sign test, the adapted binomial sign test and
spearman’s rank-order correlation coefficient. The Adapted Binomial Sign Test was first
used in a very similar form by Radermacher [Rad15].

Binomial Sign Test for Two Dependant Samples

In the following we shortly describe the Binomial Sign Test on a graph-class G. Let
A1, A2 be the two algorithms, we want to compare. Let GS = {G1, ..., Gn} be the set of
sample-graphs chosen from the graph-class G.

We denote with cr(A,Gi) the crossing-number of the final drawing of algorithm A on graph
Gi. The Binomial Sign Test requires two assumptions to be applicable:

1. the graphs Gi ∈ GS are chosen uniformly at random from G

2. cr(A1, G) and cr(A2, G) can be rank-ordered for each G ∈ G, i.e. it can be decided
whether cr(A1, G) < cr(A2, G) or not.

The second assumption always applies, since cr(A1, G) and cr(A2, G) can easily be rank-
ordered, because they are both positive natural numbers. The first assumption has to be
tested before applying the Binomial Signed Rank Test to a sample set GS of a graph class
G.

The Binomial Signed Rank Test Bin(GS , p, α) with probability p and significance-level α
on the graph-set GS involves the following two steps.

1. Deploy a hypothesis Hp
0 .

Hp
0 : For a ratio of at least p of the graphs G ∈ G, cr(A1, G) < cr(A2, G) holds.

11



2. Preliminaries

2. Test the hypothesis Hp
0 on GS . For this purpose π+ is computed, which is the number

of sample-graphs G ∈ GS such that cr(A1, G) < cr(A2, G).

Compute π+ the number of samples G ∈ G such that cr(A1, G) < cr(A2, G). Further
compute π+

rel the proportion of samples G ∈ G such that cr(A1, G) < cr(A2, G).
The hypothesis Hp

0 is accepted if π+
rel > p and if P (x ≥ π+) ≤ α. The probability

P (x ≥ π+), that the number of positively signed difference is greater than π+ can be
easily computed because the positively signed differences are binomial distributed.
Otherwise the hypothesis Hp

0 is rejected.

The hypothesis Hp
0 means, that A1 outperforms A2 on a ratio of at least p of the graph

class G.

Adapted Binomial Sign Test

In the following we will adapt the Binomial Sign Test such that we can compare two
algorithms more accurately. The hypothesis Hp

0 can be expanded by a multiplicative factor.

Hp
δ : For a ratio of at least p of the graphs G ∈ G, (1+cr(A1, G)) ·δ < (1+cr(A2, G)) holds.

The hypothesis Hp
δ means, that A2 outperforms A1 by a factor δ on a ratio of at least p of

the graphs G ∈ G.

Spearman’s Rank-Order Correlation Coefficient

In the following we describe Spearman’s rank order correlation coefficient on a graph class
G and a sample set GS chosen uniformly at random from G. The test computes a correlation
coefficient r ∈ [−1,+1] between two random variables X and Y on G. The coefficient r
indicates the degree of correlation between both variables. The sign of r indicates the
kind of correlation between X and Y . A negative sign indicates a negative correlation,
which means each increase in variable X happens alongside with a decrease in variable Y .
Accordingly a positive sign indicates a positive correlation, which means each increase in
variable X is accompanied with an increase in variable Y .

The rank-order correlation coefficient can be devided into the steps.

1. Deploy the hypothesis H0 stating, that there is a positive correlation between X and
Y or more precisely H0 : ρ > 0.

2. Each sample G is given a rank Rx, which is the position of X(G) in a sequence of
all values of X on the sample set ordered from low to high. Similarly G is given a
rank Ry. Thus, we obtain a difference in ranks dG = Rx −Ry. The approximative
correlation coefficient r can now be computed by

r = 1−
6
∑
G
d2
G

n · (n2 − 1) . (2.1)

Whether or not the hypothesis is rejected or accepted can be looked up in table A18
in [She07, p.707]. Moreover, r gives further inside in the kind of correlation between
X and Y .
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3. A Framework for Rectilinear Crossing
Minimization

We are concerned with rectilinear crossing minimization, which is the problem of finding a
straight-line drawing of a graph G that has the smallest rectilinear crossing number among
all possible drawings of G.

This problem is NP-hard and more precisely it is ∃R-complete as already seen in section
1.1. Therefore, we have no hope to solve the problem in an exact way in polynomial time.
Nevertheless, we want to find a heuristic for rectilinear crossing minimization.
In other words, we want to find a straight-line drawing of G with a small crossing number.

Our heuristic for the rectilinear crossing minimization problem is a 2-phase approach:

• First as few edges as possible are removed from G in order to obtain a planar subgraph
G∗ of G. Then G∗ can be drawn in the plane with a common drawing algorithm for
planar graphs.

• In a second step the deleted edges are iteratively reinserted into G∗. After each
iteration we want to find a drawing D of G∗, such that the rectilinear crossing number
cr(D) of D is low. We call this step edge-insertion step

Our approach is closely related to Gutwenger’s edge insertion algorithm, which is concerned
with the problem crossing minimization. Crossing minimization was already explained in
section 1.1 and means finding a drawing of a graph G, which has the smallest crossing
number among all possible drawings of G. Note that this drawing is not necessarily
straight-line. Its edges are arbitrary open Jordan-Curves.

Gutwenger’s edge insertion algorithm is a heuristic for crossing minimization and uses
a way to insert an edge e into D causing a minimum amount of new crossings. When
regarding straight lines, there is only one way to insert e into G, which is connecting both
endpoints of e by a straight line. Accordingly, we have to use a different strategy in our
approach, in order to decrease the rectilinear crossing number of D. In our approach, we
want to move nodes separately after each edge insertion such that the crossing number is
reduced. There are several questions like which nodes we want to move and where we want
to move them.

The former question is difficult to answer. The most obvious idea would be to move one or
both of the endpoints of e. But there are other strategies that come to mind. For example
ordering the nodes according to the number of crossings they are involved in and moving
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a certain amount of nodes in this order, could be a promising strategy. We will discuss
different node-ordering strategies in section 4.1 and now focus on where we should move a
given node v.

In our heuristic, we want to fix the position of all nodes but one node v and move v to
a position that minimizes the number of crossings in the drawing. We call this position
crossing minimal or locally optimal. We will use the remainder of this chapter to describe
an algorithm which finds a locally optimal position of a node v, given a drawn graph
G = (V,E).

3.1 Finding the locally Optimal Position of a Node
Let G = (V,E) be a graph with a fixed straight-line drawing and s ∈ V . Let φGs : R2 → N
be a function, that maps each point p ∈ R2 to the crossing-number of G, if we move s to p.

Theorem 3.1. A crossing-minimum position arg minp∈R2 φGs (p) of s in G can be computed
in O((deg(s) ·m)2) time.

We want to find the locally optimal position for only one node, the active node s ∈ V .
Because there is an infinite number of positions s can be moved to, we try to somehow
restrict the search space.

The first thing we notice is, that moving s a small amount in any direction does not change
which pairs of edges cross in G. This is why we hope to find regions inside of that s can be
moved without changing these pairs of edges and hence the crossing number of the drawing.
Then we would only have to consider one point inside each of these regions to find the
locally optimal position of s.

In order to find these regions, we observe that each new crossing after a movement
of s is caused by an edge adjacent to s, since these are the only edges we move.

We call each of these edges active. We call non-adjacent edges, which do not move when
moving s, inactive. Furthermore, we call each node, that is adjacent to the active node
co-active. We also note, that each new crossing is caused by an inactive edge and an active
edge. Besides, we observe that two adjacent edges can never cross. To summarize these
thoughts we make the following observation.

Remark 3.2. Each new crossing after a movement of s is caused by an active edge e and
an inactive edge f not adjacent to e.

Let e ∈ E be an active edge and let f ∈ E be an inactive edge, that is not adjacent to f .
We want to determine a region Cs(e, f) such that, if we place s inside of C(e, f), e and f
cross and if we place s outside of Cs(e, f) they do not cross.

Figure 3.1 depicts the construction of this region Cs(e, f). Let s be the active node and
e = (s, t) an active edge. Let f be an inactive edge. Let oj with j ∈ {1, 2} be the adjacent
nodes of f . We draw a ray rtj starting in oj in direction of oj − t. We call Rfe :=

{
rt1, r

t
2
}

the set of rays induced by e and f . The edge f together with the rays rj divides the plane
into two regions. We define Cs(e, f) to be the region of those two, which does not contain
t. This region is drawn shaded in figure 3.1.

Lemma 3.3. The segment [t, p] intersects f , if and only if p ∈ Cs(e, f).

Proof. The region Cs(e, f) is closely related to the concept of visible regions. The visibility
region V(t, f) is a set of points, such that for each point p ∈ V(t, f), the point p is
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crossing region

f

e

r1

r2

t

s

Cs(e, f)

o2
o1 s

o2
o1

t

H1

H2

H3

Cs(e, f)

Figure 3.1: On the left side the region Cs(e, f) of the edges e = (s, t) and f is shown.
On the right side the visibility region V(t, f) which is the intersection of the
half-spaces H1,H2,H3, is depicted.

visible from t. This means the segment S(p, t) does not intersect f . We observe, that
V(t, f) = R2 \ Cs(e, f). It is obvious, that V(t, f) is exactly the union of three visible
halfspaces. In particular

V(t, f) = H1(t, o1) ∪H2(o2, t) ∪H3(o1, o2). (3.1)

Figure 3.1 depicts the three half-spaces H1,H2 and H3.

Let A(G, s) = (EA, F ) be the arrangement induced by all rays r, such that r ∈ Rfe for an
active edge e and an inactive edge f , that is not adjacent to e and all edges e ∈ E of graph
G. Figure 3.2 shows an example of finding A(G, s). On the left side we see the graph G.
The node s is drawn purple and all neighbors a1, ..., a3 of s are drawn in different colors.
In contrast to that all other nodes are drawn green. On the right we see the same graph G
with all regions, that are relevant to the arrangement A(G, s). Let 1 ≤ i ≤ 4. For each
neighbor ai ∈ {a1, ..., a3}, there is an active edge ei = (s, ai). The region Cs(ei, f) for each
i and each inactive edge f is drawn in the same color as ai. The insides of these regions are
drawn in a shaded color, whereas the inducing rays Rfei

are drawn opaquely in the same
color. Note, that the overlap of two colored regions Cs(e1, f1) and Cs(e2, f2) is a region,
such that e1 crosses f1 and e2 crosses f2, when s is moved to a point inside of the region.
The arrangement A(G, s) is induced by all colored rays and all edges e ∈ G, which are
drawn black.

We call a set of points P ⊆ R2 crossing-invariant if and only if

φGs (p1) = φGs (p2) for all p1, p2 ∈ P.

Lemma 3.4. The faces of A(G, s) are crossing-invariant.

Proof. Let f be a face of A(G, s). Assume there are two points p1, p2 ∈ f such that
moving s to p1 results in a different crossing number than moving s to p2, or more formally
φGs (p1) < φGs (p2). This means if s is moved to location p2 there are at least two edges e1
and e2, that cross when s is moved to p2 and do not cross when s is moved to p1. Because of
Remark 3.2 we can assume, that e1 is active, e2 is inactive and not adjacent to e1. Because
e1 and e2 do not cross, when s is moved to p1 and they do cross when s is moved to p2, we
know that p2 ∈ Cs(e1, e2) and p1 /∈ Cs(e1, e2). But this means p1 and p2 are separated by
e2 or one of the rays r ∈ Rfe . This is a contradiction to the assumption that f is a face.
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arrangement A(G, s)

a1

a2

a3

s

Figure 3.2: On the left side we see the graph G. The node s is drawn purple and all
neighbors a1, ..., a3 of s are drawn in different colors. In contrast to that all
other nodes are drawn green. On the right we see the same graph G with all
regions, that are relevant to the arrangement A(G, s).

Solving the Discretized Problem

We have already seen that all faces f ∈ F are crossing-invariant. Therefore, we have
reduced the problem of finding a crossing-minimal position p∗ ∈ R2 for s to finding the
face f∗ ∈ F , such that moving s into f∗ yields a minimal crossing number. To put it more
formally, for each face f ∈ F it holds, that φGs (p∗) = φGs (p) for all p ∈ f . Therefore, we can
define a function ψGs : F → N, with ψGs (f) := φGs (p) for a point p ∈ f . Note, that ψ maps
each face f ∈ F to the crossing number of G, if s is moved to a point p ∈ f . The function
ψ is well-defined, because of Lemma 3.4. We have now reduced computing minp∈R2 φGs (p),
to computing minf∈F ψGs (f), where F is a finite set of faces. In the following sections we
will discuss how to compute f∗ = arg minf∈F ψGs (f), given the arrangement A(G, s).

The first idea to compute arg minf∈F ψGs (f), that comes to mind is to compute ψGs (f)
for each f ∈ F separately. We can do this by choosing a point pf ∈ f for every face
f ∈ F . Then we can iterate over all points {pf}f∈F . In each iteration, we move s to pf and
compute the crossing number of G, while keeping track of the minimum crossing number
and the corresponding pf . Computing the crossing number of G for every face f ∈ F is
very time-consuming. In particular finding the crossing number of G can be solved in
an O(m · log(m) + k) time bound by [Cha92], where k is the number of crossings. Note
that k ∈ O(m2). Finding the crossing number when moving s to pf can also be solved by
only computing the crossings between active and inactive edges. This is possible in an
O(deg(s) ·m) time-bound. But by computing the arrangement, we already have computed
information about the relation between adjacent faces. We can therefore try to propagate
these information instead of computing them again for each face.

Assume we had information about how the crossing number of G changes, when moving s
from a face f1 ∈ F to an adjacent face f2 ∈ F . Let nf be the number of faces of A(G, s).
Let d : F × F → N be the function that maps a tuple of faces (f, g) to the difference in
crossing number, when moving s from f to g. In particular d(f, g) := ψGs (g)− ψGs (f).

Lemma 3.5. Computing the optimal face f∗ = arg minf∈F ψGs (f) requires time linear in
nf , if ψ(h) is known for one fixed face h ∈ F and the differences d(f, g) are known for
adjacent faces f and g. This computation can be done by a breadth-first search on the
dual-graph of A(G, s) starting at face h.

Proof. We observe that the function d has the following property:

d(f, g) = d(f, h) + d(h, g) for all f, g ∈ F.
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f1

f2

d(f1, f2) = −1

Figure 3.3: Computing d(f1, f2) if f1 and f2 are adjacent by an edge of G.

This is easy to check from the definition of d. From the definition of d : F × F → N, we
know that

min
f∈F

ψGs (f) = min
f∈F

(
ψGs (h) + d(h, f)

)
= ψGs (h) + min

f∈F
d(h, f)

Accordingly we only have to figure out a way to compute d(h, f) for all f ∈ F and we do
not need to compute ψGs (h). We can compute these values in a breadth-first search on
the dual-graph of A(G, s) starting at h. Let f1, ..., fp ∈ F be the order of faces in which a
breadth-first search from h iterates over the faces of A(G, s). Note that f1 = h. For i = 1
we can compute d(h, fi) = d(h, f1) = d(h, h) = 0. In each iteration i ∈ {2, ..., p} we can
compute d(h, fi) by adding d(h, fi−1) and d(fi−1, fi). A breadth-first search over all faces
can be performed in an O(nf ) time-bound.

Now we are left with computing d(f1, f2) for adjacent faces f1, f2 ∈ F . We assume that no
three nodes of G have collinear positions. Let e ∈ EA be an edge, that connects f1 and f2
and let c be a segment that induces e. Note that we can access the inducing segments of
each edge e in time O(1), if we store these segments for each edge e in the data structure
for an arrangement. There are two cases we have to consider.

1. The segment c is a ray ret induced by e ∈ E for t ∈ V . Since every three nodes of G
are non-collinear, ret is the only ray , that induces e. Moving s across ret can only cause
a difference in crossing number of +1 or −1, since s either enters or leaves a crossing
region when moved across ret . Accordingly, d(f1, f2) = +1 or d(f1, f2) = −1. To
check which of these two possibilities is true, we only have to check whether e = (s, t)
and e cross, if s ∈ f1. If the answer is yes d(f1, f2) = 1, otherwise d(f1, f2) = −1.
Note, that in this case d(f1, f2) can be computed in O(1) time, if we store t and the
inducing edge e for each ray ret .

2. The segment c is an edge e ∈ E. Let p ∈ f1, q ∈ f2. In this case we can compute
d(f1, f2) by iterating over all neighbors of s. Let a1, ..., adeg(v) be the neighbors
of s. Let nf1 be the number of neighbors ai, such that (ai, p) crosses e∗ and let
nf2 be the number of neighbors ai, such that (ai, q) crosses e∗. We observe, that
nf2 − nf1 = d(f1, f2). Note that d(f1, f2) can be computed in O(deg(s)) in this case.
We further note, that this computation has to be done only once per edge e ∈ E, if
we store nf2 − nf1 at edge e after its first computation. Figure 3.3 shows an example
of this computation of d(f1, f2).

3.2 Running Time
We can now compound all parts of our algorithm and estimate their running time to proof
Theorem 3.1 from the beginning.

Proof of Theorem 3.1. Let f∗ = arg minf∈F ψGs (f). The following algorithm finds f∗ ∈ F
in time O((deg(s) ·m))2:
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1. Compute the arrangement A(G, s).

2. Perform a breadth-first search on the dual-graph GD of A(G, s) starting at the face
h with the weight-function d : F × F → N. Let f1, ..., fnf

∈ F be the order of faces
in which the breadth-first search iterates over the faces of A(G, s). In each iteration
i ∈ {2, ..., nf} we compute d(fi−1, fi) as described in the last section in cases 1 and 2.
Then we compute d(h, fi) by adding d(h, fi−1) and d(fi−1, fi) while keeping track of
the face f∗ with minimal d(h, fi). The fact that this breadth-first search computes
the minimal face f∗ given that the distances d(fi, fi−1) are computed correctly for
i ∈ {2, ..., nf}, follows from Lemma 3.5.

Let ns be the number of inducing segments of A(G, s). Let m be the number of edges of G.
Computing the arrangement is dominated in running time by computing the intersections
of all segments inducing A(G, s). This problem can be solved in an O(ns · log(ns) + k)
time-bound by [Cha92], where k is the number of crossings and ns is the number of segments
inducing A(G, s). Note that k ∈ O(n2

s). We further observe, that O(ns) ∈ O(deg(s) ·m)
since there are three inducing segments for each pair of an adjacent node of s and an
inactive edge. Accordingly k ∈ O((deg(s) ·m)2) and computing A(G, s) can be done in an
O((deg(s) ·m) · log(deg(s) ·m) + (deg(s) ·m)2) ∈ O((deg(s) ·m)2) time-bound.

The second step of our algorithm can be computed in an O(nf + deg(s) ·m) time-bound.
This is because for all but m iterations of the breadth-first search we can bound the running
time of the iteration by O(1). For the remaining m iterations we can bound the running
time by O(deg(s)) as observed in the previous section in case 2. Because A(G, s) is a planar
graph, Euler’s formula implies that nf ∈ O(mA). Furthermore, similar to the previous
argument we know that O(mA) ∈ O(n2

s) and hence nf ∈ O((deg(s) ·m)2)). It follows, that
the algorithm has a time-bound of O((deg(s) ·m)2 +m · deg(s)) = O((deg(s) ·m)2).

18



4. Finding a Rectilinear Drawing with a
Low Crossing Number

In this chapter we refine our algorithm for finding a straight-line drawing with a low
crossing number and discuss open parameters. We will discuss which nodes should be
moved in which order and how we can avoid getting stuck in local optima.

As motivated in more detail in Section 4.2 an idea to escape local optima is to move
a subgraph instead of a single node. As already mentioned our approach is related to
Gutwenger’s edge-insertion-algorithm. Likewise we use a two-phase approach. In each
iteration we decide between two possibilities.

1. In contribution to the first question we compute a node order. In this order each node
is moved to its locally optimal position, with our node-moving approach discussed in
Section 3.1 until a certain stopping criterion holds or all nodes are in their locally
optimal position. At the end of each iteration the node order is updated according to
a geometric criterion. We allow nodes to be moved multiple times in one iteration,
but not in a row. In section 4.1 we discuss several strategies for computing a good
node order.

2. Regarding the second question we move a subgraph to a good position and repair
the local structure inside of the subgraph afterwards. The choice of the subgraph
and further details are explained in Section 4.2.

Algorithm 4.1 gives an outline of our algorithm, which we will call Geometric Crossing
Minimization or Gcm from now on. Subsequently we discuss further free parameters
regarding our two-phase approach like in which order edges are reinserted into the graph
in section 4.4 and how we prevent nodes from getting too close to one another with a
force-directed algorithm in section 4.3.

4.1 Node Order
The Geometric Crossing Minimization algorithm moves several nodes to its locally optimal
position in each iteration. More precisely Gcm computes an order in which nodes are
moved. We restrict ourselves to node orders that depend on the geometric position of each
node. This means we have to update the node order after each movement of a node. In
particular we want a node v to be moved before a node w if the new position of v helps
to improve the locally optimal position of w. In this chapter we will present several node
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Algorithm 4.1: Geometric Crossing Minimization
Input: Graph G = (V,E)
Output: Straight-line Drawing of G

1 Find maximum planar subgraph G∗ = (V ∗, E∗) of G.
2 Remove all edges e ∈ E\E∗ from G.
3 forall e ∈ E\E∗ do
4 reinsert e into G
5 if contract then
6 move subgraph to a good position.
7 else
8 choose NodeOrder O
9 while O.stopping-criterion does not hold do

10 choose v as first node in O
11 move v to locally optimal position
12 update O

order strategies to achieve this goal. Since we allow each node to appear in the node
order multiple times we are interested in the question, whether moving nodes to its locally
optimal position in an arbitrary order does converge and results in a stable local optimum.
We call a drawing D of G stable, if no movement of a single node can improve the crossing
number of D. Let ncr be the number of crossings of the drawing of G and let n be the
number of nodes. We make only one restriction for our node order strategies. A node v is
not considered again until ncr decreases. Note that this means, the crossing number of the
drawing of G was improved by moving a node w. With this restriction at hand we can
easily see, that after at least n · ncr tries to move a node in a node order, the drawing of G
is stable. A justification for this statement is, that when trying to move all nodes in the
node order O at least one has to decrease the crossing number when being moved. But
this means the drawing of G is stable. For practical reasons and because moving a node
to its locally optimal position is time-consuming, we fix the number of iterations. In the
evaluation we use a static number of 10 iterations. This means Gcm either starts a new
edge-insertion step if every node is placed at its locally optimal position or if the number
of iterations exceeds 10. In the following we will discuss some node-ordering strategies. Let
e be the currently inserted edge and s, t ∈ V its endpoints.

Endpoints Strategy

The first node-ordering strategy, that comes to mind is to move both endpoints of e. To
explain the idea of this heuristic we subdivide the crossings of G into two categories. The
new crossings are the crossings, that are caused by the currently inserted edge e in contrast
to the old crossings, which were already there before the insertion of e.

With this heuristic we try to diminish the new crossings in each iteration. Because we
already tried to reduce the old crossings in former iterations. Because e is involved in
all new crossings, we hope that the endpoints of e have the highest influence on these
crossings. Note that this heuristic does not consider crossings, that are caused by moving
the endpoints of e in following iterations. Certainly this node-ordering strategy is not
perfect. Nevertheless, it involves only two iterations and can be computed in an O(1)-time
bound.
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4.2. Moving a Subgraph

Low-to-High Strategy

The low-to-high strategy orders all nodes respective of their adjacent crossing number from
low to high. The adjacent crossing number of a node v is the number of crossings, that
are caused by an edge incident to v. We only try to move nodes with a strictly positive
adjacent crossing-number. The idea of this node-ordering strategy is, that there may be
many edges around a node v∗ with a high adjacent crossing number. Possibly these edges
restrict the locally optimal position of v. Moving the nodes with a lower crossing number
might clear the space for v∗ to be moved to a better position. Computing the low-to-high
order can be done by maintaining a priority queue Q, which contains each node v ∈ V
with its adjacent crossing number as key in Q. We denote the key of v in Q as rank of
v. The initial computation of Q takes O(m) time, because for each node v ∈ V we have
to check for all its adjacent edges, whether they cross with e or not. If we use a suitable
priority queue, like a binary heap [Tar83], inserting a node can be done in O(log(n)) time.

In each node iteration we have to update Q. Each update takes O(log(n)) time in a binary
heap. Let v be the currently moved node in this node iteration. In particular we only have
to update deg(v) nodes, the adjacent nodes of v. These are obviously the only nodes which
can change their adjacent crossing number when v is moved. The difference between the
old and the new rank of u ∈ N(v) can easily be computed by

ranknew =


rankold − 1, if (u, v) crosses e before moving v, but not after moving v
rankold + 1, if (u, v) crosses e after moving v, but not before moving v

0, else

In conclusion we can update Q in an O(deg(v) · log(n))-time bound.

High-to-Low Strategy

The high-to-low strategy is the exactly opposite node order as the low-to-high strategy.
According to this strategy all nodes are ordered respective of their adjacent crossing-number
from high to low. Obviously computing this order also requires computing and maintaining
the same priority queue Q as ordering the nodes from low to high. Furthermore the
same time-bounds for the initialization of the node-ordering strategy, O(m), and for each
iteration, O(deg(v) · log(n)) hold. The idea of this strategy is that nodes with a high
adjacent crossing number have a higher potential to decrease the overall crossing number
of the drawing of G, when being moved. Because moving nodes is time-consuming for the
Geometric Crossing Minimization algorithm, we want to move these nodes first.

Random Strategy

We compare these node-ordering strategies with the random strategy. This means we choose
a random node v ∈ G instead of choosing the first node in an order in each node-moving
iteration.

4.2 Moving a Subgraph
Our node-moving approach can easily get stuck in local optima. We can imagine situations,
in which it may be good to move a node to a position that increases the overall crossing-
number, because this would enable another node to be moved to a better position in a
following iteration. This may lead to a globally better solution. In order to approach the
global optimum, it may be helpful to move several nodes at once.
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4. Finding a Rectilinear Drawing with a Low Crossing Number

Figure 4.1: This figure depicts how the blue subgraph can be moved at once in order to
improve the crossing-number of the drawing.

Figure 4.1 shows a situation, where moving a whole subgraph (the subgraph induced by
all blue nodes) at the same time, results in a better crossing number. The red edge is the
edge, that is currently reinserted into the graph. Moving all nodes of the blue subgraph to
their locally optimal position one by one, would not change anything. This is because all
nodes in the blue subgraph are in a locally optimal position. In particular moving any of
them across the red edge results in a higher crossing number. Further it can be noticed,
that in the example of figure 4.1, moving an arbitrary node to its locally optimal position,
does not decrease the crossing number. This shows, that moving a whole subgraph can
sometimes improve the node-moving approach. In the following we describe a heuristic for
finding and moving a subgraph to a good position after the insertion of an edge.

Moving a Subgraph as Geometric Operation

Let GS = (VS , ES) be a subgraph of G. We call nodes v ∈ V , such that v ∈ VS , active. We
further call edges e ∈ E, such that e ∈ ES active. The neighbors N(GS) in G are all nodes
v ∈ V , such that v is adjacent to an active node. We call each node v ∈ N(GS) co-active.
We call each edge e, that is adjacent to an active node and adjacent to a co-active node,
adjacent to the subgraph GS .

As mentioned before we want to find a heuristic for moving a subgraph to a good position.
With a good position of GS we mean a position, such that the active and co-active edges of
GS have few crossings. The main purpose of this heuristic is to escape from local optima
as in figure 4.1. For the purpose of finding a good position for GS we first need to define
the term contraction.

The graph G′ is the graph resulting from a contraction of GS to a node s in G. We also
call G′ collapsed graph. A contraction of GS to a node s in G is defined by the following
procedure. Each neighbor v ∈ N(GS) is connected with s by adding an edge (s, v) to G.
Subsequently each node v ∈ VS , s.t. v 6= s and its incident edges are removed from G. Let
A(G′, s) = (EA, FA) be the arrangement as constructed in section 3.1. Let f∗ ∈ A(G′, s)
be the face such that moving s into f∗ yields a minimal crossing number.

The idea of our heuristic is to move GS into f∗ by shifting and scaling. More precisely our
heuristic for moving a subgraph GS can be described in two steps.

• Let u ∈ VS be a node of GS and pu ∈ R2 be the position of u. Let pf∗ ∈ f∗ be a
point in f∗. The first step consists of moving each node v ∈ VS with position pv to
the new position pnewv = pv + pf∗ − pu. Note that the new position of u lies in f∗,
because pnewu = pf∗ . This step is also called shifting GS .
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4.2. Moving a Subgraph

GS

GS

Figure 4.2: This figure shows that moving a subgraph can cause that co-active edges cross
each other.

• In a second step we scale GS towards u by the maximum factor cmax ∈ R, such that
all nodes v ∈ VS are contained in f∗ after the scaling. Scaling GS towards u by a
factor c ∈ R is defined by the following procedure. The new position pnewv of a node
v ∈ VS with position pv is computed by pnewv = c · (pv − pu) + pu. Then each node
v ∈ VS is moved to pnewv .

In the following we discuss if our heuristic moves GS to an optimal face. This means
GS cannot be moved to a different face by scaling and shifting such that the resulting
drawing has a lower number of crossings. The co-active and active edges of G also exist
in the collapsed graph G′ in contrast to the active edges which are contracted in G′. We
observe, that after moving GS into f∗ each co-active edge crosses exactly the same inactive
edges as in the collapsed graph G′. If we can move GS into f∗ such that each co-active
edge crosses exactly the same edges in G as in G′, f∗ would be the optimal face for GS .
But this property is not guaranteed when moving GS into f∗ by scaling and shifting as
described before. In particular crossings between two co-active edges as in figure 4.3 and
crossings between a co-active and an inactive edge as in figure 4.2 can occur. Obviously
in the collapsed graph the co-active edges cannot cross each other, because they are all
incident to s. Furthermore, a co-active edge in G′ can never cross an active edge in G′,
because there are no active edges in G′.

We try to diminish these crossings in our heuristic Gcm by removing and iteratively
reinserting all edges e ∈ ES and moving their endpoints to their crossing-minimal positions
after moving a subgraph.

Crossing-minimal Subgraphs

Until now we have only seen how to move a given subgraph. In this section we propose
a heuristic for finding a suitable subgraph that should be moved in order to minimize
the crossing number of a straight-line drawing. Let G = (V,E) be a graph with a fixed
straight-line drawing. Let s, t ∈ V . We want to find a heuristic for computing a subgraph
GS of G, that we move after inserting an edge e = (s, t). Our heuristic for finding the

GS

1. 2.

GS

Figure 4.3: This figure shows that moving a subgraph GS can cause that co-active edges
pass through GS .
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4. Finding a Rectilinear Drawing with a Low Crossing Number

subgraph GS , is related to the optimal edge insertion problem with a fixed drawing. The
optimal edge insertion problem with a fixed drawing is the problem of finding an open
Jordan-curve c from s to t, such that inserting e drawn as c into a drawn planar graph
causes a minimum number of crossings.

Gutwenger et al. designed a linear-time algorithm which solves the optimal edge-insertion
problem with a planar graph G∗ in O(|V |+ |E|) time [GMW05]. Furthermore, they showed
that finding an optimal solution to the edge-insertion problem corresponds to computing
a shortest path P = (ed1, ..., edk) in the extended dual graph Gs,tD of G∗. More precisely,
they showed that there is an optimal solution of the edge-insertion problem which crosses
exactly the dual edges of ed1, ..., edn that are contained in the shortest path P . We denote
this solution with c∗(G∗, e). The graph G is not necessarily planar. Therefore, we compute
the planarization GP of G and denote Gutwenger’s solution of the edge-insertion problem
c∗(GP , e) with c∗ from now on.

Our idea is to move the subgraph GS of G, that is enclosed by the curve c∗ and the line
segment [s, t]. The thought behind this heuristic is that possibly GS can be moved across
e. This way we hope, that the edge e, which we inserted as the straight line [s, t], crosses
exactly the edges , that c∗ crossed before moving GS . This would be optimal, because c∗
causes a minimum number of crossings. To put it differently we want e to be drawn as c∗.
But because e is a straight-line, we want to move the subgraph GS enclosed between c∗
and the straight-line e = [s, t] such that it might clear the space for [s, t].

The closed curve c∗ ∪ e parts R2 into two subsets. The points inside of c∗ ∪ e form a
subset A1. The curve c∗ ∪ e is not necessarily a simple curve, see figure 4.5 for an example.
Nevertheless, its inside is the set of all points p, such that an arbitrary ray starting at p
crosses c∗ ∪ e an odd number of times. The points outside of c∗ ∪ e form the other subset
A2. Furthermore, the closed curve c∗ ∪ e parts V \{s, t} into two sets of nodes, the set of
nodes N1 with a position in A1 and the set of nodes N2 with a position in A2.

We want to compute N1 and N2. In the following we describe an algorithm which computes
N1 and N2 in three steps.

1. Compute the planarization GP of G.

2. Find the cut edges of G. A cut edge of graph G is an edge which crosses c∗ ∪ e an
odd number of times.

3. Perform an adapted breadth-first search in order to identify N1 and N2.

moving the subgraph GS enclosed by c∗ and e

Figure 4.4: The optimal Jordan-Curve c∗ for e is drawn red. The newly inserted edge e is
drawn blue. Note that in this case after moving GS the co-active edges of GS
cross exactly the same edges as c∗.
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moving the subgraph GS enclosed by c∗ and e

Figure 4.5: The optimal Jordan-curve c∗ for e is drawn red. The newly inserted edge e is
drawn blue. Note that in this case after moving GS the co-active edges of GS
cross exactly the same edges as c∗.

Computing the planarization GP of the drawn graph G is bounded in running time by
O(m · log(m) + k) where k is the number of crossings in the drawing of G.

Finding the Cut Edges

For the purpose of computing N1 and N2 it is helpful to identify the cut edges. As described
earlier a cut edge of graph G is an edge which crosses c∗ ∪ e an odd number of times.
Note that the cut edges of G can be found in O(m∗ + n∗)-time, where m∗ is the number
of edges and n∗ the number of nodes in the planarization GP of G. As described earlier
Gutwenger et al. showed that the edges eP of GP which cross c∗ can be found in linear time
O(n∗ +m∗). In order to determine the cut edges of G, we store a bit state(e) ∈ {0, 1} for
each edge e of G. state(e) is initialized to 0 for all edges e of G. We iterate over all edges
eP of GP and flip state(e) each time eP is contained in the corresponding path of e in GP
and crosses c∗ ∪ e, i.e. is contained in the shortest path P . Subsequently we iterate over all
edges e of G and flip state(e) if e crosses e. As a result all edges e of G with state(e) = 1
are cut edges.

But there is another possibility how the closed curve c∗ ∪ e can be passed by traversing
edges of G. c∗ ∪ e can also be passed by a path of length two which passes s or t. In order
to be able to identify these cases in a breadth-first search we add some additional edges to
G. Let fs be the face which corresponds to the first node v 6= s on the shortest path P in
the extended dual graph. Let ft be the face which corresponds to the last node v 6= t on
the shortest path P in the extended dual graph. We choose two points vs ∈ fs, vt ∈ ft and
add the edges (s, vs) and (t, vt) to G. We mark these edges as rim edges. Furthermore we
mark the edge e as rim edge.

Adapted Breadth-First Search

Given that we have identified the cut edges we can describe an adapted breadth-first search
which determines N1 and N2. In particular the following breadth-first search iteratively
computes a function µ : V \{s, t} → {0, 1} with the property µ(v) = µ(w) if and only if
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4. Finding a Rectilinear Drawing with a Low Crossing Number

u ∈ N1 and w ∈ N1 or u ∈ N2 and v ∈ N2. The breadth-first search starts at a node
v ∈ V \{s, t} but traverses only edges that are not rim edges. Let x be the current node in
the breadth-first search and let p[x] be the parent node of x.

Case 1: p[x] /∈ {s, t} and (p[x], x) is not a cut edge
In this case, we set µ(x) := µ(p[x]) since either x and p(x) are outside of c∗ ∪ e or x and
p[x] are inside of c∗ ∪ e.

Case 2: p[x] /∈ {s, t} and (p[x], x) is a cut edge
In this case, we set µ(x) := 1− µ(p[x]), because x and p[x] are on different sides of c∗ ∪ e.

Case 3: p[x] ∈ {s, t}
Without loss of generality we assume that p[x] = s. This case is a bit more difficult. We
have to distinguish several sub-cases which depend on whether (s, x) and (p[s], s) are both
not a cut edge, both not a cut edge or exactly one of them is a cut edge. Furthermore,
they depend on if the path (p[s], s, x) only touches or crosses c∗ ∪ e. Figure 4.6 shows a
generic case for each case in which we set µ(x) := µ(p[s]) and figure 4.7 shows a generic
case for each case in which we set µ(x) := 1− µ(p[s]).
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e

c∗c∗

x
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e

Figure 4.6: Cases in which we set µ(x) := µ(p[s]) in the adapted breadth-first search for
computing N1 and N2
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Figure 4.7: Cases in which we set µ(x) := 1− µ(p[s]) in the adapted breadth-first search
for computing N1 and N2

This adapted breadth-first search has a running time of O(m) if the cut edges are already
determined and all cases can be distinguished in a time of O(1). This is because we can
decide whether the path (p[s], s, x) touches or crosses c∗∪e in the course of the breadth-first
search in O(1) time. A breadth-first search discovers the adjacent edges of the current
node in every iteration. We assume that our breadth-first search discovers these edges in
a cyclic order around the current node starting with the parent edge. Therefore, we can
store a bit edgestate which is flipped every time the breadth-first search discovers a rim
edge. The bit edgestate then indicates whether there is a rim edge between the current
edge and the parent edge. In summary computing µ is possible in an O(m · log(m) +m∗)
time-bound.
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The function µ parts V \{s, t} into two components N1 and N2. But we do not know which
of these components is N1 and which is N2. Nevertheless, we want to move the subgraph
induced by N1 or the subgraph induced by N2 ∪ {s, t}. Accordingly we choose one of the
components Ni and try to move the subgraph induced by Ni and the subgraph induced by
Ni ∪ {s, t}.

4.3 PrEd
After a few edge iterations of the Gcm algorithm, the ratio between the different edge
lengths in G becomes high and some nodes are positioned very close to each other. This
effect is even strengthened if Gcm moves subgraphs, because in this case whole subgraphs
are moved into the face of an arrangement. Due to this problem we use a force directed
method, called PrEd, in each edge iteration of Gcm if contraction of subgraphs is used or
many nodes are moved in one edge iteration. This is the case if one of the node orders
High-to-Low, Low-to-High or Random is employed.

In the following we shortly explain the algorithm PrEd by Bertault which is a force-directed
drawing algorithm that preserves crossings [Ber99]. More precisely if two edges cross in the
initial drawing, they also cross in the final drawing produced by PrEd. This means PrEd
does not improve the rectilinear crossing number of the final drawing produced by Gcm.
It only improves the drawing in symmetry and uniformity of edge lengths.

PrEd is a force-directed drawing algorithm, which means forces are iteratively applied to
the position of nodes. As it is common among force directed algorithms, PrEd applies
attractive forces between nodes which are connected by edges, repellent forces between
nodes and repellent forces between nodes and edges. In order to preserve the crossings of
the drawing the amplitudes of a node movement are restricted. In order to realize this
restriction, PrEd identifies eight zones for each node v ∈ V , such that v can be moved
inside of the zone without changing the crossings of the drawing. The zones Z1

v , ..., Z
8
v are

sectors of circles with midpoint v and the same central angle, but different radii R1
v, ..., R

8
v

emanating from v. When forces are applied the direction of the force and, therefore, the
sector Ziv is determined which includes this direction. The amplitude of the force is then
bounded by the radius Riv. A detailed description on how the different radii are computed
can be found in [Ber99].

4.4 Edge Order Post-processing
The idea of the edge-order post-processing is to iteratively delete and reinsert a set of edges
subsequent to the Gcm algorithm. A post-processing strategy varies in the number and
order of edges, which are deleted and reinserted into the graph. Similarly to the node-order
strategies, we want to compute an edge order based on geometric criteria. One idea is to
order the edges according to the number of crossings they cause from low to high. We
call this order Low-to-High order. Similar to the node-order strategies, another idea is to
order edges from high to low. This strategy is called High-to-Low. For practical reasons we
delete and reinsert only up to 10 edges.
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Rectilinear crossing minimization is a very difficult problem. In fact rectilinear crossing
minimization is NP-hard and ∃R-complete. We are not able to show any theoretical
performance guarantees for our heuristic Gcm. However, we evaluate Gcm on a variety of
different graph classes with several statistical methods to be able to rank its performance
in comparison to other rectilinear drawing algorithms.

In section 5.1 we describe the experimental setup. Thereupon, in section 5.2 we precisely
describe the conducted statistical experiments and evaluate their results.

5.1 Experimental Setup
In this section we describe the experimental setup. More precisely, we characterize the
considered graph classes, the comparison algorithm and determine some fixed parameters
of Gcm. Subsequently we describe the considered configurations which emanate from the
remaining open parameters of Gcm.

All experiments were conducted on an AMD Opteron Processor 6172 with four 12-cores
clocked at 2.1 GHz. All algorithms were compiled with g++ version 4.8.5 with compile flags
-std=c++11 -DNDEBUG -O3.

5.1.1 Graph Classes

We conduct our experiments on three sets of graphs in order to cover a variety of non-planar
graphs, with different properties. Gcm reinserts a number of edges into a maximally planar
subgraph GP of a graph G. This number ε of edges is a good approximation for the degree
of non-planarity of G. In order to evaluate Gcm, we want to consider graphs with different
degrees of non-planarity. We will now first present the different graph classes and some of
their theoretical properties. Subsequently we will describe the concrete benchmark sets
obtained from these graph classes.

Our first idea is to generate planar graphs and add edges uniformly at random. Since
Gcm minimizes crossings, we want these edges to cause crossings. For this reason we want
to generate triangulated graphs. A triangulated graph is a planar graph, if adding an
arbitrary additional edge results in a non-planar graph. Therefore, these graphs are also
called maximal planar. In particular we generate all planar triangulated graphs with 64
nodes with the tool-kit plantri [BM+07]. Each of these graphs has the same edge number,
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because m = 3 · n− 6 holds for triangulated graphs, where n is the node number and m
the edge number of G. We add 10 edges uniformly at random to each graph, thus they all
have the same density. We refer to these graphs as Plantri graphs throughout this chapter.

The Rome graphs1 data set is a set of 11.534 graphs with a node number between 10
and 100. Gutwenger et al. used this data set to evaluate their edge insertion algorithm
[GMW05].

The NetworKit graphs data-set is motivated by the aim to evaluate Gcm on graphs with
a community structure. The term community structure is not a mathematically precise
notion. But a graph with a community structure is said to have similar properties as a
real-world network. More precisely, a graph with a community structure has communities
with different sizes and a heterogeneous distribution of node degrees. A community is
a set of nodes which is internally densely connected by edges. In order to generate the
NetworKit graphs, we use the LFR-Generator according to [LFR08] implemented in
NetworKit [SSM14]. For each of the NetworKit graphs the number n of nodes is 100.

From all these sets of graphs, we choose 100 graphs uniformly at random and refer to each
of these random subsets as Plantri-100, Rome-100 and NetworKit-100.

Plantri graphs

Figure 5.1 shows the distribution of the number ε of deleted edges on the graphs Plantri-100.
Because the Plantri graphs are triangulated graphs, to which we added random edges,
none of these graphs is planar. Moreover, in comparison to the other graph classes the
number of deleted edges ε is rather high. Note, that as explained in Section 5.1.3 we use a
method that does not necessarily identify a maximum planar subgraph, otherwise ε would
be exactly 10 for each Plantri graph. The graph size m+ n of each graph contained in the
Plantri-100 is 196.

0.0

2.5

5.0

7.5

10.0

20 25 30 35 40
|E+|

co
un

t

Figure 5.1: Distribution of deleted edges on Plantri-100

Rome graphs

Figure 5.2(a) shows, that there are at least 34 planar graphs in our Rome-100 graphs.
Moreover, the highest number of inserted edges is 18. On average the Rome-100 have a
much lower number of inserted edges than the Plantri-100. Figure 5.2(b) depicts the size of
a graph against its number of deleted edges ε. On the Rome-100 there is an approximately

1The Rome graphs data-set is currently available via http://www.dia.uniroma3.it/people/gdb/wp12/undirected-
1.tar.gz
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linear relationship between the graph size m+ n and ε. The Rome-100 contain graphs of a
size from 18 to 272. There are 87 different graph sizes among these graphs.
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(b) Deleted edges per m + n

Figure 5.2: Rome-100

NetworKit graphs

Figure 5.3(a) shows the distribution of ε on the NetworKit-100. The range of ε reaches
from 8 to 27 and the average ε is higher than on the Rome-100 but lower than on the
Plantri-100. The graph size m+ n on the NetworKit-100 reaches from 224 to 248 as can
be seen in figure 5.3(c). The average graph size of the NetworKit-100 is higher than on the
other graph sets even though the average ε is lower than on the Plantri-100. Again the
relationship between the graph size m+ n and ε can be seen to be linearly increasing in
figure 5.3(b).
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5.1.2 Comparison Algorithm

Our main comparison algorithm is the spring embedder by Fruchterman-Reingold [FR91],
which we call SpringEmbedder from now on. The SpringEmbedder belongs to the
family of force-directed drawing algorithms. Force-directed drawing algorithms are relatively
fast and produce drawings, that are aesthetically pleasing and have a low crossing number.
Moreover, they are commonly used in practical graph-drawing applications. This makes
these drawing algorithms good comparison algorithms for Gcm.

The most common force-directed drawing algorithms are the spring embedders by Fruchter-
man and Reingold [FR91], Kamada-Kaway [KK89] and the simulated annealing approaches
by Tutte [Tut63], Davidson-Harrel [DH96] and stress minimization by Gansner et al.
[GKN05] all of which are implemented in OGDF. We compared all of these implementations
against each other on the Rome-100 benchmark set with respect to the produced crossing
number. Both spring embedders require an initial drawing and both produce the lowest
crossing numbers with stress minimization as their initial drawing. By comparing all the
force-directed methods implemented in OGDF, we find that SpringEmbedder produces
the lowest amount of crossings on average. This justifies, that we choose SpringEmbedder
as our main comparison algorithm.

5.1.3 Parameters

In this section we describe the configurations of Gcm, which we consider in our experiments.
As explained in section 3, Gcm uses a two-phase approach. In the first phase a planar
subgraph is extracted and this subgraph is drawn. Subsequently the edge-insertion step is
performed. Our major contribution to this approach is the edge-insertion step. For the
first step we use common algorithms for finding a planar subgraph and draw it in the plane.
In particular there are two algorithms we have to choose for this step:

1. a heuristic for computing a maximum planar subgraph G∗ = (V ∗, E∗).

2. a planar drawing-algorithm for finding an initial drawing of G∗ in the plane.

Fur the purpose of computing the planar subgraph G∗, we restrict ourselves to algo-
rithms implemented in OGDF [CGJ+11]. There are three algorithms for computing G∗
implemented in OGDF.

1. FastPlanarSubgraph

2. MaximumPlanarSubgraph

3. MaximalPlanarSubgraphSimple

We choose the FastPlanarSubgraph algorithm, since it produces rectilinear drawings
with less crossings than MaximalPlanarSubgraphSimple and equally many crossings
as MaximumPlanarSubgraph on average on the Rome-100, but needs less time. Note,
that FastPlanarSubgraph is only a heuristic and does not necessarily identify the
maximum planar subgraph of a graph G.

We choose PlanarStraightLayout as initial layout, because the SpringEmbedder
achieves the best results on the Rome-100 with this initial layout. As already mentioned
we want to compare our algorithm Gcm to SpringEmbedder.

There are three free parameters of Gcm:

1. the node order in which nodes are moved after each edge-reinsertion. The different
node-ordering strategies were already discussed in Section 4.1. The node order can be
chosen from the following four node ordering strategies: High-to-Low, Low-to-High,
Endpoints and Random.
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2. whether or not a subgraph is moved to a good position after each edge-reinsertion. A
detailed description of this strategy to find and move a subgraph can be found in 4.2.
This means subgraph strategy is a boolean parameter and can only take the values
true and false which indicates whether the strategy is used or not.

3. the different edge-order post-processing strategies as discussed in Section 4.4. Subse-
quently, the edge-order post-processing strategy can be chosen from: High-to-Low,
Low-to-High or None.

5.1.4 Configurations

Because of the high number of free parameters we want to find the most promising node
order before our final evaluation.

In order to choose a suitable node order we compare all node-ordering strategies on the
Rome-100 benchmark set. For this purpose, we choose the following set of configurations
and compare the average crossing number of their resulting drawings on the Rome-100
graph set:

NodeOrder Subgraph EdgeOrder
Gcm-Low-NodeOrder Low-to-High+EP false None
Gcm-High-NodeOrder High-to-Low+EP false None
Gcm-Random-NodeOrder Random+EP false None
Gcm-Base-NodeOrder Endpoints false None

Table 5.1: NodeOrder Configurations

.

We shortly recapitulate the different node-ordering strategies as explained in section 4.1.
The strategy Endpoints only moves the endpoints of a newly inserted edge e. Whereas
High-to-Low+EP and Low-to-High+EP first move both endpoints of e. Afterwards both
strategies order the nodes according to the number of adjacent edges that cross e from
high to low and respectively from low to high. Subsequently nodes are moved according to
this order until there are no more nodes with adjacent edges crossing e, or 10 nodes have
been moved. Random+EP first moves both endpoints and subsequently moves 10 nodes
uniformly at random.

Table 5.1.4 shows, that Gcm-High-NodeOrder performs best in terms of the average
crossing number on Rome-100. Given that the Gcm-Base-NodeOrder strategy moves
only two nodes, whereas the other node-ordering strategies move up to 12 nodes, it still
performs suprisingly well on the Rome-100 graph set. Moreover, we expect Gcm-Base-
NodeOrder to have the best running time among the node-ordering strategies. Therefore,
we restrict ourselves to the node order High-to-Low+EP and the basic node order Endpoints.

Configuration avg. crossing-number
Gcm-Low-Nodeorder 11.67
Gcm-High-Nodeorder 11.62
Gcm-Random-Nodeorder 13.42
Gcm-Base-Nodeorder 14.74

Table 5.2: NodeOrder Configurations
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This leaves us with the following set of configurations:

NodeOrder Subgraph EdgeOrder
Gcm-Contract Endpoints true None
Gcm-Contract-High Endpoints false None
Gcm-Base High-to-Low+EP true None
Gcm-Base-High High-to-Low+EP false None

Table 5.3: Final Configurations

5.2 Evaluation
In this section we evaluate our configurations of Gcm. In subsection 5.2.1 we choose two
statistical tests that fit our main purposes for this evaluation. Subsequently, we compare
our configurations of Gcm pairwise against each other and SpringEmbedder on all three
graph classes in subsection 5.2.2. To this end we perform the previously chosen statistical
test in an adapted form. The chosen statistical procedure was first used by Radermacher
[Rad15]. Furthermore, we test the hypothesis that the difference in crossing number
between a drawing of SpringEmbedder and Gcm of the graph G is positively correlated
with the density of G in section 5.2.4. In the following sections 5.2.3 and 5.2.5 we try to
estimate whether the solutions of Gcm are close to optimal. We do not know the rectilinear
crossing number for graphs contained in one of our three graph classes. We neither have a
non-asymptotic approximation of the rectilinear crossing number. Therefore, we compare
the best of our configurations of Gcm to Gutwenger’s edge insertion algorithm in 5.2.3.
For the complete graphs Kn with n ≤ 100 we have very close bounds for the rectilinear
crossing number. In section 5.2.5 we, therefore, test our heuristic on the complete graphs
Kn with n ≤ 30. Finally, we compare the running time of our configurations in 5.3.

5.2.1 Statistical Tests

Our evaluation mainly focuses on comparing the resulting drawings of two algorithms on
the same input graph. More precisely, we would like to decide whether one algorithm
produces straight-line drawings with a significantly lower crossing number on a class of
graphs than a second algorithm. There are different measures, which can be compared
when deciding whether one set of straight-line drawings has less crossings than another.
The first measures, that come to mind are the mean or the variance of both test sets.
However, we want to guarantee that one of the algorithms is significantly better on a
large ratio of these input graphs. Both, the mean value and the variance can be strongly
influenced by outliers. A more stable measure is whether or not one algorithm outperforms
the other algorithm on more than 50% of the samples.

For the purpose of testing whether the resulting drawings of two algorithm differ with
statistical significance on a certain graph class, we use the method of hypothesis testing.
The book Handbook of parametric and nonparametric statistical procedures by David J.
Sheskin [She07] gives an overview on hypothesis testing. The book [She07] recommends
the test The Binomial Sign Test for Two Dependent Samples for our purpose, because the
distribution of the crossing number on arbitrary straight-line drawings is not known.

The second part of our evaluation focuses on measuring the correlation between different
random variables. In particular our aim is to measure the correlation between a certain
property of the input-graphs and the performance of the Geometric Crossing Minimization
algorithm 4.1. In statistical terms we want to measure the correlation between two random
variables X and Y on the same set of samples.
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The book [She07] recommends three tests for this purpose.

1. Spearman’s Rank-Order Correlation Coefficient

2. Kendall’s Tau

3. Goodman and Kruskal’s Gamma

We choose Spearman’s rank-order correlation coefficient for our intention, because it is the
most commonly used test among the three. Spearman’s rank-order correlation coefficient
is designed to detect a significant correlation between both variables. More precisely, it
approximates the correlation ρ between X and Y by a coefficient r and decides whether
there is a significant correlation between the two variables based on the approximation r.

In the following we will apply the binomial sign test and spearman’s correlation coefficient
on the graph classes Plantri, NetworKit and Rome with the sample sets Plantri-100,
NetworKit-100, Rome-100. The only assumption which has to be fulfilled in order to apply
the binomial sign test and spearman’s correlation coefficient is, that the sample set is
chosen uniformly at random from the underlying class. This assumption is clearly fulfilled,
because each of the sets Plantri-100, NetworKit-100 and Rome-100 is chosen uniformly at
random from the respective graph class.

5.2.2 Pairwise Comparison of Configurations

In this section we compare our chosen configurations and the SpringEmbedder pairwise
against each other based on the crossing number of their drawings on the graph sets
Plantri-100, NetworKit-100 and Rome-100. For this purpose we perform the adapted
binomial sign test as explained in section 5.2.1 for these pairs of configurations on each
graph set respectively. More precisely, in order to find the maximum factor δmax, such that
A1 outperforms A2 by the factor δmax we proceed as follows.

The set of sample graphs GS is divided into a set of training graphs GTraining and a set of test
graphs GTest. In particular we randomly assign 20% of the sample graphs to GTest and 80%
of the sample graphs to GTraining. On the set GTraining we compute the maximum factor
δmax such that the hypothesis Hp

δmax
holds with a binary search. Subsequently we compute

δTest = 3
4 · δmax and test the hypothesis Hp

δT est
on GTest. If this hypothesis is accepted by

the test Bin(GTest, p, 0.05), we can be sure that algorithm A1 outperforms algorithm A2
on the graph class G by a multiplicative factor of δTest with statistical significance. This
procedure is done for all p ∈ {0.25, 0.5, 0.75} such that we get a factor δTest for each of
these values of p.

This way we obtain three matrices for each graph set. For example figure 5.4 shows the
three matrices associated with the graph set Plantri-100. Each of them contains the
resulting factors δTest of an adapted binomial sign test on all pairs of algorithms employed
with probability p = 0.25, p = 0.5 and p = 0.75 respectively. More precisely the value in
column algorithm A and row algorithm B of one of these matrices represents the factor
δTest which is the result of a an adapted binomial sign test employed with probability p. A
red cell reports, that the hypothesis Hp

δT est
is rejected on the test set GTest whereas a green

cell represents the hypothesis Hp
δT est

being accepted on GTest. An empty cell reports that
there cannot be found a factor δmax ≥ 1 such that A1 outperforms A2 by the factor δmax
on the training set GTraining.

Plantri

Figure 5.4 shows the resulting matrices on the graph class Plantri. It can be seen, that
with an increasing p the factors tend to decrease. We first take a closer look at figure 5.4(a).
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The matrix shows, that all chosen configurations outperform the SpringEmbedder by a
factor of at least 1.42 and the SpringEmbedder outperforms none of our configurations.
Moreover, Gcm-Base-High seems to outperform all other configurations. Furthermore we
recognize, that Gcm-Contract and Gcm-Contract-High outperform Gcm-Base but
with a lower factor than Gcm-Base-High. This trend is confirmed in 5.4(b) and 5.4(c),
although there is no significant difference between Gcm-Base-Contract and Gcm-Base
if p = 0.5. Nevertheless, if p = 0.5 Gcm-Base outperforms SpringEmbedder by a factor
of 1.42 and Gcm-Contract-Base outperforms SpringEmbedder by a factor of 1.63.
It is remarkable, that Gcm-Base-High outperforms SpringEmbedder on a ratio of at
least 0.5 of the Plantri graphs by a factor of 1.83 and by a factor of 1.6 on a ratio of at
least 0.75 of the Plantri graphs.
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Figure 5.4: Binomial Test on Plantri

NetworKit

Figure 5.5 shows the matrices for the graph class NetworKit. Overall on the NetworKit
graphs our configurations do not perform as good as on the Plantri graphs compared to
SpringEmbedder. In figure 5.5(b) we can only find a significant factor of 1.04 for the
Gcm-Base configuration and a factor of 1.3 for Gcm-Base-High. Our hypothesis was, that
our configurations perform better on dense graphs in comparison to SpringEmbedder.
This hypothesis will be evaluated in the next section 5.2.3. Again also on the NetworKit
graphs Gcm-Base-High seems to be the configuration, that performs best.
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Figure 5.5: Binomial Test on NetworKit
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Figure 5.6: Binomial Test on Rome

Rome

Figure 5.6 shows, that on the Rome graphs Gcm-Base-High and Gcm-Contract-Base
outperform SpringEmbedder by factors of 1.12 and 1.15, whereas Gcm-Base and Gcm-
Contract-High only outperform SpringEmbedder by lower factors. The configurations
among each other show no significant factors. One reason for this could be, that there are
30% planar graphs in our Rome-100 benchmark-set, which are all drawn planar by our
configurations and therefore have 0 crossings.

From this pairwise comparison of our configurations we conclude, that Gcm-Base-High
is the most promising configuration. Therefore, we conduct the following tests only on
the best configuration Gcm∗ = Gcm-Base-High. Figure 5.7 shows the drawings of the
same Plantri graph by Gcm-Base-High and Gcm-Base. It can be seen, that there are
nodes in the drawing of Gcm-Base which are not in their locally optimal position. On
this graph is makes sense to move more nodes to their locally optimal position.

5.2.3 Comparison to Edge Insertion

Gutwenger’s edge-insertion algorithm, named Gutwenger from now on, is a heuristic
for finding a crossing-minimal drawing D of a graph G. The drawing D is not necessarily
straight-line in this case. This means the edges of G can be represented by arbitrary
topological Jordan-Curves.

The idea of Gutwenger is an edge-reinsertion strategy. In a first step a planar subgraph
G∗ is extracted from G. Subsequently the remaining edges are reinserted into G∗ such
that the crossing number stays low. The step is called edge-reinsertion step. Gutwenger’s
edge-reinsertion step iterates over all possible drawings D∗ using an SPQR-tree and inserts
the current edge e optimally into D∗ by computing the shortest path in the dual graph of
G. A more detailed summary on Gutwenger’s edge-insertion algorithm can be found in
section 1.1.

The study of Gutwenger and Mutzel [GM03] compares different configurations of Gutwenger’s
edge-insertion algorithm. According to this study the resulting drawing of Gutwenger
can be remarkably improved by post-processing, that deletes and reinserts a part of the
edges after each edge-reinsertion. Furthermore, the whole process of deleting and reinsert-
ing edges into G∗ can be repeated multiple times with different permutations of the edge
order. The permutation variant of Gutwenger keeps the best result of these different
permutations. According to the experiments in [GM03] Perm-20 is the best configuration
among the different permutation variants.
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(a) Gcm-Base-High, 131 crossings

(b) Gcm-Base, 170 crossings

Figure 5.7: The drawings Gcm-Base-High and Gcm-Base on the same Plantri graph

As comparison algorithm, we choose Gutwenger with Perm-20 and with the edge-
reinsertion strategy rrMostCrossed, which reinserts edges with the most crossings first.
We use the implementation of Gutwenger in OGDF [CGJ+11]. In particular we use the
SubgraphPlanarizer with 20 permutations together with the VariableEmbeddin-
gInserter with the RemoveReinsert-option rrMostCrossed and FastPlanarSub-
graph.
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In this section we compare Gutwenger to Gcm∗ = Gcm-Base-High. For this purpose
we consider the difference dG = crGcm∗ − crGutwenger, where crGGcm∗ is the crossing number
of the straight-line drawing of G produced by Gcm∗. Analogously crGutwenger is the
crossing number of the straight-line drawing of G produced by Gutwenger.

Because Gutwenger is a heuristic for topological crossing minimization we expect Gcm∗
to produce more crossings. We consider Gutwenger more as a baseline which we would
like to reach. Figure 5.8(a) shows, that on the Rome-100 Gutwenger and Gcm∗ produce
drawings with almost the same amount of crossings and figure 5.9 shows, that for most of
the graphs the difference dG is below 10 and for a few graphs dG is negative.

On the Plantri-100 the average difference dG is approximately 30, as can be seen in 5.8(b).
Figure 5.9(b) shows that for the majority of graphs the difference dG is below 50 and for
one graph dG is negative.
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Figure 5.9: difference in crossing number between Gcm-High and Gutwenger

5.2.4 Correlation

We have seen in section 5.2.2, that Gcm-Base-High = Gcm∗ is our best configuration
concerning quality. Moreover, we have seen, that Gcm∗ performs better on the Plantri
graphs than on the NetworKit graphs or on the Rome graphs. The Plantri graphs
have a higher density, than most NetworKit graphs. This is why we suspect, that the
density ρ = 2|E|/(|V | · |V | − 1) of a graph G correlates positively with the difference
dG = crGSpring− crGGcm∗ , where crGSpring is the crossing number of the final straight-line
drawing of G by the SpringEmbedder. Analogously crGGcm∗ is the crossing number of
the final straight-line drawing of G by Gcm∗. Based on this presumption, we deploy the
following hypothesis:

H0 : The density ρ of a graph G is positively correlated with the difference dG.

But the spearman’s rank-order correlation coefficient described in section 5.2.1 rejects this
hypothesis on all three graph classes. Figure 5.10 suggests, that the difference dG may be
positively correlated with the number of inserted edges |E+| rather than with the density.
We therefore deploy the following new hypothesis.

H0 : The number of inserted edges |E+| is positively correlated with the difference dG.

This hypothesis is accepted by spearman’s rank-order correlation coefficient on the Net-
worKit graphs and on the Rome graphs, but rejected on the Plantri graphs.
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Figure 5.10:

5.2.5 Complete Graphs

There are no known lower or upper bounds for the rectilinear crossing number of arbitrary
graphs. Therefore, it is impossible to estimate how close our configurations are to an
optimal solution. Nevertheless, for the family of complete graphs Kn there is a collection
of proven lower and upper bounds for the rectilinear crossing number of Kn. These upper
and lower bounds are summarized on the website of the rectilinear crossing number project
[Aic13]. The lower and upper bounds of Kn for n ∈ {1, .., 100} are collected on this website.
In this section we want to evaluate Gcm on the graphs K1, ...,K100 and compare the
resulting crossing numbers to the highest currently known theoretical lower bound.

For the family of complete graphs, the edge number increases quadratic with the node
number n of Kn. Subsequently even our basic configuration Gcm-Base needs a running
time of 226 minutes to draw K30. Our best configuration Gcm-High has an even higher
running time as analyzed in Section 5.3. Therefore, we restrict our evaluations to Gcm-
Base and the complete graphs K1, ...,K30. These graphs are called Complete-30 from
now on. For completeness we also compare Gcm-Base to SpringEmbedder. For most
cases of Kn with n ∈ {1, ..., 100}, the upper bound u and the lower bound l are tight and
u = l = c∗, where c∗ is the actual minimum rectilinear crossing number of Kn. The only
exceptions are K28 and K29, where there is a difference between the currently known upper
bound and the currently known lower bound.

Figure 5.11 compares four pairs of algorithms
A1, A2 ∈ {Gcm-Base,SpringEmbedder,Lower-Bound,Gutwenger}. All sub-figures
in Figure 5.11 show the difference dG = crGA1

− crGA2
on graph G between algorithm A1 and

algorithm A2 on the y-axis and the number of nodes n on the x-axis.
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Figure 5.11(a) shows, that Gcm-Base is very close to the optimal lower bound. In
particular up to n = 11 Gcm-Base finds the optimal drawing of Kn. Moreover, except
for 4 outliers the crossing number produced Gcm-Base is only up to 2.5% higher than
the optimal lower bound and on all graphs Gcm-Base is only up to 11% higher, than the
optimal lower bound.

Figure 5.11(b) shows, that the difference dG between SpringEmbedder and Gcm-Base
increases monotonic with n. Furthermore, on all graphs the crossing number of the straight-
line drawing produced by SpringEmbedder is at least 1.9 times as high as the crossing
number of the straight-line drawing produced by Gcm-Base.
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Figure 5.11:

One reason for the bad performance of the SpringEmbedder on complete graphs is, that
the SpringEmbedder draws complete graphs very symmetric. Because each two nodes
are connected by an edge in a complete graph, the nodes tend to be placed in a circle such
that each two nodes have approximately the same distance towards one another. Figure
5.11 shows an example-drawing.

(a) Gcm-Base on K8 (b) SpringEmbedder on K8

Figure 5.12: The resulting drawing of Gcm-Base on K8 has 19 crossings, whereas the
drawing by SpringEmbedder on K8 has 58 crossings.

5.3 Running Time
In this section we compare the running time of Gcm-Base and Gcm-Base-High. Both of
them have a theoretical running time of O(m · (degmax ·m)2) with degmax denoting the
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maximal degree of a node of G. But in practice we expect Gcm-Base to be faster than
Gcm-Base-High, because it passes less iterations of moving a node to its locally optimal
position.

Running Time per Node Movement

Figure 5.13 shows the running time of Gcm-Base per node movement. Each point in
the plane represents a graph. The x-coordinate of this point represents the graph’s size
m + n, whereas the y-axis represents the average running time of one node movement
of Gcm-Base. Since a node movement has a theoretical worst-case running time of
O((degmax ·m)2), we would expect the graph size to have a quadratic relationship to the
running time. We observe from figure 5.13 that on our instances the relationship looks
rather sub-quadratic. Nevertheless, figure 5.13 shows, that there is a monotonic relationship
between the graph size m+ n and the average running time per node movement. Since
the graphs of Plantri-100 all have the same graph size m + n there are only plots for
NetworKit-100 and Rome-100.
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Figure 5.13: Running time per node movement of Gcm-Base

Running Time per Edge Insertion

Figure 5.14 consists of three figures 5.14(a), 5.14(b) and 5.14(c) and compares the average
running time per edge insertion of Gcm-Base and Gcm-Base-High on the Rome-100,
Plantri-100 and the NetworKit-100 respectively. In each of these figures a point represents
a graph and the y-axis represents the running time in seconds. In figure 5.14(a) and figure
5.14(b) the x-axis represents the graph size m+n. Due to the fact, that all graphs contained
in the Plantri-100 have the same graph size, we choose the number of edge insertions |E+|
as x-axis for figure 5.14(c).

On the Rome-100 Gcm-Base has nearly the same running time per edge insertion as
Gcm-Base-High. This makes sense, because on the Rome-100 Gcm-Base-High has
no significant advantage concerning the quality over Gcm-Base. We assume, that Gcm-
Base-High performs nearly the same number of node movements per edge insertion as
Gcm-Base, because this suffices to reduce the crossings with the newly inserted edge.
Again there is a positive monotonic relationship between the graph size m + n and the
running time per edge insertion.

Furthermore, 5.14 shows, that on the NetworKit-100 the average running time per edge
insertion of Gcm-Base is higher than the respective running time of Gcm-Base-High.
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Figure 5.14: Running time per Edge-Iteration, Gcm-Base vs. Gcm-Base-High

Moreover, the difference of these running times seems to be constant. On the Plantri-100
Gcm-Base-High lies between 120 and 230, whereas the running time of Gcm-Base is
smaller than 100 for each graph.

Running Time per Graph

Figure 5.15 compares the running time of Gcm-Base and Gcm-Base-High per graph.
Because the theoretical running time of Gcm-Base is O(m · (degmax ·m)2) we would expect
the running time to be a polynomial of degree 3 in the graph size m+ n. In figures 5.15(a)
and 5.15(b) we can at least observe a positively monotonic relationship between the graph
size m+ n and the running time. Moreover, Figure 5.15(c) shows an approximately linear
relationship between the number of inserted edges |E+| and the running time per graph.

Expectedly on all three graph classes Gcm-Base-High has a higher running time than Gcm-
Base. On the Plantri-100 graphs the running time of Gcm-Base-High is approximately
twice as high as as on Gcm-Base.
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Figure 5.15: Running time per graph, Gcm-Base vs. Gcm-Base-High
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6. Conclusion

Rectilinear crossing minimization is an NP-hard [Bie91] and further ∃R-complete [Sch09].
For this reason, there is only a small chance to find a polynomial-time algorithm which
computes a straight-line drawing of a graph G that realizes the rectilinear crossing number
cr(G). Gutwenger et al. have put much effort into designing a heuristic for computing a
topological drawing which realizes the crossing number cr(G) of a graph G [GMW05]. We
are not aware of any similar heuristic for rectilinear crossing minimization which focuses on
minimizing the crossings only. There is one approximation-algorithm for rectilinear crossing
minimization which has been proposed recently by Fox et al. More precisely, they describe
a polynomial-time algorithm which computes a drawing with cr(G) + O(n4/(loglogn)δ)
crossings [FPS16, Thm. 1]. This result describes an asymptotic approximation but is not
shown to minimize crossings in practice.

We developed a heuristic called Gcm for rectilinear crossing minimization, we pursued an
approach inspired by Gutwenger et al. [GMW05]. The idea is to first extract a maximum
planar subgraph G∗ of G, draw G∗ without crossings and iteratively reinsert the missing
edges into G∗. After each edge reinsertion we try to reduce the crossings by moving nodes to
their crossing-minimal position. We identified several node orders in which these nodes can
be moved. We found that, the best variant among these is to order nodes according to the
number of crossings which are caused by an incident edge from high to low. Furthermore
we proposed a way to move whole subgraphs at once in order to escape from locally optimal
node placements.

We evaluated these configurations of Gcm against some comparison algorithms. For the
choice of this comparison algorithm, we restricted ourselves to rectilinear drawing algorithms
implemented in the commonly known graph drawing framework OGDF. More precisely
we chose the spring embedder by Fruchterman and Reingold with stress minimization as
initial layout, which produces the lowest number of crossings on average on the Rome-
100 benchmark-set. For the evaluation of our configurations of Gcm against the spring
embedder, we took a statistical approach. We were able to show with statistical testing,
that all our configurations produce drawings with significantly less crossings than the
spring embedder. Furthermore, we found that the best configuration does not move whole
subgraphs. Moving whole subgraphs does improve the results, but only if few nodes are
moved in each iteration. It has a positive effect to apply a force-directed algorithm which
preserves the crossings in each iteration.
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6. Conclusion

6.1 Outlook and Future Work
One drawback of our heuristic Gcm is certainly its running time of O((m · degmax)2)) for
one node movement. In order to reduce this running time, one approach is to select a small
set of inactive edges to build A(G, s). The theory of ε-nets tells us that we still find a point
with a small number of crossings with high probability. It would be interesting to evaluate
this idea in practice.

Furthermore, moving whole subgraphs in a drawing did not improve the crossing number
as much as we expected. One reason for this result is that if Gcm determines a subgraph
G∗ with many nodes and edges, some of these edges tend to cross G∗. This issue is fixed
with local improvements but, nevertheless, can affect the number of crossings in the final
drawing negatively. We presume that moving smaller subgraphs could help to solve this
problem. The critical parameter for running time of Gcm is the number of edges. We
cannot compute drawings with Gcm in reasonable time for graphs with more than 1000
edges. One idea to handle greater graphs is to employ a multilevel approach. More precisely
a multilevel partition could be used. The algorithm starts with the coarsest partition and
contracts all nodes in a cell into one node. In each iteration the nodes are recontracted to
the next finer level of the multilevel partition.
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