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Abstract

In this thesis we study the problem of computing a straight-line representation
of a planarization with a fixed combinatorial structure. By the results of Mnëv
[Mnë88] and Shor [Sho91] this problem is as hard as the Existential Theory of the
Reals (∃R-Complete). We present a heuristic called Geometric Planarization Drawing
to compute a straight-line representation of a planarization. We take an iterative
approach inspired by a force-directed method utilizing geometric operations to place a
vertex to a locally optimal position. The core of our algorithm is the planarity region,
in which we can move a vertex without changing the embedding. We take a statistical
approach to evaluate the final drawings of different configurations of our Geometric
Planarization Drawing approach. The evaluation shows that we improve the initial
drawing, and find better results than our implementation of a force-directed method
based on PrEd [Ber99]. Depending on the number of crossings per edge, a relaxation
of the constraints improves the final drawing. To the best of our knowledge, the
Geometric Planarization Drawing approach is the first heuristic to tackle the problem
of straight-line representations of a planarization. In practice, our algorithms finds
close to optimal solutions for drawings with at most 3 crossings per edge.

Deutsche Zusammenfassung

In dieser Arbeit untersuchen wir wie sich geradlinige Zeichnungen von Planarisierung
berechnen lassen. Mnëv [Mnë88] und Shor [Sho91] konnten zeigen, dass dieses Prob-
lem so schwer ist wie die Existential Theory of the Reals (∃R-vollständig). Wir stellen
eine Heuristik zum geradlinigen Zeichnen von Planarisierung vor. Unser Geoemtric
Planarization Drawing Ansatz geht iterativ vor, ähnlich zu einem kräftebasierten
Verfahren. Wir nutzen geometrische Operationen um nacheinander Knoten zu einer
lokal optimalen Position zu verschieben. Der Kern unseres Verfahrens ist die Pla-
narity Region. Diese Region beschreibt die einbettungserhaltenen Positionen eines
Knotens. Wir werten die finalen Zeichnungen verschiedener Konfigurationen unseres
Verfahrens anhand von statistischen Tests aus. Unsere Auswertung zeigt, dass wir
eine signifikante Verbesserung der initialen Zeichnungen erreichen und wir bessere
Resultate als unsere Implementierung des kräftebasierten Verfahren PrEd erzielen.
Abhängig von der Anzahl an Kreuzungen auf einer Kante führt eine Relaxierung
unserer Einschränkungen zu einer Verbesserung der Zeichnungen. Nach unserem
Wissensstand ist unser Geometric Planarization Drawing Ansatz die erste Heuris-
tik zum Berechnen (möglichst) geradliniger Zeichnungen von Planarisierungen. In
der Praxis erreicht unser Verfahren (fast) optimale Lösungen für Zeichnungen mit
maximal 3 Kreuzungen auf einer Kante.
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1. Introduction

Data analysis is an important part of many scientific fields. A great part of data in
research can be described as a graph. For example, UML-diagrams in software engineering,
protein-protein interaction networks in biology, or social interaction in sociology. For most
people it is hard to extract useful information out of a graph by looking at pure data. Thus,
visualizing data and graphs plays a key role in data analysis and in the understanding
of relationships. Planar graphs are a well studied family of graphs. The drawing of a
planar graph is intersection-free and thus, it is easy to track the pathways of the edges. In
many application the underlying graph is not planar and the significance of minimizing the
number of crossings becomes of an important factor. For non-planar graphs, minimizing
the number of crossings in the drawing of a graph improves the readability of the layout
significantly [Pur97]. Depending on the application, a specific representation of the graph
might be preferable. Figure 1.1 depicts different drawings of the complete graph K5 with
five vertices. It might be desirable to find a straight-line drawing of a non-planar graph
with a minimum number of crossings. An embedding of a graph with a minimum number
of crossings does not have to admit a straight-line drawing with the same number of
crossings [Guy72]. For example, the complete graph K8 with eight vertices has a rectilinear
crossing number of 19 and a crossing number of 18. Thus, we can restrict the crossing
number problem to straight-line drawings and ask for the minimum number of crossings of
a straight-line drawing of a graph G. This problem is known as the rectilinear crossing
number problem. Both problems, the crossing number problem and the rectilinear crossing
number problem are NP-hard [Can88, Bie91].

Thus, we cannot hope for an efficient algorithm that computes a drawing of a graph with
a minimum rectilinear crossing number. Nevertheless, there are well known algorithms
that compute a planarization of a graph with a small number of crossings. These methods

Figure 1.1.: Different drawings of the complete graph K5 with five vertices.
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1. Introduction

extract a maximal subgraph from a graph G and reinsert the missing edges into the graph
so that these edges have small number of crossings [GMW05]. The result is a planar graph
Gp with dummy vertices at the crossings. Our idea is to utilize these topological results
and compute a geometrical embedding of the planarization with the same combinatorial
structure. In the underlying optimization problem we are interested in whether or not
there is a straight-line representation of the planarization with the same combinatorial
structure of the planarization. Unfortunately, this problem can be reduced to a NP-hard
problem called stretchability [Mnë88, Sho91].

1.1. Related Work
The field of graph drawing is interested in drawings of graphs which are easy to comprehend.
For non-planar graphs, the empirical study of Purchase [Pur97] suggests that minimizing
the number of crossings in a drawing has the greatest impact on the readability of a graph.
Whereas minimizing the number of bends and maximizing the symmetry plays only a
minor role. Thus, finding drawings of graphs with few crossings is an important task of
graph drawing. Unfortunately, the problem is known to be NP-hard [GJ83, Bie91].

The rectilinear crossing number problem asks if there is a straight-line drawing of a
graph with at most k ∈ N crossings. This problem is NP-hard as well [Bie91]. Ac-
cording to Schaefer [Sch10] this problem is actually ∃R-complete. Where ∃R is a class
called the existential theory of the reals and captures all true sentences of the form
∃x1, x2, . . . , xn : φ(x1, x2, . . . , xn), where φ is a quantifier free Boolean formula over
the signature (0, 1,+,×, <) and the real numbers [Sch10]. The class is decidable in
PSPACE [Can88].

Planar Graphs

The title of this thesis is inspired by the title of one of the first papers on planar graph
drawing: “How to draw a Graph” by Tutte [Tut63]. Fáry’s theorem states that every
planar graph has a straight-line drawing [Fár48]. Tuttes algorithm computes a planar
straight-line drawing of a graph. The algorithm draws the vertices of the external face
of a graph as a convex polygon. Every other vertex is assigned the average position of
all its neighbors. This can be formulated as a system of linear equations. Unfortunately,
this kind of drawing can result in an exponential resolution of the drawing, i.e., there is a
family of drawings so that the ratio of the length of the shortest edge to the length of the
longest edge is exponential in the number of vertices of the graph.

Kant [Kan96] introduced a straight-line drawing of planar graphs that draws a graph on a
O(n)×O(n) grid. The idea of the algorithm is illustrated in Figure 1.2. The algorithm
iteratively places the vertices in a leftmost canonical ordering. The first three vertices are

v1 v2

vk

Figure 1.2.: Placement of a new vertex in Kant Drawings.

2



1.1. Related Work

drawn as a triangle. Every other vertex v is placed in the order of the canonical order.
The position of the vertex is the intersection of the lines defined by the left and right most
vertex incident to v and their edges on the external face.

Planarization Methods

Badini, Talamo and Tamassia used a three phase concept to draw a planarization of a
non-planar graph G [BTT84]. The topology phase uses a so-called planarization method
to ensure that the final drawing has only a small number of crossings. The second phase
determines the shape of the drawing. The final phase fixes the metric of the (orthogonal)
drawing. Their planarization approach removes those edges from the graph responsible for
crossings. This results in a planar graph and a set of removed edges. They reinsert the
removed edges incrementally so that the edges add as few crossings as possible to the fixed
embedding of the graph. In order to get a planar graph, the edges are split at crossings
and so-called dummy vertices are inserted.

A more sophisticated approach computes a maximal planar subgraph of G and inserts the
remaining edges in such a way that an edge has a minimum number of crossings and the
planar subgraph has a crossing free drawing. This algorithm by Gutwenger et al. [GMW05]
is known as the single edge insertion algorithm. They proved, that their algorithm requires
only linear time to insert one edge optimally. In general, we are interested in inserting a set
of edges into a planar graph, so that the edges have a minimum number of crossings and
original graph remains planar. This NP-hard [Zie00] problem is known as the multiple
edge insertion algorithm. A simple heuristic is to iteratively apply the single edge insertion
algorithm. The number of crossings depends on the order in which the edges are inserted.
Thus, different random permutations of the edges can be computed. The result is the
setting with the minimum number of crossings. A further post-processing step removes an
edge from the planarization and reinserts this edge to the graph [CG12].

Another planarization method inserts a vertex with all its incident edges to the planar
graph with a minimum number of crossings on those edges. Chimani et al. [CGMW09]
introduced a rather complex algorithm that solves this problem in polynomial time using
SPQR trees and dynamic programming. The SPQR trees can represent all embeddings
of a planar graph with linear space in the number of vertices [DBT96, GM01]. Note that
there is an exponential number of embeddings of a planar graph.

Stretchability

Unfortunately, there is no known polynomial time algorithm to decide whether or not a
planarization has a straight-line representation. A similar problem called stretchability
was studied by Mnëv [Mnë88] and Shor [Sho91]. In the original problem we are interested
in whether or not a set of pseudolines in the projective plane, where each pair of curves
intersects at most once, has a straight-line representation with the same combinatorial
structure; compare Figure 1.3. This problem is ∃R-complete and according to Schaefer
the problem can be restated in the euclidian plane as follows [Sch10]: is there a straight-
line representation of pairwise intersecting x-monotone curves? This problem is still
∃R-complete. A reduction from stretchability to the question whether or not there is
a straight-line representation of a planarization is straight forward. Thus, finding a
straight-line representation of a planarization is ∃R-complete as well.

Corollary 1.1. The problem of finding a straight-line representation of a planarization is
∃R-complete.

Fáry’s theorem states that every planar graph has a straight-line drawing [Fár48]. Hong et
al. [HELP12] studied the problem of finding a straight-line representation of 1-planar graphs,
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1. Introduction

?

Figure 1.3.: The right drawing depicts a straight-line representation of the pseudoline on
the left side.

i.e., graphs with at most one crossing per edge. They introduced a linear time algorithm
to decide whether or not a 1-planar graph has a straight-line representation. A 1-planar
graph G has a straight-line representation if neither the bulgari graph (Figure 1.4(a))
nor the gucci graph (Figure 1.4(b)) is a subgraph of G. Further, they provided a linear
time algorithm to check if a graph contains one of both subgraphs. If there is a straight-line
representation of the graph, their algorithm computes the respective drawing. They observe
that the graph depicted in Figure 1.5 has a straight-line representation that requires an
exponential area in the number of vertices.

Drawing Planarizations

Tamassia [Tam87] introduced an algorithm to find an orthogonal drawing with a small
number of bends. The approach utilizes the three phase concept mentioned before. The
first phase fixes the topology of the drawing, e.g., computing a planarization and/or fixing
the planar embedding of the graph. Orthogonal drawings allow to handle the shape and
the metric in two separate phases. Straight-line drawings coherently determine the shape
with the metric in one step. The shape step assigns a minimum number of bends per edge.
Finally, the metric phase assigns the length to each (sub)-segment of an edge. Tamassia
introduced two network-flow problem to solve the last two phases of his framework.

Force-Directed Methods

Didemo et al.[DLR11] extended the process of drawing an orthogonal drawing of a pla-
narization by a forced-directed method. They take the orthogonal drawing and remove all
dummy vertices and insert vertices at every bend. They apply a forced-directed algorithm
to this graph. The movement of a vertex is restricted by a certain distance which does not
increase the number of crossings in the layout. Nevertheless, the combinatorial structure
can change over time and they observe a decrease in the number of crossings.

Bertault [Ber99] introduced a spring-embedder called PrEd which is able to preserve the
embedding of a drawings. Simonetto et al. [SAAB11] introduced improvements to PrEd.

(a) (b)

Figure 1.4.: (a) The bulgari graph. (b) the gucci graph.
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1.1. Related Work

Figure 1.5.: Version of Eades graph with a straight-line representation with an exponential
area. On the right, a drawing of the graph with our Geometric Planarization
Drawing heuristic.

We use PrEd as a force-directed approach to improve an initial drawing of a planarization.
For further details see Section 4.2.

Geometrical Realizations of Topological Graphs

Similar to our problem, the following two results are concerned with the geometrical
realization of topological graphs. The problem asks for a simultaneous drawing of two
graphs that share a set of vertices and edges. The drawing of both graphs should be planar
and the drawing of the intersection graph should coincide. A topological variant of the
problem asks for a simultaneous embedding with fixed edges (SEFE), where each edge can
be an arbitrary open Jordan curve. Grilli et al. [GHKR14] showed that two graphs with
such an embedding admit a drawing with no bend at common edges and at most 9 bends
on every other edge. For a (bi-)connected intersection graph the number bends is at most
3.

A related problem is the planarity of a partially embedded graph problem. Given a planar
graph G and a straight-line drawing of a subgraph H of G, is there a planar drawing of G
that contains the drawing of H. Chan et al. [CFG+14] presented an algorithm that extend
the drawing of H to G so that every edge has at most a linear number of bends? By Pach
and Wenger [PW01] this is worst-case optimal.

1.1.1. Contribution & Outline

There is only a small hope to find an efficient algorithm that computes a straight-line
representation of a planarization. We contribute a heuristic to the problem. Our Geometric
Planarization Drawing approach can be divided into two phases.

1. Find a planarization of a graph G
2. Draw the planarization

For the first phase, there are well known methods that compute a planarization of graph
with a small number of crossings and a fixed embedding. Our actual contribution to the
problem is the second phase. Given a planar drawing of the planarization, we try to find a
straight-line representation of the planarization (with the same embedding as the initial
drawing).

The idea of our approach is to successively flatten the planarization paths by carefully
pushing the vertices to good position. Fixing one vertex of the planarization path can
worsen the adjacent vertices. Figure 1.6 illustrates this behaviour. Thus, we repeat this
process until we are not able to further improve the drawing. There are several questions
that arise with this approach.

5
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v

w

u

v

w

Figure 1.6.: A planarization; The square vertices v and w are dummy vertices. The vertex u
is an example for a tail vertex. Improving the planarization path at v, worsens
the path at vertex w.

1. How far can we push a vertex without touching any other edges, i.e., how do we
preserve the planarity of the drawing?

2. Where should we move the vertices?
3. What is a good strategy? Should we randomly select a vertex or is there a more

systematic way to select the next vertex?

We take a geometrical approach to answer the first two questions in our Geometrical
Framework in Chapter 3. We select one vertex and introduce the planarity region in
Section 3.1.2. The planarity region characterizes the region in which we can place a
vertex without changing the embedding of the planar drawing. With this region at hand,
we discuss in Section 3.2 how to place a vertex optimally. In Chapter 4 we refine our
Geometrical approach and extend a force-directed approach. In Section 4.1, we assemble
the operations of Chapter 3 into an algorithm called Geometric Planarization Drawing. We
specify the open parameters like the initial drawing of the planarization and discuss several
vertex orders. As an alternative approach, we introduce an extension of the Springer-
Embedder PrEd in Section 4.2. Our approach is a heuristic and we do not have any
quality guarantees to the final drawing. Thus in Chapter 5, we experimentally evaluate the
Geometric Planarization Drawing approach. We compare the quality of the final drawings
of the different configurations of our approach and PrEd.

In the following Chapter 2, we introduce some notations and discuss preliminaries. We
close this thesis in Chapter 6 with a short conclusion and thoughts on open problems and
potential future work.

6



2. Notation and Preliminaries

In the following chapter, we introduce some concepts and notations used throughout this
thesis.

2.1. Graph
An (undirected) graph is a tuple G = (V,E) with a finite set V of vertices and a finite
multiset E of edges with E ⊆ {{u, v} | u, v ∈ V }. We denote with V (G) and E(G) the set
of vertices and edges of a graph G, respectively. An edge e = {u, v} = {v, u} connects the
two vertices u, v ∈ V .

If an edge occurs multiple times in E, then we refer to G as a multigraph. We call such
edges parallel. A loop is an edge of the form {v, v}. A simple graph is a graph without
loops and parallel edges. The edge e = {u, v} is incident to the vertices u and v and both
vertices are adjacent to each other. The neighbors N(v) ⊆ V of a vertex v is the set of
adjacent vertices of v. The degree deg(v) of node v is the number of its incident edges,
formally deg(v) = |N(v)|. In context of a graph G = (V,E) we denote with n = |V | the
number of vertices and with m = |E| the number of edges. A graph H is a subgraph of G,
if and only if V (H) ⊆ V (G) and E(H) ⊆ E(G).

A path P = 〈v1, v2, . . . , vr〉 is an ordered sequence of adjacent vertices visiting every edge
at most once. The length of the path is the number of edges it uses. A simple path visits
every vertex at most once. We call v1 and vr the source and the target of a path. An
interior vertex of a path is a vertex on the path that is neither the source nor the target
vertex. A cycle is a path of length at least 1 with v1 = vr. A simple cycle is a cycle
with pairwise different vertices v1, v2, . . . , vr−1. Throughout this thesis, we assume, if not
otherwise stated, that a path and cycle is simple.

A connected component of a graph G is a maximal subgraph H for which each pair of
vertices u, v ∈ V (H) is connected by a path from u to v. A graph is connected if it has
only one connected component. The graph is biconnected if we can remove an arbitrary
node and the graph remains connected. If a vertex v separates a graph into two or more
connected components, we refer to this vertex as a cut vertex.

A drawing of an undirected graph G = (V,E) is a mapping of every node v ∈ V to a point
p ∈ R2 and each edge e = {u, v} ∈ E to a open Jordan curve in R2 with the coordinates
of u and v as its endpoints. A straight-line drawing maps every edge to a line segment.

7



2. Notation and Preliminaries

(a) (b)

v
σ(v)

vσ(v)

Figure 2.1.: (a) A vertex v with its surrounding surr(v). (b) If a graph is not biconnected
the surrounding of the cut vertex has holes.

Depending on the context we refer with v and e to the vertex and edge, respectively, or
to their geometric representation. In a planar drawing no two edges intersect except at
their common endpoints. A planar graph has a planar drawing. A planar drawing divides
the plane into connected regions, so-called faces. The boundary of a face is a simple cycle
in G. There is exactly one unbounded region, we refer to this region as the external face
or the outer face. We refer to every other face as internal. The surrounding surr(v) of a
vertex v is the face that contains v after removing v and all incident edges of v from the
drawing of G. If the graph is not biconnected, the surrounding of a vertex may have holes
as Figure 2.1 shows. This is the case for a cut vertex. Throughout this thesis we like to
avoid this scenario. Therefore unless otherwise stated, we require the graphs to be simple
and biconnected.

Vertices and edges of G are incident to a face f if they occur on the boundary of f . Two
faces are adjacent if they share at least one edge on their boundary. Two faces of two
different drawing of G are equal if their boundary is equal. Let F1 = {f1

1 , f
1
2 , . . . , f

1
s }

and let F2 = {f2
1 , f

2
2 , . . . f

s
t } be the set of faces of two drawings. The two drawings are

combinatorially equivalent if there exists a bijective function φ : F1 → F2 so that for every
face f ∈ F , f and φ(f) are equal. Combinatorial equivalence is an equivalence relation. We
refer to the equivalence classes as combinatorial embeddings. A combinatorial embedding
of a graph induces a unique rotational order of the edges incident to a vertex, i.e., two
combinatorial embeddings are equal if for every vertex the rotational order of the edges
incident to the vertex is equal.

Let G = (V,E) be a (non-planar) graph and let Gp = (V ∪ Vp, E′ ∪ Ep) be a planar graph.
We refer to Gp as a planarization of G if the following condition apply to Gp.

1. V ∩ Vp = ∅
2. E′ ∩ Ep = ∅
3. E′ ⊂ E
4. Every vertex in Vp has degree 4
5. If an edge e = {u,w} ∈ E is not element of E′, then a path pe = 〈v1, v2, . . . , vr〉

connects u and w with v2, v3, . . . vr−1 ∈ Vp and r > 2
6. Two such paths do not share any edges.
7. The paths cover all edges in Ep.
8. The interior vertices of all paths cover all vertices in Vp

Intuitively a planarization of graph G is the graph resulting from placing vertices at the
intersection of edges in a drawing of G. Figure 2.2 illustrates the idea of a planarization.
Those vertices form the set Vp. We refer to them as dummy vertices. We call a vertex
v ∈ V ∪Vp a tail vertex if a neighbor of the vertex is a dummy vertex. Note that a vertex can
be a dummy vertex and be a tail vertex at the same time. We refer to vertex as independent
if its neither a dummy nor a tail vertex. Placing the dummy vertices splits some edges of e

8



2.2. Geometric Terminology

G Gp

x x1

x2

x3

Figure 2.2.: A graph G and its planarization Gp. The blue vertices shows the set Vp. The
black edges build the set E′ and the colored edges of the right graph are
elements of Ep and build the paths pe for every colored edge e of G. The
intersection at point x leads to three vertices in Gp.

into a planarization path pe of e. We call two edges e1 = (u, v) and e2 = (v, w) a dissected
pair if they are incident to the same dummy vertex and belong to the same planarization
path. Note that an edge can be in two “relationships”. We use the triple (u, v, w) as a
shortcut for a dissected pair. In general, we are interested in drawings of a graph with a
small number of crossings. Assume, there is an embedding of Gp where two planarization
paths only touch but do not cross, then we can remove the dummy vertex v and reduce the
number of crossings. If this does not apply for any embedding of Gp, we refer to Gp as a
normalized planarization. We call the graph G k-planar if the longest planarization path in
the planarization Gp has at most k dummy vertices, i.e., there are at most k crossings per
edge. We refer to the factor k as the local crossing number of the planarization. We call a
drawing of a (normalized) planarization a straight-line representation of the planarization
if every planarization path is a straight line, i.e., all vertices on a planarization path are
distinct and collinear and no pair of edges covered by the planarization path overlaps.

2.2. Geometric Terminology
We introduce some notations of geometric objects in the plane, i.e., each object is a subset
of R2. Let p1 and p2 denote two points and let d be a direction vector. A line L(p, d) with
a base p and a direction vector d is the set of points L(p, d) = {p + λd | λ ∈ R}. A ray
R(p, d) is a subset of the line L(p, d) with only non-negative λ. A line segment S(p1, p2)
with the source point p1 and target point p2 is the set of points between p1 and p2 and the
target point excluded from the set. Two vectors d1, d2 form a left-turn (right-turn) if the
determinant of the matrix (d1 d2) is greater (less) than 0. A half-plane HP(l) with respect
to a line l = L(p, d) are all points q to the left of l, i.e., the vectors d and q − p form a
left-turn. A bounding box B of a set of segments is the smallest axis-aligned rectangle that
contains all segments. We refer to the distance between two geometric objects O and P
as dist(O,P ) = mino∈P,p∈P dist(o, p), where dist(o, p) is the euclidian distance of the two
point o and p.

In order to define polylines and polygons, we use the drawing of a simple biconnected
planar graph G. A polyline is the ordered sequence of coordinates of the vertices of a path.
Thus, a simple polyline is an ordered sequence of coordinates of a simple path. A polygon
P is a face f in G. The boundary of a polygon P is the ordered sequence 〈v1, v2, . . . , vn〉 of
coordinates of the vertices of f . Depending on the context, we refer with P to the boundary
or to the interior of the polygon. Note that vertices can occur multiple times in P. A
corner of a polygon is a triple [vi−1, vi, vi+1 mod n] with i = 2, 3, . . . , n. A polygon P is
simple if any two edges of P only intersect at their common endpoints. In our definition of
a polygon, two edges or two vertices can touch. We refer to this polygons as weakly simple.
Chang et al. [CEX14] give a formal definition of weakly simple polygons and introduce an
algorithm that detects whether or not a polygon is weakly simple.
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2. Notation and Preliminaries

Let S be a set of segments. A planar subdivision of the set S is a planar graph so that
every vertex of the graph is either an endpoint of a segment or an intersection point of two
segments. An edge in the planar subdivision is subsegment of a segment in S. We denote
the planar subdivision of a polygon P with a set of segments S with P uS, i.e., the planar
subdivision of the segments in P and the segments in S.

Offset Polygon

At some point we need a smaller version of a polygon P , i.e., we have to shrink the polygon
somehow. These polygons are called offset polygons. The idea behind this concept is to
move all vertices of the polygon with the same speed towards the interior of the polygon.
The direction of the movement is determined by the straight skeleton of the polygon.

Aichholzer et al [AAAG96] gave a procedural definition of a straight skeleton. We find their
description instructive and quote their thorough definition of a straight skeleton.

While the medial axis is a Voronoi-diagram like concept, the straight skeleton
is not defined using a distance function but rather by an appropriate shrinking
process for [a polygon] P . Imagine that the boundary of P is contracted towards
P ’s interior, in a self-parallel manner and the same speed for all edges. Lengths
of edges might decrease or increase in this process. Each vertex of P moves
along the angular bisector of its incident edges. This situation continues as
long as the boundary does not change topologically. There are two possible
types of changes:

• Edge event: An edge shrinks to zero, making its neighboring edges adjacent
now.

• Split Event: An edge is split, i.e., a reflex vertex runs into this edge, thus
splitting the whole polygon. New adjacencies occur between the split edge
and each of the two incident to the reflex vertex.

After either type of event, we are left with a new, or two new, polygons which
are shrunk recursively if they have non-zero area. [. . . ]

The straight skeleton S(P) is the union of the pieces of angular bisectors traced
by the polygon vertices during the shrinking process.

The definition of the straight skeleton is directly related to the offset polygon. The process
results in a set of geometric trees, where each point in the tree has the same distance to
every leaf in its subtree. Thus, we can start at each leaf and move upwards a predetermined
distance and place a vertex at this position. Since the distance of the new vertex is same
for all leafs in the subtree of the vertex, the position of the vertex is well defined. Thus, we
can connect these vertices in the same order as predefined by the order of the leafs on the
polygon. This results in the offset polygon of a polygon P.

Computing the straight skeleton takes at most O(n2) time [FO98]. The method described
in [FO98] is the reference implementation of the CGAL-Library [Cac15]. On real-world
data a running time of O(n logn) can be expected [Hub11]. The time to extract the offset
polygon from the straight skeleton is linear in the size of the straight skeleton and thus
dominated by computation of the straight skeleton.

2.3. Approximation of Monotone Decision Functions via Bi-
nary Search

Let [a, b] ⊂ R be an interval and let f : [a, b] → {0, 1} be a monotone increasing binary
decision function with f(b) = 1. We are interested in the smallest value x? ∈ [a, b] with
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2.3. Approximation of Monotone Decision Functions via Binary Search

f(x?) = 1. We can use a binary search to find an absolute ε-approximation x̂ of the value
x?, i.e., x̂− x? ≤ ε. Let [at, bt] be the interval of the binary search in step t.

Theorem 2.1. Let [at, bt] the interval of t-th step of a binary search over the interval
[a, b] = [a0, b0] and let f : [a, b]→ {0, 1} be a monotone increasing binary decision function
with f(b) = 1. Then, for any ε > 0 the value bt is an absolute ε-approximation of the
smallest value x? ∈ [a, b] with f(x?) = 1 after t = log(b− a)/ε iterations.

Proof. Since the function f is monotone, the following invariants hold.

1. x? ∈ [at, bt]
2. f(bt) = 1
3. for every t > 0 bt − at = (bt−1 − at−1)/2

With these observations we get the following estimation.

at ≤ x? ≤ bt ⇒ bt − x? ≤ bt − at ≤
b− a

2t = b− a
2log2(b−a)/ε = ε.
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3. Geometric Framework

Computing a straight-line drawing of a graph with a minimum number of crossing is a
NP-hard problem; see Section 1.1. Nevertheless, it easy to compute a planarization of a
graph with a small number of crossings. In order to profit of a planarization, we require
that the drawing algorithm preserves the embedding of an initial drawing. Note that
preserving an embedding is a stronger restriction than preserving only the crossing number.
Unfortunately, computing a straight-line representation of a planarization is NP-hard as
well; see Section 1.1.

We use an (arbitrary) initial planar straight-line drawing of the graph Gp as a starting
point. We take a geometrical approach to iteratively straighten the planarization paths.
We move a vertex to a new locally optimal position. The algorithm iteratively selects a
vertex and minimizes the so-called active crossing angles of the vertex without changing
the embedding of the drawing. The crossing angle cr-α(u, v, w) of a dissected pair (u, v, w)
is the angle cr-α(u, v, w) = π − ∠(u, v, w); compare Figure 3.1. We call crossing angles
active with respect to a vertex v, if moving v changes these angles. Two basic questions
arise.

1. Given a vertex v, what are legit positions for v so that moving the vertex to this
position does not change the embedding of the drawing?

2. Given a set of legit positions for v, where do we have to move the vertex in this set
to minimize the active crossing angles of the vertex?

The first problem is closely related to the visibility of a vertex in a polygon. We introduce
a concept called planarity region which describes the set of legit positions of a vertex.

In order to solve the second problem, we distinguish between the different types of a vertex.
A vertex can either be a tail vertex, a dummy vertex, a dummy and tail vertex, or an
independent vertex. The constrains for each of these type differ. A tail vertex has a set of

6
v α

u w

Figure 3.1.: Illustration of the crossing angle of two edges incident to a dummy vertex
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3. Geometric Framework

v

v′

Figure 3.2.: We move a vertex v within the planarity region to its locally optimal position.

dummy neighbors, i.e., multiple planarization path touch at this vertex. If we move such a
vertex, we would like to move the vertex to a position collinear with all these planarization
paths. On the other hand, if we move a dummy vertex with no dummy neighbors, there are
only two constraints. We would like to move the vertex to a position so that each dissected
pair of v is a straight-line segment. Further, a dummy vertex can have dummy neighbors.
In this case, we have to minimize the crossing angles at the dummy vertex itself and the
crossing angles at the dummy neighbors; compare vertex v in Figure 3.2. A vertex can
be neither a dummy nor tail vertex. Moving an independent vertex does not change any
crossing angles. Thus, it is difficult to formulate an optimization problem for independent
vertices. Nevertheless, a good a position for an independent vertex should clear the space
for the vertices in the surrounding of the vertex.

The structure of this Chapter is guided by the previous introduced problems. First, in
Section 3.1, we introduce the concept of the planarity region and problems related to this
region. Secondly, we describe the different types of placement operations for a vertex in
Section 3.2.

3.1. Preserving the Planarity

Preserving the embedding of a drawing is a stronger constrained than preserving the
crossing number of a drawing. Figure 3.3 shows, that we can change the embedding of a
drawing without adding new crossings to the drawing. We refer to the region PR(v) in
that we can move a vertex without changing the embedding as the planarity region of the
vertex.

The first thing we observe is that we do not have to consider the complete drawing to
compute the planarity region. The planarity region is in a natural way limited by the
surrounding of a vertex (depicted as the light blue region in Figure 3.3). The second
observation is, that the vertex v is connected via a straight line with its neighbors and
that this segments are without any crossings. Thus, the vertex does see the its neighbors,
and the vertex is visible from its neighbors. Hence, the planarity region is related to the
concept of visibility.

Figure 3.3.: Changing the embedding does not have to add crossings to a drawing.
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3.1. Preserving the Planarity

First of all in Section 3.1.1 we explain the concept of visibility and describe the linear time
algorithm of Simpson et al. [JS87] to compute a visibility polygon. We adapt the concept
and the algorithm to our problem. We use the visibility region in Section 3.1.2 to compute
the planarity region. Both algorithms assume that the surrounding is a bounded polygon.
Thus, we customize the surrounding of the external face of a drawing in Section 3.1.3
to fit the problem definition. We would like to satisfy a specific distance of a vertex to
the boundary of the planarity region without interfering with a previous optimal position.
In Section 3.1.4 we describe a method to shrink the planarity region with the previous
constraints.

3.1.1. Visibility in Weakly Simple Polygons

The placement operation of a vertex v depends on the neighbors N(v) of the vertex. Let
z ∈ N(v) be a neighbor of v. In order to preserve the embedding of the drawing, we can
move the vertex v to a position that does not introduce an intersection of the segment
S(z, v) with the surrounding surr(v) of the vertex v. If the surrounding of a vertex is a
simple polygon, the desired region is called the visibility polygon of the vertex z [EA81].
Unfortunately, the vertex z can occur multiple times on the boundary. Figure 3.4(a) shows
that we can move the vertex v around an edge incident to z without adding new crossing
to the drawing. Nevertheless, this movement changes the embedding of the drawing.

More formally, the set of visibility points of a view point z and a (weakly) simple polygon
P is the set of points Pz so that the S(z, p) lies within P for every point p ∈ Pz. If the
surrounding P of the vertex v is simple, we can describe the set of visible points with a
visibility polygon Pz.If the view point z occurs multiple times, we have to exclude points
that change the embedding of the drawing. Let u and w be two neighbors of z, so that u
occurs before v in the rotational order of z and w after v. We have to restrict the placement
of v so that the rotational order of z stays invariant. We can enforce this, by intersecting
the set of visible points with a cone defined by the two rays R(z, u) and R(z, w). Figure 3.4
illustrates the idea. The result is a visibility region VR(v, z).

Computing the Visibility Polygon

ElGindy and Avis [EA81] introduced a linear time algorithm to compute the visibility
polygon of point in a simple polygon. Lee [Lee83] simplified the algorithm. We describe
the correction of Lee’s algorithm by Joe and Simpson [JS87]. Their visibility algorithm
handles only simple polygons. We adjust this algorithm to compute the visibility region of
a weakly simple polygons in linear time in the length of the boundary of the polygon. We
only need to compute the visibility region for certain points on the boundary of a polygon.
Therefore, we assume the view points to be on the boundary P and the visibility region to
be in P.

z(b)z(a)

v v

u

w

Figure 3.4.: (a) Moving within the visible points can change the embedding. (b) Restricting
the visibility with a cone fixes the embedding.
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3. Geometric Framework

z

v
w

x u

Figure 3.5.: The blue area is the visibility polygon of the vertex z.

The basic idea of the algorithm is to scan the polygon in counterclockwise order and skip
all invisible segments. All other segments are (potentially) visible and pushed onto a
stack. If the algorithm detects that a previous (sub-)segment cannot be visible, it removes
elements from the stack until a segment or a part of a segment becomes visible again. After
termination the stack represents the border of the visibility polygon. The algorithm skips
only invisible segments of boundary but never a visible part. Thus, during the execution
the algorithm makes only a one-sided error, i.e., the stack can contain invisible segments.

Figure 3.5 illustrates the idea of the visibility polygon algorithm. The algorithm starts
counterclockwise from the vertex z. The algorithm pushes all vertices on the boundary
up to vertex v on a stack. Until then every respective turn was a left turn. At vertex v
the direction changes and the concave corner hides everything right of the ray R(v, v − z).
Thus, the algorithm scans the border of the polygon until it finds the intersection w of
the border with the ray. From there on, the vertices are potentially visible again and the
algorithm pushes all vertices up to vertex x onto the stack. At vertex x the algorithm
detects another change in direction. In this case, the algorithm notices that elements on
the stack are hidden by this concave corner. Thus, the algorithm removes all invisible
segments from the stack and pushes the intersection u of the ray R(x, x− z) on the stack.
The following vertices are visible and the algorithm pushes them onto the stack. Finally,
the stack consists of all visible vertices of the boundary of the polygon.

For now, assume the polygon is simple and all segments are open. Let the points
v0, v1, . . . , vn = v0 be the border of the polygon in counterclockwise order and let z = v0 be
the view point. We refer with s0, s1, . . . , st to the current points on the stack. We assume
all indices to be in i ∈ Zn.

The algorithm scans the border of the polygon and depending on the last operation, and
the relative position of the next vertex to the view point, the algorithm determines the
next operation (PUSH, POP, SCAN_A, SCAN_C, SCAN_D). After scanning the vertex vn,
the stack consists of all vertices bounding the visibility region. The method SCAN_B, as
described in [JS87], can never occur for view points on the border of the polygon. The
initial operation is SCAN_A if zv1v2 is a right turn, otherwise it is PUSH.

Let the current operation be the PUSH operation at vertex vi. Figure 3.6 illustrates which
operation follows next. If zvivi+1 is a left turn, we move further in the same direction and
the vertex vi+1 is potentially visible. Thus, a new PUSH operation follows. If zvivi+1 is a
right turn, there is a change in direction. If st−1vivi+1 is a right turn, vi is on a concave
corner, thus vi hides vi+1. Therefore, we have to scan the border for the next visible vertex
(SCAN_A), i.e., the vertex intersecting with the ray starting at v in direction from z to v.
Otherwise, the vertex vi+1 hides vi and we have to remove the invisible vertices from the
stack. Accordingly, we call POP.
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3.1. Preserving the Planarity

The POP operation pops all hidden vertices from the stack. The operation scans the stack
st, st−1, . . . , s1 for the first index j, so that one of the following two cases applies; compare
Figure 3.7. Note, that vi is now the vertex vi+1 of the previous operation.

1. zsjvi is a right turn and zsj−1vi a left turn
2. sj is between z and sj−1 and S(vi−1, vi) intersects with S(sj−1, sj).

If the first case applies, the segment S(sj−1, sj) intersects with the ray R(z, vi) at the point
w. Thus, sj−1 is visible but sj is not. We remove all vertices up to sj−1 from the stack
and push the intersection w on top of the stack.

If zvivi+1 is a right turn we move in the same direction. Thus, the next operation is POP
again. Otherwise, there is a change in the direction. If vi−1vivi+1 is a right turn, i.e., the
corner at vi is concave, vi+1 is visible again. Thus, we push vi+1 on the stack and the PUSH
operation follows. Otherwise, we can infer that we are in an invisible region and we can
skip forward until we intersect with the segment S(vi, w). We can infer that after the scan
operation another POP operation has to follow. Hence, we call the operation SCAN_C.

If the second case of the POP operation applies, we remove all hidden points from the stack.
Figure 3.7 shows that a scan operation precedes this pop operation and vi lies within the
hidden region of this previous scan and the following vertex has to be hidden again. We
can deduce that the next vertex has to be visible. Thus, we call the operation SCAN_D,
where w is the intersection of the segments S(vi, vi−1) and S(sj , sj−1).

The SCAN_A operation fast forwards to the first segment S(vk, vk+1) that intersects at the
point u with the ray R(z, st); see Figure 3.8. During the scan we might wind around the
view point one time. Depending on whether or not the intersection point occurs on the ray
R(z, st) before or after st we call a POP or SCAN D, respectively. If the scan does not wind
around the polygon, we can safely call the PUSH operation.

The SCAN_C and SCAN_D operation work similar; see Figure 3.9. The only difference between
both operations is the (unique) operation that succeeds them. Both operations scan the
border of the polygon until it intersects with the segment S(st, w), where w is determined
by the previous operation. In the context of the previous operation it is clear that after
a SCAN_C operation a POP operation has to follow. On the other hand, a PUSH operation
always succeeds a SCAN_D operation.

Modification for Weakly Simple Polygons

The original algorithm for the detection of the visibility polygon assumes that all points on
the boundary of the polygon are in general position. If we drop the assumption, we have to
take care of two new situations. First of all, three points on the boundary of the polygon
could be collinear. Secondly, two points on the boundary could occur multiple times. In
order to determine the next operations, we have to calculate the relative position of two
vertices with respect to the view point. If the view point occurs multiple times, the vector

vi
vi+1

z

PUSH

vi+1st−1

z

vi

SCAN A
vi

vi+1

z

st−1
POP

st−1

Next Operation:

Figure 3.6.: The turns zvivi+1 and st−1vivi+1 determine the operation following a PUSH
operation.
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viz
sj−1

sj

Case 1

Case 2

z
sj−1

sjvi

vi−1
SCAN D

vi+1

POP PUSH

vi
z

sj−1

sj

vi+1

SCAN C

vi
z

sj−1

sj

vi+1

vi−1

Next Operation:

Next Operation:

w

Figure 3.7.: In case 1 the turns zvivi+1 and vi−1vivi+1 determine the operation succeeding
the POP operation. The SCAN_D operation follows always after case 2.

vk − z is a vector of length zero. Thus, the concepts of a left or right turn relative to this
vector are undefined. A simple trick to avoid this ambiguity is to perturb the view point.
We can, for example, temporally move the view point a small distance along the bisector
of the incident edges. This way, we do not introduce a new intersection if the distance is
small enough, and we can consistently decide whether or not two vectors make a left or a
right turn. We make use of the same trick if the view point and two further vertices are
collinear. The original algorithm does not specify the next operation in this case. Adding
temporarily a little perturbation to the points helps to find the correct next operation.

We have to be careful in case of the POP operation. Figure 3.10 depicts a scenario in which
moving vertices along the bisector is not helpful. With the collinear points z, vi and vi+1
on the boundary, it is possible that we call two consecutive POP operations which have to
carry out the same work. Both operations have to stop at the point st, i.e., case 1 of the
POP operation has to apply. Unfortunately, in the second call zstvi is not a right turn and
thus the condition of case 1 does not hold. Note that the point st can be in the middle of
the segment of the boundary. Thus, moving st along the bisector would move the point
along the dotted line and does not resolve this problem. Fortunately, it is sufficient to
extend the condition of case 1 with a collinearity check, i.e., condition of case 1 applies,
or zsjvi is collinear, or zsj−1vi is collinear. With this extended condition the second POP
operation also stops at vertex st.

z

vk

vk+1

st

POP

z

vk+1

w w

SCAN D

z

vk

vk+1

w

PUSH

st

Next Operation:

vk
st

Figure 3.8.: Depending on the turn zvkvk+1 and the relative position of the intersection w,
we can determine the operation following SCAN_A.
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3.1. Preserving the Planarity

z

vk+1

w

vk
st

z
sj−1

sjvi

vi−1

SCAN A POP

Previous Operation:

vi
z

sj−1

sj

vi+1

vi−1

(a)
POP

(b)

Figure 3.9.: (a) The SCAN_C Operation succeeds a POP operation. (b) A SCAN_A or a POP
operation calls the SCAN_D operation. Both scans fast forward until they
intersect with the dashed segment.

3.1.2. Planarity Region

Assume that we want to move a vertex v in a given planar drawing. We restrict the
movement to those positions that do not introduce new crossings to the drawing. Note
that only edges incident to v can get new crossing. Thus, the planarity region of the vertex
v is related to the visibility of its neighbors.

Given a vertex v in the interior of a biconnected graph G, we define a region in which
we can move v so that the embedding of a planar drawing of G does not change. This
implies that we do not introduce new crossings to the drawing of G. We call this region
the planarity region PR(v) of the vertex v.

Our approach to compute the planarity region of a vertex v is based on the observation
that the planarity region is the intersection of the visibility regions of the neighbors of v in
the surrounding of v. We describe the visibility region in terms of so-called windows. A
window w is a segment in the visibility region that is not a (sub-)segment of the boundary
of the original polygon P. A window w divides the polygon P in one inner and one outer
polygon, where the outer part is definitely not visible. We say the inner polygon Pw is left
of w and the outer part is right of the window. We call the outer part of a window pocket;
compare [BLM02]. Then the visibility region of a vertex v is the intersection of all inner
polygons. Further, the intersection of all visibility regions is the intersection of all their
inner polygons. Two windows of two different visibility regions can hide (dominate) each
other.

We show that the number of windows necessary to compute the planarity region is linear in
the size of the input polygon. Given the set of windows, we compute the planar subdivision
of the windows with the input polygon and extract the face that is left of all windows.

Let PN (v) be the intersection of all visibility regions of the neighbors of v in the surrounding
of v.

vi z
st

Figure 3.10.: Two consecutive POP operation where the second POP operation has to stop
at vertex st as well.
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v v′

u

f1

f2

w

Figure 3.11.: As long as we stay in the planarity region of v, the rotational order of all
vertices in f1 and f2 is invariant.

Theorem 3.1. The planarity region PR(v) of a vertex v is the intersection of all visibility
regions of the neighbors of v in the surrounding of v.

Proof. First, we prove PR(v) ⊇ PN(v). By definition of the visibility regions, moving v
within PN(v) does not introduce new intersections to the drawing. Further, we show that
the rotational order of every vertex on the surrounding is invariant. Thus, the rotational
order of v is invariant. Consequently, the embedding of the graph does not change.

The rotational order of a vertex on the surrounding and for a neighbor of v that occurs
only once on the surrounding cannot be changed by moving within the intersection of the
visibility regions. Otherwise the vertex u is a neighbor v and occurs multiple times on the
surrounding. The edges incident to v restrict the visibility; compare Figure 3.11. Thus,
the rotational order of this vertex stays invariant.

Consequently, the rotational order of every vertex on the surrounding is invariant. Therefore,
it is not possible to change the rotational order v itself. Hence, a vertex placement within
the intersection of the visibility regions does not change the embedding of the graph.

Secondly, we show that PR(v) ⊆ PN(v). Moving v to any point p ∈ PR(v) does not change
the embedding of the graph. This implies, that every neighbor v is visible from the point
p. Thus, every neighbor can see the point p and the point p has to be in the intersection
PN(v) of all visibility regions.

Computing the Planarity Region

Theorem 3.1 states that we can compute the planarity region by intersecting all visibility
polygons. Each visibility polygon has at most O(n) vertices [BLM02].

An upper bound on the number of intersections of ` visibility regions is O(`2n). There are
at most `n windows and each window can intersect at most O(`) other windows. Thus, we
can compute the intersection of the visibility regions in O(`2n logn) time. In the following,
we show that we can reduce the number of intersections to O(`n). We can thus reduce the
running time to O(`n logn).

Not all visibility regions have to be intersected with each other. Instead, we extract all
windows W of the visibility regions and compute the planar subdivision P uW of the
surrounding polygon P with the windows W . Then, the face left of all window is the
planarity region of the vertex v. Let Pw be the region left to the window w ∈W and let
f be a face in the planar subdivision P uW . We define the point count c(p) for a point
p ∈ P as the number of windows so that p ∈ Pw. We show that the planarity region of
v is never empty and a connected set of points. The vertex v is element of the planarity
region, thus we can extract the face of the planar subdivision P uW that contains p, since
every point in this face has the same face-count as p. In the following, we prove the stated
claims. We assume that all segments and points are in general positions.
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3.1. Preserving the Planarity

Lemma 3.2. The planarity region of a vertex v is not empty.

Proof. The vertex v is an element of the planarity region, thus the planarity region is not
empty and the point count of v is |W |.

Lemma 3.3. Two points p, q ∈ f in a face f of P uW have the same point count.

Proof. Assume that the point count of both points differ, then there is a window w, so
that p ∈ Pw and q 6∈ Pw or vice versa. Then w splits f into regions. This contradicts the
assumption that f is a face in the planar subdivision P uW .

By Lemma 3.3, the face count c(f) is the same as c(p) for any point p ∈ f and thus, the
face count is well-defined. In other words, the face count c(f) is equal to the number of
windows w ∈W so that f ⊂ Pw (f is left of w). In the following we use k as the number
of windows |W |.

Lemma 3.4. The planarity region of a vertex is connected.

Proof. Recall that we can compute the planarity region as the intersection of visibility
regions. Every visibility region is the intersection of the regions Pw, where w is a window
of the visibility region. Thus, the planarity region is the intersection of all polygons Pw
with w ∈W = {w1, w2, . . . , wk}, where W is the set of all windows of all visibility regions.
We can formulate the intersection of the polygons Pw as an iterative process.

Let P i be the intersection of the polygons Pw1 ,Pw2 , . . . ,Pwi with i = 1, 2, . . . , k. Each of
these polygons is connected. The polygon Pwi is connected since wi divides the polygon
P in exactly two parts, one (partially) visible part Pwi , and one definitely invisible face.
Therefore, P 1 is connected. Assume that P i−1 is connected. We get P i by intersecting
P i−1 with Pwi . The intersection of both polygons cannot be empty due to Lemma 3.2. If
one of both polygons contains the other completely, the intersection is trivially connected.
Otherwise, if two windows intersect, the intersection divides each window into a visible and
in an invisible segment. Thus, a window can contribute at most one edge to the planarity
region and therefore to P i. Thus, wi divides P i−1 into exactly two regions. Since P i−1 is
connected, both regions have to be connected. Thus, P i is connected.

A face f is incident to a window w if f has an edge e that originates from the window
w ∈W , i.e., e ⊆ w.

Lemma 3.5. If two faces are incident to the same window, the face count of the two faces
in the planar subdivision P uW differs by 1.

f1

f2 f2

(a)

w w′
f1

f2

w′

w

(b)

Figure 3.12.: (a) If the windows w and w′ do not intersect, the face f2 cannot be incident
to both windows. (b) If w and w′ do intersect and both faces are incident to
both windows, the faces are not faces in the planar subdivision.
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3. Geometric Framework

Proof. Let the two faces f1 and f2 be incident to the same window w ∈W . Assume that
there is a second distinct window w′ ∈W so that the two faces are incident to w′. Recall
that the endpoints of both windows are points on the boundary of the polygon. If the
windows do not intersect, the planar subdivision P u{w,w′} has two distinct pockets as
depicted in Figure 3.12(a). Thus, one of both faces cannot be incident to both windows.

If both windows intersect, the window w′ splits both faces f1 and f2. Thus, the two faces
are not faces of the planar subdivision P u{w,w′}; compare Figure 3.12(b). Hence, there is
only one window incident to both faces, and either f1 or f2 is a subset of Pw. Accordingly,
the face count of both faces differs by exactly 1.

Theorem 3.6. Let v be a vertex with the surrounding P and let W be the set of all
windows of the visibility regions of the neighbors of v. Then the unique faces in the planar
subdivision P uW with face count k is the planarity region of v.

Proof. Let f be a face in the planar subdivision P uW with face count k. The inclusion
f ⊆ PR(v) follows directly from the definition of the face count c(f). There are exactly k
distinct polygons Pw that contains f (f is left of all windows). Thus, f is a subset of the
planarity region.

We show that f ⊇ PR(v). By Theorem 3.2 the planarity region PR(v) is not empty.
Further, the planarity region is the intersection of all polygons Pw with w ∈W . Thus, there
is a face f in the planar subdivision P uW so that PR(v) ⊆ f . Every point p ∈ PR(v)
has a point count of k. Since every point in f has the same point count, as Theorem 3.3
states, the face count of f is k.

In order to compute the planarity region, it is sufficient to extract the face f in the planar
subdivision P uW with face count k. We know that the vertex v is within the planarity
region and thus has a point count of k. Therefore, we have to find the face f with v in
the interior of f . A simple approach to find this face is to shoot a ray starting at v in any
direction. The window with the smallest distance to v that intersects the ray is incident to
the planarity region. Thus, we can traverse the face left of the window to compute the
planarity region of v.

Running Time

We conclude this section with an analysis of the running time of our algorithm. Recall that
n is the number of vertices of the polygon, k the number of windows, and ` the number
of view points. We prove two main results. First, we can limit the number of relevant
(dominating) windows to a linear factor in the size of the polygon. Secondly, the number
of intersections between the windows is at most O(`n).

Each concave corner can yield a window of a visibility region [BLM02]. There can be O(n)
concave corners in a polygon, e.g., a star-shaped polygon. In this case, all windows of all

u

w

a
b

v

Figure 3.13.: Each concave corner has one dominating incoming and outgoing window.

22



3.1. Preserving the Planarity

visibility regions can be distinct from each other resulting in a total number of `n windows,
where ` is the number of visibility regions. Windows belonging to the same view point
cannot intersect with each other. Thus, a window can intersect at most ` other windows.
This leads to O(`2n) intersections. In order to compute the intersection of all the polygons
directly, a sweep line algorithm has to encounter all these intersections points [CLRS09].
Figure 3.13 shows that not all windows are necessary to compute the intersection of all
visibility regions.

In the following, we show that not all windows are necessary to compute the planarity
region. Let W (v) be the set of all windows of all visibility regions incident to the vertex
v. We can partition W (v) into two sets Win(v) and Wout(v). Recall that the windows are
directed in the same way as the input polygon, i.e., the visibility region is left to a window.
The set Win(v) contains all windows w where v is the target of w. Consequently, Wout(v)
contains the windows that have v as the source. In each of these sets, there is one window
corresponding to a view point q dominating the others, i.e., crossing this window would
definitely break the visibility of the view point q, but not necessarily of the other view
points (due to another concave corner the visibility can already be broken). Therefore,
we have to store only one incoming and outgoing window per concave corner. We can
check whether or not a window is dominating by looking at the rotational order of the
windows around v. This requires only linear time in the number of windows incident to v.
Note that after extracting a window one can directly decide whether or not the window is
dominating.

Corollary 3.7. The planarity region of a vertex v has O(n) vertices, where n is the number
of vertices of the surrounding surr(v).

Proof. Every window w does not intersect, except at their endpoints, with the boundary
P. If it intersects with another window w′, the window w′ divides w into one visible and
one invisible segment. Therefore, every window w attributes at most one segment to the
boundary of the planarity region. Since, there are at most O(n) dominating windows, the
planarity region has at most O(n) vertices.

Theorem 3.8. The number of pairwise intersections of all windows W is O(`n), where n
is the number vertices of the surrounding surr(v) and ` the number of visibility regions.

Proof. Windows belonging to the same visibility region cannot intersect. Let w ∈W be
a window and let z be the corresponding view point. The pocket of the window is a left
pocket if it lies left of the ray starting at z and containing w. Otherwise, it is a right pocket.
A left window bounds a left pocket and a right window bounds a right pocket.

A window w cannot intersect with two left (right) pockets of the same visibility region.
Therefore, a window of a view point can intersect with at most O(`) windows. There
are at most O(n) windows per view point. Thus, in the worst case, the total number of
intersections is O(`n).

Theorem 3.9. Let n be the number of vertices on the surrounding of v and let ` be the
number of neighbors of v. Computing the planarity region of a vertex v can be done in
O(`n logn) time.

Proof. Computing all visibility regions requires O(`n) time. Extracting the set of dominat-
ing windows W requires O(`n) time.

The pairwise number of intersections in W is O(`n). The number of intersections of W
with P is O(n). Therefore, the overall number of intersections i is in O(`n+n). Computing
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v

Figure 3.14.: The surrounding of a vertex on the external face is unbounded.

the planar subdivision P uW with a sweep-line approach takes at most O(n logn+ i logn)
time [BO79].

The planar subdivision has O(`n) vertices. We can divide a window O(`) times. Thus,
the number of edges in the planar subdivision is O(`n). Therefore, we can extract the
planarity region in O(`n) time from the planar subdivision.

In worst case, computing the planarity region of a vertex requires O((n+ i) logn) + `n ⊂
O(`n log(n)) time.

3.1.3. Planarity Region of Unbounded Faces

Until now we assumed that the vertex v is not on the external face. The surrounding of a
vertex is the union of all incident faces of this vertex. Thus, the surrounding of a vertex on
the external face of a graph is unbounded as depicted in Figure 3.14

Our planarity region algorithm only works on bounded polygons. Thus, we restrict the
external face, for example, with a bounding box. Further, our planarity region and the
visibility regions algorithm requires that the polygon has no holes. Therefore, we have to
connect the surrounding with a polygon that contains P . We compute the bounding box B
of P and scale it up by a factor β. We use this bounding box to limit the drawing area.

We have to find a segment s only intersecting at its endpoints with the boundaries of P
and B so that we do not restrict the planarity region of the polygon B \P . Let u and w be
two vertices on the external face of the drawing of G adjacent to v. Since G is biconnected,
u and w are distinct. The surrounding P = surr(v) is a compound of two paths. One path
pext consists solely of vertices on the external face and the other path pint of vertices in the
interior of G. Note that we cannot move v around u or w and cross the line L(u,w) without
interfering with the planarity region PR(v) from v; compare Figure 3.15. Therefore, we can

u
w

v

r

B

Figure 3.15.: The blue polyline depicts the internal path, the black polyline consists of
nodes on the external face. Points on the black polyline right to l are not
simultaneously visible from u and w.
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q v

v

Figure 3.16.: Positions on the boundary of the planarity region may corrupt the planarity.
Even after offsetting the planarity region (dark blue) the minimum vertex –
edge distance is arbitrarily bad.

shoot a ray r from u through w and intersect it with pext and B. The shortest subsegment
of r connecting P and B does not restrict the planarity region of v in B \ P. We call this
subsegment a bridge between P and B. One endpoint of the bridge can occur multiple
times on the boundary of P. In order to find the correct intersecting segment on the
boundary of the polygon, we can temporally perturb the vertices of the polygon.

3.1.4. Offsetting the Planarity Region

In each iteration we place a vertex v in its planarity region. If we place a vertex on the
boundary of the planarity region, we can corrupt the planarity due to two overlapping
edges; see Figure 3.16. In order to distinguish between a point on the boundary of planarity
region and a point very close the planarity region, the coordinates can require a high
precision. In order to avoid this scenario, we shrink the planarity region. Nevertheless, if
the vertex v has already a good position (with small crossing-angles), the shrinking process
should not exclude this position. Note that shrinking the planarity region controls only the
distance of the vertex v to edges of the surrounding. Nevertheless, Figure 3.16 illustrates a
case, where the distance of a vertex on the surrounding to an edge incident to v can be
arbitrarily small.

We compute two offset distances. The first distance, is the distance of the current position
of the vertex to the planarity region. The second distance, is a relative measure. We use
the minimum of both values to compute the offset polygon of the planarity region. In this
way, we can guarantee that the current position is in the shrinked planarity region and if
the current position is near the center of the planarity region, the shrinked region is not
too small.

In order to guarantee that the current position is in the shrinked region, we can compute
the minimal distance γmin to all edges on planarity region of v. This distance ensures that
the vertex v is an element of the planarity region after offsetting it by the value γmin. If

v

γmin

(a) (b)

γB

v

γB·µ =

Figure 3.17.: (a) Offsetting the planarity region by the distance to the vertex v can result
in a small region. (b) Offsetting by a constant factor can exclude the previous
position.
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the vertex is already near the center of the planarity region, offsetting the planarity region
by γmin yields a small region with only few possibilities to optimize the position of the
vertex; see Figure 3.17(a). In order to avoid this, we compute a second, relative, distance.
Let B be the bounding box of the planarity region of the vertex v. Let γB be the minimal
edge length oft the bounding box times a value µ ∈ (0, 1). This offset distance guarantees
a relative distance of v to the edges on the planarity region but it cannot guarantee that
the original position lies in the planarity region after offsetting it by the value γB ; compare
Figure 3.17(b). We use the minimum value of γmin and γB as the offset distance γ. This
value guarantees that the previous position is in the planarity region after offsetting it and
if the vertex lies central in the planarity region, the offsetting process leaves enough space
to minimize the active crossing angles of v.

3.2. Vertex Placements
In the previous section, we described the set of legit positions for a vertex v as the planarity
region of the vertex. Given this region, or a subset of this region, we can think about how
to place a vertex to a locally optimal position with respect to this region. In Section 3.2.1
we handle the placement of a tail vertex. We continue with the placement operation for
dummy vertices in Section 3.2.2. In Section 3.2.3, we combine both operations for dummy
vertices with dummy neighbors. Finally in Section 3.2.4 , we introduce two operations to
place an independent vertex.

3.2.1. Placing a Tail Vertex

A Tail vertex v has a set of dummy neighbors D(v). There can multiple planarization
paths that touch at the vertex v. The new position of the vertex v should optimize its
position with respect to its dummy neighbors and the corresponding dissected pairs.

With the planarity region we can characterize all positions of a vertex that do not change
the embedding of a drawing. Within this set of positions we have to find a position for
the vertex v so that all related active crossing angles αi are minimized. These angles are
introduced by all dissected pairs incident to v. Figure 3.18 depicts all related angles of a
tail vertex. Each dissected pair incident to the vertex gives us a desired direction dq. In
order to improve the angle of one dissected pair, we would like to place the vertex on a
ray in the desired direction dq. Of course, the rays of all dissected pairs do not have to
intersect in one point, and even if they do, the intersection does not have to be within the
planarity region. Thus, this may result in an optimization problem with possibly conflicting
constraints.

α3 q3

q1

q2

v

PR

α2

α1

Figure 3.18.: We have to place the vertex v in such manner in the planarity region PR so
that the angles αi are minimized.
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(a) (b)

L2

L1

Figure 3.19.: (a) A cone with respect to one neighbor q of v. (b) The intersection of all
cones with the planarity region (dashed) admits possible legit positions for
the vertex v.

One way to handle the conflicting constraints is to minimize the maximum crossing angle
of the vertex v. A general approach to this problem is to perform a binary search over the
angles [0, π). For each step in the binary search we can check whether or not we can place
all vertices with respect to the given angle. If the check fails for one angle, there cannot be
a smaller angle for which the check passes. Hence, the underlying binary decision function
is monotone as required for Theorem 2.1. Therefore, the upper-bound of the binary search
is an absolute ε-approximation for the minimal crossing angle after O(log(π/ε)) iterations.
In the following, we show how to check whether or not there is a position for the vertex v
for a given angle. The idea of our approach is to define a cone for each dummy neighbor
with respect to a given angle. If the intersection of all cones is not empty, then there is a
feasible position for the vertex v.

Let D(v) ⊆ N(v) be the set of dummy neighbors of v. For each dummy neighbor q ∈ D(v)
there is a dissected pair (wq, q, v) incident to q and v. Ideally, we can place the vertex v
collinearly with wq and q for all q ∈ D(v). Thus, the vertices wq and q give us a desired
direction dq = q − wq. Since, there might not be a legit position which satisfies the
collinearity for all q, we minimize the maximum angle ∠wqqv for every q ∈ D(v), so that
the vertex v is in the planarity region PR(v). We refer to this optimization problem as
MinMax-Tail.

Let α ∈ [0, π) be the angle of the current step in the binary search. For two lines L1 and
L2, we define a cone C(L1, L2) as the intersection (union, for an angle α ≥ π/2) of two
half-planes HP(L1), HP(L2). For each q ∈ D(v) we construct a cone C(q, α) = C(L1, L2)
where the line L1 (L2) is obtained by the rotation of the lines L(q,−dq) (L(q, dq)) about α
(−α) degrees around q.

Let C(D(v), α) =
⋂
q∈D(v) C(q, α) be the intersection of all such cones. If the intersection

C(D(v), α) ∩ PR(v) is not empty, the intersection results, by construction, in a set of legit
positions for p so that each angle ∠wqqv is smaller or equal to α. Figure 3.19(a) shows
this relationship.

Computation of C(D(v), α) ∩ PR(v)

In the previous paragraph, we introduced the basic concept of a placing a tail vertex v.
In this paragraph, we show how to compute the intersection of the cones C(D(v), α) with
the planarity region PR(v). We divide this process into two phases. First, we compute
the intersection C(D(v), α) of all cones Ci. Given the intersection of the cones, we can
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Figure 3.20.: For an angle α > π/2 there is a setting of ` cones with `2 polygons describing
the intersection of the cones.

compute the intersection with planarity region. This step is a simple application of the
sweep line algorithm for line segment intersections [BO79]. Let α be the current angle. We
denote the corresponding cones with C = {C1, C2, . . . . C`}. Let the cone Ci be C(qi, α) with
D(v) = {q1, q2, . . . , q`}.

The intersection of the polygon PR(v) with a cone Ci restricts the intersection of the cone
with PR(v). Therefore, we can intersect each C with the bounding box B of PR(v). We
can intersect these restricted cones with each other without loosing information. We use
a Divide-and-Conquer approach to intersect all cones. We partition the set C into two
equal sized sets Ca and Cb. If C contains at most one element, the intersection is trivial.
Otherwise, we compute the intersection of the cones in each set Ca and Cb recursively.
Hence, the intersection of the cones in C is the intersection of Ca and Cb.

In general, we can compute the intersection of two simple polygons with n1 and n2 vertices,
respectively, with a sweep line algorithm in O((n1 + n2 + i) log(n1 + n2)) time where i is
the number of intersections [NP82]. We show, that the cost of intersecting all cones is no
more then O(`2 log `). First of all, notice that all cones share segments on the bounding
box B. The intersection of these segments contributes only a linear term to the number
of intersection of all cones. The intersection of the lines `1i and `2i that define the cones
dominate the number of intersections. In the worst case, the number of intersections is
O(l2). Let T (`) be the time of intersecting ` cones with our Divide-and-Conquer approach.
Then we can express T (`) as T (1) = 1 and T (`) = 2T (`/2) +O(`2 log `). Thus, the Master
Theorem [CLRS09] yields the previous stated result T (`) ∈ O(`2 log `). Note that if the
angle α is smaller than π/2, then the cones are convex and thus we can compute the
intersection of the cones in linear time [OCON82].

We can use a sweep-line algorithm to determine whether or not PR(v) and C intersect.

Theorem 3.10. Determining whether or not ` cones and a polygon with n vertices intersect
requires O((n+`2) log(n+`)) time. One step of the binary search takes O((n+`2) log(n+`))
time.

Proof. The intersection of all cones is the union of at most O(`2) polygons with a total of
O(`2) edges; compare Figure 3.20. Thus, determining whether or not the cones intersect
takes O((n+ `2) log(n+ `2)) time.

We can compute the intersection of all cones in O(`2 log `) time. Computing the planarity
region can be done prior to the binary search. Thus, the total time required per step of
the binary search is O((n+ `2) log(n+ `)).
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q

u

Cq

Cp

PR
w

Figure 3.21.: The point q acts as the source for the cone (blue) and influences the planarity
region and therefore P ′ (red). The cone Cp (green) starting at point q is
bounded by the rays trough u and w restricts the planarity region. If the
intersection of both cones is only the point {q}, the intersection with the
planarity region is empty.

Corollary 3.11. Given the planarity region, for any ε > 0 we can compute an absolute
ε-approximation of the MinMax-Tail problem in time O(log(1/ε)(n+ `2) log(n+ `)) where
` = |D(v)| ≤ deg(v).

Proof. As already stated, the underlying binary decision function of our binary search is
monotone. Thus, the upper-bound of the binary search is an absolute ε-approximation of
the minimal angle by Theorem 2.1 after O(log(π/ε)) iterations. Each step of the binary
search requires O((n+ `2) log(n+ `)) time by Theorem 3.10. This yields a running time of
O(log(π/ε)(n+ `2) log(n+ `)).

In practice, we can heuristically decrease the running time of our algorithm. A ray through
q and a concave corner restrict the planarity region. Therefore, we can define a cone Cp
starting at vertex q with two rays defined by the incident edges of q as shown in Figure 3.21.
If the two cones Cp and Cq only intersect at their source point q, the intersection of Cq
with the planarity region is empty as well. Therefore, the intersection of the cone Cq with
PR(v) is empty. Accordingly, we can reject some configurations in O(`) time.

3.2.2. Placing a Dummy Vertex

If we have to place a dummy vertex v (without dummy neighbors), there are only two
active crossing angles incident to v. Let D(v) = {a, p, b, p} be the neighbors of v so that
a, b and p, q are incident to the same dissected pair. One might be tempted to place v on
the intersection of the segments S(a, b) and S(p, q). However, in general the intersection
may not be within the planarity region. Figure 3.22 shows that the optimal crossing angle
for each dissected pair can conflict with each other. Thus, we take a similar approach to
placing a tail vertex. We perform a binary search over the angles [0, π). In each step, we
check whether or not there is a position for v so that the crossing angle is at most α. This
results in an absolute ε-approximation of the incident crossing angles. We refer to the
underlying optimization problem as MinMax-Dummy. Let α′ be the angle of a step in
the binary search. Our binary decision function works on the angle α = π−α′. For a given
angle α we make use of the Theorem of Thales, which states that moving on the boundary
of the union (intersection) of two disks does not change the angle.

We have exactly two active crossing angles, namely the angle between va and vb and the
angle between vp and vq. First, we consider only the angle α between va and vb bounded
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Figure 3.22.: The planarity region restricts the movement of the vertex v. A position near
the top line improves the crossing angle of the green dissected pair. The
optimal position for the red dissected pair is in lower right corner of the
planarity region.

from below by the fixed angle α0 ≤ α. We distinguish the three cases α0 < 90◦, α0 = 90◦,
and α0 > 90◦.

Lemma 3.12. The angle ∠avb is at least α for α > 90◦ (for α ≤ 90◦) if v lies in
the intersection (union) of the two disks with a and b on their boundary and radius
|ab|/(2 sin(α)).

Proof. We show the lemma for α > 90◦, the case α ≤ 90◦ works analogously (in case
α = 90◦, the two disks are the same and thus union and intersection are the same).

Consider a circle with center O and radius r containing a, b, and v such that v lies on
the shorter of the two circular arcs between a and b (which ensures that ∠avb > 90◦); see
Figure 3.23(a). We first show how we have to choose the radius r so that ∠avb = α. Let c
be the center of the line segment ab. The angle α is the inscribed angle formed by the two
secant lines through av and through bv. Thus, it is half the central angle β (which is the
angle at o in the outside of the quadrangle avbo; see Figure 3.23(a)). Let γ be the angle
at o in the right triangle boc. We have γ = (360◦ − β)/2 = 180◦ − α. Moreover, the right
triangle boc yields sin(γ) = |ab|/(2r) which is equivalent to r = |ab|/(2 sin(γ)). Plugging in
γ = 180◦ − α yields r = |ab|/(2 sin(α)).

For a larger radius r the angle ∠avb is larger than α, and for a smaller radius it is less than
α. Thus, ∠avb is at most α for α > 90◦ if v lies in the intersection of the two disks with
a and b on their boundary and with radius |ab|/(2 sin(α)); see Figure 3.23(b). The same
arguments work for the case where α ≤ 90◦. In this case v has to lie on the larger of the
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Figure 3.23.: (a) Notation for the proof of Lemma 3.12. (b)/(c) The angle ∠avb is at least
α for α > 90◦/for α < 90◦ if and only if v lies in the intersection (union) of
the green and blue region (including its boundary, but excluding a and b) .
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Figure 3.24.: All possible active crossing angles around a dummy vertex v

two circular arcs between a and b, thus we have to take the union of two disks instead of
their intersection; see Figure 3.23(c) for the resulting region.

The same applies for ∠pvq. Thus, restricting both active crossing angles ∠avb and ∠pvq
from below restricts the possible positions v of the dummy vertex v either to the intersection
of four disks, or to the intersection of the union of two disks with the union of two other
disks. More formally, we have four disks D1, . . . , D4 and we have to check whether either
D1∩· · ·∩D4 or (D1∪D2)∩ (D3∪D4) has non-empty intersection with the planarity region
PR(v). In the latter case, this is equivalent to testing whether PR(v) has a non-empty
intersection with at least one of the regions D1 ∩D3, D1 ∩D4, D2 ∩D3, or D2 ∩D4. The
check whether or not this intersection is empty or not requires linear time in the size of
the planarity region.

If this intersection is empty for a given angle in the binary search, we can infer that there
is no larger angle that admits a non-empty intersection. Thus, the corresponding decision
function for the binary search is monotone as required for Theorem 2.1. Therefore, the
lower bound is an absolute ε-approximation of the optimal angle.

Corollary 3.13. Given the planarity region, for any ε > 0 we can compute an absolute
ε-approximation of the MinMax-Dummy problem in O(n log(1/ε)) time.

Proof. One step of the binary search requires of O(n) time. The underlying binary decision
function is monotone as required for Theorem 2.1. Therefore, the upper bound of the
binary search is an absolute ε-approximation after O(log(π/ε)) iterations.

3.2.3. Placing a Dummy Vertex with Dummy Neighbors

In general, we cannot distinguish between a dummy vertex and a tail vertex, i.e., all four
or some of the neighbors of a dummy vertex can be dummy vertices. Figure 3.24 depicts
all possible active crossing angles.

We combine the cone construction for the binary search of Section 3.2.1 with the disk
construction of Section 3.2.2 in one joint binary search. Thus, our binary decision function
checks in each step of the binary search whether or not the cones of all dummy neighbors of
v and the disks of the dissected pairs with v in the middle admit a non-empty intersection.
As seen before, the binary decision function is still monotone and yields an ε-approximation
of all active crossing angles at v. Since there are at most four dummy neighbors, the time
to check whether or not the intersection is empty is linear in the size of the planarity region
of v. We refer to the underlying optimization problem as the MinMax-Hybrid.

Corollary 3.14. Given the planarity region, for any ε > 0 we can compute an absolute
ε-approximation of the MinMax-Hybrid problem in O(n log(1/ε)) time.
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Figure 3.25.: (a) The current position of v blocks the view of the tail vertex u. Thus,
hindering to optimize the active crossing angle of u at the dummy vertex w.
(b) Placing the vertex v in center of its planarity region clears the space for
the tail vertex u.

3.2.4. Placing an Independent Vertex
A vertex v does not have to be a dummy vertex or a tail vertex. Thus, moving this vertex
does not change any active crossing angle. Nevertheless, the position of an independent
vertex v can block the view of a tail or dummy vertex on the surrounding of v as depicted
in Figure 3.25. This restricts the movements of the vertices on the surrounding of v. Thus,
the crossing angles of these vertices are indirectly restricted by the placement of v. It is
not clear, what a good optimization problem for the independent vertices is. Our idea is to
clear the space for all vertices on the surrounding. In order to circumvent this problem we
introduce two possibilities to place the vertex.

Geometric Center

The idea of the Geometric Center approach is to place the independent vertex v in the
center of its planarity region. We define the center of the planarity region as the non-empty
offset polygon with the largest offset distance o. In practice, we can compute this center of
the planarity region by iteratively offsetting the polygon.

Let B the bounding box of PR(v) and d-dist(B) be the diagonal distance from the lower
left to the upper right corner of the bounding box. For a given distance o we can check
whether or not this distance yields an empty or non-empty offset polygon. If one distance
does creates an empty offset polygon any greater distance results in an empty offset polygon.
Thus, we use this as a monotone binary decision function as required of a binary search in
Theorem 2.1. Note that the meaning of the lower and upper bounds is exchanged.

Theorem 3.15. Given the planarity region, for any ε > 0 we can place a vertex in the
geometric center of the planarity region with a tolerance in O(log(d-dist(B)/ε)n2) time.

Random Center

We do not have any quality guarantees for the Geometric Center heuristic. Thus, we
introduce an alternative randomized approach to place an independent vertex. We place
the vertex at random within the planarity region of the vertex. In order to sample the
planarity region uniformly at a random, we compute the triangulation of planarity region
of v. We randomly select a triangle with a probability proportional to its area and then we
utilize the barycenter coordinates to pick a point within a triangle uniformly at random. In
order to select a triangle uniformly at random, we assign an arbitrary order to the triangles.
We compute the prefix sum of the areas of the triangles with respect to this order. We
compute a number p uniformly random between 0 and the area of the polygon. We select
a triangle so that the number p is between two consecutive prefix sums.

Theorem 3.16. Given the planarity region, it takes O(n logn) time to place a vertex
uniformly at random in the planarity region.
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3.2. Vertex Placements

Proof. The time of the triangulation dominates the total time. A practical algorithm to
triangulate a simple polygon requires O(n logn) time [GJPT78]. Computing a probability
distribution and selecting a triangle according to the distribution can be done in linear
time. Computing a pseudorandom number can be done constant time [Knu97]. Computing
a point uniformly at random within a triangle takes constant time.

33





4. Drawing a Planarization

In this chapter, we present two algorithms to draw a planarization. First, we refine our
iterative Geometric Planarization Drawing approach and discus free parameters. We
use the Geometric Framework of Chapter 3 to iteratively place a vertex. In Section 4.1,
we introduce different vertex orders and a heuristic to improve the final drawing of the
planarization, a so-called angle relaxation for the cone construction. In Section 4.2, we
modify a spring-embedder called PrEd to draw a planarization. PrEd is able to preserve
the embedding of an initial drawing [Ber99, SAAB11]. We introduce new forces to the
system to optimize the crossing angles of the planarization.

4.1. Geometric Planarization Drawing
Our Geometric Planarization Drawing approach is in a sense similar to a force-directed
method. A single iteration of a force-directed method computes forces for all vertices and
applies them simultaneously to all vertices. This process is repeated until a stable layout of
the graph is found. We consider a drawing as stable if the maximum difference between the
crossing angle of two consecutive iterations is smaller then a threshold T . Algorithm 4.1
outlines our approach. We choose some order in which we place vertices. After a placement
of a vertex, we can update this order and we allow vertices to occur multiple times in this
order. Given a vertex, we compute the offsetted planarity region. We apply the placement
operations according to the type of the vertex. The operations discussed in the previous
chapter worked with the local properties of the drawing. In this section, we discuss how to
assemble this operations and take a global view on the problem. How do we choose an
initial layout? In which order should we place the vertices? Should unplaced vertices have
the same influence on placing a vertex as vertices that have already been placed?

With the results of the Chapter 3 we can prove the following running time of our algorithm.

Theorem 4.1. A single iteration of the Geometric Planarization Drawing approach with
out computing and updating the vertex order takes O(n3 logn log(1/ε)) time.

Proof. Let nv be the size of the surrounding of the vertex v and let dv be the degree of
the vertex v. We have to compute the planarity region and offset this region at least
once per placement operation. It takes TPR(nv, dv) ∈ O(nvdv lognv) time to compute the
planarity region of a vertex v; see Theorem 3.9. We can offset the planarity region in
Toff(nv) ∈ O(n2

v) time [FO98].
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4. Drawing a Planarization

Algorithm 4.1: Geometric Planarization Drawing
Input: Graph G = (V,E)
Output: Drawing of Gp

1 Gp = planarization of G
2 Find planar straight-line drawing of Gp
3 while Drawing is not stable do
4 Choose an order O
5 forall Vertices v in an order O do
6 Compute the planarity region PR(v)
7 switch Type of v do
8 case Tail: v = solution of MinMax-Tail
9 case Dummy: v = solution of MinMax-Dummy

10 case Dummy and Tail: v = solution of MinMax-Hybrid
11 case Independent: v = Geometric or Random Center
12 Update Order O

Depending on the type of the vertex, the time to place a vertex is either Ttail(nv, dv, ε),
Tdummy(nv, ε), Thyb(nv, dv, ε) or Tind(nv, ε). We use the same approximation factor ε for
the angle and for the distance of the geometric center operation for independent vertices.
Recall that the time for the geometric center operation depends on the diagonal distance
of the bounding box of the drawing. We can assume that this distance is linear (or at least
polynomial) in the number of vertices of the graph.

By the Theorems 3.11, 3.13, 3.14, 3.15 and 3.16 we get the following running time
estimations.

Ttail(nv, dv, ε) ∈ O(log(1/ε)(nv + d2
v) log(nv + dv))

Tdummy(nv, ε) ∈ O(log(1/ε)nv)
Thyb(nv, ε) ∈ O(log(1/ε)nv)
Tind(nv, ε) ∈ O(log(n/ε)n2

v)
TPR(nv, dv) ∈ O(nvdv lognv)

Toff(nv) ∈ O(n2
v)

The number of vertices nv on the surrounding of v is linear in the number of vertices of
the graph. Further, if we estimate the degree dv of a vertex v with nv, the time to place a
tail vertex dominates all other placement operations. Thus, the total time to place vertex
takes O(n · (TPR(n, n) + Toffset(n) + Ttail(n, n, ε)) ⊂ O(n3 logn log(1/ε)) time.

For practical purposes, we can assume that ε is a constant resulting in a running time of
O(n3 logn).

In the following sections we explain the details of the missing parameters. In Section 4.1.1,
we show how to select an appropriate initial drawing. We continue with several vertex
orders in Section 4.1.2. Finally in Section 4.1.3, we introduce a heuristic to relax some
conflicting constraints introduced by the cone construction.
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4.1. Geometric Planarization Drawing

4.1.1. Initial Drawing

Our Geometric Planarization Drawing approach improves an initial drawing of the pla-
narization Gp. In general, we can use every planar straight-line drawing algorithm to
compute the initial drawing of a planarization. If the crossing angles in the initial drawing
are small, it is more likely that our approach leads to a straight-line representation of the
planarization. We restrict ourselves to straight-line drawing algorithms implemented in the
Open Graph Drawing Framework (OGDF) [CGJ+11]. The straight-line drawing has to
preserve the planarity of the planarization. OGDF provides two algorithms that fulfill this
requirements.

1. ogdf::PlanarStraightLayout
2. ogdf::TutteLayout

The ogdf::PlanarStraightLayout implements Kant’s graph drawing algorithm using
canonical orderings [Kan96]. The algorithm draws the graph on a grid of size at most
O(n × n). The Tutte Layout [Tut63] fixes the external face on a convex polygon and
places all other vertices in its barycenter. This layout of a planar graph has an exponential
resolution. Unfortunately, this leads to problems with the floating points arithmetics of our
implementation of the Geometric Planarization Drawing approach. Thus, our evaluation
in Chapter 5 solely bases on the ogdf::PlanarStraightLayout algorithm.

4.1.2. Vertex Order

The Geometric Planarization Drawing approach moves the vertices in a certain order. The
vertex order should somehow reflect the complexity of placing a vertex. If moving one
vertex v helps another vertex u to improve its position, v should precede u in the vertex
order. We can try describe the complexity in terms of the geometry of the graph or in
terms of the combinatorial structure of the graph. For example, we can assume that moving
a vertex with a large planarity region might clear the space for vertices on the surrounding.
Thus, we can use the area of the planarity region to order the vertices. Furthermore,
it might be useful to repair a planarization path at once, i.e., at the time we encounter
a planarization path we successively place all vertices on this path. In this section, we
propose several vertex orders. We compare them against each other in our final evaluation
in Chapter 5.

Left-Right

The left-right order of the vertices is the ordering with respect to lexicographical order
of coordinates of the vertices. If we apply our algorithm with this order on the drawing
sketched in Figure 4.2(a), we can place all dummy vertices at their optimal positions in one
iteration. If we mirror the graph horizontally, we need four iterations to place the vertices
optimally. In the first iteration we place only the first dummy vertex at its optimal position.
Then the algorithm has enough space to place the second vertex and so on. In this fashion,
we can define a family of drawings so that our algorithm with this vertex orders requires a
linear number iterations. Computing the left-right order takes O(n logn) time.

Shelling

The idea of the outer-shelling order is to iteratively remove the external face from
the graph G. Let S0 be the vertices on the external face of the graph G = G0 = (V0, E0)
with the embedding E . We define Gi = (Vi, Ei) with i > 0 as the subgraph of Gi−1
induced by the vertices Vi = Vi−1 \ Si−1, where Si−1 is the external face of graph Gi−1; see
Figure 4.1. Let the vertex u be in the shell Si and let vertex v be in the shell Sj . The
vertex u precedes the vertex v in the outer-shelling order if i < j. We do not define
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4. Drawing a Planarization

S1

S0

S2

Figure 4.1.: The shell S0 are all vertices in blue but not in the green region. The shell S2
are all vertices in the red region.

an explicit order for vertices in the same shell. We use a breadth-first search starting
simultaneously from all vertices on the external face to compute the outer-shelling
order. Thus, we can compute the outer-shelling order in linear time. We refer to
the inverse outer-shelling order as the inner-shelling order. If we alternate in each
iteration between the outer and the inner-shelling order, we call the respective order
alternating-shelling order. Computing the alternating-shelling order requires
linear time in the number of vertices.

Our algorithm with an outer-shelling order requires fewer iterations than the left-
right order if we apply it on the previous family of drawings. We can modify the drawing
in Figure 4.2(a) in such a way, that the vertices 1 and 4 are in the same shell and the
vertices 2 and 3 are in the same shell. If we apply our algorithm with the outer-shelling
order to this drawing, the algorithm can place the vertices 1 and 2 within the first iteration.
In order to place the vertices 3 and 4 the algorithm requires two additional iterations.
Mirroring the drawing at the y-axis does not significantly change the behaviour of the
algorithm. On this family of drawings, the algorithm with the outer-shelling order
requires about nd/2 iterations to place all dummy vertices optimally, where nd is the
number of dummy vertices in the drawing.

If we merge the drawing of Figure 4.2(a) with its mirrored image as depicted in Figure 4.2(b),
the algorithm with the outer-shelling order leads to a linear number of iterations for
this family of drawings. We can start in the interior of the graph, i.e., with the inner-
shelling order, to move all vertices optimally within one iteration. Unfortunately, the
outer-shelling order as well as the inner-shelling order requires a linear number
of iterations in case of the family of drawings sketched in Figure 4.2(c). If we apply our
algorithm with the alternating-shelling order, we can place all vertices optimally in
two iterations. The first iteration places all interior vertices optimally, then, in the second
iteration, all vertices near the external face find their optimal position (or vice versa).

Area

The shelling orders neglects the geometry of the drawing completely. As an alternative,
we define the order area which solely works on the geometry of the drawing. Vertices with
a large planarity region are likely to find a good position with respect to the crossing angle.
If this position is even near the center of the planarity region, there is a good chance that
this divides the available space evenly for all vertices on the surrounding of this vertex.
Thus, a vertex u precedes a vertex v in the area order if the area of the planarity region
of u is larger than the area of the planarity region of v. Moving a vertex changes the
planarity region of its neighbors. Consequently, the order of the vertices changes during one
iteration. Initially, we compute the area of all planarity regions. We select the vertex with
the currently largest planarity region and after placing the vertex, we update the areas for
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4.1. Geometric Planarization Drawing

(a) (b)

1 2 3 4

(c)

Figure 4.2.: Square vertices depict dummy vertices. The color of the dummy vertices
depicts the different shells of the vertices, i.e., green vertices are supposed to
be in the same shell. Assume that the red independent vertices have only little
space to move, i.e., another gadget restricts the movement of the red vertices.
Incident edges of the same color are one dissected pair. Assume that the light
blue area is a dense graph that restricts the movement of the surrounding
vertices. The vertex order affect the number of iterations until our Geometric
Planarization Drawing approach finds a stable layout.
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4. Drawing a Planarization

all the neighbors of the vertex. In order to keep track of the values, we can use a Priority
Queue, e.g. a Binary Heap [CLRS09]. We can insert, update and remove an element
from a Binary Heap in O(logn) time, where n is the number of vertices in the graph.
We update the planarity region of a vertex v at most deg(v) times. Thus, in total there
are O(m) ⊆ O(n) additional planarity region computations in one iteration. Accordingly,
computing and updating the order adds only a constant factor to the total running time
of our Geometric Planarization Drawing approach. Recall that the computation of the
planarity region and offsetting the planarity region dominates the total running time. One
computation of the planarity region requires O(n deg(v) logn) time. Thus, computing and
updating the area order takes O(n3 logn) time in total. Thus, maintaining the area
order only add constant factor the running time of our Geometric Planarization Drawing
approach; compare Theorem 4.1.

Repairing Planarization Paths

The vertex orders introduced in the previous section do not utilize any information about
the planarization. They neglect whether or not an edge belongs to a planarization path.
It might be useful to repair one planarization path after another, i.e., we successively
handle all vertices on a planarization path. Consequently, in this order, we move a dummy
vertex twice. In order to define an order on the planarization paths, we take a little detour
over a vertex order O in the original graph G. This vertex order defines a lexicographical
order OE of the edges E and implicitly an order on the planarization paths. We build a
sequence of vertices of the planarization, instead of a vertex order in that we place the
vertices. Let pe = 〈ve1, ve2, . . . , ver〉 be a planarization path of an edge e with v1 ≺ vr with
respect to the order O. If an edge e does not have any intersections in G, we assume the
planarization path to be the source u and target vertex v of e, i.e., pe = 〈u, v〉. Our goal
is to process all vertices of a planarization path pe successively at the time we encounter
the path pe. In order to do so, we concatenate all planarization paths in the order of the
corresponding edges.

Formally, a concatenation pa ·pb of two paths pa = 〈u2, u2, . . . ur〉 and pb = 〈w1, w2, . . . , ws〉
with r, s > 1 is pa · pb = 〈u1, u2, · · ·ur, w1, w2, . . . ws〉. Let e1 ≺ e2 ≺ · · · ≺ em be the
lexicographical ordered edges with respect to the vertex order O. We define the vertex
sequence S as the concatenation of all planarization paths, i.e., SO = pe1 · pe2 · · · pem . Each
tail vertex v that is not a dummy vertex can occur only deg(v) times in this sequence.
Each dummy vertex occurs only two times. Thus, the total length of this sequence is linear
in the number of edges of the planarization. Let m be the number of edges in the original
graph and mp the number of edges in the planarization. Given a vertex order O, we can
compute the repair-path order in O(mp) time, since m ≤ mp. Thus, the running time is
equal to O(n) where n is the number of vertices in the planarization.

Random

Finally, we compare the introduced orders against a random order of the vertices. In each
iteration we choose a new random permutation of all vertices. In this way, we expect that
each vertex has the same chance to improve its crossing angle. Computing a permutation
requires linear time in the length of the sequence, i.e., in the number of vertices.

4.1.3. Angle Relaxation

The cone construction introduced in Section 3.2.1 works independently of the vertex order.
We can partition the set of vertices in a set of settled vertices that have already been placed
and unplaced vertices. The unplaced vertices have the same influence on minimizing the
crossing angle as the settled vertices. In contrast to settled vertices, the unplaced vertices
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v
u w

v
u w

(a) (b)

Figure 4.3.: Assume that the vertices u, v, w are processed in this order. If we place the
vertex v, the vertex u already has a fixed position whereas w can adjust its
position later on. (a) If every dummy neighbor of v has the same influence,
the algorithms tends to keep the parabolic form of the blue planarization path.
(b) Relaxing the angle of w can help to bend the planarization path in one
common direction.

have another chance to improve their angle. Thus, we propose to weaken the influence of
the unplaced vertices in the cone construction.

In this section, we relax the angle assigned to a cone depending on whether or not the
corresponding vertex has already has been moved or not. Let v be the current vertex that
we like to move and let D(v) be its dummy neighbors. Each dummy neighbor q ∈ D(v) has
the same influence on the placement of v, i.e., we construct each cone C(q, α), as defined in
Section 3.2.1, with the same angle α. Figure 4.3 depicts an example where an unique angle
for all vertices leads to conflicting constraints, i.e., the cone of the dummy neighbors forces
the vertex v to move upwards. The minimal crossing angle for the vertex itself would force
a movement downwards. As a result, the vertex stays somewhere in between. Thus, the
planarization path keeps its parabolic form. If we increase the size of the red cone, as
depicted in Figure 4.3(b), the vertex v has more space to optimize its own crossing angle
and we force the planarization path in a direction preset by the edge {u, v}.

We accomplish this by assigning an independent angle αq to each dummy neighbor q of
v. Depending on whether or not a vertex already been moved, we relax the angle of the
corresponding cone. We partition the dummy neighbors D(v) in two sets D≺(v) = {q ∈
D(v) | q ≺ v} and D�(v) = {q ∈ D(v) | q � v}. We like to relax the angle of the vertices
in the set D�(v). Let α be the angle of the current step of the binary search. We assign α
to each vertex q ∈ D≺(v). We refer to δ ∈ [0, 1) as the angle relaxation weight. For every
vertex q in D�(v) we interpolate the angle αq with this weight between α and π. Thus,
αq = (1− δ) · α+ δ · π for each dummy neighbor q ∈ D�(v).

4.2. A Force Directed Approach
Force-directed graph drawing is a fast and a simple method to draw graphs. Consequently,
it is an obvious choice as a benchmark for our Geometric Planarization Drawing algorithm.
A typical force-directed approach is the spring-embedder [Ead84, FR91]. The idea of the
spring-embedder is to assign an initial layout to the graph and replace all edges with springs
and vertices with steel-rings with repulsive forces. The final layout is a system with a
minimal total energy.

In practice, we compute an attractive force F a(u, v) between adjacent vertices, a repulsive
force F r(u, v) between every pair of vertices and a repulsive force F e(v, (a, b)) between
every vertex v and every edge {a, b} that is not incident to v. We accumulate the forces to
a vector F i(v) as follows.

F i(v) =
∑

(u,v)∈E
F a(u, v) +

∑
u∈V

F r(u, v) +
∑

(a,b)∈E
F e(v, (a, b))−

∑
u∈V,(v,w) inE

F e(u, (v, w))

41



4. Drawing a Planarization
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Figure 4.4.: The radius Ri(v) of the radial arcs Zi restrict the movement of a vertex v.

We apply the forces F i(v) to all vertices simultaneously. We repeat this process until we
find a stable state of the system. One drawback of this version of the spring-embedder is,
that it does not necessarily preserve the embedding of the initial layout. For us, this is a
crucial requirement to draw a planarization. Bertault [Ber99] introduced a modification
to this spring-embedder called PrEd. This force-directed approach is able to preserve the
embedding of the initial drawing of a planar graph. PrEd accomplishes this by defining
eight radial zones Z1, Z2, . . . , Z8. The zones Zi are equal sized partitions of the unit disk.
We can match each force to exactly one radial zone Zi. For each vertex v, we compute
a radius Ri(v) for each radial arc Zi. The radius Ri(v) describes maximal movement of
the vertex to preserve the planarity for all direction captured by the arc Zi; compare
Figure 4.4. The values Ri(v) are derived from the minimal vertex edge distance. For
further details see [SAAB11]. Bertault uses the same forces as Fruchterman and Reingold
for his spring-embedder PrEd.

F a(u, v) = dist(u, v)
δ

(v − u)

F r(u, v) = −δ2

dist(u, v)2 (v − u)

F e(v, (a, b)) =

−
(4·δ−dist(v,iv))2

dist(v,i,v) (iv − v) if iv ∈ (a, b),dist(iv, v) < 4 · δ, v 6= a, v 6= b

0 otherwise

We compute the forces F i(v) for each vertex v. We match each force to a radial zone Zj
and restrict the magnitude of the force with the radius Rj(v). The factor δ describes the
optimal vertex–edge distance. Like Fruchterman and Reingold we use the value

√
A/n for

δ, where A is the area of the bounding box of the graph.

4.2.1. PrEd for Planarization Drawings

PrEd itself only preserves the planarity of the initial drawing but it does not optimize
the crossing angles. In order to optimize the planarization, we introduce two new forces.
Depending on the type of the vertex we apply either a dummy force F d, a force F t for the
tail vertex, or, as already introduced, a force F i for the independent vertex.

Let v be a dummy vertex and let (u, v, w) be a dissected pair incident to v. Our goal
is to place v collinearly with u and w. We accomplish this by moving v in the direction
of the bisector bisect(u, v, w) of the vectors u − v, w − v, i.e., bisect(u, v, w) = ((u −
v)/ dist(u, v) + (w− v)/ dist(w, v))/2. Let the point colin(u, v, w) be the intersection of the
line L(v,bisect(u, v, w)) with the segment S(u,w). In order to move the vertex towards
the intersection colin(u, v, w), we use the following dummy force F d with an attenuation
factor λ > 0.
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4.2. A Force Directed Approach

F d(v, (u,w)) = dist(v, colin(u, v, w))
λ

bisect(u, v, w)

Suppose that v is a tail vertex and let (u,w, v) be a dissected pair incident to v. Ideally,
we can place the vertex v on the extension of the segment S(u,w); compare Figure 4.5(b).
A radial movement of the vertex v around w accomplishes this. Over several iteration of
the spring-embedder we can imitate this movement by translating the vertex v tangential
to this radial arc. Thus, let orth(u,w, v) be the vector orthogonal to the vector w − v so
that orth(u,w, v) moves towards the extension of the segment S(u,w), i.e., orth(u,w, v)
is oriented to the opposite site of the bisector bisect(u,w, v), relative to the vector v − w.
We require orth(u,w, v) to be normalized. Let v1, v2 and w be three different collinear
points. The length dist(v1, w) and dist(v2, w) should not affect the angle by which we
move v1 or v2, i.e., the force should improve the crossing angle independently from the
distance of w to v1 and to v2. Assume that the dist(v1, w) = 1. If we translate v1 by the
vector orth(u,w, v)/κ, we have to translate v2 by the vector dist(v2, w) · orth(u,w, v)/κ,
with κ > 0. On the opposite tail vertex u of v of the same dissected pair, the computed
force points in the opposite direction. Thus, we scale the force about a factor 1/2 to avoid
an unstable behaviour. Overall this results in the following force F t.

F t(v, (u,w)) = dist(w, v)
2 · κ · orth(u, v, w)

Let DP (v) be the set of all dissected pairs incident to v. The force on the tail vertex v is
the sum of forces F t(v, (u,w)), i.e., F t(v) =

∑
((u,w,v))∈DP (v) F

t(v, (u,w)). If v is a dummy
vertex, we accumulate F d for all dissected pairs. Since v might be a tail vertex, we add the
tail force F t(v) to the respective force, i.e., F d(v) = F t(v) +

∑
((u,v,w)∈DP (v) F

d(v, (u,w)).

For a fair comparison with the Geometric Planarization Drawing approach, we restrict the
spring-embedder to a scaled bounding box of the drawing. For vertices on the external
face we apply an additional force to repel the vertices from the bounding box. In order to
ensure that no vertex crosses the bounding box, we restrict the zones of an external vertex
to the minimal distance to the bounding box.

u w

v

(a) (b)

v

w
u

bisect

colin

Figure 4.5.: Sketch of our local force. (a) If v is a dummy vertex, move it a long the bisector
of the adjacent segments. (b) The vertex v is a tail vertex of a planarization
path. We move v gradually along an arc by translating v in direction of the
perpendicular vector.
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Drawing a planarization is a difficult task, it is as hard as the Existential Theory of the
Reals; see Section 1.1. Thus, there is only a small chance of finding an algorithm that can
solve this problem efficiently. In case of our Geometric Planarization drawing approach, we
iteratively place a vertex to locally optimal position. We cannot guarantee any specific
bounds on the global quality of our drawings. Thus, we take an experimental approach in
order to evaluate our Geometric Planarization Drawing algorithm. We use two metrics to
measure the quality of a drawing. First, we use the crossing angle of each dissected pair as
a local property. Secondly, we measure the stretch of a planarization path to reflect the
global qualities of a drawing. The stretch is ratio of the length of the planarization path to
the length of an ideal path.

There are several parameters for our Geometric Planarization Drawing approach. For
example, we introduced different orders in which we place the vertices or a relaxation for the
angles of the cone construction. For some of the combinations of the parameters it is difficult
to predict how well they perform, or which of them achieves the best quality. Figure 5.1
depicts the final results of different version of our Geometric Graph Drawing approach
applied to one Rome graph; compare the configurations with Table 5.2. Figure 5.1a shows
the initial drawing of the graph. All of the drawings are almost optimal, at least it is hard
to perceive a deviation from the ideal paths. The GPD-PRR-8 in Figure 5.1f, i.e., our
Geometric Graph Drawing approach with the Path-Repair vertex order and a relaxation
for the cone construction, yields a drawing very different from the other ones. Note that
the right edges of the lower corner visually collapse into one edge. Beside the quality of
the drawings, there is a difference in the number of iterations until the algorithm finds the
final drawing. The GPD-Path-Repair configuration requires only 3 iterations to find
the optimal drawing of the graph, whereas the GPD-Relax-1 configuration requires 26
iterations.

In this chapter, we evaluate the quality and the running time of different configurations of
our Geometric Planarization Drawing approach. First of all, we give a brief description
of our experimental setup and a characterization of the Rome graphs in Section 5.1. In
Section 5.2, we show that our algorithms improve the initial drawing. Further, we compare
the quality of the different configurations of our Geometric Planarization Drawing approach
and our PrEd implementation. Finally, in Section 5.3, we evaluate the running time of
our algorithm. We divide this into two parts, the time per iteration and the number of
iterations required by a configuration of our approach.
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(a) Initial Drawing of graph grafo2920 of the rome graph
benchmark.

(b) GPD-Base: Final drawing after 14 itera-
tions.

(c) GPD-Area: Final drawing after 5 itera-
tions.

(d) GPD-Path-Repair: Final drawing after 3
iterations.

(e) GPD-Relax-1: Final drawing after 26
iterations.

(f) GPD-PRR-8: Final drawing after 17 iterations

Figure 5.1.: Different configurations of our Geometric Graph Drawing approach applied to
graph grafo2920 of the rome graph benchmark.
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5.1. Experimental Setup
In this section, we describe our experimental setup in terms of the used hardware and
the used software libraries. All experiments were conducted on a server with two In-
tel(R) Xeon(R) E5430 CPUs with 32GB of RAM. Each CPU has four cores clocked at
2.66GHz. The program was compiled with g++ version 4.8.3 on OpenSuse 13.2 with
the flags -frounding-math -std=c++11 -O3 -DNDEBUG -march=native -fopenmp. We
use OGDF [CGJ+11] version 2012.07 to planarize our graphs and to compute the initial
drawing. For all geometric operation, we use CGAL [CGA15] version 4.5.2. Stefan Huber
supplied us with his STALGO library for computing the straight skeleton of a polygon and
offsetting polygons [HH11, HH12]. We created our plots with R [R C15] in combination
with plyr [Wic11] and ggplot2 [Wic09].

5.1.1. Configurations

In this Section, we describe different configurations of our Geometric Planarization Drawing
approach. Some of the parameters are the same for every configuration like the initial
drawing. We have chosen the fixed parameters as follows.

1. Initial Drawing: The only practical algorithm for planar straight-line drawings
implemented in OGDF is the PlanarStraightLayout (PSL). Thus, we are not
able to analyze the influence of the initial drawing to our Geometric Planarization
Drawing approach.

2. Bounding Box: We limit the area with the bounding box of the initial drawing
increased by factor of two, i.e., β = 2 in Section 3.1.3.

3. Offsetting: We offset each planarity region by at most γ = 0.1; see Section 3.1.4.
4. Approximation: We use ε = 10−3 as an approximation guarantee in Section 3.2.1,

3.2.2, 3.2.3 and Section 3.2.4.

Further, there are several free parameters, for example the order in which we place the
vertices. Table 5.2 lists all evaluated configurations with the following parameters.

1. Vertex order : The vertex orders described in Section 4.1.2 control the order in which
we place the vertices in one iteration. The choices are the alternating-shelling
order, the path-repair order with a breath-first-search starting at the leftmost
vertex as an underlying vertex order, or a random order.

2. Angle relaxation weight: We select an angle relaxation weight δ from the set
{0, 0.1, 0.2, 0.4, 0.6, 0.8}; see Section 4.1.3.

3. Independent center : We have two possibilities to place an independent vertex either
in the geometric center by shrinking the planarity region or by selecting a random
point in the planarity region; Section 3.2.4.

Floating Point Arithmetic

A not so obvious parameter of our implementation is the representation of the floating point
numbers. The representation and the handling of the numbers affect the total running
time of our implementation. In general, double precision floating points are not enough to
handle complex geometric problems in practice. Recall that a drawing of a 1-planar graph
requires an exponential area [HELP12]. Therefore, we need a number of bits that is linear
in the number of vertices to represent the coordinates in a drawing.

We represent our coordinates as quotient of arbitrary large integers. We use the Gmpq data
type [Hem15] implemented in the GNU Multiple Precision Arithmetic Library1. The Gmpq
number would increase with each iteration of our Geometric Graph Drawing approach.

1Available at https://gmplib.org/
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Table 5.2.: Configurations for our Geometric Graph Drawing approach.
Name Initial

Drawing
Vertex Order Angle

Relaxation
Weight

Independent
Center

GPD-Random-
Center

PSL Alternating-
Shell

0 Random

GPD-Base PSL Alternating-
Shell

0 Geometric

GPD-Random-
Order

PSL Random 0 Geometric

GPD-Path-Repair PSL Path-Repair 0 Geometric
GPD-Relax-1 PSL Alternating-

Shell
0.1 Geometric

GPD-Relax-2 PSL Alternating-
Shell

0.2 Geometric

GPD-Relax-4 PSL Alternating-
Shell

0.4 Geometric

GPD-Relax-6 PSL Alternating-
Shell

0.6 Geometric

GPD-Relax-8 PSL Alternating-
Shell

0.8 Geometric

GPD-PRR-1 PSL Path-Repair 0.1 Geometric
GPD-PRR-2 PSL Path-Repair 0.2 Geometric
GPD-PRR-4 PSL Path-Repair 0.4 Geometric
GPD-PRR-6 PSL Path-Repair 0.6 Geometric
GPD-PRR-8 PSL Path-Repair 0.8 Geometric
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Figure 5.3.: Distribution of number of vertices

Due to the size of the numbers, the running time of our algorithm becomes impractical. As
a compromise we use the Gmpq representation for all operations within a single iteration.
After each iteration we round the numbers to double precision floating points. As a
consequence, two vertices can collapse into a single point. We stop the algorithm at this
point and use the previous drawing for our evaluation. For a few drawings the algorithm
stops early due to problems with the floating point arithmetics in the offsetting procedure.

5.1.2. Rome Graphs

In order to evaluate our Geometric Graph Drawing approach we use the Rome graphs as
a benchmark2. The dataset consists of 11’534 graphs with 8’253 non-planar graphs. We
use the non-planar Rome graphs for our analyzes. Our experiments are evaluated on 100
of these graphs, chosen uniformly at random; we refer to these graphs as Rome-100. A
list of these can be found in the Appendix A. The graphs are not necessarily biconnected.
Thus, we compute all maximal biconnected components. We apply the algorithms to
each non-planar component independently. Every graph in our testset has exactly one
non-planar biconnected component.

We use the optimal edge insertion algorithm introduced by Gutwenger et al. [GMW05]. The
algorithm extracts a maximal planar subgraph from a (non-planar) graph G. It iteratively
reinserts the non-planar edges not contained in the planar subgraph. The insertions
minimizes the total number of crossings on this edges. In the following we analyze several
characteristics of the planarizations of the Rome-100 graphs. We show that on real-world
graphs the local crossing number and several other measures are correlated. Thus, we can
use the local crossing number as an explanatory variable.

Figure 5.3 shows the distribution of the size of the planarized graphs, where the size is the
sum of the number of vertices and number of edges in the planarization. The graph at the
median has a size of 147. The average size of the graphs is 174. The first quantile is at 93
and the third quantile at 233.

2Rome graphs are available at http://www.graphdrawing.org/data/
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Figure 5.4.: Distribution of number of k-planar Rome graphs.

Figure 5.4 shows a similar distribution for the local crossing number graphs. The median
local crossing number is 3. On average the local crossing number is 3.74. The first quantile
is at 2 and the third quantile at 5. All Rome graphs, not just the Rome-100 graphs, are
k-planar, with k ≤ 16.

We define the dummy density as the ratio of the number of dummy vertices to the number of
vertices in the original graph. A planarization with a dummy density of 0.5 has one dummy
vertex for two vertices in the original graph. Figure 5.4 suggests that our planarizations
of the Rome graphs have a linear association between the dummy density and the local
crossing number.

If the optimal edge insertion algorithm has to reinsert a large number of non-planar edges,
the likelihood of a pairwise intersection between non-planar edges increases. Thus, the
number of dummy vertices increases as well. A linear regression confirms this expectations;
compare Figure 5.5. The two variables are positively correlated with an r2 value of 0.82. A
value near 1.0 suggests a strong correlation between the two values.

We can observe a similar behavior for the size of the maximal connected dummy component.
A connected dummy component of a planarization is a maximal connected subgraph in the
planarization such that every vertex is a dummy vertex. Figure 5.6 shows the relationship
between the local crossing number and the size of the largest connected dummy component
of a graph. The plot suggests a correlation between the two variables. If we assume a
quadratic association between the two variables, we get a coefficient of determination
r2 = 0.79.

From here on, we assume that there is a correlation on real-world graphs between the
local crossing number and the dummy density, and a correlation between the local crossing
number and the size of the largest connected dummy component. Therefore, we use solely
the local crossing number for the further analyzes of the quality and the running time of our
Geometric Planarization Drawing approach. Note that in our experiments we categorize a
drawing as k-planar if the longest planarization path in the drawing has exactly k dummy
vertices.
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Figure 5.5.: Density of the dummy vertices with respect to the local crossing number of
the graph.
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Figure 5.6.: Maximum number of dummy vertices in one dummy component with respect
to the local crossing number.
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v1 v5

v2

v3

v4

Figure 5.7.: Every dissected pair has a small crossing angle. Nevertheless, the path deviates
clearly from the ideal path.

5.2. Quality
In this section, we analyze the quality of the Geometric Planarization Drawing approach.
Using statistical tests, we confirm the following three hypothesis: 1) Our algorithm
significantly improves the initial drawing. 2) The drawings have better crossing angles then
our PrEd implementation. 3) Depending on the local crossing number, it is useful to select
different configurations of our algorithm.

We use two metrics to quantify the quality of a planarization: the crossing angle and the
stretch. A small maximum crossing angle of a planarization path can result in a drawing
far from a straight-line segment; compare Figure 5.7. Thus, we use the stretch of a path as
a second measure for the quality of a drawing. We define the stretch of a planarization
path as the ratio of the length of the planarization path to the length of the ideal path
(a straight-line segment from the source to the target vertex of the planarization path).
Formally it is

stretch(pe = 〈v1, v2, . . . , vr〉) =
∑r
i=2 dist(vi−1, vi)

dist(v1, vn) .

5.2.1. Experimental Design and Statistical Tests

A common way to compare two drawings or the running time of an algorithm is to compare
different characterizations of the respective score, e.g. on average of the scores, or the
different quantiles of the scores. In general, outliers can strongly influence the average.
Therefore, the average is not a robust way to quantify the quality of a drawing. The
median, the first and third quantile are only useful if the underlying distribution is known.
Otherwise, depending on the population, the algorithm can focus on optimizing these three
values. Consider a distribution with four clusters, one cluster just right above the minimum,
the first and third quantile, and the median. This would suggest an improvement of the
complete drawing but this improvement is not representative for the complete drawing.
Instead, we take a statistical approach to evaluate the crossing angle and the stretch.

Our evaluation focuses on the comparison of two drawings of the same graph, e.g. the
initial versus the final drawing of a graph or the final results of two different algorithms.
Let G = {G1, G2, . . . , Gs} be the test sample of graphs, i.e., in our case the 100 randomly
selected Rome graphs and let G1,G2 denote the two sets of drawings of the test sample. It
is difficult to assign a representative quality measure to each graph. Aggregating all angles
would yield a loss of information. Therefore, we do not handle each graph as an individual
but every dissected pair or every planarization path. For example, we compare whether
or not the crossing angle cr-α1(u, v, w) of the dissected pair (u, v, w) in the first drawing
is smaller than the crossing angle cr-α2(u, v, w) of the same dissected pair in the second
drawing. Thus, we can treat the sets of both measurements as dependent. According to
Sheskin [She03], this would allow the following three statistical tests.

1. The t-test for two depending samples
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2. The Wilcoxon matched-pairs signed ranks test
3. The binomial sign test for two dependent samples

The t-test for two depending samples requires the underlying populations of the two samples
to be normally distributed. Our aim is to find a drawings where the most dissected pairs
have a crossing angle of 0 (or stretch of 1). Consequently, the expected distribution is
not symmetric. Thus, our hypothesis cannot support an underlying normally distributed
population. The Wilcoxon matched-pairs signed-ranks test is not applicable with the same
argument, since the test requires the distribution to be symmetric around the median. The
binomial sign test for two dependent sample bases on the following two assumption.

1. The sample has been randomly selected from its population.
2. The measurements can be rank-ordered.

The graphs are randomly selected, thus we consider the first assumption to be fulfilled.
We can assign ranks to each measurement by sorting the measurements. Both functions,
the crossing angle and the stretch, satisfy both assumption. Therefore, we use this test to
quantify the improvement of one heuristic over the other.

Binomial Sign Test for two Dependent Samples

The description of binomial sign test for a single sample and two samples is based on the
book “Handbook of Parametric and Nonparametric Statistical Procedures” by David J.
Sheskin [She03].

r

n
≤ 1

2 (5.1)

P (≥ r) = 1
2n

n∑
k=r

(
n

k

)
≤ α (5.2)

The binomial test for two dependent samples applies the binomial test for a single sample.
We give a brief description of the binomial test for single samples. With a binomial test
for a single sample we can compute how likely it is that in sequences of 1 and 0, the 1
occurs with a different probability then the 0. The directional Alternative Hypothesis
states that the probability of the quantity of 1 in the sequence is greater than 0.5. The Null
Hypothesis states the contrary. In order to reject the Null Hypothesis with a significance
level of α, the Equations 5.1 and 5.2 have to hold, where r is the number of 0, n the total
length of the sequence. The function P (≥ r) is the probability that r or more 1 occur in
the sequence. The Equation 5.2 is the binomial distribution with probability of 1/2.

We can compute the likelihood that the scores of two samples represent different populations
with the binomial test for two dependent samples. Each score in the first sample has a
matched score in the other sample. The test compares the scores in the first samples with
the corresponding scores in the other sample, i.e., s1,i < s2,i. The comparison results in
a sequence of 0 and 1 . We can apply the binomial test for one sample to evaluate the
likelihood that the occurrence of a one is more likely than the occurrence of a 0. Thus, we
have a likelihood that the two scores represent two different samples and the scores of the
first sample is smaller than the scores of the second sample.

We can use this test to compare two drawings with each other. We can assign a score to each
dissected pair or to each planarization path. The score of a dissected pair is the crossing
angle and the stretch is the score for the planarization paths. Thus, we get a likelihood
that the crossing angle or the stretch of one drawing is less then the corresponding value in
the other drawing.
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cr-α1(u, v, w) + ∆ < cr-α2(u, v, w) (5.3)
stretch(pe) · Λ < stretch(pe) (5.4)

The test does not say anything about the distance between the two populations. We augment
the binomial sign test for two samples with an additive buffer ∆ and a multiplicative buffer
Λ ≥ 1. We check whether or not the two scores represent two different populations if we
add (or multiply) the buffer to the first population. Equation 5.3 depicts the comparison
for a dissected pair (u, v, w) and Equation 5.4 shows the comparison for a planarization
path pe. We can use a binary search to approximate the maximum buffer ∆? and Λ? so
that the two samples are likely to represent two different population. We say that one
sample has as an advantage of ∆? (Λ?) over the other sample.

All our tests are conducted with a significance level of α = 0.05.

5.2.2. Initial Drawing versus Final Drawing
First of all, we examine whether or not the Geometric Planarization Drawing approach,
improves the quality of the initial drawing of a graph. For this evaluation, we use the
GPD-Base configuration of our algorithm, i.e., there is are no additional heuristics and we
move the vertices in the order of the Alternating-Shelling order. The Figures 5.8a, 5.8b
give a first impression that our algorithm yields a significant improvement of the crossing
angles compared to the initial drawing. Both plots use a box plot with the set of all graphs
on the x-axis ordered with respect of the local crossing number. We omit the names of
graphs in this plot. The y-axis shows the crossing angle of each dissected pair. For visual
aid, the colors of the boxes represent the local crossing number. The boxes of the box
plot contain all values between the first and the third quantile. The bold line within the
box represent the median of the values. The whiskers depict the largest (smallest) value
smaller (greater) then 1.5 times the distance between the third and first quantile. Every
other point depicts an outlier.

The average angle over all initial drawing is about 44◦. The first quantile is at 6◦, the
median at 26◦ and the third quantile at 89◦. In comparison, the average angle over all final
drawings is 12◦, the first quantile is 0.2◦, the median at 6◦ and the third quantile at 20◦
degrees. All values show an improvement of the angle. Unfortunately, the first quantile,
the median and the third quantile are not a good choice to show an improvement of the
angle. The final drawing can only improve exactly these three angles. In this case, the
final drawing would not be significantly better then the initial drawing. Our evaluation
shows, that the third quantile of the final drawing is below the median of the first drawing.
Thus, at least 25% of the angles are improved.

The binomial test for two dependent samples compares all values and translates the
comparison into a probability measure. We think, that this value supplements the traditional
characteristics. The binomial tests shows that the final drawing has an advantage of about
∆? = 16◦ to the initial drawing, i.e., we can add a buffer of 16◦ to the crossing angles of
the final drawing and the populations are different at significance level of 95%.

The Figures 5.8c and 5.8d show the distribution of the stretch. It suggests an improvement
of the stretch. The average stretch of the initial drawing is 1.3, the first quantile at 1.01
the median is at 1.08 and the third quantile is at 1.3. For the final drawing we have an
average stretch of 1.04, the first quantile and the median is at 1 and the third quantile
are 1.01. In this case, the median is (at least almost) optimal, thus the stretch of at 25%
paths has been improved. The binomial sample test for stretch shows a relative advantage
of Λ? = 1.03. Thus, we can add about 3% to the stretch of the final drawing and the
populations are different at a significance level of 95%.
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5. Evaluation

5.2.3. Pairwise Comparison of GPD Configurations and PrEd

In this section, we compare the different configurations of our Geometric Planarization
Drawing approach against each other and against our implementation of PrEd. In case
of our Geometric Planarization Drawing implementations, we compare the final drawings.
In case of PrEd, we performed 250 iterations per graph. We use the drawing with the
minimal maximal crossing angle to compare the PrEd approach against the Geometric
Planarization Drawings. We partition the set of graphs into classes according to its local
crossing number.

Figure 5.9 shows matrices for the local crossing numbers 1 and 3 and Figure 5.10 the
matrices for local crossing number 7 and 13. The x-axis and the y-axis show the name
of the configuration; compare Table 5.2. The value and the color in each cell represent
the buffer ∆? (rounded down to an integer) so that the configuration on the x-axis has
an advantage over the configuration on the y-axis. If we cannot show an advantage, the
respective cell is gray.

For example, the plot for 1-planar graphs shows, that every Geometric Planarization
Drawing configuration has an advantage over the PrEd implementation, but the advantage
is smaller than 1. Of course, PrEd cannot have an advantage over itself. Thus, the value
of the pair (PrEd, PrEd) is gray. The advantage of the GPD configurations over PrEd
increases with the local crossing number.

For 1-planar graphs the plot shows that the configuration GPD-Area and GPD-Relax-1
have an advantage of 17◦ over the configuration GPD-PRR-4. We would expect that
both configurations have a similar advantage over GPD-PRR-6 and GPD-PRR-8. As
the plot shows, this is not the case. If we place a tail vertex, we can place the vertex
anywhere in the intersection of the cones with the planarity region. In our implementation,
we place the vertex at the leftmost intersection point between the boundary of the cones
and the planarity region. Figure 5.11 shows one example graph for both configurations.
Both configurations place the vertex u before the vertex v. Unfortunately, the new position
of u in the GPD-PRR-4 configuration is in the desired direction of v. Thus, after one
iteration v blocks the visibility of u for this configuration. The GPD-PRR-4 configuration
is not able to recover from this decision. In case of the GPD-PRR-6, the placement of
u is not in the desired direction of v and thus, the new position of v does not block the
visibility of v. After one more iteration, the algorithm is able to place all vertices in a good
position. There are a few more graphs with a similar behavior, resulting in an advantage of
GPD-Area and GPD-Random-Order over GPD-PRR-4 and not over GPD-PRR-6.

Figure 5.11c shows that the intersection of the cone with the planarity region can be large.
For tail vertices with one dummy neighbor the relaxation is not very useful. We expect
the heuristic to perform better on graphs with a high local crossing number (and thus,
having longer planarization paths). With an increasing local crossing number, the chance
of conflicting constraints increases. Our plots in Figure 5.9 and Figure 5.10 support this
hypothesis. For a small local crossing number the angle relaxation does not have significant
advantage over any other configuration. However, with an increasing local crossing number
the importance of the angle relaxation increases.

Among the configurations without the angle relaxation there is no vertex order that has
an advantage over another vertex order. Especially, there is no vertex order that has an
advantage over the configuration GPD-Random-Order. Nevertheless, the values for the
buffer of the GPD-Area configuration and the GPD-Relax-1 configuration dominate
every other column, i.e., the value in the column is greater than or equal to every other value
in the same row. For drawings with a local crossing number of 3, the GPD-Path-Repair
order dominates every other configuration. There is no configuration that dominates
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Figure 5.9.: Pairwise comparison of Geometric Planarization Drawing configurations and
PrEd. Each cell represents the advantage in degree.
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Figure 5.10.: Pairwise comparison of Geometric Planarization Drawing configurations and
PrEd. Each cell represents the advantage in degree.
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u

v

(a) Placement of the vertex with configuration
GPD-PRR-4

u v

(b) Placement of the vertex with configuration
GPD-PRR-6

u
v

(c) Drawing after the first iteration with configu-
ration GPD-PRR-4

u

v

(d) Drawing after the first iteration with
configuration GPD-PRR-6

Figure 5.11.: Drawing of the graph “grafo5226.36” after the placement of the vertex and
after the first iteration
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Figure 5.12.: GPD-Base: Total number of iterations used for a single drawing versus the
total running time.

another in case of the 7-planar drawings. If we neglect the row corresponding to PrED, the
GPD-PRR-6 would dominate the other configurations. The GPD-Relax-6 configuration
dominates every other configuration in case of the 13-planar drawing.

We generated the same plots for the stretch measurements. There are only small differences
in the stretch between the configurations. The corresponding plots are in Appendix B.

5.3. Running Time
In this section, we analyse the running time of our Geometric Planarization Drawing
implementation. We can divide the total running time into two parts: the number of
iterations until the implementation converges and the running time per iteration. Note that
the running time of one iteration depends on the hardware and on the implementation of
the geometric operations. Our experiments were conducted on a server with older hardware
as described in Section 5.1. Figure 5.12 shows the correlation between the number of
iterations and the total running time. Note that the algorithm stops when no further
improvements are possible, or at the latest after 150 iterations. This leads to a wide range
for the total running time at iteration 150.

5.3.1. Time per Iteration

We give a short overview over the running time of a single iteration. The worst case running
time of our Geometric Planarization Drawing implementation is O(n3 logn). Figure 5.13
shows the average running time per iteration of a drawing on the y-axis versus the number
of edges on the x-axis. Taking the logarithm of the average running time suggests a degree
of 2.75 for the underlying polynomial running time. A non-linear correlation against a
polynomial of degree two and three does not yield a conclusive statement. We get r2

between 0.5 and 0.6.

Figure 5.14a shows on the x-axis the maximum number of bits required to represent a
single coordinates of a vertex in a single iteration. Note that the different coordinates of
the vertices of a drawing may require a different number of bits. The y-axis shows the time
required to compute the drawing. The colors of the data point indicate the local crossing

60



5.3. Running Time

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

● ●
●●

●

● ●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

● ●●

●●

●

●

●
●

●

●●●
●

●
● ●

●

●

●

●●

●

●

●

●

● ●

●
●

●

● ●
●●●

●

●●
●

●

●

●

●

● ●●●

●

●

0

20

40

60

100 200 300
m

av
g.

 ti
m

e 
[s

]

Figure 5.13.: GPD-Base: Average running time per iteration of a single drawing with
respect to the number of edges.

number of the corresponding drawing. The coordinates require at most 1000 to 1200 bits
in order to represent the drawing. We did not record the number of bits for a different
GPD configuration, but as the plot shows, we think there is no (clear) correlation between
the maximum number of bits and the running time for a single iteration.

In contrast, Figure 5.14b depicts on the x-axis the total number of bits required to represent
a drawing. As the number of bits per coordinate use only a small spectrum, the plot
is similar to Figure 5.13. Nevertheless, we see a red and green cluster which mark two
different outliers in the running time.

These outliers can be traced back to the following behaviour. We would expect the running
time of the computation of a drawing to be stable over all iterations. Figure 5.15 shows
that this is not the case for our running time measurements. The Figure shows the current
iteration on the x-axis and the average running time of the operation per vertex on the
y-axis. For example, in Figure 5.16a iteration 100 requires on average about 0.1s to place
one vertex. Offsetting the planarity regions requires on average less then 0.05s. The
computation of the planarity region is even faster. Note that the offsetting data series
contains the iterative offsetting for independent vertices as well. The two plots show that
the running time varies about a factor of 1.5. For some graphs, we observed a factor of
about 4. We were not able to trace this behavior back to one specific operation of our
algorithm. We observe the same decline in running time with similar proportion on two
different subroutines: the offsetting and the planarity region. We measured the running
time to compute a third drawing. We repeated this experiment 16 times on the same
drawing. In order to rule out a hardware defect on our system described in Section 5.1,
we conducted the experiment on a second compute server. Figure 5.16 shows two of the
measurements. Thus, the running time measurement behaves in a unpredictable manner.
Again, we observe the same behaviour of the offset computation and the planarity region.
Recall that we use an external implementation for the offset computation. Since the number
of bits required per iteration is almost constant, we neglect the possibility of memory
effects. We cannot exclude the possibility of a lower clock rate for some time, maybe due
to a too high temperature, with a 100% certainty.
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Figure 5.14.: GPD-Base: The plots show the relationship between the bits per coordinate
and the running time of one iteration
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Figure 5.15.: Average running time per iteration to draw two different graphs with the
GPD-Base configuration.
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Figure 5.16.: Average running time per iteration of two computation of the same drawing.

5.3.2. Number of Iterations

Depending on the vertex order and the strength of the angle relaxation, the number of
iterations vary; compare Figure 5.17. In order to evaluate the effect of the configurations
on the number of iterations, we take a similar approach to evaluating the crossing angles.
We compute a buffer for the number of iterations between each pair of configurations.
Figure 5.18 shows the advantage of one configuration over the other. The first figure shows
that most configurations have an advantage over the GPD-Relax configurations. The
GPD-Relax configurations requires 150 iterations for most graphs, which is our upper
bound on the number of iterations. The GPD-Relax configurations use the alternating-
shelling order and relax the angles for the cones. The vertex order of one iteration is
the inverse of the previous iteration. For a placement of one vertex, we relax those angles,
which we did not relax in the previous iteration. This yields conflicting decisions between
two consecutive iterations. The GPD-PRR configurations use a sequence of vertices,
which is more consistent between two iterations. Therefore, the relaxation effects the same
or at least not too many different vertices between two iterations. This yields a better
overall performance. For every other pair of configurations the test does not show a great
advantage of one configuration over another.

Number of Iterations versus Quality

We conclude this section with a short comparison of four of our configurations, two configu-
rations without the angle relaxation activated (GPD-Base and GPD-Path-Repair), two
configurations with an angle relaxation weight of 0.4 (GPD-Relax-4 and GPD-PRR-4).
Figure 5.19 shows the plots for drawings with local crossing of 1, 3, 7 and 13. Each of the
plots shows the relationship between the number of iterations and the maximum crossing
angle in a single drawing. We can observe that the GPD-Base configuration performs best
in case of 1-planar drawings (all orange points are hidden by the purple cluster). In the
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5. Evaluation

●
●

●

●●

●

●

●

●

●0

50

100

150

0 5 10
k_planar

m
ax

_i
te

ra
tio

n

(a) Path-Repair

●

●

●

●

0

50

100

150

0 5 10
k_planar

m
ax

_i
te

ra
tio

n

(b) GPD-PRR-4

Figure 5.17.: Number of iterations
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Figure 5.18.: Pairwise comparison of Geometric Planarization Drawing configurations. Each
cell represents the advantage in the number of iterations.
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5.3. Running Time

other plots we can observe that in order to achieve a good quality of the final drawing, the
configuration tend to require more iterations, especially for graphs with high local crossing
number. Further, we can observe that with an increasing local crossing number the angle
relaxation gains relevance.
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(b) 3-Planar Drawings
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(c) 7-Planar Drawings
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(d) 13-Planar Drawings

Figure 5.19.: Maximum crossing angle versus number of iteration. Each point represents a
single drawing. The color corresponds to a configuration: orange = GPD-
Base; green=GPD-Path-Repair; blue = GPD-PRR-4; purple = GPD-
Relax-4.
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6. Conclusion

The study of Purchase [Pur97] suggests that for non-planar graph minimizing the total
number of crossings is the most important optimization criteria to create good and readable
drawings of non-planar graphs. Minimizing the number of crossings is known to be
NP-hard [GJ83, Bie91]. Furthermore, we can require that the drawing is a straight-line
representation and ask for a straight-line drawing with a minimal number of crossings.
This problem is NP-hard as well [Bie91]. Thus, there is only little hope to find an efficient
algorithm that computes a straight-line representation of a graph with a minimal number
of crossings.

Nevertheless, computing a planarization of non-planar graphs and the drawing of planar
graphs are well-studied problems. In practice, the single edge insertions algorithm and
similar heuristics compute a good planarization with a small number of crossings. We
used this topological result as a starting point to iteratively straighten the planarization
paths with the restriction to preserve the combinatorial structure of an initial drawing.
Mnëv [Mnë88] and Shor [Sho91] were the first to prove that the problem stretchability is
NP-hard and thus, the problem of drawing a planarization is NP-hard. We are not aware
of any heuristics that try to find a straight-line representation of a planarization. Thus, the
Geometric Planarization Drawing approach is the first of its kind. We used a geometric
approach to tackle the problem. The core of our algorithm is the planarity region. This
region allows us to characterize the set of points where we can move a vertex without
changing the embedding of the planarization. Our vertex placement operations optimize
the crossing angles of a vertex within this region.

We took an experimental approach to evaluate our drawings. With a binomial sign test
for two dependent samples extended by a buffer, we were able to show that all our GPD
configurations outperforms our (adjusted) implementation of the spring-embedder PrEd.
Our approach draws all 1-planar graphs of our benchmark nearly optimally, i.e., with no
perceivable deviation from a straight-line representation. Most 2 and 3-planar graphs are
close to optimal with only small deviations. However, there is no clear preferences between
the different vertex orders.

Further, we introduced an angle relaxation heuristic to improve the drawing with a high
local crossing number. We relaxed some constraints depending on whether or not the
corresponding vertex has already been moved within one iteration. The evaluation confirmed
our expectations: the relaxation is a tool with that we can further improve the quality
of complex drawings, i.e., drawings with a high local crossing number. It is important
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6. Conclusion

(a) Initial Drawing of graph grafo2920 of the rome graph
benchmark.

(b) GPD-Path-Repair: Final drawing after 3
iterations.

Figure 6.1.: It might be hard to distinguish between two planarization paths

that between two consecutive iterations that the vertex order is fairly stable. Otherwise,
the relaxation can yield an alternating placement of the vertices between two consecutive
iterations. In case of the alternating-shelling order in combination with an angle
relaxation, the number of iterations significantly increases in comparison to the other
configurations.

6.1. Future Work and Open Problems
In comparison to a force-directed approach, our Geometric Planarization Drawing approach
is not able to control the minimal vertex–edge distance. This results in aesthetically
unpleasing drawings. The planarization paths are almost optimal but it might be hard
to visually distinguish between two planarization paths; compare Figure 6.1. We observe
that our drawings with a lower crossing number admit a straight-line representation of
the planarization even then if we increase the distance between the planarization paths.
Thus, it would interesting to see how additional constraints, which control the vertex–edge
distance would affect the overall all quality of the drawings.

We minimize the maximum active crossing angle of each vertex separately. By minimizing
the maximum, we are able to avoid solving a quadratic program with potentially non-
convex constraints. Nevertheless, it would be interesting to optimize the sum of the squared
crossing angles such that the vertex is within the planarity region. Triangulating the
planarity region yields a set of independent convex problems. Instead of minimizing one
quadratic program with non-convex constraints, this yields a linear number of independent
quadratic programs with a constant number of linear constraints. This smaller problem
might be easier to tackle.

The Geometric Planarization Drawing approach might be applicable for the incremental
straight-line drawing problem. Let G be graph with a (planar) straight-line drawing and let
e be a new edge. In the problem we are interested in whether or not there is a straight-line
drawing of G+ e where the drawing of G stays (fairly) stable. Note the resemblance to the
planarity of a partially embedded graph problem; compare with Section 1.1. If we cannot
insert e into G without intersections, we can use the single edge insertion algorithm to
add the edge to the embedding. We can think of the result of the algorithm as an ordered
sequence of edges, which the edge e crosses. With our approach we can determine locally
optimal positions of the dummy vertices on these edges. We can locally adjust the positions
of vertices on the surrounding of the dummy vertices to iteratively improve the drawing.
In this way, the layout hopefully stays (fairly) stable.
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Appendix

A. List of Rome-100 Graphs
List of 100 Rome graphs used in Chapter 5 to evaluate our Geometric Planarization
Drawing approach.

1. grafo10079.41.graphml
2. grafo10153.100.graphml
3. grafo10240.97.graphml
4. grafo10275.97.graphml
5. grafo10325.96.graphml
6. grafo10592.98.graphml
7. grafo10861.100.graphml
8. grafo10914.96.graphml
9. grafo10964.95.graphml

10. grafo11018.99.graphml
11. grafo11092.97.graphml
12. grafo11118.99.graphml
13. grafo11145.99.graphml
14. grafo11147.100.graphml
15. grafo11280.99.graphml
16. grafo11585.36.graphml
17. grafo11637.38.graphml
18. grafo11655.91.graphml
19. grafo1210.51.graphml
20. grafo1406.46.graphml
21. grafo1509.32.graphml
22. grafo1556.63.graphml
23. grafo3424.46.graphml
24. grafo3468.44.graphml
25. grafo3549.40.graphml
26. grafo3665.54.graphml
27. grafo3668.59.graphml
28. grafo3737.54.graphml
29. grafo4001.41.graphml
30. grafo4008.62.graphml
31. grafo4218.55.graphml
32. grafo4472.68.graphml
33. grafo4502.55.graphml
34. grafo4536.83.graphml

35. grafo4550.65.graphml
36. grafo4592.56.graphml
37. grafo4630.64.graphml
38. grafo4636.82.graphml
39. grafo4839.63.graphml
40. grafo4959.59.graphml
41. grafo4973.66.graphml
42. grafo499.37.graphml
43. grafo5042.56.graphml
44. grafo5088.54.graphml
45. grafo5097.71.graphml
46. grafo5226.36.graphml
47. grafo5255.47.graphml
48. grafo5483.60.graphml
49. grafo5583.33.graphml
50. grafo5633.45.graphml
51. grafo5861.82.graphml
52. grafo5862.60.graphml
53. grafo610.29.graphml
54. grafo6127.55.graphml
55. grafo6181.40.graphml
56. grafo6319.80.graphml
57. grafo6330.39.graphml
58. grafo6392.40.graphml
59. grafo6527.69.graphml
60. grafo6530.41.graphml
61. grafo6543.37.graphml
62. grafo6545.71.graphml
63. grafo6646.77.graphml
64. grafo6827.53.graphml
65. grafo7149.74.graphml
66. grafo7278.42.graphml
67. grafo752.76.graphml
68. grafo7551.39.graphml

69. grafo7641.39.graphml
70. grafo7891.83.graphml
71. grafo7995.65.graphml
72. grafo8039.65.graphml
73. grafo8059.61.graphml
74. grafo8085.76.graphml
75. grafo8094.86.graphml
76. grafo8103.71.graphml
77. grafo8151.76.graphml
78. grafo8291.77.graphml
79. grafo8388.72.graphml
80. grafo8416.64.graphml
81. grafo8433.75.graphml
82. grafo8499.99.graphml
83. grafo8720.100.graphml
84. grafo8883.71.graphml
85. grafo8910.91.graphml
86. grafo8944.97.graphml
87. grafo9006.61.graphml
88. grafo9038.73.graphml
89. grafo9124.64.graphml
90. grafo9135.85.graphml
91. grafo9280.62.graphml
92. grafo9360.63.graphml
93. grafo947.15.graphml
94. grafo9602.82.graphml
95. grafo9671.63.graphml
96. grafo9746.68.graphml
97. grafo9754.67.graphml
98. grafo9762.78.graphml
99. grafo9775.61.graphml

100. grafo9844.82.graphml

B. Pairwise Comparison of the Stretch
For completeness, the plots for the pairwise comparison of the stretch in Section 5.2.3.
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Figure B.1.: Pairwise comparison of Geometric Planarization Drawing configurations and
PrEd. Each cell represents the relative advantage of the stretch. (cont.)
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Figure B.1.: Pairwise comparison of Geometric Planarization Drawing configurations and
PrEd. Each cell represents the relative advantage of the stretch.
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