-

AT

Karlsruhe Institute of Technology

Embedding Graphs
on Non-Standard Grids

Master Thesis of

Daniel Patejd|

At the Department of Informatics
Institute of Theoretical Computer Science

Reviewers: Prof. Dr. Dorothea Wagner
Prof. Dr. Peter Sanders
Advisors: Dr. Marcus Krug
Dr. Ignaz Rutter

Time Period: 1st November 2011 — 30th April 2012

KIT — University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association Www_kit_edu

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, 30th April 2012

iii

Deutsche Zusammenfassung

Graphen eignen sich nicht nur zur algorithmischen Loésung von Problemen, sondern auch dazu,
in visualisierter Form Zusammenhénge fiir das menschliche Auge darzustellen. Eine Variante der
Darstellung ist die Einbettung von Graphen in Gitter. Das Standard-Gitter ist das orthogonale
Gitter, welches durch rechtwinklig verlaufende Linien konstruiert wird. In dieser Arbeit wer-
den Einbettungen von Graphen in Nicht-Standard-Gitter betrachtet, die bisher nur rudimentér
erforscht sind. Zum einen das Bienenwabengitter, eine Anordnung von reguléren, zusammenhén-
genden Sechsecken, auf dem verschiedene Algorithmen zum Zeichnen von Bdumen priisentiert
werden. Die von den Algorithmen auf dem Gitter gezeichneten Baume werden anschliefend hin-
sichtlich ihres Platzverbrauchs, ein hiufig auftretendes Optimierungskriterium, analysiert. Zum
anderen wird ein regulér trianguliertes Gitter, auch hexagonales Gitter genannt, thematisiert,
welches aus einer regelméafligen Teilung der zweidimensionalen Ebene in Dreiecke hervorgeht.
Durch eine Scherung des Gitters erhilt man ein Gitter, welches strukturelle Ahnlichkeiten zum
orthogonalen Gitter aufweist. Diese Ahnlichkeiten erlauben es, bekannte algorithmische sowie
komplexitétstheoretische Ergebnisse vom orthogonalen auf das hexagonale Gitter zu {ibertragen.
Es wird gezeigt, dass das Problem, einen gegebenen 4-planaren Graphen ins hexagonale Gitter
einzubetten, sodass alle Knoten auf Gitterkreuzungen liegen und alle Kanten durch kiirzeste
Wege auf dem Gitter verlaufen, wie im orthogonalen Fall NP-schwer ist. Eine eingeschréinkte
Variante des Problems, bei dem zusétzlich eine Abbildung von Knoten des Graphen auf Punkte
des Gitters gegeben ist, erweist sich ebenfalls NP-schwer; erneut wie im orthogonalen Fall. Es
wird ein Algorithmus vorgestellt, der bestimmte Instanzen des Problems effizient 16st.

Contents

1 Introduction
2 Related Work

3 The Honeycomb Grid

3.1 h-v Drawings of Complete Binary Trees

3.2 Sector Drawings of Treeso

4 The Hexagonal Grid
4.1 Basic Definitions and Properties
4.2 Geodesic Point-Set Embeddability

4.3 Sparse Labeled Geodesic Point-Set Embeddability

5 Conclusion

Bibliography

vii

11
11
15

21
22
25
28

43

45

1. Introduction

In informatics, graphs are often used as a theoretical approach to solving problems algo-
rithmically. However, graphs are not at all restricted to this kind use. They can as well
serve as a visualization concept for all kinds of relations, for example computer networks,
route maps, and different types of charts. Oftentimes, graphs are drawn or embedded in
the Euclidean plane. Thus, edges that are incident to the same vertex may form arbitrarily
small angles at the vertex. The higher the degree of a vertex gets, the more difficult it
may become to read or identify information in the drawing and the less visually appealing
the drawing will be to the human eye. This quality criterion is referred to as angular
resolution. Therefore, when drawing a graph, one should choose angles as big as possible.
One possibility to deal with this issue is to use grids as the underlying drawing area for
the graph in question. There are further quality criteria which are subject to obtimiza-
tion, such as the area occupied by a drawing, the number of edge bends and crossings
introduced, the length of edges, and criteria regarding the symmetry or shape of drawings.

When using grids, vertices are usually mapped to intersections of the grid lines and edges
are chosen to run only along the lines of the grid. There are variants that allow edges
to also run off the grid. The standard grid considered is the orthogonal grid, which is an
orthogonal or perpendicular arrangement of two sets of lines in the plane—see Figure 1.1a.
Usually, one set of lines is chosen to run horizontally from left to right, while the other set

(a) The orthogonal grid. (b) The honeycomb grid. (¢) The hexagonal grid.

Figure 1.1: The orthogonal grid is the standard grid considered when drawing or embed-
dings graphs on a grid. This thesis, however, focuses on two non-standard
grids: the honeycomb grid and the hexagonal grid.

1. Introduction

of lines is chosen to run vertically from the bottom to the top. More precisely, horizontal
lines have a slope of zero and vertical lines have a slope of one. A lot of time and effort
has been invested with respect to drawing or embedding graphs on the orthogonal grid,
as we will see in Chapter 2 on related work.

There are various other, non-standard grid structures which, so far, have only been studied
rudimentarily at best. In this thesis, we will study two of them to provide fundamental
insight into these structures. The first such grid structure is the honeycomb grid, which
will be dealt with in Chapter 3. The honeycomb grid is a tesselation of regular hexagons
in the plane—see Figure 1.1b. We will port a drawing concept from the orthogonal grid,
the h-v drawing, to the honeycomb grid. An h-v drawing of a graph is essentially a
drawing such that each edge is realized either as a rightward horizontal or a downward
vertical line segment, but not both. Furthermore, no edges intersect. We will show how to
draw complete binary trees on the honeycomb grid according the h-v drawing convention
by using an algorithmic idea due to Crescenzi et al. [CP97]. Then, we introduce another
drawing concept which we refer to as sector drawing. Basically, a sector drawing partitions
the honeycomb grid into three regions (sectors). Edges are neither allowed to cross sector
borders, and thus are required to run in only one sector, nor must they cross each other.
Additionally, for both h-v and sector drawings, we require vertices to be placed only on the
intersections of the grid lines. We analyze both types of drawings especially with respect
to the area needed by such drawings.

The second non-standard grid structure we study is the hexagonal grid, also referred to
as the triangular grid, which we will focus on in Chapter 4. The hexagonal grid consists
of three sets of lines at 60° angles to each other—see Figure 1.1c—and, at least visually,
resembles the honeycomb grid to some extent. Our studies are greatly motivated by the
fact that we can use fundamental knowledge gained from research conducted regarding
the orthogonal grid [KKRW10]. In particular, we will consider the problem of GEODESIC
POINT-SET EMBEDDABILITY (GEODESIC PSE): Given a graph G and a finite set P of
points on the grid, we ask whether G can be embedded such that the vertices of G are
mapped to the points in P and all edges of G are represented by shortest paths (geodesics)
running only on the grid. The problem is known to be NP-hard on the orthogonal grid,
and we will show that it is NP-hard on the hexagonal grid as well. We will then consider
another problem initially introduced on the orthogonal grid, named LABELED GEODESIC
POINT-SET EMBEDDABILITY (LABELED GEODESIC PSE). Here, in addition to the input
graph, we are given a mapping that determines the correspondence between vertices of the
graph and points on the grid. LABELED GEODESIC PSE is NP-hard on the orthogonal
grid, and we will prove that is NP-hard on the hexagonal grid, too. Moreover, we shall
see that certain problem instances of LABELED GEODESIC PSE, which we will refer to
as sparse, can be solved efficiently. The corresponding algorithm, as well as the hardness
proofs, are based on results carried out by Katz et al. [KKRW10].

Finally, Chapter 5 summarizes our results and concludes this thesis by giving a brief
outlook regarding possible future work.

2. Related Work

Already in 1948, Istvan Fary [Fard8] considered straight-line representations of planar
graphs. He showed that every planar graph has an embedding without crossings in which
edges are straight line segments and the vertices are points', which is also referred to as
Fary’s theorem, and such straight-line embeddings are called Fdry embeddings.

In 1960, William Thomas Tutte did further research on the topic and investigated espe-
cially convex representations of graphs in the plane [Tut60]. In 1963, he presented an
algorithm that computes convex representations of 3-connected planar graphs [Tut63] by
solving a set of linear equations. Using results by Lipton et al. [LRT79], the algorithm
can be implemented to run in O(n'?) time, where n denotes the number of vertices of the
graph. There are further authors who in the 1960s [AP61] devoted their time to graph
drawings and embeddings, among them Donald Knuth [Knu63]. Later, Thomassen [Tho80]
characterized the class of graphs that admit a convex drawing, and Chiba et al. [CONS85]
gave a linear-time algorithm for this class using Thomassen’s characterization. The algo-
rithm can be extended to general planar graphs producing straight-line drawings, where
the faces of each 3-connected component are drawn as convex polygons [TDBBS8S].

Of special interest has always been the "appropriate” visualization of graphs in terms of a
huge variety of aesthetic criteria, such as the number of edge bends, the lengths of edges,
the area needed for the visualization of the graph, criteria regarding shape, symmetry
and crossings in the drawing of the graph, angular resolution, and many more. For this,
researchers have begun to study the problem of finding embeddings of graphs into grids,
that is, settling the question, whether the vertices of a graph can be mapped to intersections
of the grid lines, and whether the edges of that graph can be routed along the lines of
the grid, connecting the corresponding vertices. Such embeddings into grids may result
in (more) appealing visualizations or drawings; thus the interest in the topic. There are
further applications of graph embeddings into grids that justify the research, for example
applications in VLSI chip design. A related problem is point-set embeddability, where, in
addition to the input graph, a bijection between vertices and grid points is given as part
of the input.

In the following, we will first consider previous work related to grid embeddings or drawings
and present some general results. Since point-set embeddings render an important part

! Actually, Fary [F4r48], Wagner [Wag36], and Stein [Ste51] showed this independently.

2. Related Work

of this thesis, we then outline previous results related to this kind of grid embeddings.
Afterwards, we focus on optimization criteria, namely area end edge bends, and we will
cover a variety of related work with respect to those two criteria. In this thesis, we will
analyze our drawings with respect to the area required as well. For a given graph G, the
area occupied by a drawing or embedding of G is subject to minimization. In many cases,
the total number of edge bends, and the maximum number of bends per edge are subject to
minimization as well. More often than not, it is the case that both criteria are considered
for minimization simultaneously. As such, it is difficult to consider one without having to
consider the other as well, and thus a certain overlapping cannot be avoided when trying
to classify previously done work. Lastly, we focus on an important tool used for graphs
drawings, the canonical ordering, and present results that are based on this concept.

Grid Embeddings.

The standard grid considered in the task of embedding graphs into grids is the orthog-
onal grid. One of the most important results is a O(n?logn)-time algorithm by Tamas-
sia [Tam87], later improved to O(n”/*\/logn) by Tamassia and Garg [GT97], and then
recently again by Cornelsen and Karrenbauer to (’)(n3/ 2) [CK12], which draws a 4-planar
graph orthogonally with the minimum number of edge bends, while preserving a given
planar representation (combinatorial embedding?®) of the graph. Tamassia’s algorithm is
based on a reduction to a minimum-cost flow problem in a network and includes con-
straints respecting upper bounds on the number of edge bends [Tam90, TDBB88]. The
drawings produced require an area that is in O(n?), which is worst-case optimal [TDBBS8S].
To be more exact, the grid size is bounded by (n + 1) x (n + 1), as Biedl [Bie96] points
out. Heretofore, Storer conjectured the problem to be NP-hard and gave three heuris-
tics that produce drawings with 2n + 4 bends, if the graph is biconnected, and 2.4n + 4
bends otherwise. The area required for the drawings is in O(n?). While no detailed time
complexity analysis is given, the algorithms appear to run in O(n?) time [Sto84, Tam90].
Tamassia and Tollis [TT89] then improve those results. They give a linear-time algorithm
that constructs grid embeddings with at most 2n + 4 edge bends for 2-connected graphs,
and 2.4n + 2 bends otherwise. They additionally show that edge lengths are in O(n),
that every edge bends at most four times and, for 2-connected graphs, that all but two
edges bend at most twice. The area requirement of the embeddings is in O(n?). With
reference to a work by Valiant [Val81], the authors point out that the bounds on the area
requirement and length of the edges are both asympotically worst-case optimal. Biedl and
Kant [BK98] also give a linear-time algorithm, yet with better bounds regarding area re-
quirement and edge bends. Their embeddings occupy a n x n grid using 2n + 2 edge bends
at most; each edge bends at most twice (unless the given graph is the octahedron). Also,
their algorithm handles both planar and non-planar graphs as well as non-biconnected
graphs. The main idea is to construct orthogonal drawings of the biconnected components
of the graph using the st-ordering, and then merging those drawings into one orthogonal
drawing of the entire graph. Given a biconnected graph G = (V,E) and s # t € V, an
ordering s = vy, v, ...,v, = t of the vertices of G is called an st-ordering, if for all vertices
vj, 1 < j < n, there exist 1 < i < j < k < n such that {v;,v;}, {vj,vx} € E [LECT5].
Di Battista et al. [BLV93] show that, if a planar embedding is not given, the problem
of finding orthogonal grid embeddings with the minimum number of edge bends is poly-
nomially solvable for 3-planar biconnected graphs, and Tamassia shows that it becomes
NP-complete for 4-planar graphs [GT94].

2A combinatorial embedding of a graph can be defined by giving, for each vertex v, a cyclic order of
the edges incident to v.

Next, we consider results that are related to point-set embeddings, particularly geodesic
point-set embeddings. Here, we are given a graph and, additionally, a set of points to
which the vertices of the graph must be mapped. Furthermore, edges are required to be
embedded as geodesics, that is, as shortest possible connections between their endpoints
with respect to the underlying metric. This problem is referred to as GEODESIC POINT-SET
EMBEDDABILITY, or as simply GEODESIC PSE [KKRW10]. Katz et al. [KKRW10] show
that this problem is NP-hard on and off the orthogonal grid. In this thesis, we will study the
complexity of GEODESIC PSE on a non-standard grid, the hezagonal grid (or triangular
grid), which is a grid formed by a triangular tiling of the plane. By further restricting
the placement of vertices on the grid, we obtain a problem named LABELED GEODESIC
POINT-SET EMBEDDABILITY (LABELED GEODESIC PSE). In this scenario, we are given
a bijection between vertices of the graph and points on the grid. Katz et al. [KKRW10]
show that this problem is NP-hard on the orthogonal grid. As for GEODESIC PSE, we
study the complexity of LABELED GEODESIC PSE on the hexagonal grid.

Area Minimization.

An important optimization criterion is the area occupied by a drawing, which we also
consider in this work. In general, minimizing the area needed by a drawing (that is
entirely on the grid) corresponds to an NP-hard optimization problem [TDBBS8S8|. For
binary trees, the problem becomes solvable in polynomial time if one allows edges to leave
the grid [SR83|. For input graphs having degree at most 4, Papakostas and Tollis [PT96]
give a linear-time algorithm that produces drawings occupying an area of at most 0.76n2,
while introducing at most 2n + 2 edge bends, and each edge in such a drawing bends
at most twice. The algorithm is based on forming and placing pairs of vertices of the
graph. Another linear-time algorithm is presented for graphs having degree at most 3.
The occupied area of a drawing is at most roughly n2/4, and, if the graph is biconnected,
the drawing has at most [3n/2] 4+ 3 bends, which is optimal up to a factor of 2 (regardings
edge bends). Moreover, Tamassia, Tollis and Storer show that 2-connected graphs can be
embedded in an n x n grid using 2n + 4 bends [Sto84, TT89]. A lower bound of 2n — 2
edge bends for 2-connected planar graphs is given by Papakostas and Tollis [PT95]. Kant
shows that triconnected graphs having maximum degree four can be embedded into an
n x n grid with at most three bends per edge [Kan92a]. Even and Granot present an
algorithm for orthogonal drawings of 4-connected graphs introducing at most three bends
per edge [EG94]. Schiffter [Sch95] drops the limitation of producing crossing-free drawings
and presents an O(n?)-time algorithm that introduces at most two bends per edge.

Further area optimization is done by Rahman, Nakano and Nishizeki [RNN96]. They
give a grid drawing algorithm for plane graphs, that is, planar graphs that are already
embedded in the plane, with lower bounds W + H < n/2, WH < n?/16, where W is the
width and H the height of the rectangular grid. The graphs they consider have degree
exactly 3, except for vertices on the rectangular outer cycle, which have degree exactly
2. Schnyder [Sch89] proves that every planar graph has a straight-line embedding on a
2n — 5 by 2n — 5 grid, which can be computed in O(nlogn) time. An improved bound
of (2n — 4) x (n — 2) is presented by de Fraysseix, Pach and Pollack [dFPP88, dFPP90].
The according algorithm uses O(n) space and runs in O(nlogn) time. They left open the
problem of whether the time complexity can be improved. Chrobak and Payne [CP95]
then improved the complexity to O(n), which is optimal, while the grid size remained
the same. Later, Schnyder [Sch90] gave a O(n)-time algorithm to further improve the
bound on the grid size to (n —2) x (n — 2). His algorithm can be implemented in parallel
in O(lognloglogn) time using n/logn processors on a parallel random access machine

2. Related Work

(PRAM), as is shown by Fiirer, He, Kao and Raghavachari [FHKR92]. If randomization
is used, the complexity improves to O(logn) expected time. Regarding the lower bound
on the grid size, de Fraysseix, Pach and Pollack [dFPP88, dFPP9I0] also show an example
graph that requires a grid size of at least (2n/3 — 1) x (2n/3 —1).

Xin He shows [He95] that it is possible to embed internally triangulated plane graphs
without non-empty triangles® on a W x H grid, such that W + H <n, W < (n+3)/2 and
H < 2(n—1)/3, if edges are allowed to run off the grid. The embedding can be computed
in O(n) time. He [He97] obtains the same width and height bounds to straight-line embed
4-connected plane graphs on a W x H grid, again in linear time. A restriction on the given
plane graph is that it must have at least four vertices on its external face.

Bend Minimization.

When dealing with grid structures, another important criterion for optimization is min-
imizing the number of edge bends needed for an embedding. As already noted above,
there is a O(n3/?)-time algorithm by Cornelsen and Karrenbauer [CK12] for embedding
4-planar graphs orthogonally introducing the minimum number of edge bends, given a
planar representation of the graph in advance. Their algorithm is based on Tamassia’s
flow network [Tam87]. If, however, such a planar representation of the graph is not given
as part of the input, the problem of finding the bend-minimum orthogonal grid embedding
becomes NP-complete [GT94]. More precisely, Tamassia et al. [GT94] show that it is NP-
hard to approximate the minimum number of bends in a planar orthogonal grid drawing
with a O(n'~¢) error, for any ¢ > 0.

Otten and van Wijk [OVWT78] introduce the wvisibility representation, where vertices are
represented by horizontal and edges are represented by vertical line segments, such that
each edge only touches the two vertex segments of its endpoints (meaning that edges do not
cross any other vertex segments). They show that every planar graph admits a visibility
representation. Rosenstiehl and Tarjan [RT86], as well as Tamassia and Tollis [TT86] then
independently presented linear-time algorithms for constructing visibility representations
of planar graphs, the latter authors using the st-ordering, and the former authors using the
bipolar orientation (also called st-orientation), which is a certain orientation and partition
of the edges of a graph into two sets. The st-orientation is a concept equivalent to the
st-ordering, and they both can be obtained from each other. The grid size required for the
representations is (2n—>5) x (n—1) [Kan94] for both algorithms. Tamassia and Tollis [T'T87]
show that their aforementioned algorithm can be modified to compute grid embeddings
having O(n) edge bends. Kant and He [KH94] improve the bound on the grid size to
at most (n — 1) x (n — 1) for 4-connected planar graphs, and then Kant [Kan94] again
improves this bound to at most |(3n—6)/2] x (n—1) for general planar graphs. Lin, Lu and
Sun [LLS05] point out that, by following the convention of placing the endpoints of vertex
segments on grid points, one can easily see that any visibility representation of a graph can
be made no higher than n — 1. Therefore, it is only the width which is subject to further
minimization. The authors use canonical orderings and Schnyder’s realizer* [Sch89, Sch90]
to further improve the bound on the width. For triangulated graphs, they improve the
bound to [(22n — 40)/15]. Further, if the graph has no internal node of degree 3, the
bound improves to |(4n — 9)/3], and if the graph has no internal node of degree 5, the
bound improves to |[(4n — 7)/3]. If the graph is 4-connected, the width is at most n — 1,
which matches the best known result of Kant and He [KH94]. Their according algorithm
incrementally draws the graph using a greedy approach and works in linear time.

3Given a graph G, a non-empty triangle of G is a triangle of G' containing some vertices in its interior.
4Similar to the st-ordering, a realizer is an orientation and partition of the edges into three sets.

Zhang and He [ZHO05] give yet a better bound on the width. Using techniques by Lin, Lu
and Sun [LLS05] and the simple visibility representation algorithm given by Rosenstiehl,
Tarjan, Tamassia and Tollis [RT86, TT86], they show that any plane graph can be em-
bedded on a grid whose width is bounded by [(13n — 24)/9]. The problem of finding the
most compact visibility representations of plane graphs remains open. Rosenstiehl and
Tarjan [RT86] have conjectured the problem to be NP-hard.

Di Battista, Tamassia and Tollis [DBTT92] consider a special type of visibility representa-
tions, the constrained visibility representation, where prespecified edges are constrained to
be vertically aligned, and give a O(n)-time algorithm that computes a constrained visibility
representation of a given planar graph. The resulting representations require O(n) area and
use only integer coordinates. Concentrating on bend minimization, F68meier, Kant and
Kaufmann [FKK97] introduce 2-visibility representations or drawings of graphs, a more
general type of visibility representation, where edges may run vertically and also horizon-
tally. Furthermore, vertices are now represented by boxes—no longer as line segments—
to distinguish them from edges. They present a polynomial-time algorithm to compute
bend-minimum orthogonal drawings, where every edge bends at most once. They also
give various upper and lower area bounds. Bose et al. [BDHS97] study further visibility
representations with applications in via minimization in VLSI design. They find classes
of graphs that allow to be drawn as rectangle-visibility graphs, which are graphs such that
vertices are represented by rectangles and edges are realized as horizontal or vertical lines
of sight.

Woods [Woo82] presents a O(n?)-time algorithm that produces drawings according to the
mized standard, where vertices are mapped to grid-line intersections and edges are drawn
as polygonal chains that bend only on grid-line intersections. The drawings produced have
O(n?) edge bends and require O(n?) area.

Biedl and Kaufmann [BK97] present algorithms to produce orthogonal drawings for ar-
bitrary graphs. They consider static and incremental scenarios. In the static scenario,
the input graph is given entirely in advance. The drawings produced by the according
algorithm occupy at most a (m/2+mn/2) x (m/2+n/2) grid, and every edge bends at most
once, thus introducing at most m bends, where m is the number of edges in the graph. In
the incremental scenario, the graph is given incrementally, that is, one node at a time, and
a vertex needs to have a fixed placement before the next is given. Thus, once a vertex has
been placed, it cannot be changed later. Here, the algorithm produces drawings on a grid
whose size is at most (m/2 + n) x (2m/3 + n). Again, edges bend at most once, resulting
in at most m overall bends. Next, using the canonical ordering, they consider planar and
outerplanar graphs and give an algorithm that embeds a planar 3-connected graph on a
grid of size (m —n+1) x min{m/2, m —n+ 1} with m —n edge bends. All their algorithms
have linear time complexity.

Apart from the canonical ordering, another powerful tool for constructing visibility repre-
sentations is the regular edge labeling (defined by Kant [KH97], for example). Kant and
He [KH97] show that both are actually tightly connected and that a canonical ordering
algorithm leads to a regular edge labeling algorithm. Regular edge labelings are not re-
stricted to the construction of visibility representations, however. For example, they are
also used by He [He95, He97]—the results were already described further above.

2. Related Work

Canonical Orderings.

An important tool named the canonical ordering®, due to de Fraysseix, Pach and Pol-
lack [dFPP88, dFPP90], which is a special ordering on the vertices of a graph, is used
by Kant [Kan96] to show that every triconnected planar graph admits a planar convex
straight-line grid drawing on a (2n — 4) x (n — 2) grid, that every triconnected graph
having degree at most 4 admits a planar orthogonal grid drawing on an n x n grid with
at most [3n/2] + 4 edge bends, and if n > 6, then every edge bends at most twice.
Moreover, Kant shows that every planar graph with maximum degree 3 admits a planar
orthogonal grid drawing with at most |n/2| 4+ 1 bends on an |n/2| x |n/2] grid, and that
every triconnected planar graph having degree at most d admits a planar polyline grid
drawing on a (2n — 6) x (3n — 9) grid, with a minimum angle larger than 2/d radians
and at most 5n — 15 edge bends. In the latter result, every edge bends at most three
times. Kant and Chrobak [CK97] (again using the canonical ordering), and Schnyder
and Trotter [ST92] independently show how to find a convex straight-line embedding of
a 3-connected plane graph on a (n — 2) x (n — 2)-sized grid in linear time. Chrobak and
Nakano [CN95] present a linear-time algorithm that embeds a plane graph having at least
three vertices into a grid of width at most |2(n — 1)/3|. Using results by de Fraysseix,
Pach and Pollack [dFPP88, dFPP90], they show that this bound is tight—each dimension
of the grid needs to be at least |2(n — 1)/3], even if the other dimension is allowed to be
unbounded [CN95].

De Fraysseix, Pach and Pollack [dFPP88, dFPP90] (already mentioned above) also use the
canonical ordering in their O(nlogn)-time algorithm to compute straight-line embeddings
of maximal planar graphs. To find such an embedding, they first calculate a canonical
ordering of the vertices and then they place vertices on the grid using the ordering. The
algorithm uses a quite sophisticated data structure first introduced by Chazelle [Cha85]
for rectangle range queries on a set of points. An algorithm improving the time bound
to O(n) is given by Chrobak and Payne [CP95], also mentioned above. They embed
vertices, one at a time, using the canonical ordering, at each stage adjusting the current
partial embedding. Whenever a vertex v needs to be moved, they associate with v a set of
other vertices that also move due to v. Their method does not require any complex data
structures. Instead, they manage the information required during the algorithm, such that
there is sufficient local information available to find a tentative embedding of each new
vertex. Later, vertices are moved to their final positions using a tree-like data structure.

Another work based on canonical orderings is presented by Goodrich and Wagner [GW98].
They give an algorithm that draws planar graphs on a O(n) x O(n) grid using polylines that
have at most two bends per edge and asympotitcally optimal worst-case angular resolution.
More significantly, they show how to adapt this algorithm to draw any planar graph using
cubic Bézier curves, with all vertices and control points® placed within an O(n) x O(n)
integer grid such that the curved edges achieve a curvilinear analogue of good angular
resolution. Both algorithms can be implemented to work in linear time. A result that is
closely related to canonical orderings is presented by Gutwenger and Mutzel [GM9S]; they
refer to the canonical ordering as the shelling order. The authors present a linear-time
algorithm based on ideas by Kant [Kan96], which computes a planar polyline grid drawing
of a plane graph having degree at most d on a (2n — 5) x (3n/2 — 7/2)-sized grid with
the smallest angle being greater than 2/d. The drawing has at most 5n — 15 edge bends;
every edge bends at most three times and has a length that is in O(n). Their results

®And a special case thereof, the Imc-ordering, short for leftmost canonical ordering.
SFour control points parametrically define a cubic Beziér curve.

significantly improve those presented earlier by Kant [Kan96], Kant and Chrobak [CK97],
and de Fraysseix, Pach and Pollack [dFPP88, dFPP90], especially regarding angular reso-
lution. According to Gutwenger and Mutzel, the minimum size of angles in those previous
results is in Q(1/n?). Badent et al. [BBC11] note that the algorithm by Kant to compute
canonical orderings is neither easy to code nor is its correctness easily understood [BBC11].
Therefore, the authors present an easier approach which computes a uniquely determined
Imc-ordering, which they introduce as the leftist canonical ordering.

3. The Honeycomb Grid

In this chapter, we present algorithms that are based on the honeycomb grid, that is, a
regular arrangement of interconnected, regular hexagons in the plane (see Figure 3.1). To
the best of our knowledge, there are no known results with respect to the honeycomb grid
so far. As such, our work introduces a new area of research.

In Section 3.1, we consider so-called h-v drawings of trees and present a simple algorithm
that draws complete binary trees on the honeycomb grid according to the h-v drawing
convention. Next, we will adopt an algorithmic idea by Crescenzi et al. [CP97] for drawing
area-optimal h-v drawings of complete binary trees on the orthogonal grid, such that it can
be used to create h-v drawings on the honeycomb grid, even though the resulting drawings
are no longer area-optimal.

Section 3.2 thereafter considers what we introduce as sector drawings of trees having degree
at most 3. We present an algorithm that produces sector drawings of trees whose every
inner node has degree exactly 3. We extend this algorithm to one that produces sector
drawings of general trees having degree at most 3.

3.1 h-v Drawings of Complete Binary Trees

This section deals with h-v drawings of complete binary trees. After having introduced
the notion of h-v drawings on the honeycomb grid, we present a simple idea to compute
such drawings of complete binary trees without worrying about the area the resulting trees
occupy. We then quickly refer to an algorithm introduced by Crescenzi et al. [CP97] in
order to achieve drawings that are more area-efficient.

We exactly adopt the definition of an h-v drawing given by Crescenzi et al. [CP97].

Figure 3.1: The honeycomb grid.

11

3. The Honeycomb Grid

Definition 3.1.1 (h-v drawing [CP97]). An h-v drawing of a binary tree t is a drawing
of ¢ such that:

1. Nodes are points with integer coordinates.

2. Each edge is either a rightward-horizontal or downward-vertical straight-line segment
from a node to one of its children (that is, an h-v drawing is not strictly upward).

3. Edges do not intersect.

4. If t; and to are immediate subtrees of a node w, the enclosing rectangles of the
drawings of ¢; and ¢y are disjoint.

See Figures 3.2a-3.2d for examples. Note that this definition refers to drawings on the
orthogonal grid, i.e., a grid consisting of regularly arranged squares, such that single line
segments are drawn only horizontally and vertically.

In the following, let the x- and y-axis run horizontally and vertically, respectively. We
would like to port the concept of h-v drawings to the honeycomb grid, and then develop
algorithms that produce such drawings.

To do so, we are going to map horizontal line segments of length 1 on the orthogonal grid
to certain line segments having length 4 on the honeycomb grid. That line segment on
the honeycomb grid, from left to right, consists of a horizontal line segment of length 1,
followed by a diagonal upward-right line segment of length 1, followed again by a horizontal
line segment of length 1, and finally followed by a diagonal right downward line segment
of length 1. The two end points of the composed line segment then share the same y-
coordinate.

The vertical line segments of length 1 on the orthogonal grid are mapped in a similar way:
The according line segments of length 4 on the honeycomb grid, from left to right, consist
of only two different types of line segments: Left and right downward ones, each of them
having length 1. The order of the four line segments that form the composed segment
is then: Left downward, right downward, left downward, right downward. The two end
points of the composed line segment share the same z-coordinate. Figure 3.3a and 3.3b
illustrate the two mappings.

The mapping as defined allows for only certain grid points and line segments of the hon-
eycomb grid to be used as nodes and edges of a tree, depending on which grid point we
draw the first node of a tree. The grid points are given by the lower left corners of the
hexagons of the honeycomb grid. Other grid points (i.e., corners of a hexagon) cannot
be used for tree nodes, according to our definition. Valid line segments of the grid that
are possible candidates for later tree edges also result from the definition of the first node

it

(a) (b) (c) ()

Figure 3.2: A few examples of h-v drawings on the orthogonal grid.

12

3.1. h-v Drawings of Complete Binary Trees

"

(a) (b) (c)

Figure 3.3: A vertical (a) and horizontal edge (b) according to our definition. The re-
stricted grid (c) when considering only nodes that are placed in the lower left
corner of a hexagon. Since edges have length 4, not all lower left corners of
the hexagons are valid candidates for tree nodes. Note that not even all line
segments of the restricted grid may be used for later tree edges, since we do
not allow edge crossings in our h-v drawing.

drawn on the grid. Since every edge according to our definition has length 4, not all lower
left corners of the hexagons can be used for later tree nodes.

By considering only those valid grid points, we restrict the entire honeycomb grid to a
grid that looks as shown in Figure 3.3c. Note that not all line segments of the restricted
grid may be used for later tree edges, because we do not allow edges to cross each other.
Moreover, we cannot draw cyclic graphs in a planar way (that is, with no edges crossing)
when using this kind of restriction, whereas in the orthogonal case, any planar graph
having degree at most 4 can be drawn in a planar way [BK98].

We denote by C a complete binary tree, and by Cp, we denote a complete binary tree having
height A. The number of nodes of a tree will be referred to by n. For some h > 0, it is
easy to see that n = 2" — 1.

Theorem 3.1.1. Algorithm 1 computes an h-v drawing (embedding) of C, on the honey-
comb grid for some desired h = 0.

Proof. For h = 0 the algorithm returns a single node, i.e., a complete binary tree of
height 0. Given a complete binary tree ¢t of height h, the extend function (5) builds a
complete binary tree having height h + 1 in the following way: First, it creates a new
root at coordinates (0,0). Then, to build its two subtrees, a copy of the current tree ¢ is
created. The existing tree ¢ is placed four line segments (thus forming a valid edge) below
the new root, its copy is placed 4 - 2" line segments to the right of the new root. Finally,
the algorithm connects the new root with its two subtrees, using one rightward and one
downward edge, resulting in Cp4 1.]

Since the occupied area of a drawing is a criterion of interest for us, we need to define first
the notion of ”area” in the context of this work. Here and in the following, the occupied
area is measured by the area of the smallest surrounding rectangle of a drawing.

Theorem 3.1.2. For some given h = 0, the h-v drawing (embedding) computed by Algo-
rithm 1 occupies an area on the honeycomb grid that is in O(nlogn), where n denotes the
number of nodes of Cp,".

'Recall that n = 2"+! — 1.

13

3. The Honeycomb Grid

Proof. Let W; denote the width of an embedding of C;, an let H; denote its height (that
is, length in units along the z-axis, and length in units along the y-axis, respectively). By
construction, since every downward edge has length 4, it follows that H; = 4i. Moreover,
and again by construction, we have W; = 2 - W,;_1 + 4. Solving this recurrence yields
Wi = 4-(2"—1). The area W;H; of the embedding is thus equal to 4- (2¢ — 1) -4i. Given a
complete binary tree consisting of n nodes, using the fact that i = |logy(n)| results in an
area of

4-(20=1)-4i = 16 - (2l°82M] _ 1) . |log,(n)| € O(nlogn).

O]

Theorem 3.1.3. An h-v embedding on the orthogonal grid that occupies an area of A
induces an h-v embedding on the honeycomb grid that occupies an area of 16A.

Proof. This follows immediately from the previous theorem. O

This bound can trivially be improved to 8A by shortening all vertical edges by two line
segments. More precisely, we remove from the four line segments of a vertical edge the
lower two segments to obtain a vertical edge of length 2.

Corollary 3.1.1. An h-v embedding on the orthogonal grid that occupies an area of A
induces an h-v embedding on the honeycomb grid that occupies an area of 8A.

Note that the resulting tree embedding is not area-optimal. On the orthogonal grid,
complete binary trees can be drawn on O(n) area [BBBT09, CP97]. An algorithm for area-
optimal embeddings on the orthogonal grid is given by Crescenzi et al. [CP97]. It can also
be used for h-v drawings on the restricted honeycomb grid (recall Figure 3.3¢) to achieve
area-optimal embeddings, since edges on the restricted honeycomb grid are four times the
length of according edges on the orthogonal grid; a constant factor that can be neglected
asymptotically. The only difference lies in the underlying grid structure. Crescenzi et al.
distinguish area-optimal and "useful” h-v drawings in their approach. "Useful” h-v drawings
are not area-optimal, but interestingly, they are needed in their algorithm to achieve area-

optimality.
Procedure hvDrawingOfCBT Procedure extend
Input: Integer h > 0 denoting the Input: Integer h = 0, h-v drawing ¢ of
desired hei