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Deutsche Zusammenfassung

Graphen eignen sich nicht nur zur algorithmischen Lösung von Problemen, sondern auch dazu,

in visualisierter Form Zusammenhänge für das menschliche Auge darzustellen. Eine Variante der

Darstellung ist die Einbettung von Graphen in Gitter. Das Standard-Gitter ist das orthogonale

Gitter, welches durch rechtwinklig verlaufende Linien konstruiert wird. In dieser Arbeit wer-

den Einbettungen von Graphen in Nicht-Standard-Gitter betrachtet, die bisher nur rudimentär

erforscht sind. Zum einen das Bienenwabengitter, eine Anordnung von regulären, zusammenhän-

genden Sechsecken, auf dem verschiedene Algorithmen zum Zeichnen von Bäumen präsentiert

werden. Die von den Algorithmen auf dem Gitter gezeichneten Bäume werden anschließend hin-

sichtlich ihres Platzverbrauchs, ein häufig auftretendes Optimierungskriterium, analysiert. Zum

anderen wird ein regulär trianguliertes Gitter, auch hexagonales Gitter genannt, thematisiert,

welches aus einer regelmäßigen Teilung der zweidimensionalen Ebene in Dreiecke hervorgeht.

Durch eine Scherung des Gitters erhält man ein Gitter, welches strukturelle Ähnlichkeiten zum

orthogonalen Gitter aufweist. Diese Ähnlichkeiten erlauben es, bekannte algorithmische sowie

komplexitätstheoretische Ergebnisse vom orthogonalen auf das hexagonale Gitter zu übertragen.

Es wird gezeigt, dass das Problem, einen gegebenen 4-planaren Graphen ins hexagonale Gitter

einzubetten, sodass alle Knoten auf Gitterkreuzungen liegen und alle Kanten durch kürzeste

Wege auf dem Gitter verlaufen, wie im orthogonalen Fall NP-schwer ist. Eine eingeschränkte

Variante des Problems, bei dem zusätzlich eine Abbildung von Knoten des Graphen auf Punkte

des Gitters gegeben ist, erweist sich ebenfalls NP-schwer; erneut wie im orthogonalen Fall. Es

wird ein Algorithmus vorgestellt, der bestimmte Instanzen des Problems effizient löst.
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1. Introduction

In informatics, graphs are often used as a theoretical approach to solving problems algo-

rithmically. However, graphs are not at all restricted to this kind use. They can as well

serve as a visualization concept for all kinds of relations, for example computer networks,

route maps, and different types of charts. Oftentimes, graphs are drawn or embedded in

the Euclidean plane. Thus, edges that are incident to the same vertex may form arbitrarily

small angles at the vertex. The higher the degree of a vertex gets, the more difficult it

may become to read or identify information in the drawing and the less visually appealing

the drawing will be to the human eye. This quality criterion is referred to as angular

resolution. Therefore, when drawing a graph, one should choose angles as big as possible.

One possibility to deal with this issue is to use grids as the underlying drawing area for

the graph in question. There are further quality criteria which are subject to obtimiza-

tion, such as the area occupied by a drawing, the number of edge bends and crossings

introduced, the length of edges, and criteria regarding the symmetry or shape of drawings.

When using grids, vertices are usually mapped to intersections of the grid lines and edges

are chosen to run only along the lines of the grid. There are variants that allow edges

to also run off the grid. The standard grid considered is the orthogonal grid, which is an

orthogonal or perpendicular arrangement of two sets of lines in the plane—see Figure 1.1a.

Usually, one set of lines is chosen to run horizontally from left to right, while the other set

(a) The orthogonal grid. (b) The honeycomb grid. (c) The hexagonal grid.

Figure 1.1: The orthogonal grid is the standard grid considered when drawing or embed-

dings graphs on a grid. This thesis, however, focuses on two non-standard

grids: the honeycomb grid and the hexagonal grid.
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1. Introduction

of lines is chosen to run vertically from the bottom to the top. More precisely, horizontal

lines have a slope of zero and vertical lines have a slope of one. A lot of time and effort

has been invested with respect to drawing or embedding graphs on the orthogonal grid,

as we will see in Chapter 2 on related work.

There are various other, non-standard grid structures which, so far, have only been studied

rudimentarily at best. In this thesis, we will study two of them to provide fundamental

insight into these structures. The first such grid structure is the honeycomb grid, which

will be dealt with in Chapter 3. The honeycomb grid is a tesselation of regular hexagons

in the plane—see Figure 1.1b. We will port a drawing concept from the orthogonal grid,

the h-v drawing, to the honeycomb grid. An h-v drawing of a graph is essentially a

drawing such that each edge is realized either as a rightward horizontal or a downward

vertical line segment, but not both. Furthermore, no edges intersect. We will show how to

draw complete binary trees on the honeycomb grid according the h-v drawing convention

by using an algorithmic idea due to Crescenzi et al. [CP97]. Then, we introduce another

drawing concept which we refer to as sector drawing. Basically, a sector drawing partitions

the honeycomb grid into three regions (sectors). Edges are neither allowed to cross sector

borders, and thus are required to run in only one sector, nor must they cross each other.

Additionally, for both h-v and sector drawings, we require vertices to be placed only on the

intersections of the grid lines. We analyze both types of drawings especially with respect

to the area needed by such drawings.

The second non-standard grid structure we study is the hexagonal grid, also referred to

as the triangular grid, which we will focus on in Chapter 4. The hexagonal grid consists

of three sets of lines at 60˝ angles to each other—see Figure 1.1c—and, at least visually,

resembles the honeycomb grid to some extent. Our studies are greatly motivated by the

fact that we can use fundamental knowledge gained from research conducted regarding

the orthogonal grid [KKRW10]. In particular, we will consider the problem of Geodesic

Point-Set Embeddability (Geodesic PSE): Given a graph G and a finite set P of

points on the grid, we ask whether G can be embedded such that the vertices of G are

mapped to the points in P and all edges of G are represented by shortest paths (geodesics)

running only on the grid. The problem is known to be NP-hard on the orthogonal grid,

and we will show that it is NP-hard on the hexagonal grid as well. We will then consider

another problem initially introduced on the orthogonal grid, named Labeled Geodesic

Point-Set Embeddability (Labeled Geodesic PSE). Here, in addition to the input

graph, we are given a mapping that determines the correspondence between vertices of the

graph and points on the grid. Labeled Geodesic PSE is NP-hard on the orthogonal

grid, and we will prove that is NP-hard on the hexagonal grid, too. Moreover, we shall

see that certain problem instances of Labeled Geodesic PSE, which we will refer to

as sparse, can be solved efficiently. The corresponding algorithm, as well as the hardness

proofs, are based on results carried out by Katz et al. [KKRW10].

Finally, Chapter 5 summarizes our results and concludes this thesis by giving a brief

outlook regarding possible future work.
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2. Related Work

Already in 1948, István Fáry [Fár48] considered straight-line representations of planar

graphs. He showed that every planar graph has an embedding without crossings in which

edges are straight line segments and the vertices are points1, which is also referred to as

Fáry’s theorem, and such straight-line embeddings are called Fáry embeddings.

In 1960, William Thomas Tutte did further research on the topic and investigated espe-

cially convex representations of graphs in the plane [Tut60]. In 1963, he presented an

algorithm that computes convex representations of 3-connected planar graphs [Tut63] by

solving a set of linear equations. Using results by Lipton et al. [LRT79], the algorithm

can be implemented to run in Opn1.5q time, where n denotes the number of vertices of the

graph. There are further authors who in the 1960s [AP61] devoted their time to graph

drawings and embeddings, among them Donald Knuth [Knu63]. Later, Thomassen [Tho80]

characterized the class of graphs that admit a convex drawing, and Chiba et al. [CON85]

gave a linear-time algorithm for this class using Thomassen’s characterization. The algo-

rithm can be extended to general planar graphs producing straight-line drawings, where

the faces of each 3-connected component are drawn as convex polygons [TDBB88].

Of special interest has always been the ”appropriate” visualization of graphs in terms of a

huge variety of aesthetic criteria, such as the number of edge bends, the lengths of edges,

the area needed for the visualization of the graph, criteria regarding shape, symmetry

and crossings in the drawing of the graph, angular resolution, and many more. For this,

researchers have begun to study the problem of finding embeddings of graphs into grids,

that is, settling the question, whether the vertices of a graph can be mapped to intersections

of the grid lines, and whether the edges of that graph can be routed along the lines of

the grid, connecting the corresponding vertices. Such embeddings into grids may result

in (more) appealing visualizations or drawings; thus the interest in the topic. There are

further applications of graph embeddings into grids that justify the research, for example

applications in VLSI chip design. A related problem is point-set embeddability, where, in

addition to the input graph, a bijection between vertices and grid points is given as part

of the input.

In the following, we will first consider previous work related to grid embeddings or drawings

and present some general results. Since point-set embeddings render an important part

1Actually, Fáry [Fár48], Wagner [Wag36], and Stein [Ste51] showed this independently.
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of this thesis, we then outline previous results related to this kind of grid embeddings.

Afterwards, we focus on optimization criteria, namely area end edge bends, and we will

cover a variety of related work with respect to those two criteria. In this thesis, we will

analyze our drawings with respect to the area required as well. For a given graph G, the

area occupied by a drawing or embedding of G is subject to minimization. In many cases,

the total number of edge bends, and the maximum number of bends per edge are subject to

minimization as well. More often than not, it is the case that both criteria are considered

for minimization simultaneously. As such, it is difficult to consider one without having to

consider the other as well, and thus a certain overlapping cannot be avoided when trying

to classify previously done work. Lastly, we focus on an important tool used for graphs

drawings, the canonical ordering, and present results that are based on this concept.

Grid Embeddings.

The standard grid considered in the task of embedding graphs into grids is the orthog-

onal grid. One of the most important results is a Opn2 log nq-time algorithm by Tamas-

sia [Tam87], later improved to Opn7{4?log nq by Tamassia and Garg [GT97], and then

recently again by Cornelsen and Karrenbauer to Opn3{2q [CK12], which draws a 4-planar

graph orthogonally with the minimum number of edge bends, while preserving a given

planar representation (combinatorial embedding2) of the graph. Tamassia’s algorithm is

based on a reduction to a minimum-cost flow problem in a network and includes con-

straints respecting upper bounds on the number of edge bends [Tam90, TDBB88]. The

drawings produced require an area that is in Opn2q, which is worst-case optimal [TDBB88].

To be more exact, the grid size is bounded by pn ` 1q ˆ pn ` 1q, as Biedl [Bie96] points

out. Heretofore, Storer conjectured the problem to be NP-hard and gave three heuris-

tics that produce drawings with 2n ` 4 bends, if the graph is biconnected, and 2.4n ` 4

bends otherwise. The area required for the drawings is in Opn2q. While no detailed time

complexity analysis is given, the algorithms appear to run in Opn3q time [Sto84, Tam90].

Tamassia and Tollis [TT89] then improve those results. They give a linear-time algorithm

that constructs grid embeddings with at most 2n` 4 edge bends for 2-connected graphs,

and 2.4n ` 2 bends otherwise. They additionally show that edge lengths are in Opnq,
that every edge bends at most four times and, for 2-connected graphs, that all but two

edges bend at most twice. The area requirement of the embeddings is in Opn2q. With

reference to a work by Valiant [Val81], the authors point out that the bounds on the area

requirement and length of the edges are both asympotically worst-case optimal. Biedl and

Kant [BK98] also give a linear-time algorithm, yet with better bounds regarding area re-

quirement and edge bends. Their embeddings occupy a nˆn grid using 2n`2 edge bends

at most; each edge bends at most twice (unless the given graph is the octahedron). Also,

their algorithm handles both planar and non-planar graphs as well as non-biconnected

graphs. The main idea is to construct orthogonal drawings of the biconnected components

of the graph using the st-ordering, and then merging those drawings into one orthogonal

drawing of the entire graph. Given a biconnected graph G “ pV,Eq and s ‰ t P V , an

ordering s “ v1, v2, . . . , vn “ t of the vertices of G is called an st-ordering, if for all vertices

vj , 1 ă j ă n, there exist 1 ď i ă j ă k ď n such that tvi, vju, tvj , vku P E [LEC75].

Di Battista et al. [BLV93] show that, if a planar embedding is not given, the problem

of finding orthogonal grid embeddings with the minimum number of edge bends is poly-

nomially solvable for 3-planar biconnected graphs, and Tamassia shows that it becomes

NP-complete for 4-planar graphs [GT94].

2A combinatorial embedding of a graph can be defined by giving, for each vertex v, a cyclic order of

the edges incident to v.
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Next, we consider results that are related to point-set embeddings, particularly geodesic

point-set embeddings. Here, we are given a graph and, additionally, a set of points to

which the vertices of the graph must be mapped. Furthermore, edges are required to be

embedded as geodesics, that is, as shortest possible connections between their endpoints

with respect to the underlying metric. This problem is referred to as Geodesic Point-Set

Embeddability, or as simply Geodesic PSE [KKRW10]. Katz et al. [KKRW10] show

that this problem is NP-hard on and off the orthogonal grid. In this thesis, we will study the

complexity of Geodesic PSE on a non-standard grid, the hexagonal grid (or triangular

grid), which is a grid formed by a triangular tiling of the plane. By further restricting

the placement of vertices on the grid, we obtain a problem named Labeled Geodesic

Point-Set Embeddability (Labeled Geodesic PSE). In this scenario, we are given

a bijection between vertices of the graph and points on the grid. Katz et al. [KKRW10]

show that this problem is NP-hard on the orthogonal grid. As for Geodesic PSE, we

study the complexity of Labeled Geodesic PSE on the hexagonal grid.

Area Minimization.

An important optimization criterion is the area occupied by a drawing, which we also

consider in this work. In general, minimizing the area needed by a drawing (that is

entirely on the grid) corresponds to an NP-hard optimization problem [TDBB88]. For

binary trees, the problem becomes solvable in polynomial time if one allows edges to leave

the grid [SR83]. For input graphs having degree at most 4, Papakostas and Tollis [PT96]

give a linear-time algorithm that produces drawings occupying an area of at most 0.76n2,

while introducing at most 2n ` 2 edge bends, and each edge in such a drawing bends

at most twice. The algorithm is based on forming and placing pairs of vertices of the

graph. Another linear-time algorithm is presented for graphs having degree at most 3.

The occupied area of a drawing is at most roughly n2{4, and, if the graph is biconnected,

the drawing has at most t3n{2u` 3 bends, which is optimal up to a factor of 2 (regardings

edge bends). Moreover, Tamassia, Tollis and Storer show that 2-connected graphs can be

embedded in an n ˆ n grid using 2n ` 4 bends [Sto84, TT89]. A lower bound of 2n ´ 2

edge bends for 2-connected planar graphs is given by Papakostas and Tollis [PT95]. Kant

shows that triconnected graphs having maximum degree four can be embedded into an

n ˆ n grid with at most three bends per edge [Kan92a]. Even and Granot present an

algorithm for orthogonal drawings of 4-connected graphs introducing at most three bends

per edge [EG94]. Schäffter [Sch95] drops the limitation of producing crossing-free drawings

and presents an Opn2q-time algorithm that introduces at most two bends per edge.

Further area optimization is done by Rahman, Nakano and Nishizeki [RNN96]. They

give a grid drawing algorithm for plane graphs, that is, planar graphs that are already

embedded in the plane, with lower bounds W `H ă n{2, WH ď n2{16, where W is the

width and H the height of the rectangular grid. The graphs they consider have degree

exactly 3, except for vertices on the rectangular outer cycle, which have degree exactly

2. Schnyder [Sch89] proves that every planar graph has a straight-line embedding on a

2n ´ 5 by 2n ´ 5 grid, which can be computed in Opn log nq time. An improved bound

of p2n ´ 4q ˆ pn ´ 2q is presented by de Fraysseix, Pach and Pollack [dFPP88, dFPP90].

The according algorithm uses Opnq space and runs in Opn log nq time. They left open the

problem of whether the time complexity can be improved. Chrobak and Payne [CP95]

then improved the complexity to Opnq, which is optimal, while the grid size remained

the same. Later, Schnyder [Sch90] gave a Opnq-time algorithm to further improve the

bound on the grid size to pn´ 2q ˆ pn´ 2q. His algorithm can be implemented in parallel

in Oplog n log log nq time using n{ log n processors on a parallel random access machine
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2. Related Work

(PRAM), as is shown by Fürer, He, Kao and Raghavachari [FHKR92]. If randomization

is used, the complexity improves to Oplog nq expected time. Regarding the lower bound

on the grid size, de Fraysseix, Pach and Pollack [dFPP88, dFPP90] also show an example

graph that requires a grid size of at least p2n{3´ 1q ˆ p2n{3´ 1q.

Xin He shows [He95] that it is possible to embed internally triangulated plane graphs

without non-empty triangles3 on a W ˆH grid, such that W `H ď n, W ď pn`3q{2 and

H ď 2pn´ 1q{3, if edges are allowed to run off the grid. The embedding can be computed

in Opnq time. He [He97] obtains the same width and height bounds to straight-line embed

4-connected plane graphs on a W ˆH grid, again in linear time. A restriction on the given

plane graph is that it must have at least four vertices on its external face.

Bend Minimization.

When dealing with grid structures, another important criterion for optimization is min-

imizing the number of edge bends needed for an embedding. As already noted above,

there is a Opn3{2q-time algorithm by Cornelsen and Karrenbauer [CK12] for embedding

4-planar graphs orthogonally introducing the minimum number of edge bends, given a

planar representation of the graph in advance. Their algorithm is based on Tamassia’s

flow network [Tam87]. If, however, such a planar representation of the graph is not given

as part of the input, the problem of finding the bend-minimum orthogonal grid embedding

becomes NP-complete [GT94]. More precisely, Tamassia et al. [GT94] show that it is NP-

hard to approximate the minimum number of bends in a planar orthogonal grid drawing

with a Opn1´εq error, for any ε ą 0.

Otten and van Wijk [OVW78] introduce the visibility representation, where vertices are

represented by horizontal and edges are represented by vertical line segments, such that

each edge only touches the two vertex segments of its endpoints (meaning that edges do not

cross any other vertex segments). They show that every planar graph admits a visibility

representation. Rosenstiehl and Tarjan [RT86], as well as Tamassia and Tollis [TT86] then

independently presented linear-time algorithms for constructing visibility representations

of planar graphs, the latter authors using the st-ordering, and the former authors using the

bipolar orientation (also called st-orientation), which is a certain orientation and partition

of the edges of a graph into two sets. The st-orientation is a concept equivalent to the

st-ordering, and they both can be obtained from each other. The grid size required for the

representations is p2n´5qˆpn´1q [Kan94] for both algorithms. Tamassia and Tollis [TT87]

show that their aforementioned algorithm can be modified to compute grid embeddings

having Opnq edge bends. Kant and He [KH94] improve the bound on the grid size to

at most pn ´ 1q ˆ pn ´ 1q for 4-connected planar graphs, and then Kant [Kan94] again

improves this bound to at most tp3n´6q{2uˆpn´1q for general planar graphs. Lin, Lu and

Sun [LLS05] point out that, by following the convention of placing the endpoints of vertex

segments on grid points, one can easily see that any visibility representation of a graph can

be made no higher than n´ 1. Therefore, it is only the width which is subject to further

minimization. The authors use canonical orderings and Schnyder’s realizer4 [Sch89, Sch90]

to further improve the bound on the width. For triangulated graphs, they improve the

bound to tp22n ´ 40q{15u. Further, if the graph has no internal node of degree 3, the

bound improves to tp4n ´ 9q{3u, and if the graph has no internal node of degree 5, the

bound improves to tp4n ´ 7q{3u. If the graph is 4-connected, the width is at most n ´ 1,

which matches the best known result of Kant and He [KH94]. Their according algorithm

incrementally draws the graph using a greedy approach and works in linear time.

3Given a graph G, a non-empty triangle of G is a triangle of G containing some vertices in its interior.
4Similar to the st-ordering, a realizer is an orientation and partition of the edges into three sets.
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Zhang and He [ZH05] give yet a better bound on the width. Using techniques by Lin, Lu

and Sun [LLS05] and the simple visibility representation algorithm given by Rosenstiehl,

Tarjan, Tamassia and Tollis [RT86, TT86], they show that any plane graph can be em-

bedded on a grid whose width is bounded by tp13n ´ 24q{9u. The problem of finding the

most compact visibility representations of plane graphs remains open. Rosenstiehl and

Tarjan [RT86] have conjectured the problem to be NP-hard.

Di Battista, Tamassia and Tollis [DBTT92] consider a special type of visibility representa-

tions, the constrained visibility representation, where prespecified edges are constrained to

be vertically aligned, and give a Opnq-time algorithm that computes a constrained visibility

representation of a given planar graph. The resulting representations require Opnq area and

use only integer coordinates. Concentrating on bend minimization, Fößmeier, Kant and

Kaufmann [FKK97] introduce 2-visibility representations or drawings of graphs, a more

general type of visibility representation, where edges may run vertically and also horizon-

tally. Furthermore, vertices are now represented by boxes—no longer as line segments—

to distinguish them from edges. They present a polynomial-time algorithm to compute

bend-minimum orthogonal drawings, where every edge bends at most once. They also

give various upper and lower area bounds. Bose et al. [BDHS97] study further visibility

representations with applications in via minimization in VLSI design. They find classes

of graphs that allow to be drawn as rectangle-visibility graphs, which are graphs such that

vertices are represented by rectangles and edges are realized as horizontal or vertical lines

of sight.

Woods [Woo82] presents a Opn2q-time algorithm that produces drawings according to the

mixed standard, where vertices are mapped to grid-line intersections and edges are drawn

as polygonal chains that bend only on grid-line intersections. The drawings produced have

Opn2q edge bends and require Opn2q area.

Biedl and Kaufmann [BK97] present algorithms to produce orthogonal drawings for ar-

bitrary graphs. They consider static and incremental scenarios. In the static scenario,

the input graph is given entirely in advance. The drawings produced by the according

algorithm occupy at most a pm{2`n{2qˆpm{2`n{2q grid, and every edge bends at most

once, thus introducing at most m bends, where m is the number of edges in the graph. In

the incremental scenario, the graph is given incrementally, that is, one node at a time, and

a vertex needs to have a fixed placement before the next is given. Thus, once a vertex has

been placed, it cannot be changed later. Here, the algorithm produces drawings on a grid

whose size is at most pm{2` nq ˆ p2m{3` nq. Again, edges bend at most once, resulting

in at most m overall bends. Next, using the canonical ordering, they consider planar and

outerplanar graphs and give an algorithm that embeds a planar 3-connected graph on a

grid of size pm´n`1qˆmintm{2,m´n`1u with m´n edge bends. All their algorithms

have linear time complexity.

Apart from the canonical ordering, another powerful tool for constructing visibility repre-

sentations is the regular edge labeling (defined by Kant [KH97], for example). Kant and

He [KH97] show that both are actually tightly connected and that a canonical ordering

algorithm leads to a regular edge labeling algorithm. Regular edge labelings are not re-

stricted to the construction of visibility representations, however. For example, they are

also used by He [He95, He97]—the results were already described further above.
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2. Related Work

Canonical Orderings.

An important tool named the canonical ordering5, due to de Fraysseix, Pach and Pol-

lack [dFPP88, dFPP90], which is a special ordering on the vertices of a graph, is used

by Kant [Kan96] to show that every triconnected planar graph admits a planar convex

straight-line grid drawing on a p2n ´ 4q ˆ pn ´ 2q grid, that every triconnected graph

having degree at most 4 admits a planar orthogonal grid drawing on an n ˆ n grid with

at most r3n{2s ` 4 edge bends, and if n ą 6, then every edge bends at most twice.

Moreover, Kant shows that every planar graph with maximum degree 3 admits a planar

orthogonal grid drawing with at most tn{2u` 1 bends on an tn{2uˆ tn{2u grid, and that

every triconnected planar graph having degree at most d admits a planar polyline grid

drawing on a p2n ´ 6q ˆ p3n ´ 9q grid, with a minimum angle larger than 2{d radians

and at most 5n ´ 15 edge bends. In the latter result, every edge bends at most three

times. Kant and Chrobak [CK97] (again using the canonical ordering), and Schnyder

and Trotter [ST92] independently show how to find a convex straight-line embedding of

a 3-connected plane graph on a pn ´ 2q ˆ pn ´ 2q-sized grid in linear time. Chrobak and

Nakano [CN95] present a linear-time algorithm that embeds a plane graph having at least

three vertices into a grid of width at most t2pn ´ 1q{3u. Using results by de Fraysseix,

Pach and Pollack [dFPP88, dFPP90], they show that this bound is tight—each dimension

of the grid needs to be at least t2pn ´ 1q{3u, even if the other dimension is allowed to be

unbounded [CN95].

De Fraysseix, Pach and Pollack [dFPP88, dFPP90] (already mentioned above) also use the

canonical ordering in their Opn log nq-time algorithm to compute straight-line embeddings

of maximal planar graphs. To find such an embedding, they first calculate a canonical

ordering of the vertices and then they place vertices on the grid using the ordering. The

algorithm uses a quite sophisticated data structure first introduced by Chazelle [Cha85]

for rectangle range queries on a set of points. An algorithm improving the time bound

to Opnq is given by Chrobak and Payne [CP95], also mentioned above. They embed

vertices, one at a time, using the canonical ordering, at each stage adjusting the current

partial embedding. Whenever a vertex v needs to be moved, they associate with v a set of

other vertices that also move due to v. Their method does not require any complex data

structures. Instead, they manage the information required during the algorithm, such that

there is sufficient local information available to find a tentative embedding of each new

vertex. Later, vertices are moved to their final positions using a tree-like data structure.

Another work based on canonical orderings is presented by Goodrich and Wagner [GW98].

They give an algorithm that draws planar graphs on a OpnqˆOpnq grid using polylines that

have at most two bends per edge and asympotitcally optimal worst-case angular resolution.

More significantly, they show how to adapt this algorithm to draw any planar graph using

cubic Bézier curves, with all vertices and control points6 placed within an Opnq ˆ Opnq
integer grid such that the curved edges achieve a curvilinear analogue of good angular

resolution. Both algorithms can be implemented to work in linear time. A result that is

closely related to canonical orderings is presented by Gutwenger and Mutzel [GM98]; they

refer to the canonical ordering as the shelling order. The authors present a linear-time

algorithm based on ideas by Kant [Kan96], which computes a planar polyline grid drawing

of a plane graph having degree at most d on a p2n ´ 5q ˆ p3n{2 ´ 7{2q-sized grid with

the smallest angle being greater than 2{d. The drawing has at most 5n´ 15 edge bends;

every edge bends at most three times and has a length that is in Opnq. Their results

5And a special case thereof, the lmc-ordering, short for leftmost canonical ordering.
6Four control points parametrically define a cubic Beziér curve.
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significantly improve those presented earlier by Kant [Kan96], Kant and Chrobak [CK97],

and de Fraysseix, Pach and Pollack [dFPP88, dFPP90], especially regarding angular reso-

lution. According to Gutwenger and Mutzel, the minimum size of angles in those previous

results is in Ωp1{n2q. Badent et al. [BBC11] note that the algorithm by Kant to compute

canonical orderings is neither easy to code nor is its correctness easily understood [BBC11].

Therefore, the authors present an easier approach which computes a uniquely determined

lmc-ordering, which they introduce as the leftist canonical ordering.

9





3. The Honeycomb Grid

In this chapter, we present algorithms that are based on the honeycomb grid, that is, a

regular arrangement of interconnected, regular hexagons in the plane (see Figure 3.1). To

the best of our knowledge, there are no known results with respect to the honeycomb grid

so far. As such, our work introduces a new area of research.

In Section 3.1, we consider so-called h-v drawings of trees and present a simple algorithm

that draws complete binary trees on the honeycomb grid according to the h-v drawing

convention. Next, we will adopt an algorithmic idea by Crescenzi et al. [CP97] for drawing

area-optimal h-v drawings of complete binary trees on the orthogonal grid, such that it can

be used to create h-v drawings on the honeycomb grid, even though the resulting drawings

are no longer area-optimal.

Section 3.2 thereafter considers what we introduce as sector drawings of trees having degree

at most 3. We present an algorithm that produces sector drawings of trees whose every

inner node has degree exactly 3. We extend this algorithm to one that produces sector

drawings of general trees having degree at most 3.

3.1 h-v Drawings of Complete Binary Trees

This section deals with h-v drawings of complete binary trees. After having introduced

the notion of h-v drawings on the honeycomb grid, we present a simple idea to compute

such drawings of complete binary trees without worrying about the area the resulting trees

occupy. We then quickly refer to an algorithm introduced by Crescenzi et al. [CP97] in

order to achieve drawings that are more area-efficient.

We exactly adopt the definition of an h-v drawing given by Crescenzi et al. [CP97].

Figure 3.1: The honeycomb grid.
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Definition 3.1.1 (h-v drawing [CP97]). An h-v drawing of a binary tree t is a drawing

of t such that:

1. Nodes are points with integer coordinates.

2. Each edge is either a rightward-horizontal or downward-vertical straight-line segment

from a node to one of its children (that is, an h-v drawing is not strictly upward).

3. Edges do not intersect.

4. If t1 and t2 are immediate subtrees of a node u, the enclosing rectangles of the

drawings of t1 and t2 are disjoint.

See Figures 3.2a–3.2d for examples. Note that this definition refers to drawings on the

orthogonal grid, i.e., a grid consisting of regularly arranged squares, such that single line

segments are drawn only horizontally and vertically.

In the following, let the x- and y-axis run horizontally and vertically, respectively. We

would like to port the concept of h-v drawings to the honeycomb grid, and then develop

algorithms that produce such drawings.

To do so, we are going to map horizontal line segments of length 1 on the orthogonal grid

to certain line segments having length 4 on the honeycomb grid. That line segment on

the honeycomb grid, from left to right, consists of a horizontal line segment of length 1,

followed by a diagonal upward-right line segment of length 1, followed again by a horizontal

line segment of length 1, and finally followed by a diagonal right downward line segment

of length 1. The two end points of the composed line segment then share the same y-

coordinate.

The vertical line segments of length 1 on the orthogonal grid are mapped in a similar way:

The according line segments of length 4 on the honeycomb grid, from left to right, consist

of only two different types of line segments: Left and right downward ones, each of them

having length 1. The order of the four line segments that form the composed segment

is then: Left downward, right downward, left downward, right downward. The two end

points of the composed line segment share the same x-coordinate. Figure 3.3a and 3.3b

illustrate the two mappings.

The mapping as defined allows for only certain grid points and line segments of the hon-

eycomb grid to be used as nodes and edges of a tree, depending on which grid point we

draw the first node of a tree. The grid points are given by the lower left corners of the

hexagons of the honeycomb grid. Other grid points (i.e., corners of a hexagon) cannot

be used for tree nodes, according to our definition. Valid line segments of the grid that

are possible candidates for later tree edges also result from the definition of the first node

(a) (b) (c) (d)

Figure 3.2: A few examples of h-v drawings on the orthogonal grid.
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3.1. h-v Drawings of Complete Binary Trees

(a) (b) (c)

Figure 3.3: A vertical (a) and horizontal edge (b) according to our definition. The re-

stricted grid (c) when considering only nodes that are placed in the lower left

corner of a hexagon. Since edges have length 4, not all lower left corners of

the hexagons are valid candidates for tree nodes. Note that not even all line

segments of the restricted grid may be used for later tree edges, since we do

not allow edge crossings in our h-v drawing.

drawn on the grid. Since every edge according to our definition has length 4, not all lower

left corners of the hexagons can be used for later tree nodes.

By considering only those valid grid points, we restrict the entire honeycomb grid to a

grid that looks as shown in Figure 3.3c. Note that not all line segments of the restricted

grid may be used for later tree edges, because we do not allow edges to cross each other.

Moreover, we cannot draw cyclic graphs in a planar way (that is, with no edges crossing)

when using this kind of restriction, whereas in the orthogonal case, any planar graph

having degree at most 4 can be drawn in a planar way [BK98].

We denote by C a complete binary tree, and by Ch we denote a complete binary tree having

height h. The number of nodes of a tree will be referred to by n. For some h ě 0, it is

easy to see that n “ 2h`1 ´ 1.

Theorem 3.1.1. Algorithm 1 computes an h-v drawing (embedding) of Ch on the honey-

comb grid for some desired h ě 0.

Proof. For h “ 0 the algorithm returns a single node, i.e., a complete binary tree of

height 0. Given a complete binary tree t of height h, the extend function (5) builds a

complete binary tree having height h ` 1 in the following way: First, it creates a new

root at coordinates p0, 0q. Then, to build its two subtrees, a copy of the current tree t is

created. The existing tree t is placed four line segments (thus forming a valid edge) below

the new root, its copy is placed 4 ¨ 2h line segments to the right of the new root. Finally,

the algorithm connects the new root with its two subtrees, using one rightward and one

downward edge, resulting in Ch`1.

Since the occupied area of a drawing is a criterion of interest for us, we need to define first

the notion of ”area” in the context of this work. Here and in the following, the occupied

area is measured by the area of the smallest surrounding rectangle of a drawing.

Theorem 3.1.2. For some given h ě 0, the h-v drawing (embedding) computed by Algo-

rithm 1 occupies an area on the honeycomb grid that is in Opn log nq, where n denotes the

number of nodes of Ch1.

1Recall that n “ 2h`1
´ 1.

13



3. The Honeycomb Grid

Proof. Let Wi denote the width of an embedding of Ci, an let Hi denote its height (that

is, length in units along the x-axis, and length in units along the y-axis, respectively). By

construction, since every downward edge has length 4, it follows that Hi “ 4i. Moreover,

and again by construction, we have Wi “ 2 ¨ Wi´1 ` 4. Solving this recurrence yields

Wi “ 4 ¨ p2i´ 1q. The area WiHi of the embedding is thus equal to 4 ¨ p2i´ 1q ¨ 4i. Given a

complete binary tree consisting of n nodes, using the fact that i “ tlog2pnqu results in an

area of

4 ¨ p2i ´ 1q ¨ 4i “ 16 ¨ p2tlog2pnqu ´ 1q ¨ tlog2pnqu P Opn log nq.

Theorem 3.1.3. An h-v embedding on the orthogonal grid that occupies an area of A

induces an h-v embedding on the honeycomb grid that occupies an area of 16A.

Proof. This follows immediately from the previous theorem.

This bound can trivially be improved to 8A by shortening all vertical edges by two line

segments. More precisely, we remove from the four line segments of a vertical edge the

lower two segments to obtain a vertical edge of length 2.

Corollary 3.1.1. An h-v embedding on the orthogonal grid that occupies an area of A

induces an h-v embedding on the honeycomb grid that occupies an area of 8A.

Note that the resulting tree embedding is not area-optimal. On the orthogonal grid,

complete binary trees can be drawn on Opnq area [BBB`09, CP97]. An algorithm for area-

optimal embeddings on the orthogonal grid is given by Crescenzi et al. [CP97]. It can also

be used for h-v drawings on the restricted honeycomb grid (recall Figure 3.3c) to achieve

area-optimal embeddings, since edges on the restricted honeycomb grid are four times the

length of according edges on the orthogonal grid; a constant factor that can be neglected

asymptotically. The only difference lies in the underlying grid structure. Crescenzi et al.

distinguish area-optimal and ”useful”h-v drawings in their approach. ”Useful”h-v drawings

are not area-optimal, but interestingly, they are needed in their algorithm to achieve area-

optimality.

Procedure hvDrawingOfCBT

Input: Integer h ě 0 denoting the

desired height of the tree

Output: Complete binary tree t having

height h

1 begin

2 t1 Ð createNodep0, 0q

3 h1 Ð 0

4 while h1 ă h do

5 t1 Ð extend(t1, h1)

6 h1 Ð h1 ` 1

7 tÐ t1

Procedure extend

Input: Integer h ě 0, h-v drawing t of

Ch
Output: h-v drawing t1 of Ch`1

1 begin

2 rootnew Ð createNodep0, 0q

3 trightChild
Ð moveRightpcopyptq, 4 ¨ 2hq

4 tleftChild Ð moveDownpt, 4q

5 t1 Ð connectprootnew, tleftChild, trightChildq

Algorithm 1: Creating an h-v drawing of a complete binary tree having height h ě 0.
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3.2. Sector Drawings of Trees

Sector 3

Sector 1

Sector 2

Figure 3.4: A sector drawing of a complete tree of height 2 on the honeycomb grid.

3.2 Sector Drawings of Trees

In this section we consider a type of drawings that we refer to as sector drawings on the

honeycomb grid. The idea is to partition the honeycomb grid into three sectors of equal

size. The partitioning of the honeycomb grid will originate in the root node of some given

tree, and the root node will also define the sector boundaries. An exact definition of sector

drawings is given further below.

After having introduced sector drawings, we will present an algorithm to draw complete

binary trees according to the sector drawing convention. Then, we will generalize the

algorithm to one that produces sector drawings of arbitrary complete trees having degree

at most 3.

To start with, we will give a definition of sector drawings.

Definition 3.2.1 (Sector Drawing). A sector drawing of a tree t is a drawing of t such

that:

1. Nodes are placed on intersections of grid lines.

2. Edges do not intersect.

3. Edges do not cross sector borders.

4. If t1 and t2 are immediate subtrees of a node u, then t1 and t2 are disjoint, i.e., they

are placed in different sectors of u.

Note that nodes are not forbidden to be placed on the sector borders. The main idea

behind sector drawings is to guarantee that there is enough space for drawing a given tree

in a planar way when using a top-down approach, i.e., when starting the drawing at the

tree’s root node.2 Figure 3.4 shows the three sectors that make up the grid, as well as a

sample sector drawing of a tree.

Since sector drawings are planar embeddings of trees, we may not have edge crossings in

our drawing. Furthermore, edges may not cross sector borders. It is therefore important

to guarantee that there is enough free space for the drawing on the honeycomb grid, such

that a planar embedding is possible. The minimum length of the edges thus depends on

the height of the tree. For instance, it is not possible to find a sector drawing of a complete

binary tree having height 3 or more, such that all edges have length 1.

2Actually, we will not require a root node to be given, but we will root the tree at some arbitrarily

chosen node.
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3. The Honeycomb Grid

r

(a) h “ 0.

r

(b) h “ 1.

r

(c) h “ 2.

r

(d) h “ 3.

Figure 3.5: For h ď 2, there exist sector drawings of Ch, such that all edges have length 1.

For h “ 3 (and thus also for h ě 3), this is no longer the case. Root nodes are

named r, the green and red nodes are level-3 nodes. Green nodes are nodes

that can be drawn according to our sector drawing definition. The red node is

conflicting, since it is the child of two parent nodes.

Lemma 3.2.1 For h ą 2, a sector drawing of Ch does not exist, if all edges are required

to have length 1.

Proof. For h ď 2, this is possible, as Figure 3.5c shows. For h ą 2, consider the following:

Generally, given a complete binary tree Ch, one can always find a complete binary tree in

Ch that has height h1, 0 ď h1 ď h, by simply removing the h´h1 lowest levels in Ch and the

corresponding edges. Figure 3.5d shows that already for h “ 3 a sector drawing does no

longer exist. Consequently, since we can always find a complete binary tree in Ch having

height h1 “ 3 ď h, no such sector drawing can exist for h ą 2.

In other words, for h ą 2, every embedding of Ch contains a ”broken” embedding of C3 and

thus, the embedding of Ch itself cannot be a sector drawing.

In the following, we will describe an inductive idea to find sector drawings of trees having

degree at most 3. Considering such a tree of height h, we will use edges whose lengths

decrease exponentially when traversing the tree top-down, starting with edges of length 2h

that connect the tree’s root with its children, moving on to edges of length 2h´i, 2 ă i ă h,

which connect inner nodes on levels i and i`1, ending with edges of length 2, that connect

inner nodes on level h with the tree’s leaves.

Let T be a rooted tree consisting of n nodes having degree at most 3, and let T1 and T2
be the subtrees of T (Ti may be empty). Let r be the root of T . We prove by induction

that we can always find a drawing Γ of T such that the following three properties hold:

1. Γ is entirely contained in an equilateral parallelogram P having a vertex v,

2. r is placed inside P and can be connected to v using a path that is not crossed by Γ,

3. Γ is drawn with no edges crossing.

For n “ 1, without loss of generality, consider the drawing shown in Figure 3.6, which

obviously satisfies all three properties. For n ą 1, by induction hypothesis, we can draw

the subtrees T1 and T2 in a way such that the desired properties hold. Let Γ1 and Γ2 be

the drawings of T1 and T2, respectively. Let P1 and P2 be the parallelograms that contain

Γ1 and Γ2, respectively. In order to draw T , consider Figure 3.7. We ”glue together” P1

and P2 as shown, which allows us to find a point we can map the root node r to. Let

Γ be the drawing consisting of Γ1, Γ2, r and the two edges that connect Γ1 and Γ2 with

16



3.2. Sector Drawings of Trees

r

v

P

Figure 3.6: The inductive construction of sector drawings—base case.

their parent node r. Then, we can derive a new parallelogram P that contains Γ, that is,

P is given by the smallest equilateral parallelogram that properly contains P1 and P2 and

has the vertex v, as shown in the figure. The way we ”glue together” the parallelograms

ensures that we can find a path p on the grid along a straight-line segment that is not

crossed by Γ: Again due to the induction hypothesis, the right side of P1 is not intersected

by Γ1. Thus, we let p start in r and end in v. Since the right side of P1 is not intersected

by Γ1, and since Γ2 does not intersect the right side of P1 either, we let p move along the

straight-line connection between r and v whenever possible, and in all other cases, we let

p move rightwards of the straight-line connection, as can be seen in the figure.

The way we arrange P1 and P2 makes sure that Γ can be drawn without edges crossing.

Also, it is due to this arrangement, that the equilateral parallelogram P properly contains

Γ and that we can identify a vertex v of P suited for our further construction. In other

words, the first invariant holds. Moreover, as described above, r is placed inside P , and r

can be connected to v via a path p that is not crossed by Γ. Thus, the invariants 2. and

3. from above are fulfilled as well, which concludes the inductive construction.

The idea induces an algorithm, say A, that finds a sector drawing of a tree having degree

at most 3. We will now study the area occupied by such an embedding.

Theorem 3.2.1. The sector drawing computed by algorithm A occupies an area on the

honeycomb grid that is in Opn2q.

Proof. Let A be the area as shown in Figure 3.8. Recall that we have defined the area

of a drawing to be the area of the smallest surrounding rectangle of that drawing. The

occupied area of a sector drawing of a given tree having height h is at most the size of

a sector drawing of Ch. The area can be calculated as shown in Figure 3.8: Let W be

the width, and let H be the height of the rectangle shown in blue color. To measure the

rectangle’s area A “WH, we will investigate W and H separately.

P2

P1

P

r

Γ1

Γ2

p

v

Figure 3.7: The inductive construction of sector drawings—inductive step.
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lr
rll -ya′

arot
120◦

arotm
H

a

b

A = WH

W

Figure 3.8: Determining the area A “WH occupied by a sector drawing.

Width W :

To start with, we are interested in the length ‖a‖ of vector a which is shown in the

figure. Consider the path p that starts in r and ends in the rightmost leaf lr. We

can measure ‖a‖ by regarding each line segment of p as a vector, projecting these

vectors onto the x-axis and then adding up the lengths of the resulting vectors. By

defining a horizontal line segment to have length 1 and some trigonometry we obtain

a length of cospπ{3q “ 1{2 for non-horizontal line segments. The path p consists of
řh
i“1 2i line segments, of which there are

1

2

h
ÿ

i“2

2i ` 1 “ 2h ´ 1

horizontal and 2h ´ 1 non-horizontal segments. Thus, a is of the form

a “

ˆ

1 ¨
`

2h ´ 1
˘

` 1
2 ¨

`

2h ´ 1
˘

0

˙

“

ˆ

3
2

`

2h ´ 1
˘

0

˙

,

and the x-component of a is also the length of that vector. Next, we consider the

vector a1 as shown in the figure, whose x-component is equal to the x-coordinate of

some leftmost leaf ll. Then, the width W is obviously equal to ‖a‖` ‖a1‖. We need

to find a1: First, we rotate a by 120˝ counterclockwise. This is equals a rotation by

2π{3 radians. Formally, we calculate

arot “

ˆ

cos 2π
3 ´ sin 2π

3

sin 2π
3 cos 2π

3

˙

¨ a “

˜

´3
4

`

2h ´ 1
˘

3
?
3

4

`

2h ´ 1
˘

¸

.

Then, we project the resulting vector arot onto the x-axis to obtain vector a1. This

can be achieved by calculating

a1 “

ˆ

1 0

0 0

˙

¨ arot “

ˆ

´3
4

`

2h ´ 1
˘

0

˙

.
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Now we can finally calculate W as

W “ ‖a‖` ‖a1‖ “ 3

2

´

2h ´ 1
¯

`
3

4

´

2h ´ 1
¯

“
9

4

´

2h ´ 1
¯

.

Height H:

To find H, we first reflect the vector arot across the x-axis to obtain arotm :

arotm “

ˆ

1 0

0 ´1

˙

¨ arot “

˜

´3
4

`

2h ´ 1
˘

´3
?
3

4

`

2h ´ 1
˘

¸

.

It is now easy to see that b can be written as

b “ arotm ´ a
1 “

˜

0

´3
?
3

4

`

2h ´ 1
˘

¸

.

Clearly, the length of vector b equals H, i.e.,

H “ ‖b‖ “ 3
?

3

4

´

2h ´ 1
¯

.

We can calculate the occupied area A of the sector drawing as

A “WH “ p‖a‖` ‖a1‖q ¨ ‖b‖

“

ˆ

9

4

´

2h ´ 1
¯

˙

¨

ˆ

3
?

3

4

´

2h ´ 1
¯

˙

“
27
?

3

16

´

2h ´ 1
¯2
.

Finally, substituting h “ log2pn´ 1q ´ 1 yields

A “
27
?

3

16

´

2h ´ 1
¯2

“
27
?

3

16

´

2log2pn´1q´1 ´ 1
¯2

“
27
?

3

16

ˆ

n´ 1

2
´ 1

˙2

“
27
?

3

16

ˆ

n2

4
´

3n

2
`

9

4

˙

P Opn2q.

For n ě 3, the latter term is smaller than 0.731n2. The area can be reduced by choosing

edges that are only half as long, i.e., starting at the root node, edges have length 2h´1

instead of length 2h, and so on. Edges that are incident to leaves then have length 1

instead of 2. Asymptotically, however, the area occupied by such a sector drawing is still

quadratic; the difference lies in constant factors.

The algorithm above can be extended to one that draws a complete tree of height h, whose

every inner node has degree exactly 3, by simply drawing a third child in the remaining

free sector of the root node r. Figure 3.9 depicts such a sector drawing of a complete tree

having height 5.
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3. The Honeycomb Grid

Figure 3.9: A sector drawing of a complete tree of height 5.
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In this chapter, we focus on algorithms and complexity regarding the hexagonal grid, also

referred to as the triangular grid. The hexagonal grid can be visualized in several reason-

able ways: Figure 4.1a shows the grid as a regular arrangement of interconnected hexagons,

while Figure 4.1b shows that the hexagonal grid can be regarded as an extension of the

orthogonal grid to which one type of diagonals is added. As Bachmeier et al. [BBB`09]

do, we refer to the latter grid as the sheared grid. Both are equivalent and can be obtained

from each other via shearing operations. We shall switch between the two representations

whenever suited.

Figures 4.2a and 4.2b show that is easy to apply algorithms that work on the orthogonal

grid or honeycomb grid to the hexagonal grid as well, since the latter contains both the

orthogonal and honeycomb grids. However, it is not clear whether it is possible to get

superior results resulting from more degrees of freedom on the grid.

Research done so far yields only few results regarding this type of (non-standard) grid.

Kant [Kan92b] presents a linear-time algorithm to draw triconnected planar graphs on a

linear-sized hexagonal grid such that at most one edge bends. Regarding angular resolution

as an optimization criterion, Kant shows how to draw planar graphs of degree at most 3

in a planar way (that is, such that no edges cross) using straight lines only, such that the

minimum angle is at least π{6.

Bachmaier et al. [BBB`09] also consider straight-line drawings motivated by the fact that

the hexagonal grid allows visually appealing drawings of up to 5-ary trees. They restrict

(a) The hexagonal grid. (b) The sheared (hexagonal) grid.

Figure 4.1: Two different representations of the same grid.
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their graphs specifically to ternary trees and give area bounds for different drawing styles

they consider. Their work also includes an interesting result regarding computational com-

plexity: It is NP-hard to draw unordered penta trees on a hexagonal grid within minimal

area or with minimal edge length. And more generally, drawing trees on a hexagonal grid

within a prescribed area or with unit length edges is NP-hard.

Tamassia [Tam87] presents an Opn2 log nq-time1 algorithm to obtain bend-minimum or-

thogonal drawings of planar graphs on the orthogonal grid and shows that the algorithm

can be extended to work on the hexagonal grid.

Aziza and Biedl [AB04] present an algorithm that draws all graphs having degree at most

6 on the hexagonal grid using 3.5n`3.5 edge bends, possibly occupying exponential space,

that is, area, on the grid. If more bends are allowed, the occupied area is within quadratic

bounds.

In the following, we consider algorithms for geodesic drawings of graphs on the hexagonal

grid. That is, given a graph G “ pV,Eq, we study drawings such that vertices are mapped

to intersections of the grid lines and edges exclusively run along the grid lines. Moreover,

each edge e “ uv P E is realized as a shortest possible connection between u and v. This

problem is referred to as Geodesic Point-Set Embeddability (Geodesic PSE) and

was first introduced by Katz et al. [KKRW10].

In Section 4.1, we introduce definitions and show fundamental properties of shortest path

connections (geodesics), which are the basis for the following sections.

Section 4.2 deals with the computional complexity of Geodesic PSE with respect to the

hexagonal grid. Katz et al. [KKRW10] showed that Geodesic PSE is NP-hard on the

orthogonal grid, and we will show that it is NP-hard on the hexagonal grid as well using

a similar proof.

Afterwards, in Section 4.3, we focus on the problem of Labeled Geodesic Point-Set

Embeddability (Labeled Geodesic PSE). Here, in addition to the input graph G, we

are given a mapping that determines the correspondence between vertices of G and points

on the grid. As on the orthogonal grid [KKRW10], we will see that Labeled Geodesic

PSE turns out to be NP-hard on the hexagonal grid. However, we will provide an algorithm

that solves certain problem instances, which we will identify as sparse, efficiently.

4.1 Basic Definitions and Properties

To begin with, we will provide a few basic definitions and show properties of geodesics,

that is, shortest paths between two points, that will be helpful throughout this chapter.

All points and connecting paths, representing vertices and edges of a graph, are assumed

to be on the hexagonal grid.

A point p “ ppx, pyq P R2 consists of two coordinates px and py. In order to be able to

speak about coordinates, we have choose a coordinate system for our grid, which is shown

in Figure 4.3. We choose a natural, horizontal x-axis and have two possibilities left to pick

a y-axis: from the upper left to the lower right, or from the lower left to the upper right.

We choose the latter variant and define the y-axis to run from the lower left to the upper

right.

Let u and v be two points on the grid. A path, say p, is a connection between u and v

consisting of line segments of the grid. By |p| we denote the length of that path, which is

determined by the sum of the (Euclidean) lengths of the line segments occupied by p.

1n denotes the number of vertices of the graph.
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(a) Hexagonal and

sheared orthogonal

grids.

(b) Hexagonal and

honeycomb grids.

s

p
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u

(c) Geodesics may not

have 60˝ edge bends.

s p

t

u

(d) Geodesics may not

bend into the same

direction more than

once in a row.

Figure 4.2: (a), (b): Both the orthogonal and honeycomb grids can be embedded into the

hexagonal grid. The orthogonal grid can be embedded by shearing it to the

right by 45˝, the honeycomb grid can be embedded by removing the interior line

segments of the hexagonal grid. (c), (d): Geodesics on the grid may neither

have 60˝ edge bends nor may they bend into the same direction more than

once. In both cases, this is due to the triangle inequality—a property of the

metric on the hexagonal grid.

A geodesic (path) between u and v is determined by a shortest path on the grid. Using this

definition we obtain a metric d : R2 Ñ R on the hexagonal grid, where the distance dpu, vq

between u and v is defined as the sum of the (Euclidean) lengths of the line segments on

the geodesic path from u to v.

A geodesic embedding of a graph G is an embedding on the hexagonal grid such that all

edges are mapped to geodesics.

Lemma 4.1.1 Let p be a geodesic (path) between two points s and t. Then the following

properties hold:

(i) p has no 60˝ edge bends.

(ii) p does not bend into the same direction more than once in a row.

Proof.

(i) Consider a path p between two nodes s and t that contains at least one 60˝ edge

bend. Considering specifically the point on the grid where the edge turns by 60˝,

we can find two adjacent grid points—e.g. points u and t in Figure 4.2c—and use

them to shorten the path to t. Clearly, p cannot be geodesic. More formally, this is

due to the triangle inequality that holds for d. Per definition, p is a shortest path

connecting s and t, and thus it minimizes the distance between s and t. Therefore,

the distance equals dps, tq, where d is the metric on the hexagonal grid for which the

triangle inequality needs to hold.

(ii) Consider an s-t path p that, at some point u, bends twice into the same direction,

as shown in Figure 4.2d. We can leave the path p towards t right before u, resulting

x

y

Figure 4.3: Choosing a coordinate system for the hexagonal grid.
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Figure 4.4: On the sheared grid, (a) geodesics must not have 45˝ edge bends and (b)

downward geodesics must not have 90˝ edge bends (versus 60˝ on the hexagonal

grid). Moreover, (c) geodesics may not bend into the same direction more than

once, as is the case on the hexagonal grid. In all three cases, this is again due

to the triangle inequality.

in a new s-t path that is shorter than p. Formally, this is again due to the triangle

inequality. Thus, p cannot be a shortest path.

Similarly, switching our perspective to the sheared grid, geodesics must not have 45˝ edge

bends and downward geodesics must not have 90˝ edge bends. The other property remains

unchanged. See Figures 4.4a-4.4c for illustration.

We will now come to a further important finding. Let p be a point on the hexagonal

grid. We denote by ppxq or px the x-coordinate, and by yppq or py the y-coordinate of p.

Consider the points s1 and t and the set of all geodesics between them, shown in blue color

(Figure 4.5). Since 60˝ edge bends are forbidden, all s1-t geodesics lie on an orthogonal

grid that is sheared to the right by 30˝. We refer to such geodesics that go from some ”lower

left” point s1 to some ”upper right” point t, i.e., xps1q ď xptq and yps1q ď yptq, as upward

geodesics. Accordingly, consider points s3 and t and the set of all geodesics between them,

shown in red color. In this case, all s3-t geodesics lie on an orthogonal grid that is sheared

to the left by 30˝. Downward geodesics are all those that go from some ”upper left” point s

to some ”lower right” point t, i.e., xpsq ě xptq and ypsq ě yptq. Note that a geodesic can be

both downward and upward according to the definition. In general, whenever some point

s is positioned left of or on the straight line ll, all s-t geodesics run on the orthogonal grid

sheared to the right. And whenever s is situated right of or on lr, all s-t geodesics run on

the orthogonal grid sheared to the left. Moreover, if s is positioned right of ll and left of

s1 s2 s3

t

ll lr

30◦ 30◦

Figure 4.5: Upward geodesics between s1 and t exclusively lie on an orthogonal grid sheared

to the right by 30˝, while downward geodesics connecting t and s3 exlusively

lie on an orthogonal grid sheared to the left by 30˝. If some point s2 is situated

right of the line ll, but left of lr, then the s2-t geodesics run on both type of

grids, but never along horizontal line segments.
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Figure 4.6: (a): The point set P pk0, k1, k2q “ P0 Y P1 Y P2 used for the proof of NP-

hardness on the orthogonal grid. (b): The modified point set used for our

proof on the hexagonal grid. (c): At most two geodesics can go from v to any

point in P pk0, k1, k2q. (d): The situation changes on the hexagonal grid, since

v can now connect to up to three points in P pk0, k1, k2q using a geodesic path.

(e): Modifying P2 accordingly again results in at most two geodesics going

from v to any point in P pk0, k1, k2q. A third geodesic is impossible due to the

modification of P2.

lr, all s-t geodesics run on both types of grids, but never across horizontal line segments,

since this would imply 60˝ edge bends, which are forbidden according to Lemma 4.1.1.

Figure 4.5 demonstrates the three types of geodesics on either or both types of sheared

orthogonal grids.

4.2 Geodesic Point-Set Embeddability

In the following, we draw our attention to the problem of Geodesic Point-Set Embed-

dability (Geodesic PSE) [KKRW10]: Given a graph G and a finite set of points P , we

ask whether G can be embedded on the grid, i.e., whether the vertices of G can be mapped

to the points in P , and all edges of G are represented by geodesic chains that run on the

grid. Katz et al. [KKRW10] show that the problem is NP-hard on the orthogonal grid by

reduction from Hamiltonian Cycle Completion (HCC), which in turn is shown to be

hard by reduction from Hamiltonian Cycle in the same work. We will show that the

problem is hard on the hexagonal grid, too.

Let G be a planar, non-Hamiltonian, cubic graph. We show that the problem is already

hard for such graphs.

Theorem 4.2.1. Geodesic PSE is NP-hard on the hexagonal grid.

Prior to proving this, we need to introduce some more notation. Let k0, k1, k2 be non-

negative integers. By n “ |V | we denote the number of vertices of G. Further, let the point

sets P0 “ tp´j, 0q | j “ 0, . . . , k0 ´ 1u, P1 “ tpj, njq | j “ 1, . . . , k1u, P2 “ tpj,´nj | j “
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4. The Hexagonal Grid

u

v

Figure 4.7: The sample graph G1 as used by Katz et al. [KKRW10]. The bold black edges

indicate a Hamiltonian path connecting u and v and its subdivision vertices.

The dashed line indicates the edge that is required to complete the Hamiltonian

path to a Hamiltonian cycle.

1, . . . , k2u and P pk0, k1, k2q “ P0 Y P1 Y P2 be given (Figure 4.6a). Katz et al. [KKRW10]

use the point set P pk0, k1, k2q as an important part of the proof that Geodesic PSE is

NP-hard. Let us consider particularly point v of Figure 4.6c. On the orthogonal grid,

there can be at most two geodesics from v to points in P pk0, k1, k2q. On the hexagonal

grid the situation changes, as Figure 4.6d shows. Here, there are up to three geodesics that

may go from v to points in P pk0, k1, k2q. Since the proof for the orthogonal grid crucially

relies on the property that there are at most two such geodesics, we cannot simply reuse

P pk0, k1, k2q as is for our proof of hardness. Instead, we modify P pk0, k1, k2q by setting

P2 “ tp´i,´njq | i “ k0, k0 ` 1, . . . , k0 ` k2 ^ j “ 1, . . . , k2u, as illustrated in Figure 4.6b.

That way, we can restore the property that there are at most two geodesics from v to

points in P pk0, k1, k2q, shown in Figure 4.6e, since v can no longer connect to points in

P2 using a geodesic path. On a side note, the construction as shown in Figure 4.6b also

works for the hardness proof on the orthogonal grid.

Proof. The proof is by reduction from HCC and resembles the one by Katz et al. [KKRW10].

Suppose we are given an instance G “ pV,Eq of HCC. Let k “ n{2 ` 1. We construct a

new graph G1 “ pV 1, E1q by subdividing every edge of G by a vertex of degree 2. Thus, G1

has |V 1| “ |V | ` |E| “ n` 3n{2 “ 2n` n{2 “ 2n´ 1` k vertices. We now show that G1

can be embedded on P p2n´ 1, k1, k2q, for some k1, k2 such that k1 ` k2 “ k, if and only

if G is a yes-instance of HCC.

Suppose G is a yes-instance of HCC. Then we can find two vertices u and v such that

G ` uv is a planar, Hamiltonian graph and G ` uv has an embedding such that u and v

are incident to at most two faces on the same side of the Hamiltonian cycle. For better

understanding, we consider the same sample graph as Katz et al. [KKRW10] do in their

work (Figure 4.7) and embed it on the sheared grid. Original vertices of G are drawn

as black disks, while subdivision vertices are represented by circles. We can embed the

Hamiltonian path connecting u and v and the according subdivision vertices on a horizontal

path consisting of n`pn´1q “ 2n´1 points. Furthermore, we embed the faces inside the

Hamiltonian cycle above and the faces outside the cycle below that path, maintaining the

combinatorial embedding—see Figure 4.8. Since G is cubic, the vertices of G1 have degree

at most 3. Original vertices in our embedding have at most one edge going up (upward

right) or one going down (downward left), except u and v, which both have one edge

going up and one edge going down. Let k1 and k2 denote the number of edges inside and

outside the cycle, respectively. Still maintaining the combinatorial embedding, we map the
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4.2. Geodesic Point-Set Embeddability

v u

Figure 4.8: The sample graph G1 drawn in a way such that the Hamiltonian path is em-

bedded on a horizontal line consisting of 2n´ 1 points.

remaining subdivision vertices that are not part of the Hamiltonian path to k “ k1 ` k2
points in P1 YP2, totalling 2n´ 1` k points, as desired, and draw the according edges as

shown in Figure 4.9. Each vertex v P P1 Y P2 has two neighbors, a ”left” neighbor vl and

a ”right” neighbor vr, according to their x-coordinates. If v P P1, we route the edge vvl
with one bend and the edge vvr with two bends. If, on the other hand, v P P2, we route

the edge vvl with two bends and the edge vvr with one bend.

Conversely, suppose G has a geodesic embedding on P p2n´ 1, k1, k2q, k1 ` k2 “ k. The k

vertices that are mapped to points in P1 Y P2 are incident to at most 2k “ n` 2 edges.2

Since G is a cubic graph, it has 3n{2 edges. Thus, by subdividing every edge of G by a

vertex of degree 2, G1 has p3n{2q ¨ 2 “ 3n edges. Of these remain 3n´pn` 2q “ 2n´ 2 for

connecting points in P0. Since there are 2n ´ 1 points in P0, and by construction of G1,

P0 induces a path π that alternates between original vertices of degree 3 and subdivision

vertices having degree 2. Let s and t be the two endpoints of P0. Now, either both s

and t have degree 3 or both of them have degree 2. Suppose they have degree 2. Since

P0 “ 2n ´ 1, π contains p2n ´ 1q ´ n “ n ´ 1 degree-3 vertices. The remaining vertex

of degree 3 thus needs to be mapped to some point in either P1 or P2. That way it is

possible to extend π to a Hamiltonian cycle, which contradicts our assumption of G being

non-Hamiltonian.

Therefore, s and t must be original vertices of G having degree 3 and they belong to a

Hamiltonian path that connects s and t in G. This path can be extended to a Hamiltonian

cycle by an edge through the outer face of G. Since both s and t have one edge going

up and one going down, they are incident to two faces on either side of the cycle in the

embedding. Thus, G is a yes-instance of HCC, which concludes the proof.

v

Figure 4.9: The geodesic embedding of G1 on the sheared grid.

2We discussed earlier that at most two geodesics can go from any such vertex to points in P pk0, k1, k2q.
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4. The Hexagonal Grid

4.3 Sparse Labeled Geodesic Point-Set Embeddability

In this section, we investigate the problem of Labeled Geodesic Point-Set Embed-

dability (Labeled Geodesic PSE), first introduced by Katz et al. [KKRW10]. Here,

in addition to an input graph G “ pV,Eq, the correspondence of vertices and points on

the grid is given as part of the problem instance. More formally, we have a bijection

µ : V Ñ R2 that maps the vertices of the graph to points on the grid. By reducing

3-Partition to Labeled Geodesic Matching (LGM), Katz et al. [KKRW10] show

that Labeled Geodesic PSE, a special case of LGM, is NP-hard on the orthogonal grid

and that it can be solved efficiently when the space limitation of the grid is loosened or

dropped.

In the following, we will show that the problem is NP-hard on the hexagonal grid as well

(using the sheared grid due to greater resemblance to the orthogonal grid) and that we can

apply the same algorithm as proposed by Katz et al. [KKRW10] to solve certain problem

instances, which we will call sparse, efficiently. For this, we will introduce the same notions,

yet adapted to the hexagonal and sheared grids.

In order to prove the NP-hardness of Labeled Geodesic PSE, we will make use of the

following two lemmas.

Lemma 4.3.1 (Shearing Lemma). Let p1 and p2 be two paths having the same lengths,

|p1| “ |p2|, on the orthogonal grid. Then p1 and p2 still have the same length after having

sheared one or both axes of the grid.

Proof. Considering the line segments of the grid, shearing operations merely result in a

scaling of the line segments, which again results in shorter or longer paths, which means

that the lengths before and after the shearing do not match. However, since the number

of line segments occupied by p1 and p2 does not change, the property that p1 and p2 have

the same length is preserved when scaling line segments, i.e., still |p1| “ |p2|.

Lemma 4.3.2 Let g be an upward geodesic on the sheared grid. Then g does not consist

of any diagonal line segments.

Proof. Regarding particularly upward geodesics, it can be seen in Figure 4.1b that it is

categorically impossible for them to use diagonal line segments, since diagonals run from

the upper left to the lower right, but not vice versa, as would be needed for g. Using such

diagonal line segments anyway always introduces a violation of the triangle inequality.

However, the triangle inequality is a critical property of a metric, and thus a property of

geodesics as well.

Corollary 4.3.1. Labeled Geodesic PSE is NP-hard on the hexagonal grid.

Proof. We essentially use the proof of NP-hardness of Labeled Geodesic PSE on the or-

thogonal grid given by Katz et al. [KKRW10]. Instead of considering downward geodesics,

however, we consider upward geodesics on the sheared grid. Hence, we simply reflect the

problem instance across the x-axis. This is possible, since upward geodesics do not use

diagonals, in accordance with Lemma 4.3.2. The upward geodesics then run on an or-

thogonal grid. Finally, applying the Shearing Lemma 4.3.1 yields the NP-hardness on the

hexagonal grid.
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4.3. Sparse Labeled Geodesic Point-Set Embeddability

In the following, we need to make a further distinction regarding geodesics on the sheared

grid. So far, we distinguish only upward and downward geodesics. As noted further

above, the sheared grid can be seen as an extension of the orthogonal grid by adding

diagonals that go from the upper left to the lower right. Upward geodesics, as follows from

Lemma 4.3.2, do not use those diagonals—Figure 4.10a shows an example. Downward

geodesics, however, may use them. Let gd be a downward geodesic. Depending on the

type of downward geodesic, gd, in addition to diagonal line segments, uses either horizontal

or vertical line segments, which is essentially due to the triangle inequality. Henceforth,

we distinguish two types of downward geodesics:

1. Shallow downward geodesics move only along horizontal and diagonal line segments

of the grid. They do not use vertical line segments. Consider Figure 4.10b for an

example.

2. Steep downward geodesics move only along vertical and diagonal line segments of

the grid. They do not use horizontal line segments. Consider Figure 4.10c for an

example.

From now on, unless stated otherwise, our observations refer only to the sheared grid.

An instance pG,µq of Labeled Geodesic PSE is called sparse if the minimum distance

between any two occupied rows and any two occupied columns on the sheared grid—recall

Figure 4.1b—is at least 3n ´ 6. This requirement is due to the fact that, by Euler’s

formula [DBETT99], any planar graph consisting of n vertices has at most 3n ´ 6 edges,

and, in order to avoid space shortages, we consider sparse instances only. We call a vertex

v of a 6-planar graph admissible if it is adjacent to at most one vertex on each ray starting

at v, to at most two vertices in each (closed) sextant with respect to v and at most four

vertices in each (closed) axis-aligned half-plane with respect to v. A 6-planar graph G can

only have a geodesic embedding on the hexagonal grid if all of its vertices are admissible.

In this case, we say that G is admissible.

Let γ be a geodesic embedding of G “ pV,Eq. For e P E, we denote by γpeq the according

embedding of e. We say that γpeq is below (above) γpfq if there is a vertical line intersecting

γpeq below (above) γpfq. We say that e is strictly below f if γpeq is below γpfq in every

possible geodesic embedding of G. Although not formally exact, for convenience, we will

mostly omit to explicitly mention the embedding γpeq and refer to the according geodesic

embedding of e simply as e. In order to derive a combinatorial description of a geodesic

embedding in terms of these ”above-below”relations, we are going to introduce a relation ă

on the set of edges. It should be noted, however, that not every such relation corresponds

to a geodesic embedding of a graph.

(a) Upward geodesic. (b) Shallow downward geodesic. (c) Steep downward geodesic.

Figure 4.10: Geodesics on the sheared grid can be divided into three types: upward

geodesics, shallow downward geodesics and steep downward geodesics.
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4. The Hexagonal Grid

Given some point p P R2, we denote by Qkppq the set of points (excluding p) in the

(closed) k-th sextant of the coordinate system centered at p on the sheared grid. Since

we will further below, in addition to the sheared grid, refer to the orthogonal grid as well,

we also denote by Qkppq the set of points in the (closed) k-th quadrant of the coordinate

system centered at p on the orthogonal grid, again excluding p from Qkppq. It will be clear

from the context when Qkppq refers to orthogonal grid. Unless stated otherwise, we will

refer to the sheared grid.

Again on the sheared grid, we say that p P R2 k-dominates q P R2 if q P Qkppq. Given e P E,

we setQkpeq :“ Qkpe
´qYQkpe

`q, where e´ and e` denote the lexicographically smaller and

larger endpoint of e, respectively, according to the x-axis. We say that e k-dominates q P R2

if q P Qkpeq. The k-critical set of edges of e is defined as Ckpeq :“ tf P E | fXQkpeq ‰ Hu,

that is, Ckpeq contains all edges that have at least one of their endpoints in Qkpeq. We

define Qkpeq and Ckpeq on the orthogonal grid analogously. Again, the context will clearly

indicate when we refer to the orthogonal grid.

On the orthogonal grid, Katz et al. [KKRW10] present the following dualities that hold

for all edges e and f :

f P C2peq ô e P C4pfq and f P C1peq ô e P C3pfq.

Similar to the orthogonal grid, there are dualities that hold for all edges e and f on the

sheared grid:

f P C1peq ô e P C4pfq and f P C2peq ô e P C5pfq and f P C3peq ô e P C6pfq.

Given a point p “ pppxq, ppyqq P R2, let pÙ :“ tq P R | qpxq “ ppxqu, that is, the set of all

points q, such that q and p are vertically aligned.

Furthermore, for e P E, by Bpeq we denote the bounding box of e, which is given by the

rectangle determined as follows: If e is an upward edge, then e´ is the lower left corner

point of the rectangle Bpeq, and e` is the upper right corner point of Bpeq. If e is downward,

similarly, e´ is the upper left and e` the lower right corner point of Bpeq. Note that, if

e´ and e` are horizontally or vertically aligned, then Bpeq is given by a single horizontal

or vertical line, respectively, connecting e´ and e`.

For e, f P E, we say that the e and f overlap if there is a common vertical line that

intersects e and f . Note that, at this point, we do not know whether e is situated above

or below f—we merely require a common vertical line to intersect the two edges.

A combinatorial geodesic embedding of G is given by a relation ă on the set of edges such

that two edges e and f are comparable, denoted by e ă f , if and only if there is a vertical

line intersecting e below f in the embedding of G. Note that this implies that e and f

overlap. For convenience, we shall write f ą e equivalently for e ă f . In addition to this,

we require two further properties. First, for any three edges e, f, g whose bounding boxes

are intersected by a common vertical line, we have that e ă f and f ă g imply e ă g.

We call this property local transitivity. Secondly, we require certain implication rules to

hold. Note that local transitivity is a necessary condition for the existence of a geodesic

embedding. Unfortunately the implication rules given for the orthogonal grid by Katz

et al. [KKRW10] do not hold as presented in their work. Their rules are too general, and

thus wrong in certain cases, as we will see next.
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The following implication rules for the orthogonal grid are the original rules presented by

Katz et al. [KKRW10] in their work. Note that their rules were not given the names that

we introduce below for easier later reference.

Implication Rule [KKRW10]. Let e P E be an upward edge and let f P E.

(U1) If f P C2peq, then e ă f .

(U2) If f P C4peq, then f ă e.

(U3) If f ă e, then f 1 ă e for all f 1 P C4pfq.

(U4) If e ă f , then e ă f 1 for all f 1 P C2pfq.

Let e P E be a downward edge and let f P E.

(D1) If f P C1peq, then e ă f .

(D2) If f P C3peq, then f ă e.

(D3) If f ă e, then f 1 ă e for all f 1 P C3pfq.

(D4) If e ă f , then e ă f 1 for all f 1 P C1pfq.

Without further restrictions, these implication rules are not correct, as we will prove by

giving counterexamples. First, let us consider the rules (U1), (U2), (D1) and (D2) and the

according Figures 4.11a-4.11d that depict our counterexamples. Suppose e P E is upward

and let f P E. Starting with rule (U1), Figure 4.11a shows an edge f and an upward edge

e, such that f P C2peq. According to rule (U1), we shall conclude that e ă f . Clearly, this

is not the case in our counterexample—here, we have f ă e, and thus a contradiction to

implication rule (U1).

Next, we consider rule (U2) and Figure 4.11b. In the figure, we have f P C4peq and

according to rule (U2), it follows that f ă e. In our case, however, we obviously have

e ă f , in contradiciton to rule (U2).

Let e P E be a downward edge and let f P E. Figure 4.11c shows an example that disproves

implication rule (D1). We have f P C1peq and in accordance with rule (D1) we conclude

e ă f . Obviously, the Figure shows f ă e, which yields a contradiction rule (D1).

Considering implication rule (D2), Figure 4.11d shows that f P C3peq as required by

rule (D2). We cannot conclude f ă e, however, since the figure clearly shows that e ă f ,

and thus a contradiction.

We now focus on the remaining rules (U3), (U4), (D3) and (D4). Consider Figures 4.12a-

4.12d. According to Figure 4.12a, implication rule (U3) does not hold. Obviously, we have

f

e

Q2(e)

(a) Counterexample

to rule (U1).

e

f

Q4(e)

(b) Counterexample

to rule (U2).

e

f

Q1(e)

(c) Counterexample

to rule (D1).

e

f

Q3(e)

(d) Counterexample

to rule (D2).

Figure 4.11: Counterexamples to the implication rules (U1), (U2) and (D1), (D2) as pre-

sented by Katz et al. [KKRW10].

31



4. The Hexagonal Grid
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(b) Counterexample

to rule (U4).
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e

Q3(f)

(c) Counterexample

to rule (D3).

f f ′

e
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Figure 4.12: Counterexamples to the implication rules (U3), (U4) and (D3), (D4) as pre-

sented by Katz et al. [KKRW10].

f ă e and f 1 P C4pfq. However, f 1 ă e does not hold, since f 1 ą e. In other words, we

have e ă f 1, which disproves implication rule (U3).

Similarly, consider Figure 4.12b. Clearly, it holds that e ă f and f 1 P C2pfq. However,

we also have e ą f 1, which is equivalent to f 1 ă e, and thus a contradiction to implication

rule (U4).

Moving on to rule (D3), consider Figure 4.12c. Again, it can be seen that the premise

f ă e and f 1 P C3pfq is true. We cannot conclude f 1 ă e according to (D3), however,

since f 1 ą e, which is equivalent to e ă f 1.

Finally, let us take a look at rule (D4). Figure 4.12d shows that e ă f and f 1 P C1pfq.

According to (D4), it then follows that e ă f . However, since the figure shows that f 1 ă e,

we have a contradiction to rule (D4).

These implication rules can be corrected by making further assumptions. In the following,

we present the set of fixed rules.

Implication Rules (Orthogonal Grid). Let e P E be an upward edge. Let f, f 1 P E.

(U1) Let e and f overlap. If f P C2peq is upward, then e ă f .

(U2) Let e and f overlap. If f P C4peq is upward, then f ă e.

(U3) Let e and f 1 overlap. If f P C2peq and f 1 ą f are upward, then f 1 ą e.

(U4) Let e and f 1 overlap. If f P C2peq is downward and f 1 ą f with Bpf 1q X f´Ù ‰ H is

upward, then f 1 ą e.

(U5) Let e and f 1 overlap. If f P C4peq and f 1 ă f are upward, then f 1 ă e.

(U6) Let e and f 1 overlap. If f P C4peq is downward and f 1 ă f with Bpf 1q X f`Ù ‰ H is

upward, then f 1 ă e.

Let e P E be a downward edge. Let f, f 1 P E.

(D1) Let e and f overlap. If f P C1peq is downward, then e ă f .

(D2) Let e and f overlap. If f P C3peq is downward, then f ă e.

(D3) Let e and f 1 overlap. If f P C1peq and f 1 ą f are downward, then f 1 ą e.

(D4) Let e and f 1 overlap. If f P C1peq is upward and f 1 ą f with Bpf 1q X f`Ù ‰ H is

downward, then f 1 ą e.

(D5) Let e and f 1 overlap. If f P C3peq and f 1 ă f are downward, then f 1 ă e.

(D6) Let e and f 1 overlap. If f P C3peq is upward and f 1 ă f with Bpf 1q X f´Ù ‰ H is

downward, then f 1 ă e.
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Lemma 4.3.3 The implication rules are correct.

Proof. We will prove the rules not only with respect to the orthogonal grid, that is, we do

not require edges to consist of horizontal and vertical line segments only. Instead, we only

require edges e P E to be realized as monotone curves between e´ and e`. An upward

edge is now an edge whose slope is not negative. Likewise, the slope of a downward edge

is not positive. Therefore, the implication rules are not restricted to the orthogonal grid,

but we can also apply them with respect to the sheared grid later on.

For upward edges we will prove the according implication rules (U1)-(U6) one by one. Then

we will argue that the correctness of the implication rules for downward edges follows by

symmetry. Let e P E be an upward edge and let f, f 1 P E.

(U1) Let f P C2peq be upward, and let e and f overlap. By definition of C2peq we know

that one or both endpoints of f are in Q2pe
´q YQ2pe

`q. Assume that f` is one of

these two points, that is, f` P Q2pe
´qYQ2pe

`q. Since f is upward, f` cannot be in

Q2pe
´q, and thus f` must be in Q2pe

`qzQ2pe
´q. This in turn implies the existence

of a point pe of e situated vertically below f` (since f is upward). Hence, we can

find a common vertical line that intersects e in pe below f in f` and we conclude

that e ă f . In case f` coincides with e`, we find a point pf immediately left of

f` and use pf to find another point pe located vertically below f on e. This again

yields e ă f . Note that pf and pe cannot coincide in this case, since we do not allow

edges to cross. Conversely, if f` is not in Q2pe
´q Y Q2pe

`q, then f´ must be in

Q2pe
´q YQ2pe

`q. If f´ P Q2pe
`q, then we can argue as above and conclude e ă f .

Thus, suppose that f´ P Q2pe
´q. Since we assume e and f to overlap and since f

is upward, we can find a point pf on f that is situated vertically above e´. This

implies the existence of a vertical line that hits e´ below pf , which means that e and

f become comparable with respect to ă, and we clearly have e ă f .

(U2) Let f P C4peq be upward, and let e and f overlap. We use the duality from above

stating that f P C2peq ô e P C4pfq. Since f P C4peq, we know that e P C2pfq.

Moreover, since e and f overlap, and since e is upward, we can apply rule (U1) to

conclude that f ă e.

(U3) Let e and f 1 overlap, let f P C2peq and f 1 ą f be upward edges. We distinguish two

cases.

(i) Suppose that e and f overlap. Since e and f overlap and due to the fact that

f P C2peq, we can apply rule (U1), which implies e ă f , and thus f ą e. We

now have f 1 ą f ą e. Moreover, since e, f and f 1 overlap pairwise, we can

find three points on e, f and f 1—that is, one situated on e, one situated on

f and one situated on f 1—that are intersected by a common vertical line. At

this point, we can apply local transitivity, that is, transitivity with respect to

the vertical line intersecting e, f and f 1, and we conclude that f 1 ą e.

(ii) Conversely, suppose that e and f do not overlap. We use this fact to know that

f` must be in Q2pe
´q, and therefore ypf`q ě ype´q. Let γ1 be the y-coordinate

of γpf 1q at f`, that is, vertically above f`. Furthermore, let γ2 be the y-

coordinate of γpf 1q at e´. We know that γ1 ě ypf`q, since f 1 ą f . We also

know that γ2 ě γ1, since f 1 is assumed to be upward. This suffices to conclude

that γ2 ě ype´q. Hence, we find a vertical line that hits e´ “ pxpe´q, ype´qq

below some point pxpe´q, γ2q situated on f 1. Therefore, e and f 1 are comparable

with respect to ă, and we conclude e ă f 1, that is, f 1 ą e.
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(U4) Let e and f 1 overlap, let f P C2peq be a downward edge, and let f 1 ą f be an upward

edge with Bpf 1qXf´Ù ‰ H. We know that f´ is in Q2peq. We distinguish two cases.

(i) Suppose that f´ P Q2pe
`qzQ2pe

´q. Consider point f´. Clearly, f´ is above

e` since f´ P Q2pe
`q. Moreover, again due to f´ P Q2pe

`q and since e

is upward, f´ is above all points on e. Since Bpf 1q X f´Ù ‰ H, we know

that there exists some point pf 1 on f 1 such that yppf 1q ě ypf´q. Due to the

fact that, for all pe P γpeq, we have that ypf´q ě yppeq, we also know that

yppf 1q ě yppeq. Since e and f 1 overlap, we can thus find a point qf 1 on f 1

(satisfying ypqf 1q ě yppf 1q, because f 1 is upward), such that qf 1 is above all

points on e, that is, ypqf 1q ě yppeq, for all pe P γpeq, and such that there is a

point qe on e situated vertically below qf 1 . We can conclude that there exists

a vertical line that hits qe below qf 1 , and thus this line intersects e below f 1.

By the definition of the ă relation, this in turn is equivalent to e ă f 1, and

therefore we finally have f 1 ą e.

(ii) Suppose that f´ P Q2pe
´q. We know that ypf´q ě ype´q, since f P C2peq.

Furthermore, due to the fact that Bpf 1q X f´Ù ‰ H, there exists a point pf 1

on f 1 such that yppf 1q ě ypf´q. Thus, we also know that yppf 1q ě ype´q.

Moreover, since f 1 is upward, there exists another point qf 1 on f 1 satisfying

ypqf 1q ě yppf 1q. Since yppf 1q ě ype´q, we also have ypqf 1q ě ype´q. Note that

we assume e and f 1 to overlap, and therefore we can even constrain qf 1 to be

situated vertically above e´. This makes e and f 1 comparable with respect to

ă, since there is a vertical line that intersects e in e´ below f 1 in qf 1 . Hence,

we have e ă f 1, and thus f 1 ą e.

(U5) Suppose e and f 1 overlap, let f P C4peq and f 1 ă f be upward edges. We reflect e, f

and f 1 across the horizontal x-axis and the vertical y-axis according to the coordinate

system originating in e´ (or e`, either will do). (Equivalently, we rotate the edges

by π radians using the same coordinate system.) We obtain from e, f and f 1 the

new edges er, fr and f 1r, respectively. All edges remain upward, and we now have

fr P C2perq as well as f 1r ą fr. The latter is due to the reflection across the y-axis,

which intuitively exchanges top and bottom. Note that we now have all prerequisites

needed for rule (U3), and we can conclude that f 1r ą er holds for the reflected edges.

Therefore, before the reflection, we must have had f 1 ă e. Put another way, knowing

that f 1r ą er by rule (U3), we reflect again as described above and obtain f 1 ă e.

(U6) Suppose e and f 1 overlap, let f P C4peq be a downward edge, and let f 1 ă f be an

upward edge with Bpf 1q X f`Ù ‰ H. We use the same idea as we did above for rule

(U5). The reflection yields upward edges er, f
1
r and a downward edge fr, such that

fr P C2perq and Bpf 1rq X f´Ùr ‰ H. Hence, we can apply rule (U4) and conclude

that f 1r ą er holds for the reflected edges, and therefore we know that f 1 ă e held

initially.

Regarding the implication rules for downward edges, that is, rules (D1)-(D6), we argue as

follows. We will see that rule (D1) holds since it is the dual counterpart of rule (U2): Let

f P C1peq be a downward edge, and let e and f overlap. We reflect e and f across the

(horizontal) x-axis of the coordinate system originating in e´ (or e`, either will do). This

yields two upward edges er and fr. Moreover, we now have fr P C4perq. Both er and fr
are upward and they need to overlap as well, and thus rule (U2) is applicable, implying

that fr ă er. We can conclude that fr is below er. Moreover, since er and fr are reflected

versions of e and f with respect to the x-axis of the coordinate system centered at e´ (or
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e`), we know that f must be above e. Finally, using the fact that f is above e, we can

conclude f ą e, and thus e ă f .

Essentially, we took advantage of symmetry to prove rule (D1). The same arguments can

be used to prove the remaining rules (D2)-(D6).

Similarly, there are implication rules that hold on the sheared grid. Note that the second

and third sextants of the sheared grid correspond to the second quadrant of the orthogonal

grid, and that the fifth and sixth sextants of the sheared grid correspond to the fourth

quadrant on the orthogonal grid. Therefore, and also due to the fact that correctness of

the implication rules was proven independently of the orthogonal grid, we can transfer

the implication rules for the orthogonal grid to the sheared grid. Moreover, since we can

distinguish two types of downward edges, that is, shallow downward and steep downward

edges, we gain additional information that implies further implication rules. In the follow-

ing, let C2Y3 :“ C2 YC3 and C5Y6 :“ C5 YC6. The implication rules for the sheared grid

are as follows.

Implication Rules (Sheared Grid). Let e P E be an upward edge. Let f, f 1 P E.

(U1) Let e and f overlap. If f P C2Y3peq is upward, then e ă f .

(U2) Let e and f overlap. If f P C5Y6peq is upward, then f ă e.

(U3) Let e and f 1 overlap. If f P C2Y3peq and f 1 ą f are upward, then f 1 ą e.

(U4) Let e and f 1 overlap. If f P C2Y3peq is downward and f 1 ą f with Bpf 1q X f´Ù ‰ H
is upward, then f 1 ą e.

(U5) Let e and f 1 overlap. If f P C5Y6peq and f 1 ă f are upward, then f 1 ă e.

(U6) Let e and f 1 overlap. If f P C5Y6peq is downward and f 1 ă f with Bpf 1q X f`Ù ‰ H
is upward, then f 1 ă e.

Let e P E be a downward edge. Let f, f 1 P E.

(D1) Let e and f 1 overlap. If f P C1peq and f 1 ą f are downward, then f 1 ą e.

(D2) Let e and f 1 overlap. If f P C1peq is upward and f 1 ą f with Bpf 1q X f`Ù ‰ H is

downward, then f 1 ą e.

(D3) Let e and f 1 overlap. If f P C4peq and f 1 ă f are downward, then f 1 ă e.

(D4) Let e and f 1 overlap. If f P C4peq is upward and f 1 ă f with Bpf 1q X f´Ù ‰ H is

downward, then f 1 ă e.

Let e P E be a shallow downward edge. Let f, f 1 P E.

(D5) Let e and f overlap. If f P C1peq is downward, then e ă f .

(D6) Let e and f overlap. If f P C4peq is downward, then f ă e.

(D7) Let e and f overlap. If f P C2peq is shallow downward, then e ă f .

(D8) Let e and f overlap. If f P C5peq is shallow downward, then f ă e.

Let e P E be a steep downward edge. Let f, f 1 P E.

(D9) Let e and f overlap. If f P C1peq is downward, then e ă f .

(D10) Let e and f overlap. If f P C5peq is downward, then f ă e.

(D11) Let e and f overlap. If f P C3peq is steep downward, then f ă e.

(D12) Let e and f overlap. If f P C6peq is steep downward, then e ă f .
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These implication rules apply to the sheared grid as well as the hexagonal grid. However,

on the hexagonal grid, the relation ă is no longer defined by a common vertical line

intersecting the bounding boxes of two edges, but by a common diagonal line going from

the lower left to the upper right. As soon as any such implication rule is violated given a

concrete relation ă for an edge e of G, this means that the corresponding order cannot be

translated into a geodesic chain, which in turn implies that the relation does not correspond

to a partial order that we can derive from a given geodesic embedding of G.

Next, we show that we can efficiently compute a geodesic embedding of an admissible

graph G according to a given combinatorial embedding ă of G.

Given a combinatorial embedding ă of a graph G “ pV,Eq, let Gă “ pE,Aq denote the

corresponding directed graph on the set of edges, where pe, fq P A whenever e ă f in the

embedding of G. We call Gă the representation (graph) of ă.

Theorem 4.3.1. Let G “ pV,Eq be admissible, and let ă be a combinatorial embedding of

G. Given a representation Gă of ă, we can compute a geodesic embedding of G according

to ă in Opn2q time, which is worst-case optimal.

Proof. The proof is similar to the one on the orthogonal grid by Katz et al. [KKRW10].

For the proof, we use the sheared grid due to greater similarity to the orthogonal grid—

recall Figure 4.1b. We use a vertical sweep line moving from left to right in order to

compute the embedding of G. Events, that is, decisions being made regarding further

edge embeddings, occur at the vertices of G, sorted in lexicographical order from left to

right and from bottom to top. While the line is swept, we divide the edges E of G into

three groups. Completed edges are edges that have both their endpoints situated left of

the sweep line, which means their geodesic embeddings were already entirely computed by

the algorithm. Partial edges have one endpoint to the left and one endpoint to the right of

the sweep line. A partial edge is embedded as a partial geodesic up to the current location

of the sweep line. The remaining part of the edge, right of the sweep line, has yet to be

computed. Untouched edges are those that have both their endpoints located right of the

sweep line, which means that computation of their embeddings has not yet started.

Let c and c1 be two consecutive occupied grid columns, c left of c1. We assume that we

have already computed a partial geodesic embedding up to column c, that is, all partially

or entirely embedded edges left of c have already been computed, and thus are fixed in the

remaining computation. The main idea is as follows: We extend all edges not ending at c

iteratively from bottom to top such that each newly embedded geodesic chain is situated

directly above all previously embedded chains.

For this, we first sort the events in lexicographical order, i.e., from left to right and bottom

to top, in Opn log nq time. Let the order of events be given by v1, v2, . . . , vn. Then, we

topologically sort the edges according to ă in Opn2q time. Let the order of edges be given

by e1, e2, . . . , em. To see that this can be done in quadratic time, consider the following:

We can sort the edges topologically in time proportional to the number of edges in Gă,

which is in Opn2q, since Gă is a simple graph whose vertices correspond to edges in G,

and G is planar and thus has at most 3n ´ 6 edges, in accordance with Euler’s formula.

Since each edge may be compared to all other edges, this results in Opn2q time for the

topological sort. The idea is to merge the order of events with the order of edges in order to

compute the embedding. We store a list of partial edges at the sweep line sorted according

to ă. For instance, let that list be given by eαp1q, eαp2q, . . . , eαpkq, sorted from bottom to

top, when the sweep line is located at column c. Note that this list must be a sequence of
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e1, e2, . . . , em, since the edges are totally ordered by ă. Let v be the next event on column

c1 and eαpiq, for some i, be the next edge to be embedded. We must decide whether to

embed eαpiq above or below v.3 Whenever eαpiq is the first edge on c that is above v,

we insert the edges starting at v into the list of partial edges stored at the sweep line

before eαpiq is embedded, i.e., the newly added edges starting at v will be considered in the

following steps of the algorithm before another geodesic chain of eαpiq is computed. For

the merging to succeed, we require the following. Suppose e :“ eαpiq is an upward edge4

that must be embedded above v, and let v be the endpoint of some edge e1. Then:

1. None of the following edges eαpjq, for j ą i, may be embedded below v. To see that

this holds, assume that there exists some j ą i such that f :“ eαpjq needs to be

embedded below v. This implies f ă e1. Furthermore, we have e1 ă e, since e must

be embedded above v. Local transitivity of ă implies f ă e. However, we also have

e ă f , since the sweep line intersects the bounding boxes of e and f at c, and thus e

and f are comparable according to ă, which in turn means that αpiq ă αpjq implies

e ă f . This yields a contradiction to the acyclicity of ă.

2. e must be embedded above all edges in C5pe
1q and C6pe

1q and below all edges in

C2pe
1q and C3pe

1q. This is immediately fulfilled since ă is defined to respect the

implication rules.

We now describe how to embed edges. First, we observe that an upward geodesic is

uniquely determined by the 5-dominant and 6-dominant points corresponding to the right

bends along the geodesic. This is easy to see, since, first, the fifth and sixth sextants of

the sheared grid correspond to the fourth quadrant of the orthogonal grid, and, second,

upward geodesics on the sheared grid do not run diagonally according to Lemma 4.3.2;

they run on an orthogonal grid as a subset of the sheared grid. Figures 4.13a and 4.14

illustrate this. For downward geodesics, the situation gets more complicated and we have

to distungish two cases. In the following, we will see that a shallow downward geodesic is

uniquely determined by the 4-dominant and 5-dominant points, and that a steep downward

geodesic is uniquely determined by the 3-dominant and 4-dominant points corresponding

to the right bends along the geodesic. Hence, we distunguish:

1. Shallow downward geodesics. On the orthogonal grid, it is the 3-dominant points

corresponding to the right bends along a downward geodesic that uniquely determine

the geodesic. By rotating the vertical y-axis of the orthogonal grid by π{4 radians

counterclockwise, we obtain a sheared version, the shallow (orthogonal) grid, on
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(a) Upward geodesic.
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(b) Shallow downward geodesic.
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(c) Steep downward geodesic.

Figure 4.13: Geodesics on the sheared grid can be uniquely determined using the sextants

of points corresponding to right bends of the geodesics.

3In case we need to embed eαpiq such that it joins v, there is nothing to decide.
4If e is a downward edge, we can proceed analogously.

37



4. The Hexagonal Grid
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Figure 4.14: Sheared hexagonal grid and orthogonal grid.

which shallow downward geodesics run exclusively.5 Consider Figure 4.13b as an

example. This shallow grid is clearly a subset of the sheared hexagonal grid, as can

be seen in Figure 4.15. We can identify the fourth and fifth sextants of the sheared

hexagonal grid with the third quadrant of the shallow grid, and vice versa. Thus, on

the sheared hexagonal grid, it is the 4-dominant and 5-dominant points correspond-

ing to the right bends of a shallow downward geodesic that uniquely determine the

geodesic. All shallow downward geodesics run exclusively on the shallow orthogo-

nal grid. This is an immediate consequence of extending Lemma 4.3.2 to shallow

downward geodesics.

2. Steep downward geodesics. The situation is similar to the one above. Again, recall

that, on the orthogonal grid, a downward geodesic is uniquely determined by the 3-

dominant points corresponding to the right bends along the geodesic. Rotating the

horizontal x-axis of the orthogonal grid by 3π{4 radians counterclockwise yields a

sheared version, the steep (orthogonal) grid, on which steep downward geodesics run

exclusively. Figure 4.13c illustrates this. Since the steep grid is obviously a subset of

the sheared hexagonal grid—see Figure 4.16—, the third and fourth sextants of the

sheared hexagonal grid correspond to the third quadrant of the steep grid, and vice

versa. Hence, on the sheared hexagonal grid, the 3-dominant and 4-dominant points

corresponding to the right bends of a steep downward geodesic uniquely determine

the geodesic. All steep downward geodesics run exclusively on the steep grid.

We will use these facts to describe the geodesic chain corresponding to a single edge. Let

R be a set of points. By RÔ :“ tpx ´ 1, y ` 1q | px, yq P Ru we denote the set of points

resulting from a translation of R by one unit to the left and one unit to the top. Similarly,

RÒ :“ tpx, y ` 1q | px, yq P Ru denotes the set of points resulting from translating R one

unit to the top, and RÑ :“ tpx ` 1, yq | px, yq P Ru denotes the set of points resulting

from R one unit to the right. By Hl,kpRq :“
Ť

pPRpQlppq Y Qkppqq we denote the pl, kq-

hull of R, that is, Hl,kpRq is the boundary of the set of points that are l-dominated or

k-dominated by R. Now, in order to compute a new geodesic chain corresponding to an

edge e “ eαpiq, we first compute the pl, kq-hull of the set of points corresponding to the

geodesic chain bends of the previously embedded edges, and then, depending on whether

1
2

3

4
5

6
⇔ 2 1

43

Figure 4.15: Sheared hexagonal grid and shallow orthogonal grid.

5Essentially, this is yet again due to the triangle inequality.
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Figure 4.16: Sheared hexagonal grid and steep orthogonal grid.

we have an upward edge, a shallow downward edge or a steep downward edge, we translate

this pl, kq-hull one unit to the top and one unit to the left, in case of an upward edge, or

we translate the pl, kq-hull one unit to the top, in case of a shallow downward edge, or we

translate the pl, kq-hull one unit to the right, in case of a steep downward edge.

More formally, we proceed as follows. Let Bi be the set of endpoints of all straight-line

segments used between the columns c and c1 in the embedding computed so far, and

consider the edge e “ eαpiq. Let pαpiq be the current endpoint of eαpiq on c, that is, the

rightmost point of the geodesic chain corresponding to eαpiq embedded so far. Furthermore,

let v P V be the lastly considered event on c1, which means that edges left of c1 having v

as their endpoint have already been embedded, and thus are completed edges. We would

like to embed the fraction of e between c and c1. We distinguish two cases:

1. Suppose e does not end on c1. If e is an upward edge, we embed it on the (5,6)-hull

of the point set pBi Y tvu z te
´uqÔ Y tpαpiqu between c and c1. If, however, e is

a downward edge not ending on c1, we embed it on the (4,5)-hull of the point set

pBi Y tvu z te
´uqÒ Y tpαpiqu, if it is shallow, and on the (3,4)-hull of the point set

pBi Y tvu z te
´uqÑ Y tpαpiqu, if it is steep. Intuitively, we embed the fraction of

e “ eαpiq between c and c1 such that it is directly above all previously embedded

edges eαpjq between c and c1, for j ă i.

2. Suppose e ends on c1. We call an edge uv P E strictly shallow, if it is a straight-line

edge which leaves u diagonally to the right, that is, it exclusively runs along the grid

line that connects the fifth and sixth sextant corresponding to u. If e is an upward

edge, and if e` is the left endpoint of two steep downward or three downward edges

starting in e`, or if e` is the left endpoint of one steep and one strictly shallow

downward edge starting in e`, or if e is the second of two upward edges ending in

e`, then we embed the fraction of e on the (5,6)-hull of the point set pBi z te
´uqÔY

tpαpiq, qe, e
`, u, where qe is the grid point one unit left of e`. Otherwise, we embed it

on the (5,6)-hull of the point set pBi z te
´uqÔYtpαpiq, e

`u. This special treatment is

necessary to reserve sufficient space required for the embeddings of (yet untouched)

edges that start in e`. Similarly, if e is a steep downward edge, and if e is the only

downward edge ending in e`, then we embed it on the (3,4)-hull of the point set

pBi z te
´uqÑY tpαpiq, qne, e

`u, where qne is the grid point top left of e`. Otherwise,

we embed it on the (3,4)-hull of the point set pBi z te
´uqÑ Y tpαpiq, e

`u. If e is a

shallow downward edge, we embed it on the (4,5)-hull of the point set pBi z te
´uqÒY

tpαpiq, e
`u. Here, no further case differentiation is required, since shallow downward

edges may not occupy vertical grid-line segments that are possibly needed for edges

starting in e`. As already noted further above, this is due to shallow downward

geodesics running exclusively on the shallow (orthogonal) grid, as a consequence

of extending Lemma 4.3.2, and thus they cannot possibly occupy vertical grid-line

segments. As a result, shallow downward edges ending in e` do not interfere with

any edges starting in e`, and thus impose no further restrictions on the embedding.
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Figure 4.17: An instance of Labeled Geodesic PSE consisting of 3n edges and 2n2 edge

bends.

By embedding edges this way, it is also guaranteed that they are embedded as geodesics.

Additionally, the resulting embedding does not introduce any edge crossings. To see this,

recall that G admissible, and thus we can embed the edges as described above, which

results in no grid-line segment being used more than once. Moreover, since the instance is

sparse and since any planar graph has at most 3n ´ 6 edges, we do not run out of space

when embedding the edges based on a translation of the k-hull of previously embedded

edges by one unit to the top and one unit to the left (upward geodesics), or one unit to the

top (shallow downward geodesics), or one unit to the right (steep downward geodesics).

Finally, at all times, we embed edges respecting the order given by ă.

In order to compute the k-hull for the current step, we walk along the k-hull of the previous

step in linear time (instead of computing the k-hull from scratch every time, that is, instead

of computing the k-hull by using the endpoints of all edges embedded so far) and extend it

where needed. The total time complexity for this is proportional to the number of bends

in the embedding. Note that each bend can be attributed to a vertex of the graph. Thus,

since there are n vertices, each edge bends at most n times, which results in a total of at

most p3n´ 6qn P Opn2q bends.

Another way to describe the embedding of edges is as follows. By lc we denote the list

of partial edges eαp1q, eαp2q, . . . , eαpkq stored when the sweep line is located at column c.

Recall that we have sorted this list according to ă. Suppose furthermore that there are

vertices situated on c that are incident to a total of k1 edges starting at c to the right.

Then, due to the local transitivity of ă, the order of partial edges stored at column c1 is

preserved, since we merged k1 untouched edges according to ă into the list of partial edges

lc, obtaining a new list, say, lc1 . That way, as a first step, we can straight-line embed all

edges in lc1 between c and c1. Note that this of course may easily result in edge segments

that are no longer situated on the grid. As a second step, from bottom to top, we then

”pull” those straight-line segments between c and c1 onto the grid, introducing edge bends,

while preserving the order given by ă.
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It remains to show that the algorithm is worst-case optimal. Consider the graph embedding

shown in Figure 4.17. It shows an instance consisting of n horizontal edges h1, . . . , hn and

n vertical edges v1, . . . , vn, and an additional n upward edges u1, . . . , un. Each upward

edge is strictly below every horizontal edge, and each upward edge is strictly above every

vertical edge. Too see that as many as 2n2 edge bends are needed, consider the following.

For 1 ď i ď n, each of the n upward edges ui needs to pass through all n corridors that are

shown in gray color in the figure. This is due to the arrangement of the n pairs phi, viq.

Every such corridor introduces each edge to bend twice. Since there are n upward edges

and n corridors, this results in 2n2 P Ωpn2q overall edge bends. Thus, the algorithm is

worst-case optimal.

At this point of the thesis, our initial plan was to show how to efficiently compute a

combinatorial geodesic embedding of a given graph G “ pV,Eq. The idea is to first

compute a kind of preliminary embedding and, based on this embedding, we can compute

a full geodesic embedding using the algorithm from above. More precisely, we compute a

pre-embedding of G, which is a directed graph Π “ pE,Aq on the set of edges of G that

only contains edges pe, fq such that e is strictly below f . Furthermore, the acyclicity of Π

is equivalent to the existence of a combinatorial embedding of G.

Katz et al. [KKRW10] present an algorithm to compute a combinatorial geodesic embed-

ding of a given graph which crucially relies on the implication rules. However, as we have

seen above, the implication rules presented in their work do not hold, and this renders the

algorithm flawed as well. We cannot simply use their approach to a compute a combina-

torial embedding of a given graph with respect to the hexagonal grid. Since this difficulty

had not come to our attention until the very end of this thesis, we are unable to present

such an algorithm in detail. Nevertheless, we outline an idea.

Suppose we are given a graph G “ pV,Eq. Note that the implication rules (U3)-(U6) and

(D3)-(D6) require certain geometrical information to be given, for example information

regarding the overlapping of edges, information regarding the containment of edges in the

k-critical set of other edges, and so on. Given that information, we can express these

implication rules as simple implications, for instance f 1 ą f ñ f 1 ą e in the case of rule

(U3). Using this observation, we model the requirement that ă satisfies the implication

rules as an instance ϕ of 2-SAT, by defining for any pair of overlapping edges i, j a variable

xij such that

xij :“

#

1, if i ă j,

0, if j ă i.

Suppose we are given a satisfying assignment A for ϕ. We would like to conclude that the

relation ă corresponding to A is a combinatorial geodesic embedding of G. By construction

we have that any pair of overlapping edges is comparable with respect to ă and the

implication rules hold. However, the definition of a combinatorial geodesic embedding also

requires local transitivity to hold, and this is not obviously guaranteed by ă. Nevertheless,

we claim that local transitivity is also fulfilled by ă. To prove this, one would need to show

that the implication rules enforce local transitivity. The basic idea is described by Katz

et al. [KKRW10]. However, their approach needs to be adapted according to corrected set

of implication rules. Due to time constraints, this is not part of this thesis.

Next, assuming we are given a combinatorial geodesic embedding of G, we can apply the

algorithm from Theorem 4.3.1 to find a geodesic embedding of G on the hexagonal grid.

Finally, since 2-SAT can be solved efficiently and since the algorithm from Theorem 4.3.1

works in Opn2q time, we can efficiently find a geodesic embedding of a given graph G.
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4. The Hexagonal Grid

Theorem 4.3.2. Given a 6-planar graph G, we can efficiently compute a geodesic embed-

ding of G on the hexagonal grid, if one exists.

Again, to prove this, one would need to show that local transitivity holds for the corrected

set of implication rules.
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5. Conclusion

In this thesis, we studied the drawing or embedding of graphs on non-standard grids. One

motivating fact was that angles formed by two edges incident to the same vertex may

not become arbitrarily small, which is beneficial in terms of visual impression or attrac-

tiveness of a drawing. While there is a huge variety of results related to the orthogonal

grid—the standard grid—, only few results are known regarding the grids that we consid-

ered.

In particular, we first considered the honeycomb grid and presented algorithms that pro-

duce h-v drawings of complete binary trees and sector drawings of trees having degree at

most 3. We used an iterative approach based on an idea due to Crescenzi et al. [CP97] to

produce drawings of complete binary trees according to the h-v convention. The construc-

tion of sector drawings was based on an inductive approach. For both drawing styles we

analyzed the area occupied by a corresponding drawing. Our h-v drawings require an area

that is in Opn log nq, and we have seen that an h-v drawing which requires an area of A

on the orthogonal grid induces an h-v drawing on the honeycomb grid occupying an area

of 8A. The algorithm to compute sector drawings requires Opn2q area. More precisely,

the area occupied by sector drawings is bounded by 0.731n2, for n ě 3.

Afterwards, we studied fundamentals of the hexagonal grid, also referred to as the tri-

angular grid, and analyzed the computational complexity of two problems that were first

introduced by Katz et al. [KKRW10] with respect to the orthonal grid. Katz et al. showed

that the problem of Geodesic Point-Set Embeddability (Geodesic PSE) is NP-hard

on the orthogonal grid. By shearing the hexagonal grid we were able to obtain a grid

structure—which we referred to as the sheared grid—that resembled the orthogonal grid.

This allowed us to use almost the same approach as Katz et al. to prove the problem to

be NP-hard on the hexagonal grid as well. Then, again using ideas due to Katz et al., we

were able to easily prove the problem of Labeled Geodesic Point-Set Embeddability

(Labeled Geodesic PSE) to be NP-hard on the hexagonal grid, as is the case on the

orthogonal grid. Finally, we tried to adapt their approach to solving sparse instances ef-

ficiently to the hexagonal grid. Unfortunately, this did not work out quite so well, since

the implication rules in their original form [KKRW10] were erroneous, and thus the algo-

rithm to compute combinatorial embeddings, which crucially rests upon the implication

rules, did not work. It is also unfortunate that this first came to our attention in a very

late stage of this thesis. Nevertheless, we were able to correct the implication rules and
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5. Conclusion

formally prove their correctness. While we were not able to fix the aforesaid algorithm

due to time constraints, we could adapt an algorithm that, given a combinatorial geodesic

embedding of a graph, finds a geodesic embedding of that graph in Opn2q time, which is

worst-case optimal.

As for the future, a certainly interesting task will be to fix the algorithm for computing

combinatorial embeddings by considering the corrected set of implication rules. Further-

more, while the implication rules have been corrected, it is questionable whether they

are—in a sense—complete, that is, whether the current set of implication rules covers all

possible arrangements of all types of edges.

Further future work may concern the minimization of edge bends introduced in the draw-

ings we presented. While on the honeycomb grid every edge inherently bends with every

additional line segment it occupies, the number of bends is clearly tied to the length of the

respective edge, and thus minimizing edge lengths will also reduce the number of bends

introduced in a drawing. Katz et al. [KKRW10] also comment on bend minimization as an

optimization criterion, and particularly regarding sparse instances of Labeled Geodesic

PSE, they conclude by stating that they do not know whether an efficient algorithm for

bend minimization is within reach. They note that their sweepline algorithm does not

even provide an embedding with the minimum number of edge bends for the given com-

binatorial embedding. This obviously extends to the hexagonal and sheared hexagonal

grids, since the algorithm presented in this work bases on the same essentials.
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[Fár48] István Fáry. On straight line representation of planar graphs. Acta Univer-

sitatis Szegediensis. Acta Scientiarum Mathematicarum, 11:229–233, 1948.
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