
Energy Network enhancement and
stability

Diploma Thesis of

David Oertel

At the Department of Informatics
Institute for Theoretical Informatics - ITI Wagner (KIT)

and Tepper School of Business (CMU)

Reviewer: Prof. D. Wagner
Second reviewer: Prof. P. Sanders
Advisor: Prof. R. Ravi
Second advisor: Dr. Ignaz Rutter

Duration: Nov 2011 – April 2012

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

iii

iii

Eidesstattliche Erklärung
Ich erkläre hiermit, dass ich die vorliegende Diplomarbeit selbständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Karlsruhe, den 25. April 2012

Oertel, David

v

Abstract

This thesis examines the computational complexity of transmission network expansion
planning which is defined as follows. Given a transmission grid of generators and consumers
(nodes) connected by transmission lines (edges) with certain flow capacities, where should
new lines be added at minimum cost such that all given capacity constraints are fulfilled?
In its original mixed-integer non-linear programming formulation this is NP-hard since
it contains the subproblem Steiner trees, the minimum cost connection of an initially
unconnected set of both mandatory and optional nodes. By using electrical network theory
is is shown why NP-hardness still holds when this subproblem is omitted by considering
(highly) connected networks only and focussing on the satisfaction of the flow constraints.
This refers to the more realistic case of extending a long working transmission grid for
increased future demand. It will be achieved by showing that this case is computationally
equivalent to 3-SAT, the classic satisfiability of Boolean formulas.

Additionally, is is evaluated how much effort in computation and implementation is really
necessary to solve realistic scenarios in practice. The original mathematical formulation is
evaluated by using an appropriate state-of-the-art mixed-integer non-linear programming
solver that can guarantee to find a global solution.

Zusammenfassung

In dieser Diplomarbeit wird die algorithmische Komplexität von transmission network ex-
pansion planning untersucht, was folgendermaßen definiert ist. Gegeben ein Hochspannungs-
Netz aus Erzeugern und Verbrauchern (abstrahiert als Knoten), die durch Stromleitun-
gen (Kanten) verbunden sind: An welchen Stellen sollen mit möglichst geringen Kosten
neue Leitungen eingefügt werden, sodass vorgegebene maximale Belastungen der Leitun-
gen nicht überschritten werden? Dieses Problem ist in der ursprünglichen Formulierung als
mixed-integer non-linear program NP-schwer, da es als Untermenge das Steinerbaumprob-
lem enthählt, die kostengünstigste Verbindung von zunächst unverbundenen obligatorischen
und optionalen Knoten. Durch Gebrauch der Theroie über elektrische Netzwerke wird
gezeigt, warum das Problem weiterhin NP-schwer ist, wenn die Unterklasse von Steiner-
bäumen ignoriert wird, indem nur (hochgradig) zusammenhängende Graphen betrachtet
werden und der Fokus auf die Einhaltung der maximalen Kantenbelastung gelegt wird.
Diese Einschränkung spiegelt den realistischeren Fall wieder, wenn ein lange existieren-
des Hochspannungsnetz wegen eines steigenden zukünftigen Strombedarfs erweitert wer-
den muss. Die algorithmische Schwierigkeit wird bewiesen, indem gezeigt wird, dass
dieses Problem algorithmisch äquivalent zu 3-SAT ist, der klassischen Erfüllbarkeit von
Boole’schen Formeln.

Darüberhinaus wird untersucht, wie viel Aufwand für Berechnung und Implementierung
wirklich nötig ist, um realistische Szenarios in der Praxis zu lösen. Die ursprüngliche
mathematische Formulierung wird dazu durch einen zeitgemäßen Optimierer für mixed
integer non-linear programs ausgewertet, welcher in der Lage ist, garantiert globale Optima
für jene Problemklasse zu finden.

v

vii

Acknowledgements

I would like to thank my advisor Prof. R. Ravi from CMU for his continuous support,
supervision and suggestions, Prof. Wagner and Dr. Ignaz Rutters from KIT for initiation
and mentoring of this work, Jay Apt from CMU for valuable references, Arne Lüllmann
from Fraunhofer ISI for the topic suggestion, Michael Poss from VUB/ULB for making
the test data available, Dr. Matthias Oertel for initial support in electrical engineering,
the NEOS project and interACT with the Baden-Württemberg Stipendium for funding
this work through a scholarship program with CMU.

vii

Contents

1. Introduction 1
1.1. Prerequisites . 2
1.2. Matlab and Scilab . 3

2. Electrical Networks and TNEP 5
2.1. Introduction . 5
2.2. Basic Definitions . 6

2.2.1. Merging parallel Edges . 8
2.3. Basic Properties . 9
2.4. Advanced Properties . 12

2.4.1. Symmetry . 12
2.4.2. Merging Nodes . 14

2.5. Transmission Network Expansion Planning (TNEP) 16
2.5.1. Non-monotonic behaviour . 18

3. Complexity of TNEP 21
3.1. Basic Ideas . 21
3.2. Reduction procedure . 24
3.3. Examples . 28
3.4. Analysis . 30

4. Evaluation 39
4.1. Model adjustment NR/WR . 40
4.2. BARON and the NEOS server . 40

4.2.1. Practical Concerns . 41
4.3. Test cases . 42

4.3.1. Garver . 43
4.3.2. IEEE 24 bus . 44
4.3.3. Brazil South . 44
4.3.4. Brazil South East . 45

4.4. Result overview . 45

5. Conclusion 47
5.1. Future work . 48

Bibliography 49

Appendix 53
A. Code: Reduction 3-SAT to TNEP . 53
B. Complexity proof: Matlab . 60
C. GAMS model for TNEP . 68

ix

List of Figures

2.1. A classical transportation network . 6
2.2. General undirected network . 6
2.3. Example of an electrical network . 7
2.4. Voltage potentials and resulting currents (rounded) 10
2.5. Network with three symmetric nodes v1, v2, v3 13
2.6. Two nodes of same potential v1, v2 (not symmetric by Def. 7) 15
2.7. Initial set-up of Garver’s network . 17
2.8. Solution to Garver’s network . 18
2.9. Network before adding an edge . 20
2.10. Figure 2.9 after adding an edge . 20

3.1. Redirecting current to tC via v2 . 22
3.2. Modelling an exclusive choice of literals . 23
3.3. Combined variable-blocks for k = 3 variables 23
3.4. Crossing circuits, edge directions follow currents direction 24
3.5. Specification: conductances for variable-cell i 25
3.6. Specification: conductances for clause-block j 26
3.7. transformation for k = 3 variables . 29

4.1. NP-hardness of WR model from the NR model 40

xi

1. Introduction

Power generation and transmission is one of the most important issues of electrical engi-
neering today. It features many challenges on each level of abstraction, from physical/tech-
nical details to mathematical backgrounds, see [WW96] or [vM06]. One of its most im-
portant aspects is the so-called Transmission Network Expansion Planning (TNEP). The
aim of TNEP is to enhance an existing (electrical) transmission network such as to meet
the requirements of future (increased) power demands. This may involve the installation
of new power plants as well as the installation of new transmission lines at possibly low
cost. By installing new transmission lines (edges) the goal is to redirect the power in such
a way that certain constraints are fulfilled. One of those is the constraint to not have a
particular edge transport too much power, as it may overheat otherwise. The problem
arises mostly when the total supply of power in a transmission grid is increased, e.g. when
a new power plant is installed to meet a rising total demand. Like most related works,
this work assumes the power plants and consumers (nodes and demands/supplies) to be
given externally and focuses on the installation of new transmission lines in order to meet
thermal constraints. TNEP has been widely researched for years, related work can be
found in Chapter 4. In this work, an abstract simplified version of TNEP is considered.
In [RMGH02] this is presented as the DC1 system.

In the major part of this work, this model is examined in terms of theoretical computational
complexity. In [MPS10] it is shown that TNEP is NP-hard due to its subproblem of
Steiner trees, i.e. connecting a set of (initially unconnected) terminal and optional nodes
at minimal cost. In the following sections however, it is analyzed if NP-hardness of TNEP
still holds when this subproblem is omitted by demanding the graph to be connected in the
beginning, which reflects the problem of enhancing a transmission grid that has already
been working for years. As will be shown in Chapter 3, this still yields an NP-hard problem.
In fact, it will even be shown that TNEP is NP-complete.

In Chapter 2, electrical networks are introduced and the mathematical formulation of
TNEP is given. As will be seen, the theory on electrical networks as found in [Bol98] can
be used to examine the computational complexity of TNEP in the DC system formulation
in Chapter 3. It will be shown that NP-hardness still holds for connected graphs by using
a polynomial-time reduction of 3-SAT to TNEP.

Given the theoretical computational complexity of TNEP, in Chapter 4 it is then evalu-
ated how much effort in implementation and computation is really necessary in practice

1direct current

1

2 1. Introduction

to solve realistic TNEP scenarios. Many related works on TNEP feature sophisticated
optimization and approximation techniques with possibly elaborate implementation cost.
These techniques are mostly designed to find an approximate solution or a local optimum
in order to reduce computation time. In contrast to that, in Chapter 4 it is examined how
well the original mixed-integer non-linear programming (MINLP) formulation of TNEP
can be solved by a general state-of-the-art MINLP solver that can guarantee to find a global
optimum. This was done in order to see up to which point a rather small implementation
effort combined with the long term “experience” of a general-purpose solver is sufficient to
solve TNEP optimally and at which input sizes more sophisticated optimization techniques
are inevitable to solve/approximate TNEP in a tolerable amount of time.

The original TNEP model was implemented in the General Algebraic Modelling System
(GAMS) and evaluated by the Network-Enabled Optimization System (NEOS) using the
Branch-and-Reduce Optimization Navigator (BARON). The evaluation was performed for
some standard test cases which were also used in [MPS10].

1.1. Prerequisites

This work assumes knowledge of basic graph theory as found in [Die06], basic knowledge
of boolean (3-SAT) formulas where an extensive introduction can be found in the first
chapters of [Weg87]. Moreover, it is required to be roughly familiar with the fundamental
complexity classes P and NP and the big-O-notation of which a thorough description
can be found in [CLRS01] for example. For details concerning the physical background of
electrical transmission grids see [vM06].

Table 1.1 provides an overview for the notations used throughout this work.

name description

G an (electrical) network
V set of nodes from G
E set of undirected edges (or connections) between nodes V
~E E with an arbitrary (but fixed) orientation
n number of nodes, |V |
c : E → R>0 conductance of the edges
b ∈ Rn supply vector
L Laplacian matrix of an electrical network
p ∈ Rn voltage potentials for a network

x : ~E → R an electrical current
xij current from node i to j w.r.t x

n
(0)
ij the initial number of edges between nodes i and j

~n : V 2 → N number of edges between node pairs
nij the number of edges between nodes i and j w.r.t. ~n
n̄ij the maximum number of edges between i and j

c
(0)
ij the conductance of each (i, j)-edge

wij the cost of each (i, j)-edge added
F a 3-SAT formula
Cj a clause in F
m number of clauses in F
k number of variables in F

Table 1.1.: notation overview

2

1.2. Matlab and Scilab 3

1.2. Matlab and Scilab

For the analysis, both Matlab and Scilab have been used to prove the complexity of
TNEP. Scilab is a free open source software for numerical computations. The syntax is
very similar to the syntax used in Matlab although the scope of functionality of Scilab is
generally smaller than the one of Matlab, as of the submission date of this work. Scilab is
available at [Sci11]. For this work, Scilab version 5.2.1 has been used. Matlab, including
licenses, is available at [MAT11]. For this work, version 2011b (7.13.0.564) has been used,
together with the Matlab Symbolic Math Toolbox.

3

2. Electrical Networks and TNEP

Electrical networks offer a (theoretical) framework that can be used to formulate and
analyse TNEP. At first, the definitions and properties of electrical networks will be given.
Afterwards they will be used to formally introduce TNEP.

2.1. Introduction

Electrical networks are suitable to model real-world electrical transmission systems. The
model used in this work corresponds with the one used in [Bol98] for mostly theoretical
issues. A graph representing an electrical networks is described by a set of electrical devices
(e.g. generators and consumers, modelled as nodes) that are connected by wires to carry
current between the nodes in order to meet demands and supplies of the connected devices.
This model omits engineering details like thermal dependencies of the wire’s resistances
(temperature is assumed to be constant) and assumes the current to be directed rather than
alternating, where the latter is common in most electrical transmission grids. Nevertheless,
this model is widely used to approximate stationary processes that occur in (high voltage)
transmission grids. For physical and engineering details, see [WW96] for example. Related
works concerning TNEP in practice are listed in Chapter 4.

Classical transportation networks are a common model of various applications related
to transferring certain amounts of a (dimensionless) entity f (e.g. water, natural gas,
packages) per second from one node to another. In these applications one is usually
able to direct the flow of this entity very accurately - provided one respects the physical
constraints of the pipes/edges which are usually modelled by an upper bound (capacity,
pipe’s diameter) of f passing the edge.

Example 1. A classical transportation network is shown in Figure 2.1. The node s denotes
the source and t denotes the sink. The edges are labelled by a tuple (fe, f̄e) representing
the flow fe on the edge and the maximum flow (capacity) f̄e. Furthermore, this example
shows a max-flow of value 7.

At first glance, electrical networks are also transportation networks with energy being the
transported entity. However, there is one major difference between electrical and classical
transportation networks: Though flow conservation, Kirchhoff’s Current law, does hold
in both types of networks, Kirchhoff’s Potential law in general only holds in electrical
networks making the energy flow uniquely dependant of conductances and supplies in the

5

6 2. Electrical Networks and TNEP

s

t
(2, 2)

(2, 2)

(5, 5)
(3, 10) (5, 5)

Figure 2.1.: A classical transportation network

network, ignoring possibly desired edge capacities. This property leads to a whole variety
of (mathematical) problems in the engineering of energy transmission networks.

Before introducing the model, here are a few common notations from graph theory similar
to those in [BE05].

For an (undirected) graph G = (V,E), denote the following (for v ∈ V):

• adjacent edges E(v) = {e ∈ E | e is incident to v}
• neighbourhood Γ(v) = {w ∈ V | w and v share an edge}
• node pairs V 2 := {{v, w} | v, w ∈ V, v 6= w}

All considered graphs are supposed to be free of loops and they usually have to be at least
1-connected (if not mentioned otherwise).

Example 2. Figure 2.2 provides an example of a general undirected graph. With the
notation above:

E(v1) = {e1, e6, e7}
Γ(v4) = {v2, v3, v5}
V 2 = {{v1, v2}, {v1, v3}, {v1, v4}, {v1, v5}, {v1, v6},

{v2, v3}, {v2, v4}, {v2, v5}, {v2, v6}, {v3, v4},
{v3, v5}, {v3, v6}, {v4, v5}, {v4, v6}, {v5, v6}}

v6

v1 v2

v3

v4

v5

e1

e2

e3
e4

e5

e6
e7

e8

Figure 2.2.: General undirected network

2.2. Basic Definitions

The definition of an electrical network used throughout this work is basically the same as
the one from [Bol98].

6

2.2. Basic Definitions 7

Definition 1 (Electrical Network). A (classical) electrical network G = ((V,E), c, b) is
an undirected, loop-free (multi)-graph (V,E) with weight function c : E → R>0 called the
conductance and a vector b ∈ Rn with

∑
i bi = 0 called supply-vector, where n = |V |.

Each entry of b corresponds to the supply/demand of exactly one node in V , denoted by
b(v) for short. A vertex v with b(v) > 0 is called a source and a vertex v with b(v) < 0
is called a sink. They correspond to current entering and leaving the network. Unless
mentioned otherwise, it is always required that

∑
i∈V b(i) = 0, so that current is neither

“created” nor “destroyed” within the network.

Remark 1 (Notation). Throughout this work, the different types of nodes are drawn in
the following way

� boxes denote sources (bv > 0)

◦ circles denote sinks (bv < 0)

• filled dots denote other nodes (bv = 0)

Example 3 (Electrical Network). A small example of an electrical network can be seen
in Figure 2.3. Supplies are notated in square brackets: [+i] or [−i], where the notation
is omitted for nodes of 0 supply. The weights of edges denote the conductances c. This
example features one source vs and two sinks vt1 and vt2.

1

1

12

2

2

3

1

vs[+2]

vt2 [−1]

vt1 [−1]

v1

v2

v3

Figure 2.3.: Example of an electrical network

Though G itself is undirected, one should always imagine G to have an arbitrary but fixed
orientation of its edges E, call this orientation ~E. For any edge ~e ∈ ~E being incident to
two nodes v1, v2 with orientation from v1 to v2, call h(~e) = v1 the head (initial vertex)
and t(~e) = v2 the tail (end vertex) of ~e.

Definition 2. Let v ∈ V from G = (V,E) with a fixed orientation of edges ~E, then call:
E−(v) := {~e ∈ ~E | t(~e) = v} the incoming edges of v. E+(v) := {~e ∈ ~E | h(~e) = v} the
outgoing edges of v.

The following definition substantiates both of Kirchhoff’s laws one of which was already
mentioned in section 2.1. Kirchhoff’s current law (KCL) also holds for classical transporta-
tion networks and signifies that the transported entity (i.e., energy/charges) must be con-
served at all nodes except for the sources and sinks, where according to the supply-vector
an amount of the entity enters (positive value) or leaves (negative value) the network.

7

8 2. Electrical Networks and TNEP

Definition 3 (Kirchhoff’s laws). An (electrical) current x on an electrical network G =
((V,E), c, b) is a vector x : ~E → R that obeys both

• Kirchhoff’s current law (KCL): for any v ∈ V it holds

b(v) +
∑

~e∈E+(v)

x(~e) =
∑

~e∈E−(v)

x(~e) (2.1)

• Kirchhoff’s potential law (KPL): for any (undirected) cycle K = (e1, e2, . . . , ek) it
holds

k∑
i=1

xK(~ei)

c(ei)
= 0, (2.2)

where xK(~ei) :=

{
x(~ei), if K(ei) ≡ ~ei
−x(~ei), otherwise

1 (for ei ∈ K)

See example 5 for an illustration of an electrical current which uses the same network as
shown in Figure 2.3.

2.2.1. Merging parallel Edges

Since in general multi-graphs are considered here, parallel edges are allowed. For the
sake of simplicity one can map any electrical network to a corresponding simple graph
by combining parallel edges to one single edge using the basic laws of physics. For two
adjacent vertices i, j ∈ V denote the combined single edge by {i, j} (or (i, j) if direction
matters) and its combined conductance by c(i, j) or cij . The current on (i, j) is denoted
by x(i, j) or xij and always refers to the actual current from i to j, thus xij = −xji.

Remark 2. For i, j ∈ V with i ∈ Γ(j) call the combination of all edges between i and j
the connection from i to j or conn(i, j) for short:

conn(i, j) := {e ∈ E | e ∈ E(i) ∩ E(j)}

If the network is considered to have all parallel edges combined to connections, then the
connections are also denoted by E for short.

If not mentioned otherwise, a connection is treated like a regular edge following the rules
above. When a direction of all edges is needed, it is assumed that also the combined edges
(=connections) receive an arbitrary but fixed direction.

Basic physics for i, j ∈ V tells us that the combined conductance of parallel edges is just
the sum of the individual conductances and it may also be verified for this model, see
[Bol98] for details:

c(i, j) := cij :=
∑

e ∈E(i)∩E(j)

c(e)

Analogously, the combined current is just the sum of the individual currents directed from
i to j:

x(i, j) := xij :=
∑

~e ∈E+(i)∩E−(j)

x(~e) −
∑

~e ∈E−(i)∩E+(j)

x(~e)

1that means: if the (implied) direction of ei in K coincides with the direction of ~ei (the arbitrary direction
of ei in E)

8

2.3. Basic Properties 9

Definition 4 (Merging nodes). For an electrical network G = ((V,E), c) and e ∈ E denote
by:

• G− e the network that is obtained by deleting e from G

• G/e the network that is obtained by contracting e (that is: merge the end-vertices of
e and remove possibly arising loops)

2.3. Basic Properties

An electrical current that obeys KPL only (and not necessarily KCL, because it usually
violates the supply-vector) can be obtained by assigning every node of V a voltage potential
p : V → R and using Ohm’s law to define a current. That is: U ·c = I for a voltage potential
difference U , conductance c and a current I.

Corollary 1 (Electrical current by Ohm’s law). For any potential p : V → R, Ohm’s law
defines an electrical current on G by the equation:

xij = (pi − pj) · cij ∀(i, j) ∈ ~E (2.3)

if and only if (iff) one sets the supply-vector b according to KCL (Equation 2.1). In
particular, any such p obeys KPL.

Proof. sketch: For any cycle K with respective node potentials p, that is

K = (e1, e2, . . . , ek), p = (p1, p2, . . . , pk, p1)

which leads to a telescoping series

k∑
i=1

xK(~ei)

c(ei)
=

k∑
i=1

(pi − pi+1)

= p1 − p1 = 0

Thus, any potential obeys KPL. The other part follows immediately from the definition
of KCL.

On the other hand, given a supply-vector b a proper electrical current obeying both KCL
and KPL can be found by using the Laplacian matrix of G. For that, identify each
node uniquely with a fixed number between 1 and n, so V is represented by its indices
V = {1, 2, . . . , n}.

Definition 5 (Laplacian matrix). The Laplacian matrix L ∈ Rn×n of an electrical network
G = ((V,E), c) with |V | = n is defined as

Lij :=


∑

k∈Γ(i) cik, if i = j

−cij , if i ∈ Γ(j) (and i 6= j)
0, otherwise

(2.4)

Example 4 (Laplacian matrix). Table 2.1 shows the Laplacian matrix of the network seen
in Figure 2.3.

Note that if D is the diagonal degree matrix of G and A is the adjacency matrix (both
weighted with the conductances of the edges instead of the mere degrees), then L = D−A.

9

10 2. Electrical Networks and TNEP

vs vt1 vs v1 v2 v3

vs 4 0 0 −1 −2 −1
vt1 0 4 −3 −1 0 0
vt2 0 −3 6 0 −2 −1
v1 −1 −1 0 4 −2 0
v2 −2 0 −2 −2 6 0
v3 −1 0 −1 0 0 2

Table 2.1.: Laplacian matrix of the network in Figure 2.3

Theorem 1. For an electrical network G = ((V,E), c) one can find a proper electrical
current x given a supply-vector b by solving the linear equation

L · p = b (2.5)

and defining an electrical current x by Ohm’s law xij = (pi − pj) · cij for all (i, j) ∈ ~E.

Proof. sketch: According to Corollary 1 p obeys KPL and, by that, so does x. By rear-
ranging, each line of Equation 2.5 represents exactly KCL. Since there is one such equation
for each node in V , x obeys KCL. Hence, x is an electrical current.

Example 5. Using the electrical network of example 3 and Figure 2.3, Figure 2.4 shows a
proper electrical current on the network (values rounded). Round brackets behind the node
names denote voltage potentials. The labels on the edges denote currents with respect to
the (arbitrarily chosen) direction of the edges which can be seen by the arrow heads. In

−0.524
0.483

0.483
−0.993

0.937

0.056

0.42

−0.58

vs(0.965)[+2]

vt2(−0.14)[−1]

vt1(0)[−1]

v1(0.44)

v2(0.469)

v3(0.483)

Figure 2.4.: Voltage potentials and resulting currents (rounded)

this example, according to Corollary 2 the node vt1 was chosen to have a 0 potential.

Remark 3. Call a vector p solving Equation 2.5 a (valid) voltage potential with respect
to b.

Recall that the graph is assumed to be at least 1-connected. Otherwise the following is
valid for the graph’s connectivity components.

Corollary 2 (Uniqueness). Given an arbitrary (1-connected) electrical network G =
((V,E), c). For each supply-vector b (

∑
i∈V b(i) = 0) it holds:

• there is exactly one distribution of currents x satisfying both KPL and KCL.

10

2.3. Basic Properties 11

• p solves Equation 2.5, iff (=if and only if) p′ = p + d · (1, . . . , 1)T also solves the
equation for all d ∈ R

• when fixing one component of p, the equation L · p = b has exactly one solution.

The proof follows from (1, . . . , 1)T ∈ ker(L) and from the 1-connectivity of (V,E). For
details see [Big93].

Observation 1 (principle of superposition). Electrical currents follow the principle of
superposition. That is: Given an electrical network G = ((V,E), c) and supply vectors
~b1, . . . ,~bκ

2 with respective electrical currents ~x1, . . . , ~xκ on G, then the (weighted) sum of
currents x :=

∑κ
i=1 αi~xi serves as the (unique) electrical current of b =

∑κ
i=1 αi

~bi, where
αi ∈ R.

This observation follows immediately from voltage potentials pi associated with the ~xi
and the linear Equation 2.5. Thus, the total current can be found by finding currents
for reduced single-source-single-target networks, where all other sources and sinks of the
original graph are treated as nodes with zero supply. When multiple pairs (si, tj) of sources
and sinks are chosen as a partition of the total supply, the total current is the sum of the
single currents from si to tj .

Definition 6 (Energy of a network). The total energy of an electrical network G =
((V,E), c, b) with current x is defined as

E(x) =
∑
~e∈ ~E

x(~e)2

c(e)
(2.6)

=
∑

(i,j)=~e∈ ~E

(pi − pj)2 · c(e) (2.7)

=
∑

(i,j)=~e∈ ~E

(pi − pj) · x(~e) (2.8)

(2.9)

Given the physical background, the term power instead of energy would be more appro-
priate here, but it does not matter in this context. The measured energy/power is related
to the dissipated power within the network. See [vM06] for details of dissipated power.

The following Theorem states that electrical currents are distributed in such a way that
the total energy of the network is minimized.

Theorem 2 (Thomson’s principle). Let G = ((V,E), c, b) be an electrical network (so
especially

∑
v bv = 0). For any flow x satisfying KCL (and not necessarily KPL) consider

the energy function

E(x) =
∑
~e∈ ~E

x(~e)2

c(e)

There is such a flow x that minimizes E(x). This x also satisfies KPL, so it is an electrical
current.

The proof of Theorem 2 can be found in [Bol98], chapter IX.1.

2so especially
∑
v∈V

~bi(v) = 0 for i = 1, . . . , κ

11

12 2. Electrical Networks and TNEP

2.4. Advanced Properties

Symmetry of the network is often used for both analysis and simplification, see for example
[BB09]. Symmetry allows to short-cut and identify two formerly distinct nodes for the sake
of simplicity. In the following paragraphs, these techniques are demonstrated and proven
for the model used so far.

2.4.1. Symmetry

Assume for now that parallel edges are combined to one single edge by adding their con-
ductances.

Definition 7 (Symmetry). For an electrical network G = ((V,E), c, b), two nodes v1, v2 ∈
V are called symmetric iff there exists a permutation π : (V,E) → (V,E) of nodes and
connections (with π(V) = V and π(E) = E) such that for each connection {v, w} ∈ E:

π(v1) = v2 (2.10)

π(v2) = v1 (2.11)

π({v, w}) = {π(v), π(w)} (2.12)

c(v, w) = c(π(v), π(w)) (2.13)

b(v) = b(π(v)) ∀v ∈ V (2.14)

Thus, the two nodes play similar roles within the networks.

Example 6 (Node symmetry). Figure 2.5 shows a network where the nodes v1, v2, v3 are
symmetric by Definition 7. Conductances are given within round brackets. A permutation
π that shows the symmetry of node v1 and v2 is given by simply switching the appearance
of v1 and v2 in each element of the network:

π((v1, v2, v3)) := (v2, v1, v3)

π((es,v1 , es,v2)) := (es,v2 , es,v1)

π((ev1,v3 , ev2,v3)) := (ev2,v3 , ev1,v3)

π((ev1,t, ev2,t)) := (ev2,t, ev1,t)

π ≡ id for all other nodes and edges

The symmetry of v1 to v3 and v2 to v3 can be shown in the same way.

Definition 7 provides the following lemma using the Laplacian matrix L of G.

Lemma 1. For two symmetric nodes v1, v2 ∈ V there exists a permutation matrix Q ∈
{0, 1}n×n that permutes v1 and v2 and for which it holds:

Q · L ·QT = L (2.15)

Proof. The symmetry from 7 gives a (not necessarily unique) permutation π ∈ perm(n)
that instantly defines a permutation matrix Q = Q(π) of the nodes by using the node
ordering v1, . . . , vn of the Laplacian matrix L. The only thing that needs to be shown now is
that this Q satisfies Equation 2.15. Recall the following property of permutation matrices:
For A ∈ Rn×n with ai being the rows of A, Q multiplied from the left permutes the rows of
A, such that Q ·A = A′ with a′i = aπ(j). Simultaneously, QT multiplied to a matrix A from
the right will permute A’s columns in the fashion of π. With L = (λi,j)i=1,...,n, j=1,...,n:

Q · L ·QT = (Q · L) ·QT

= (λπ(i),j)i,j ·QT = (λπ(i),π(j))i,j

12

2.4. Advanced Properties 13

vs[+1]

v1

v2

v3

vt[−1]

es,v1(1)

es,v2(1)

es,v3(1)

ev2,v3(
1
2)

ev3,v1(
1
2)

ev1,v2(
1
2)

ev1,t(2)

ev2,t(2)

ev3,t(2)

Figure 2.5.: Network with three symmetric nodes v1, v2, v3

(I) Now let i, j ∈ {1, . . . , n} with i 6= j. By Definition 5, it holds:

λi,j = −ci,j
2.12,2.13⇒ −cπ(i)π(j) = −cij

⇒ λπ(i),π(j) = λi,j

(II) For i = j it holds:

λi,i =

n∑
κ=1,κ6=i

ci,κ = −
n∑

κ=1,κ 6=i
λiκ

(I)
= −

n∑
κ=1,κ6=i

λπ(i)π(κ) = −
n∑

κ=1,κ 6=π(i)

λπ(i)κ

Def.
= λπ(i)π(i)

Thus, from (I) and (II) follows the claim Q · L · QT = L for the Q = Q(π) as defined
above.

Notice that Lemma 1 can solely be proven by using a permutation of nodes that obeys
Equation 2.12 and 2.13. The other properties from Definition 7 are only needed to deduce
the following.

Corollary 3. If nodes v1, v2 ∈ V are symmetric, then they have the same voltage potential
pv1 = pv2 in any solution to KCL and KPL, Equation 2.5.

Proof. Due to symmetry, Lemma 1 gives a permutation matrix Q for which Equation 2.15
holds. Let p solve the equation L · p = b. Denote the voltage potentials of v1, v2 (w.r.t. p)
by pv1 , pv2 . Then:

L · p = b
2.15⇒ Q · L ·QT · p = b

⇒ QT ·Q · L ·QTp = QT · b
⇒ L · p′ = b′ (for p′ = QTp, b′ = QT · b)

13

14 2. Electrical Networks and TNEP

Moreover Equation 2.14 yields:

Q · b = b ⇒ b = QT · b ⇒ b′ = b

Since p′ also solves the equation Lp = b, by Corollary 2 it follows that p′ = p+d·(1, . . . , 1)T

for a constant d ∈ R. Together with Q · d · (1, . . . , 1)T = d · (1, . . . , 1)T, this yields:

p′ = p+ d · (1, . . . , 1)T

⇒ Q · p′ = Q · p+ d ·Q · (1, . . . , 1)T

⇒ p = Q · p+ d · (1, . . . , 1)T

⇒ pi = pπ(i) + d for i = 1, . . . , n

⇒ Σn
i=1pi = Σn

i=1pπ(i) + n · d
⇒ d = 0

⇒ p = p′.

So it especially holds that pv1 = pπ(v1) = pv2 . Since p was an arbitrary solution of
Equation 2.5, the claim follows immediately.

2.4.2. Merging Nodes

From a physical point of view, if two nodes v1, v2 of an electrical network share the same
voltage potential pv1 = pv2 , they can be short-cut by a wire of arbitrary conductance
which on the one hand will not have any current running through it (following Ohm’s law
(Equation 2.3) xv1,v2 = cv1,v2 · (pv1 − pv2) = 0) and on the other hand will not change the
currents within the rest of the network.

Lemma 2 (Nodes of equal potential). Let G = ((V,E), c, b) be an electrical network with a
valid voltage potential p. Let v1, v2 ∈ V have the same potential pv1 = pv2. Then by adding
an edge ev1,v2 of arbitrary conductance between v1 and v2, the valid voltage potential (and
thus the currents) on G will be the same3 as without the edge.

The following example illustrates the lemma.

Example 7. Figure 2.6 shows an example of two nodes v1, v2 having the same potential
although they are not symmetric in the sense of Definition 7 since the adjacent edges of
v1 can not be mapped to the adjacent edges of v2 without violating Equation 2.13. The
dashed line hints to an edges that can be inserted without any effect on the currents. (Node
potentials are again denoted by round brackets behind the node names whereas edge labels
denote conductance and current (c, xij)).

Proof of Lemma 2. Let G0 be the original network and G1 the one with an edge ev1,v2
inserted. Further, let p̂ and p̃ be valid voltage potentials on G0 and G1 respectively. Let
p̂v1 = p̂v2 and assume now, that p̃v1 6= p̃v2 . By Equation 2.7, we get for the energy EGi :

p̂ ∈ arg min
p

EG0(p) and p̃ ∈ arg min
p

EG1(p)

and by Thomson’s principle (Theorem 2):

EG1(p) =
∑

(i,j)=~e∈ ~E1

(pi − pj)2 · c(e)

=
∑

(i,j)=~e∈ ~E0

(pi − pj)2 · c(e) + (pv1 − pv2)2 · c(ev1,v2)

= EG0(p) + (pv1 − pv2)2 · c(ev1,v2)

3up to an additive constant as in Corollary 2

14

2.4. Advanced Properties 15

vs(
1
5)[+1]

v1(
1
10)

v2(
1
10)

vt(0)[−1]

(9, 0.9) (9, 0.9)

(1, 0.1)(1, 0.1)

Figure 2.6.: Two nodes of same potential v1, v2 (not symmetric by Def. 7)

Since due to Equation 2.3 p̂ also defines a voltage potential following both KCL and KPL
on G1, we may assume that minpEG1(p) ≤ minpEG0(p). Thus:

EG0(p̃) + (p̃v1 − p̃v2)2 · c(ev1,v2) = EG1(p̃)

= min
p
EG1(p) ≤ min

p
EG0(p) = EG0(p̂)

p̃v1 6=p̃v2⇒ EG0(p̃) < EG0(p̂)

Which contradicts the prerequisite that p̂ ∈ arg minpEG0(p), thus the assumption is false
and the original claim follows: p̃v1 = p̃v2 .

Since nodes of equal potential can be connected without changing the currents in the
network, one can virtually connect these nodes by an edge of infinite conductance merging
the nodes to one single node, as the next Theorem will show.

Theorem 3 (Identifying and merging nodes). For G = ((V,E), c, b) with a valid voltage
potential p let v1, v2 ∈ V have the same potentials pv1 = pv2. Let G̃ = G/{v1, v2} be the
network obtained by merging v1 and v2 to a node called ṽ. Then p instantly defines a valid

voltage potential on G̃ by p̃v :=

{
pv, if v 6= ṽ
pv1 , if v = ṽ

Proof. The theorem follows by Thomson’s principle, theorem 2, by which the total energy
of G is

EG(x) =
∑
~e∈ ~E

x(~e)2

c(e)
(2.16)

=
∑

~e∈ ~E\(~E(v1)∩ ~E(v2))

x(~e)2

c(e)
+

∑
~e∈(~E(v1)∩ ~E(v2))

x(~e)2

c(e)
(2.17)

Since pv1 = pv2 it follows that x(~e) = 0 for all ~e ∈ ~E(v1) ∩ ~E(v2). Hence both G and G̃
have the same total energy which would immediately lead to a contradiction of Thomson’s
principle if p did not contribute a valid voltage potential on G̃.

The previous results describe powerful techniques that are widely used among electrical
engineers in order to simplify and analyse electrical circuits. The theorems stated here
justify mathematically the use of these techniques within electrical networks as they were
defined in this chapter. This will be useful in the following sections.

15

16 2. Electrical Networks and TNEP

2.5. Transmission Network Expansion Planning (TNEP)

As already mentioned in the Introduction, Chapter 1, TNEP examines the problem of
adding new transmission lines in order to maintain a reliable operating network at a
possibly low investment cost. The problem arises especially from an increased future power
demand. The reliability constrains considered here are thermal constraints (capacities)
exclusively. A comprehensive introduction to power generation and transmission can be
found in [vM06]. This book is especially useful for non-professionals in the field of electrical
engineering with an academic background.

TNEP in real world applications needs to take into account a lot of technical and math-
ematical considerations that go beyond the scope of this work. However, as can be seen
in the papers cited in Chapter 4, the model presented here is the one of most frequently
used abstractions in TNEP research.

Consider a simplified version of TNEP in which every edge is supposed to carry at most a
certain amount of current4.

Definition 8 (TNEP Scenario). Let (V, b) be a set of nodes and a supply-vector together

with a function N : V 2 −→ (N0 ×N0×R>0×R>0), {i, j} 7→ (n
(0)
ij , n̄ij , c

(0)
ij , wij)

5 denoting
for each pair {i, j} of nodes:

• n(0)
ij the initial number of edges between i and j

• n̄ij the maximum number of edges between i and j (n
(0)
ij ≤ n̄ij)

• c(0)
ij the conductance of each (i, j)-edge

• wij the cost of each (i, j)-edge added

A TNEP Scenario is a tuple G = (V, b,N, f̄) with f̄ : V 2 −→ R>0 denoting an upper bound
on the current per edge.

This model assumes all edges of each connection to have the same conductance c
(0)
ij .

Example 8 (Garver’s network). An example of a TNEP scenario is shown in Figure 2.7.
This network was initially introduced to TNEP in [Gar70]. The corresponding data is
available in [RMGH02]. The connection data according to Definition 8 is given in Ta-
ble 2.2. Notice that this example contains an initially isolated node v6.

Definition 9 (TNEP instance). Given a TNEP Scenario G = (V, b,N, f̄) as in Defini-
tion 8, a vector ~n : V 2 −→ N0 is called a TNEP instance of G iff ~n defines a valid set of
edges for each {i, j} ∈ V 2, that is iff:

n
(0)
ij ≤ nij ≤ n̄ij (2.18)

Furthermore, define the costG(~n) of an instance ~n as the number of added edges times the
cost per edge, that is:

costG(~n) =
∑

{i,j}∈V 2

(nij − n(0)
ij) · wij (2.19)

4the physical quantities appearing in the real TNEP are different, but the equations and constraints are
the same within this model

5Notice that by this definition n
(0)
ij = n

(0)
ji , n̄ij = n̄ji etc.

16

2.5. Transmission Network Expansion Planning (TNEP) 17

v1[−30]

v2[−240]v3[+195]

v4[−160]

v5[−240]

v6[+545]

Figure 2.7.: Initial set-up of Garver’s network

i j 1

c
(0)
ij

f̄ij wij n
(0)
ij n̄ij

1 2 0.40 100 40 1 5
1 4 0.60 80 60 1 5
1 5 0.20 100 20 1 5
2 3 0.20 100 20 1 5
2 4 0.40 100 40 1 5
3 5 0.20 100 20 1 5
1 3 0.38 100 38 0 4
1 6 0.68 70 68 0 4
2 5 0.31 100 31 0 4
2 6 0.30 100 30 0 4
3 4 0.59 82 59 0 4
3 6 0.48 100 48 0 4
4 5 0.63 75 63 0 4
4 6 0.30 100 30 0 4
5 6 0.61 78 61 0 4

Table 2.2.: Connection data of Garver’s network

Definition 10 (TNEP Solution). Given a TNEP Scenario G = (V, b,N, f̄) and a TNEP
instance ~n as in Definition 9, call ~n a TNEP Solution iff for a valid voltage potential p on
G, it holds for all {i, j} ∈ V 2

|(pi − pj)| · (nij · c(0)
ij) ≤ nij f̄ij (2.20)

Thus, a TNEP solution is an instance which fulfils a set of given constraints on the maxi-
mum currents (power) running through the edges.

Example 9. Garver’s network (Figure 2.7) can be solved by the instance shown in Fig-
ure 2.8. Added edges are denoted by dashed lines. With the connection alignment of
Table 2.2, this corresponds to a vector ~n = (1, 1, 1, 1, 1, 2, 0, 0, 0, 4, 0, 0, 0, 2, 0) with 7 edges
added at total a cost of 200.

In the following the “natural” mathematical problems arising from the scenario of Defini-
tion 8 are stated.

17

18 2. Electrical Networks and TNEP

v1[−30]

v2[−240]v3[+195]

v4[−160]

v5[−240]

v6[+545]

Figure 2.8.: Solution to Garver’s network

Definition 11 (TNEP problems). For each TNEP Scenario G = (V, b,N, f̄) as in Defi-
nition 8 denote by

• Decision problem: Is there a (TNEP) solution ~n to G with costG(~n) ≤ k
• Optimization problem: Which solution ~n has minimal cost

Lemma 3. The decision problem of Definition 11 is in NP.

Proof. Given a vector ~n and a cost k one can compute all the necessary steps to check if
~n is a solution of certain cost in deterministic polynomial time. In particular,

1. checking if ~n is an instance: n
(0)
ij ≤ nij ≤ n̄ij takes O(|V |2) steps,

2. checking if costG(~n) ≤ k takes O(|V |2) steps,

3. computing the Laplacian matrix takes O(|V |2) steps,

4. solving for p takes O(|V |3) steps and

5. checking the current constraints 2.20 by Ohm’s law takes O(|V |2) steps.

2.5.1. Non-monotonic behaviour

This section provides some more observations that will help to examine the complexity of
TNEP.

Lemma 4. Consider an electrical network G = ((V,E), c) with supply b, with sources
S ⊂ V and sinks T ⊂ V (bi = 0 for all other nodes). Let p solve the equation L · p = b,
then the total energy of the network sums up to:

E(p) =
∑
s∈S

ps · bs +
∑
t∈T

pt · bt (2.21)

The proof is just a generalization of a similar lemma in [Bol98].

Let us consider a single-source-single-sink electrical network G = ((V,E), c) with unique
source s and unique sink t and supply b. For simplicity, let’s fix the voltage potential pt
of t to pt = 0.

18

2.5. Transmission Network Expansion Planning (TNEP) 19

Lemma 5 (min and max potential). For the voltage potential p defining the currents in
G according to b, it holds:

ps = max
i∈V
{pi}

pt = min
i∈V
{pi}

Proof. Assume there is a node v ∈ V with pv > ps. Without restriction, assume pv =
maxi∈V {pi} and v has at least one neighbouring node with smaller potential6. Then KCL
provides:

∑
w∈Γ(v) (pv − pw)cvw > 0 since pv ≥ pw for all neighbours and pv > pw for at

least one neighbour. Thus, v itself is a source, contradicting the assumption. The second
part of the proof uses the other direction.

By Rayleigh’s principle of monotonicity (see [Bol98]), the effective conductance does not
decrease if conductance in the network is increased or added. Thus, by Thomson’s principle
it holds:

Lemma 6. Let G = ((V,E), c) be an electrical network and let Ĝ = ((V,E), ĉ) be the same
network on which one arbitrary connection has more conductance, i.e. cij < ĉij for one
pair i, j ∈ V and cxy = ĉxy for all {x, y} 6= {i, j}. For a fixed supply b and corresponding

current x on G and x̂ on Ĝ, it holds:

E(x) ≥ E(x̂) (2.22)

E(x) > E(x̂) ⇐⇒ xij 6= x̂ij (2.23)

The proof of this follows from a variation of [Bol98] Theorem 2 in chapter IX.1, page 300.

Using Equation 2.21 for a fixed bt = bs (single-source-single-sink) leads to the following.

Corollary 4. In the setting of lemma 6 with fixed pt = 0 = p̂t (single-source-single-sink)
it holds:

ps ≥ p̂s (2.24)

ps > p̂s ⇐⇒ xij 6= x̂ij (2.25)

Thus, for every added edge, the voltage potential of the source will drop if the newly added
edge is run through by current.

Since ps ≥ pi ≥ pt = 0, it may seem as if all voltage potentials tend to decrease compo-
nentwise. However, this is not true in general, illustrated by the following example.

Example 10 (Non-monotonicity). Figure 2.9 shows a network with potentials and currents
before adding a new edge (i.e., increasing the conductance) between v1 and v2.

Figure 2.10 shows the same network after adding an edge. Note the following things:

• the voltage potential of v2 has increased7 from 1
2 to 6

11

• the (absolute) current from v2 to vt has increased from 1
2 to 6

11

• the voltage potential of ps has decreased from 3
2 to 15

11

Thus, also the (absolute) currents on edges do not necessarily decrease monotonically by
adding new edges. Moreover, the total energy of the network has also decreased from 3

2 to
15
11 .

6otherwise the graph can not be 1-connected
7compared to the minimum potential pt = 0

19

20 2. Electrical Networks and TNEP

vs(
3
2)[+1] vt(0)[−1]

v1(1) v2(
1
2)

(13 ,
1
2)

(1, 1
2)

(1, 1
2)

(1, 1
2)

Figure 2.9.: Network before adding an edge

vs(
15
11)[+1] vt(0)[−1]

v1(
9
11)

v2(
6
11)

(13 ,
5
11)

(1, 6
11)

(2, 6
11)

(1, 6
11)

Figure 2.10.: Figure 2.9 after adding an edge

20

3. Complexity of TNEP

In [MPS10] TNEP is shown to be NP-hard by reducing Steiner trees to TNEP. This is
done by taking a Steiner tree instance and defining a TNEP Scenario by assigning all
terminal nodes a power-supply and assigning all edges that can be inserted a (trivial)
current constraint. The solution to the TNEP instance is then achieved on behalf of
having to connect the entire network (with edges of summed minimum weight) in order
to fulfil the supply of each terminal node (bv 6= 0). Thus, TNEP contains the NP-hard
subproblem of Steiner trees. However, this does not immediately involve the original aim
of relieving edges by enhancing the network, i.e., obeying current constraints on the edges.
So it should be examined, if NP-hardness still holds when the subproblem of connecting
the terminal nodes is omitted, e.g., by demanding the network to be sufficiently connected
in the first place.

This section examines the complexity of TNEP for rather realistic scenarios by assuming
the networks to be at least 1-connected1, such that all prerequisites to the power/current
supplies are already fulfilled in advance. This refers to the case when an existing power
grid has been operating for years but needs to be enhanced now to meet an increased
demand and supply in the future.

As we will see by the end of this chapter, the restriction to “realistic” scenarios (highly
connected graphs) of TNEP is NP-complete. This will be shown by a polynomial-time
reduction of 3-SAT to TNEP.

3.1. Basic Ideas

As seen in the previous sections, electrical network may behave in a somewhat non-intuitive
non-monotonic fashion that makes it difficult to predict the results of adding certain edges
with respect to the TNEP problem. Since symmetry as in Definition 7 provides a powerful
tool to analyse and simplify electrical networks, it is most convenient to use a highly
symmetrical and thus predictable network that can be dealt with by these methods.

Given a boolean formula, we find a bijective mapping between satisfying a formula by
setting literals and reducing the (absolute) current on an edge by adding new edges. This
reduction from 3-SAT to TNEP is achieved using two key steps

• translate “satisfaction of a 3-SAT formula” to “obeying current-constraints”

1the network used in the analysis is in fact 2-connected

21

22 3. Complexity of TNEP

• translate “setting boolean variable exclusively to true or false” to “adding one of two
possible edges exclusively”

One idea to achieve the first of these steps is illustrated by Figure 3.1: current entering
the network in sC via e1 into node v1 is running to the sink node tC via two paths - via
the direct route e2 and via an alternate path over e3 and e4 using v2. If one enhances
the alternate path by increasing its conductance (i.e. adding the dashed edge and not
allowing addition of any other edge), by Thomson’s principle more current will run over
that alternate path, which will eventually reduce the current on e2. This leads to the

e1

v1

e2

tC

e3

e4

v2

sC

Figure 3.1.: Redirecting current to tC via v2

following observation:

Observation 2. In Figure 3.1: by identifying the adding of the dashed edge with setting
a boolean variable to true or false and by identifying the satisfaction of a clause with
requiring the current on e2 to go under a certain limit, it is possible to achieve the first
step of the mapping from 3-SAT to TNEP.

Continuing with Figure 3.1, each node of the type of TC together with the edge e2 shall be
called a clause-block and may represent a clause of a formula. For that, tC is connected to
nodes that represent the associated literals (xi or ¬xi etc.), such that when one or more
of the literals is activated (i.e., an edge is added), the clause benefits of this by receiving
more current via the edge connected to the literal than via e2, so a certain constraint on
e2 is obeyed.

To achieve the second step of the bijection, it is necessary to model the exclusive choice of
setting boolean variables xi to either true or false. So far, adding an edge only corresponds
to activating a certain literal so it could be possible to enhance both of the connections
that correspond to xi and to ¬xi. It has to be made sure that the one excludes the other.
Since the general TNEP scenario does not allow restrictions like “add at most k edges in
total but only 1 edge in this sub-graph”, the restriction needs to be made at the level of
current constraints.

This can be done by the construction seen in Figure 3.2: Only the dashed edges are allowed
to be added. Adding an edge at the connection exi or e¬xi , the variable is assumed to be
set to true or false, respectively. A current is running from sv to tv. Depending on the
number of edges inserted (0, 1 or 2), the current will favour e1 over e2 to reach tv. Now the
maximum currents on these edges e1 and e2 must be set in such a way that the constraint
on e2 is violated iff no edge has been inserted and the constraint on e1 is violated iff two
(ore even more) edges were inserted.

Observation 3. Figure 3.2 illustrates how it is possible to map the exclusive choice of
setting xi to either true or false by using current constraints on a pair of edges.

22

3.1. Basic Ideas 23

sv[+1]
tv[−1]

exi

e¬xi

e1

e2

Figure 3.2.: Modelling an exclusive choice of literals

Moreover, this construction is able to enforce at least one of the two options, so a third
option of not enhancing either connection (which may correspond to a “don’t care” state)
is excluded.

However, as will be shown later, it is more convenient to combine all subgraphs correspond-
ing to boolean variables with each other, as shown in Figure 3.3. Here, the constraints

ex1

e¬x1

ex2

e¬x2

ex3

e¬x3

e1(max. current 13)

e2(max. 13)sv[+1] tv[−1]

e3(max. 13)

Figure 3.3.: Combined variable-blocks for k = 3 variables

on the edges ei are simply to carry at most 1
k of current, where k is the total number of

variables. Each subgraph consisting of six nodes associated with a boolean variable will
be called variable-block or variable-cell. That way, the constraints on e1, . . . , ek work like
a symmetry sensor : the constraints are fulfilled iff each variable-cell has the same amount
of added edges (all 0, 1 or 2), where there can only be k edges added in total. In the case of
Figure 3.3 where the variable-blocks are not connected to clause-blocks etc., the analysis
of the network can be achieved by intuitively combining edges in series and in parallel.

The ideas from Figures 3.1 , 3.2 and 3.3 can be merged into a single electrical network

23

24 3. Complexity of TNEP

featuring two currents “crossing” each other: A current running from “top to bottom” that
supplies the clause-blocks and another current running from “left to right” that supplies
the variable-cells. Both currents will – in parallel – benefit from adding new edges in

variable-cells

clause-blocks

sv

sC

vz

tv

Figure 3.4.: Crossing circuits, edge directions follow currents direction

the manner described above. This idea and the exact mapping from 3-SAT to TNEP are
explained in the following section together with Figure 3.4.

Given 3-SAT formula F with k variables in total, the Laplacian matrix L of the corre-
sponding TNEP scenario will take all 8

(
k
3

)
clauses into account that can be built out of k

variables. However, only the clause-blocks corresponding to F will be given the constraints
on the maximum currents (on edge e2 in Figure 3.1). By this exhaustive construction the
network becomes highly symmetric and predictable and the analysis is only dependent
on k.

3.2. Reduction procedure

The complete transformation of a boolean formula to a TNEP scenario is achieved by the
procedure following Table 3.1 which contains an overview of the node names used.

Name Description supply

sC (super)-source for all clause blocks [+8
(
k
3

)
]

sv source for all variable blocks [+1]
tv sink for all variable blocks [−1]

v
(1)
xi first node of variable-cell i [0]

. [0]

v
(6)
xi last node of variable-cell i [0]

vz interconnect-node from variable-cells to clause-blocks [0]

vCj first node of clause-block j [0]
tCj second node (sink) of clause-block j [−1]

Table 3.1.: Node names of 3-SAT to TNEP scenario

Let a formula F be given in 3-SAT conjunctive normal form (CNF). One may assume
without loss of generality that each clause contains exactly three variables. Otherwise
simplify clauses like xj ∨ xi ∨ xi to xj ∨ xi if necessary and inflate them artificially until

24

3.2. Reduction procedure 25

they contain exactly three variables. For example, the clause xj ∨ xi could be inflated to
(xj ∨ xi ∨ xk1) together with the clauses (¬xk1 ∨ xk2 ∨ xk3), (¬xk1 ∨ xk2 ∨ ¬xk3), (¬xk1 ∨
¬xk2 ∨ xk3) and (¬xk1 ∨ ¬xk2 ∨ ¬xk3) where xk1 , xk2 , xk3 denote new, unused variables.
The latter clauses are just to make sure xk1 is bound to be set as “false”, thus to original
clause is only satisfied if xj or xi is set as “true”.

Trivial clauses like xj ∨ xi ∨ ¬xi which are equivalent to 1 can be ignored.

After making sure each clause contains exactly three variables, the four meta-nodes are
created:

sC (the super-source)

sv tv (variable-source and -sink)

vz (the interconnect-node)

See Table 3.1 for a quick explanation.

Following the previous section, the general purpose of these nodes can be seen in Fig-
ure 3.4: A (large) current is introduced on the “top” from sC and carried “down” via the
variable-cells towards the clause-blocks by passing the interconnect-node vz or the alter-
native dashed route. Another (smaller) current enters from the “left” (sv) and is carried
towards the “right” to tv mostly via the variable-cells. Following these directions, the
two currents are said to cross each other here. This idea is justified by the principle of
superposition explained in Observation 1.

k2

2 · k2

1

1
k2

1
k2

1
k2

1
k2

1v
(1)
xi

v
(2)
xi v

(3)
xi

v
(4)
xi v

(5)
xi

v
(6)
xi

vz

sc

clause-blocks

1

k2
k2

sv tv

1

111 1

11

Figure 3.5.: Specification: conductances for variable-cell i

After having created the four meta- or helper-nodes sC , sv, tv, vz, for each boolean variable
xi in F one variable-cell is created. The specific conductances can be seen in Figure 3.5.

Node v
(1)
xi of the variable-cell i is connected to the variable-source sv and v

(6)
xi is connected

to the variable-sink tv. After that, each cell is connected to the both sC and vz via

the nodes v
(2)
xi and v

(4)
xi . The low-conductance parts of the variable-cell are supposed to

restrict the effect of clause-currents running from the enhanced-part to the non-enhanced
part of the variable-cell. It works like a barrier which the clause-currents will avoid. On the
opposite side, the variable-current has “no other choice” than to use these low-conductance
connections to run to the variable-sink. The illustration may be helpful when applying the

25

26 3. Complexity of TNEP

principle of superposition: consider the total current to be composed by the variable-source
and -sink on the one hand and the clause-source and clause-sinks on the other hand. Then
the clause-currents will avoid taking a detour via the low-conductance connections as it
requires a lot of (dissipated) energy to pass these edges.

vz

tCj [−1]

vCj

1

1

1 1 1

other var-cells

other
clause-blocks

associated var-cells

sC

sv tv

Figure 3.6.: Specification: conductances for clause-block j

Then, the clause-blocks are taken care of. For each 3-SAT formula containing k ≥ 3
variables, there are at most

|Ctot(k)| = 23 ·
(
k

3

)
=

4

3
k(k − 1)(k − 2) (3.1)

total clauses that can be build from k variables containing exactly 3 variables each. Each
of these clauses will be considered in the resulting network. Notice that since only 3-SAT
formulas are considered here, the total number of clauses built from k variables is still
polynomial in k. For each clause Cj = {(¬)xj1 , (¬)xj2 , (¬)xj3} ∈ Ctot(k) a clause-block
according to Figure 3.6 is created. The clause’s sink tCj is connected to the variable-cells

according to the literals in Cj : if ¬xjθ ∈ Cj then tCj is connected to v
(3)
xjθ

otherwise if

xjθ ∈ Cj it is connected to v
(5)
xjθ

(for θ = 1, 2, 3).

Algorithm 1 describes the transformation in Pseudo-Code.

An implementation of Algorithm 1 in Scilab/Matlab can be found in the Appendix.

In order to receive a proper TNEP scenario, the data (L, b) received from Algorithm 1
needs to be enriched (informally) in the following way, summarized by Definition 12. Only
the connections exi and e¬xi may be enhanced. This is done by an edge of conductance
k2 and there is only one such edge allowed for each connection e(¬)xi . This way, each
assignment α of the boolean variables can be translated into a unique set of edges to
add at the variable-cells (according to which literal is activated). Additionally, all edges
connected to tv get the current constraint f̄v = 1

k . This is supposed make sure that invalid
assigning of both (or none of the) literals of a variable will cause at least one of the current
constraints to fail, so only “real” variable assignments are possible.

At last, the current constraint f̄C for the connection eC = {vCj , tCj} of the clause-blocks
must be determined. Obeying these represents the satisfaction of a clause. It will be shown

26

3.2. Reduction procedure 27

Algorithm 1: 3-SAT-to-TNEP-scenario(A)

Data: 3-SAT formula matrix A
Result: Laplacian matrix L and supply vector b of corresponding TNEP

1 k ← # columns(A) ; /* number of variables */

2 m← # rows(A) ; /* number of important clauses */

3 n← 1 + 2 + 6 · k + 1 + 2 · |Ctot(k)| ; /* number of nodes */

4 V ← (v1, . . . , vn) sorted dummy nodes;
5 E ← ∅ initial edges;
6 G← (V,E) initial graph;
7 v1 ← sc ; /* super-source */

8 v2 ← sv ; /* variable-block-source */

9 v2 ← tv ; /* variable-block-sink */

10 for i = 1, . . . , k do
11 θ ← 4 + 6(i− 1);
12 (vθ, . . . , vθ+5)← nodes of variable-block i;

13 connect (vθ, . . . , vθ+5) according to Figure 3.5 ; /* nodes v
(1)
xi to v

(6)
xi */

14 Connect variable-block i to sc, sv, tv;

15 end

16 v4+6k ← tv ; /* create interconnect-node vz */

17 Connect vz to variable-blocks ;

18 j ← 0;
19 foreach C ∈ Ctot(k) do
20 j ← j + 1;
21 θ ← 5 + 6k + 2(j − 1);
22 (vθ, vθ+1)← nodes of variable-block j;
23 connect vCj to interconnect-node vz;

24 foreach xi ∈ C do

25 connect tCj to v
(5)
xi ; /* unnegated branch of variable-cell i */

26 end
27 foreach ¬xi ∈ C do

28 connect tCj to v
(3)
xi ; /* negated branch of variable-cell i */

29 end

30 end
31 L← Laplacian matrix of created G;
32 Switch clause-blocks corresponding to A to the first m blocks in L ;
33 Set b according to Table 3.1;
34 return L, b

27

28 3. Complexity of TNEP

later, that determining a proper f̄C can be done by plugging in an arbitrary assignment of
variables, computing the resulting current x and examining the values as follows. Define

x
(0)
vC ,tC

:= xvCj ,tCj for any j with 0 enhanced literals connected

x
(1)
vC ,tC

:= xvCj ,tCj for any j with 1 enhanced literal connected

and set the constraint

f̄C :=
x

(1)
vC ,tC

+ x
(0)
vC ,tC

2
(3.2)

This constraint makes use of a monotonic behaviour of the clause-currents2: the more
connected literals are activated by the respective assignment, the lower the clause-current
will be. This and the fact that f̄C is well defined will be formally shown later by Proposi-
tion 4.The constraint f̄C has to be set on the clauses associated with the original formula
F only. All other clause-blocks do not receive a constraint as it is not important if they
are satisfied.

Definition 12 (3-SAT to TNEP scenario). The TNEP scenario associated with the given
3-SAT scenario A with k variables is defined by (L, b) from Algorithm 1 and the following:

1. at most one edge can be added to each connection (v
(2)
xi , v

(3)
xi) (negated literal) and

(v
(4)
xi , v

(5)
xi) (unnegated literal) for i = 1, . . . , k.

2. No other edges are allowed to be added.

3. each added edge has conductance c = k2 and cost w = 1.

4. all edges connected to tv get the current constraint f̄v = 1
k .

5. all clause-blocks corresponding to clauses from the given 3-SAT scenario A receive
the current constraint f̄C from Equation 3.2 3.

The associated decision question is:
Is there a set of edges with cost ≤ k that fulfils all current constraints? (4 and 5 in
enumeration above)

This section is followed by some examples after which the correctness of the reduction will
be proved.

3.3. Examples

In order to adapt a more intuitive approach to the transformation, this will provide an
example of the complete transformation for a given 3-SAT formula F to a TNEP scenario.

Example 11 (Formula to be transformed). Consider the 3-SAT formula

F = (¬x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3)

with k = 3 variables. The input for Algorithm 1 is the matrix

A =

 −1 −1 1
−1 1 −1

1 −1 1


2that is: the current from vCj to tCj
3those are the first m clause-blocks

28

3.3. Examples 29

For k = 3 variables it holds that there are |Ctot(3)| = 23 ·
(

3
3

)
= 8 total clauses that can be

built. Thus, Algorithm 1 delivers an electrical network that consists of

• 1 super-source sc

• 1 variable-source sv and 1 variable-sink tv

• 3 variable-blocks with 6 nodes each

• 1 interconnection-node vz

• 8 clause-blocks with 2 nodes each

sν

sc

tν

v(1)x1

v(4)x3
v(5)x3

v(6)x3

v(2)x1

v(3)x1

v(4)x1
v(5)x1

v(1)x2

v(2)x2

v(4)x2

v(3)x2

v(5)x2

v(6)x2

v(3)x3v(2)x3

v(1)x3

vz

vC1

vC2

vC3

vC4

vC5

vC6

vC7

vC8

tC2

tC3

tC4

tC5

tC6

tC7

tC8

tC1

Figure 3.7.: transformation for k = 3 variables

Making up for 3 + 3 · 6 + 1 + 2 · 8 = 38 nodes in total. The complete resulting network can
be seen in Figure 3.7. The plane of variable-cells from Figure 3.3 can be seen in the upper
part of the figure and the clause-blocks are in the lower part. The dashed lines represent
the connections from the clause-blocks to the respective literals appearing in the clauses.
Neither the rearrangement of the clauses nor the conductances are displayed in the figure.

29

30 3. Complexity of TNEP

The clauses from formula F correspond to C2, C3 and C6 within the figure. Thus, those
are the only clause-blocks which are given current-constraints. To find out the the specific
constants according to Equation 3.2, one can arbitrarily plug in the assignment α =
(−1,−1,−1) assigning each variable the value “false”. After enhancing the connections
(v
e
(2)
xθ

, v
e
(3)
xθ

) (θ = 1, 2, 3) which correspond to α, one gets the following (rounded) clause-

currents for C1 to C8

0.1933201 0.2033569 0.2033569 0.2133938

0.2033569 0.2133938 0.2133938 0.2234306

This list contains four different values

0.2234306 0.2133938 0.2033569 0.1933201

that correspond to clauses with 0, 1, 2 and 3 enhanced literals connected. Thus, set

f̄C :=
(0.2234306 + 0.2133938)

2
= 0.2184122

Moreover, the three edges connected to tv are given the current constraint of 1
3 .4

Remark 4. Within the implementation in the appendix the previous steps can be performed
by the instructions

[L, b] = canonical3SATtoTNEP(3);

alpha = [−1− 1− 1] ;

[L1, p, varCur, clauseCur] = assignVariablesNEvaluate(L, b, alpha);

where clauseCur will contain the clause-current for each clause-block after enhancing the
edges corresponding to the assignment α = (−1,−1,−1) (last argument in second function
call).

As can be checked from varCur the variable-currents are all at 0.3333333. Notice that the
conductance values in the implementation are slightly different than those mentioned in
the previous section 3.2 which is irrelevant for the general behaviour of the graph since the
conductances’ asymptotic classes like Θ(k−2) stay the same.

As can be seen from the previous lists, the arbitrarily chosen assignment α already fulfils
the current-constraints given to the clause-blocks of C2, C3, C6 in Figure 3.7 which reflects
the fact that α satisfies all clauses in F . In fact, in this very small example for k = 3, any
assignment will violate exactly one clause, where in general the number of violated clauses
is |Cviol(k, α)| =

(
k
3

)
for any α (so 1

8 of the all clauses are violated in general).

3.4. Analysis

Theorem 4. Definition 12 describes a polynomial reduction from 3-SAT to TNEP.

Corollary 5. TNEP is NP-complete.

Proof of Corollary 5. On the one hand, according to Lemma 3 TNEP is part of the com-
plexity class NP. On the other hand, from Theorem 4 it follows that TNEP is NP-hard.
From both facts follows that TNEP is NP-complete.

4to make the procedure of solving for these currents numerically more stable one would have to choose
variable-currents that are slightly above the 1

k
limit. However, numerical stability is not the issue here.

30

3.4. Analysis 31

To prove Theorem 4 consider the following. For a TNEP scenario S given by Definition 12,
define any TNEP instance ~n for S to be SAT-consistent if it represents a valid assignment
of the respective boolean variables x1, . . . , xk. That is: ~n provides exactly one additional
edge for each variable-block and can thus be uniquely translated to an assignment of
variables α : {x1, . . . , xk} → {−1, 1}. Call ~n trivial if it represents an instance without
adding edges.

There will be five separate Propositions presented here in order to prove Theorem 4 step
by step. This will done by showing the following:

• the reduction procedure is polynomial in k (Proposition 1),

• only SAT-consistent instances (and the trivial instance) can obey all variable-constraints
f̄v at once (Proposition 3),

• in each scenario there are exactly four distinct clause-currents for all SAT-consistent
instances. These currents are dependent of the number of connected enhanced literals
in a monotonic way (Proposition 4)

• the trivial instance does not obey any clause-current constraint f̄C (Proposition 5).

For these steps, Proposition 2 will make use of the symmetry in order to reduce the general
case to a network of at most 38 nodes for any k. This will allow the use of a computer
aided solver (Matlab) to compute the general voltage potentials symbolically.

Proposition 1. The procedure described in Algorithm 1 can be executed in time polynomial
in k.

Proof of Proposition 1. Given a 3-SAT formula F = {C1, . . . , Cm} with k variables we may
assume that k ≤ 3m and m ≤ 8

(
k
3

)
by considering the minimum and maximum number

of clauses possible. Thus, the input size |F | is in Ω(k) and m ∈ O(
(
k
3

)
) = O(k3), so |F | is

at most in O(k4). It is not important which specific format F is given in. In each case,
the matrix A = A(F) ∈ {−1, 0, 1}m×k representing F can be extracted in polynomial time
with respect to |F | and k.

Given the matrix A, line 3 of Algorithm 1 defines the the number of nodes n of the network
to be created, where n ∈ O(k3), so the network size is polynomial in |F | and so is the
resulting Laplacian L ∈ Rn×n.

Each instruction in line 7 to 29 takes constant amount of time. Since the loops in these
lines need to file through A when creating the variable-blocks and the clause-blocks, the
total amount of time taken here sums up to at most O(k4).

Sorting the clauses in line 32 according to their original appearance in A takes at most
O(k4 log k) steps although the implementation does not explicitly need to perform a sorting
or rearrangement of the clause-blocks.

At last, setting the supply-vector b ∈ Rn requires O(n) steps.

Altogether extracting A and running Algorithm 1 takes time and space polynomial in |F |.
Here O(k4 log k) is a generous upper bound on the time needed and O(n2) = O(k6) limits
the required space for L in a naive (adjacency) matrix representation, ignoring time needed
to initialise and reserve space.

To complete the transformation to the desired TNEP scenario S, we need to determine
the bounding constraints for S. Although Algorithm 1 delivers a Laplacian matrix L for
S only, the vectors as given in Definition 8 can be extracted in a straightforward way: For

31

32 3. Complexity of TNEP

each connection {i, j} ∈ V 2, set the initial number of edges n
(0)
ij := 1, the cost wij := 1

and the conductance per edge c
(0)
ij := |Lij |. Furthermore set

n̄ij :=

{
2, if {i, j} ∈ {{v(2)

xθ , v
(3)
xθ }, {v

(4)
xθ , v

(5)
xθ } | θ = 1, . . . , k}

1, otherwise

This needs at most O(n2) time.

To compute the current constraints for the clause-blocks as described in the previous
sections one needs to plug in an arbitrary assignment like α = (−1, . . . ,−1). Updating
L and solving the linear equation L · p = b is achievable in O(n3) steps. This provides
f̄C by searching for the biggest and second biggest current running through the clause-
blocks which takes O(m) steps (proving this method to be well-defined will be done later
in Proposition 4). The other constraint f̄v = 1

k for the variable-blocks can be plugged in
right away. For the other edges the maximum current constraint can be omitted or set to
a trivial value like m+ 1 which takes at most O(n2) steps.

This concludes Proposition 1 with a generous polynomial upper bound of O(n3) on the
time and O(n2) on the space.

To continue the analysis for the variable- and clause-currents the following Proposition
on symmetry needs to be proven first. Originally, given a formula F with k variables,
the respective TNEP scenario given from Definition 12 features a network made out of
4 + 6 · k + 2 · 8

(
k
3

)
∈ O(k3) nodes. Hence, the corresponding Laplacian matrix L has a

size depending of k (of order O(k6)). As already mentioned before, the network created
by Definition 12 is highly symmetric in the sense of Definition 7 and can consequently be
drastically scaled down using Theorem 3.

Proposition 2 (Symmetry in 3-SAT to TNEP reduction). For each k in the network ob-
tained by Algorithm 1 all variable-cells with the same number of edges added are symmetric
to each other, making up for at most 3 types of variable-cells. Similarly all clause-blocks
are symmetric by the number of connections to enhanced literals, so there are at most 20
types of clause-blocks. By that the network can be reduced to a network of size at most 38.

Thus, it will be possible to perform the further analysis for a network of fixed size for
any k which allows the use of computer aided solving of symbolic linear equations for the
following propositions.

Proof of Proposition 2. Denote by

nθ := number of variable-cells with θ edges added (θ = 0, 1, 2)

According to the number θ ∈ {0, 1, 2} of added edges in a variable-cell i this cell is called to
be of (enhancement) type 0,1 or 2 which reflect all possible cases of enhancing a particular
variable-cell due to the defined boundaries. As this represents a partitioning of the variable-
cells, it holds

k = n0 + n1 + n2

Now it is shown why two variable-cells x1, x2 of same enhancement type θ are symmetric.
This is achieved by a permutation πθ which is set by switching the variable-cells and all
clauses in which x1, x2 are appearing. This is equivalent to switching variables by renaming
them within the original formula F .

32

3.4. Analysis 33

Together with the notation

variable-block(xi) :=

{
(v

(0)
xi , v

(1)
xi , . . . , v

(6)
xi) if (v

(2)
xi , v

(3)
xi) is enhanced

(v
(0)
xi , v

(1)
xi , v

(4)
xi , v

(5)
xi , v

(2)
xi , v

(3)
xi , v

(6)
xi) otherwise

define πθ to be

πθ(variable-block(x1)) := variable-block(x2) (3.3)

πθ(variable-block(x2)) := variable-block(x1) (3.4)

πθ(variable-block(xi)) := variable-block(xi) if xi 6= x2, x1 (3.5)

Furthermore, denote by πθ(xi) and πθ(¬xi) the variables/literals on which variable-cell i is
mapped to by πθ according the previous equations. Then for all clauses Cj map the clause-
block j to the clause-block that is defined by mapping all literals from Cj individually:

for all Cj = {(¬)xj1 , (¬)xj2 , (¬)xj3}
and Ĉj = {πθ((¬)xj1), πθ((¬)xj2), πθ((¬)xj3)}

πθ((vCj , tCj)) := (v
Ĉj
, t
Ĉj

)

πθ ≡ id for all other nodes

and letting πθ map the connections accordingly. This defines a permutation of nodes
according to Definition 7 which - due to the restriction to conserve the conductances when
mapping connections (Equation 2.13 and 2.12) - only works when x1 and x2 have exactly
the same amount of enhanced edges. Equation 3.3 and 3.4 make sure that the enhanced
parts are always mapped on each other. Notice that this may also include switching the
role of an negated literal towards an non-negated one and vice versa.

Hence, all variable-cells of the same enhancement type are symmetric and thus have the
same voltage potentials. From this follows that the respective nodes of the same potential
can be merged together. Consequently, for any TNEP instance the corresponding network
can be mapped to have at most three variable-cells which are scaled by the respective
numbers n0, n1, n2.

By a similar permutation it can be shown that there is only a fixed number of clause-types
depending on how many connections to each of the three types of variable-cells they have.
There are four types of connections from the clause-blocks towards the three variable-cells:

t0 := connections to variable-cell of type 0 (both branches)

t+1 := connections to non-enhanced branch of variable-cell of type 1

t−1 := connections to enhanced branch of variable-cell of type 1

t2 := connections to variable-cell of type 2 (both branches)

Two clause-blocks vC1 , tC1 and vC2 , tC2 that share the same amount of connections to each
of the four connection types of the variable-blocks are symmetric by a permutation π.
Here Cθ = ((¬)xθ,1, (¬)xθ,2, (¬)xθ,3) for θ = 1, 2 are assumed to be sorted by two keys:
ascending by the amount of enhanced variable-branches in xθ,i (according to t0, t+1 , t

−
1 and

t2) and secondly by some arbitrary but fixed ordering of the variables (for example by the
ordering in which they appear in L). Then let π switch both the roles of C1 and C2 and

33

34 3. Complexity of TNEP

the roles of its respective literal-types while leaving all other variable-blocks fixed.

for η = 1, 2, 3 :

π(variable-block(x1,η)) := variable-block(x2,η)

π(variable-block(x2,η)) := variable-block(x1,η)

π(variable-block(xi)) := variable-block(xi) if xi 6= x2,η, x1,η

for all Cj = {(¬)xj1 , (¬)xj2 , (¬)xj3}
and Ĉj = {π((¬)xj1), π((¬)xj2), π((¬)xj3)}

π((vCj , tCj)) := (v
Ĉj
, t
Ĉj

)

π ≡ id for all other nodes

and letting π map the connections accordingly. Hence, all clause-blocks that represent
clauses containing the variables x1,η or x2,η (for η = 1, 2, 3) are swapped. All other clause-
blocks remain in their original position. Notice that this explicitly means C1 and C2

are mapped on each other. Again, the map only works because the variable-cells are
mapped towards blocks of equal types and conductances. Using basic combinatorics yields
to
(

6
3

)
= 20 different clause-types since a total of three connections are chosen from four

connection-types. With the notation above, for each clause-type t = (t0, t
+
1 , t
−
1 , t2)5 the

total number of clauses cl(t) belonging to this type is

cl(t) =

(
n0

t0

)
2t0 ·

(
n1

t+1

)(
n1 − t+1
t−1

)
·
(
n2

t2

)
2t2

provided that the binomial expressions exist which is always the case when ni ≥ 3. Oth-
erwise cl(t) = 0 for some t leads to a smaller amount of clause-types. Now, determining
the conductances of the combined edges can also be achieved by basic combinatorics. For
each clause-type t the connections from tCj to the variable-cell types have the following
conductances

ti
2
· cl(t) to both v(3)

xi and v(5)
xi for i = 0, 2

t−1 · cl(t) to v(3)
xi

t+1 · cl(t) to v(5)
xi

Hence, by merging the symmetric parts using Theorem 3 so far the TNEP scenario can
be reduced to a network of size at most 3 · 6 + 4 + 20 · 2 = 62. Additionally, the clause-
blocks can be reduced to tCj only by merging {vz, vCj} with {vCj , tCj} due to laws of
series conductances. Moreover, the variable-blocks of type 0 and 2 can also be reduced by

merging v
(2)
xi with v

(4)
xi and v

(3)
xi with v

(5)
xi as these nodes are symmetric within the same

variable-block (by renaming and swapping the literals). That even leads to a network of
size at most 62− 20− 4 = 38.

Proposition 3. A TNEP instance ~n is SAT-consistent (or trivial) iff all the current
constraints f̄v at the variable-sink tv are fulfilled.

All of the current-constraints at the variable-blocks are fulfilled when the blocks are sym-
metric which is the case for all SAT-consistent (and the trivial) TNEP instance since the
variable-cells are symmetric as shown in Proposition 2. However, when they are not sym-
metric due to different numbers of edges added, a physical intuition indicates the current
will favour those variable-blocks which are enhanced by more edges in order to reach its

destination tv. Hence in this case there will be a slightly higher current running from v
(6)
xi

to tv for the enhanced blocks compared to the less enhanced blocks.

5t0 + t+1 + t−1 + t2 = 3

34

3.4. Analysis 35

Proof of Proposition 3. The corresponding system of linear equations by Equation 2.5 has
a fixed size (independent of k) but contains symbolic variables (n0, n1, n2). The claim can
be proven by solving the linear equations using a computer-aided symbolic system solver.

The respective variable-currents were compared and simplified using Matlab. It was ob-
served that all three variable-current types share the same denominator which allowed sim-
plification by omitting this denominator (after checking for zero points first). Afterwards
it was noted that the difference between the current running through the variable-blocks
of type t0, t1, t2 is independent of n0, n1, n2 and only depends on k. Denote by ∆i,j the
difference of currents between type i and j. Omitting the denominator, Matlab yielded
the following expressions:

∆1,0 = (7 · k · (k4 + 3 · k2 + 3) · (32 · k5 − 120 · k4 + 152 · k3 − 69 · k2 + 14 · k + 12)

·(27 · k8 − 60 · k7 + 57 · k6 − 30 · k5 + 51 · k4 − 30 · k3 + 27 · k2 + 7)

·(44 · k8 − 66 · k7 + 212 · k6 − 286 · k5 + 369 · k4

− 374 · k3 + 261 · k2 − 132 · k + 45)) · 1

3
∆2,1 = (7 · k · (k4 + 3 · k2 + 3) · (32 · k5 − 120 · k4 + 152 · k3 − 69 · k2 + 14 · k + 12)

·(44 · k8 − 90 · k7 + 84 · k6 − 30 · k5 + 65 · k4 − 30 · k3 + 27 · k2 + 7)

·(27 · k8 − 44 · k7 + 133 · k6 − 198 · k5 + 243 · k4

− 286 · k3 + 189 · k2 − 132 · k + 45)) · 1

3

Using Horner’s scheme, it can be shown that these polynomials are greater zero for all
k ≥ 3. Thus, the variable-currents for the three different types have to be strictly different.
Together with the fact that the sum of these currents is still exactly 1 (since the variable-
sink has demand 1) it follows that at least one variable-current is greater than 1

k , so at
least one current constraint at the variable-blocks is violated.

The number of clause-types is assumed to be the general number of 20 for the computations
presented. This implicitly assumes the numbers of variable-blocks n2, n1, n0 are greater or
equal 3. The other cases where at least one of these numbers is equal 0, 1 or 2 (provided
n1 < k to not allow SAT-consistency) are just specializations of this general case which
are easier to solve. For the sake of space, they are omitted here.

Remark 5. Despite the fact that the variable-currents are theoretically different for each
k, theses differences still tend to 0 for k → ∞. Thus, for testing big instances of the
transformed TNEP scenario in practice, one would have to increase the variable-current
depending on k and increase the variable-current-bound accordingly in order to highlight
the differences for floating point applications.

Proposition 4. For each SAT-consistent instance ~n there are exactly four types of clause-
currents xi where i is the number of connected enhanced literals. They are decreasing
monotonically: 0 < x3 < x2 < x1 < x0.

Proof of Proposition 4. According to Proposition 3 it is sufficient to only consider SAT-
consistent TNEP instances in the following. Similar to the symmetry used in Proposition 2,
this yields an even smaller amount of clause-block types of which there are four now.

Two clause-blocks are symmetric if they have the same number of enhanced literal branches
connected to them. Analogue to Proposition 2 this number partitions the clause-blocks
into four clause-block types (from 0 enhanced literals to 3). Again, due to Theorem 3

35

36 3. Complexity of TNEP

all clause-blocks of the same type can be merged together. The same can be said for all
variable-cells. As should be clear by Proposition 2, in the case of a SAT-consistent TNEP
instance there is only one type of variable-cell left, namely the one with a single edge
enhanced. By merging the nodes accordingly there is a network of at most 4+6+4 ·2 = 18
nodes left. Denote by x0 to x3 the respective currents that run through the four different
clause-block-types (directed from vC to tC). The only thing that needs to be shown in this
context is that these currents are in fact different and greater than zero. The resulting
network is small enough to let the currents be computed by a state-of-the-art symbolic
equation solver. Again, Matlab was used (See the Appendix for code used).

The respective clause-currents x0, . . . , x3 are rational functions of k. It emerged that the
differences δi := xi − xi+1 for i = 0, 1, 2 are all equal to a function δ independent of i,
where

δ =
p(k)

q(k)

p(k) := k(k2 + k + 1)(k2 − k + 1) ·
(32 · k5 − 120 · k4 + 152 · k3 − 69 · k2 + 14 · k + 12)

q(k) := 3(1024 · k10 − 3204 · k9 + 4900 · k8 − 4404 · k7 + 3991 · k6

−3228 · k5 + 2869 · k4 − 1410 · k3 + 757 · k2 − 210 · k + 140)

Both p(k) and q(k) are greater 0 for all k ≥ 3. For example this can be seen easily by
taking a look at Horner’s scheme representation of both polynomials for k ≥ 4 and checking
additionally for k = 3. Also Matlab finds 10 values each for which p(k) or q(k) are 0. All
of these values have an Euclidian norm of less than 2 within the complex plane. Thus, δ
is greater 0 for all k ≥ 3 which proves that x3 < x2 < x1 < x0.

It remains to be shown that x3 > 0. From the same Matlab computations, it emerged

x3 = 3 · p3(k)

q(k)

p3(k) := 224 · k11 − 876 · k10 + 1572 · k9 − 1455 · k8 + 999 · k7

−846 · k6 + 840 · k5 − 723

2
· k4 + 168k3 − 9 · k2 + 56 · k + 21

In the same fashion as before it can be seen that in fact x3 > 0 for all k ≥ 3. Consequently,
this proves the claim

0 < x3 < x2 < x1 < x0

Proposition 4 finally yields that the clause-current constraint f̄C = x0+x1
2 is well defined

and is fulfilled for each clause in F when the respective clause-block is connected to at
least one enhanced literal. The only part which is left to prove is why the trivial instance
does not obey the clause-current constraints. This is achieved by Proposition 5.

Proposition 5. The trivial TNEP instance does not obey the clause-current-constraints
f̄C .

Proof of Proposition 5. For the trivial instance, the general case involving n0, n1, n2 can
be simplified to n1, n2 = 0 and n0 = k which leads to an even smaller TNEP scenario.
Here, there is only one single variable-block-type and also one single clause-block-type
leading to a size of at most 6 + 4 + 2 = 12 nodes. The respective linear equations feature

36

3.4. Analysis 37

k as the only symbolic variable involved. The solution received for the voltage potential
of vC by a computer-aided solver is a rational function of k that can be compared to the
results of Proposition 4. Denote by xt the current running through each clause-block of
the trivial instance, then Matlab provided:

xt =
pt(k)

qt(k)

pt(k) := (20 · k)
1

11
− (30 · k2)

1

11
+

3

2

qt(k) := (k · (11 · k2 − 12 · k + 8)) +
3

11

and the difference to x0 (omitting the denominator) is given by δt,0, where

δt,0 = ((32 · k5 − 120 · k4 + 152 · k3 − 69 · k2 + 14 · k + 12)

·(70 · k8 − 168 · k7 + 152 · k6 − 78 · k5 + 134 · k4 − 78 · k3 + 73 · k2 + 21))

which is greater zero for all k > 3 which can be seen using the same technique as above.
Thus, it also holds that

x0 < xt

which yields the claim.

Consequently, to solve the TNEP scenario it is always required to add at least one edge
to the variable-cells. This makes sure the trivial instance can never be a solution.

All the previously proven Propositions can now be combined to prove Theorem 4.

Proof of Theorem 4. From Proposition 1 to 5 it follows

• Given a 3-SAT-matrix A, a corresponding TNEP scenario S can be obtained in
polynomial time.

• A TNEP instance ~n for S obeys the constraints f̄v iff ~n is a SAT-consistent instance
(or trivial).

• The trivial TNEP instance does not obey any clause-constraint f̄C , hence at least
one variable-cell needs to be enhanced.

• For any SAT-consistent instance ~n a clause-constraint f̄C on clause-block j is fulfilled
⇐⇒ tCj is connected to at least one enhanced literal node w.r.t. ~n.

Thus, F is satisfiable iff there exists a solution to the respective TNEP scenario S. Hence
Algorithm 1 and Definition 12 describe a polynomial reduction from 3-SAT to TNEP,
q.e.d.

37

4. Evaluation

Many approaches have been tried to deal with TNEP in practice. In its original form
as presented in this work, TNEP is a Mixed Integer Non-Linear Programming (MINLP)
problem. Due to the generally high computational complexity of this type of problem, it is
often the case that simplified versions of TNEP are considered which include linearization
and/or relaxtions. Different ways to model TNEP can be found in [RMGH02] together
with a set of test systems. The model used in this work is generally referred to as the DC
system as in [RMGH02]. An overview of works on TNEP can be found in [LCAV03] or
[LNZW06] where the latter includes considerations on regulated vs. deregulated (market)
environments. Usually, the published algorithms on TNEP are classified into mathematical
optimization, heuristic or meta-heuristic approaches.

A classical heuristic approach can be found in the original Garver paper [Gar70]. These
types of algorithms usually rely on (engineering) experience to simplify the search. The
downside of a low computational effort is that they may lead to poor solutions in larger
networks.

Meta-heuristic approaches try to combine the benefits of both mathematical and heuristic
approaches. This includes the use of Genetic Algorithms as well as Simulated Annealing
[RGM96] or Particle-swarm optimization [TCPG11].

For the mathematical approaches, TNEP is solved by classical optimization techniques that
generally use simplifications of the problem by linearizing and relaxing it so that linear
programming (LP) or mixed integer linear programming (MIP) can be applied [AMC03].
Depending on the model chosen purely mathematical approaches tend to require a high
computational effort for large networks. Usually this is done for DC systems, however
[TH11] for example includes the use of AC1 systems.

The big-M-notation is a typical linearization of the integer choice constraints also used
widely for TNEP. A comprehensive study using big-M-notation including a survey on the
quality of the results can be found in [MPS10].

[RGR08] uses a branch-and-bound algorithm for solving MINLP specialized for TNEP. In
this evaluation however, it should be examined how well a general but highly sophisti-
cated MINLP solver in a state-of-the-art hardware environment can deal with the original
formulation of the problem without any further simplifications/relaxations of Definition 8
in order to see at which input sizes the problem becomes practically infeasible with this

1alternate current

39

40 4. Evaluation

approach. As shown in the previous sections, TNEP inevitably embodies the computa-
tional difficulty of NP-completeness. Thus, on the one hand it is unlikely that an efficient
algorithm optimally solving all TNEP scenarios in general is ever found and on the other
hand TNEP may benefit of using a generic MINLP solver which is generally designed and
suitable to tackle NP-hard and NP-complete problems (among others).

Moreover, unlike in [RGR08], the MINLP solver used in this work is able to guarantee
that the optimum found is global.

4.1. Model adjustment NR/WR

The DC model considered in the previous chapters assumes the supplies to be fixed with∑
i bi = 0. In the literature, e.g. [RMGH02], this is called a DC model without redispatch

meaning it is not allowed to change the (power) supply/output of any node. It is also
possible to set a maximum supply b̄i for each node with variable bi (0 ≤ bi ≤ b̄i for
supply nodes) where the sum of maximum supplies is being greater or equal than sum
of demands. This is called a DC model with redispatch. In the following sections, the
term without redispatch will be abbreviated by NR as opposed to WR for the model with
redispatch.

In terms of practical computational complexity, NR is considered to be more difficult than
WR which can be seen in [RMGH02]. WR includes the related problem of Optimal Power
Flow (analysis), which can be solved efficiently even for AC systems, see [DT68]. This is
the probable reason why computational complexity does not increase when switching from
NR to WR. Nevertheless, the theoretical complexity of the WR model is still NP-complete
which can be seen by two simple adaptions of the NP-hardness proof in chapter 3: The
first option is to set trivial upper supply bounds equal to the given supply levels so each
source needs to operate at its boundary supply level anyway to fulfil all demands. The
second option featuring more variety is to split up the super-source into multiple nodes,
let them have a supply between 0 and m and connect them to the graph via one single
edge with capacity m. This way, the redispatch can be chosen freely although it does not
affect the network’s behaviour. This is illustrated in Figure 4.1. hC denotes the position
of the original super-source sC which has been split up into s1

C , s
2
C , s

3
C . Here, m denotes

the total number of 3-SAT clauses for a given k.

variable-cells

f̄ij = m

hC

s1C [0 ≤ bi ≤ m] s3C [0 ≤ bi ≤ m]s2C [0 ≤ bi ≤ m]

Figure 4.1.: NP-hardness of WR model from the NR model

The focus in this chapter will thus be on the NR model but the WR model was also tested
where applicable. As will be seen for the test cases the WR model was always solved faster
than the NR model.

4.2. BARON and the NEOS server

The Network-Enabled Optimization System (NEOS) is an internet-based client-server op-
timization service. It is free to use and offers a whole variety of sophisticated solvers for

40

4.2. BARON and the NEOS server 41

mathematical optimization problems like LP, MILP, MINLP and many more. A design
and implementation overview is available in [CMM98] together with an administrative
guide in [Dol01]. Further discussion on NEOS can be found in [PBI97]. Problem for-
mulations are typically written using the General Algebraic Modelling System (GAMS).
GAMS documentation together with an Integrated Development Environment is available
at [gam]. The modelling language featured by GAMS is very close to typical scientific
formulations used to describe mathematical (optimization) problems. Documentation and
tutorials are also available at [gam].

For the tests, the Branch-and-Reduce Optimization Navigator (BARON) has been used.
BARON is a GAMS solver preferably designed for MINLP. A quick online documentation
is also available at [gam]. Details on its features and illustrations of its use can be found in
[TS02] which was written by the BARON developers. Unlike most other MINLP solvers,
BARON is capable of guaranteeing to provide a global optimum under fairly general
assumptions, as stated in the BARON documentation. The most important assumption
for practical use is probably that every variable and expression needs to be bounded strictly.
See 4.2.1 for details.

If desired by the user, BARON is suitable for finding the the best, second best, third best,
etc. solution. It can also be used to search for all feasible solutions. See the BARON
documentations for details.

The GAMS code used for the tests in these sections can be found in appendix C. All tests
have been performed using the NEOS-server with BARON.

4.2.1. Practical Concerns

The performed tests have shown that using the NEOS-server with BARON in practice
may require a little numerical “sensitivity”.

Here is some practical advice that may be helpful when trying to reproduce our results:

• Define costs as integers

• Bound all variables explicitly (if necessary to the default bound of ±1000)

• For scaled values: feed sufficiently big mantissa to BARON

• Relieving flow bounds e.g. by 5% may compensate numerical inaccuracy

BARON allows the user to define branching priorities for use in the computation. The
default value is 1 for each variable where higher values denote higher priorities 2. After
some tests it emerged that a branching priority in [2, 10] for nij and leaving the others (for
fij and pi) at 1 generally delivered promising results in terms of running time although
the differences from the default setting were not too extensive and varied for different test
cases. For the WR model, the branching priority of the supply bi was mostly set to 2
acknowledging the fact that the search space is also dependent of bi for this model.

Another important BARON option is the relative termination tolerance εr. This makes
BARON stop its search whenever U −L ≤ εr · |L| where U is the cost of the best solution
(or upper bound) found so far and L is the tightest lower bound found so far. Depending
on the costs of the edges, it may be necessary to set this parameter to a smaller value
than the default 0.1 in order to ensure the solution found by BARON is more likely to be
a global optimum. In the test cases considered, the global optimum was always found for
εr ≤ 0.01 (with an exception for the Brazil South East system, see below). In addition
to the relative one there is also an absolute termination tolerance εa with a default value

2this is the opposite in GAMS itself which may be confusing

41

42 4. Evaluation

of 10−9. BARON terminates if U − L ≤ εa. When integer costs are considered only, a
sufficiently small εr together with an εa slightly smaller than 1 will always deliver a global
optimum if the computation finishes in time.

4.3. Test cases

The test cases considered here are the same as those in [MPS10]. Most of the cases are
also noted in [RMGH02].

Table 4.1 contains an overview of the data considered here.

Name |V | |conn(E)| references

Garver 6 15 [RMGH02], [Gar70]
IEEE 24 bus 24 34 [AMC03], ([MPS10])
Brazil South 46 79 [Bin00], ([MPS10])
Brazil South East 79 143 [Bin00], ([MPS10])

Table 4.1.: Test cases considered

In all the test cases, each connection was allowed to have at most 3 more edges independent
of the number of initial edges of that connection. It is known from previous works that
the optimal solution (or one of the optimal solutions) is contained in this search space for
each of the test cases. These bounds were also used in [MPS10]. Restrictions like these
are essential for the use of a global optimization routine as they determine the size of the
search space. Nevertheless too strict bounds for the number of edges added may lead to
sub-optimal results or even infeasible scenarios. Thus, in general this upper bound should
be chosen carefully.

Theoretically, the TNEP search space R in the NR model for each scenario is the space of

its (valid) instances ~n ∈ Nm0 , i.e. R = {~n | n(0)
ij ≤ nij ≤ n̄ij ∀nij ∈ ~n}. Here fij and pi

are only auxiliary variables being solely determined by ~n and the fixed parameters due to
L · p = b, equation 2.5. This yields table 4.2

Name search space size

Garver 315 ≈ 1.43 · 107

IEEE 24 bus 341 ≈ 3.65 · 1019

Brazil South 379 ≈ 4.93 · 1037

Brazil South East 3143 ≈ 1.7 · 1068

Table 4.2.: Theoretical search space sizes

In order to enable comparability with future improved computing hardware, future BARON
versions and similar branching algorithms, the pure computation time results are accompa-
nied by a (typical) number of branch-and-reduce (BaR) iterations performed by BARON.

The relative termination tolerance εr has a crucial influence on the runtime of BARON
while at the same time increasing the probability of finding a global optimum. It was
hence used as the most relevant benchmark parameter in this chapter. Additionally, tests
featuring an absolute termination tolerance εa of 0.999 (with integer costs and sufficiently
small εr) were also performed in order to illustrate the maximum runtime needed to find
a global optimum.

The solution values listed in this chapter are given in the same way as in [MPS10] for
comparability. Nevertheless they were actually computed after scaling all cost values to
integers first.

42

4.3. Test cases 43

4.3.1. Garver

This test case has become one of the most prominent examples considered among TNEP
researchers. Since it is very small and easy to solve it is only suitable for code testing and
illustrating ideas. It has been used in example 8 and 9 as a TNEP scenario with solution.

NR model :
According to [RMGH02] there are five optimal solutions for the NR model. In each solution
there are exactly 7 edges added at a total cost of 200. However, only two of these solutions
are contained in the search space considered here where there are only three edges allowed
to be added for each connection. To find the other solutions, this bound would have to be
increased to five edges per connection.

In the tests applied, BARON found these supposedly optimal solutions for three addable
edges to be infeasible. Instead, depending on the relative termination tolerance εr the
best solutions found had a cost of 248 (for εr = 0.1) or 231 (for εr ∈ {10−2, 10−3}).
This may be due to rounding errors in the model parameters. Nevertheless, further tests
with Matlab provided that the proposed solutions for three addable edges resulted in a
current that violated the capacity of the three edges added between node v2 and v6 (see
Figure 2.7 and 2.8) by about 3 to 5 units per edge. However, some related works allow
a small power shortage at each node that is not penalized, which may be the reason why
these solutions are considered feasible there.

The optimal solution of 200 for three addable edges was only found if the flow bounds f̄ij
were relieved by 6.5%. However, for five addable edges an optimal solution at cost 200
was found indeed without relieving the flow bounds.

The test using εa = 0.999 also provided the same solution of cost 231 so it has to be
considered the optimal solution for the Garver case using the possibly inaccurate test
parameters and strict fulfilling of the current demands/supplies.

All solutions for the NR model here were computed within less than 1 second by NEOS/BARON.
The number of Branch-and-Reduce (BaR) iterations performed is given in Table 4.3

εr 0.1 0.01 0.001 εa = 0.999

BaR 29 53 75 144

Table 4.3.: Garver NR: BaR iterations

WR model :
The optimal value given in [RMGH02] and [MPS10] is 110. In this case, the inaccuracy of
the parameters was not an issue as the optimal value was found immediately by BARON
for all εr ∈ {10−1, 10−2, 10−3}

Like in the NR model all solutions were found within less than 1 second.

See Table 4.4 for the number of BaR iterations.

εr 0.1 0.01 0.001 εa = 0.999

BaR 5 11 11 11

Table 4.4.: Garver WR: BaR iterations

43

44 4. Evaluation

4.3.2. IEEE 24 bus

This is a typical test system related to electrical transmission network also suitable for
questions beyond TNEP. The complete data including a topological overview can be found
in [GWA+99].

NR model
The model used for TNEP in literature is usually considered for the WR model only, thus
the test for the NR model used fixed bi in the following manner: The supply of each node
was set according to its share of the maximum total supply.

The optimal solution found is of cost 310. All considered εr found this solution.The
computation times ranged from about 1.7 to 3.95 seconds for εr ∈ {10−1, 10−2, 10−3}. It
took about 5.2 seconds for εa = 0.999.

The number of Branch-and-Reduce (BaR) iterations performed is given in Table 4.5

εr 0.1 0.01 0.001 εa = 0.999

BaR 125 389 441 543

Table 4.5.: IEEE 24 NR: BaR iterations

WR model
The optimal value reported in [MPS10] is 152 which was found by BARON for all εr
considered here.

The computation times ranged from approx. 1 to 1.5 seconds. See Table 4.6 for the
number of BaR iterations.

εr 0.1 0.01 0.001 0.0001 εa = 0.999

BaR 103 229 175 183 151

Table 4.6.: IEEE 24 WR: BaR iterations

It is a bit surprising that in this case the number of BaR iterations (and total computation
time) is smaller for εr = 10−3. This behaviour was confirmed by several tests for this case.
It may be due to a slightly increased preprocessing time resulting in tighter initial bounds.

4.3.3. Brazil South

This test case is taken from a realistic TNEP scenario. It is a medium sized network that
has a few unconnected parts in it. A topological overview can be seen in [HMG+00]. This
example is the first one of the ones considered which requires notable computation time.

NR model :
The optimal value of 154.4 reported in [MPS10] was found for all εr considered. See
Table 4.7 for BaR iterations and computation times.

εr 0.1 0.01 0.001 εa = 0.999

BaR 27786 137627 157313 151590
Time (s) 971 5346 6417 5936

Table 4.7.: South Brazil NR: BaR it. and computation time

WR model :
The optimal value of 72.87 reported in [MPS10] was found for all εr considered.

44

4.4. Result overview 45

εr 0.1 0.01 0.001 0.0001 εa = 0.999

BaR 2301 3187 2049 4050 5120

Table 4.8.: South Brazil WR: BaR it.

The computations times ranged from roughly 50 to 100 seconds for εr ∈ {10−1, 10−2, 10−3}.
For εa = 0.999 it took about 200 seconds. See Table 4.8 for BaR iterations.

Just like in the 24 bus system, the BaR iterations (and computation time) decreased when
switching εr from 10−2 to 10−3 in a counter-intuitive way. Again, this behaviour was
confirmed by multiple additional tests. However, as can be seen for εr = 10−4, further
tightening of the bound results in an increased number of BaR iterations again for this
case.

4.3.4. Brazil South East

Like the previous one, this case is also taken from a realistic scenario.

NR model
All test cases for this system were stopped when NEOS’ default runtime barrier of 8 hours
was reached. The best solution found until that point had a cost of 463.3. The optimal
value reported in [MPS10] is at 424.8 so the best value found is roughly 9% more expensive
than the optimal solution. However, as further tests have shown, this value of 463.3 is
already found by BARON after approximately 1h : 15m. The search space seems too
large to find a better value within the remaining 6h : 45m. Moreover, the solution quality
worsened when starting with tighter εr bounds.

Apart from that, it is not known, if the TNEP solution of cost 424.8 would be considered
feasible by BARON within the data used in these tests. BARON typically terminated
after 8 hours with a lower bound of about 276.1 so the relative gap is still at about 0.6776
as opposed to the desired εr of at most 0.1.

See Table 4.9 for BaR iterations and best solutions found after 8h of computation time.

εr 0.1 0.01 0.001 εa = 0.999

BaR 198334 243748 250893 175667
best found 463.3 505.6 510.3 498.0

Table 4.9.: South Brazil NR: BaR it. and best solution found after 8h

4.4. Result overview

Table 4.10 illustrates the typical runtime of NEOS using BARON for different relative
termination tolerances εr.

Thus, in terms of computation time, all test scenarios excluding the Brazil South East
system can could be solved very efficiently. The computation times for both the Garver and
the IEEE 24 bus system are so small that hundreds of these systems could be solved within
minutes 3. For the medium sized Brazil South system (46 nodes) the WR model could
be solved very quickly too, whereas the NR system already took considerable amounts of
time to be solved with tighter termination tolerances. The South East system, however,
took quite long and reached the default computation limits of NEOS. Since on the one

3in this work, NEOS was used manually via a web form but it is also possible to submit data automatically
using an interface called Kestrel. See NEOS documentation for details.

45

46 4. Evaluation

for εr = for εa =
Name 0.1 0.01 0.001 0.999

Garver NR 0 : 00 : 01 0 : 00 : 01 0 : 00 : 01 0 : 00 : 01
Garver WR 0 : 00 : 01 0 : 00 : 01 0 : 00 : 01 0 : 00 : 01
IEEE 24 NR 0 : 00 : 02 0 : 00 : 04 0 : 00 : 04 0 : 00 : 05
IEEE 24 WR 0 : 00 : 01 0 : 00 : 01 0 : 00 : 01 0 : 00 : 01

Brazil South NR 0 : 16 : 12 1 : 29 : 07 1 : 46 : 58 1 : 38 : 56
Brazil South WR 0 : 01 : 22 0 : 01 : 38 0 : 00 : 51 0 : 03 : 22

Brazil South East NR 8 : 00 : 00* 8 : 00 : 00* 8 : 00 : 00* 8 : 00 : 00*

Table 4.10.: typical BARON runtime h : mm : ss on NEOS

hand, the planning process in real-world applications of TNEP is usually performed over a
period of weeks, months or even years this computation time should still be tolerable. On
the other hand, the upper and lower bound given by BARON can still provides valuable
information for the planning process.

Table 4.11 denotes for which εr the optimum was found (first value in table) and for
which cases εr is small enough to ensure the solution found is trivially the global optimum
(second value). Here, trivially means the termination tolerances εr or εa are tight enough
to ensure there exists no other TNEP instance between the lowest bound and the best
solution found.

found/trivially global for εr = εa =
Name 0.1 0.01 0.001 0.999

Garver NR n/n** y/n** y/y** y/y**
Garver WR y/n y/n y/y y/y
IEEE 24 NR y/n y/n y/y y/y
IEEE 24 WR y/n y/n y/y y/y

Brazil South NR y/n y/n y/n y/y
Brazil South WR y/n y/n y/n y/y

Brazil South East NR unk/n n/n n/n n/n

Table 4.11.: optimum found vs. proven global (trivially) ((y)es, (n)o, or (unk)nown)

The asterisks ‘*’ and ‘**’ denote the following:

‘*’ best solution already found after approx. 1h and 15min (for South East system)

‘**’ referencing an optimum of 231 instead of 200, see section 4.3.1

46

5. Conclusion

Transmission network expansion planning, as examined in this work, deals with the ques-
tion of where to add new transmission lines at minimum cost in case the network needs
to be expanded for future increased power demand without violating the physical upper
bounds of the power transported in each line. It has been shown in this work, that by
omitting the subproblem of Steiner trees by allowing (highly) connected networks only,
TNEP is still an NP-complete problem. This was achieved by a polynomial-time reduc-
tion of 3-SAT to TNEP. To achieve this it was necessary to find a map from a 3-SAT to a
TNEP scenario that can transport the semantics of boolean formulas to the semantics of
TNEP. The key steps were as follows:

• Identifying boolean variables with variable-cells where adding an edge corresponds
with setting the variable to true or false,

• use of a “symmetry sensor” to ensure each variable is set to either true or false
exclusively and

• identifying clauses with clause-blocks whose flow constraints are fulfilled if the current
entering them is running via sufficiently many enhanced variable-cells.

The analysis of this construction made use of electrical network theory. This enables
the simplification of the highly symmetric graphs used for the analysis by short-cutting
and merging symmetric nodes, which allowed to employ Matlab for solving a fixed size
system of symbolic linear equations in order to prove correctness of the described reduction
procedure.

This underlines the fact that, from a computational viewpoint, TNEP must inevitably1

bear a high computational effort to solve optimally – even when the NP-complete sub-
problem of Steiner trees is omitted. This proves why theoretically TNEP is computation-
ally equivalent to the well known classical NP-complete problems like SAT, the travelling
salesman or Knapsack. Hence, in order to solve TNEP efficiently for big scenarios, it is
necessary to make use of approximations or/and specific network structures and details.
For example, all solutions found for the realistic test cases considered only need a relatively
small amount of additional edges (8 edges for the 24 node system, 16 edges for the 46 node
system and 28 edges for the 79 nodes system; all NR model).

1at least if P 6= NP

47

48 5. Conclusion

In the tests executed, a general sophisticated MINLP solver suitable to prove global optima
(i.e. BARON) in a state-of-the-art hardware environment (i.e. NEOS) performed generally
well. In details:

• test system with 6 nodes was solved within milliseconds

• test system with 24 nodes was solved within 4 seconds or less

• test system with 46 nodes was solved within less than 100 seconds for the WR model
and took about up to 100 minutes to solve the NR system when optimality had to
be proven

• test system with 79 nodes was too big to prove within 8h that the optimum found
was global, however a solution with 9% higher cost than the reported optimum was
already found after about 75 minutes.

Thus, according to the tests, the systems that can efficiently be solved with providing a
global optimum are seemingly of size somewhere between 50 and 80 nodes. For bigger
systems suitable solutions may still be found, however in order to guarantee the optimum
found is global, the computation time seems to become too extensive.

Moreover, it seemed that the WR models in the tests could be solved rather efficiently.
Although the focus of this work was on the NR model, this illustrates one of the biggest
advantages of the MINLP approach: It can be adapted very easily by performing only
slight changes to the GAMS model while keeping both the solver and the environment
fixed. For example, generation costs and power shortage penalties can be introduced for
the WR model or even the original AC formulation can be used.

5.1. Future work

Electrical transmission networks are typically planar as examined in [RCC09]. That is,
the graph can be drawn on a plane without edges intersecting. However, this is not the
case for the network used to illustrate NP-hardness of TNEP. Thus it may be interesting
to see if NP-hardness can also be shown for the subclass of planar networks.

In the applied research it may be favourable to integrate MINLP solvers into methods that
find approximative solutions for bigger scenarios than presented here, for example to find
upper and lower bounds or to find suitable starting points. Also approaches that need the
use of solving smaller subproblems of a big TNEP scenario can make extensive use of the
MINLP approach with high quality (or optimal) solutions of the subproblems within low
computation time requiring only a small implementation effort.

48

Bibliography

[AMC03] N. Alguacil, A. Motto, and A. Conejo, “Transmission expansion planning: a
mixed-integer lp approach,” Power Systems, IEEE Transactions on, vol. 18,
no. 3, pp. 1070 – 1077, aug. 2003.

[BB09] U. Bakshi and A. Bakshi, Network analysis & synthesis. Technical
Publications, 2009. [Online]. Available: http://books.google.de/books?id=
Yw9dTgZI8e8C

[BE05] U. Brandes and T. Erlebach, Network Analysis - Methodological Foundations.
Springer, 2005.

[Big93] N. Biggs, Algebraic graph theory, ser. Cambridge mathematical library.
Cambridge University Press, 1993. [Online]. Available: http://books.google.
com/books?id=6TasRmIFOxQC

[Bin00] S. Binato, “Optimal expansion of transmission networks by benders decom-
position and cutting planes,” Ph.D. dissertation, Federal University of Rio de
Janeiro, 2000.

[Bol98] B. Bollobás, Modern Graph Theory. Springer, 1998.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 2nd ed. The MIT Press, 2001.

[CMM98] J. Czyzyk, M. P. Mesnier, and J. J. Moré, “The neos server,” IEEE
Comput. Sci. Eng., vol. 5, no. 3, pp. 68–75, Jul. 1998. [Online]. Available:
http://dx.doi.org/10.1109/99.714603

[Die06] R. Diestel, Graph theory, ser. Graduate texts in mathematics. Springer, 2006.
[Online]. Available: http://books.google.com/books?id=aR2TMYQr2CMC

[Dol01] E. D. Dolan, “Neos server 4.0 administrative guide,” CoRR, vol.
cs.DC/0107034, 2001.

[DT68] H. Dommel and W. Tinney, “Optimal power flow solutions,” Power Apparatus
and Systems, IEEE Transactions on, vol. PAS-87, no. 10, pp. 1866 –1876, oct.
1968.

[gam] [Online]. Available: http://www.gams.com

[Gar70] L. Garver, “Transmission network estimation using linear programming,”
Power Apparatus and Systems, IEEE Transactions on, vol. PAS-89, no. 7,
pp. 1688 –1697, sept. 1970.

[GWA+99] C. Grigg, P. Wong, P. Albrecht, R. Allan, M. Bhavaraju, R. Billinton, Q. Chen,
C. Fong, S. Haddad, S. Kuruganty, W. Li, R. Mukerji, D. Patton, N. Rau,
D. Reppen, A. Schneider, M. Shahidehpour, and C. Singh, “The ieee reliability
test system-1996. a report prepared by the reliability test system task force of
the application of probability methods subcommittee,” Power Systems, IEEE
Transactions on, vol. 14, no. 3, pp. 1010 –1020, aug 1999.

49

http://books.google.de/books?id=Yw9dTgZI8e8C
http://books.google.de/books?id=Yw9dTgZI8e8C
http://books.google.com/books?id=6TasRmIFOxQC
http://books.google.com/books?id=6TasRmIFOxQC
http://dx.doi.org/10.1109/99.714603
http://books.google.com/books?id=aR2TMYQr2CMC
http://www.gams.com

50 Bibliography

[HMG+00] S. Haffner, A. Monticelli, A. Garcia, J. Mantovani, and R. Romero, “Branch
and bound algorithm for transmission system expansion planning using
a transportation model,” Generation, Transmission and Distribution, IEE
Proceedings-, vol. 147, no. 3, pp. 149 –156, may 2000.

[LCAV03] G. Latorre, R. Cruz, J. Areiza, and A. Villegas, “Classification of publica-
tions and models on transmission expansion planning,” Power Systems, IEEE
Transactions on, vol. 18, no. 2, pp. 938 – 946, may 2003.

[LNZW06] C. Lee, S. Ng, J. Zhong, and F. Wu, “Transmission expansion planning from
past to future,” pp. 257 –265, 29 2006-nov. 1 2006.

[MAT11] MATLAB, version 7.13.0 (R2011b). Natick, Massachusetts: The MathWorks
Inc., 2011. [Online]. Available: http://www.mathworks.com

[MPS10] L. S. Moulin, M. Poss, and C. Sagastizábal, “Transmission expansion planning
with re-design,” Energy Systems, vol. 1, no. 2, pp. 113–139, 2010.

[PBI97] M. Powell, M. Buhmann, and A. Iserles, Approximation Theory and
Optimization: Tributes to M.J.D. Powell. Cambridge University Press, 1997.
[Online]. Available: http://books.google.com/books?id=IchVIe9AZk8C

[RCC09] M. Rosas-Casals and B. Corominas, “Assessing european power grid reliabil-
ity by means of topological measures,” WIT transactions on ecology and the
environment, vol. 121, pp. 527–537, 2009.

[RGM96] R. Romero, R. Gallego, and A. Monticelli, “Transmission system expansion
planning by simulated annealing,” Power Systems, IEEE Transactions on,
vol. 11, no. 1, pp. 364 –369, feb 1996.

[RGR08] M. Rider, A. Garcia, and R. Romero,“Transmission system expansion planning
by a branch-and-bound algorithm,” Generation, Transmission Distribution,
IET, vol. 2, no. 1, pp. 90 –99, january 2008.

[RMGH02] R. Romero, A. Monticelli, A. Garcia, and S. Haffner, “Test systems and math-
ematical models for transmission network expansion planning,” Generation,
Transmission and Distribution, IEE Proceedings-, vol. 149, no. 1, pp. 27 – 36,
jan 2002.

[Sci11] Scilab Consortium, “Scilab: Free and open source software for numerical
computation,” 2011. [Online]. Available: http://www.scilab.org

[TCPG11] S. Torres, C. Castro, R. Pringles, and W. Guaman, “Comparison of particle
swarm based meta-heuristics for the electric transmission network expansion
planning problem,” pp. 1 –7, july 2011.

[TH11] J. Taylor and F. Hover, “Linear relaxations for transmission system planning,”
Power Systems, IEEE Transactions on, vol. 26, no. 4, pp. 2533 –2538, nov.
2011.

[TS02] M. Tawarmalani and N. Sahinidis, Convexification and global optimization
in continuous and mixed-integer nonlinear programming: theory, algorithms,
software, and applications, ser. Nonconvex optimization and its applications.
Kluwer Academic Publishers, 2002. [Online]. Available: http://books.google.
com/books?id=MjueCVdGZfoC

[vM06] A. von Meier, Electric Power Systems: A Conceptual Introduction. Wiley-
Interscience, 2006.

50

http://www.mathworks.com
http://books.google.com/books?id=IchVIe9AZk8C
http://www.scilab.org
http://books.google.com/books?id=MjueCVdGZfoC
http://books.google.com/books?id=MjueCVdGZfoC

Bibliography 51

[Weg87] I. Wegener, The Complexity of Boolean Functions. John Wiley & Sons Ltd,
and B.G. Teubner, Stuttgart, 1987.

[WW96] A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and Control.
Wiley-Interscience, Jan 1996.

51

Appendix

A. Code: Reduction 3-SAT to TNEP

The following listing contains source code written in Scilab that allows to perform the
polynomial time transformation from a 3-SAT problem to a corresponding TNEP-problem.
The input expects a 3-SAT matrix A ∈ {−1, 0, 1}m×k for k variables and m clauses where
aij = −1 denotes the negated (1 = non-negated) appearance of variable j in clause i. “0”
denotes the absence of a variable within a clause such that

∑
i |aij | = 3 for all i = 1, . . . ,m.

Notice that in the implementation, the conductances are slightly different than those men-
tioned in the the previous sections. This does not really matter since they are still within
the same classes with respect to big-O-notation (Θ(k2) etc.).

1 //
2 // collection of functions to transform 3SAT−CNF
3 // to TNEP−problem
4 //

6 ///////////////////////////////////////
7 // global variables / constants
8 ///////////////////////////////////////
9 global g_varBlockSize g_clauseBlockSize g_superSourceBlockSize

10 g_variableBlockSize = 6;
11 g_clauseBlockSize = 2;
12 g_superSourceBlockSize = 1;
13 g_superInterConSize = 1;
14 g_3clauseCombination=[1 1 1;
15 1 1 −1;
16 1 −1 1;
17 1 −1 −1;
18 −1 1 1;
19 −1 1 −1;
20 −1 −1 1;
21 −1 −1 −1];

23 ///////////////////////////////////////
24 // number of total clauses for k variables
25 // in 3SAT scenario
26 ///////////////////////////////////////
27 function y = numTotalClauses(k)
28 y = 4∗k∗(k−1)∗(k−2)/3;
29 endfunction

31 ///////////////////////////////////////
32 // number of clauses connected to one literal
33 // for a k variables 3SAT scenario
34 ///////////////////////////////////////
35 function y = numConnectedClauses(k)
36 y = 2∗(k−1)∗(k−2);
37 endfunction

53

54 Appendix

39 ///////////////////////////////////////
40 // input: matrix in 3−SAT CNF. m Rows=clauses,
41 // k columns=variables
42 // format a_ij in {−1,0,1} for negated,
43 // not used, unnegated occurence
44 // output: inflated 3−SAT formula such that EACH possible
45 // clause is contained in y
46 // (determined by number of variables only).
47 // The first rows in y will be A, i.e. y(1:m, :) = A
48 // k >= 3 assumed
49 ///////////////////////////////////////
50 function y = SAT3Inflate(A)
51 [m k] = size(A);
52 // dimensions of new matrix
53 n = numTotalClauses(k);
54 y = zeros(n,k);
55 y(1:m, 1:k) = A;

57 // generate temporary full matrix
58 // representing all possible clauses
59 allClauses = zeros(n,k);
60 // represents all possible clauses made out of 3 variables
61 combi = g_3clauseCombination;
62 // iterate all variable−subsets of size 3
63 row = 1;
64 for i1 = 1:(k−2)
65 for i2 = i1+1:(k−1)
66 for i3 = i2+1:k
67 allClauses(row:(row+7), i1) = combi(:,1);
68 allClauses(row:(row+7), i2) = combi(:,2);
69 allClauses(row:(row+7), i3) = combi(:,3);
70 row = row+8;
71 end
72 end
73 end

75 // omit sorting to save space (does not copy
76 // input matrix A)
77 keepRow = ones(n,1);
78 for i=1:m
79 keepRow =..
80 keepRow & or(allClauses∗(A(i,:)’) <> 3, ’c’);
81 end
82 // save without duplicates
83 y((m+1):n, :) = allClauses(keepRow,:);
84 endfunction

87 ///////////////////////////////////////
88 // transform inflated SAT3 to TNEP
89 ///////////////////////////////////////
90 function [y, b] = SAT3InflatedToTNEP(A)
91 [n,h] = size(A);
92 // prepare block matrizes for variables (x_i), clauses
93 [VarBlock, VarSupply] = createVariableBlock(h);
94 [ClauseBlock, ClauseSupply] = createClauseBlock(1,−1);
95 [SuperSourceBlock, SuperSourceSupply] = ..
96 createSuperSourceBlock(1, n);
97 [vbRows vbCols] = size(VarBlock);
98 [cbRows cbCols] = size(ClauseBlock);
99 [ssRows ssCols] = size(SuperSourceBlock);

101 icSize = g_superInterConSize; //size of interconnect−block
102 totalSize = ssRows + h∗vbRows + 2 + icSize + n∗cbRows;

54

A. Code: Reduction 3-SAT to TNEP 55

103 y = zeros(totalSize, totalSize);
104 b = zeros(totalSize, 1);

106 // (1.1) create supersource
107 b(1) = SuperSourceSupply;
108 rowOffset = ssRows;

110 // (1.2) create var−source and var−sink
111 b(rowOffset+1) = 1;
112 b(rowOffset+2) = −1;
113 rowOffset = rowOffset + 2;

115 // (2.1) create blocks for variables
116 for i=1:h
117 row = rowOffset+(i−1)∗vbRows+(1:vbRows);
118 col = rowOffset+(i−1)∗vbCols+(1:vbCols);
119 y(row, col) = VarBlock;
120 end

122 // (2.2) connect variables to super−source
123 affNodes = rowOffset + (−1+ (1:h))∗vbRows +2;
124 node = 1;
125 c = 1;
126 y(node, affNodes) = y(node, affNodes) − c;
127 y(affNodes, node) = y(affNodes, node) − c;

129 affNodes = affNodes +2;
130 y(node, affNodes) = y(node, affNodes) − c;
131 y(affNodes, node) = y(affNodes, node) − c;

133 // (2.3) connect variable−blocks to var−source and −sink
134 affNodes = rowOffset + (−1+ (1:h))∗vbRows +1;
135 node = ssRows + 1;
136 c = 1;
137 // conn to source
138 y(node, affNodes) = y(node, affNodes) − c;
139 y(affNodes, node) = y(affNodes, node) − c;

141 // conn to sink
142 affNodes = affNodes +5;
143 node = node+1;
144 y(node, affNodes) = y(node, affNodes) − c;
145 y(affNodes, node) = y(affNodes, node) − c;

147 rowOffset = rowOffset + h∗vbRows;
148 // (3.1) create super−interconnect
149 // update: block is merged to size of 1

151 // (3.2) connect super−interconnect to variables
152 // scale conductance according to number of clauses served
153 // by each literal
154 sicCond = numConnectedClauses(h); //2∗(h−1)∗(h−2);
155 affNodes =ssRows + 2 + (−1+ (1:h))∗vbRows+2;
156 node = rowOffset+1;
157 c = sicCond;
158 y(node, affNodes) = y(node, affNodes) − c;
159 y(affNodes, node) = y(affNodes, node) − c;

161 affNodes = affNodes +2;
162 y(node, affNodes) = y(node, affNodes) − c;
163 y(affNodes, node) = y(affNodes, node) − c;

165 rowOffset = rowOffset + icSize;
166 // (4.1) create clause−blocks

55

56 Appendix

167 for i=1:n
168 row = rowOffset + (i−1)∗cbRows + (1:cbRows);
169 col = rowOffset + (i−1)∗cbCols + (1:cbCols);
170 y(row, col) = ClauseBlock;
171 b(row) = ClauseSupply;
172 end

174 // (4.2) connect clauses to super−interconnect
175 affNodes = rowOffset + (−1 +(1:n))∗cbRows +1;
176 node = rowOffset;
177 c = 1;
178 y(node, affNodes) = y(node, affNodes) − c;
179 y(affNodes, node) = y(affNodes, node) − c;

181 // (4.3) shortcut clauses to their literals
182 // todo: optimize by using matrix operations?
183 for clause=1:n
184 cNode = rowOffset+clause∗cbRows;
185 for literal=1:h
186 if A(clause, literal) <> 0 then
187 if A(clause, literal) == −1 then // negated
188 lNode = ssRows+2 + (literal−1)∗vbRows+5;
189 elseif A(clause, literal) == 1 then
190 lNode = ssRows+2 + (literal−1)∗vbRows+3;
191 else
192 error("A should only contain −1, 0, 1.")
193 lNode = cNode;
194 end
195 y(cNode, lNode) = y(cNode, lNode) − 1;
196 y(lNode, cNode) = y(lNode, cNode) − 1;
197 end
198 end
199 end
200 // to complete Laplacian: compute diagonal elements
201 for i=1:totalSize
202 y(i,i) = −sum(y(i,:));
203 end
204 endfunction

206 ///////////////////////////////////////
207 // input: 3SAT matrix
208 // result: y − Laplacian matrix of corresponding TNEP
209 // b − supply vector
210 ///////////////////////////////////////
211 function [y, b] = SAT3toTNEP(A)
212 B=SAT3Inflate(A);
213 [y, b]=SAT3InflatedToTNEP(B);
214 endfunction

216 ///////////////////////////////////////
217 // input: k number of variables to consider (>=3)
218 // result: canonical 3SAT−clauses
219 ///////////////////////////////////////
220 function A = canonicalSAT3(k)
221 if k>=3 then
222 A = zeros(1,k);
223 A(1,1:3) = [1 1 1];
224 A = SAT3Inflate(A);
225 else
226 error("k should be greater or equal 3")
227 end
228 endfunction

230 ///////////////////////////////////////

56

A. Code: Reduction 3-SAT to TNEP 57

231 // input: k number of variables to consider (>=3)
232 // result: y − Laplacian matrix of corresponding TNEP
233 // b − supply vector
234 ///////////////////////////////////////
235 function [y, b] = canonicalSAT3toTNEP(k)
236 A = canonicalSAT3(k);
237 [y, b] = SAT3toTNEP(A);
238 endfunction

240 ///////////////////////////////////////
241 // input: k number of variables
242 // (could as well be computed from the size of L)
243 // result: matrices of varCurrents and clauseCurrents
244 // one row corresponds to one k
245 ///////////////////////////////////////
246 function [varCurrentsRows, clauseCurrentsRows] = ..
247 evaluateCanonial(L, p, k)
248 //4∗k∗(k−1)∗(k−2)/3
249 [varCurrentsRows, clauseCurrentsRows] =..
250 evaluateCastedSAT3toTNEP(L, p, k, numTotalClauses(k));
251 endfunction

253 ///////////////////////////////////////
254 // input:
255 // L laplacian of casted 3SAT
256 // p voltage potentials
257 // numVars number of variables in the inflated graph
258 // numClauses number of clauses in the inflated graph
259 ///////////////////////////////////////
260 function [varCurrents, clauseCurrents] = ..
261 evaluateCastedSAT3toTNEP(L, p, numVars, numClauses)
262 varCurrents = getVarCurrents(1,numVars,L,p);
263 clauseCurrents = ..
264 getClauseCurrents(1,numClauses,L,p,numVars);
265 endfunction

267 ///////////////////////////////////////
268 // input: y Laplacian of old graph
269 // b demand/supply vector
270 // alpha variable assignment in {−1, 0, 1} for each
271 // variable meaning {false, don’t−care, true}
272 // result: y − Laplacian matrix of corresponding TNEP
273 // b supply vector
274 // p voltage potentials
275 // varCurrents currents running through variable blocks
276 // clauseCurrents currents running through clause edge
277 // remarks: alpha should contain an assignment for exactly
278 // each variable (including artificial ones)
279 ///////////////////////////////////////
280 function [y, p, varCurrents, clauseCurrents] = ..
281 assignVariablesNEvaluate(L, b, alpha)
282 y = L;
283 numVars = length(alpha);
284 condToAdd = numConnectedClauses(numVars);
285 [nodes nodes] = size(y);

287 ssSize = g_superSourceBlockSize;
288 vbSize = g_variableBlockSize;
289 icSize = g_superInterConSize;

291 numClauses = (nodes−ssSize−2 − icSize − numVars∗vbSize)/2;
292 // number of first literal node (negative literal)
293 literals = ssSize+2 + (−1+ 1:numVars)∗vbSize + 2;

57

58 Appendix

295 enhancePositiveBranch = (alpha == 1) ∗ condToAdd;
296 enhanceNegativeBranch = (alpha == −1) ∗ condToAdd;
297 // update negative branches
298 for i=1:numVars
299 y(literals(i), literals(i)+1) =..
300 y(literals(i), literals(i)+1)..
301 − enhanceNegativeBranch(i);
302 y(literals(i)+1, literals(i)) =..
303 y(literals(i)+1, literals(i))..
304 − enhanceNegativeBranch(i);
305 // diagonal elements
306 y(literals(i),literals(i)) =..
307 y(literals(i),literals(i))..
308 + enhanceNegativeBranch(i);
309 y(literals(i)+1,literals(i)+1) =..
310 y(literals(i)+1,literals(i)+1)..
311 + enhanceNegativeBranch(i);
312 end

314 // update posistive branches
315 literals = literals + 2;
316 for i=1:numVars
317 y(literals(i), literals(i)+1) = ..
318 y(literals(i), literals(i)+1)..
319 − enhancePositiveBranch(i);
320 y(literals(i)+1, literals(i)) = ..
321 y(literals(i)+1, literals(i))..
322 − enhancePositiveBranch(i);
323 // diagonal elements
324 y(literals(i),literals(i)) = ..
325 y(literals(i),literals(i))..
326 + enhancePositiveBranch(i);
327 y(literals(i)+1,literals(i)+1) = ..
328 y(literals(i)+1,literals(i)+1)..
329 + enhancePositiveBranch(i);
330 end

332 // voltage
333 p = computeVoltagePotentials(y,b);
334 // evaluate currents
335 [varCurrents, clauseCurrents] = ..
336 evaluateCastedSAT3toTNEP(y, p, numVars, numClauses);
337 endfunction

339 ///////////////////////////////////////
340 // creates one typical variable−block (reuse),
341 // view specification
342 //
343 // input: c conductance of regular branches
344 // scale number of variables in the formula (k)
345 ///////////////////////////////////////
346 function [y, b]= createVariableBlock(scale)
347 y = zeros(g_variableBlockSize,g_variableBlockSize);
348 b = zeros(g_variableBlockSize);

350 // connect source to x_i^0, !x_i^0 and h^0
351 // (scale−1)∗(scale−2)∗2;
352 connectedClauses = numConnectedClauses(scale);
353 sCon = 1/connectedClauses;

355 y(1,[2 4]) = −sCon;
356 bCon = connectedClauses;
357 // connect x_i internally (high conductance
358 // due to symmetry)

58

A. Code: Reduction 3-SAT to TNEP 59

359 y(2,3) = −bCon;
360 y(4,5) = −bCon;

362 // connector (build resistance for literal−interflow)
363 y([3 5],6) = −sCon;
364 // add transpose to complete
365 y = y + y’;
366 endfunction

368 ///////////////////////////////////////
369 // create typical clause block,
370 // view specification
371 ///////////////////////////////////////
372 function [y, b] = createClauseBlock(c, supply)
373 y = zeros(2,2);
374 b = zeros(2,1);
375 b(2,1) = supply;

377 // upper node to lower node
378 y(2,1) = −c;
379 y(1,2) = −c;
380 endfunction

382 ///////////////////////////////////////
383 // create typical clause block,
384 // view specification
385 ///////////////////////////////////////
386 function [y, b] = createSuperSourceBlock(c, supply)
387 y = zeros(1,1);
388 b = supply;
389 endfunction

392 ///////////////////////////////////////
393 // solve current flow
394 // input: laplacian matrix L
395 // demand vector b
396 // output:
397 // voltage potential solving L∗p=b
398 // with p($)=0 ground node
399 ///////////////////////////////////////
400 function p = computeVoltagePotentials(L, b)
401 dim = length(b);
402 p = zeros(dim,1);
403 // let last node be the ground node
404 p(1:(dim−1)) = L(:,1:(dim−1))\b;
405 endfunction

407 ///////////////////////////////////////
408 // returns currents running through the variable−blocks.
409 // input: var0 − number of first var to check
410 // vark − number of last var to check
411 // return:
412 // rows: vars
413 // cols: first entry = helper current
414 // second entry = var−current
415 ///////////////////////////////////////
416 function y = getVarCurrents(var0, vark, L, p)
417 n = vark−var0+1;
418 y = zeros(n);

420 vbSize = g_variableBlockSize;
421 ssSize = g_superSourceBlockSize;

59

60 Appendix

423 rowOffset = (var0−1)∗vbSize + ssSize+2;
424 for i=1:n
425 varNode = rowOffset+(i−1)∗vbSize+6;
426 sinkNode = 3;
427 y(i) = getCurrent(varNode, sinkNode, L, p);
428 end
429 endfunction

431 ///////////////////////////////////////
432 // returns currents running through the clause−blocks
433 // specified by the first two parameters.
434 // input: cl0 − number of first clause to check
435 // clk − number of last clause to check
436 // numVars − number of variables in inflated formula
437 // return:
438 // rows: clause currents
439 ///////////////////////////////////////
440 function y = getClauseCurrents(cl0, clk, L, p, numVars)
441 n = clk−cl0+1;
442 y = zeros(n,1);

444 // get block matrix dimensions
445 vbSize = g_variableBlockSize;
446 cbSize = g_clauseBlockSize;
447 ssSize = g_superSourceBlockSize;
448 icSize = g_superInterConSize;

450 rowOffset = numVars∗vbSize + ssSize+2 + ..
451 (cl0−1)∗cbSize + icSize;
452 for i=1:n
453 clauseNode = rowOffset+(i−1)∗cbSize+1;
454 y(i, 1) = getCurrent(clauseNode, clauseNode+1, L, p);
455 end
456 endfunction

458 ///////////////////////////////////////
459 // get current from node i to node j
460 // L laplacian matrix of graph
461 // p voltage potentials computed by L∗p=b
462 ///////////////////////////////////////
463 function y = getCurrent(i,j,L,p)
464 // u∗c =i
465 y = −(p(i)−p(j))∗L(i,j);
466 endfunction

B. Complexity proof: Matlab

The configuration used for the Matlab computations was as following:

• 32 bit dual core CPU, 1.8 GHz each

• 2 GB of RAM

• Matlab version 2011b (7.13.0.564) together with the Matlab Symbolic Math Toolbox

Solving the biggest system of linear equations (38 nodes) took about 5 minutes. All other
solving and simplifying steps took less than 5 minutes each.

The code to reproduce the results is listed here. The code is similar to the one written
in Scialb, listed in the previous section. The symbolic transformation procedure for the
general case is listed next.

60

B. Complexity proof: Matlab 61

1 function [L b] = canonical3SATtoTNEPSymb(k, n0, n1, n2)
2 %CANONIAL3SATTOTNEP creates symbolic Laplacian matrix for 3SAT to TNEP.
3 % Part of the NP−hard proof of TNEP. Creates standardized
4 % 62x62 Lacplacian matrix with merged var−blocks and clause−blocks.
5 % input: symbolic variable names
6 % k − number of variables
7 % n0, n1, n2 − number of variables of each type (unenhanced,
8 % one literal enhanced or both literals enhanced. It holds: k=n0+n1+n2)
9 %%%

11 highCond = highConductance(k); % high conductance part in variable−block
12 % number of connections from each literal to the clauses (before merging
13 % clause types):

15 function [cl] = totalClausesOfType(t0,t1p,t1m,t2)
16 %TOTALCLAUSESOFTYPE returns symbolic number of clauses of type t
17 % type t uniquely defined by t=(t0,t1p,t1m,t2) with
18 % t0 − number of edges (from clause t) to var−block of type 0
19 % t1p − number of edges to unenhanced part of var−block type 1
20 % t1m − number of edges to enhanced part of var−block type 1
21 % t2 − number of edges to fully enhanced var−block
22 cl = 1;
23 next = nChooseKSymb(n0, t0); cl = cl∗next;
24 next = nChooseKSymb(n1, t1p); cl = cl∗next;
25 next = nChooseKSymb(n1−t1p, t1m); cl = cl∗next;
26 next = nChooseKSymb(n2, t2); cl = cl∗next;
27 cl = 2^(t0+t2)∗cl;
28 end

30 numClauseTypes = 20;
31 totalSize = 1 + 2 + 3∗6 + 1 + numClauseTypes;

33 L = sym(zeros(totalSize,totalSize), ’r’);
34 b = sym(zeros(totalSize,1), ’r’);

36 totalClauses = numTotalClauses(k);

38 if(abbrSymbols == 1)
39 totalClauses = tc;
40 end

42 % (1) create super−source, var−source and var−sink
43 % 1.1 super−source
44 b(1) = totalClauses;
45 L(1,1) = 2∗k;

47 % 1.1.1 connect to var−blocks
48 varNode = 1+2+2;
49 L(1,varNode) = −n0; L(varNode,1) = L(1,varNode);
50 L(1,varNode+2) = −n0; L(varNode+2,1) = L(1,varNode+2);
51 varNode = varNode +6;
52 L(1,varNode) = −n1; L(varNode,1) = L(1,varNode);
53 L(1,varNode+2) = −n1; L(varNode+2,1) = L(1,varNode+2);
54 varNode = varNode +6;
55 L(1,varNode) = −n2; L(varNode,1) = L(1,varNode);
56 L(1,varNode+2) = −n2; L(varNode+2,1) = L(1,varNode+2);

58 % 1.2 var−source
59 b(2) = 1;
60 L(2,2) = k;

62 % 1.2.1 connect to var−blocks
63 varNode = 1+2+1;

61

62 Appendix

64 L(2,varNode) = −n0; L(varNode,2) = L(2,varNode);
65 varNode = varNode +6;
66 L(2,varNode) = −n1; L(varNode,2) = L(2,varNode);
67 varNode = varNode +6;
68 L(2,varNode) = −n2; L(varNode,2) = L(2,varNode);

70 % 1.3 var−sink
71 b(3) = −1;
72 L(3,3) = k;

74 % 1.3.1 connect to var blocks
75 varNode = 1+2+6;
76 L(3,varNode) = −n0; L(varNode,3) = L(3,varNode);
77 varNode = varNode +6;
78 L(3,varNode) = −n1; L(varNode,3) = L(3,varNode);
79 varNode = varNode +6;
80 L(3,varNode) = −n2; L(varNode,3) = L(3,varNode);

82 % (2) create var blocks (with final diagonal)
83 % 2.1 type 0
84 varBlock = varBlockSymb(0, n0, k);
85 L(4:9, 4:9) = varBlock(:,:);

87 % 2.2 type 1
88 varBlock = varBlockSymb(1, n1, k);
89 L(10:15, 10:15) = varBlock(:,:);

91 % 2.3 type 2
92 varBlock = varBlockSymb(2, n2, k);
93 L(16:21, 16:21) = varBlock(:,:);

95 % (3) interconnect−block
96 L(22,22) = 2∗k∗highCond + totalClauses/2;

98 % 3.1 connect to var−blocks
99 varNode = 1+2+2;

100 L(22,varNode) = −n0∗highCond; L(varNode,22) = L(22,varNode);
101 L(22,varNode+2) = −n0∗highCond; L(varNode+2,22) = L(22,varNode+2);

103 varNode = varNode+6;
104 L(22,varNode) = −n1∗highCond; L(varNode,22) = L(22,varNode);
105 L(22,varNode+2) = −n1∗highCond; L(varNode+2,22) = L(22,varNode+2);

107 varNode = varNode+6;
108 L(22,varNode) = −n2∗highCond; L(varNode,22) = L(22,varNode);
109 L(22,varNode+2) = −n2∗highCond; L(varNode+2,22) = L(22,varNode+2);

111 % (4) create and connect all clause−blocks
112 nodeOffset = 22;
113 clauseNumber =1;
114 for i1=0:3
115 for i2=i1:3
116 for i3=i2:3
117 % count occurrences of types
118 t0 = (i1==0)+(i2==0)+(i3==0);
119 t1p = (i1==1)+(i2==1)+(i3==1);
120 t1m = (i1==2)+(i2==2)+(i3==2);
121 t2 = (i1==3)+(i2==3)+(i3==3);

123 % type is now uniquely defined by vector (t0,t1p,t1m,t2) with sum
==3

124 % calculate total number of clauses of this type
125 clausesOfType = totalClausesOfType(t0,t1p,t1m,t2);

62

B. Complexity proof: Matlab 63

127 % tmp
128 % cl = ’t’+string(clauseNumber);
129 if(abbrSymbols == 1)
130 clausesOfType = t(clauseNumber);
131 clauseNumber = clauseNumber +1;
132 end

134 % supply
135 %b(nodeOffset+2) = −clausesOfType;
136 b(nodeOffset+1) = −clausesOfType;

138 % 4.1 create clause−block
139 L(nodeOffset+1,nodeOffset+1) = 7∗clausesOfType/2;

141 % 4.2 connect to interconnect node and internally
142 L(nodeOffset+1,22) = −clausesOfType/2;
143 L(22,nodeOffset+1) = −clausesOfType/2;

145 % 4.3 connnect to respective var−blocks
146 % 4.3.1 to var−block of type 0
147 L(6,nodeOffset+1) = −t0∗clausesOfType/2;
148 L(nodeOffset+1,6) = L(6,nodeOffset+1);
149 L(nodeOffset+1,8) = L(6,nodeOffset+1);
150 L(8,nodeOffset+1) = L(6,nodeOffset+1);

152 % 4.3.2 to var−block of type 1 (negated, then unnegated)
153 L(12,nodeOffset+1) = −t1m∗clausesOfType;
154 L(nodeOffset+1,12) = L(12,nodeOffset+1);
155 L(14,nodeOffset+1) = −t1p∗clausesOfType;
156 L(nodeOffset+1,14) = L(14,nodeOffset+1);

158 % 4.3.3 to var−block of type 2
159 L(18,nodeOffset+1) = −t2∗clausesOfType/2;
160 L(nodeOffset+1,18) = L(18,nodeOffset+1);
161 L(nodeOffset+1,20) = L(18,nodeOffset+1);
162 L(20,nodeOffset+1) = L(18,nodeOffset+1);
163 % next clause
164 nodeOffset = nodeOffset + 1;
165 end
166 end
167 end

169 end

A few helper functions used in the previous code are listed here:

1 function [y] = numTotalClauses(k)
2 %NUMTOTALCLAUSES number of total clauses in 3−SAT scenario
3 % featuring k variables
4 y = 4∗k∗(k−1)∗(k−2)/3;
5 end

7 function [y] = numConnClauses(k)
8 %NUMCONNCLAUSES
9 % number of clauses connected to one literal

10 % for a k variables 3SAT scenario
11 y = 2∗(k−1)∗(k−2);
12 end

14 function [y] = nChooseKSymb(n, k)
15 %NCHOOSEKSYMB performs operation "n choose k" with symbolic var n
16 % and numeric var k
17 y = 1;

63

64 Appendix

19 if k<0
20 y = 0;
21 elseif k==0
22 y = 1;
23 else
24 y = n;
25 for i=1:(k−1)
26 y = y∗(n−i)/i;
27 end
28 y = y/k;
29 end
30 end

32 function [y] = mergeNodesSymb(i,j,L)
33 %MERGENODESSYMB merges two nodes i,j of laplacian matrix L
34 % ignores possibly arising loops
35 % deletes row and column j and sets i as the new combined node
36 [n m] = size(L);
37 if(m ~=n || i == j || i<1 || i>n ||j<1 || j>n)
38 disp(’error: nodes out of bound or equal; or invalid laplacian’);
39 %y = zeros(1,1);
40 else
41 % make sure i < j
42 if(i > j)
43 tmp = j;
44 j = i;
45 i = tmp;
46 end
47 indices = [1:(j−1) (j+1):n];
48 y = sym(zeros(n−1,n−1), ’r’);
49 y(:,:) = L(indices, indices);
50 % merge (possible) parallel edges
51 y(i,:) = L(i, indices) + L(j, indices);
52 y(:,i) = L(indices ,i) + L(indices,j);
53 % set node degree
54 y(i,i) = L(i,i) + L(j,j) + L(i,j) + L(j,i);
55 end
56 end

58 function [y] = lowConductance(k)
59 %LOWCONDUCTANCE
60 y = k^(−2);
61 end

63 function [y] = highConductance(k)
64 %HIGHCONDUCTANCE
65 y = k^2;
66 end

68 function L = varBlockSymb(t, scaleName, k)
69 %%%%%%%%%%%%%%%%%%%/
70 % create raw Variable−Block.
71 % Result will have the final diagonal elements
72 % (to finish it, it will only have to be interconnected to
73 % supersource, var−source, clauses etc.)
74 %
75 % input t − type of block to create (0,1 or 2)
76 % scale − name of variable to scale
77 % (for example ’n_0’ for type 0)
78 %%%%%%%%%%%%%%%%%%%/
79 % t out of {0,1,2}

81 L = zeros(6,6);
82 L = sym(L,’r’);

64

B. Complexity proof: Matlab 65

84 highCond = highConductance(k);
85 lowCond = lowConductance(k);
86 numConnCl = numConnClauses(k);

88 % low conductance connections
89 L(1,2) = −lowCond;
90 L(1,4) = −lowCond;
91 L(3,6) = −lowCond;
92 L(5,6) = −lowCond;

94 % high cond connections depending on type
95 L(2,3) = −highCond;
96 L(4,5) = −highCond;

98 enhancedCond = 2∗highCond;
99 %enhancedCondNeg = mulf(2∗highCond, ’−1’);

101 % type 0: no enhanced connections
102 if(t == 0)
103 % ... do nothing
104 elseif t == 1
105 % type 1: one enhanced connection
106 L(2,3) = −enhancedCond;
107 elseif t == 2
108 % type 2: both connections enhanced
109 L(2,3) = −enhancedCond;
110 L(4,5) = −enhancedCond;
111 end

113 L = L + L.’;

115 % diagonal elements (final)
116 L(1,1) = 2∗lowCond+1;

118 L(2,2) = (2+(t>=1))∗highCond + lowCond+1;
119 L(3,3) = (1+(t>=1))∗highCond + lowCond + numConnCl;

121 L(4,4) = (2+(t>=2))∗highCond + lowCond+1;
122 L(5,5) = (1+(t>=2))∗highCond + lowCond + numConnCl;
123 L(6,6) = 2∗lowCond+1;

125 % scale all matrix elements
126 L = scaleName∗L;

128 end

The simple case when only SAT-consistent variables are considered is listed next:

1 function [L b] = simple3SATtoTNEPSymb(k)
2 %SIMPLE3SATTOTNEP creates symbolic Laplacian matrix for 3SAT to TNEP.
3 % Part of the NP−hard proof of TNEP. Creates reduced
4 % 18x18 Lacplacian matrix with single big merged var−block and 4 clause−blocks.
5 %
6 % input: symbolic variable names
7 % k − number of variables
8 %%%

10 highCond = highConductance(k); % high conductance part in variable−block

12 function [cl] = totalClausesOfType(t1p,t1m)
13 %TOTALCLAUSESOFTYPE returns symbolic number of clauses of type t
14 % t1p − number of edges to unenhanced part of var−block type 1
15 % t1m − number of edges to enhanced part of var−block type 1

65

66 Appendix

16 cl = 1;
17 next = nChooseKSymb(k, t1p); cl = cl∗next;
18 next = nChooseKSymb(k−t1p, t1m); cl = cl∗next;
19 end

21 numClauseTypes = 4;
22 totalSize = 1 + 2 + 1∗6 + 1 + 2∗numClauseTypes;

24 L = sym(zeros(totalSize,totalSize), ’r’);
25 b = sym(zeros(totalSize,1), ’r’);

27 totalClauses = numTotalClauses(k);

29 % (1) create super−source, var−source and var−sink
30 % 1.1 super−source
31 b(1) = totalClauses;
32 L(1,1) = 2∗k;

34 % 1.1.1 connect to var−block
35 varNode = 1+2+2;
36 L(1,varNode) = −k; L(varNode,1) = L(1,varNode);
37 L(1,varNode+2) = −k; L(varNode+2,1) = L(1,varNode+2);

39 % 1.2 var−source
40 b(2) = 1;
41 L(2,2) = k;

43 % 1.2.1 connect to var−block
44 varNode = 1+2+1;
45 L(2,varNode) = −k; L(varNode,2) = L(2,varNode);

47 % 1.3 var−sink
48 b(3) = −1;
49 L(3,3) = k;

51 % 1.3.1 connect to var block
52 varNode = 1+2+6;
53 L(3,varNode) = −k; L(varNode,3) = L(3,varNode);

55 % (2) create var block (with final diagonal)
56 % 2.1 type 1 (only type)
57 varBlock = varBlockSymb(1, k, k);
58 L(4:9, 4:9) = varBlock(:,:);

60 % (3) interconnect−block
61 L(10,10) = 2∗k∗highCond + totalClauses;

63 % 3.1 connect to var−block
64 varNode = 1+2+2;
65 L(10,varNode) = −k∗highCond; L(varNode,10) = L(10,varNode);
66 L(10,varNode+2) = −k∗highCond; L(varNode+2,10) = L(10,varNode+2);

68 % (4) create and connect all clause−blocks
69 nodeOffset = 10;

71 for t1p=0:3
72 t1m = 3−t1p;

74 % type is now uniquely defined by vector (t0,t1p,t1m,t2) with sum
==3

75 % calculate total number of clauses of this type
76 clausesOfType = totalClausesOfType(t1p,t1m);

78 % supply

66

B. Complexity proof: Matlab 67

79 b(nodeOffset+2) = −clausesOfType;

81 % 4.1 create clause−block
82 L(nodeOffset+1,nodeOffset+1) = 2∗clausesOfType;
83 L(nodeOffset+2,nodeOffset+2) = 4∗clausesOfType;

85 % 4.2 connect to interconnect node and internally
86 L(nodeOffset+1,10) = −clausesOfType;
87 L(10,nodeOffset+1) = −clausesOfType;
88 L(nodeOffset+1,nodeOffset+2) = −clausesOfType;
89 L(nodeOffset+2,nodeOffset+1) = −clausesOfType;

91 % 4.3 connnect to var−block
92 % 4.3.2 to var−block of type 1 (negated, then unnegated)
93 L(6,nodeOffset+2) = −t1m∗clausesOfType;
94 L(nodeOffset+2,6) = L(6,nodeOffset+2);
95 L(8,nodeOffset+2) = −t1p∗clausesOfType;
96 L(nodeOffset+2,8) = L(8,nodeOffset+2);

98 % next clause
99 nodeOffset = nodeOffset + 2;

100 end
101 end

The following script can be run to recover the results for the general case:

1 % Main script to perform NP−hard proof
2 disp(’(1) Creating symbolic variables.’);
3 syms k n0 n1 n2;

5 disp(’(2) Creating symbolic Laplacian matrix and supply vector.’);
6 [L b] = canonical3SATtoTNEPSymb(k, n0, n1, n2);

8 disp(’(3) Simplifying (first time). ’);
9 L = simplify(L);
10 b = simplify(b);

12 disp(’(4) Merging variable−blocks.’);
13 L = mergeNodesSymb(15+3, 15+5, L);
14 L = mergeNodesSymb(15+2, 15+4, L);
15 % delete corresponding entries from b
16 b = b([1:19 21:end]);
17 b = b([1:18 20:end]);

19 L = mergeNodesSymb(3+3, 3+5, L);
20 L = mergeNodesSymb(3+2, 3+4, L);
21 % delete corresponding entries from b
22 b = b([1:7 9:end]);
23 b = b([1:6 8:end]);

25 disp(’(5) substituting n2=k−n0−n1.’);
26 L = subs(L,n2,k−n0−n1);
27 b = subs(b,n2,k−n0−n1);

29 disp(’(6) simplifying (second time).’);
30 L = simplify(L);
31 b = simplify(b);

33 disp(’(7) solve for var−block currents (set p(var−sink)=0). This may take a
while. Please wait.’);

35 x = L(:, [1 2 4:end])\b;
36 disp(’simplifying necessary results.’);
37 res = sym(zeros(3,1), ’r’);

67

68 Appendix

38 res(1) = simplify(x(7−1));
39 res(2) = simplify(x(13−1));
40 res(3) = simplify(x(17−1));

42 disp(’computing differences.’);
43 delta = sym(zeros(2,1), ’r’);
44 delta(1) = simplify(res(2)−res(1));
45 delta(2) = simplify(res(3)−res(2));

47 disp(’done’);

The following script can be run to recover the results for the simple case (only SAT-
consistent instances):

1 syms k;

3 disp(’Generating Laplacian matrix’);
4 [L b] = simple3SATtoTNEPSymb(k);
5 disp(’Simplifying’);
6 L = simplify(L);
7 b = simplify(b);

9 i = 3;

11 disp(’Setting node 3 as 0 potential.’);

13 L0 = L(:,[1:(i−1) (i+1):end]);
14 b0 = b;
15 disp(’Solving equation system’);
16 p0 = L0\b0;

18 p = simplify([p0(1:(i−1)).’ 0 p0(i:end).’].’);

C. GAMS model for TNEP

The GAMS model used for the tests is listed here. It was written using GAMS IDE from
[gam], Build 23.7.3 WIN 27723.27726 VS8 x86/MS together with the default free (demo)
license. The parameter and variable names follow the notation in [RMGH02] rather than
the one used in this work.

1 SETS
2 i nodes,
3 b branches;

5 Alias (i,j);

7 ∗ include first data file
8 $include ib.gms

10 SET bmap(b,i,j) branch to nodes incidence matrix
11 ;

14 PARAMETERS
15 load(i) demand of each node
16 genLvl(i) initial supply of each node
17 susc(b) susceptance per edge in branch k
18 nMin(b) minimum (initial) number of edges for branch b
19 nMax(b) maximum number of edges for branch b
20 capacity(b) capacity for each edge of branch b

68

C. GAMS model for TNEP 69

21 costs(b) cost per edge added
22 pScale voltage scale /100/
23 ;

25 ∗second data file
26 $include parameters.gms

28 VARIABLES
29 z total cost
30 n(b) total number of edges in branch b (most important variable)
31 p(i) voltage angle at node i (determines flows)
32 f(b) total flow on branch b (aux. var)
33 ;
34 POSITIVE VARIABLE p;
35 INTEGER VARIABLE n;
36 n.lo(b) = nMin(b);
37 n.up(b) = nMax(b);
38 f.lo(b) = −1000;
39 f.up(b) = 1000;
40 p.up(i) = 1000;

42 EQUATIONS
43 cost added edges times cost per edge
44 kpl(b,i,j) Kirchhoff’s potential law (c∗u=i)
45 kcl(i) Kirchhoff’s current law (outflow + load = inflow +

supply)
46 flowMin(b,i,j) minimum flow
47 flowMax(b,i,j) maximum flow
48 ;
49 cost .. z =e= sum(b, (n(b)−nMin(b))∗costs(b));

51 kpl(b,i,j)$bmap(b,i,j).. f(b) =e= n(b)∗susc(b)∗(p(i)−p(j))∗pScale ;
52 ∗ assume fixed generation for each node with sum(supply) = sum(demand)
53 ∗ in this model without redispatch
54 kcl(i).. sum((b,j)$bmap(b,i,j), f(b)) + load(i)
55 =e= sum((b,j)$bmap(b,j,i), f(b)) + genLvl(i);
56 flowMin(b,i,j)$bmap(b,i,j).. f(b) =g= −n(b)∗capacity(b);
57 flowMax(b,i,j)$bmap(b,i,j).. f(b) =l= n(b)∗capacity(b);

59 MODEL tnep /ALL/ ;
60 OPTION minlp = baron;
61 ∗ include option file
62 tnep.optfile = 1;
63 ∗ set runtime limit in seconds (max 8h)
64 tnep.reslim = 18000;
65 SOLVE tnep USING minlp MINIMIZING z ;

As an example, the input files used for the Garver system are as following

1 SET i /1∗6/;
2 SET b /1∗15/;

1 SET bmap(b,i,j) branch to nodes incidence matrix
2 / 1 .1 .2, 2 .1 .4, 3 .1 .5, 4 .2 .3, 5 .2 .4,
3 6 .3 .5, 7 .1 .3, 8 .1 .6, 9 .2 .5, 10 .2 .6,
4 11 .3 .4, 12 .3 .6, 13 .4 .5, 14 .4 .6, 15 .5 .6/
5 ;
6 PARAMETERS
7 susc(b) susceptance per edge
8 / 1 0.5000000000, 2 0.3333333333, 3 1.0000000000, 4 1.0000000000, 5

0.5000000000, 6 1.0000000000, 7 0.5263157895, 8 0.2941176471, 9
0.6451612903, 10 0.6666666667, 11 0.3389830508, 12 0.4166666667, 13
0.3174603175, 14 0.6666666667, 15 0.3278688525

69

70 Appendix

9 /
10 costs(b) cost per edge added
11 / 1 40.00, 2 60.00, 3 20.00, 4 20.00, 5 40.00,
12 6 20.00, 7 38.00, 8 68.00, 9 31.00, 10 30.00,
13 11 59.00, 12 48.00, 13 63.00, 14 30.00, 15 61.00
14 /
15 capacity(b) capacity for each edge
16 / 1 100.0000000000, 2 80.0000000000, 3 100.0000000000, 4 100.0000000000, 5

100.0000000000, 6 100.0000000000, 7 100.0000000000, 8 70.0000000000, 9
100.0000000000, 10 100.0000000000, 11 82.0000000000, 12 100.0000000000, 13
75.0000000000, 14 100.0000000000, 15 78.0000000000

17 /
18 nMin(b) minimum (initial) number of edges for branch b
19 / 1 1, 2 1, 3 1, 4 1, 5 1,
20 6 1, 7 0, 8 0, 9 0, 10 0,
21 11 0, 12 0, 13 0, 14 0, 15 0
22 /
23 nMax(b) maximum number of edges for branch b
24 / 1 4, 2 4, 3 4, 4 4, 5 4,
25 6 4, 7 3, 8 3, 9 3, 10 3,
26 11 3, 12 3, 13 3, 14 3, 15 3
27 /
28 genLvl(i) / 1 50.0000000000, 2 0.0000000000, 3 165.0000000000, 4 0.0000000000,

5 0.0000000000, 6 545.0000000000/
29 load(i) / 1 80.0000000000, 2 240.0000000000, 3 40.0000000000, 4 160.0000000000,

5 240.0000000000, 6 0.0000000000/
30 ;

For use with NEOS, the input files need to be merged into the model or put into a GDX
file (see GAMS documentation).

A typical BARON option file that was used is listed here:

1 n.prior = 10
2 f.prior = 1
3 p.prior = 1
4 EpsR = 1e−2

70

	Contents
	1 Introduction
	1.1 Prerequisites
	1.2 Matlab and Scilab

	2 Electrical Networks and TNEP
	2.1 Introduction
	2.2 Basic Definitions
	2.2.1 Merging parallel Edges

	2.3 Basic Properties
	2.4 Advanced Properties
	2.4.1 Symmetry
	2.4.2 Merging Nodes

	2.5 Transmission Network Expansion Planning (TNEP)
	2.5.1 Non-monotonic behaviour

	3 Complexity of TNEP
	3.1 Basic Ideas
	3.2 Reduction procedure
	3.3 Examples
	3.4 Analysis

	4 Evaluation
	4.1 Model adjustment NR/WR
	4.2 BARON and the NEOS server
	4.2.1 Practical Concerns

	4.3 Test cases
	4.3.1 Garver
	4.3.2 IEEE 24 bus
	4.3.3 Brazil South
	4.3.4 Brazil South East

	4.4 Result overview

	5 Conclusion
	5.1 Future work

	Bibliography
	Appendix
	A Code: Reduction 3-SAT to TNEP
	B Complexity proof: Matlab
	C GAMS model for TNEP

