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Abstract

In this work, we study m-uniform hypergraphs captured by different geometric
range families. For the range family RR of hanging axis-aligned rectangles, the
hyperedges of a capturing hypergraph all consist of axis-aligned rectangles which
contain exactlym points and whose upper left corner intersects the first angle bisector.
We want to properly k-color this hypergraph, meaning coloring the point set with k
colors such that every hyperedge consists of points with at least two different colors.
Thereby, we try to specify the smallest number of colors k, such that any m-uniform
hypergraph admits a proper k-coloring. We address the problem of hanging rectangles
by investigating the range families of hanging bottomless rectangles, hanging right-
open rectangles and their union. For the latter, we show that k ≥ 4 for m = 2,
k ≤ 4 for m ≥ 3 and for m ≥ 7, any hypergraph captured by this range family is
proper 3-colorable. Additionally, we prove that for m = 3 any hypergraph captured
by hanging bottomless rectangles is proper 2-colorable. This is an improvement
compared to non-hanging bottomless rectangles, which are only proper 3-colorable for
m = 3 [Kes12]. We further give a lower bound of k > 2 for the union of non-hanging
bottomless rectangles and hanging right-open rectangles for m ≥ 2. This result is
achieved with the help of a semi-online approach for hanging bottomless and hanging
right-open rectangles. The approach is then transferred into an offline setting for
non-hanging bottomless and hanging right-open rectangles. It is similar to the offline
approach of Chekan and Ueckerdt [CU21] for bottomless rectangles and horizontal
strips. For hanging rectangles, the lower bound of the proper colorability for m = 2
is four.

Deutsche Zusammenfassung

In dieser Arbeit untersuchen wir m-uniforme Hypergraphen, die von verschiedenen
Familien von Bereichen erfasst werden. Für die Familie von Bereichen RR von hängen-
den achsenparallelen Rechtecken bestehen alle Hyperkanten eines Hypergraphen, der
durch diese Familie erfasst wird, aus achsenparallelen Rechtecken, die exaktm Punkte
beinhalten und deren obere linke Ecke die erste Winkelhalbierende schneidet. Wir
wollen diesen Hypergraphen zulässig k-färben, was bedeutet, dass die Punktmenge
mit k Farben gefärbt wird, sodass jede Hyperkante aus Punkten mit mindestens zwei
verschiedenen Farben besteht. Dabei versuchen wir die kleinste Anzahl an Farben
k zu spezifizieren, sodass jeder m-uniforme Hypergraph eine zulässige k-Färbung
besitzt. Wir gehen das Problem der hängenden Rechtecke an, indem wir die Familie
von Bereichen von hängenden bodenlosen Rechtecken, hängenden rechts-offenen
Rechtecken und deren Vereinigung untersuchen. Für letztere zeigen wir, dass k ≥ 4
für m = 2, dass k ≤ 4 für m ≥ 3 und für m ≥ 7 gilt, dass jeder Hypergraph, der
durch diese Familie von Bereichen erfasst wird, zulässig 3-färbbar ist. Zusätzlich
beweisen wir, dass für m = 3 jeder Hypergraph, der durch hängende bodenlose
Rechtecke erfasst wird, zulässig 2-färbbar ist. Das ist eine Verbesserung verglichen
mit nicht-hängenden bodenlosen Rechtecken, die nur zulässig 3-färbbar sind fürm = 3
[Kes12]. Weiter geben wir eine untere Schranke von k > 2 für die Vereinigung von
nicht-hängenden bodenlosen Rechtecken und hängenden rechts-offenen Rechtecken an.
Dieses Ergebnis ist mit der Hilfe eines Semi-online-Ansatzes für hängende bodenlose
und hängende rechts-offene Rechtecke erzielt worden. Der Ansatz ist dann in ein
Offline-Szenario für nicht-hängende bodenlose und hängende rechts-offene Rechtecke
überführt worden. Er ist ähnlich wie der Offline-Ansatz von Chekan und Ueckerdt
[CU21] für bodenlose Rechtecke und horizontale Streifen. Für hängende Rechtecke
ist die untere Schranke für die zulässige Färbbarkeit für m = 2 vier.
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1. Introduction

In this work we will focus on range-capturing hypergraphs H(V,R,m) given by a set of
points V ⊂ R2, a range family R and a constant m which specifies the number of points
of each hyperedge. We focus on geometric range families. A range family is a set of
ranges, whereby a range is defined as a set of points R ⊂ R2. A point set X ⊆ V defines a
hyperedge of H(V,R,m), if and only if there exists a range R ∈ R that captures X, i.e.,
R ∩ V = X.

A k-coloring of a hypergraph is a coloring of the point set V with k ∈ N distinct colors.
We say that a hypergraph is polychromatic k-colorable, if every hyperedge contains all k
available colors. A proper k-coloring of a hypergraph is a coloring with k colors, whereby
each edge contains at least two of them.

a) b)

Figure 1.1: Example of hypergraphs captured by a) hanging axis-aligned bottomless rect-
angles and b) hanging axis-aligned rectangles.

We will focus on the range family RR of hanging axis-aligned rectangles. A range R ∈ RR is
defined as the point set {(x, y) ∈ R2 | a ≤ x ≤ b, c ≤ y ≤ a} for some constants a, b, c ∈ R.
According to the definition of a range R ∈ RR, we say that an axis-aligned rectangle
is hanging, if its upper left corner intersects the first angle bisector. An example for a
hypergraph captured by hanging rectangles is shown in Figure 1.1.

We want to clearly separate hanging rectangles from pierced rectangles. For a hanging
rectangle, only its upper left corner intersects the first angle bisector. In contrast, we
describe the range family RP describing pierced rectangles as

RP = {{(x, y) ∈ R2 | a ≤ x ≤ b, c ≤ y ≤ d} | a, b, c, d ∈ R∧∃e ∈ R : a ≤ e ≤ b, c ≤ e ≤ d} .
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1. Introduction

Thus, for each pierced rectangle, there exists a point (e, e), i.e. a point which is part of the
first angle bisector, that is also part of the pierced rectangle. Note that e can differ for
each rectangle. These pierced rectangles form a superset of the hanging rectangles. The
latter are pierced rectangles that intersect the first angle bisector in exactly one point:
their upper left corner. In this work, we will only consider hanging rectangles.

1

1

a) b) c)

d) e) f)

x

y

Figure 1.2: Examples of hypergraphs captured by different range families: a) axis-aligned
rectangles, b) axis-aligned bottomless rectangles, c) stabbed translate unit disks
whereby all edges must contain the origin, d) axis-aligned stripes, e) homothets
of axis-aligned squares and f) homothets of convex polygons.

We will now look at several results in the literature about the colorability of other geometric
range families. A few examples of hypergraphs captured by different range families are
shown in Figure 1.1 and Figure 1.2. When studying proper colorings of hypergraphs
captured by a range family R, we often search for the smallest number of colors χm for
which there exists a constant m such that every hypergraph H(V,R) having at least m
points in every hyperedge admits a proper χm-coloring. For uniform hypergraphs, the
question asked for these proper-coloring problems is the following:

Question 1.1. Let H(V,R,m) be an m-uniform hypergraph captured by the range family
R. For a sufficiently large m, what is the smallest number of colors χm = χR such that H
admits a proper χm-coloring?

There already exist lots of studies on this question for many different range families. A few
examples are presented in the following.

1. For axis-aligned rectangles, χm =∞ [CPST09].

2. For axis-aligned bottomless rectangles, χm = 2. An axis-aligned bottomless rectangle
is a rectangle whose lower side lies at y = −∞, i.e., below all points of the hypergraph.
More precisely, χ4 = 2, whereas for 2 ≤ m ≤ 3, we need at least three colors, to admit
a proper coloring of an m-uniform hypergraph captured by axis-aligned bottomless
rectangles [Kes12].

3. For unit disks, χm = 3 [PP16, DP21b]. A unit disk is a circle with radius r = 1.
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4. For stabbed unit disks, χm = 2. A stabbed unit disk is a unit disk that contains one
fixed point, e.g. the origin. This proper 2-coloring can already be found for m ≥ 9
[DP20].

5. For disks with arbitrary sizes, thus homothets of disks, χm = 4 [DP20].

6. For stabbed homothets of disks, χm = 3 [AKP20, DP20].

7. For axis-aligned strips in two dimensions, χm = 2 [ACC+11]. An axis-aligned strip in
R2 is described by the point set {(x, y) ∈ R2 | a ≤ x ≤ b} or {(x, y) ∈ R2 | a ≤ y ≤ b}
for a, b ∈ R.

8. For homothets of axis-aligned squares and homothets of a fixed parallelogram, χm = 2
[AKV17].

9. For translates of squares, χm = 2 [Pac86].

10. For homothets of triangles, χm = 2 [KP15].

11. For homothets of an arbitrary convex polygon, 2 ≤ χm ≤ 3 [KP19].

12. For translates of an arbitrary convex polygon, χm = 2 [PT10b].

13. For half-planes, χm = 2 [SY10, Kes12].

14. For quadrants, χm = 2 [KP15].

A translate of a geometric figure is a translation of the figure in another position in the
plane, whereby the size of the figure remains the same. A homothet of a figure is a
translation and a scaling, whereby all relations of the figure stay the same.

When looking at polychromatic colorings, we search for the smallest number m = mk, such
that every m-uniform hypergraph is polychromatic k-colorable. Note that for m = 2, every
hypergraph H(V,R,m) is polychromatic k-colorable if and only if it is proper k-colorable.
Observe also that for any m, if the hypergraph H(V,R,m) admits a polychromatic k-
coloring, H also admits a proper k-coloring. The question that is studied for polychromatic
colorings of hypergraphs is the following:

Question 1.2. Let H(V,R,m) be an m-uniform hypergraph captured by the range family
R. What is the smallest number m = mk for the uniformity of H, such that H admits a
polychromatic k-coloring?

In the following we will show some of the known results. Note that if the hypergraph
H(V, E ,m) admits no polychromatic k-coloring for k ≥ 2 and any m, it especially admits
no polychromatic 2-coloring. We therefore write for the corresponding range families that
m2 =∞ holds. Note also that it always holds that mk ≥ k.

1. For axis-aligned rectangles, m2 = ∞ [CPST09]. We will repeat the proof for this
result in Section 1.3.

2. For axis-aligned bottomless rectangles, it is shown that m2 = 4 [Kes12] and more
generally, 1.677k − 2.5 < mk ≤ 3k − 2 [ACC+13].

3. For unit disks, m2 =∞ [PP16].

4. For stabbed unit disks, mk ≤ 8k − 7 [DP20].

5. For axis-aligned strips in two dimensions, thus horizontal and vertical strips, mk ≤
2k − 1. For axis-aligned strips in d dimensions, it holds that

2 ·
⌈(2d− 1)k

2d

⌉
− 1 ≤ mk ≤ k(4 ln k + ln d)

3



1. Introduction

[ACC+11]. It was recently proven by Planken [Pla22], that it even holds that
mk ∈ O(k) for axis-aligned strips in d dimensions.

6. For homothets of axis-aligned squares and homothets of a fixed parallelogram, m2 ≤
215 and mk ∈ O(k8.75) [AKV17].

7. For translates of squares, mk ∈ O(k) [ACC+10].

8. For homothets of triangles, 5 ≤ m2 ≤ 9 and mk ∈ O(k4.09) [KP15].

9. For translates of an arbitrary convex polygon, mk ∈ O(k) [GV09].

10. For half-planes, m2 = 3 [Kes12] and mk = 2k − 1 [SY10].

11. For quadrants, mk = k [KP15].

For an up-to-date overview of other geometric hypergraphs and their properties regarding
colorability, we refer to [MTA].

1.1 Union of Range Families

We now take a look at the union of different range families and their polychromatic
colorability properties. Chekan [Che21] and Chekan and Ueckerdt [CU21] investigated the
union of several range families. For example, they obtained the following results:

1. For the union of quadrants with two adjacent directions, mk ≤ 2k − 1 [Che21].

2. For the union of quadrants with two non-adjacent directions, mk ≤ 3k − 3 [Che21].

3. For the union of quadrants with three directions and for the union of quadrants in
all four directions, mk ≤ 4k − 3 [Che21].

4. For the union of bottomless rectangles and quadrants in all four directions,mk ≤ 5k−2
[Che21].

5. For axis-aligned strips and quadrants in all four directions, mk ≤ 10k − 1 [CU21].

6. For the union of bottomless (or topless) rectangles and horizontal strips, m2 = ∞
[CU21].

7. For the union of south-west or north-east quadrants or bottomless or topless rectangles
and diagonal strips, m2 =∞ [CU21, Che21].

8. For the union of north-west and south-east quadrants and axis-aligned and diagonal
strips, mk ≤ d4k ln k + k ln 3e+ 4k [CU21].

9. For the union of topless and bottomless rectangles, it holds that mk ∈ O(k8.75)
[CU21]. They follow this from the result that mk ∈ O(k8.75) for axis-aligned squares
by [AKV17]. We will repeat the reduction of topless and bottomless rectangles to
axis-aligned squares in Section 1.5.

We will partition our problem of hanging rectangles into the union of two range families in
the upcoming chapters: the range families of hanging bottomless rectangles and of hanging
right-open rectangles. These range families are formally introduced later. We will see that
a hypergraph captured by the union of them forms a subset of a hypergraph with the same
uniformity and set of points captured by hanging rectangles.

4



1.2. Dual hypergraphs

1.2 Dual hypergraphs

For a hypergraph H(V,R) captured by the range family R, there exists a dual hypergraph
H∗(R′, V ). Its vertices consist of a finite set of ranges R′ ⊆ R. For v ∈ V , a hyperedge
of H∗ is the set of ranges covering v. We refer to H∗(R′, V,m) for m ∈ N as the dual
hypergraph whose hyperedges all have at least size m. The polychromatic coloring problem
concerning these dual hypergraphs H∗(R′, V,m) is therefore simply defined as follows: We
are searching for a k-coloring c : R′ → {1, . . . , k} of the ranges such that every point v ∈ V
that is covered by at least m different ranges is covered by at least one range of each color.
The main question studied for polychromatic colorings of those dual hypergraphs is the
following:

Question 1.3. For R′ ⊆ R, let H∗(R′, V,m∗) be a dual hypergraph captured by the range
family R. What is the smallest number m∗ = m∗k for the uniformity of H∗, such that H∗
admits a polychromatic k-coloring?

Again, we will show some of the already known results in the literature:

1. For axis-aligned rectangles, m∗k =∞ [PT10a].

2. For axis-aligned bottomless rectangles, m∗2 = 3 [Kes12] and m∗k ∈ O(k5.09) [KP15].

3. For axis-aligned strips, m∗2 = 3 and k ≤ m∗k ≤ 2k − 1 in the plane. For axis-aligned
strips in d dimensions, it holds that⌊

k

2

⌋
d+ 1 ≤ m∗k ≤ d(k − 1) + 1

[ACC+11]. We will repeat the proof of this result in Section 1.4.

4. For translates of squares, m∗k ∈ O(k) [ACC+10].

5. For homothets of triangles, 5 ≤ m∗2 ≤ 9 and m∗k ∈ O(k5.09) [KP15].

6. For translates of an arbitrary convex polygon, m∗k ∈ O(k) [GV09].

7. For half-planes, m∗2 = 3 [Ful10] and 2k − 1 ≤ m∗k ≤ 3k − 2 [SY10].

8. For hanging arrangements, m∗k ≤ 2k − 1 [CKM+20]. A hanging arrangement is a
configuration that is attached to a line of slope one.

Another coloring problem for hypergraphs is called conflict-free coloring and was introduced
by Even et al. [ELRS03]. For a hypergraph H(V, E), a conflict-free coloring is a coloring of
the points in V with as few colors as possible such that every hyperedge e ∈ E contains a
point that has a unique color among all points in e. This means that we search for a coloring
c : V → {1, . . . , k} with k as small as possible, such that for every hyperedge e ∈ E a point
v ∈ V exists that is contained in e and for which it holds that for all other points w ∈ e
with w 6= v, the coloring of w is different to that of v, i.e., ∀w ∈ e, w 6= v : c(w) 6= c(v).

We can extend this coloring problem to a dual hypergraph H∗(E , V ). Thereby, we search
for a coloring c : E → {1, . . . , k} of the hyperedges with k colors, such that every node
v ∈ V is covered by a hyperedge e ∈ E with unique color among all hyperedges covering v,
i.e.,

∀v ∈ V : ∃e ∈ E , v ∈ e : ∀e′ ∈ E , v ∈ e′, e′ 6= e : c(e′) 6= c(e) .

Again, the goal is to use as few colors as possible.

5



1. Introduction

1.3 Axis-aligned Rectangles
We will now summarize the proof that mk =∞ for k ≥ 2 holds for axis-aligned (or axis-
parallel) rectangles by Chen et al. [CPST09] (and Pach and Tardos [PT10a]). Recall that
mk =∞ means that no matter the uniformity mk of a hypergraph H, there never exists a
coloring of the point set V such that H(V, E ,mk) admits a polychromatic k-coloring.

Theorem 1.4 (Chen et al. [CPST09]). For any positive integers k and m, there is a finite
point set in the plane with the property that no matter how we color its elements with k
colors, there always exists an axis-parallel rectangle containing at least m points, all of
which have the same color.

Proof. Chen et al. [CPST09] remark that for a hypergraph H(V,R) captured by the range
family R of axis-aligned rectangles and its dual hypergraph H∗(R′, V ) with R′ ⊆ R, the
property of Theorem 1.4 for H is equivalent to H∗ having the following property, proved
by Pach and Tardos [PT10a] (for m ≥ r):

Claim 1.5 (Pach and Tardos [PT10a]). Let k, r ≥ 2 be fixed. There exists a family of
k(2r)2kr axis-parallel rectangles in the plane such that for any coloring of these rectangles
with k colors, one can find a point covered by exactly r rectangles, all of which have the
same color.

Proof of Claim 1.5. To proof this Claim, Pach and Tardos [PT10a] construct a hypergraph
H(V,R) and its dual hypergraph H∗(R′, V ) that fulfills the property of Claim 1.5. Thereby
V is a set of points in (0, 1)2 and R′ ⊆ R. In the following, we will repeat their construction.
For two arbitrary but fixed integers c ≥ 2 and k ≥ 0, [c] = {0, . . . , c − 1} describes the
base of the number system that describes the positions of the corners of the rectangles.
They denote with [c]k the set of strings over the possible digits [c] having a length of k.
For x ∈ [c]k, the j-th digit of x for 1 ≤ j ≤ k is xj . For any x we obtain x̄, i.e. the value of
x, in the following way:

x̄ =
k∑

j=1

xj

cj
.

The empty string is denoted by ε and it holds that ε̄ = 0. Informally speaking, we interpret
x as the digits after the decimal point of the c-ary number 0.x.
For two integers c ≥ 2 and d ≥ 1 and any 0 ≤ k ≤ d, they define an open (that is, the
points that lie on the four sides of the rectangle are not included) axis-parallel rectangle
Rk

u,v with u ∈ [c]k and v ∈ [c]d−k as follows:

Rk
u,v := (ū, ū+ c−k)× (v̄, v̄ + ck−d) .

Thus, the rectangles are defined by a cartesian product of two intervals. As for the definition
of x̄, all rectangles lie inside the unit square (0, 1)2.
The sets of rectangles R′ that fulfill the property of Claim 1.5 are then defined as

R′ = R′(c, d) = {Rk
u,v | 0 < k < d, u ∈ [c]k , v ∈ [c]d−k , uk = vd−k}

∪ {R0
ε,v | v ∈ [c]d , vd = 0} ∪ {Rd

u,ε | u ∈ [c]d , ud = 0} .

An example for the set of rectangles R′(2, 3) is shown in Figure 1.3. It holds that the
number of rectangles |R′| = (d + 1)cd−1. They now define the dual hypergraph H∗ as
H∗(c, d) = H∗(R′(c, d),R2). Additionally, they show that the following property, which we
will not prove here, holds for this construction:

6



1.4. Axis-aligned Strips in d Dimensions

R0
ε,000

R0
ε,010

R0
ε,100

R0
ε,110
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R1
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R3
000,ε R3

010,ε R3
100,ε R3
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1,01
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0,10

R1
1,11

0
0

0.5 1

0.5

1

0
0

0.5

0.5

1

1

Figure 1.3: The set of rectangles R′(2, 3). For better readability, the rectangles are drawn
into two different (0, 1)2 unit squares.

Claim 1.6 (Pach and Tardos [PT10a]). Let d ≥ 1, 2 ≤ r < c, and let H∗ = H∗(c, d) denote
the hypergraph defined above. If a subset I ⊆ R′(c, d) contains no hyperedge of H∗ of size
r, then we have

|I| ≤ cd−1

1
r−1 −

1
c−1

.

We now set c = 2r and d = 2kr− 1 and k-color the rectangles of R′(c, d) = R′(2r, 2kr− 1).
Thereby, the color that appears most often appears at least

(d+ 1)cd−1

k
= (2kr − 1 + 1)(2r)(2kr−1)−1

k
= 2r · (2r)(2kr−1)−1 = (2r)2kr−1 = cd

times. This number of appearances is greater than the bound for the subset I in Claim
1.6. Thus, there is a hyperedge of size r in the dual hypergraph H∗(R′(c, d), V ) that is
monochromatic.

From the dual hypergraph H∗(R′, V ) we can determine the primal hypergraph H(V,R)
that then satisfies the desired condition that no matter how the points in V are colored
with k colors, there exists a monochromatic axis-parallel rectangle of size at least m. Thus,
hypergraphs of any uniformity captured by axis-aligned rectangles are not polychromatic
k-colorable for any k ∈ N.

1.4 Axis-aligned Strips in d Dimensions
We already know that for axis-aligned strips in d dimensions, it holds that⌊

k

2

⌋
d+ 1 ≤ m∗k ≤ d(k − 1) + 1 (1.1)

[ACC+11]. In the following, we will summarize the proofs by Aloupis et al. [ACC+11]
for the lower and the upper bound and also explain the bounds for axis-aligned strips in
the plane. For d = 1, they refer to the strips as intervals. Note that as we talk about a
property of a dual hypergraph captured by strips in d dimensions, we color the strips.

7



1. Introduction

Lemma 1.7 ([ACC+11]). Let I be a finite set of intervals. Then for every k, I can be
k-colored so that every point that is contained in at least k strips is polychromatic, while
any point covered by fewer than k intervals will be covered by distinct colors.

Proof. For an interval I, let r(I) (l(I)) denote the right (left) end point of the interval I.
The proof works inductively via the size of the set of intervals I. We order the intervals
I = {I, I1, . . . , I|I|−1} according to their right end point, i.e., r(I) ≤ r(I1) ≤ · · · ≤ r(I|I|−1).
We now want to color the interval I with the leftmost right end point. For the other
intervals in I \ {I}, we know by induction, that they can be k-colored such that the desired
properties hold. Let now I ′1, . . . , I

′
k−1 be the k− 1 intervals intersecting I with the leftmost

starting points. We color the interval I with a color c ∈ {1, . . . , k} \ {c(I ′1), . . . , c(I ′k−1)}.
Therefore, the color c of I is distinct to the colors of the k−1 leftmost intersecting intervals.
This produces a valid k-coloring with the desired properties.

Theorem 1.8 ([ACC+11]). For any d and k, one can k-color any set of axis-aligned strips
in Rd so that every point that is contained in at least d(k − 1) + 1 strips is polychromatic.
That is,

m∗k ≤ d(k − 1) + 1 .

Proof. The strips parallel to any axis x1, . . . , xd are colored separately as described in
Lemma 1.7. Let s be a point contained in a set of d(k − 1) + 1 strips H(s). The strips in
H(s) must each be parallel to an axis x1, . . . , xd. By the pigeonhole principle, as there are
only d axes, there are at least⌈

d(k − 1) + 1
d

⌉
=
⌈
k − 1 + 1

d

⌉
= k

strips, that are parallel to the same axis. Thus, these at least k strips fulfill the property
of Lemma 1.7 and therefore s is polychromatic.

Theorem 1.9 ([ACC+11]). For any fixed dimension d and integer k, it holds that

m∗k ≥
⌊
k

2

⌋
d+ 1 .

Proof. We define 2d strips {si}{1,...,2d} as follows: For x1, . . . , xd being the coordinates of
the d dimension, we define the strips s2i as 0 < xi < 2 and s2i+1 as 1 < xi < 3. For those
strips it holds that there always exists a point that is covered by any subset of these 2d
strips.

Each of these 2d strips is now replaced by bk/2c strips {si,j}j∈{1,...,bk/2c} that all overlap
but have slightly different ends. We call each of the initial 2d strips a cluster containing
bk/2c strips. For a point p it holds that p ∈ si,j if and only if p ∈ si. As we color the strips
and each cluster contains bk/2c strips, each cluster is missing k − bk/2c = dk/2e colors.
Thus, by the pigeonhole principle, we find that there is one color that is missing in at least⌈

k
2

⌉
2d

k
≥ d

clusters. For the set of clusters I that are all missing the same color, there is a point p that
is contained in exactly these clusters. This point p then is covered by at least d clusters and
thus by at least bk/2cd strips. But it is not polychromatic. Therefore, m∗k ≥ bk/2cd+1.
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1.5. Union of Topless and Bottomless Rectangles

As we proved the lower and upper bound for m∗k for d dimensions, we can determine the
bounds for d = 2. Note that it must hold that m∗k ≥ k, as otherwise a point p cannot
be covered by k strips of distinct colors as it is not even covered by k strips. For an odd
number of colors k = 2a+ 1 for a ∈ N0, we get⌊

k

2

⌋
2 + 1 =

⌊2a+ 1
2

⌋
2 + 1 = 2a+ 1 = k ≤ m∗k ≤ 2k − 1 = 2(k − 1) + 1 .

For k = 2a, the lower bound is as well equal to 2a+ 1, which is equal to k + 1 this time.
We need to take the lower bound that is less restrictive, thus k ≤ m∗k for d = 2. If we insert
the values for two colors, thus k = 2, and two dimension into Equation 1.1, it holds that⌊2

2

⌋
2 + 1 = 3 ≤ m∗2 ≤ 3 = 2(2− 1) + 1

and therefore m∗2 = 3.

1.5 Union of Topless and Bottomless Rectangles
We will now repeat the reduction of hypergraphs captured by the union of topless and
bottomless rectangles to hypergraphs captured by axis-aligned squares by Chekan and
Ueckerdt [CU21]. This proves the following Lemma:

Lemma 1.10 ([CU21]). Let H(V, E) be an m-uniform hypergraph captured by the union
of all topless and all bottomless rectangles. For H, it holds that mk ∈ O(k8.75).

The idea of the proof is to shift the aspect ratios of the topless and bottomless rectangles
so that the rectangles become axis-aligned squares. Then, we can apply the result of
Ackerman et al. [AKV17] that for axis-aligned squares it holds that mk ∈ O(k8.75).

The range families of topless rectangles T and bottomless rectangles B are defined as

• T = {{(x, y) ∈ R2 | a ≤ x ≤ b, y ≥ c} | a, b, c ∈ R}.

• B = {{(x, y) ∈ R2 | a ≤ x ≤ b, y ≤ c} | a, b, c ∈ R}.

The construction works as follows: Let H(V, T ∪ B,m) be an m-uniform hypergraph
captured by the union of topless and bottomless rectangles. Let ET and EB be the topless
and bottomless rectangle hyperedges of H, respectively.

First of all, we close the rectangles in such a way, that the upper side of eT ∈ ET lies above
the topmost point of V , and the lower side of eB ∈ EB lies below all points. Thus, all
rectangles are bounded. Now, we stretch the x-axis, such that for every hyperedge e, the
width of e becomes greater than its height. Thereby, the relative positions of the points are
maintained. As there are still no points above or below any bounded topless or bounded
bottomless rectangle, respectively, we prolong the left and right sides of each bounded
topless hyperedge to the top and for each bounded bottomless hyperedge to the bottom,
such that each hyperedge becomes a square. Note that the uniformity of each hyperedge
remains equal. Now we can apply the proof that homothets of axis-aligned squares are
polychromatic k-colorable for m ∈ O(k8.75) by Ackerman et al. [AKV17].

1.6 Outline
We structure the thesis as follows: In Chapter 2, we formally define the notations and
terms that we use in the rest of the work. We also make some simple, but important
observations about the coloring terms. In Chapter 3, we simplify our studied problem:
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1. Introduction

Instead of hanging rectangles, we consider hanging bottomless rectangles and hanging
right-open rectangles, separately. These two range families each form a subset of the range
family of hanging rectangles. We introduce an algorithm for the proper 2-colorability of
these two range families. Further, in Chapter 4, we investigate the union of those two range
families. Therefore, we play two different presenter-painter-games which we then convert
into one joint game. These three considered games are all semi-online and work for a
coloring with two colors. We then generalize the game for the union of hanging bottomless
and hanging right-open rectangles to any number of colors in Chapter 5. Thereby, we lose
the bottomless property of the hanging bottomless rectangles but instead we can discuss
hanging topless and hanging right-open rectangles. We also transfer the game for two
colors into an offline game for bottomless and hanging right-open rectangles in Section
5.1. In Section 5.1.2, we discuss the challenges that occur when trying to transfer the
semi-online game for any number of colors into an offline game. Finally, in Chapter 6, we
summarize our elaborated results and name a few remaining questions.

10



2. Preliminaries

Let V be a finite set of points in R2. For a hypergraph H(V, E), we denote the number of
points contained in a hyperedge e ∈ E as |e|. A k-coloring of H is a coloring of V with
k distinct colors defined by a mapping c : V → {1, 2, . . . k}. We denote as c(e) the set of
colors used to color the points contained in the hyperedge e.

A polychromatic k-coloring of H is defined as a k-coloring whereby each edge contains all k
colors, i.e.,

∀e ∈ E : c(e) = {1, 2, . . . k} .

A proper k-coloring of H is a k-coloring with the additional condition, that every edge that
contains at least two points also contains at least two different colors, i.e.,

∀e ∈ E : |e| ≥ 2⇒ |c(e)| ≥ 2 .

If a hypergraph H(V, E) has no proper k-coloring, there exits a monochromatic hyperedge
e ∈ E that only contains one color, i.e., |c(e)| = 1.

y = x

Figure 2.1: Example of hyperedges described by hanging axis-aligned rectangles. For
simplification, we do not draw the axes. The black line describes the first angle
bisector.

A range is defined as a set of points R ⊂ R2. A range family R is a set of ranges. For a
range family R we denote H(V,R) as a range-capturing hypergraph. A point set X ⊆ V
defines a hyperedge of H(V,R) if and only if there exists a range R ∈ R for which holds
that R ∩ V = X. In this work, we study the proper k-colorability of hypergraphs captured
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2. Preliminaries

by the range family RR of hanging axis-aligned rectangles. The range family RR is defined
as follows:

RR = {{(x, y) ∈ R2 | a ≤ x ≤ b, c ≤ y ≤ a} | a, b, c ∈ R} .

It consists of a set of ranges each describing an axis-aligned rectangle whose upper left
corner is attached to the first angle bisector defined by the line y = x. An example can
be seen in Figure 2.1. Note that in the upcoming chapters, we do not always specify the
exact coordinates of the points. We always assume that the relevant points of the graph
are situated in an appropriate manner below the first angle bisector. Note also that it is
not necessary that the rectangles are attached to the first angle bisector. Any other line
with a slope of one is sufficient. But for simplicity, we always refer to the line as the first
angle bisector.

In this work, we only consider m-uniform hypergraphs H(V,R,m). This means that every
hyperedge e in the set of hyperedges E of H contains exactly m points, i.e.,

∀e ∈ E : |e| = m .

Instead of H(V,R,m) for an m-uniform hypergraph captured by the range family R,
we also refer to the same hypergraph H as H(V, E ,m), whereby E describes the set of
hyperedges of H. For every e ∈ E it holds that there exists a range R ∈ R with R ∩ V = e.

Unless explicitly stated, we always consider axis-aligned rectangles in the
following.

We further demand that all points in V have pairwise different x- and y-coordinates. Thus,
for a pair of points u = (xu, yu) ∈ V and v = (xv, yv) ∈ V , it holds that xu 6= xv and
yu 6= yv. Additionally, we say that the upper left corners of the hanging rectangles differ
from each other. Therefore, we are able to order the hyperedges and all points along their
attachment points or coordinates, respectively.

We will study proper k-colorings of m-uniform hypergraphs induced by all hanging rectan-
gles. Thereby we will concentrate on smaller numbers of k, starting with k = 3. In the
following, we will prove some important properties of polychromatic and proper colorings
and will show an example for the not proper 3-colorability of 2-uniform hypergraphs
captured by hanging rectangles.

Lemma 2.1. Let H = (V, E ,m) be an m-uniform proper k-colorable hypergraph for a fixed
k ≥ 2. Then H is also proper (k + 1)-colorable.

Proof. Let H = (V, E ,m) be an m-uniform proper k-colorable hypergraph for a fixed k ≥ 2.
The coloring of the point set of H is a mapping ck : V → {1, 2, . . . , k}. Since the coloring
is proper, we know that every edge with at least two points contains at least two of the
colors 1, 2, . . . , k. We then define the coloring ck+1 : V → {1, 2, . . . , k, k + 1} for any
v ∈ V as ck+1(v) = ck(v), simply not using the (k + 1)-th color. As all points have the
same colors no matter if colored using the coloring ck or ck+1, there are still at least two
different colors in every hyperedge containing at least two points. Therefore H is also
proper (k + 1)-colorable.

We now name a few additional elementary properties of polychromatic and proper k-
colorings. For an arbitrary hypergraph H(V,R) it holds that
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• if H admits a polychromatic k-coloring, then H also admits a polychromatic (k − 1)-
coloring. We define the (k − 1)-coloring ck−1 : V → {1, . . . , k − 1} with the help of
the k-coloring ck : V → {1, . . . , k} for every point v ∈ V as follows:

ck−1(v) =
{
ck(v) if ck(v) ∈ {1, . . . , k − 1}
k − 1 if ck(v) = k

.

In the polychromatic k-coloring ck, each hyperedge contains the colors {1, . . . , k}
and hence the colors {1, . . . , k − 1}. If we simply recolor the points with color k to
color k − 1, each hyperedge still contains the colors {1, . . . , k − 1} and thus we have
a polychromatic (k − 1)-coloring ck−1.

It further holds that if H is not polychromatic (k − 1)-colorable, H also admits no
polychromatic k-coloring.

• if H admits a polychromatic k-coloring, then H is also properly k-colorable. As
each hyperedge e contains all k colors and k ≥ 2, e also contains at least two colors.
Note especially that for k = 2 colors, it even holds that H admits a polychromatic
k-coloring if and only if H admits a proper k-coloring.

y = x

Figure 2.2: The graph K4 represented using hanging rectangles. The dashed lines represent
the edges of K4. Each edge is represented in the hypergraph captured by
hanging rectangles by the rectangle having the same color.

Theorem 2.2. For m = 2, there exits a hypergraph captured by the range family RR that
is not proper 3-colorable.

Proof. For m = 2, an m-uniform hypergraph corresponds to a graph having exactly two
nodes incident to each edge. It is known that the clique number ω(G) of a graph G is less
than or equal to the chromatic number χ(G), i.e.,

ω(G) ≤ χ(G) .

That means that the size of the largest clique in a graph is a lower bound on the number
of colors needed to color the graph such that adjacent nodes have different colors. Finding
such a coloring is equivalent to finding a proper k-coloring of a 2-uniform hypergraph.

The graph K4 is the graph consisting of a clique of size four. This graph needs at least four
colors to be colored. Figure 2.2 now maps K4 into the setting of a hypergraph captured by
hanging rectangles.
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2. Preliminaries

Hence, this graph is an example of a 2-uniform hypergraph, that is not proper 3-colorable,
as using only three colors would result in a monochromatic edge.

The simplest next approach is to try to extend K4 to K5. If this is possible, K5 is a
counterexample for the proper 4-colorability of 2-uniform hypergraphs captured by hanging
rectangles. Unfortunately, we cannot simply extend the embedded K4 to a K5.

Observation 2.3. It is not possible to extend the embedded K4 to an embedded K5 that is
still captured by hanging rectangles.

already covered

1

2

3

4

¬4

¬4

¬2

¬2

¬3

¬1

y = x

Figure 2.3: Illustration of possible areas relative to the points of K4, where the fifth point
can be located. The area between the four other points is already completely
covered by other hyperedges. The figure shows which point contradicts the
extension to K5. Thereby, ¬x denotes that x and the fifth point cannot be
captured by a hanging rectangle of size two, if the latter is positioned in the
respective region. For example, if the fifth point is located in the upper right
of the second point, we cannot form a hyperedge covering point 5 and point 1,
without containing point 2 as well.

It is clear that the new, fifth point, needs to be situated outside of the other hyperedges.
It can therefore not be situated inside the axis-aligned rectangle having all four existing
points on one end, respectively. If we situate the fifth point on any other position outside
of this rectangle, there is always one point, that cannot be part of a hanging rectangle
of size two together with point 5. An illustration of possible areas where we can situate
the fifth point and the specification, with which point it cannot form a hanging rectangle
can be seen in Figure 2.3. Thus, we cannot easily extend K4 to K5 and can therefore
not assure that we need at least five colors to color any 2-uniform hypergraph captured
by hanging rectangles. Analogously, we nevertheless cannot assure that four colors are
sufficient to color any of those hypergraphs, as it may be still possible to embed K5 with
hanging rectangles.
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3. Hanging Bottomless and Right-Open
Rectangles

In this chapter, we investigate the range families of hanging bottomless rectangles, RBL,
and hanging right-open rectangles, RRO. We will prove that hypergraphs H(V,RBL,m)
and H(V,RRO,m) captured by one of those range families form a subset of a hypergraph
H′(V,RR,m) over the same set of points captured by hanging rectangles. The range
families RBL and RRO are defined as follows:

• RBL = {{(x, y) ∈ R2 | a ≤ x ≤ b, y ≤ a} | a, b ∈ R} and

• RRO = {{(x, y) ∈ R2 | a ≤ x, b ≤ y ≤ a} | a, b ∈ R}.

We say that a hypergraph H(V, E) forms a subset of a hypergraph H′(V ′, E ′) if it holds
that V = V ′ and E ⊆ E ′.

Lemma 3.1. Any m-uniform hypergraph H = (V, E ,m) captured by the range family RBL

(RRO) forms a subset of the m-uniform hypergraph H′ = (V, E ∪ E ′,m) captured by the
range family RR.

Proof. Let H(V, E ,m) be an m-uniform hypergraph captured by the range family RBL.
We can adapt the definition of this range family to R′BL = {{(x, y) ∈ R2 | a ≤ x ≤ b, e ≤
y ≤ a} | a, b ∈ R} whereby e denotes a baseline that lies below the point vb = (xb, yb) ∈ V
with the smallest y-coordinate.

The definition of R′BL is then similar to that of RR, the only difference being the variable
lower side of the edges in RR. The edges created by the range family R′BL then correspond
to the edges in RR whose lower side lies in the interval (−∞, yb). We can substitute −∞
with the baseline e, as e also lies in this interval. And as vb is the lowest point of H, it does
not matter where exactly the bottom side of the rectangle lies in this interval. Thus, any
set of points of size m that is captured by a hanging bottomless rectangle is also captured
by a hanging rectangle. This results in H = (V, E ,m) being a subgraph of H′ captured by
RR whereby H′ := (V, E ∪ E ′,m).

Analogously we can adapt the definition of RRO to R′RO = {{(x, y) ∈ R2 | a ≤ x ≤ e, b ≤
y ≤ a} | a, b ∈ R} where e is a baseline right of vr = (xr, yr), the point with the highest
x-coordinate. The hyperedges of size m in R′RO then correspond to those in RR whose
right side lies in (xr,+∞) where we again can substitute +∞ with e which also lies in this
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3. Hanging Bottomless and Right-Open Rectangles

interval as vr is the rightmost point of H. Therefore, also for hanging right-open rectangles,
an m-uniform hypergraph H(V, E ,m) captured by RRO is a subgraph of H′ := (V, E ∪E ′,m)
captured by hanging rectangles.

Another generalization of RBL is the range family of axis-aligned bottomless rectangles B
defined as

B = {{(x, y) ∈ R2 | a ≤ x ≤ b, y ≤ c} | a, b, c ∈ R} .
Ranges B ∈ B describing bottomless rectangles do not necessarily have their upper left
corner attached to the first angle bisector. If we know that all hypergraphs H(V,B,m) are
polychromatic or proper k-colorable, we can apply this information to the range family of
hanging bottomless rectangles RBL, as the following holds:

Lemma 3.2. Anym-uniform hypergraph H = (V, E ,m) captured by the range family RBL of
hanging bottomless rectangles forms a subset of the m-uniform hypergraph H′ = (V, E∪E ′,m)
captured by the range family B of bottomless rectangles.

Proof. Let R = {(x, y) | a ≤ x ≤ b, y ≤ a} ∈ RBL be a hanging bottomless rectangle
defined by some constants a, b ∈ R. R is also an element of B = {{(x, y) ∈ R2 | a ≤ x ≤
b, y ≤ c} | a, b, c ∈ R}, as c can take the value a. Thus, as we only consider hyperedges of
size m, each set of m points that is captured by a hanging bottomless rectangle is also
captured by a non-hanging bottomless rectangle of size m. Therefore, the hypergraph
H = (V, E ,m) captured by the range family RBL of hanging bottomless rectangles forms a
subset of the hypergraph H′ = (V, E ∪ E ′,m) captured by the range family B of bottomless
rectangles over the same set of points.

This means, that every hypergraph captured by hanging bottomless rectangles is also a
hypergraph captured by non-hanging bottomless rectangles. Therefore, the colorability
results of bottomless rectangles apply to hanging bottomless rectangles. Note that it is
especially not possible to conclude from the non-colorability of hypergraphs captured by
B to the non-colorability of hypergraphs captured by RBL. The hanging property of the
hyperedges can bring a certain advantage to the colorability, as it restricts the number
of possible hyperedges in contrast to the number of hyperedges of a hypergraph over the
same set of points V captured by the range family B without the hanging property. We
refer to the image in the middle of Figure 3.2 as example where we cannot capture the
second, third and fourth point in x-direction with a hanging bottomless rectangle. But it
is possible to capture those points with a non-hanging bottomless rectangle.

Keszegh [Kes12] has proven that, given a finite set of points, any m-uniform hypergraph
consisting of bottomless rectangles has a proper 3-coloring for 2 ≤ m ≤ 3. He has further
shown that for m ≥ 4, any m-uniform hypergraph captured by RBL has a proper 2-coloring.
Note that a proper 2-coloring corresponds to a polychromatic 2-coloring.

Asinowski et al. [ACC+13] studied the polychromatic colorability of bottomless rectangles:
Any hypergraph consisting of bottomless rectangles that each have a size m ≥ 3k− 2 has a
polychromatic k-coloring.

Lemma 3.3 (Asinowski et al. [ACC+13]). Every point set S ⊂ R2 can be colored with k
colors so that any bottomless rectangle containing at least 3k − 2 points of S contains at
least one point of each color.

Proof. For completeness, we repeat the proof by Asinowski et al. [ACC+13]. They show
that the polychromatic coloring problem for bottomless rectangles is equivalent to the
following coloring problem:
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Claim 3.4 (Asinowski et al. [ACC+13]). Every dynamic point set without disappearing
points can be k-colored in the semi-online model such that at any time, every subsequence
of at least 3k − 2 consecutive points contains at least one point of each color.

Proof of Claim 3.4. Consider the points to appear on a line one at a time. We define the
set of points between two consecutive points with color c as a gap for color c. This also
includes the points left to the first point with color c (first gap) and those right to the last
one (last gap). Note that in the case that there is no point with color c, the first gap is
equal to the last gap. The idea of the algorithm is to assure that all gaps have a size of at
most 3k − 3.

For an empty set and for an arbitrary but fixed set of points we maintain the following
invariants:

a) There are at most 3k − 3 points in each gap.

b) If there exists a point that is colored with color c, all gaps for color c, excluding the
first and the last gap, have at least k − 1 points.

By adding a new point, it is not possible to violate the invariant b) as it only assures a
minimum number of points that cannot decrease when one is added. As long as invariant
a) holds, we do not color any point. If there is a gap for color c, that increases to a size
of 3k − 2, there is a violation to invariant a) and we need to color at least one point to
make sure that invariant a) holds again. We denote the points of this gap from the left to
the right as l1, . . . , lk−1,m1, . . . ,mk, r1, . . . , rk−1. We know that none of those points has
color c, as they form a gap for that color. Due to invariant b), we also know that among
the k consecutive points m1, . . . ,mk, there cannot be the same color twice, as every gap
has a size of at least k − 1. Additionally, there are at most k − 1 colors presented within
these k points. Hence, at least one of the points m1, . . . ,mk is uncolored, say mi. Coloring
it with color c, we split the large gap into two smaller ones, both having at least k − 1
points as we have k − 1 points to the left and to the right of any point in {m1, . . . ,mk}.
Thus, invariant b) holds. The new gaps have a size of at most 2(k − 1) = 2k − 2 points
(if mi = m1 or mi = mk) and thus invariant a) holds. After presenting all the points, the
points that remained uncolored are colored arbitrarily.

To summarize, no gap has a size greater than 3k − 3. Hence, every sequence of 3k − 2
consecutive points contains each color at least once.

For the polychromatic coloring of bottomless rectangles, we can order the points by their
x-coordinates and process them vertically in increasing y-coordinate. For a point in time t,
we have a dynamic point set St ⊆ S with all points having a y-coordinate lower or equal to
y = t. A bottomless rectangle r = {(x, y) ∈ R2 | a ≤ x ≤ b, y ≤ t} in S is then represented
by the interval [a, b] in the subset St. We can then apply the algorithm described in the
proof of the Claim to color the bottomless rectangles.

The runtime of this algorithm is O(k · |V | · log |V |). For each new point v ∈ V , its position
in the list of already presented points can be found in O(log |V |). We then need to check if
the new point v increases the gap of any color to 3k − 2. Therefore, we need to look at the
3k − 3 points to the left and to the right of v in the list, respectively. For every color ci,
we save in a counter lci the number of points between its first appearance on the left of v
and v and in another counter rci the number of points between v and the first appearance
on the right of v. The gap size for ci then equals to rci + lci + 1. If a gap grows too big,
say for color c, we color one of the uncolored points in the middle of the gap with the
corresponding color. The middle of the gap are the points m1, . . . ,mk mentioned in the
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3. Hanging Bottomless and Right-Open Rectangles

proof, thus not the first and not the last k − 1 points of the gap. Due to the counters for
color c, we know which points are identified as l1, . . . , lk−1, m1, . . . ,mk and r1, . . . , rk−1.
The calculation of the gap sizes and the coloring of a point if necessary works in O(k).

Observation 3.5. Results about the colorability of (hanging) bottomless rectangles can
also be applied to (hanging) right-open rectangles.

For a set of points V of a hypergraph captured by hanging right-open rectangles, we
swap the x- and y-coordinates of every point in V . Thus, we get a new point set V ′ =
{(y, x) | (x, y) ∈ V }. Additionally, instead of considering the points in increasing order
of their coordinates, we consider them in decreasing order and vice versa. In this way,
we can consider any hypergraph H(V, E) captured by hanging right-open rectangles as a
hypergraph H′(V ′, E ′) captured by hanging bottomless rectangles.

We can further use the Union-Lemma introduced by Damásdi and Pálvölgyi [DP21a] to
apply it to the previous results to generate results about the colorability of hypergraphs
captured by the union of hanging bottomless rectangles and hanging right-open rectangles.

Lemma 3.6 (Union-Lemma, Damásdi and Pálvölgyi [DP21a]). Let

H1 = (V, E1), . . . ,Hk−1 = (V, Ek−1)

be hypergraphs on a common point set V. If H1, . . . ,Hk−1 are polychromatic k-colorable,
then the hypergraph

k−1⋃
i=1
Hi = (V,

k−1⋃
i=1
Ei)

is proper k-colorable.

Proof. For completeness, we repeat the proof of the Lemma by Damásdi and Pálvölgyi
[DP21a]. We construct a proper coloring c : V → {1, . . . , k} for ⋃k−1

i=1 Hi by using the
polychromatic colorings cpoly

i : V → {1, . . . , k} of H1, . . . ,Hk−1. For every hyperedge
E ∈ Ei and for all colors j ∈ {1, . . . k}, there is a point v ∈ E that has color j. As there are
only k − 1 polychromatic colorings, the k − 1 hypergraphs can only occupy k − 1 different
colors for a fixed v ∈ E. Thus, there is always a k-th color c available for v in the proper
coloring, that is different to the colors of all polychromatic colorings. This remaining color
c is not the same for all v ∈ E, as there exists a point w ∈ E where cpoly

i (w) = c and as a
consequence, c(w) 6= c. Therefore, every hyperedge E ∈ Ei always contains at least two
points with different colors.

This construction can be done in O(|V | · (k − 1)), as we need to take a look at every point
v ∈ V and for every v, we need to find the unused color. Therefore we need to check all
hypergraphs H1, . . . ,Hk−1, thus k − 1 copies of v.

Using the result of Asinowski et al. [ACC+13] about polychromatic k-colorability together
with the Union-Lemma by Damásdi and Pálvölgyi [DP21a] (Lemma 3.6), we can conclude
the following:

Theorem 3.7. Let H = (V, E ,m) be a hypergraph captured by RBL ∪RRO, i.e., the union
of the range families of hanging bottomless and hanging right-open rectangles. For any
k ≥ 3 and m ≥ 3k − 2, H is proper k-colorable.
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3.1. Proper 2-colorability of Hanging Bottomless and Right-Open Rectangles

Proof. Let k ≥ 3 and let H1 = (V, E1,m) and H2 = (V, E2,m) be hypergraphs over a
common set of points V captured by hanging bottomless and hanging right-open rectangles,
respectively. If m ≥ 3k − 2, we know from [ACC+13] that H1 is polychromatic k-colorable
for any k, as Lemma 3.2 shows that we can apply the results about the colorability of
hypergraphs for bottomless rectangles to hanging bottomless rectangles. Furthermore,
H2 is polychromatic k-colorable as by Observation 3.5, we know that results about the
colorability of hanging bottomless rectangles equally apply to hanging right-open rectangles.
Let now H3, . . . ,Hk−1 be k − 3 copies of the hypergraph H1. As H1 is polychromatic
k-coloarble, all of the copies are polychromatic k-colorable too. Applying the Union-Lemma
3.6, we can now conclude that the hypergraph

H(V, E ,m) :=
k−1⋃
i=1
Hi = (V,

k−1⋃
i=1
Ei,m) = (V, E1 ∪ E2,m)

captured by RBL ∪RRO is proper k-colorable.

Corollary 3.8. Let H = (V, E ,m) be a hypergraph captured by RBL ∪RRO, i.e., the union
of the range families of hanging bottomless and hanging right-open rectangles. For m ≥ 7,
H is proper k-colorable for any k ≥ 3.

Proof. Let H = (V, E ,m) be a hypergraph captured by hanging bottomless and hanging
right-open rectangles. Theorem 3.7 shows that if k = 3 and m ≥ 3k − 2 = 3 · 3− 2 = 7, H
is proper 3-colorable. As H is proper 3-colorable, H is also proper k-colorable for every
k > 3 according to Lemma 2.1. To summarize, H = (V, E ,m) is proper k-colorable for
every k ≥ 3 if m ≥ 7.

3.1 Proper 2-colorability of Hanging Bottomless and Hanging
Right-Open Rectangles

It is already known that any m-uniform hypergraph captured by the range family of
bottomless rectangles B is best possible proper 3-colorable for 2 ≤ m ≤ 3 and proper
2-colorable for every m ≥ 4 [Kes12]. This applies at least also to hypergraphs captured by
the range family of hanging bottomless rectangles RBL, as RBL ⊆ B (see Lemma 3.2). We
now want to examine, if we can improve these values for 2- and 3-uniform hypergraphs
captured by hanging bottomless rectangles, by using the additional characteristics of this
range family.

y = x

Figure 3.1: Illustration of a 2-uniform hypergraph captured by hanging bottomless rect-
angles. It contains three points and three hyperedges. As these points form
a clique of size three, we need at least three colors to color this hypergraph
properly.

Lemma 3.9. There exists a 2-uniform hypergraph H(V,RBL, 2) captured by hanging
bottomless rectangles that is not proper 2-colorable.
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3. Hanging Bottomless and Right-Open Rectangles

Proof. We show a point set V as counterexample which is similar to that of Keszegh
[Kes12] and with which it is shown that we need at least three colors to be able to color
every 2-uniform hypergraph captured by bottomless rectangles.

We transfer this counterexample to hanging bottomless rectangles in Figure 3.1. There we
can see that the three points of the hypergraph can pairwise be captured by a hanging
bottomless rectangle. So these three points and the three edges can be seen as a graph
G(V,E) = K3 that forms a clique of size three, which results in 3 = ω(G) ≤ χ(G), i.e., we
need at least three colors to color this graph properly.

Due to Lemma 3.9, we cannot improve the number of colors needed to color a 2-uniform
hypergraph captured by hanging bottomless rectangles. Therefore, we can say that these
2-uniform hypergraphs are best possible proper 3-colorable, as the result of Keszegh [Kes12]
applies to m-uniform hypergraphs captured by hanging bottomless rectangles, as they
form a subset of m-uniform hypergraphs captured by bottomless rectangles (see Lemma
3.2). We now want to show that 3-uniform hypergraphs captured by hanging bottomless
rectangles are proper 2-colorable, in contrast to the case of bottomless rectangles. We also
show how to find such a coloring. Therefore we need to introduce a few definitions:

Definition 3.10. Let e1 and e2 be hanging rectangles attached to the first angle bisector
at the positions (x1, y1) and (x2, y2), respectively, with x1 < x2. We denote e1 and e2 as
consecutive, if and only if x2 < xk for any other hanging rectangle ek attached at position
(xk, yk) with x1 < xk.

We also define a total order on the edges in the following Definition 3.11.

Definition 3.11. Let e1, e2, . . . , ek be hanging rectangles attached to the first angle bisector
at the positions (x1, y1), (x2, y2), . . . , (xk, yk), respectively. For two edges ei and ej, 1 ≤
i, j ≤ k, ei has a higher order than ej if and only if xi > xj, otherwise ei has a lower order
than ej. This relation is transitive. Therefore, these pairwise relations between all edges
lead to a total order of the edges, whereby the edge el with the lowest x-coordinate among
all edges is the edge with the smallest order overall.

This means, that when we walk along the first angle bisector from the bottom left to the
top right, the order of the attachment points corresponds to the order of the hyperedges.
And therefore two hyperedges are consecutive if we find them attached directly one after
the other. Furthermore, for a currently considered hyperedge e, we say that all hyperedges
that are attached to the first angle bisector after e are higher ordered hyperedges than e.

Observation 3.12. Let H be a hypergraph containing the hyperedges ei = {p1
i , . . . p

m
i } and

ej = {p1
j , . . . p

m
j }. Let ei and ej be consecutive hanging bottomless rectangles with m points

each. Then ei and ej can have zero to m− 1 points in common, i.e.,

∃x ∈ {0, . . . ,m− 1} : |ei ∩ ej | = x .

Figure 3.2 shows exemplary consecutive edges with both containing m = 3 points that
have two, one or zero points in common. It is easy to see that the hanging characteristic of
the edges together with the distance of the points determines how many points the edges
have in common. This example for 3-uniform edges can be generalized to any uniformity
m. Given m points that form an edge e1. Roughly speaking, the further up right we place
m additional points for a hyperedge e2, the less points the two edges have in common. The
upper side of a hanging rectangle r needs to be above the highest point contained in it. As
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y = x

y = x

y = x

Figure 3.2: Illustration of the three possible overlapping scenarios of two consecutive edges
with uniformity m = 3. They differ in one, two or three points. The blue lines
each indicate a hanging bottomless rectangle. The dashed green lines indicate
positions at which there cannot be hyperedges of this 3-uniform hypergraph, as
they each capture only less than three points. On the right, the two blue edges
have no points in common. This results in two different connected components.

the x-coordinate of the left side of r equals the y-coordinate of the upper side, the higher
the highest point in r, the further right is r.

Let now H be an m-uniform hypergraph captured by the range family RBL of hanging
bottomless rectangles. We shall find a proper 2-coloring of the points of H. Therefore we
consider the hyperedges to be ordered along the first angle bisector and process them one
after the other starting from the left. The two available colors c1 and c2 are also ordered:
c1 < c2. As long as the currently processed hyperedge e does not contain two points with
different colors, we color the leftmost uncolored point (in x-direction) with the smallest
unused color in that edge e. If the edge contains two points with two different colors,
we pass over to the next edge, leaving possible uncolored points uncolored. After having
processed all the edges, we color all points that remained uncolored with the same color c1.

Lemma 3.13. The algorithm described above calculates a proper 2-coloring of the hy-
pergraph H(V,RBL,m) captured by hanging bottomless rectangles with uniformity m ≥ 3.

Proof. We define the already considered points as active, and the points that did not yet
appear in any edge as inactive. Two active points are called consecutive (in x-direction), if
there is no other active point positioned between them (in x-direction).

If all points of a processed hyperedge are still uncolored, we color the leftmost uncolored
point with color c1 and the following uncolored point with color c2. As m ≥ 3, this is
always possible.

When processing a hyperedge that already contains one color but still has at least one
uncolored point, we are always able to color the points in the hyperedge with two different
colors. Let at most m− 1 points be already colored with the same color, say c1. We then
color the leftmost uncolored point with c2 and the hyperedge contains both colors. Hence,
in this scenario, we never get a monochromatic hyperedge. This case only occurs during
the algorithm if a hyperedge is processed, whose points are all already colored in the same
color due to the processing of lower ordered hyperedges.
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3. Hanging Bottomless and Right-Open Rectangles

We do not color any point, if there already exist at least two points with different colors
among the m points of the hyperedge.

Thus, a monochromatic hyperedge only occurs during the algorithm, if all m points of the
hyperedge are active, consecutive and already colored in the same color, say c1. We show
now, that there cannot even be two consecutive points with the same color, which can be
captured by higher ordered hyperedges to produce a monochromatic hyperedge later in the
algorithm:

Claim 3.14. Using the algorithm, there never exist two active points p and q with the
same color and consecutive x-coordinates, which are both part of higher ordered hyperedges,
if m ≥ 3.

Proof of Claim 3.14. Let p = (xp, yp) and q = (xq, yq) be the first two active points
with consecutive x-coordinates which are colored with the same color c. Consider the
situation in which the second point, say q, just got its color by processing the hyperedge
e = {(x, y) ∈ R2 | xl

e ≤ x ≤ xr
e, y ≤ xl

e} defined by its attachment point (xl
e, x

l
e) and the

coordinate of its right border xr
e. As q is colored when processing e, it is part of e.

As q is colored with the color c, there is no other point with color c in e, due to the coloring
strategy of the algorithm. This implies that p is not part of the hyperedge e which means
xp < xl

e or xp > xr
e or if xl

e ≤ xp ≤ xr
e then yp > xl

e, i.e., p is situated above e.

If p is on the left of e, so xp < xl
e, it cannot be part of any higher ordered hyperedge.

Because of the attachment of e to the first angle bisector, the points situated left of this
edge are only part of a higher ordered hyperedge e′, if e′ is situated further left than e. But
then, e′ is considered before e and is therefore a lower ordered edge than e.

If p is above e, meaning yp > xl
e regardless of p’s x-coordinate, the following holds: All

hyperedges that contain p have an upper side yu and an attachment point (yu, yu) for which
applies yu ≥ yp. This results in yu > xl

e making every hyperedge that contains p a higher
ordered edge than e. Therefore these hyperedges are not yet considered and thus p is still
inactive.

p still inactive

e

q

p not in up-
coming edges

p already has
color c

p

consecutive

y = x

Figure 3.3: Illustration of the proof of Claim 3.14 for m = 3. Points with color c are
represented in purple, points with color c′ in dark green. The blue hanging
rectangle represents the edge e containing q. In the gray areas, p cannot be
situated. Instead, p is part of the green area.

Thus, the only remaining valid position for p is on the right side of q with xp > xr
e and

yp < xl
e. Additionally, p is already colored which means it is part of a lower ordered

hyperedge and therefore active. As we assumed that p and q are consecutive in x-direction,
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3.1. Proper 2-colorability of Hanging Bottomless and Right-Open Rectangles

and p is not part of e, this results in q being the rightmost point of e. But as q is colored,
there were less than two colors represented in the other points of e. Additionally. all other
points of e were already colored. For an uniformity of m ≥ 3, this results in the situation,
that the other points in e are all on the left of q and are all colored in the same color c′. If
m ≥ 3, there are at least two other points in e which are active and consecutive. As they
are all colored with the same color c′, this is a contradiction to p and q being the first two
consecutive points with the same color. Thus, there can never exist two consecutive points
having the same color that can both be part of higher ordered hyperedges if m ≥ 3. An
illustration of the proof for m = 3 is shown in Figure 3.3.

To summarize, this means that, as there cannot even be two consecutive points with the
same color that can be part of higher ordered hyperedges, there especially cannot be
more than two consecutive points with the same properties. Thus, the algorithm does not
produce monochromatic hyperedges for hypergraphs with uniformity m ≥ 3.

As we only use the two colors c1 and c2 and are always able to guarantee both of them
in the m points of each hyperedge, it is irrelevant how we color the still uncolored points
at the end. Thus we need only two colors to avoid monochromatic hyperedges using
the algorithm described above. In conclusion, hypergraphs with m ≥ 3 points in every
hyperedge captured by hanging bottomless rectangles are proper 2-colorable.

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

Figure 3.4: Counterexample taken from [Kes12] that shows that we need at least three
colors to properly color hypergraphs captured by bottomless rectangles with
uniformity m = 3.

For completeness, we present the counterexample for non-hanging bottomless rectangles
taken from [Kes12] in Figure 3.4. It shows that not all 3-uniform hypergraphs captured by
bottomless rectangles are proper 2-colorable. Therefore we try to color the hypergraph
induced by the points p1, . . . , p12 in Figure 3.4 with only two colors and show, that this
always induces a monochromatic hyperedge. The points p1, . . . , p12 are ordered according
to their x-coordinate. We can see that the points p4, p5 and p6 form a bottomless rectangle
edge, and as we only use two colors, we know that two of those points must be colored
with the same color c. Assuming p4 and p5 are colored with color c, there exist three edges
{p4, p5, p1}, {p4, p5, p2} and {p4, p5, p3} containing each two points with color c and one
uncolored point. The uncolored points thus must all be colored with the second color c′.
But this leads to the monochromatic hyperedge {p1, p2, p3}. The same reasoning leads to
a monochromatic hyperedge {p7, p8, p9} if p5 and p6 have color c, and a monochromatic
hyperedge {p10, p11, p12} if p4 and p6 have color c. Hence, this 3-uniform hypergraph is not
proper 2-colorable [Kes12].

We now move to the range family of hanging right-open rectangles instead of hanging
bottomless rectangles. We can perform a similar algorithm to that for hanging bottomless
rectangles to show the proper 2-colorability of hypergraphs captured by hanging right-open
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3. Hanging Bottomless and Right-Open Rectangles

rectangles for m ≥ 3: Let H be an m-uniform hypergraph captured by RRO. We consider
the hyperedges to be ordered along the first angle bisector and process them one after the
other starting with the hyperedge attached to the first angle bisector at the highest point.
As above, we order the colors: c1 < c2. As long as there are not two different colors in the
currently considered hyperedge e, we color the topmost uncolored point with the smallest
unused color in e. If there are two points with two different colors, we pass over to the
next edge. In the end, we color all still uncolored points with the same color c1.

Lemma 3.15. The algorithm described above calculates a proper 2-coloring of the hy-
pergraph H(V,RRO,m) captured by hanging right-open rectangles with uniformity m ≥ 3.

Proof. We can perform the proof analogously to the proof of Lemma 3.13, but, as in the
algorithm, instead of starting the processing of the edges on the left, we start from the
right. A higher ordered hyperedge is then a hyperedge, that is attached further left to the
first angle bisector. Two points are then consecutive, if they are active and there is no
other active point between them in y-direction. The point p has to be below the hyperedge
e and we conclude with the same contradiction, that if p and q are both active, consecutive
and can be part of higher ordered hyperedges, then they were not the first two points with
those characteristics.

In conclusion, m-uniform hypergraphs captured by hanging right-open rectangles are proper
2-colorable for m ≥ 3.

y = x

Figure 3.5: Embedding of the graph K4 with hanging bottomless and hanging right-open
rectangles.

If we now take a look at the union of hanging bottomless and hanging right-open rectangles,
we can use the 2-coloring of each individual range family and construct a proper 4-coloring
for the union. Hence, we can conclude the following for m ≥ 3:

Corollary 3.16. For m ≥ 3, the hypergraph H(V,RBL ∪RRO,m) captured by the union
of hanging bottomless and hanging right-open rectangles is proper 4-colorable.

Proof. For m ≥ 7, we already know from Corollary 3.8 that H is proper 3-colorable. Due
to Lemma 2.1, H then also admits a proper 4-coloring.
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For 3 ≤ m ≤ 6, we create a proper 4-coloring of H as follows: Let EBL and ERO be the
hyperedges described by bottomless rectangles and right-open rectangles, respectively. We
color the points of these sets of hyperedges separately with the colorings cBL : V → {c1, c2}
and cRO : V → {c1, c2} such that the underlying hypergraphs are proper 2-colorable. This
is possible due to Lemma 3.13 and Lemma 3.15.

For the hypergraph H containing all the hyperedges E = EBL ∪ ERO, we then define a
proper 4-coloring c : V → {1, 2, 3, 4} as follows: For any v ∈ V ,

c(v) =


1, if cBL(v) = c1 and cRO(v) = c1
2, if cBL(v) = c1 and cRO(v) = c2
3, if cBL(v) = c2 and cRO(v) = c1
4, if cBL(v) = c2 and cRO(v) = c2

.

Let e ∈ E be an arbitrary hyperedge of H, say a bottomless rectangle. As none of the edges
are monochromatic, |cBL(e)| = 2 and c1, c2 ∈ cBL(e). No matter how the three points of
e are colored in cRO, at least two of the points, p and q, with different colors in cBL also
have different colors in c, as if cBL(p) 6= cBL(q) then c(p) 6= c(q) due to the definition of
c. Hence, all hyperedges still contain at least two different colors and thus H is proper
4-colorable.

For 3 ≤ m ≤ 6, k = 4 colors is the lowest number of colors for which we know, that an
m-uniform hypergraph captured by hanging bottomless and hanging right-open rectangles
is proper k-colorable. We do not know, if these hypergraphs can be properly 3-colored or
even properly 2-colored.

We observe that for m = 2, we can embed the graph K4 as a 2-uniform hypergraph captured
by the union of hanging bottomless and hanging right-open rectangles. See therefore Figure
3.5. Thus, as we need at least four colors to color K4, there exists a 2-uniform hypergraph
captured by the union of hanging bottomless and hanging right-open rectangles that is not
proper 3-colorable. It remains open, if we can proper 4-color any hypergraph captured by
the union of those range families for m = 2. Due to this observation, following Theorem
holds:

Theorem 3.17. For m = 2, there exits a hypergraph captured by the union of the range
families RBL and RRO of hanging bottomless and hanging right-open rectangles, that is
not proper 3-colorable.

In the next two chapters, we will take a further look at the union of those two range families.
We will develop a semi-online presenting strategy for the points of the hypergraph, such
that no matter how the painter colors the presented points along the way with two colors,
there will always arise a monochromatic hyperedge. This strategy is then transferred into
an offline strategy for non-hanging bottomless rectangles and hanging right-open rectangles
in Section 5.1.1 for m ≥ 3 and k = 2. We also develop a semi-online strategy for k > 2
colors.
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4. Union of Hanging Bottomless and
Hanging Right-Open Rectangles

We now take a look at the union of two range families: The range family of hanging
bottomless rectangles RBL and the range family of hanging right-open rectangles RRO.
Recall therefore their definitions:

• RBL = {{(x, y) ∈ R2 | a ≤ x ≤ b, y ≤ a} | a, b ∈ R} and

• RRO = {{(x, y) ∈ R2 | a ≤ x, b ≤ y ≤ a} | a, b ∈ R}.

Hypergraphs captured by RBL or RRO form a subset of a hypergraph over the same set of
points captured by the range family of hanging axis-aligned rectangles RR (see Lemma 3.1).
Hence, we can obtain lower bounds of the colorability of hanging rectangles from studying
RBL and RRO. If we need k colors to properly k-color an m-uniform hypergraph captured
by RBL or RRO, then we also need at least k colors to properly color the m-uniform
hypergraph over the same set of points captured by RR.

y = x

Figure 4.1: Example for the union of hypergraphs captured by hanging bottomless rectangles
(blue) and hanging right-open rectangles (green) over the same set of points. If
we consider the open sides of the hyperedges to be closed at a position below
or right of all points of the hypergraph, those edges are part of a hypergraph
captured by hanging axis-aligned rectangles.

Figure 4.1 shows an example of the union of two hypergraphs over the same set of points,
once captured by RBL and once by RRO. We already know from Lemma 3.13 and Lemma
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3.15, that for a uniformity m ≥ 3, hypergraphs captured by RBL or RRO separately
are proper 2-colorable. Corollary 3.8 additionally says that for m ≥ 7 and k ≥ 3, any
hypergraph H(V,RBL ∪RRO,m) is proper k-colorable. For m ≥ 3, H(V,RBL ∪RRO,m)
is proper 4-colorable, due to Corollary 3.16.

In the following, we present three different semi-online presenter-painter games for an m-
uniform hypergraph H over a common point set V : one for hanging bottomless rectangles,
one for hanging right-open rectangles and one that combines the two aforementioned games.
A presenter-painter game is a game with two players, the presenter and the painter. The
presenter knows the point set V of the hypergraph and presents the points v ∈ V according
to a defined strategy to the painter. The goal for the presenter is to force the painter to
color the presented points so that a monochromatic hyperedge is created. The painter
only knows the points that the presenter already revealed. His goal is to assure that in
every hyperedge, there are at least two points with different colors. Therefore, he either
colors a point or does not make a move if no coloring of a point is necessary to assure the
desired property. Since the painter does not know all the points of the hypergraph from
the beginning and only needs to color if otherwise the desired property no longer applies,
the games are semi-online.

We are especially interested in small uniformities m ∈ {2, . . . , 6}, as we already know
that hypergraphs captured by the union of hanging bottomless and hanging right-open
rectangles are proper k-colorable for k ≥ 3 if m ≥ 7. For the first two games, we present a
strategy for the painter that works against any presenting strategy and thus, for m ≥ 3,
hanging bottomless and hanging right-open rectangles are proper 2-colorable, respectively.
In the game for the union of the two range families, we propose a semi-online strategy for
the presenter such that no matter how the painter colors the presented points with two
colors, we always result in a monochromatic hyperedge. This leads to the results that for
m ≥ 2 and with our proposed semi-online presenting-strategy, the painter cannot properly
2-color the underlying hypergraph. The strategy for two colors is then transferred into an
offline strategy in Section 5.1.1. Thereby, we lose the hanging property of the bottomless
rectangles, which then gives us a lower bound for the proper colorability of the union of
bottomless rectangles and hanging right-open rectangles for m ≥ 2. We also transfer the
semi-online strategy for hanging bottomless and hanging right-open rectangles for two
colors to a semi-online strategy for hanging right-open rectangles and hanging topless
rectangles for any number of colors k in Chapter 5.

In the following we first present the game for hanging bottomless rectangles, then for
hanging right-open rectangles and after that the game for the union of the two range
families. The painting strategy for the game for hanging bottomless rectangles is similar to
the algorithm in Section 3.1.

4.1 Game for Hanging Bottomless Rectangles
The presenter-painter game for hanging bottomless rectangles works as follows: We only
consider the x-coordinates of the points and map them to the same y-coordinate. Figure
4.2 on the left shows an exemplary graph and the line of points at a point in time of
the game. The presenter can insert a new point at any position on that line or make
the leftmost point disappear. Inserting a new point corresponds to the event that a new
point gets active while processing the next edge. Thus, a point is called active, if it is
part of a hyperedge, that has already been or is currently processed. In contrast, points
that are not discovered yet are called inactive. This point then appears at the position
defined by its x-coordinate. When we process the next hyperedge, all points v having an
x-coordinate xv lower than the x-coordinate of the upper left corner xe of the currently
processed hyperedge e, i.e. all v for which it holds that xv < xe, can no longer be part
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leftmost m points
topmost m points
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Figure 4.2: Illustration of a 4-uniform hypergraph captured by RBL on the left and by
RRO on the right. It is shown how the points are mapped to a line for the game.
Gray edges are already processed, the green edge is the currently processed
edge and the blue edge is going to be processed after the current edge. The
gray points already disappeared, as their x-coordinate is smaller than that
of the current edge and therefore they cannot be part of an upcoming edge.
The leftmost/topmost four points that have not disappeared yet represent the
current edge and therefore have to be colored with at least two colors. The
numbers represent the x-coordinates of the points. The blue point on the right
was not yet part of any processed hyperedge.

of any upcoming hyperedge. Therefore the presenter can remove them. The painter has
to ensure that among the leftmost m points are at least two different colored points. He
has two colors c1 and c2 to achieve this goal. We define that c1 is the smaller color. The
leftmost m points are exactly the points that form the next hyperedge and therefore they
must have at least two different colors.

The strategy of the painter works as follows: If among the leftmost m points there is at
most one color, then color the leftmost uncolored point with the smallest color available.

Lemma 4.1. For m ≥ 3, there can never be two consecutive points colored with the same
color among the leftmost m points.

Proof. According to his strategy, the painter never colors an additional point of the leftmost
m points with a color that is already represented in those points. Additionally, only the
leftmost point can disappear. Thus two consecutive points with the same color can only
occur if the painter colors the m-th point with color c and the point at the (m + 1)-th
position from the left was already colored with color c beforehand. Then, if the leftmost
point disappears and the (m+ 1)-th point again becomes part of the leftmost m points,
there are two consecutive points with color c within those m points.

Assume that this is the first time in the game, that two consecutive points of the same
color occur within the leftmost m points. The painter then has colored the m-th point,
as the other m− 1 points already had colors before. As the painter only starts coloring
if there is at most one color presented in the leftmost m points, the m-th point, before
coloring, is the leftmost uncolored point and all other points have the same color. For
m ≥ 3 this is a contradiction to the assumption, that the current situation is the first time
that two consecutive points among the leftmost m points are colored with the same color.
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Thus, there can never be two consecutive points colored with the same color among the
leftmost m ≥ 3 points.

Note that for m = 2, the coloring strategy of the painter easily leads to a monochromatic
rectangle, if the presenter presents the points p1, p2 and p3 with xp1 < xp2 < xp3 as follows:

• The presenter presents the points p1 and p3 and the painter colors p1 with color c1
and p3 with color c2 on the way. The currently considered hyperedge is therefore
polychromatic.

• Now, the presenter presents p2, which is situated between the other two points. The
painter needs to colors p2 with color c2, as otherwise the hyperedge consisting of
{p1, p2} does not have two points with different colors.

• After that, the presenter removes p1. The arising hyperedge {p2, p3} is monochromatic
with color c2.

Due to Lemma 4.1, we observe that for m ≥ 3, there are always two consecutive points in
the leftmost m points that have different colors or they can be colored such that afterwards,
they have two different colors. Hence, the painter wins the game if he sticks to his strategy.
We can also derive the following:

Corollary 4.2. If the painter decides to color a point, he always colors the leftmost or
second most left point.

Proof. If the painter needs to color a point further to the right than the leftmost two,
all the points left of the currently colored node have the same color which is impossible
according to Lemma 4.1. So in situations where there are less than two colors represented
in the leftmost m points, at least the leftmost or the second most left point is still uncolored.
This point or these points can then be colored with the color that is not already presented
or with one color each. Hence, there is no need to color a point at another position.

The strategy of the painter is similar to the algorithm described in Section 3.1. Points
already presented by the presenter correspond to the active points of the algorithm.
Additionally, the painter colors as well from the left to the right, and only if necessary. This
strategy is only presented for completeness as we obtain the same results as Lemma 3.13,
i.e., any hypergraph captured by hanging bottomless rectangles admits a proper 2-coloring
for m ≥ 3. We now present the game for hanging right-open rectangles, which we will use
in the game for the combination of the two range familes.

4.2 Game for Hanging Right-Open Rectangles
We now look at the presenter-painter game for hanging right-open rectangles. This time,
the points of the point set V are considered as having the same x-coordinate. Figure 4.2 on
the right shows an exemplary situation that may occur during the game. In this game, the
presenter presents new points only on the top of the line, in contrast to the last game where
points could appear anywhere. Further, each point is assigned a number which indicates
the point in time at which they disappear. Those numbers are unique and the points can
be ordered by them. They correspond to the x-coordinates of the respective points, as
these determine the point of time when the points disappear (see Figure 4.2 on the right).
The presenter can remove the point with the lowest number. The painter can again color
points with colors c1 and c2. He needs to ensure that in the top m points there are at
least two different colors present. The reason for the appearance of points on the top is,
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4.2. Game for Hanging Right-Open Rectangles

that later presented points always lie above the upper side of the current edge e, otherwise
they would be part of the current or a former right-open rectangle. They therefore have a
greater y-coordinate than e and remain inactive until they are part of a hanging right-open
rectangle for the first time. The next edge e′ that contains those points then has a higher
upper side than the y-coordinates of the points. As the points appear at the position of
their y-coordinate on the line, new points always appear on top of the line. The number
assigned to each point corresponds to their x-coordinate in the hypergraph. A point can
no longer be part of any higher ordered hyperedge, if its x-coordinate is smaller than the
left side of every upcoming hyperedge, as we consider the edges from the left to the right.
The coordinates of the left side of a hyperedge have the same x-values as the attachment
point. Thus, a point whose x-coordinate is smaller than the x-value of the attachment
point of the currently considered hyperedge is removed by the presenter, independent of its
y-coordinate.

As the points with the smaller numbers disappear first, we think that it is a good idea to
color them first too. Thus, the painter colors the point with the smallest number whenever
there are less than two different colors presented in the topmost m points. We figure out
that it is very easy for the presenter to force two consecutive points with the same color.
See Figure 4.3 for an example with uniformity m = 3.

2 2 2 2 2 2

3 3 3 3 3

4 4 4 4

1 1

5 5

top m
points

Figure 4.3: From the left to the right: Consecutive situations in the presenter-painter game
for hanging right-open rectangles. The presenter first adds five points, then
removes the one with the smallest number. The painter paints with the color
yellow first and red second. The brackets always indicate the top three points
for which the painter must ensure that two different colors are present.

We observe that two consecutive points with the same color can occur when the points
that are originally situated between them disappear. Alternatively, it also happens if the
lowest of the top m points is colored with the same color as the (m+ 1)-th point and then
one point of the top m− 1 disappears.

Next, we examine whether it is possible to have three consecutive points with the same
color in the topmost m points. We first adjust the painter’s strategy, as three consecutive,
same colored points can easily occur when points disappear between them: Every time the
painter colors a point v with color c, he also determines another uncolored point w next to
it as a barrier for v. The barrier of v is never assigned the same color c, as long as v is
active. It is important, that w has a higher number than v. For the two colors c1 and c2
we use the mappings bc1 , bc2 : V → V to describe the barrier of a point v1 ∈ V colored with
color c1 as bc1(v1) ∈ V and for a point v2 ∈ V colored with color c2 as bc2(v2) ∈ V . The
idea of the barrier bci(v) with ci ∈ {c1, c2} is, that as it has a higher number assigned to it,
it is removed later than v and therefore protects v on one side from a point v′ colored with
the same color as v. Hence, v and v′ can never be consecutive points with the same color.
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4. Union of Hanging Bottomless and Right-Open Rectangles

If v is to be colored with color ci, the barrier point bci(v) must fulfill the following conditions,
otherwise the painter cannot color v:

1. It has to be uncolored or colored with cj 6= ci in the moment of assignment.

2. It must not already be a barrier bci(w) of another point w with the same color ci.

3. The barrier bci(v) is either one of the direct neighbors of v, or all points between v
and bci(v) are colored with cj 6= ci.

4. In the moment of assignment, it must lie within the topmost m points.

5. It must have assigned a higher number than the colored point v, i.e., it is removed
later from the game than v.

Note that for the two colors used, the barriers of the colored points are assigned without
considering the barriers of the other color. It is therefore possible, that a point is a barrier
for both colors or that a point is a barrier for color c1 and is colored with color c2. If two
points in both sides of v fulfill all these conditions, the point with the lower number is
set as the barrier bci(v). The painter is not allowed to color bci(v) in future steps with
color ci, unless v is removed by the presenter. In that moment, bci(v) is no longer a barrier
and can be colored or again be assigned as barrier to another colored point. Every time
an additional color, say c2, is needed, the painter colors the uncolored point v with the
smallest assigned number in that color if it is not a barrier for a point w with the same
color c2, i.e. v 6= bc2(w). The point v is only colored if the painter can find an uncolored or
c1-colored barrier for it. Otherwise, the painter tries to color the uncolored point with the
next higher number. We later show in Lemma 4.5 that for m ≥ 3, the painter can always
find an uncolored point and a corresponding barrier as long as less than two colors are
present in the topmost m points.

Observation 4.3. Between a point colored with color c and its barrier is no other point
colored with color c.

This directly follows from the third barrier condition. If this is not the case, the barrier
does not protect the point in the direction of its barrier against other points in the same
color. This then leads to several consecutive points with the same color.

Lemma 4.4. For any m ≥ 3, there can never be three consecutive points colored with the
same color among the topmost m points.

Proof. Assume that there are three consecutive points u, v and w with the same color c in
the topmost m points. Let their y-coordinates be ascending. i.e., yu < yv < yw. Due to
Observation 4.3, we know that the barrier of v cannot be above w or below u. Hence, bc(v)
must be between u and v or v and w. This contradicts our assumption that u, v and w are
consecutive, as bc(v) 6= u and bc(v) 6= w due to c(bc(v)) 6= c.

Lemma 4.5. For m ≥ 3 and k = 2 colors, it is always possible for the painter to guarantee
that there are points with at least two different colors in the topmost m points. Furthermore,
all colored points have a barrier assigned to them.

Proof. Let v1, v2, . . . , vm ∈ V be the topmost m points at a point in time of the presenter-
painter game for hanging right-open rectangles. In the following we use the notation vi < vj

for any points vi and vj to denote that vi has a smaller assigned number than vj . Within
the topmost m points, either none of the points is colored or at least one point is already
colored. These points then each have a barrier point assigned to them as well.
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4.2. Game for Hanging Right-Open Rectangles

Assume that all points v1, v2, . . . , vm are still uncolored. The painter then colors the point
vi with the smallest number with color c1 and assigns one of the points next to vi as barrier
bc1(vi) to it. If vi ∈ {v2, . . . , vm−1}, both of the neighbors of vi fulfill the conditions for
a barrier listed above, as they are uncolored, not yet a barrier for a point with color c1,
direct neighbors of vi, have a higher assigned number than vi as vi has the smallest number
among all points v1, v2, . . . , vm (and all points have different numbers), and lie within the
topmost m points. If vi = v1 then only v2, fulfills the conditions. Analogously, if vi = vm,
only vm−1 fulfills the conditions. Therefore it is always possible to color vi and assign
a point bc1(vi) as its barrier. To ensure two different colors, the painter needs to color
a second point vj ∈ {v1, . . . , vi−1, vi+1, . . . , vm} with color c2. If m = 3, the number of
uncolored points is the fewest out of all m ≥ 3. The following argumentation for m = 3
will work similar for any m > 3: As we colored one point with color c1, there are only two
(or more, if m > 3) uncolored points vj and vk left. Let vj be the point with the smaller
number. Hence, the painter tries to color it first. Therefore vk must fulfill the conditions
of a barrier. There are two different scenarios now: As bc1(vi) is a direct neighbor of vi, it
is either the point in the middle if vi is the first or third point, or, if vi is the point in the
middle, bc1(vi) is the first or third point.

1. Let bc1(vi) be the point in the middle. Then, the two uncolored points vj and vk

are situated next to each other, as vi = v1 or vi = vm = v3. The point vk is then
uncolored, a direct neighbor of vj , lies within the topmost m points and has a higher
number than vj . Therefore the painter is able to color vj with color c2 and assign
vk as the barrier bc2(vj) of vj . Thus, vi and vj lie among the topmost m points, are
colored with two different colors and both have a barrier point.

2. Let now bc1(vi) be the first or third point and vi is the point in the middle. It holds
that vi < bc1(vi) = vj < vk as when both neighbors of vi fulfill the conditions for a
barrier, the one with the smaller number is picked. Hence, vk is again uncolored, not
yet a barrier of a point with the same color c2, lies in the topmost m points and has
a higher number than vj . It is not a direct neighbor of vj , but all points between
vj and vk are colored with color c1 whereas vj is to be colored with the color c2.
Therefore vk fulfills all conditions and is assigned as barrier bc2(vj) to vj .

Assume some of the points among the topmost m points are already colored with color c1.
The painter only needs to color one other point with the second color c2. Due to Lemma
4.4, we know that for m ≥ 3 there can never be three consecutive points with the same
color among the topmost m points. Hence, for m = 3 not all points are colored and thus
at least one uncolored point exists in the topmost m points. If m > 3, no three consecutive
points can have color c1 and therefore there again exists at least one uncolored point. We
then color the uncolored point with color c2. As no other c2-colored point exists in the
topmost m points, we can assign one of the uncolored or c1-colored points as its barrier.

If there are already two colors present within the topmost m ≥ 3 points, the painter does
not need to paint another point. Note that as the points appear on the top, it is possible
that either a barrier of a point or a point itself no longer lies in the topmost m points. If
the barrier no longer lies there, both colors are still represented. If instead a point colored
with color c1 is pushed out of the topmost m points, we need a new point in that color.
We do not free the barrier of the disappeared point, but we can use the barrier of the
point with color c2, which is uncolored, and the newly presented uncolored point as new
point-barrier pair for the color c1.

To summarize, for m ≥ 3 the painter can always color points such that there are two
different colored points within the topmost m points that all have a barrier assigned to
them as well.
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4. Union of Hanging Bottomless and Right-Open Rectangles

We saw that for m ≥ 3, there can never be three consecutive points with the same color
among the topmost m points in Lemma 4.4. Additionally, it holds that the painter can
always guarantee two points with different colors in the topmost m ≥ 3 points when
coloring with k = 2 colors (see Lemma 4.5). Thus, as already shown in Lemma 3.15, we
can find a proper 2-coloring for any hypergraph captured by hanging right-open rectangles
and presented by the presenter, if we use the painting strategy using barrier points for
the painter. We will now use this game as basis for the presenter-painter game for the
combination of hanging bottomless and hanging right-open rectangles.

4.3 Combination of the two Games
We now want to combine the presenter-painter game for hanging bottomless rectangles
and the game for hanging right-open rectangles defined in Section 4.1 and Section 4.2,
respectively. Informally speaking, our goal is to study the combination of both games:
We would like to know whether any hypergraph H captured by hanging bottomless and
hanging right-open rectangles is semi-online proper 2-colorable. In Chapter 5, we extend
this question to semi-online proper k-colorability.

We start with considering the presenter-painter game for hanging right-open rectangles.
There, we already know that the number each point gets when it appears corresponds to
its x-coordinate. Thus, the presenter always removes the points, whose x-coordinates are
too small to be part of the upcoming edges. In the presenter-painter game of the previous
section, we only considered hanging right-open rectangles. Now we additionally consider
hanging bottomless rectangles. Therefore, we define subsets of the points where each m
consecutive points induce a hanging bottomless rectangle.

Definition 4.6. Let V be the points of the hypergraph. We order them by ascending
y-coordinates. Let Vt ⊆ V consist of the lowest t points p1, . . . , pt, i.e., all other points
q /∈ Vt of the hypergraph have higher y-coordinates than pt. As the points are ordered by
ascending y-coordinates, it holds that yp1 < · · · < ypt.

In the hypergraph H(Vt,RBL ∪RRO,m), every m consecutive points in x-direction form
a hanging bottomless rectangle. The x-coordinates of those points correspond to their
assigned numbers. Thus, these points must use at least two different colors as otherwise,
there would be a monochromatic hanging bottomless rectangle.

If we present the points in order of ascending y-coordinates, it is possible that later in
the game, in a subset V>t ⊆ V , the presenter presents a point p that lies (in x-direction)
between m consecutive points p1, . . . , pm of Vt. Hence, these m points in Vt would not form
a hanging rectangle after all. But as it is also possible that no point p is presented later
in the game between p1, . . . , pm, the painter must guarantee that any presented points
with m consecutive numbers are not monochromatic. Only in this way, he can avoid
monochromatic hanging bottomless rectangles.

Theorem 4.7. For m ≥ 2, there exists a semi-online strategy for the presenter, such that
the corresponding m-uniform hypergraph captured by the union of hanging bottomless and
hanging right-open rectangles is not semi-online proper 2-colorable.

Proof. We only concentrate on one fixed color c and look at a presenter-painter game
that handles both hypergraphs simultaneously. We show that the presenter can force the
painter to color points in such a way that in the end of the game, there are points with
m consecutive numbers that all have color c and that also can hang from the first angle
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bisector. Thus, we then have a monochromatic hanging bottomless rectangle and the
hypergraph is not proper 2-colorable.

We take advantage of the fact that to properly 2-color the hypergraph, the painter must
use our arbitrarily chosen color c in every hyperedge as he has only two colors available.

We play the presenter-painter game for hanging right-open rectangles whereby any m points
with m consecutive numbers potentially form a hanging bottomless rectangle. Note that
the presenter never removes a presented point. Thus, it cannot happen that we get two
consecutive points with the same color due to the removal of a point among the topmost
m points. Hence, this proof works for m ≥ 2 as it is possible to ensure that m ≥ 2 points
have different colors and the presenter always presents exactly one point and the painter
reacts directly after that. For m = 2, the painter then only has the possibility to color the
points alternating with the two colors and thereby always knows the next color necessary,
as the other color is still represented in the topmost two points. The construction described
in the following is shown in Figure 4.4. Also note that we did not project the points on a
vertical line but instead we present the points with their x-coordinates. For simplification,
the points here are placed on the exact same x-coordinates, instead of including a shift of
a small ε > 0.

In general, we provide a strategy for the presenter such that no matter how the painter
colors the points, at some point there necessarily occurs a monochromatic hyperedge. But
in this proof, we assume that whenever the topmost m points contain no point of color c,
the painter colors one of them with color c. This is necessary to assure that there is always
one colored point within the topmost m points. Therefore, we can assume that whenever
the presenter adds a point in such a way that the point which was colored last is no longer
part of the topmost m points, the painter colors exactly one other point. Any strategy
of the painter which does not ensure this property will lead to a monochromatic hanging
right-open rectangle immediately, as we color all points that remained uncolored with the
same color in the end. We now describe the winning strategy of the presenter.

First, the presenter presents a set V1 of mm points p1,1, . . . , p1,mm with descending x-
coordinates xp1,1 , . . . , xp1,mm , i.e.,

xp1,1 > · · · > xp1,mm

starting with p1,1. The painter colors some of the points according to his strategy along the
way. We call these points in V1 presented by the presenter with ascending y-coordinates a
sequence. The first sequence forces the painter to color at least mm−1 points with color
c, as he must always color a point among any m uncolored vertically consecutive points.
After that, the presenter presents a second sequence V2 with at least mm−1 new points, one
for every point colored with color c in V1, as follows: We refer to the points colored with
color c in V1 as the point set V c

1 ⊆ V1. The x-coordinate of every point in V2 is “almost the
same” as the x-coordinate of one of the points in V c

1 , respectively. Namely, we choose a
sufficiently small ε > 0 such that any point p2,j ∈ V2 is ε to the right of one point p1,i ∈ V c

1 ,
i.e., xp2,j = xp1,i + ε, while xp2,j � xp1,i−1 .

Observe that for the points of V2, it holds again that xp2,1 > · · · > xp2,|V2|
and the presenter

starts with presenting p2,1. The painter now has to color at least mm−2 points from V2.
Afterwards, the presenter again presents a point p3 for each point p2 ∈ V c

2 such that the
x-coordinate of p3 is by a summand ε higher than the x-coordinate of p2. This is repeated
until the painter colors at least m points in the sequence Vm−1, and after that at least m
new points are added by the presenter as a sequence Vm. By an analogous argument as
before, the painter then colors at least one of the points in Vm.
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. . .

V1: m
m points

V2: m
m−1 points

Vm: m1 points

y = x

Figure 4.4: Construction for the proof of Theorem 4.7. New points are presented on the top,
thus the lowest point was presented as first. Black points indicate uncolored
points whereas red points indicate points colored with color c. New sequences
of points with ascending y- but descending x-coordinates consist of points
having “almost the same” x-coordinates than the colored points in the previous
sequence but with a slight shift to the right. The blue box indicates m points
colored with color c and having m consecutive x-coordinates.
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Note that the painter needs to color points with both colors every topmost m points.
However the presenting-strategy only reacts to one color, say c.

Now we prove that after presenting the points of V1, . . . , Vm, there necessarily exists a
monochromatic hyperedge: Recall that the sequence Vm contains at least one colored
point, say pm,i. By the construction of Vm, we then have a colored point pm−1,j with
x-coordinate xpm−1,j = xpm,i − ε in Vm−1. Similarly, we have a colored point pi,k with
xpi,k

= xpi+1,l
− ε in every former sequence Vi ∈ {Vm−2, . . . , V1}. This means, starting from

a colored point pm,i ∈ V c
m as the rightmost point, that there are exactly m points with

consecutive x-coordinates within the already presented numbers, one point in each of the
m sequences. Therefore there is a monochromatic hanging bottomless rectangle r within
the interval i =

[
xp1,k

, xpm,i

]
, whereby |xpm,i − xp1,k

| = (m− 1) · ε and xpm,i < xp1,k−1 .

To summarize, this means that the union of hanging bottomless rectangles and hanging
right-open rectangles is not semi-online proper 2-colorable when using this presenting-
strategy.

As illustrated in Figure 4.4, the total number of points needed for this strategy is at least

mm +mm−1 + · · ·+m1 =
m∑

i=1
mi = m(mm − 1)

m− 1 .
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In the previous chapter, we developed a strategy for the presenter in a presenter-painter
game for hanging bottomless and hanging right-open rectangles such that no matter how
the painter colors the presented points with two colors, there is always a monochromatic
hyperedge. The strategy of the presenter works for any uniformity m ≥ 2 and k = 2
colors. The idea of this chapter is to generalize the strategy of the presenter to any number
of colors k. Thereby, we consider hanging right-open and hanging (axis-aligned) topless
rectangles. Note that we previously considered hanging bottomless instead of hanging
topless rectangles. Moreover, we try to transfer the semi-online strategy of the previous
chapter and the semi-online strategy considered in the following into offline strategies.

Figure 5.1 shows on the left an example of a hypergraph captured by topless rectangles
and on the right an example of a hypergraph captured by hanging topless rectangles. The
range family of axis-aligned topless rectangles T is formally defined as

T = {{(x, y) ∈ R2 | a ≤ x ≤ b, y ≥ c} | a, b, c ∈ R} .

For hanging topless rectangles, their left and right side of the hyperedge pierce the first angle
bisector. It also requires that the lower side lies below the first angle bisector. Therefore,
the range family of hanging topless rectangles is defined as

RT L = {{(x, y) ∈ R2 | a ≤ x ≤ b, y ≥ c} | a, b, c ∈ R, c < a} .

We want to find for x, a, k ∈ N a semi-online presenting-strategy S(x, a, k) with the property,
that for x ≥ 1,m ≥ a ≥ 1 and k ≥ 2, the following holds: If the painter semi-online properly
k-colors m consecutive presented points in the presenter-painter game, S(x, a, k) enforces
the painter to create a set of x hanging topless disjoint rectangles such that each of them
contains m points and these m points are colored with the same color. Then for x = 1,
S(1,m, k) would be the semi-online winning strategy for the presenter that enforces a
monochromatic hanging topless rectangles of size m while the painter colors with k colors.

We construct the strategy S(x, a, k) recursively, first by the number of colors k and
then by the number a of points contained in the hanging topless rectangles. Note that
the monochromatic hanging topless rectangles of the recursive strategies may not all
remain monochromatic due to new points of the current strategy. Therefore, the idea
is, informally speaking, to enforce a sufficiently large number of monochromatic hanging
topless rectangles of size a− 1 to ensure that when all of them grow to size a, enough of
them remain monochromatic.

39



5. Not Semi-online Proper k-colorable

a) b)

y = x

Figure 5.1: Example of hypergraphs captured by a) topless rectangles and b) hanging
topless rectangles.

With n(x, a, k) we denote some fixed number at least as large as the number of points used
in the strategy S(x, a, k). The number of points for a strategy S(x, a, k) is not fixed, as the
strategy is semi-online and reacts directly to the coloring of the painter. For example, it
makes a huge difference if the painter most frequently uses the color the presenting-strategy
is focussing on or if he mainly uses all other colors. In the first case, the presenter needs to
present less points than in the second case. The presenter always stops presenting points,
if no more points are necessary.

The strategy S(x, 1, k) for all x, k ∈ N is defined as sequence of points with ascending
y-, but descending x-coordinates. We call this sequence V1 whereby the lower bound of
n(x, 1, k) is dependent on x, k and m. As the painter properly k-colors every m consecutive
points of V1, we need so many points that across the whole sequence of points, he uses
one of the k colors, say c1, at least x times. The painter has to color among every m
consecutive points at least two points with different colors to not directly lose the game.
Thus, for k ·m points, at least 2k points are colored. Consequently, we say that for

n(x, 1, k) ≥ k ·m ·
⌈
x

2

⌉
points, at least 2k · dx/2e of them are colored and hence one color is represented at least x
times. This implies that there are at least x hanging topless rectangles of size one with the
same color, e.g. c1. With V c1

1 we denote the set of points colored with color c1.

The other base case for our strategy is the strategy S(x, a, 2) for two colors. If x = 1
and a = m, the strategy corresponds to the strategy of Theorem 4.7, i.e., the proof that
hypergraphs captured by RBL and RRO are not semi-online proper 2-colorable. Note that
if the presenter stops presenting points in the moment where the monochromatic hanging
bottomless rectangle r is enforced, we can find a hanging topless rectangle containing the
exact same points as r, hence a monochromatic hanging topless rectangle. Between the left
and the right side of r, there is no point above the upper side of r. That is because the point
p, colored last in the topmost a = m points, and all upcoming points have x-coordinates
lower than the left side of r. The reason is that we present new points qj in new sequences
that correspond to a point pi in the previous sequence, identical to the strategy of the
previous chapter, always to the right of pi, but far to the left of the previous point in the
previous sequence, pi−1. Thus, for ε > 0, xqj = xpi + ε and xqj � xpi−1 .

For x > 1, the strategy of the presenter is described in the proof of the following Lemma
5.1. The idea is that we can scale the strategy of Theorem 4.7 by presenting x times as
many points in the first sequence V1. This leads to a factor of x more points in every
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sequence Vi, for i ∈ {1, . . . , a, . . . ,m} and therefore x times more colored points in the
sequence Va. Note that the presenter stops presenting points after a sequences V1, . . . , Va.

Lemma 5.1. For m ≥ a, the strategy S(x, a, 2) creates x monochromatic hanging topless
rectangles of size a if the painter colors with two colors.

Proof. Without loss of generality, we focus on one of the two colors. Note that the proof
works equally for the other color. The presenter starts with presenting x ·mm points in the
first sequence V1. As the painter needs to color at least every m-th point, we get at least
x ·mm−1 points colored with the same color, say c1, in sequence V1. Thus, sequence V2
has at least x ·mm−1 points. After a sequences, a ≤ m, the sequence Va contains at least
x ·mm−(a−1) points. As m ≥ a,

x ·mm−(a−1) = x ·mm−a+1 ≥ x ·m1 .

Thus, the painter colors at least x points in sequence Va. By the construction of sequences,
each colored point in Va has “almost the same” x-coordinate as a−1 other points colored with
the same color. Thus, we have x topless rectangles of size a that are monochromatic.

Recursively, we define the strategy S(x, a, k) for k ≥ 3 and a ≥ 2 given the strategies
S(x′, a, k − 1) for all x′ and S(x′′, a− 1, k) for all x′′ as follows:

1. First, play the strategy S(x1, a− 1, k) with x1 = x · k · n(x, a, k − 1). This results in
x1 monochromatic topless rectangles containing a− 1 points each. By the pigeonhole
principle, at least x1/k = x · n(x, a, k − 1) of them have the same color, say color c1.
Let r1, . . . , rx·n(x,a,k−1) be those rectangles.

2. Now play x versions of S(x, a, k − 1). Consider for this the rightmost points
pi, . . . , pi+n(x,a,k−1)−1 of n(x, a, k − 1) consecutive rectangles ri, . . . , ri+n(x,a,k−1)−1
with color c1, respectively, whereby i = y · n(x, a, k − 1) + 1 for 0 ≤ y ≤ x− 1. For
ε > 0, new points of one of the strategies S(x, a, k − 1) are then set at the positions
pi + ε, . . . , pi+n(x,a,k−1)−1 + ε. Note that we reserve one point pj of the c1-colored
rectangle rj for each point in the upcoming strategy S(x, a, k − 1), even if it uses
several sequences. Now we proceed as follows, depending on the actions of the painter.
Note that the two following cases are visualized in Figure 5.2 and Figure 5.3.

a) If the painter does not use color c1 in any of these versions vj , this version
already provides us the desired x rectangles, each of them containing a points,
but only k − 1 colors are used, as we already know that a strategy S(x, a, k − 1)
provides us x monochromatic hanging topless rectangles of size a when using
k − 1 colors. This also satisfies the strategy S(x, a, k), only using less colors.

b) The painter uses color c1 in each of the x versions at least once. In each version,
the point colored with color c1 has “almost the same” x-coordinate as the points
of the n(x, a, k − 1) monochromatic hanging topless rectangles, as we place
the new points close to them. These rectangles now contain an additional
point with color c1, thus a points in total. They are also still hanging and
topless. The rectangles containing a point colored with color ci 6= c1 are no
longer monochromatic. Thus, as each of the x versions produces at least one
monochromatic hanging topless rectangle, we get the desired number of at least
x, each containing a points colored with color c1.

If the presenter plays the strategy S(1,m, k), we get one hanging topless monochromatic
rectangle with m points. The strategy is still semi-online.
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Theorem 5.2. There exists a semi-online strategy S(1,m, k) for the presenter such that
the union of hanging right-open rectangles and hanging topless rectangles over the same set
of points V is not semi-online proper k-colorable for every k ≥ 2.

Proof. The presenter presents a sufficiently large sequence of points with ascending y- but
descending x-coordinates as the first base case strategy S(x, 1, k). As shown above, it must
consist of at least k ·m · dx/2e points. Along that, the painter needs to color at least two
points for each m points, such that he properly k-colors the hanging right-open rectangles.
Then, there are at least x rectangles of size one that are monochromatic.

The second base case strategy S(x, a, 2) is described in the proof of Lemma 5.1.

It holds that for x′ ∈ N, S(x′, a, k − 1) is a strategy that forces the painter to create x′
hanging topless rectangles containing a points when coloring with k − 1 colors. Moreover,
it holds that for x′′ ∈ N, S(x′′, a− 1, k) is a presenting-strategy that leads to x′′ hanging
topless rectangles of size a− 1 when the painter uses k colors.

S(x1,m− 1, k)

S(1,m, k)

x1 topless rectangles of size m− 1

1 topless rectangle of size m

one version of S(1,m, k − 1)

. . .

. . .

pi

p′i

Figure 5.2: Example for the construction of S(1,m, k) case a). The strategy S(x1,m− 1, k)
creates x1 green monochromatic hanging topless rectangles of size m− 1. After
that, the presenter plays one version of S(1,m, k−1) on the top, but the painter
never reuses color green. Thus, only k − 1 colors are used, e.g. blue and red
here. But the strategy S(1,m, k − 1) is known to provide one monochromatic
hanging topless rectangle of size m using only k − 1 colors.

We now show that we can create the strategy S(1,m, k) with the use of S(x′,m, k − 1)
and S(x′′,m− 1, k). The construction for case a) is shown in Figure 5.2, the one for case
b) in Figure 5.3. Let x′′ = x1 = 1 · k · n(1,m, k − 1). Then the strategy S(x1,m − 1, k)
creates us 1 · k ·n(1,m, k− 1) monochromatic topless rectangles of size m− 1 using k colors.
Dividing by the number of colors, we know that at least n(1,m, k − 1) of the rectangles
have the same color, say c1. Starting from the rightmost point pi of the i-th (from the
right) monochromatic rectangle, we create for the strategy S(1,m, k − 1) a new sequence
of points p′1, . . . , p′n(1,m,k−1) whereby for ε > 0, x′pi

= xpi + ε, i.e., each point p′i is slightly
shifted to the right of the corresponding point pi. This strategy creates one monochromatic
hanging topless rectangle of size m when coloring with k − 1 colors. Thus, if the painter
does not use color c1, he creates a monochromatic rectangle r in a second color, say c2. If
the painter colors at least one of the newly added points, e.g. p′i, with color c1, p′i is in
any case consecutive with m− 1 monochromatic points of the strategy S(x′′,m− 1, k), as
the rightmost point pi in this rectangle of size m− 1 influenced the position of p′i. Thus,
there are now m consecutive points with color c1 that create a monochromatic hanging
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S(x1,m− 1, k)

S(1,m, k)

x1 topless rectangles of size m− 1

1 topless rectangle of size m

one version of S(1,m, k − 1)

. . .

. . .

pi

p′i

Figure 5.3: Example for the construction of S(1,m, k) case b). The strategy S(x1,m−1, k)
creates x1 green monochromatic hanging topless rectangles of size m− 1. After
that, the presenter plays one version of S(1,m, k−1) on the top, and as at least
one point is colored with green again, there exists a monochromatic hanging
topless rectangle of size m.

topless rectangle, which is exactly what the strategy S(1,m, k) is supposed to do. Therefore
there exists a semi-online strategy S(1,m, k) that forces a monochromatic hanging topless
rectangle of size m when coloring with k colors. The existence of such a strategy implies
that the union of hanging right-open and hanging topless rectangles is not semi-online
proper k-colorable for k > 2.

5.1 Conversion into Offline Setting
We now construct an offline strategy for the presenter in the presenter-painter game for
hanging right-open and hanging bottomless rectangles for k = 2 colors. This strategy is
similar to the semi-online strategy described in the previous chapter and in the previous
section. For k > 2, we are not able to present an offline strategy. Therefore, we describe
the challenges arising during the development of such a strategy. We know no way to solve
all of them together.

As these strategies are offline, all points of the hypergraph must be presented before the
painter starts coloring. The painter thus knows the position of all the points from the
beginning.

We want to find for x, a, k ∈ N an offline presenting-strategy Soff(x, a, k) for x ≥ 1, a ≥ 1 and
k ≥ 2. If the painter offline properly k-colors m consecutive presented points, Soff(x, a, k)
enforces the painter to create a set of x non-hanging bottomless disjoint rectangles that
all have a size of a points and that are all monochromatic. For x = 1, Soff(1,m, k) would
be the offline winning strategy for the presenter that enforces a monochromatic hanging
topless rectangle of size m while the painter colors with k colors.

The idea is to start again with a starting sequence of points V1 with ascending y- and
descending x-coordinates. As the presenter does not know which of those points the painter
colors with the same color, say c1, the presenter must ensure that no matter which points
are colored with color c1, there exist points in a second sequence that are very close to the
one colored with c1 in the sequence V1. To cover all possible subsets of points colored with
color c1, the presenter creates an individual subuniverse for every subset of V1. Recursively,

43



5. Not Semi-online Proper k-colorable

we treat the sequences Vi created in this way identically to the first one. Thus, for all
sequences Vi, we again create subuniverses for all possible subset of Vi.

Definition 5.3. Let p = (xp, yp) and q = (xq, yq) be two points whereby xp < xq. We
define the interval (xp, xq) as area between p and q. The interval (xp + 0.5 · (xq − xp), xq)
is called the right area between these two points or the right area of xp.

For the rightmost point r = (xr, yr), the right area is defined as (xr + c, xr + 2c) for an
arbitrary c ∈ N.

Lemma 5.4. Let p = (xp, yp) and q = (xq, yq) be two points whereby xp < xq. There
always exits a point r = (xr, yr) that lies in the area between p and q, i.e.,

∃xr ∈ R : xp < xr < xq .

There equally exists a point s = (xs, ys) that lies in the right area between p and q.

Proof. Let p = (xp, yp) and q = (xq, yq) be two points whereby xp < xq. As xp, xq ∈ R and
as R is an uncountably infinite set, there always exists a real number xr with xp < xr < xq.
Therefore, any point r := (xr, yr) lies in the area between p and q.

Let now s = (xs, ys) be another point. If we define xs := xp + 0.5 · (xq − xp), we can
analogously conclude, that we can find a point r := (xr, yr) that lies in the area between s
and q. As for the definition of xs, the point r then lies in the right area between p and
q.

We recall the base cases for our semi-online construction from the previous section and
then transfer them into offline base cases:

1. The strategy S(x, 1, k) is a semi-online strategy, that creates x monochromatic
hanging topless rectangles of size one when coloring with k colors. Therefore we need
at most k ·m · dx/2e ≤ n(x, 1, k) points. Then, one color appears at least x times.

2. The semi-online strategy S(x, a, 2) forces x monochromatic rectangles of size a when
coloring with two colors. We therefore increase the number of points presented in
every sequence of the strategy described in Theorem 4.7 as described in the proof of
Lemma 5.1. After the a-th sequence, there are at least x colored points that are all
contained in a monochromatic hanging topless rectangle of size a, respectively.

The first strategy can be directly transferred into the offline strategy Soff(x, 1, k). For the
second strategy, in the offline setting, we do not know which of the points in the first
sequence V 0

1 on level 0 will be colored with the same color. Thus, we have to create each
possible subuniverse by assuming that any arbitrary subset of V1 represents the colored
points with the same color.

5.1.1 Offline-Algorithm for Two Colors

As for the semi-online strategy for two colors, we again only consider one color. But
for m ≥ 2, it is always possible to color a different point with another color. We use
the following definition to describe the structure of the presented points for the strategy
Soff(x, a, 2). Note that this construction is similar to the construction of Chekan and
Ueckerdt [CU21], which they use to prove that the union of bottomless rectangles and
horizontal strips is not polychromatic k-colorable. In their construction, it is sufficient
to show, that there exists a hypergraph captured by those two range familes, that is not
polychromatic 2-colorable. Thus, their construction is also made for two colors only. During
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the construction, we will lose the hanging property of the bottomless rectangles. Hence,
the offline strategy for two colors is for hanging right-open and non-hanging bottomless
rectangles.

Definition 5.5. In the following, we define a rooted forest Fz for z ∈ N. It holds that
z = x · mm and m ≥ a. For a ≥ 2, this graph will then be extended to an a-uniform
hypergraph Hz(V, E , a).

Fz consists of z trees. The root nodes S = {r1, . . . , rz} all have the same y-coordinate
yr and each of them a fixed x-coordinate xr1 , . . . , xrz . Thus, the root nodes are ordered
according to their x-coordinate. The children of each (root) node will all have the same
x-coordinate as their parent node.

The forest consists of a levels 0, . . . a−1. The root nodes form level 0. The children of all the
root nodes are on level 1, their children on level 2 and so on. Each level j ∈ {1, . . . , a− 1}
is divided into multiple stages. On level 0, there is only one unique stage. A stage is
determined by a fixed y-coordinate, thus the stages are ordered along their y-coordinate.

The child nodes of the root nodes are derived from the set S of all root nodes. Each stage
on level 1 consists of a set of nodes

S1 ∈
(
S

y

)
for y = 1

m
|S| ,

i.e., every possible subset of size y = (1/m) · |S|. Let Sj
1, . . . , S

j
s be the stages on level j.

Analogously, stage Sj
i for 1 ≤ i ≤ s induces the stages on level j + 1 consisting of the nodes

Sj+1 ∈
(
Sj

i

y

)
for y = 1

m
|Sj

i | .

Note that as z = x ·mm, we can divide the number of root points m ≥ a times by m and
every time we get a natural number, thus y ∈ N. Recursively, the children of the nodes
v1, . . . , vy of a stage Sj on level j are on different stages Sj+1

i on level j + 1. Thereby, for
stages Sj

1, . . . , S
j
s on level j, the s′ stages Sj+1

1 , . . . , Sj+1
s′ on level j + 1 derived by stage Sj

i

on level j lie between the stages Sj
i and the next stage on level j, Sj

i+1. The structure of
the stages and levels is exemplified in Figure 5.4. An example of the whole forest F4 for
m = 2 is shown in Figure 5.5.

S

S1
1

S1
2

S1
3

S2
1 , . . . , S

2
k

S2
k+1, . . . , S

2
p

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 5.4: Illustration of the level and stage structure. The colored areas each describe a
stage. The stages on level 0 are orange, on level 1 green and on level 2 pink.
The arrows indicate the subset relations.

Using Fz, we define the a-uniform hypergraph Hz(V, E , a) as follows:

1. Let r1 be the root node with the highest x-coordinate. Analogously, in every stage on
level 1, . . . , a− 1, we also consider v1 being the node with the highest x-coordinate.
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5. Not Semi-online Proper k-colorable

In every stage S consisting of y nodes, we slightly increase the y-coordinate of the
nodes v2, . . . , vy, such that yv1 < yv2 < · · · < yvy . This is necessary, as we do not
allow two points to have the same coordinates. Note that nevertheless, we respect the
stage boundaries, i.e. all points of any stage Sj

i have lower y-coordinates than those
of the next stage in y-direction, Sj+1

k . Thus, the stages remain disjoint.

2. Let vj
i , v

j+1
1 , . . . , vj+1

p be the points with an identical x-coordinate and increasing y
coordinates, i.e., y

vj
i
< y

vj+1
1

< · · · < y
vj+1

p
. Let vj

i on level j be the direct parent
of vj+1

1 , . . . , vj+1
p on level j + 1. We shift vj+1

1 in the middle of vj
i and the point

with the next higher x-coordinate in the same stage as vj
i on level j, vj

i−1. Thus,
x

vj+1
1

= x
vj

i
+ 0.5 · (x

vj
i−1
− x

vj
i
). Moreover, all direct children of vj+1

1 lie in the right

area between vj
i and vj

i−1. Analogously, we shift every vj+1
l for l ∈ {2, . . . , p} in the

middle between vj
i and vj+1

l−1 and their direct children lie in the right area between the
latter two.

3. The hyperedges of Hz are defined as follows: Every a consecutive points in y-direction
in one stage form a hyperedge. We call those hyperedges stage-hyperedges. Note
that those hyperedges are not disjoint. Note further that each one is captured by a
hanging right-open rectangle. Also, for every point va−1 on level a− 1, we construct a
path-hyperedge where va−1 is the upper right corner and the root of the tree containing
va−1, called root(va−1), is the lower left corner. Note that this edge consists of points
that have the same x-coordinate in Fz. These edges also have exactly a size of a
points (see Lemma 5.6). They are captured by bottomless rectangles. We call va−1 a
leaf of the tree rooted in root(va−1). For an illustration of the path-hyperedges, see
Figure 5.6.

The different stages on each level describe the different subuniverses of the universe
considered on the previous level. Note that it is not necessary to consider stage-hyperedges
that contain points of different stages. We ignore if the painter colors these hyperedges
monochromatically since we can still force another monochromatic hyperedge.

Lemma 5.6. The hypergraph Hz is a-uniform.

Proof. The stage-hyperedges of Hz each contain a points with consecutive y-coordinates.
Therefore, all of them have a size of a.

It remains to show, that every path-hyperedge defined by a rectangle surrounding a leaf and
its root and all points in between contains exactly a points. Let v = (xv, yv) be the leaf of
the tree situated on level a− 1. Let root(v) be the root of this tree. By construction, every
direct child of root(v) has its own right area, in which their direct children are situated.
Furthermore, for a child vi, its children have greater x-coordinates than vi itself, but lower
x-coordinates than the next child vi−1.

Thus, only points of the path from root(v) to v are in the rectangle spanned by v and
root(v). As we have exactly a levels and each level contains one point of the path, it
contains exactly a points.

Therefore, all hyperedges consist of exactly a points and thus Hz is a-uniform.

Let now a = m and x = 1. The strategy Soff(1,m, 2) then describes the offline version of
the semi-online strategy introduced in Section 4.3. Thus, no matter how the painter colors
all the presented points with two colors, we always get a monochromatic hyperedge:
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r1r2r3r4

{r1, r2}
{r1, r3}
{r1, r4}
{r2, r3}
{r2, r4}
{r3, r4}

S

S1
1

S1
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S1
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S1
4

S1
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Figure 5.5: Illustration of F4 for m = 2 defined in Definition 5.5 (inspired by [Che21]). The
colored areas show the different stages of different levels: Stages on level 0 are
orange and stages on level 1 are green. The black edges represent the edges of
the forest. After shifting the points, every two consecutive points in y-direction
in one stage form a stage-hyperedge. Additionally, every leaf-to-root-path forms
a path-hyperedge.

Lemma 5.7. If the painter properly 2-colors the stage-hyperedges, one of the path-hyperedges
of Hz for z = mm is monochromatic.

Proof. Level 0 with its unique stage S consists of 1 ·mm = mm points. The stages on level
1 contain mm−1 points. Thus, the stages on level m− 1 consist of mm−(m−1) = m1 = m
points. Every m consecutive points on any stage on level m− 1 form a stage-hyperedge.
Therefore, as the painter properly 2-colors all stage-hyperedges, there is at least one point
in every stage on level m − 1, that is colored with color c1. All point sets or stages
Sm−1

1 , . . . , Sm−1
s′ on level m− 1 form a subset of a point set Sm−2

1 , . . . , Sm−2
s on level m− 2.

We call the stage Sj
i and Sj−1

k related to each other, if Sj
i contains a subset of the points

of Sj−1
k . In the stages Sm−2

1 , . . . , Sm−2
s , at least 1/m of the points are colored with color

c1. Per definition there exists a stage on level m− 1 that represents exactly the subset of
the c1-colored points of the related stage on level m− 2. In this stage on level m− 1, the
point(s) with color c1, together with the corresponding point(s) on level m − 2, form a
rectangle, which contains no other points. An example is shown in Figure 5.6. The closer
a stage on level j + 1 is to the related stage on level j, the wider is the rectangle that
covers those two points. The further away a stage is, the narrower is the rectangle. As
each point in a stage on level j + 1 has its own right-area, no other points are contained in
those rectangles.

For all of those monochromatic rectangles of size two, we can repeat the same argumentation
for the point set on level m− 2 and the superset on the related stage on level m− 3. For
each stage on level m − 3, there is a subset on level m − 2 that exactly corresponds to
the colored points on the related stage on level m− 3. Thus, we can extend the rectangle
to three points with the same color. With the same reasoning for all levels, we obtain a
monochromatic rectangle of size m when looking at the stage that contains the subset of
the colored points of level 0. Hence, if the painter properly 2-colors the stage-hyperedges
of size m, we get a monochromatic path-hyperedge of size m. This hyperedge consists of
exactly one point from a stage on each level, where the points in the stage on level j + 1
correspond to the points colored with color c1 on level j. This rectangle is a bottomless
rectangle, as there are no more points below level 0.

To summarize, the hypergraph Hz for z = mm contains a monochromatic bottomless
rectangle and is therefore not proper 2-colorable.
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Sm−2
i

Sm−1
k

Sm−1
k+1

Sm−1
k+2

Figure 5.6: Illustration of a part of one stage Sm−2
i on level m − 2 and three stages on

level m − 1, that are related to the stage Sm−2
i . The colored areas indicate

the different stages. Every m consecutive points in y-direction form a stage-
hyperedge. The path-hyperedges are indicated with black rectangles. Note that
the left ends of those edges do not lie on the same x-coordinate as the points in
stage Sm−2

i , as there are other points on lower levels, that are also part of these
rectangles and have lower x-coordinates. The points of stage Sm−1

k+2 are exactly
the points, that are colored with red in stage Sm−2

i . Thus, the colored point in
the stage on level m− 1 and the corresponding point in stage Sm−2

i are covered
by a blue rectangle, that already contains two points with the same color.

The statement of Lemma 5.7 leads to the result, that there exists an offline strategy
Soff(1,m, 2) to place points in the plane, such that the union of hanging right-open
rectangles and non-hanging bottomless rectangles is not proper 2-colorable. Note that the
stage-hyperedges are right-open, as they contain the complete width of the stages, and
thus there is no more point on the right of any of those rectangles. They are all hanging,
as they can be extended to the left as far as necessary to intersect the first angle bisector
in the upper left corner. Recall also that the path-hyperedges always include the root
nodes and there are no more points below them, hence they are bottomless. But not all
path-hyperedges are hanging. In fact, the rectangles that are part of the stage on level
m− 1 with the highest y-coordinate can be extended to the first angle bisector. However
path-hyperedges of leaf nodes that are not the sibling with the highest y-coordinate cannot
be extended to the first angle bisector. This is due to siblings with higher y-coordinates
being between itself and its parent in x-direction, hence these siblings would be captured in
the hanging bottomless rectangle as well and the rectangles would lose their m-uniformity
(and likely their monochromacity).

It is important to notice, that this result does not contradict the statement of Corollary
3.8. This Corollary applies to hypergraphs captured by RBL ∪ RRO, the union of the
range families of hanging bottomless and hanging right-open rectangles. In Lemma 5.7,
as mentioned above, we prove that a hypergraph captured by hanging right-open and
non-hanging bottomless rectangles is not proper 2-colorable for any m ≥ 2.

5.1.2 Discussion: Offline-Algorithm for k ≥ 3 Colors

For k ≥ 3 colors, it becomes more difficult to transfer the strategy for the semi-online not
proper k-colorability of hanging topless and hanging right-open rectangles described in
Chapter 5 into an offline strategy. Additionally, in the semi-online and offline strategy
for two colors, the stage-hyperedges remain hanging and right-open. But for more than
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two colors, the monochromatic rectangles are topless instead of bottomless even in the
semi-online setting.

The challenges we face in defining the offline strategy for k ≥ 3 colors are the following:

1. We do not know which points of the strategy Soff(x, 1, k) the painter colors. Therefore,
we again need to consider any subuniverse.

2. We do not know where the (a− 1)-uniform monochromatic rectangles are situated
to play the next strategy to extend those rectangles to monochromatic a-uniform
rectangles. Thus, we again need to consider any subuniverse of possible beginnings of
monochromatic rectangles. But this time, we cannot just situate the upcoming points
in the right area of the already presented points. As the possible positions for the
rectangles are not disjoint, placing a point p in the right area of the rightmost point
of a possible rectangle r leads to p being in the middle of other possible rectangles r′.
This situation is illustrated in Figure 5.7.

r

r′

Figure 5.7: Illustration of the second challenge. The topless rectangles r and r′ are both
possible candidates for being monochromatic. Thus, we need to create multiple
subuniverses, to respond to all coloring possibilities. An open question is, how
we place the new points in regard to the already placed ones. The red point,
that is placed as the rightmost point of r is only the second rightmost for the
rectangle r′. This makes it difficult for us to define the different universes as
pairwise disjoint, as the red point is now in any case part of r′.

If we have a fixed set of disjoint rectangles, we can play the next upcoming strategy on top
of the corresponding rectangles. However, we do not know the set of rectangles in advance
in the offline setting, and therefore we have to play the strategy for every possible set of
rectangles. These sets are not disjoint. Hence, we have to play strategies for overlapping
rectangles, whereby the point set for one set of rectangles blocks the strategy for another
set of rectangles, as the sets overlap, and therefore the following strategies overlap as well.
We do not know where to put the points of the upcoming strategies without conflicting
with the other strategies.

Especially, if k increases, there are more and more different coloring options that require
more and more subuniverses. Thus, it remains an open question whether we can transfer
the semi-online strategy into an offline strategy and thus whether hanging right-open and
hanging topless rectangles are proper k-colorable for k ≥ 3 or not. In any case, it is likely
that if it is possible to transfer the given strategy into an offline strategy, we will lose the
hanging property of the topless rectangles. It is already lost in the offline strategy with
only two colors for the bottomless rectangles. As we need to create several times multiple
subuniverses, the later presented universes will most likely prevent rectangles of previous
universes from extending to the first angle bisector without capturing additional points.
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We investigated the question, whether the m-uniform hypergraph H(V,RR,m) captured
by the geometric range family of hanging rectangles is proper k-colorable for k ≥ 2 and
m ≥ 2. We first showed in Theorem 2.2 that for m = 2, we can embed the graph K4,
describing a clique of size four, into the setting of hanging rectangles. Hence, it holds that
for m = 2, there exists at least one hypergraph captured by hanging rectangles which is
neither proper 2-colorable nor proper 3-colorable, as we need at least four colors to color
K4. It remains unclear, if it is possible to embed K5 as well. Thus, we have no witness that
is not proper 4-colorable but can still be embedded into the setting of hanging rectangles.

Then, we investigated the two range families of hanging bottomless and hanging right-open
rectangles. Hypergraphs HBL(V,RBL,m) captured by the former range family form a
subset of hypergraphs HR(V,RR,m) over the same point set V as well as of hypergraphs
HB(V,B,m) captured by non-hanging bottomless rectangles. Thus, if HB or HR is proper
or polychromatic k-colorable for a fixed k, so is HBL. This does not hold for the not
proper or not polychromatic colorability: The hanging property is more restrictive, hence
it is likely that we can sometimes color these range families with less colors than the
non-hanging range family. We were able to show in Lemma 3.13 that, by contrast to
bottomless rectangles [Kes12], it is possible to properly 2-color any hypergraph HBL

captured by hanging bottomless rectangles with m ≥ 3. But for m = 2, HBL is not proper
2-colorable, as the counterexample for bottomless rectangles of Keszegh [Kes12] is also an
counterexample for hanging bottomless rectangles.

Moreover, we can transform any hypergraph captured by (hanging) right-open rectangles
to a hypergraph captured by (hanging) bottomless rectangles. Therefore, the results for
(hanging) bottomless rectangles also apply for (hanging) right-open rectangles.

We then used the polychromatic colorability of bottomless rectangles by Asinowski et al.
[ACC+13] in combination with the Union-Lemma by Damásdi and Pálvölgyi [DP21a], to
prove that for any k ≥ 3 and for m ≥ 7, any m-uniform hypergraph captured by hanging
bottomless and hanging right-open rectangles is proper k-colorable (see Corollary 3.8).

Further, for m ≥ 2, we developed a semi-online presenting-strategy in the presenter-painter
game for the union of hanging bottomless and hanging right-open rectangles. No matter
how the painter colors the presented points with two colors, the presenter can always force
the painter to color a hanging bottomless rectangle of size m monochromatically. This
strategy is transferred into an offline strategy in Section 5.1.1. In the process, we lose
the hanging property of the bottomless rectangles. Thus, any hypergraph captured by
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non-hanging bottomless and hanging right-open rectangles is not proper 2-colorable for
any m ≥ 2.

The semi-online strategy is generalized to any number of colors k in Chapter 5. However,
we were not able to transfer this strategy into an offline strategy. The challenges that
arose are described in Section 5.1.2. If we were able to define an offline strategy, we would
probably lose the hanging property for the bottomless rectangles again, as for two colors,
but we additionally lose the bottomless property in any case.

We summarize the results of our work and some helpful additional results by other authors
in Table 6.1. For the different studied range families, we specify for different uniformities
m the smallest number of colors k such that we can properly k-color any m-uniform
hypergraph captured by this range family. If we specify a lower or upper bound for k, we
do not know an exact value.

Range family Sketch Uniformity m #Colors k Source
hanging rectangles m = 2 k ≥ 4 Theorem 2.2

bottomless
rectangles m ∈ {2, 3} k = 3 [Kes12]

bottomless
rectangles m ≥ 4 k = 2 [Kes12]

hanging bottomless
rectangles m = 2 k = 3

Lemma 3.9,
Lemma 3.2,
[Kes12]

hanging bottomless
rectangles m ≥ 3 k = 2 Lemma 3.13

hanging right-open
rectangles m = 2 k = 3 Observation

3.5

hanging right-open
rectangles m ≥ 3 k = 2

Lemma 3.15,
Observation

3.5
hanging bottomless

and hanging
right-open
rectangles

m = 2 k ≥ 4 Theorem 3.17

hanging bottomless
and hanging
right-open
rectangles

m ≥ 3 k ≤ 4 Corollary 3.16

hanging bottomless
and hanging
right-open
rectangles

m ≥ 7 k ≤ 3 Corollary 3.8

bottomless and
hanging right-open

rectangles
m ≥ 2 k > 2 Lemma 5.7

Table 6.1: Overview of the known values for the minimum number of colors k required for
different range families to properly k-color any m-uniform hypergraph captured
by them. In some cases we only know lower or upper bounds for k. We also
differentiate between different uniformities m. Additionally, we indicate the
source of these results.
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6.1 Open Questions
There are a few questions that remain open and need further investigations to be answered.
In Section 5.1.2, we discussed that it is very challenging to transfer our semi-online strategy
for hanging right-open and hanging topless rectangles for k > 2 colors described in Chapter
5 into an offline strategy. It remains open, if it is possible to transfer the strategy into an
offline setting.

Question 6.1. Is it possible to transfer our semi-online strategy for the not proper k-
colorability of the union of hanging topless rectangles and hanging right-open rectangles
into an offline strategy?

It further remains an interesting question, if it is possible to properly k-color the union
of hanging bottomless and hanging right-open rectangles for m = 2. We know due to the
embedding of K4 with hanging bottomless and hanging right-open rectangles in Section
3.1, that if it is possible, k is at least four.

Question 6.2. What is the smallest number k ≥ 4, such that we can properly k-color any
2-uniform hypergraph captured by the union of hanging bottomless and hanging right-open
rectangles?

For m ≥ 3, we know due to Corollary 3.16 that any hypergraph captured by the union of
those two range families is proper 4-colorable. It remains open, whether these hypergraphs
are even proper 2-colorable or proper 3-colorable.

Question 6.3. What is the smallest number k ∈ {2, 3, 4}, such that we can properly
k-color any m-uniform hypergraph captured by the union of hanging bottomless and hanging
right-open rectangles for 3 ≤ m ≤ 6?

We know that for m ≥ 7, we can properly 3-color any m-uniform hypergraph captured by
hanging bottomless and hanging right-open rectangles (see Corollary 3.8). Hence, we pose
the question whether an m′ ≥ 7 exists such that all m′-uniform hypergraphs captured by
RBL and RRO are proper 2-colorable.

Question 6.4. Does a number m′ ≥ 7 exist such that we can properly 2-color any m′-
uniform hypergraph captured by the union of hanging bottomless and hanging right-open
rectangles?

Additionally, we were not able to give a final answer on the colorability of m-uniform
hypergraphs captured by hanging rectangles for m ≥ 3:

Question 6.5. Let H(V,RR,m) be an m-uniform hypergraph captured by the range family
of hanging rectangles. For m ≥ 3 and any k ≥ 2, is H proper k-colorable?
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