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Abstract

In this thesis we discuss maximum k-degenerate spanning subgraphs. A spanning
subgraph is a subgraph where only edges were deleted. In a k-degenerate graph G
every subgraph of G has a vertex of degree at most k. The degeneracy of a graph G is
the minimum integer k such that G is k-degenerate. By deleting edges of a graph the
degeneracy can be reduced.

We introduce the term of k-degenerate skewness dsk(G) that denotes the number of
edges in a graph G that need to be deleted so that it becomes k-degenerate. We also
define the maximum k-degenerate skewness dsCk(n) for a graph class C as the maximum
of dsk(G) over all graphs G ∈ C with n vertices.

We describe general methods to reduce the degeneracy of a graph. Furthermore, we
give bounds for dsPk (n) and dsBk (n). Here, P stands for the graph class containing all
planar graphs and B for the graph class containing all bipartite planar graphs.

Zusammenfassung

In dieser Arbeit beschäftigen wir uns mit dem Finden von maximalen aufspannenden
Subgraphen, welche k-degeneriert sind. Aufspannende Subgraphen sind Subgraphen
in denen nur Kanten gelöscht werden. Ein Graph G ist k-degeneriert, wenn in jedem
Subgraphen von G ein Knoten mit Grad höchstens k existiert. Die Degeneriertheit von
G ist die kleinste positive Zahl k, für die der Graph k-degeneriert ist.

Wir führen hier den Begriff k-degenerate skewness dsk(G) ein, welcher die Anzahl von
Kanten angibt, die in einem Graphen G gelöscht werden müssen, um ihn k-degeneriert
zu machen. Für eine Graphklasse C definieren wir die maximum k-degenerate skewness
dsCk(n). Dies beschreibt die maximale Anzahl von Kanten, sodass das Löschen von so
vielen Kanten alle Graphen in C mit n Knoten k-degeneriert macht.

Wir geben in dieser Arbeit zum einen verschiedene generelle Methoden an Kanten zu
löschen, sodass die Degeneriertheit von Graphen reduziert wird. Zum anderen geben wir
Schranken für dsPk (n) und dsBk (n) an. Hier beschreibt P die Graphklasse der planaren
Graphen und B die Graphklasse der bipartit planaren Graphen.
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1. Introduction

The degeneracy of a graph G is the smallest number k such that for every subgraph
H ⊆ G there is a vertex of degree at most k. The graph G is then k′-degenerate for
all k′ ≥ k. The degeneracy can be determined in linear time [MB83]. In this thesis we
study the following problem.

Problem 1.1: Given a graph G and an integer k, find the largest subgraph H of G such
that H is k-degenerate.

This problem was motivated by the fact that some algorithms only work for graphs
that are k-degenerate for a certain integer k. An example are Lombardi drawings. In
their paper, Duncan et al. [Dun+11] proved that every 2-degenerate graph has a circular
Lombardi drawing by giving a procedure how to draw them. Because it is not always
possible to draw arbitrary k-degenerate graphs, it might help to run the algorithm on
a subgraph of the original graph. For example it is possible to run a graph drawing
algorithm on a large subgraph H of a graph G and then to draw only the vertices and
edges of G−H by hand.

There are different versions of Problem 1.1. For one, the subgraph can be derived
by only deleting vertices. Then, the size of a subgraph can be defined as the number
of vertices. In this case, the subgraph is an induced subgraph. Thus, here the largest
subgraph is the induced subgraph with the largest number of vertices that is k-degenerate.
This problem was studied in several papers. For example in [LMZ15] the authors gave a
lower bound on the number of vertices of maximum 4-degenerate induced subgraphs of
planar graphs. This and other papers are described further in Chapter 3.

In a different version of the Problem 1.1, we only allow deleting edges. A subgraph
that is derived by deleting edges is called a spanning subgraph. A subgraph is a maximum
k-degenerate spanning subgraph if, by deleting one edge less, the graph is no longer
k-degenerate. This is the version we study in this thesis. In Figure 1.1 (left) an example
is given of a graph G. This graph is not 1-degenerate. A maximum 1-degenerate
spanning subgraph G′ of G is given in Figure 1.1 (right). For k ≥ 2 deleting an edge
has the same effect as subdividing them. This again is interesting for graph drawings.
Subdividing an edge is similar to allowing a bend in an edge.

G G′

Figure 1.1.: Graph G that is not 1-degenerate and a 1-degenerate maximum spanning
subgraph G′ of G.
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1. Introduction

We can further restrict Problem 1.1 by only allowing graphs of a certain graph class.
Often, the considered graphs are restricted to planar graphs. This is done to get more
concrete results. Also the integer k is often very small. A large part of this thesis focuses
on planar graphs and bipartite planar graphs. Planar graphs are already known to be
5-degenerate so the problem is only interesting for integers smaller than 5. Similarly,
bipartite planar graphs are 3-degenerate and only integers smaller than 3 need to be
considered.

1.1. Contribution

In this thesis, we study Problem 1.1 restricted to spanning subgraphs, as stated above.
We define the k-degenerate skewness dsk(G) which allows us to count the number of
edges that need to be deleted to obtain a k-degenerate subgraph of G. We also define
the maximum k-degenerate skewness dsCk(n) for a graph class C as the maximum of
dsk(G) over all graphs G ∈ C with n vertices. We discuss several general methods to
find edges that should be deleted. We then go on and prove the maximum k-degenerate
skewness for the graph class B of bipartite planar graphs and the graph class P of planar
graphs as shown in Table 1.1. Whereas we do not obtain concrete values for dsCk(n) we
prove bounds.

Table 1.1.: Maximum k-degenerate skewness for the graph class B of bipartite planar
graphs and the graph class P of planar graphs.

dsCk(n) C = B C = P

k = 1 = n− 3 (Lemma 5.1) = 2n− 5 (Lemma 6.1)

k = 2
≥ n/4− 1
≤ n/2− 1

(Lemma 5.4)
(Lemma 5.8) = n− 3 (Theorem 6.4)

k = 3 = 0
> n/4
≤ n− 3

(Lemma 6.7)
(Lemma 6.8)

k = 4 = 0 ≤ 3/5n (Lemma 6.9)
k = 5 = 0 = 0

Additionally, we conjecture that the upper bound for dsB2 (n) can be reduced to n
4 .

1.2. Outline

In Chapter 2, we give definitions of the graph parameters considered in this thesis, in
particular degenerate skewness. We also prove bounds on the degeneracy for certain
graph classes and show how the degeneracy relates to other graph parameters. In
Chapter 3, we look at related work. Here we present papers already published in this
field and state important results. In Chapter 4, we formulate several methods to obtain
k-degenerate subgraphs. These methods often do not result in maximum spanning
k-degenerate subgraphs, but instead delete more edges than necessary. However, they
are general methods that can be applied to multiple graphs classes. In Chapter 5, we
prove bounds for the k-degenerate skewness for bipartite planar graphs. The same
is done for planar graphs in Chapter 6. We conclude this thesis with Chapter 7 by
suggesting open problems for further research.
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2. Preliminaries

2.1. Graph Definitions

A graph is a tuple of sets G = (V,E), where V is the set of vertices and E the set of
edges. In this thesis we restrict our graphs to undirected and simple graphs. For a
vertex v ∈ V we denote by deg(v) the degree of v, i.e. the number of edges incident to
v. The order of a graph G is the number of vertices of G and is denoted by |V (G)|.
We often use the letter n = |V (G)| for short. In the same way |E(G)| = m denotes
the number of edges. A vertex of a certain degree k is denoted by k-vertex, a vertex of
degree at most k by k−-vertex and a vertex of degree at least k by k+-vertex. For edges
we define the weight of an edge e as the sum of the degrees of the vertices incident to e.
Again we denote by w-edge an edge with weight w.

A planar graph is a graph that can be embedded into the R2 plane such that vertices
are points in the plane and edges are arcs where only the endpoints can intersect each
other. The regions of R2 separated by edges and vertices of a graph in an embedding
are called faces. We denote by |F (G)| = f the number of faces of a planar graph.
For a face g ∈ F (G) we denote the length of the face, that is the number of edges
in the cycle bounding the face g, by l(g). Planar graphs have certain properties, like
the following. The number of edges m is bounded by the number of vertices n with
m ≤ 3n− 6. Equality holds if and only if the graph is triangulated, that means if every
face is bounded by exactly three edges and thus forms a triangle. This follows from
Euler’s formula n−m+ f = 2. With the pigeonhole principle we can derive that there
always exists a vertex v of degree deg(v) ≤ 5, that is a 5−-vertex.

A bipartite graph is a graph G where the vertex set can be split into two disjoint sets
V = U ∪̇W and every edges of G connects a vertex in U to a vertex in W . A bipartite
planar graph is a planar graph that is bipartite. Observe that faces of such a graph
are always bounded by an even number of edges. A quadrangulation of a graph is a
graph where every face is bounded by four edges and thus forms a quadrangle. Such
a quadrangulation is a maximal bipartite planar graph. This results in the following
inequalities:

m ≤ 2n− 4

4f ≤ 2m

f ≤ n− 2 (2.1)

By pigeonhole principle we know that there always exist a 3−-vertex.

2.2. Definition of Degeneracy

A graph G is k-degenerate if each subgraph of G contains at least one vertex of degree
at most k. The degeneracy of a graph G is the smallest k, such that G is k-degenerate.

3



2. Preliminaries

G :

collected vertex

Figure 2.1.: Example of using the algorithm, that always collects a vertex of minimal
degree. The example graph G is 2-degenerate.

For a graph G and a vertex v of G the process of collecting v describes the removal
of v from G. So after collecting v we obtain graph G− {v}. Let σ be an ordering of
V (G). We call it a collecting ordering if we collect the vertices of G in this order. We
define the maximum degree of σ as the the maximum degree of a vertex at the time of
its collection. This means that if the maximum degree of σ is equal to k, then k is the
smallest integer such that every collected vertex has degree at most k.

In 1983 Matula and Beck developed the following linear time algorithm [MB83]: Given
a graph G, take the vertex v with smallest degree and collect it. Repeat this process
until the graph is empty. This results in a collecting ordering π. They then went on
an proved that the degeneracy of G is equal to the maximum degree of π. We call π
a minimum collecting ordering. An example of how this algorithm works is given in
Figure 2.1.

For every other collecting ordering σ the maximum degree is at least as big as the
maximum degree of the minimum collecting ordering.

Lemma 2.1: Let G be a graph and π a minimum collecting ordering with maximum
degree k. For every other collecting ordering σ the maximum degree is k′ with k′ ≥ k.

Proof. Let σ be a collecting ordering with maximum degree k′. Assume k′ < k. We now
collect vertices according to the order π. At some point, the next collected vertex v is a
vertex of degree k. Otherwise, the maximum degree of π is smaller than k. Let u be
the first vertex according to order σ that has not yet been collected. The degree of u is
at most k′ < k. This is true, because all vertices previous to u in order σ have already
been deleted. Because σ is a collecting ordering with maximum degree k′, at this point
the degree of u is at most k′. By deleting the other vertices previous to v in order π we
can only reduce the degree of u further. But then the algorithm would collect vertex u
before it would collect vertex v, because it collects the vertex with minimum degree.
Therefore either π is not a minimum collecting ordering or the degree of π was not k
with k > k′. This proves the claim.

In the following chapters, we often provide an order σ in which we collect vertices of
a graph G. Because of Lemma 2.1 we can now use this σ to assure the degeneracy of a
graph. We formulate this in the following corollary.

Corollary 2.2: Let G be a graph and let σ be a collecting ordering with maximum degree
k. Then G is k-degenerate.

4



2.2. Definition of Degeneracy

The skewness of a graph G is defined as the minimum number of edges, that need to
be deleted, so that G becomes planar [Kai74]. Similarly, we introduce the parameter
k-degenerate skewness dsk(G) of a graph G as the minimum number of edges of
G that need to be deleted, such that the graph becomes k-degenerate. Also we
introduce the parameter maximum k-degenerate skewness dsCk(n). It is defined as
dsCk(n) = max{dsk(G) : G ∈ C, |V (G)| = n}, the maximum of the minimum number
of edges that need to be deleted, such that every graph G of the graph class C with
n vertices, can be made k-degenerate. The following lemma helps with the relations
between the skewness parameters.

Lemma 2.3: For k ≥ 0, a graph class C and n ≥ 1 it holds that dsCk(n) ≥ dsCk+1(n).

Proof. Let G ∈ C be a graph where dsCk(n) edges need to be deleted, to obtain a
k-degenerate graph G′. Being k-degenerate means that every subgraph of G′ has a
vertex of degree at most k. But then, every subgraph of G′ also as a vertex of degree
at most k + 1 > k and thus G′ is k + 1-degenerate. Therefore we need to delete at
most dsCk(n) edges to make every graph G ∈ C k + 1-degenerate and this proves the
lemma.

Lemma 2.4: For k ≥ 0, graph classes B, C with B ⊆ C and n ≥ 1 it holds that
dsBk (n) ≤ dsCk(n).

Proof. Every graph G ∈ B is also element in C. If G is a graph with maximum
dsk(G) and n vertices in B, then dsk(G) = dsBk (n). Also dsk(G) ≤ dsCk(n). Thus
dsBk (n) ≤ dsCk(n).

A graph G ∈ C is called edge maximal for a graph class C, if by adding even one
more edge to G resulting in a graph G′, G′ /∈ C.

Lemma 2.5: For a graph class C let C′ ⊆ C be the edge maximal graphs in C. Then for
n ≥ 1 it holds that dsCk(n) ≤ dsC

′
k (n).

Proof. Let G be a graph in C with n vertices. If G is edge maximal, it is also in C′ and
dsk(G) ≤ dsCk(n) and dsk(G) ≤ dsC

′
k (n). If G is not edge maximal, then we need to

prove, that not just dsk(G) ≤ dsCk(n) but also dsk(G) ≤ dsC
′

k (n). Let G′ be an edge
maximal graph in C, that has G as subgraph. The graph G′ exists because we can
simply add edges to G until adding more would result in the graph not being in C
anymore. Then G′ is also in C′ and thus dsk(G

′) ≤ C′. Also dsk(G) ≤ dsk(G
′), because

we only added edges. Thus, we need to delete at least as many edges in G′ as in G to
make G′ k-degenerate. But then dsk(G) ≤ dsC

′
k (n), which proves the lemma.

The edge maximal planar graphs are triangulated. From Lemma 2.5 if follows that we
only need to look at triangulated graphs to find the maximum k-degenerate skewness of
planar graphs. The same holds for bipartite planar graphs and quadrangulated graphs.

2.2.1. Degeneracy for Different Graph Classes

In this part we look at different graph classes and determine their degeneracy. That
means for each class we determine the smallest k, such that every graph in that class is
k-degenerate. That does not mean that a specific graph of this graph class cannot have
a smaller degeneracy.

5



2. Preliminaries

(a) (b)

Figure 2.2.: (a) Icosahedron, a planar graph with minimum degree 5. (b) Cube, a
bipartite planar graph with minimum degree 3.

Planar Graphs Every planar graph has a vertex of degree at most 5. We also know
that every subgraph of a planar graph is a planar graph. Therefore every planar graph
is 5-degenerate. There are planar graphs, that have minimum degree 5, for example the
Icosahedron, see Figure 2.2 (a). Thus planar graphs have degeneracy 5.

Forests Every forest has at least one leaf. Leaves are defined as vertices of degree 1.
Every subgraph of a forest is again a forest. Therefore forests have degeneracy 1.

Bipatite Planar Graphs Every bipartite planar graph has a vertex of degree at most
3. Also every subgraph of a bipartite planar graph is again bipartite and planar. Thus
those graphs are all 3-degenerate. There are bipartite planar graphs, that have minimum
degree 3, therefore they have degeneracy 3. An example is the cube, as seen in Figure 2.2
(b).

2.2.2. Degeneracy and Other Graph Parameters

Degeneracy is a graph parameter that is not often used. There are other more common
parameters that are bounded by the degeneracy or bound it. These can be used to
get a feeling of how big or small the degeneracy of a graph can be. For the following
paragraphs, we assume that the considered graph is k-degenerate.

Chromatic Numbers The chromatic number χ in a graph G is defined as the minimum
number of colors needed to label all vertices in G such that no two vertices with the
same color are adjacent. Let π be the minimum collecting ordering of G and k its
maximum degree. Now take the vertices in the reverse order of π and use a greedy
coloring. When a vertex v is assigned a color, it has at most k neighbors that have
already been assigned a color because G is k-degenerate. Because this is true for every
vertex, we need at most k + 1 colors to label all vertices. Therefore χ ≤ k + 1.

Arboricity The arboricity a of a graph G is the minimum number of forests that are
needed to partition the edges of G. First we show, that a ≤ k. For this, we map every
edge to one of k forests. We take a minimum collecting ordering π and traverse the
vertices in this order. When we get to vertex v, there are at most k edges incident to v
not assigned to a forest. We map each of these edges to a distinct forest. When we map
every edge in this way we get no cycle in a forest because otherwise, we would have
needed a vertex v with two edges two vertices that come later in the ordering π than v.
This never happened.

6



2.3. Discharging

Next we show that k ≤ 2a − 1. Every subgraph of a graph of arboricity a also has
arboricity at most a. Thus, every subgraph G′ has average degree at most 2a(n−1)

n ,
where n = |V (G′)|. This is true because the average degree of a graph G is 2|E(G)|

|V (G)| , a
forest F has at most |V (F )| − 1 edges and the edges of G′ can be partitioned in at most
a forests. The average degree gives us, that in every subgraph of G we can find at least
one vertex of degree 2a− 1. Therefore the degeneracy k of G must be at most 2a− 1.

Acyclic Chromatic Number The acyclic chromatic number l of a graph G is defined
as the smallest size of a vertex partition {V1, . . . , Vl} such that each Vi, 1 ≤ i ≤ l, is
an independent set and for all i, j, 1 ≤ i < j ≤ l the induced subgraph G[Vi ∪ Vj ] does
not contain a cycle. One can look at the vertices in Vi as the vertices that have been
assigned the color i for 1 ≤ i ≤ l. We can partition the edges in

(
l
2

)
forests, one for

each pair Vi, Vj with 1 ≤ i < j ≤ l. Thus, the arboricity a ≤
(
l
2

)
. In the paragraph

Arboricity we have shown k ≤ 2a− 1, therefore we get k ≤ 2
( l
2

)
− 1.

Treewidth The treewidth t of a graph G is defined as the size of the largest clique in a
chordal completion of G minus 1. We now prove that k ≤ t. Let us take the order of a
perfect elimination ordering σ of the chordal completion. In the ordering σ each vertex
v and all neighbors of v, that come later in σ form a clique. The size of the largest
clique is at most t+ 1. Thus, every vertex has at most t neighbors that come later in σ.
Then, we can take σ as collecting order and, because of Lemma 2.2, the degeneracy of
the graph is at most t.

2.3. Discharging

The discharging method was introduced in [Wer04] by Wernicke in 1904, to prove that
every planar graph of minimum degree 5, has at least one edge of weight 10 or 11. He
used this as part of his proof of the Four Color Theorem. This proof was not complete,
but the method is correct all the same. In general, discharging can be used to prove
the existence of certain subgraphs or local configurations. A function c : V 7→ R gives
every vertex v a charge c(v). In the case of discharging on planar graphs, faces often
get a charge, too. The charge of the vertices (and faces) then gets redistributed. If the
existence of a configuration should be proven, the redistribution of the charge under the
assumption that such a configuration does not exist leads to a contradiction of some
sort.

A method often used is degree charging. Here every vertex v ∈ V (G) gets initial
charge c(v) = deg(v). A redistribution does not change the total sum of charges. Thus
statements about the sum of degrees in a graph can now be applied to the charges.
After the redistribution of the charge these statements must still be true. But if a
certain configuration does not exist, the statements are often no longer satisfied after
redistribution. An example for such a statement is the average degree of a graph.

By restricting the type of graph by certain preconditions other contradictions can be
made. For example, a precondition can be that the average degree is at most 3. If every
vertex has charge at least 3 after redistribution, when certain configurations do not
exist, then the precondition is not satisfied. Therefore, the configurations must exist.

7



2. Preliminaries

In their paper “An Introduction to the Discharging Method via Graph Coloring”
Daniel W. Cranston and Douglas B. West explain the discharging technique and give
multiple examples how it can be used in different cases [CW17].

8



3. Related Work

In this chapter we give an overview on already published results similar to those stated in
this thesis. We first name papers on degeneracy in Section 3.1. Then, in Section 3.2, we
discuss results of papers on finding maximum induced subgraphs of a certain degeneracy.
We go on to list papers on generating triangulations and quadrangulations in Section 3.3.
At last we name several papers on skewness of non-planar graphs in Section 3.4.

3.1. General Statements on Degeneracy

In their paper “On chormatic number of graphs and set-systems” Erdős and Hajnal
define the coloring number k [EH66]. In their definition k is the smallest integer such
that there exists an ordering σ in which every vertex x has less than k neighbors y
that appear before x in σ. This is similar to our definition of degeneracy with the only
difference being that for our definition v can have at most k neighbors y that appear
before x in σ.

In 1970 Don R. Lick and Arthur T. White defined degeneracy in their paper “k-
degenerate Graphs” [LW70]. In this, they introduced the graph classes Πk that consist
of all k-degenerate graphs. In some early observations they stated that Π0 is equivalent
to the class of graphs with no edges and Π1 is equivalent to the class of graphs with
only forests. Furthermore they observed that all outerplanar graphs lie in Π2 and all
planar graphs in Π5. The following lemma was stated in [LW70] and is the base of the
algorithm that produces a minimum collection ordering as described in Section 2.2. We
adapt some notation to fit the notation in this thesis.

Lemma 3.1 (Proposition 1 in [LW70]): A graph G is in Πk if and only if the vertices
in V (G) can be ordered, say v1, . . . , vn, such that the degree deg(v1) ≤ k and, in the
subgraph induced by the vertices vp, . . . , vn of G, deg(vp) ≤ k, for each 1 ≤ p ≤ n. In
other words, G can be reduced to the degenerate (i.e. trivial) graph K1 by a sequence of
removal of vertices of degree less than or equal to k.

Other important facts the authers show in their second Proposition are that, if a
graph is k-degenerate, then it is also k′-degenerate for all k′ ≥ k and that, if G is
k-degenerate, then also every subgraph of G is k-degenerate. For us also interesting is
their third Proposition . Here, they prove that a k-degenerate graph G with n vertices
has at most kn−

(
k+1
2

)
edges. We use this proposition later in Section 6.2. There, we

want to find a maximum 2-degenerate spanning subgraph of a planar graph and with
Proposition 3 we know that such a subgraph has at most 2n− 3 edges. There are cases
in which a graph has at most kn−

(
k+1
2

)
edges but is still not k-degenerate. This is the

case for all bipartite planar graphs with minimum degree 3. They are not 2-degenerate
but every bipartite planar graph has at most 2n− 4 edges which is less than 2n− 3.

9



3. Related Work

Aside from general statements about k-degenerate graphs they also introduced the
concept of the point partition number. We call it a vertex partition number pk. It is
the minimum number of induced subgraphs a graph G can be partitioned in, such that
every subgraph is k-degenerate. Note that p0 is the equivalent to the chromatic number.

In Section 2.2.2, we compare degeneracy to other graph parameters. An overview of
different graph parameters and how they are related to each other is given by Manuel
Sorge et al. in [Sa19]. In Figure 1 in [Sa19] graph parameters are displayed in a Hasse
diagram where one parameter is above another parameter if the former bounds the
later.

A graph parameter that is closely related to the degeneracy is the chromatic number.
In Paragraph Chromatic Numbers in Section 2.2.2 we prove that the chromatic number
χ of a graph G is at most k + 1 if G is k-degenerate. This is done by using a minimum
collecting ordering for the greedy coloring. Lick and White proved in 1970 that every
4-degenerate planar graph has a 4-coloring (Theorem 7 in [LW70]). They then deduced
that all planar graphs that do not have a 4-coloring must be 5-degenerate but not
4-degenerate. Six years later, Appel and Haken proved the Four Color Theorem that all
planar graphs have a 4-coloring [AH78].

In Section 2.2.1, we introduce the degeneracy of certain graph classes. It is also
possible to determine the degeneracy of graphs without certain subgraphs. For example
Wang and Lih proved in 2001 that planar graphs without 5-cycles are 3-degenerate. In
2002 G. Fijavz et al. proved that planar graphs without 6-cycles are also 3-degenerate.
For 2-degeneracy, it is a well known fact that planar graphs of girth 6 are 2-degenerate.
Jumnongnit and Pimpasalee proved in 2021 that every planar graph without 4-,6-,8-,
and 10-cycles is also 2-degenerate.

3.2. Subgraphs of certain Degeneracy

As discussed in Chapter 1, Problem 1.1 can be restricted to the problem of finding the
maximum k-degenerate induced subgraph of a graph. In 2018 Lukot’ka, Mazák and Zhu
wrote a paper on “Maximum 4-degenerate subgraph of a planar graph” [LMZ15]. They
proved in Theorem 1 in [LMZ15] that if a connected planar graph G with n vertices
has average degree d ≥ 2, then there exists a 4-degenerate induced subgraph of G
that has at least (38− d)/36 · n vertices. Furthermore in Corollary 3 in [LMZ15] the
authors proved that for every planar graph with n vertices there exists a 4-degenerate
induced subgraph that has at least 8/9 · n vertices. They conjecture that this bound
can be raised to 11/12 · n. To prove these facts, they use discharging, as described
in Section 2.3. Here, they give initial charge to vertices and faces. They then define
a discharging procedure that leaves all faces with negative charge. Afterwards they
prove that a minimal counterexample to Theorem 1 must contain certain vertices with
positive charge after the discharging procedure. These vertices do not exists, which
proves their claim.

In a paper “3-degenerate induced subgraph of a planar graph” Gu et al. proved
a lower bound on the number of vertices in an induced 3-degenerate subgraph of a
planar graph [Gu+]. If G is a planar graph with n vertices, then there exists an induced
3-degenerate subgraph of G with at least (3n+ 2)/4 vertices. In [DK18] Dvořák and
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3.3. Generating Triangulations and Quadrangulations

Kelly gave a lower bound on the number of vertices in an induced 2-degenerate subgraph
of a triangle-free planar graph. They proved that there exists a 2-degenerate induced
subgraph with at least 4/5 · n vertices for every graph with n vertices.

Alternatively it is also possible to decompose every planar graph G into two induced
subgraphs G′ and G′′ where G′ is 2-degenerate and G′′ 1-degenerate, i.e. a forest. This
was proven 1993 by Carten Thomassen [Tho95]. Note that for this paper Thomassen used
the definition that in a k-degenerate graph every subgraph has a vertex of degree less than
k, but here we use our definition of degree at most k. Additionaly Thomassen proved in
2000 that it is also possible to decompose a planar graph G into two induced subgraphs
G′ and G′′ where G′ is 3-degenerate and G′′ is 0-degenerate, i.e. an independent set
[Tho01].

The problem how many vertices must be deleted so that a graph becomes k-degenerate
for a certain integer k is NP-complete. This was proven by Lewis and Yannakakis
[LY80] in 1980. Here they proved that every node-deletion problem is NP-complete for
any nontrivial and hereditary graph property. Note that the term node is equivalent
to our term vertex. A graph property is defined as nontrivial if there exists an infinite
number of graphs that satisfy the property and an infinite number of graphs that do
not. A hereditary graph property on induced subgraphs is a property that is satisfied
by all induced subgraphs of a graph G if G satisfies the property. The graph property
whether a graph is k-degenerate for some integer k is nontrivial and hereditary. For
example, for k = 1 there is an infinite number of graphs that are forests, which all are
1-degenerate. However there is also an infinite number of graphs that are not forests,
which are all not 1-degenerate. The same is true for k > 1. Degeneracy is hereditary
because the definition states that a graph is k-degenerate if and only if every subgraph
is k-degenerate. Thus we can apply the statement in [LY80] to Problem 1.1 where the
subgraph must be an induced subgraph.

3.3. Generating Triangulations and Quadrangulations

As stated before, a large part of this thesis is done on planar and bipartite planar graphs.
We denote the class consisting of planar graphs by P and the class consisting of bipartite
planar graphs by B. To find a sharp lower bound for the maximum k-degenerate
skewness dsPk (n) and dsBk (n) as defined in Section 2.2 we need to find graphs with
large k-degenerate skewness. Edge maximal planar graphs are triangulations and edge
maximal bipartite planar graphs are quadrangulations. Thus, we search for methods to
generate triangulations and quadrangulations.

In 2005 Brinkmann et al. published a paper on “Generation of simple quadrangulations
of the sphere” [Bri+05]. A simple quadrangulation here means that there are no
multi-edges in a graph. They defined four graph classes: The class L1 of all simple
quadrangulations of the sphere. The class L2 of all simple quadrangulations of the
sphere with minimum degree 3. The class L3 of all 3-connected quadrangulations of
the sphere. The class L4 of all 3-connected quadrangulations of the sphere without
separating 4-cycles. They then gave four types of expansion procedures that generate
all four graph classes. In Section 5.1 we use graphs of the class L2 that are generated
according to these procedures in [Bri+05].
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3. Related Work

Figure 3.1.: The Petersen graph P (6, 2).

In a different paper from 2005 Brinkmann et al. discussed the “Construction of planar
triangulations with minimum degree 5” [BM05]. They distinguished triangulations with
minimum degree 5 based on their connectivity. They then listed different operations
that create these triangulations. All triangulations are based on the Icosahedron. The
graph in Section 6.4 is based on an Icosahedron that was expanded by three operations
of type C as defined in Fig. 1 on Page 3 in [BM05].

3.4. Skewness

In Section 2.2, we introduce the term k-degenerate skewness. We derived the name from
the term skewness. The skewness of a graph is the number of edges that need to be
deleted so that a graph becomes planar. Thus, the k-degenerate skewness is defined
as the number of edges that need to be deleted so that a graph becomes k-degenerate.
There are multiple papers that discuss skewness. In 1974 Kainen used skewness to
generalize the 5-color theorem [Kai74]. It is easy to see that every planar graph can
be 5-colored. Kainen proved that if the skewness of a graph is at most 2, it can be
5-colored. An important part of the proof is to show that every graph with skewness at
most 2 has a vertex of degree at most 5. This can be proven by using the fact that a
graph G with skewness at most 2 has at most 3 · |V (G)| − 4 edges. Kainen later went
on and proved that every graph with skewness at most 5 can be 6-colored. In his paper
one year later he formalized that every graph with skewness less than

(
k
2

)
for a k ≥ 3

can be (k + 2)-colored. He also proved that that there is a graph with skewness less
than

(
k
2

)
for a k ≥ 3 that can not be (k + 1)-colored.

In 2005 G.L. Chia et al. found the skewness for certain generalized Petersen graphs
[CL05]. A generalized Petersen graph P (n, k) consists of a set {ui, vi | 0 ≤ i < n}
of vertices and a set {uiui+1, uivi, vivi+k | 0 ≤ i < n where indices are take modulo n}.
The Petersen graph P (6, 2) is shown in Figure 3.1. They proved that for P (3k, k) the
skewness is ⌈k2⌉+ 1 with k ≥ 4. In later papers, for example in [Gek12] and [CS13] they
discussed further bounds for the skewness of Petersen graphs.

In 1977 Liu and Geldmacher proved in their paper “On the deletion of nonplanar edges
of a graph” that the problem to find the skewness of a nonplanar graph is NP-complete
[Liu77]. However, there are several heuristics for this problem. One was given in 1992 by
Robert Cimikowski [Cim92]. His heuristic to find a maximum spanning planar subgraph
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3.4. Skewness

is based on spanning trees. He guarantees that the size of the resulting subgraph
is at least 2

3 of the size of the optimum. Later he proved that the skewness of the
n-dimensional hypercube Qn is 2n(n− 2)− n · 2n−1 + 4.
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4. General Methods to Obtain
k-degenerate Subgraphs

In this chapter we look at several methods to find subgraphs of a certain degeneracy.
These are obvious approaches to solve this problem and are easy in their execution.
These techniques rarely result in subgraphs of maximum size. This means that using
these approaches the number of deleted edges for a graph G is often a lot greater than
the k-degenerate skewness dsk(G). But these are methods that can be applied to graphs
in different graph classes. Techniques that result in stronger bounds for planar graphs
and bipartite planar graphs are introduced in Chapter 6 and Chapter 5.

4.1. 1-degenerate via Spanning Trees

We begin with finding maximum 1-degenerate subgraphs in graphs. In the para-
graph Forests in Section 2.2.1 we show, that every forest is 1-degenerate. It is also clear
that every 1-degenerate graph G is a forest. Otherwise, the graph would have a cycle C
giving us a not 1-degenerate but 2-degenerate subgraph. This violates the condition
that every subgraph of G is 1-degenerate as well.

Now, we use a spanning tree algorithm for a graph G. If G is not connected, we
find spanning trees in each component so we assume G is connected. We only need a
spanning tree and not minimum spanning trees of a given weight function. Thus, we
can simply use a depth-first search or breadth-first search and find a spanning tree of G
in linear time.

The number of edges in a spanning tree is |V (G)| − 1. Thus to obtain a 1-degenerate
subgraph G′ of a connected graph G we need to delete exactly |E(G)|−|V (G)|+1 edges.
Then ds1(G) = |E(G)| − |V (G)|+ 1 and this method give us maximum 1-degenerate
subgraphs of G.

4.2. Greedy Algorithms

The first general approach we use is a greedy approach. In Section 2.2 we introduce an
algorithm that, given G, always deletes a vertex of minimum degree. The degeneracy of
G then is the maximum degree k of all collected vertices.

We use a similar algorithm to find a k′-degenerate subgraph G′ of a k-degenerate
graph G for k′ ≤ k. Take a vertex v ∈ V (G) with minimum degree. Delete arbitrary
edges incident to v until v has degree at most k′. Then collect v and repeat these steps
until all vertices are collected. The subgraph G′ is then the graph G without the deleted
edges. Note, there is a difference between deleted edges, and edges that are removed
when a vertex is collected. The later edges are part of G′.
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4. General Methods to Obtain k-degenerate Subgraphs

v

Figure 4.1.: A graph G where the greedy algorithm deletes more edges than necessary.

(a)

(b)

(c)

v1,1 v2,1 v3,1 v4,1 v5,1

v5,3v4,3v3,3v2,3v1,3

v1,2 v2,2 v3,2 v4,2 v5,2v1,4 v2,4 v3,4 v4,4 v5,4
u1 u2 u3 u4

Figure 4.2.: (a) Another example of a graph G where the greedy algorithm deletes more
edges than necessary. It consists of d = 5 copies of K4 that are connected
by d− 1 paths of length 2.
(b) An example of a maximum subgraph of G that is 1-degenerate.
(c) A result of the greedy algorithm.

In general, for a graph G the number of edges that are deleted is greater than dsk′(G).
That means, we delete more edges than necessary. This can be shown with the example
in Figure 4.1. Here we have a 3-degenerate graph G that we want to make 1-degenerate.
The graph G consist of two complete graphs of size 4, i.e. two K4 graphs, and a path of
length 2 connecting them. The vertex v in the middle of the graph has degree 2 and is
chosen first in the greedy algorithm. To reduce the degree of v to 1, so that it can be
collected, one edge incident to v has to be deleted. Afterwards v can be collected. Then
the graph breaks into two components that are both K4 graphs. Thus the resulting
1-degenerate subgraph is not connected. But all maximum 1-degenerate subgraphs of G
are spanning trees. Therefore, we delete at least one edge more than ds1(G) indicates.

We can extend the graph in Figure 4.1 by using d copies of K4 graphs and connect
them all with d−1 paths of length 2. Let vi,1,vi,2,vi,3,vi,4 be the vertices of the i-th copy
of K4 for 1 ≤ i ≤ d. For 1 ≤ i < d we connect the i-th and (i+ 1)-th copy by adding a
vertex ui and edges between vi,2 and ui and between ui and vi+1,1. An example graph
G with d = 5 is given in Figure 4.2 (a). Graph G has |V (G)| = 5 · d− 1 vertices and
|E(G)| = 8 ·d− 2 edges. In Section 4.1 we show that all maximum subgraphs of a graph
that are 1-degenerate are spanning trees. Thus a maximum 1-degenerate subgraph G′

of G has |E(G′)| = 5 · d− 2 edges and we need to delete 3 · d edges. Graph G′ is shown
in Figure 4.2 (b). In Figure 4.2 (c) we see an example of the result when using the
greedy algorithm to obtain a 1-degenerate subgraph. Figure 4.3 shows how the graph
in Figure 4.2 (a) is reduced when using the greedy algorithm. Here, we colored the
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4.2. Greedy Algorithms

delete edge

collect 1-vertex

repeat for all d− 1 paths of length 2

delete three edges

collect vertices of K4

repeat for all d K4

1-vertex 2-vertex 3-vertex 4-vertex

1.

2.

3.

4.

5.

u1

u1

Figure 4.3.: The different steps of the greedy algorithm applied to the graph in Fig-
ure 4.2.

vertices according to their degree. First delete an edge incident to a 2-vertex. These
are the vertices ui for 1 ≤ i < d. For i = 1 this is shown in the first step in Figure 4.3.
Then we collect u1, which has now degree 1 (see second step in Figure 4.3). In this way
we collect all vertices ui first. What remains are 3-vertices in the d copies of K4 graphs.
These K4 graphs are not longer connected to each other (see third step in Figure 4.3).
To collect all vertices in a K4 we need to delete three edges. As reference, see steps 4.
and 5. in Figure 4.3. Therefore, if we use the greedy algorithm, we delete one edge for
each ui with 1 ≤ i < d. Because we have d− 1 such vertices ui we delete d− 1 edges.
Additionally, we delete three edges for every copy of a K4. We have d such copies, so
we delete 3 · d edges. This results in a total of 4 · d− 1 edges that we delete if we use
this algorithm. Thus, we delete d− 1 edges more than necessary. This gives us a lower
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4. General Methods to Obtain k-degenerate Subgraphs

(a)

(a)

(b)

(c)

3-vertex 4-vertex 5-vertex

Figure 4.4.: (a) An example of a graph G where the greedy algorithm deletes more
edges than necessary while generating a 2-degenerate subgraph.
(b) An example of a maximum subgraph of G that is 2-degenerate.
(c) A result of the greedy algorithm.

bound on the number of edges we delete more when using the greedy algorithm in the
worst case. The graph in Figure 4.3 is a planar example. Thus, restricting the graph
class we look at to planar graphs does not decrease the bound.

In the previous examples, we only considered 1-degenerate subgraphs. For a different k
the number of edges deleted by the greedy algorithm is still larger than the k-degenerate
skewness. An example for k = 2 is given in Figure 4.4. This is again an example of
a planar graph. In Figure 4.4 (a) the original graph G is shown. It consists of d = 5
octahedra connected by d− 1 copies of the graph H. Graph H is defined as following.
It has four vertices called v1,v2,v3,v4 that form a cycle. Additionally there is an edge
between vertices v2 and v4. Vertex v1 is then connected by an edge a copy of the
octahedra and v3 is connected by an edge to a different copy of the octahedra. We,
again, color the vertices according to their degree. Note that G is not 2-degenerate. In
Figure 4.4 (b) we see a maximum 2-degenerate subgraph of G. To get this subgraph we
needed to delete 3 · d edges. Figure 4.4 (c) shows a 2-degenerate subgraph of G that is
a result of the greedy algorithm. Here, we delete 4 · d− 1 edges. So, again, we delete
d− 1 edges more while using the greedy algorithm than necessary.

This type of examples also exist for k-degenerate skewness for k > 2 but we do not
discuss it further in this thesis. It also would be interesting to study how much worse
the greedy algorithm could be in comparison to an optimal algorithm. However, this
was not done here either.

Still, we can use the greedy algorithm to prove an upper bound of dsk(G) for a graph
G. Furthermore, we can look at different graph classes C and find upper bounds for
dsCk(n). For bipartite planar graphs we find bounds in Section 5.2. For planar graphs
we do this in Section 6.6 and Section 6.5.
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4.3. Matchings

G :

Figure 4.5.: A graph G with maximum matching in red. The graph G is 4-degenerate,
as is the graph where the matching is deleted.

4.3. Matchings

One method to identify certain edges that should be deleted to reduce the degeneracy
is based on matchings. A matching M ⊆ E(G) is a set of edges of a graph G, such that
no two edges in M share a vertex. A maximum matching M of a graph G is a matching
with the maximum number of edges. In this section we discus whether deleting edges in
a matching reduces the degeneracy of a graph.

By deleting edges in a matching, the degree of a vertex incident to a matching edge is
reduced by one. The degree of vertices not incident to matching edges does not change.
To assure that a graph is k-degenerate, every subgraph has to have a vertex of degree
at most k. Now the question arises, whether it is enough for a k + 1-degenerate graph
G to delete a maximum matching, so that G becomes k-degenerate. One might think
that in every subgraph of G the degree of the vertex with degree at most k + 1 was
reduced by one.

The example in Figure 4.5 contradicts this assumption. Here, we have a graph G that
is 4-degenerate because K5, the complete graph with five vertices, is a subgraph of G.
The red edges show a matching of maximum cardinality. But even if we delete the edges
in this matching, the K5 is still a subgraph and the graph is still not 3-degenerate.

In this example the problem is a subgraph that is a complete graph. The next idea
was to reduce the considered graph class. Concretely we only considered bipartite planar
graphs and tried to prove the upper bound of n

2 for dsB2 (n).

A bipartite planar graph G has a vertex of degree at most 3, because G is 3-degenerate.
Let G have minimum degree 3. Then it is not 2-degenerate. If we delete one edge
incident to a 3-vertex v it then has degree 2. Then G has a 2-vertex and chances are
that it is 2-degenerate. Graph G is 2-degenerate if for every subgraph G′ of G with
minimum degree 3 we delete an edge incident to a 3-vertex in G′. Because we need to
delete at most one edge incident to these vertices, we want to delete edges in a matching.

Again, we can give an example of a bipartite planar graph G and a maximum matching
M that contradicts this assumption. In Figure 4.6 (left) the graph G and the matching
M (in red) is pictured. The matching M consist of eight edges, while G has 16 vertices.
A matching cannot be greater than |V (G)|

2 . Thus M is a maximum matching.
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4. General Methods to Obtain k-degenerate Subgraphs

G :

MatchingM

H :

Figure 4.6.: The left graph G shows a bipartite planar graph with a maximum matching
M in red. The right graph H is a subgraph of G without the edge of M .
Graph H is still not 2-degenerate.

If we delete the edges of M we get a graph G′ = (V (G), E(G) \M). This graph has
H as subgraph, shown in Figure 4.6 (right). The subgraph H has minimum degree 3
and, thus, is not 2-degenerate. Therefore, G′ is not 2-degenerate and deleting the edges
in an arbitrary maximum matching is not enough.

We have not found a way to give further restrictions for a matching M , such that
deleting the edges of M is enough to reduce the degeneracy by one.
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5. 2-degenerate Skewness for Bipartite
Planar Graphs

In this chapter, we look at bipartite planar graphs. We denote the class of those graphs
with B. Recall that a quadrangulation of a planar graph is an edge maximal bipartite
planar graph, that means, no other edge can be added so that it is still bipartite
and planar. Because of Lemma 2.5, we use quadrangulations to prove our statements.
Observe that every bipartite planar graph can be augmented to a quadrangulation by
simply adding edges. In a quadrangulation, every face is bounded by a cycle containing
exactly four edges.

To make a quadrangulated graph G 1-degenerate we need to find a spanning tree
again like in Section 4.1. There we prove that ds1(G) = |E(G)| − |V (G)| + 1. Here
our graph G with |V (G)| = n vertices has only |E(G)| = 2n− 4 edges and thus only
2n− 4− (n− 1) = n− 3 edges need to be deleted. For quadrangulations this bound
is sharp, because only forests are 1-degenerate. Because of Lemma 2.5 we know the
following lemma is true.

Lemma 5.1: Any bipartite planar graph G can be made 1-degenerate by deleting at most
n− 3 edges, where n = |V (G)|. If G is quadrangulated, exactly n− 3 edges need to be
deleted. Then dsB1 (n) = n− 3.

In the Paragraph Bipatite Planar Graphs in Section 2.2.1, we show that every bipartite
planar graph is 3-degenerate. Thus, it is left to find subgraphs that are 2-degenerate.

In Section 5.1 we prove the lower bound n
4 − 1 for dsB2 (n) to make a graph G ∈ P

with |V (G)| = n 3-degenerate. We do this by giving a construction of a family of
graphs F ⊂ P. For every graph G ∈ F with |V (G)| = n the 2-degenerate skewness
is ds2(G) ≤ dsP2 (n). In Section 5.2 and Section 5.3 we give upper bounds for dsB2 (n)
that use generic types of approaches like the greedy algorithm used in Section 6.6 and
discharging, as described in Section 2.3. Then, in Section 5.4 we prove a stronger upper
bound dsB2 (n) ≤ n

2 . At last, in Section 5.5 we justify the conjecture that dsB2 (n) ≤ n
4 .

5.1. Lower Bound

In this part, we give a lower bound on the number of edges that need to be deleted
to make any bipartite planar graph 2-degenerate, i.e. dsB2 (n). For this, we give the
construction of a family of graphs, where a specific number of edges dependent on the
number of vertices needs to be deleted to obtain a 2-degenerate graph. All graphs in
this family are quadrangulations.

We define a family F by listing all graphs Gi ∈ F for i ≥ 2. Graph G2 is a 3-cube
(or hexahedron), see Figure 5.1 left. This graph is bipartite and planar. The number of
vertices and edges is given by n2 = |V (G2)| = 2·4 = 8 and m2 = |E(G2)| = 12 = 2n2−4.
All faces are bounded by cycles of length 4. Now, a graph Gi can be constructed by
taking Gi−1 and adding for each of the four vertices on the cycle bounding the outer
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5. 2-degenerate Skewness for Bipartite Planar Graphs

G2 Giv′1
v′2

v1
v2

v3
v4

v′4 v′3
3-vertex 4-vertex

Gi−1

Figure 5.1.: Construction of G2 (left) and Gi (right).

`i

`3

`2

`1

Gi :

3-vertex 4-vertex

Figure 5.2.: Graph Gi split into i layers.

face v1, v2, v3, v4 a vertex v′1, v
′
2, v

′
3, v

′
4. We add edges between vertices vi and v′i for

1 ≤ i ≤ 4 and between v′i and v′i+1 for 1 ≤ i ≤ 3 and last between vertices v′4 and v′1.
For reference see Figure 5.1 right. Thus, we add four vertices and 8 edges in a way
that the graph stays quadrangulated and we know ni = |V (Gi)| = ni−1 + 4 = i · 4 and
mi = |E(Gi)| = mi−1 + 8 = 2ni−1 − 4 + 8 = 2ni − 4.

We prove that we need to delete at least n
4 − 1 edges so that a graph G ∈ F with n

vertices becomes 2-degenerate. That means for Gi ∈ F we need to delete i− 1 edges,
for 2 ≤ i. First, we sort the vertices of Gi into i layers with four vertices per layer. In
the first (lowest) layer ℓ1 we put the vertices that are not on the cycle bounding the
outer face of G2. In layer ℓj we put the vertices that form the cycle bounding the outer
face of Gj for 2 ≤ j ≤ i. Layer ℓi is then the last (highest) layer. All vertices in layers
ℓ1 and ℓi have degree 3, vertices in the other layers have degree 4. An example is given
in Figure 5.2. Therefore, the minimum degree of Gi is always 3, for all 2 ≤ i, and none
of the graphs in F are 2-degenerate.

Next, we prove that we can make Gi 2-degenerate by deleting i− 1 edges.

Lemma 5.2: For all i ≥ 2 the graph Gi ∈ F can be made 2-degenerate by deleting
i− 1 = n

4 − 1 edges.
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5.1. Lower Bound

`i

`2

`1

Gi :
`i

`2

`1

`i

`2

`1

`2

`1

Gi−1 :

delete one edge in `i collect 2-vertices collect 2-vertices
3-vertex

4-vertex

2-vertex

`i−1 `i−1 `i−1 `i−1

Figure 5.3.: Induction step. Reducing Gi to Gi−1 by deleting one edge.

Proof. We prove this lemma by induction. First we take G2. This graph is a 3-cube and
it is 3-regular. If we delete any one edge, the remaining graph is 2-degenerate because
every collected vertex reduces the degree of its neighbors by at least one which results
in them having degree at most 2. Therefore, the statement is true for i = 2.

Now, let the lemma is true up to one i ≥ 3. We next want to prove it is true for Gi

as well. For reference look at Figure 5.3. We delete one edge between vertices that are
both in the highest layer ℓi. Then, those vertices only have degree 2 and we can collect
them. This results in the remaining two vertices in layer ℓi becoming 2-vertices that can
be collected as well. Thus, by deleting one edge we can collect 4 vertices. The graph
induced by the remaining vertices is Gi−1 which can be reduced into a 2-degenerate
graph by removing (i − 1) − 1 edges, by induction. Thus, Gi can be reduced to a
2-degenerate graph by deleting i− 1 edges.

Now, we show that this is the minimum number edges that need to be deleted.

Lemma 5.3: For all i ≥ 2 the graph Gi ∈ F is 3-degenerate and not 2-degenerate if
only i− 2 = n

4 − 2 edges are deleted.

Proof. The graph G2 is 3-degenerate. If we delete 2 − 2 = 0 edges, G2 is still not
2-degenerate. Now assume that for each 2 ≤ j < i, the graph Gj is 3-degenerate when
we delete j − 2 edges and only becomes 2-degenerate when we delete j − 1 edges.

We take graph Gi and delete i − 2 edges. We distinguish what types of edges we
deleted. First, let one of the deleted edges be incident to a vertex on layer ℓ1 or layer
ℓi. We denote this edge by e and the vertex incident to e on layer ℓ1 or layer ℓi with v.
Because of symmetry, we can assume without loss of generality that v is on layer ℓi. It
is not important whether the second vertex incident to e is on layer ℓi or layer ℓi−1, see
Figure 5.4 (a) and (b) respectively. In both cases, Gi−1 is a subgraph of Gi without
edge e. There are j − 3 other edges that can be deleted if we want to delete only i− 2
edges in total. By induction, we know that we can not make Gi−1 2-degenerate by only
deleting (i− 1)− 2 edges. Thus, in this case Gi cannot be 2−degenerate by deleting
i− 2 edges.

Next let one of the deleted edges be incident to vertices on adjacent layers. We denote
this edge with e and say it is incident to vertex u on layer ℓj and to vertex v on layer ℓj+1

for 2 ≤ j ≤ i− 2. This case is shown in Figure 5.5. Again, we have i− 3 edges left that
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Gi−1

`i

`2

`1

or

Gi−1

`i

`2

`1

v v

`i−1 `i−1

3-vertex

4-vertex

2-vertex

(a) (b)

Figure 5.4.: First case in the proof of Lemma 5.3 in which one deleted edge, called e,
is incident to vertex v in layer ℓi. In (a) e is incident to two vertices in
layer ℓi. In (b) e is incident to only one vertex in layer ℓi. Graph Gi−1 is
in both cases a subgraph.

can be deleted. We split the graph in two parts. Graph G′ consists of the layers ℓ1 to ℓj
and G′′ consists of the layers ℓj+1 to ℓi. Then G′ = Gj and G′′ = Gi−j . By induction,
we know that we need at least j − 1 edges to make G′ 2-degenerate and i− j − 1 edges
to make G′′ 2-degenerate. That means we delete (j − 1) + (i− j − 1) = i− 2 edges in
G′ and G′′ combined. If we only delete i− 3 edges in G′ and G′′ and e, then we delete
i− 2 edges, but Gi is still not 2-degenerate.

For the last case, let all i − 2 deleted edges be between vertices on the same layer
and none incident to a vertex on layer ℓ1 or layer ℓi. If we delete one edge of every
layer from ℓ2 to ℓi−1, then every vertex still has degree at least 3. In Figure 5.6 (b) we
show an example for i = 5. Thus, deleting i− 2 edges in this way does not result in a
2-degenerate graph. Now say we delete more than one edge in one layer. An example
for that, again for i = 5, is given in Figure 5.6 (c). For every layer in which we delete
more than one edge, there is a layer in which we delete no edge. Thus, if we have p
distinct layers in which we delete at least two edges, then there must be q ≥ p layers in
which we delete no edge. Note that q ≥ p+ 2 because we have i layers and delete only
i − 2 edges. Thus, we find a subgraph G′ whose lowest and highest layer contain no
deleted edge and in the layers in between exactly one edge per layer was deleted. In
G′ all vertices have degree at least 3. Therefore, G′ is not 2-degenerate and, because
G′ ⊆ Gi, we know that Gi is not 2-degenerate. Thus, deleting i− 2 edges in this way
still does not give a 2-degenerate graph.

We deduce that no matter how we choose the i − 2 edge we delete, Gi is not 2-
degenerate, which concludes the proof.

Because Gi has |V (Gi)| = n = 4 · i vertices and ds2(Gi) = i− 1, also ds3(Gi) =
n
4 − 1.

This proves the following lower bound for dsP3 (n).

Theorem 5.4: The maximum 2-degenerate skewness for bipartite planar graphs is at
least dsB2 (n) ≥ n

4 − 1.
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Figure 5.5.: Second case in the proof of Lemma 5.3 in which one deleted edge is between
two adjacent layers.

5.2. Upper Bound using Greedy Algorithm

To give a first upper bound for dsB2 (n), we use the greedy algorithm from Section 4.2.

Lemma 5.5: To make a bipartite planar graph G 2-degenerate, at most 2
3n edges need

to be deleted, where n = |V (G)|.

Proof. The greedy algorithm always selects the vertex with minimum degree. We now
define a collecting ordering σ by always collecting the vertex of minimum degree. Let
deg(v) denote the degree of a vertex v when it is identified as the vertex with minimum
degree and next in σ. To make G 2-degenerate we always need to collect vertices of
degree at most 2 and thus we delete edges incident to v if deg(v) > 2 before it is collected.
It is well known that in every bipartite planar graph there is a vertex of degree at most 3.
Thus, we need to delete at most one edge to make to reduce the degree to 2. There can
be at most 2

3 vertices, that have deg(v) > 2. Otherwise |E(G)| ≥ 3 · (23n) = 2n > 2n− 4
which is a contradiction to the fact that bipartite planar graphs have at most 2n− 4
edges. Thus, dsB2 (n) is bounded by 2

3n.

5.3. Upper Bound using Discharging

We can give the same upper bound by using the discharging method described in
Section 2.3. First, we give a local configuration that has to exist in every quadrangulation.
Afterwards, we give a procedure for finding edges that need to be deleted to obtain a
2-degenerate graph. We prove that the obtained subgraph is 2-degenerate by giving
an implicit collecting ordering with maximum degree 2. Because of Corollary 2.2, the
subgraph is 2-degenerate. We furthermore prove that we did not delete more than 2

3n
edges for a graph with n vertices.

In the following lemma we prove the existence of certain local configurations. These
are also shown in Figure 5.7.

Lemma 5.6: Every quadrangulation G with minimum degree 3 has a 7−-edge or a
5-vertex with at least four 3-vertices as neighbors.
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Figure 5.6.: Last case in the proof of Lemma 5.3 in which all i− 2 deleted edges are
between vertices of the same layer. In (a) the graph G5 is pictured. (b) is
an example, where one edge per layer is deleted. (c) is an example, where
for some layers more than one edge per layer is deleted. Here subgraph G′

is shown as well.

6 7
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Figure 5.7.: Local configurations where at least one exists in every quadrangulation

Proof. Assume that this is not true. That means, that no edge with weight at most 7
exists and every 5-vertex has at most three 3-vertices. Now, assign every vertex v a
charge c(v) = deg(v). Similar to Chapter 3 in [CW17], we say a vertex v is happy if
and only if it has charge c(v) ≥ 4. Because G has minimum degree 3, only 3-vertices
are not happy.

Next, we redistribute the charge, to make every vertex happy. Every 3-vertex takes 1
3

charge from every neighbor. Observe, that 3-vertices do not have neighbors that have
degree at most 4, because otherwise there is an edge with weight at most 7. If the
neighbor of a 3-vertex is a 5-vertex u, then u has at most three 3-vertices as neighbors in
total. That means, it looses at most charge 3 · 13 = 1, which results in a charge c(u) = 4.
Thus, the 5-vertex remains happy. If the neighbor of a 3-vertex is a 6+-vertex u, then it
looses at most deg(u) · 1

3 charge, and with deg(u) ≥ 6, this means that u keeps at least
deg(u) · 2

3 ≥ 4 charge and u is still happy.
Therefore, it is possible to redistribute the charge, to make every vertex happy. In

Proposition 3.1. in [CW17] the authors proved the balanced charging equation:∑
v∈V (G)

(deg(v)− 4) +
∑

f∈F (G)

(l(F )− 4) = −8

For quadrangulations every face has length 4 and this equation is reduced to∑
v∈V (G)

(deg(v)− 4) = −8
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5.3. Upper Bound using Discharging

Because we defined a vertex to be happy if and only if it has charge at least 4, every
vertex that is happy contributes a positive amount to the sum and every vertex that
is not happy a negative amount. We defined the charge of a vertex as its degree and
redistributing the charge did not change the the value of the sum in total. Because every
vertex is now happy, only positive amounts are added to the left side of the equation.
This is a contradiction to the balanced charging equation, because the right side is
negative, which the left side is not. Thus, the assumption that the theorem is wrong is
false.

If graph G is a bipartite planar graph, but not necessarily a quadrangulation, then
for a face f ∈ F (G) the length of f is always l(f) ≥ 4. Thus, in the charging equation
the right summand is always positive. Therefore Theorem 5.6 is true for all bipartite
planar graphs.

Now, given a bipartite planar graph G, we give x steps in which we collect at least
one vertex and afterward the graph is empty. In each step we have to pay a certain
amount for the edges that need to be deleted, so that the vertices in this step can be
collected. There are three types of steps.

In the first type, we simply collect all vertices of degree at most 2. We do not need
to pay anything for this step, because we do not need to delete any edge. Thus, the
payment for steps of the first type is p1 = 0. The number of times we use this step is
denoted by x1.

In the second type, we take a 3-vertex v incident to a 7−-edge and collect v. To
collect v, we first have to delete an edge incident to v so that v gets degree 2. Thus, we
need to pay p2 = 1 for steps of the second type. We denote the number of times we use
this step by x2. Every time we use a step of the second type, we reduce the number of
edges by 3.

In the third type, we collect a 5-vertex v that has at least four neighbors of degree
3 and these neighbors. To collect v we need to delete three edges incident to v, thus
the payment for this step is p3 = 3. After we collect v, the degree of neighbors of v
is reduced by one and the four neighbors of degree 3 have now degree 2 and can be
collected. The number of times we use this step is denoted by x3. With this step we
reduce the number of edges by thirteen.

The following equations hold:

x1 + x2 + x3 = x

x ≤ n

3x2 + 13x3 ≤ 2n− 4

To give an upper bound on dsB2 (n), we need the maximal amount payed, when taking
the x steps. Observe, that we can always use one of these steps because of Theorem 5.6.
The total payed amount is

p = p1 · x1 + p2 · x2 + p3 · x3 = x2 + 3x3
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5. 2-degenerate Skewness for Bipartite Planar Graphs

We now have a Linear Problem dependent on n. The payment p is less than 2
3n. This

is true because

p = x2 + 3x3 ⇔
3p = 3x2 + 9x3 ≤ 3x2 + 13x3 ≤ 2n− 4 ⇔

p ≤ 2

3
n− 4

3

Now we have found a way, to make any bipartite planar graph 2-degenerate by
deleting less than 2

3n edges an thus dsB2 (n) <
2
3n.

5.4. Upper Bound

In this section, we use a different method to obtain an upper bound for dsB2 (n). This
method is specifically for 2-degenerate subgraphs of bipartite planar graphs and results
in a stronger bound. We prove that every bipartite planar graph G needs to delete at
most n

2 edges to become 2-degenerate, with n = |V (G)|. To show this we first prove
the following lemma.

Lemma 5.7: Given a bipartite planar graph G with minimum degree 3, there exists a
vertex v in G, such that deg(v) = 3 and v is incident to three pairwise distinct faces.

Proof. Let G be connected. Otherwise, we conduct the proof on each of the components.
We distinguish two different cases based on the connectivity of G.

Case 1: G is at least 2-connected. Then, we know that every face is bounded by
a cycle. We also know that there exists a vertex v of degree 3 because our minimum
degree is 3 and every bipartite planar graph is 3-degenerate. But then, it is clear that v
is incident to exactly three pairwise distinct faces because, otherwise, those faces would
not be bounded by cycles.

Case 2: G is 1-connected. First, we form a block-cut-tree H of G, where every block
represents a maximal 2-connected component of G. Two blocks are adjacent if there is
one vertex in each block such that the two vertices are adjacent. We now choose an
arbitrary leaf of H. This leaf C is a 2-connected component with at least three vertices.
Otherwise, we would not have minimum degree 3 in G.

If there is a vertex v in C that has deg(v) = 3 and where every neighbor of v is in C,
then we can use Case 1 on C and we are done. This case is illustrated in Figure 5.8
(left). Otherwise, the only vertex of degree 3 is the vertex u, that has one neighbor
outside of C. This is shown in Figure 5.8 (right). We know that this vertex exists
because G is 3-degenerate and, thus, C is 3-degenerate as well. The vertex u is not
incident to three different faces but only to two. Therefore, we want to prove that u
cannot be the only 3-vertex in C. Assume that it is. Then every other vertex in C has
degree at least 4 (because the minimum degree of G is 3). If we only look at C, then u
has degree 2. That results in the following approximation for the number of edges in C:

|E(C)| ≥ (|V (C)| − 1) · 4 + 2

2
=

4 · |V (C)| − 2

2
= 2|V (C)| − 1

But we know that C is still bipartite planar and thus |E(C)| ≤ 2 · |V (C)|−4. This leads
to a contradiction and we know that u can not be the only 3-vertex in C. Therefore,
there is at least one other 3-vertex in C satisfying the lemma.

28



5.4. Upper Bound
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Figure 5.8.: Component C in bock-cut-tree H and two cases for 3-vertices in C.

v

G G

Figure 5.9.: The left graph shows 3-vertex v incident to three distinct faces.
The right graph shows the graph after one edge is deleted and v is collected.

Now we can formulate and prove the actual theorem.

Theorem 5.8: To make a bipartite planar graph G 2-degenerate, one has to delete at
most n−2

2 edges, where n is the number of vertices in G. That means dsB2 (n) ≤ n−2
2 .

Proof. We want to find a collecting ordering with maximum degree 2. We can collect
vertices of degree 2 without problem. If we only have vertices of degree 3 we need
to delete an edge incident to a 3-vertex v prior to collecting v. Thus say, that G has
minimum degree 3. We know that |F (G)| = f ≤ n− 2 for bipartite planar graphs. (See
Equation 2.1.)

Now, take a vertex v with deg(v) = 3 that is incident to three pairwise distinct
faces. See Figure 5.9 (left). We know that such a vertex exists because of Lemma
5.7. Next we delete one edge incident to v, and then collect v. The result is shown in
Figure 5.9 (right). We go on and collect as many vertices as possible in the resulting
graph. Because v was incident to three pairwise distinct faces, the collection of v results
in merging those three faces into one and the number of faces goes down by at least
two. (It could go down by more than two if other vertices can be collected.) Thus every
deletion of an edge results in the reduction of the number of faces by two. Then, at
most n−2

2 edges need to be deleted to result in a graph that has only one face. This
graph is a forest and forests are 1-degenerate. Therefore, by deleting n−2

2 edges, we get
a 2-degenerate subgraph of G.
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5. 2-degenerate Skewness for Bipartite Planar Graphs

Figure 5.10.: Possible components of the subgraph induced by the vertices of degree 3.

5.5. Conjecture for Stonger Upper Bound

In 2015 Brinkmann et al. published their paper “Generation of simple quadrangulations
of the sphere” [Bri+05]. This paper aims to give an understanding what types of
bipartite planar graphs exists. Among other things they prove the following lemma
(Lemma 2 in Preliminary observations).

Lemma 5.9: [[Bri+05]] Let G be a simple quadrangulation with minimum degree 3 and
let H be a component of the subgraph induced by the vertices of degree 3. Then H is
one of the following graphs:

1. a cycle of even length at least 8, in which case G is a pseudo-double wheel;

2. a path (possibly of a single vertex);

3. a cube,in which case G = H;

4. one of the four graphs of Figure 5.10.

We use this lemma to give evidence to the following conjecture.

Conjecture 5.10: For the graph class B consisting of the bipartite planar graphs, we
have dsB2 (n) ≤ n

4 .

Lemma 2.5 gives us that we only need to look at quadrangulations. Let G be a
quadrangulation. The goal is to find an algorithm that produces a collecting ordering
with maximum degree 2. It consists of multiple iterations. In each iteration we collect
vertices that have degree at most 2 when they are collected. Before the vertices can be
collected, it may happen that edges need to be deleted so that the degree of the vertices
is reduced to 2. At the end of an iteration we add edges such that the graph is again
a quadrangulation. We want to find an algorithm that collects at least four vertices
and deletes at most one edge in each iteration. Then the number of deleted edges is
at most n

4 . Let G′ be the graph G after the edges that are deleted in all iterations are
removed. Note that edges and vertices that are collected remain in G′. Then G′ is
2-degenerate. This holds because we found a collecting ordering with maximum degree
2 and Corollary 2.2 gives us the rest. The number of edges added is not important. We
only add edges to simplify the proof. Without the added edges, the degree of vertices is
only reduced further. This does not contradict the fact that G′ is 2-degenerate.
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5.5. Conjecture for Stonger Upper Bound

3-vertexG : G′ :

Figure 5.11.: The left graph G shows quadrangulation with minimum degree 3 where
the 3-vertices form an independent set. In the right graph G′ two edges
of G where deleted. Graph G′ is 2-degenerate.

We now need to show that, if we need to delete an edge in one iteration, we can
collect at least four vertices. If G has degree 2 vertices, these can be collected without
deleting an edge. So let G have minimum degree 3. Then no vertex can be collected.
Lemma 5.9 states that one of the described four cases occurs. In Cases 1,3 and 4 we
can collect at least four vertices by deleting one edge. This is also true if in Case 2
we have a path that consist of at least four vertices. That means that, if we find such
subgraphs in G for every iteration, Conjecture 5.10 is true.

The problem with this approach is that it is possible that all components of the
subgraph of G induced by vertices of degree 3 are paths of length less than 4. In this
case, we need to delete an edge to collect a vertex, but we can not necessarily collect
four vertices. There are quadrangulations where this case occurs. The graph G in
Figure 5.11 (left) is such an example of this. Here the 3-vertices form an independent
set, i.e. each component of the subgraph induced by all 3-vertices consists of a single
vertex. Now, when we delete one edge we can only collect one vertex.

We still assume that dsB2 (n) ≤ n
2 . In the previous algorithm we add edges so that

we always have a quadrangulation at the end of each iteration. These added edges are
only important for using Lemma 5.9. If we do not add those edges, the degree of some
vertices is reduced further. It is then possible that we can collect other vertices without
needing to delete more edges. In the graph G in Figure 5.11 (left) for example, it is
enough to delete two edges in total. The graph G′ in Figure 5.11 (right) is 2-degenerate.

Next, we look at a quadrangulation G that consists of 3-vertices and 6-vertices. Again,
the 3-vertices form an independent set. In Figure 5.12 we show a part of this graph. If
this pattern is repeated infinitely, then G could be a counterexample to Conjecture 5.10.
But because G is finite and every quadrangulation has average degree 4 · |V (G)| − 8, we
know that at the boundary of this graph we have vertices of smaller degree. This again
leads us to assume that Conjecture 5.10 is true.
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3-vertex

Figure 5.12.: A part of graph G, consisting of 3-vertices and 6-vertices where the 3-
vertices form an independent set.
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6. k-degenerate Skewness for Planar
Graphs

In this Chapter we look at planar graphs. We call the class of planar graphs P. In
Section 2.2.1, we have already shown that every planar graph is 5-degenerate. Here,
we want to find a way to delete as few edges as possible of a planar graph G such that
the obtained graph is k-degenerate for 1 ≤ k < 5. For G to become 0-degenerate, we
have to delete every edge. In Section 6.1 and Section 6.2, we introduce procedures to
make a planar graph G 1-degenerate and 2-degenerate, respectively. For these cases, it
is possible to give an exact value for dsP1 (n) and dsP2 (n). In Section 6.3 give a lower
bound for dsP3 (n) by using a similar approach as in Section 5.1. In Section 6.4, we then
give an even stronger lower bound for dsP3 (n). We cannot yet give an upper bound for
dsP3 (n), other than the bound for dsP2 (n). In Section 6.6, we give an upper bound for
dsP4 (n) by using a greedy algorithm. Last, we show in Section 6.5 that by using the
same greedy algorithm to determine dsP3 (n), we get a higher bound than dsP2 (n). This
means using the greedy algorithm results in an unnecessarily high number of edges,
that are deleted.

Observe that if we take a graph G ∈ P and its triangulation G′, then dsk(G) is always
at most dsk(G′). A triangulation is an edge maximal graph in P. Because of Lemma 2.5,
we may restrict the graphs we consider to triangulated graphs to get dsPk (n).

6.1. 1-degenerate Skewness

We begin finding maximum 1-degenerate subgraphs in planar graphs. In Section 4.1, we
show that for every graph G the degeneracy skewness is ds1(G) = |E(G)| − |V (G)|+ 1.
Now, take a triangulated graph G. The graph G has |V (G)| = n vertices and |E(G)| =
3n − 6 edges. Therefore exactly 3n − 6 − (n − 1) = 2n − 5 edges need to be deleted.
Because of Lemma 2.5, to find dsP1 (n), we only need to look at triangulated graphs.
Thus, we can formulated the following lemma.

Lemma 6.1: Any planar graph G can be made 1-degenerate by deleting at most 2n− 5
edges, where n = |V (G)|. If G is triangulated, exactly 2n− 5 edges need to be deleted.
Then, dsP1 (n) = 2n− 5.

6.2. 2-degenerate Skewness

We show that to make any planar graph 2-degenerate, we need to delete at most n− 3
edges.
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6. k-degenerate Skewness for Planar Graphs

To prove this statement, we use a canonical ordering. De Fraysseix, Pach and Pollack
first constructed a method to find such an ordering π = (v1, . . . , vn) of the vertices of a
graph G in [DPP90]. The graph Gi is the graph induced by vertices {v1, . . . , vi} and Ci

as the bounding cycle that forms the external face of Gi. This ordering π is called a
canonical ordering if for each i with 3 ≤ i ≤ n:

C1: Gi is biconnected and internally triangulated,

C2: Ci contains the edge (v1, v2),

C3: For i < n, vertex vi+1 lies in the outer face of Gk and all neighbors of vi+1 in Gi

appear on the cycle Ci consecutively.

De Fraysseix et al. then went on to prove, that every triangulated graph has such a
canonical ordering and that it can by computed in space. Later Goos Kant proved that
this is also possible in linear time [Kan96]. The canonical ordering was used to construct
an algorithm that gives a planar straight-line drawing of size (2n− 4)× (n− 2) for a
planar graph with n vertices [DPP90].

The following definitions will help prove the next theorem. For each i with 3 ≤ i ≤ n
we know that the neighbors of vi appear consecutively on Ci−1. Let vi,l be the leftmost
neighbor of vi, i.e. the neighbor with minimal distance to v1 on Ci−1, without using edge
(v1, v2). Also let vi,r be the rightmost neighbor of vi, i.e. the neighbor with minimal
distance to v2 on Ci−1, without using edge (v1, v2). Observe that for all neighbors of vi,
the vertices vi,l and vi,r exist. Also note that these are the only neighbors that are on
Ci and that could appear on previous bounding cycles Cm for i ≤ m ≤ n. All other
neighbors can only be on later bounding cycles Cm for m < i. For every vertex v ̸= vn
we define a parent edge. Let i be the biggest integer with 3 ≤ i < n such that v is on
the bounding cycle Ci but not on Ci+1. Then v is adjacent to vi+1. The parent edge of
v is then the edge connecting v to vi+1. Observe that this edge always exists and is
uniquely defined for v.

We now use the canonical ordering to prove the following lemma.

Lemma 6.2: For the 2-degenerate skewness of planar graphs we can show dsP2 (n) ≤ n−3.

Proof. Let G ∈ P be a triangulated graph with n vertices. Given a canonical ordering
π = (v1, . . . , vn) of the vertices of G, we consider vertices in reverse order σ. We use σ
as a collecting ordering of G. Let k be the maximum degree of σ. If k > 2 we delete
edges such that the maximum degree is reduced to 2. For the obtained graph σ then
has maximum degree 2 and Corollary 2.2 gives us that is is 2-degenerate.

We first take vn, delete certain edges such that it has degree 2 and then we collect vn.
Then, we go on to the vertex vn−1 and repeat the process until we collect v3.

We now define which edges we delete. For each i with 3 ≤ i ≤ n, the neighbors of vi
appear consecutively on Ci−1. We delete the edges between vi and all its neighbors in
Ci−1 except for vi,l and vi,r. That means, for every u on Ci−1 that is neighbor of v1 and
not vi,l and vi,r, we delete the parent edge of u. This process is illustrated in Figure 6.1.

We stop when we have only vertices v1, v2 and v3 left. These three form a triangle
and G3 is 2-degenerate. Thus, we delete n− 3 edges in total and obtain a 2-degenerate
graph and dsP2 (n) ≤ n− 3

Next we prove that for planar graphs dsP2 (n) = n− 3 by proving that dsP2 (n) is also
at least n− 3.
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Figure 6.1.: Graph, when collecting vi

Lemma 6.3: For the 2-degenerate skewness of planar graphs we can show dsP2 (n) ≥ n−3.

Proof. Take a triangulated graph G ∈ P with n vertices. For a graph G′ with n′ =
|V (G′)| ≥ k to be k-degenerate, the number of edges is bounded by m′ = |E(G′)| ≤
kn −

(
k+1
2

)
. This was proved by Don R. Lick and Arthur T. White in [LW70] in

Proposition 3.
We know that the number of edges in every triangulated graph is m = |E(G)| = 3n−6,

where n = |V (G)|. Now we insert k = 2 into the formula and get that m′ ≤ 2n−
(
3
2

)
=

2n− 3. That means m−m′ = 3n− 6− (2n− 3) = n− 3 edges have to be deleted for the
graph to become 2-degenerate. This means ds2(G) ≥ n−3 and thus dsP2 (n) ≥ n−3.

If we combine Lemma 6.2 and Lemma 6.2 we get the following theorem.

Theorem 6.4: For planar graphs the maximum 2-degenerate skewness is dsP2 (n) = n−3.

6.3. Lower Bound for 3-degenerate Skewness

In this section, we prove the lower bound dsP3 (n) ≥ n
4 − 1 where P again denotes the

planar graph class. To prove this lower bound, we give a family of certain planar graphs
in which each graph G has ds3(G) = |V (G)|

4 − 1. The construction of this family and the
proof of the 3-degenerate skewness is similar to the proof of the lower bound of dsB2 (n)
in Section 5.1.

First, we define a family F ′ ⊂ P of graphs. For this we take the family F from
Section 5.1. Recall, Figure 5.1 shows the graphs G2 and Gi. We also use the definition
of layers from that section. In Figure 5.2, a layered drawing of the graph Gi is shown.
For every graph Gi ∈ F with i ≥ 2, we create a graph G′

i ∈ F ′ by adding (i − 1) · 4
edges in the following way: We add four edges between every two adjacent layers ℓj and
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Figure 6.2.: Construction of G′
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Figure 6.3.: Graph G′
i split into i layers.

ℓj+1 for 1 ≤ j ≤ i− 1. Let v1, v2, v3, v4 denote the vertices in layer ℓj and v′1, v
′
2, v

′
3, v

′
4

denote the vertices in layer ℓj+1 in cyclic clockwise ordering. Then, we add an edge
between vertices vi and v′i−1 for 1 < i ≤ 4 and between v1 and v′4. The edges are added
in such a way that the face incident to vertices of layer ℓ1 is still bounded by a cycle of
length 4. The same holds for the vertices of layer ℓi. Every other face of Gi is divided
into two faces bounded by a cycle of length 3 in G′

i. Also observe that we add the edges
so that in G′

i all vertices in layer ℓ1 and layer ℓi have degree 4 and degree 6 in the other
layers. Figure 6.2 shows the graphs G′

2 and G′
i. The edges added to G2 and Gi to create

G′
2 and G′

i are shown in bold. Figure 6.3 shows a layered drawing of the graph G′
i.

Now, we show that ds3(G
′
i) = i− 1 for i ≥ 2. First, we prove that we need to delete

at most i− 1 edges.

Lemma 6.5: For all i ≥ 2 the graph G′
i ∈ F ′ can be made 3-degenerate by deleting i− 1

edges.

Proof. This proof is analogous to the proof of Lemma 5.2. Thus, we again prove this
lemma by induction. Graph G′

2 is 4-regular and by deleting one arbitrary edge G′
2

becomes 3-degenerate. Now let the lemma be true up to some i ≥ 3. We next prove
it is true for G′

i as well. Similar to the induction step of Lemma 5.2, after deleting
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`i−1

`2

`1

`i
G′i :

`i−1

`2

`1

`i

`i−1

`2

`1

`i−1

`2

`1

delete one edge in `i collect 3-vertices collect 3-vertices

3-vertex

G′i−1 :

4-vertex

5-vertex

6-vertex

`i

Figure 6.4.: Induction step. Reducing G′
i to G′

i−1 by deleting one edge.

one edge incident to a vertex of layer ℓi, we can collect all vertices in layer ℓi. For
reference look at Figure 6.4. The remaining graph is G′

i−1 which can be reduced into a
3-degenerate graph by removing (i− 1)− 1 edges by induction. Thus G′

i can be reduced
to a 3-degenerate graph by deleting i− 1 edges.

Now it remains to prove that we need to delete at least i− 1 edges.

Lemma 6.6: For all i ≥ 2 the graph G′
i ∈ F ′ is 4-degenerate and not 3-degenerate if at

most i− 2 edges are deleted.

Similarly to Lemma 6.5, we can adapt the proof of Lemma 5.3. The only difference is
that we now use graphs G′

i ∈ F ′ and want to obtain 3-degenerate graphs.
Because G′

i has |V (G′
i)| = n = 4 · i vertices and ds3(G

′
i) = i− 1, also ds3(G

′
i) =

n
4 − 1.

This proves the lower bound for dsP3 (n).

6.4. Stronger Lower Bound for 3-degenerate Skewness

In Section 5.5 we stated the conjecture that we need to delete at most n
4 edges of a

bipartite planar graph to obtain a 2-degenerate graph. We can not state a similar
conjecture for the 3-degenerate skewness of planar graphs. Instead we can raise the
lower bound for dsP3 (n) even higher than n

4 . The graph G in Figure 6.5 has 27 vertices,
but we need to delete at least seven edges, so that it becomes 3-degenerate. Thus, for
n = 27 we have dsP3 (n) ≥ ds3(G) = 7

27n > n
4 . Then we can formulate the following

lemma.

Lemma 6.7: The maximum 3-degenerate skewness for planar graphs is at least dsP3 (n) >
n
4 .

To prove that ds3(G) = 7 we look at all combinations of six edges and show that
even when we delete those edges the graph is still not 3-degenerate.
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5-vertex

6-vertex

7-vertex

Figure 6.5.: Graph G with 27 vertices, for which ds3(G) = 7

For this, we look at different collecting orderings of G. If we take a collecting ordering
σ and it has a maximum degree greater than 3, then we need to delete a certain number
of edges, to reduce the degree of the collected vertices. We can stop collecting the
vertices in order of σ if we already deleted six edges and it is clear that the remaining
graph is still not 3-degenerate.

We now distinguish all different cases of types for the first vertex in σ. From there
we consider all subcases for the next collected vertex and so on.

1. The first collected vertex is 7-vertex adjacent to a 6-vertex. For this we need to
delete four edges. The new graph is shown in Figure 6.6 (Case 1).

a) The second collected vertex in σ for which we need to delete an edge is a
5-vertex. Here we need to delete two edges, thus we cannot delete any more
edges. If we collect a 5-vertex not adjacent to a 4-vertex, then we cannot
collect any more vertices. The remaining graph is not 3-degenerate. Thus,
we collect a 5-vertex adjacent to a 4-vertex. The graph in Figure 6.6 (Case
1a)) is a subgraph of the remaining graph. Thus, the graph G without these
six edges is still not 3-degenerate.

b) The second collected vertex in σ for which we need to delete edges is a
4-vertex. We need to delete one edge and can still delete one other edge. The
graph G′ in Figure 6.6 (Case 1b)) is a subgraph of the remaining graph.

i. The third collected vertex in σ for which we need to delete an edge
is a 4-vertex not adjacent to other 4-vertices. We need to delete one
edge before we can collect the 4-vertex. The remaining graph, shown in
Figure 6.6 (Case 1b)i) is not 3-degenerate.

ii. The third collected vertex in σ for which we need to delete an edge is
a 4-vertex adjacent to other 4-vertices. No matter which of these we
choose, we always find the graph in Figure 6.6 (Case 1b)ii) as subgraph.
Thus the graph is not 3-degenerate after we deleted those six edges.

2. The first collected vertex is a 7-vertex adjacent to three other 7-vertices. Again,
we need to delete four edges. The resulting graph is shown in Figure 6.7 (Case 2).

a) The second collected vertex in σ for which we need to delete an edge is a
5-vertex. We need to delete two more edges, before we can collect it. The
5-vertex must be adjacent to a 4-vertex. Otherwise, no other vertex can
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5-vertex

6-vertex

7-vertex

4-vertex

Case 1 Case 1a)

Case 1b)

Case 1b)i Case 1b)ii

Figure 6.6.: Case 1, to show that for graph G we need to delete at least seven edges
so that it becomes 3-degenerate. In this case, we first delete a 7-vertex
adjacent to a 6-vertex.

be collected and it is clear, that the remaining graph is not 3-degenerate.
No matter which 5-vertex adjacent to a 4-vertex we collect, we always have
the graph in Figure 6.7 (Case 2a)) as a subgraph. This subgraph is not
3-degenerate, but we already deleted six edges.

b) The second collected vertex in σ for which we need to delete an edge is a
4-vertex. No matter which 4-vertex we collect, we need to delete one edge
and get the graph G′ in Figure 6.7 (Case 2b)) as a subgraph.

i. The third collected vertex in σ for which we need to delete an edge is a
4-vertex not adjacent to other 4-vertices. Again we need to delete one
edge, before we can collect the 4-vertex. The remaining graph is shown
in Figure 6.7 (Case 2b)i) and is not 3-degenerate.
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ii. The third collected vertex in σ for which we need to delete an edge is a
4-vertex adjacent to other 4-vertices. No matter which such vertex we
choose, we always find the graph in Figure 6.7 (Case 2b)ii) as a subgraph.
Thus the graph is not 3-degenerate after we deleted these six edges.

3. The first collected vertex is a 6-vertex.

4. The first collected vertex is a 5-vertex

This case distinction is not complete. Cases 3. and 4. contain more subcases, because
we delete less edges in the beginning. We made a complete case distinction for Case 3
that we did not list here because the procedure stays the same and nothing more can
be learned.

To still prove that ds3(G) = 7, we wrote a C++ program. In this program, we first
input all 75 edges of G and save them in a graph object using adjacency lists. We
then create all possible subgraphs of G where six edges were deleted. This is done by
using six for-loops that chose six different edges that are then deleted in a copy of the
original graph.

The class graph we created has a function degenerate that checks whether the graph
is k-degenerate for a given k. This function simulates the algorithm that gives us a
minimum collecting ordering by always collecting the vertex of minimum degree. It
saves all vertices in a priority queue where the key of a vertex is its degree. Then it can
take the vertex with minimum degree and reduce the degree of its neighbors by one. If
a vertex has already been collected like this, it will be ignored. If a vertex of minimum
degree has degree greater than k the function returns false. Otherwise, the graph is
k-degenerate and it returns true when all vertices are collected and the priority queue
is empty.

The program now tests whether all the subgraphs with six deleted edges are 2-
degenerate, by using the degenerate function. Should there be a combination of six
edges that can be deleted so that G becomes 3-degenerate, it will output this. The
code for this program can be found in Appendix A.1. When running the program no
combination of six edges is found that when deleted results in a 3-degenerate graph.

6.5. Upper Bound for 3-degenerate Skewness

In the previous two sections, we looked at the lower bound for dsP3 (n). Because every
2-degenerate graph is also 3-degenerate, we know that dsP3 (n) ≤ dsP2 (n) = n− 3, see
Theorem 6.4. Thus we know the following lemma is true.

Lemma 6.8: To make a planar graph G 3-degenerate at most n − 3 edges need to be
deleted, where n = |V (G)|. That means that dsP3 (n) ≤ n− 3.

We can not give a better upper bound for the 3-degenerate skewness for planar
graphs. If we use the greedy algorithm described in Section 4.2 to make a planar graph
3-degenerate and the same analysis technique as in Section 5.2, we only get an upper
bound of dsP3 (n) ≤ 6

5n− 12
5 . This is greater than the upper bound of n− 3. We did not

find a graph G where we delete 6
5 |V (G)| − 12

5 when using the greedy algorithms. But
we also know of no other analysis technique that gives us a stronger upper bound for
the number of deleted edges when using the greedy algorithm. Nonetheless, we prove in
the following paragraph the bound of dsP3 (n) ≤ 6

5n− 12
5 .
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If we follow the greedy algorithm, we always collect the vertex with minimum degree
next. Because we only know that our graph G is planar, we only know that the degree
of the next vertex v is at most 5. We use the notation deg(v) for the degree of a vertex
v at the time it is identified as the vertex with minimum degree and collected next.
If deg(v) = 5, we need to delete two edges incident to v. If deg(v) = 4, we need to
delete one edge incident to v. Otherwise we do not need to delete any edge. Let n5

denote the number of vertices with deg(v) = 5 and n4 denote the number of vertices
with deg(v) = 4. Like always n denotes the number of vertices in G. We denote with p
the number of edges that are deleted. We can formulate the following conditions. The
number of vertices with deg(v) = 5 and number of vertices with deg(v) = 4 combined
are at most the total number of vertices in G. Also five times n5 and four time n4 must
be at most the total number of edges in G. Thus, we have

n5 + n4 ≤ n and
5n5 + 4n4 ≤ 3n− 6.

We can describe the total number p of deleted edges by

p = 2n5 + n4.

We now derive an upper bound for p depending on n.

p = 2n5 + n4

⇔ 5

2
p = 5n5 +

5

2
n4 ≤ 5n5 + 4n4 ≤ 3n− 6

⇔ p ≤ 6

5
n− 12

5

It might be possible that there are other conditions, that we did not consider here,
that reduce the upper bound further. For this thesis n− 3 is the best upper bound for
dsP3 (n) that we can give.

6.6. Upper Bound for 4-degenerate Skewness using Greedy
Algorithm

In this section, we use the greedy algorithm introduced in Section 4.2. We want to find
an upper bound for the number of edges necessary that, when deleted, make a planar
graph 4-degenerate.

Lemma 6.9: To make a planar graph G 4-degenerate, at most 3
5n edges need to be

deleted, where n = |V (G)|. That means that dsP4 (n) ≤ 3
5n.

Proof. Let σ be a collecting ordering that always collects the vertex of minimum degree.
Like in Lemma 5.5 denote by deg(v) the degree of a vertex v at the time when it will be
collected next. We want G to become 4-degenerate and, thus, we reduce the maximum
degree of σ by deleting edges incident to v if deg(v) > 4. Because G is planar, we know
that we can always find a vertex v with deg(v) ≤ 5. If we take v and delete edges until
deg(v) ≤ 4, we need to delete at most one edge. We can then collect this vertex and
repeat these steps until there are no more vertices. We argue that the case that our
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vertex v with minimum degree is a 5-vertex happens to at most 3
5n vertices. The sum

of deg(v) for all vertices v ∈ V (G) is equal to the total number of edges in G. If at least
3
5n vertices have deg(v) = 5, then we get |E(G)| ≥ 5 · (35n) = 3n > 3n− 6, which is a
contradiction to the statement that G is planar. Because we only deleted exactly one
edge for each vertex v with deg(v) = 5, we get an upper bound of 3

5n edges that need
to be deleted. This concludes the proof.
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5-vertex

6-vertex

7-vertex

4-vertex

Case 2

Case 2a)

Case 2b)

Case 2b)iiCase 2b)i

Figure 6.7.: Case 2, to show that for graph G we need to delete at least seven edges
so that it becomes 3-degenerate. In this case, we first delete a 7-vertex
adjacent to three other 7-vertices.
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7. Conclusion

In this thesis, we discussed the problem of finding a maximum spanning k-degenerate
subgraph. We introduced the k-degenerate skewness dsk(G) of a graph as the number
of edges that need to be deleted to make G k-degenerate. Furthermore, we defined the
maximum k-degenerate skewness dsCk(n) of a graph class C as the maximum of dsk(G)
for all graphs G ∈ C with n vertices. We then went on an described several methods
to find k-degenerate spanning subgraphs. Later, we restricted the considered graph
classes to the class P of planar graphs and the class P of bipartite planar graphs. To
find 1-degenerate subgraphs, it is enough to find a spanning tree. With this knowledge,
we were able to give concrete values for the maximum 1-degenerate skewness for graphs
in class P and class P. We were also able to prove that the maximum 2-degenerate
skewness for graphs in P is dsP2 (n) = n− 3. For the other values, we were only able to
give bounds. We proved that the maximum 2-degenerate skewness for graphs in P lies
between n

4 − 1 and n
2 − 1. For planar graphs we know that dsP3 (n) is between n

4 and
n− 3 and dsP4 (n) is smaller than 3

5n.

7.1. Outlook

In further research, it might be possible to sharpen the bounds for dsP3 (n), dsP4 (n)
and dsB2 (n). For dsB2 (n), i.e. the maximum 2-degenerate skewness for graphs in B, we
already conjecture that the bound can be reduced to n

4 .
In Section 4.2, we introduced a greedy algorithm that always collects the vertices of

minimum degree. As stated before, it would be interesting to study further how much
worse the greedy algorithm is in comparison to an optimal algorithm. There are also
other greedy algorithms that could be considered. For example we could always delete
an edge with minimum or maximum weight. It might also be better to first delete
edges incident to vertices with a high degree. In Section 4.3, we discussed that deleting
maximum matchings is not enough to reduce the degeneracy of a graph. But it might
be possible to change a maximum matching M of a graph G into a set of edges M ′, so
that the degeneracy of G−M ′ is reduced by one. It is also possible that a matching
with certain constrains is enough to reduce the degeneracy of a graph.

In this thesis we mostly restricted ourselves to planar and bipartite planar graphs.
There are other graph classes for which the k-degenerate skewness should be studied.
One example is chordal graphs. The degeneracy of a chordal graphs is not bounded.
But it is still plausible that the maximum k-degenerate skewness can be described
depending on the number of vertices in the chordal graph. This is the case because,
similar to the minimum collecting ordering for degeneracy, a chordal graph has a perfect
elimination ordering π. In that ordering all neighbors of a vertex v that come after v in
π form a clique. The degeneracy of a specific chordal graph G is bounded by the size of
its biggest clique. To reduce the degeneracy of G it would be interesting to see if the
perfect elimination ordering can help to identify a minimum number of edges that need
to be deleted.
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7. Conclusion

In Chapter 1 we stated the Problem 1.1, given a graph G and an integer k find a
maximum subgraph H of G such that H is k-degenerate. In Chapter 3 we explained
how the paper on the NP-completeness of note-deletion problems [LY80] proves that
the version of Problem 1.1 that uses induced subgraphs is NP-complete. The same is
true for the skewness of non-planar graphs. It is probable that if we look for spanning
subgraphs, the problem is also NP-complete. This is yet to be proven.

Furthermore, there are other versions of Problem 1.1 that can be studied. One version
of Problem 1.1 is to allow the deletion of edges and vertices. It is also interesting not to
look for subgraphs that are k-degenerate, but instead to allow certain modifications
of G. In Chapter 1 we already noted that for k ≥ 2 subdividing an edge by placing a
vertex in the middle it the same as deleting the edge. Then the problem is to find the
minimum number of edges that need to be subdivided such that the obtained graph is
k-degenerate. It would be interesting to see what the effect of such subdivisions are for
graph drawing algorithms that only work on k-degenerate graphs for k ≥ 2. One would
be the algorithm for circular Lombardi drawings of 2-degenerate graphs mentioned in
[Dun+11].

In a similar way, G could be modified by splitting vertices. To split a vertex v, we
replace v with two vertices v1 and v2. The vertices v1 and v2 are adjacent and every
neighbor of v is now neighbor of either v1 or v2. Now the problem is formulated as
follows: Given a graph G and an integer k, find the minimum number of vertices that
need to be split such that the obtained graph is k-degenerate. These versions was not
studied in this thesis but would be interesting to study in the future.

46



Bibliography

[AH78] Kenneth Appel and Wolfgang Haken. “The Four-Color Problem”. In: Mathe-
matics Today Twelve Informal Essays. Edited by Lynn Arthur Steen. New
York, NY: Springer New York, 1978, pp. 153–180. ISBN: 978-1-4613-9435-8.
DOI: 10.1007 /978-1-4613-9435-8_7 . URL: https://doi.org/10.1007 /978-1-
4613-9435-8_7 .

[BM05] G. Brinkmann and Brendan D. Mckay. “Construction of Planar Triangula-
tions with Minimum Degree 5”. In: Discrete Math. Volume 301.2–3 (Oct.
2005), pp. 147–163. ISSN: 0012-365X. DOI: 10.1016 /j.disc.2005.06.019 . URL:
https://doi.org/10.1016 /j.disc.2005.06.019 .

[Bri+05] Gunnar Brinkmann, Sam Greenberg, Catherine Greenhill, Brendan D.
McKay, Robin Thomas, and Paul Wollan. “Generation of simple quadrangu-
lations of the sphere”. In: Discrete Mathematics Volume 305.1 (2005), pp. 33–
54. ISSN: 0012-365X. DOI: https://doi.org/10.1016 /j.disc.2005.10.005 . URL:
https://www.sciencedirect.com/science/article/pii/S0012365X05005170 .

[Cim92] Robert J Cimikowski. “Graph planarization and skewness”. In: Congressus
Numerantium (1992), pp. 21–21.

[CL05] G. L. Chia and C. L. Lee. “Crossing Numbers and Skewness of Some Gen-
eralized Petersen Graphs”. In: Combinatorial Geometry and Graph Theory.
Edited by Jin Akiyama, Edy Tri Baskoro, and Mikio Kano. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2005, pp. 80–86. ISBN: 978-3-540-30540-8.

[CS13] Gek L. Chia and Kai An Sim. “On the skewness of the join of graphs”.
In: Discrete Applied Mathematics Volume 161.16 (2013), pp. 2405–2409.
ISSN: 0166-218X. DOI: https://doi.org/10.1016 /j.dam.2013.03.023 . URL:
https://www.sciencedirect.com/science/article/pii/S0166218X13001704 .

[CW17] Daniel W. Cranston and Douglas B. West. “An introduction to the discharg-
ing method via graph coloring”. In: Discrete Mathematics Volume 340.4
(2017), pp. 766–793. ISSN: 0012-365X. DOI: https : //doi . org/10 .1016 /j .
disc.2016.11.022 . URL: https://www.sciencedirect.com/science/article/pii/
S0012365X1630379X .

[DK18] Zdeněk Dvořák and Tom Kelly. “Induced 2-degenerate Subgraphs of Triangle-
free Planar Graphs”. In: Combinatorics Volume 25 (2018). DOI: 10.37236 /
7311 . URL: https://doi.org/10.37236 /7311 .

[DPP90] H. De Fraysseix, J. Pach, and R. Pollack. “How to draw a planar graph
on a grid”. In: Combinatorica (Mar. 1990). URL: https://doi.org/10.1007 /
BF02122694 .

47

https://doi.org/10.1007/978-1-4613-9435-8_7
https://doi.org/10.1007/978-1-4613-9435-8_7
https://doi.org/10.1007/978-1-4613-9435-8_7
https://doi.org/10.1016/j.disc.2005.06.019
https://doi.org/10.1016/j.disc.2005.06.019
https://doi.org/https://doi.org/10.1016/j.disc.2005.10.005
https://www.sciencedirect.com/science/article/pii/S0012365X05005170
https://doi.org/https://doi.org/10.1016/j.dam.2013.03.023
https://www.sciencedirect.com/science/article/pii/S0166218X13001704
https://doi.org/https://doi.org/10.1016/j.disc.2016.11.022
https://doi.org/https://doi.org/10.1016/j.disc.2016.11.022
https://www.sciencedirect.com/science/article/pii/S0012365X1630379X
https://www.sciencedirect.com/science/article/pii/S0012365X1630379X
https://doi.org/10.37236/7311
https://doi.org/10.37236/7311
https://doi.org/10.37236/7311
https://doi.org/10.1007/BF02122694
https://doi.org/10.1007/BF02122694


Bibliography

[Dun+11] Christian A. Duncan, David Eppstein, Michael T. Goodrich, Stephen G.
Kobourov, and Martin Nöllenburg. “Lombardi Drawings of Graphs”. In:
Graph Drawing. Edited by Ulrik Brandes and Sabine Cornelsen. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 195–207. ISBN: 978-3-642-
18469-7.

[EH66] P. Erdős and A. Hajnal. “On chromatic number of graphs and set-systems”.
In: Acta Mathematica Hungarica Volume 17.1-2 (1966), pp. 61–99. DOI:
10.1007 /bf02020444 . URL: https://akjournals.com/view/journals/10473 /17 /
1-2 /article-p61.xml .

[Gek12] Chan Lye LEE Gek Ling CHIA. “Skewness of generalized Petersen graphs
and related graphs”. In: Frontiers of Mathematics in China Volume 7.3,
427 (2012), p. 427. DOI: 10 . 1007 /s11464 - 012 - 0186 - 5 . URL: https : //
journal.hep.com.cn/fmc/EN /abstract/article_2915.shtml .

[Gu+] Yangyan Gu, H. A. Kierstead, Sang-il Oum, Hao Qi, and Xuding Zhu.
“3-Degenerate induced subgraph of a planar graph”. In: Journal of Graph
Theory Volume n/a.n/a (). DOI: https://doi.org/10.1002 /jgt.22740 . URL:
https://onlinelibrary.wiley.com/doi/abs/10.1002 /jgt.22740 .

[Kai74] Paul Kainen. “A Generalization of the 5-Color Theorem”. In: Proceedings of
The American Mathematical Society - PROC AMER MATH SOC Volume 45
(Sept. 1974), pp. 450–450. DOI: 10.1090 /S0002-9939-1974-0345861-4 .

[Kan96] Goos Kant. “Drawing Planar Graphs Using the Canonical Ordering”. In:
Algorithmica (July 1996). URL: https://doi.org/10.1007 /BF02086606 .

[Liu77] Peter C Liu. “On the deletion of non-planar edges of a graph”. In: Proceedings
of the 10th South-East Conference on Combinatorics Graph Theory, and
Computing, Boca Raton, FL, USA. 1977, pp. 727–738.

[LMZ15] Robert Lukoťka, Ján Mazák, and Xuding Zhu. “Maximum 4-degenerate
subgraph of a planar graph”. In: Combinatorics Volume 22 (2015). DOI:
10.37236 /4265 . URL: https://doi.org/10.37236 /4265 .

[LW70] Don R. Lick and Arthur T. White. “k-Degenerate Graphs”. In: Canadian
Journal of Mathematics Volume 22.5 (1970), pp. 1082–1096. DOI: 10.4153 /
CJM-1970-125-1 .

[LY80] John M. Lewis and Mihalis Yannakakis. “The node-deletion problem for
hereditary properties is NP-complete”. In: Journal of Computer and System
Sciences Volume 20.2 (1980), pp. 219–230. ISSN: 0022-0000. DOI: https://
doi.org/10.1016 /0022-0000(80)90060-4 . URL: https://www.sciencedirect.
com/science/article/pii/0022000080900604 .

[MB83] David W. Matula and Leland L. Beck. “Smallest-Last Ordering and Clus-
tering and Graph Coloring Algorithms”. In: J. ACM Volume 30.3 (July
1983), pp. 417–427. ISSN: 0004-5411. DOI: 10.1145 /2402.322385 . URL:
https://doi.org/10.1145 /2402.322385 .

[Sa19] Manuel Sorge and et al. The graph parameter hierarchy. 2019. URL: https://
manyu.pro/assets/parameter-hierarchy.pdf .

48

https://doi.org/10.1007/bf02020444
https://akjournals.com/view/journals/10473/17/1-2/article-p61.xml
https://akjournals.com/view/journals/10473/17/1-2/article-p61.xml
https://doi.org/10.1007/s11464-012-0186-5
https://journal.hep.com.cn/fmc/EN/abstract/article_2915.shtml
https://journal.hep.com.cn/fmc/EN/abstract/article_2915.shtml
https://doi.org/https://doi.org/10.1002/jgt.22740
https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.22740
https://doi.org/10.1090/S0002-9939-1974-0345861-4
https://doi.org/10.1007/BF02086606
https://doi.org/10.37236/4265
https://doi.org/10.37236/4265
https://doi.org/10.4153/CJM-1970-125-1
https://doi.org/10.4153/CJM-1970-125-1
https://doi.org/https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/https://doi.org/10.1016/0022-0000(80)90060-4
https://www.sciencedirect.com/science/article/pii/0022000080900604
https://www.sciencedirect.com/science/article/pii/0022000080900604
https://doi.org/10.1145/2402.322385
https://doi.org/10.1145/2402.322385
https://manyu.pro/assets/parameter-hierarchy.pdf
https://manyu.pro/assets/parameter-hierarchy.pdf


[Tho01] Carsten Thomassen. “Decomposing a Planar Graph into an Independent Set
and a 3-Degenerate Graph”. In: Journal of Combinatorial Theory, Series
B Volume 83.2 (2001), pp. 262–271. ISSN: 0095-8956. DOI: https://doi.org/
10 .1006 /jctb .2001 .2056 . URL: https : //www.sciencedirect . com/science/
article/pii/S0095895601920568 .

[Tho95] C. Thomassen. “Decomposing a Planar Graph into Degenerate Graphs”. In:
Journal of Combinatorial Theory, Series B Volume 65.2 (1995), pp. 305–
314. ISSN: 0095-8956. DOI: https://doi.org/10.1006 /jctb.1995.1057 . URL:
https://www.sciencedirect.com/science/article/pii/S009589568571057X .

[Wer04] P. Wernicke. “Über den kartographischen Vierfarbensatz”. In: Mathematische
Annalen Volume 58.3 (1904), pp. 413–426. DOI: 10.1007 /BF01444968 . URL:
https://doi.org/10.1007 /BF01444968 .

49

https://doi.org/https://doi.org/10.1006/jctb.2001.2056
https://doi.org/https://doi.org/10.1006/jctb.2001.2056
https://www.sciencedirect.com/science/article/pii/S0095895601920568
https://www.sciencedirect.com/science/article/pii/S0095895601920568
https://doi.org/https://doi.org/10.1006/jctb.1995.1057
https://www.sciencedirect.com/science/article/pii/S009589568571057X
https://doi.org/10.1007/BF01444968
https://doi.org/10.1007/BF01444968




A. Appendix

A.1. C++ code for degeneracy check

// C++ program to check if, given a graph, there are 6 edges
// that can be deleted such that the resulting graph is
// k-degenerate
#include <bits/stdc++.h>
using namespace std;

struct vertex {
int id;
int degree;

};

// This class represents a undirected graph using adjacency
// list representation
class Graph {

// Pointer to an array containing adjacency lists
vector<list<int>> adj{};

public:
Graph(int n) : adj(n) {} // Constructor

// function to add an edge to graph
void addEdge(int u, int v);

// function to remove an edge to graph
void removeEdge(int u, int v);

// function to check if graph is k-degenerate
bool degenerate(int k);

// gives the number of vertices of graph
int size() { return adj.size(); }

};

// function to check if graph is k-degenerate
bool Graph::degenerate(int k) {

vector<char> collected(size(), false);
vector<char> degree(size(), 0);
for(int i = 0; i < size(); ++i)

degree.at(i) = adj.at(i).size();
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auto comparator = [](auto fst, auto scn) {
return fst.degree > scn.degree ||

(fst.degree == scn.degree && fst.id > scn.id); };
std::priority_queue<vertex, std::vector<vertex>,

decltype(comparator)> queue{comparator};
for(int i = 0; i < size(); ++i)

queue.push(vertex{i, degree.at(i)});

while(!queue.empty()) {
auto top = queue.top();
queue.pop();
if(collected.at(top.id)) continue;

collected.at(top.id) = true;
if(degree.at(top.id) != top.degree)

exit(2);

if(top.degree > k) {
return false;

}

for(auto neighbor : adj.at(top.id)) {
if(collected.at(neighbor)) continue;
degree.at(neighbor) -= 1;
queue.push(vertex{neighbor, degree.at(neighbor)});

}
}
return true;

}

void Graph::addEdge(int u, int v) {
adj[u].push_back(v);
adj[v].push_back(u);

}

void Graph::removeEdge(int u, int v) {
adj[u].remove(v);
adj[v].remove(u);

}

struct edge {
int v1_id;
int v2_id;

};
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int main() {
const int k = 3;
Graph graph(27);

vector<edge> edges {
edge{0,6}, edge{0,9}, edge{0,26},
edge{0,25}, edge{0,20}, edge{0,18},
edge{1,2}, edge{1,3}, edge{1,4},
edge{1,10}, edge{1,8}, edge{1,26},
edge{2,10}, edge{2,13}, edge{2,14},
edge{2,19}, edge{2,3}, edge{3,19},
edge{3,23}, edge{3,24}, edge{3,26},
edge{4,10}, edge{4,5}, edge{4,7},
edge{4,8}, edge{5,6}, edge{7,8},
edge{7,5}, edge{7,6}, edge{8,26},
edge{9,6}, edge{9,7}, edge{9,8},
edge{9,26}, edge{10,5}, edge{10,12},
edge{10,13}, edge{11,10}, edge{11,5},
edge{11,6}, edge{11,0}, edge{11,18},
edge{11,16}, edge{11,12}, edge{12,13},
edge{13,14}, edge{14,17}, edge{15,13},
edge{15,14}, edge{15,12}, edge{15,16},
edge{15,17}, edge{16,12}, edge{16,17},
edge{18,16}, edge{18,17}, edge{18,20},
edge{18,21}, edge{19,14}, edge{19,17},
edge{19,18}, edge{19,21}, edge{19,23},
edge{21,20}, edge{21,23}, edge{22,21},
edge{22,23}, edge{22,24}, edge{22,25},
edge{22,20}, edge{24,26}, edge{24,23},
edge{25,20}, edge{25,26}, edge{25,24},

};

if(edges.size() != 75) exit(1);
int m = edges.size();

for (int j = 0; j < m; ++j) {
graph.addEdge(edges[j].v1_id, edges[j].v2_id);

}

const auto constcopy = graph;

bool found = false;
for (int i1 = 0; i1 < m-5; ++i1) {

for (int i2 = i1+1; i2 < m-4; ++i2) {
for (int i3 = i2+1; i3 < m-3; ++i3) {

for (int i4 = i3+1; i4 < m-2; ++i4) {
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for (int i5 = i4+1; i5 < m-1; ++i5) {
for (int i6 = i5+1; i6 < m; ++i6) {

auto copy = constcopy;
for(auto el : {i1, i2, i3, i4, i5, i6})

copy.removeEdge(edges[el].v1_id, edges[el].v2_id);
if (copy.degenerate(k)) {

stringstream collection;
collection << "Found 6 edges such that, when "

<< "deleted, the graph is " << k
<< "-degenerate" << endl;

for(auto el : {i1, i2, i3, i4, i5, i6})
collection << el << "; ";

collection << endl;
found = true;

}
}

}
}

}
}

}

if(found == true) {
cout << "Found 6 edges such that, when deleted, "

<< "the graph is " << k << "-degenerate" << endl;
} else {

cout << "Did not find 6 edges such that, when "
<< "deleted, the graph is " << k << "-degenerate" << endl;

}
return 1;

}
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