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Abstract

This thesis surveys some recently introduced graph invariants, namely the tree-independence number
and the tree-chromatic number of a graph. Instead of measuring the size of the bags in a tree decomposi-
tion (as the treewidth does), we measure the independence number or the chromatic number of the bags,
respectively. Especially the tree-independence number is used in algorithmic graph theory quite often,
because graph classes with bounded tree-independence number admit polynomial time algorithms for
some hard graph problems, such as the Maximum Weight Independent Set problem. However, in this
thesis we will focus on the structural properties of these graph parameters. In particular, we show
the connection between graph classes with bounded tree-independence number and (tw, 𝜔)-bounded
graph classes. We are able to give another characterization of the class of perfect graphs in terms of the
tree-chromatic number. Also, we are able to answer (in the negative) a question from [DMŠ24a], that asks
whether the treewidth of any graph can be bounded from above by the product of its tree-independence
number and its tree-chromatic number. Although this is not the case, we give lower and upper bounds
for the treewidth of a graph in terms of the two graph invariants. Furthermore, we present a recently
developed tool called the central bag method. This tool was invented to bound the treewidth of graph
classes. We are able to generalize this method and hence we can use it do bound the tree-independence
number and the tree-chromatic number of graph classes as well.

Zusammenfassung

Diese Arbeit gibt einen Überblick über einige kürzlich eingeführte Graphinvarianten, nämlich die
Baumunabhängigkeitszahl und die Baumfärbungszahl eines Graphen. Anstatt die Größe der Taschen
in einer Baumzerlegung zu messen (wie es die Baumweite tut), messen wir die Unabhängigkeitszahl
bzw. die Färbungszahl der Taschen. Speziell die Baumunabhängigkeitszahl wird in der algorithmi-
schen Graphentheorie oft verwendet, weil Graphenklassen mit beschränkter Baumunabhängigkeitszahl
Polynomialzeitalgorithmen für schwere Probleme zulassen, wie zum Beispiel das Maximum Weight
Independent Set Problem. In dieser Arbeit werden wir uns allerdings auf die strukturellen Eigenschaften
der neuen Graphparameter konzentrieren. Insbesondere zeigen wir die Verbindung zwischen Graphklas-
sen mit beschränkter Baumunabhängigkeitszahl und (tw, 𝜔)-beschränkten Graphklassen. Wir können
darüber hinaus eine weitere Charakterisierung der perfekten Graphen bezüglich der Baumfärbungszahl
geben. Außerdem werden wir eine Frage aus [DMŠ24a] negativ beantworten, die danach fragt, ob die
Baumweite eines Graphen von oben durch das Produkt seiner Baumunabhängigkeitszahl und seiner
Baumfärbungszahl beschränkt ist. Obwohl das nicht der Fall ist, geben wir untere und obere Schranken
für die Baumweite in Bezug auf die zwei neuen Graphinvarianten an. Darüber hinaus stellen wir ein
kürzlich entwickeltes Tool namens Central Bag Method vor. Dieses Tool wurde entwickelt um zu zeigen,
dass die Baumweite von Graphklassen beschränkt ist. Wir können die Methode verallgemeinern um
nicht nur die Baumweite, sondern auch die Baumunabhängigkeitszahl und die Baumfärbungszahl von
Graphklassen zu beschränken.
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1 Introduction

One of the most important graph parameters, if not the most important one, studied in both structural
and algorithmic graph theory, is the treewidth of a graph. Intuitively, it measures how close a graph
is to a tree. From the algorithmic point of view, treewidth is important because many problems that
are NP-hard in general become tractable if the input graph has bounded treewidth. For example, the
class of graphs of treewidth 1, namely the forests, admit linear-time algorithms for most important
graph problems. On the other hand, from the structural point of view, treewidth has deep connections
to the graph minor theory, as it is one of the key tools developed in this theory. Also, the structure of a
tree is very simple and well-understood. There are many theorems that characterize trees in different
ways. So it may be worth investigating the structure of graph classes that have small treewidth 𝑘 > 1,
too. It turns out that for small values of 𝑘 , these classes have some nice structural properties as well.
We provide the definition of treewidth based on tree decompositions in Chapter 2, after giving some
standard graph theoretic definitions and a short overview about chordal and perfect graphs.
The treewidth measures the size of the bags in a tree decomposition. Now, since every bag itself

induces a graph, we can not only measure its size, but also some other graph parameters, for example
the independence number of the (subgraph induced by the) bag. Very recently, researchers started
investigating this concept and called it the tree-independence number of a graph [DMŠ24a] (in fact, it
was rediscovered by Dallard et. al. in [DMŠ24a] and independently defined by Yolov in [Yol18]). It
turns out that the tree-independence number is another graph invariant with some very interesting
results in both structural and algorithmic graph theory. In Chapter 3, we give an introduction to the
tree-independence number and show some interesting results about this graph parameter, mostly in the
area of structural graph theory.

The tree-independence number of a graph is connected to another concept in structural graph theory,
the (tw, 𝜔)-bounded graph classes. Intuitively, a graph class is (tw, 𝜔)-bounded, if it has large treewidth
only due to the presence of large cliques. Similarly, a graph class is (𝜒,𝜔)-bounded (or just 𝜒-bounded), if
it has large chromatic number only due to the presence of a large clique. We will formalize these notions
in Chapter 4. Also, we can think of (tw, 𝜔)-bounded and 𝜒-bounded graph classes as generalizations of
chordal and perfect graphs, respectively.
In Chapter 5, we will see that every graph class, that is bounded in terms of the tree-independence

number, is also (tw, 𝜔)-bounded. One of the most important questions recently asked in the area of
tree-independence number is whether the converse holds: does every (tw, 𝜔)-bounded graph class have
bounded tree-independence number? Chudnovsky and Trotignon showed in [CT24] that this is not true
by using a construction called layered wheel. We present their proof in Chapter 5.
Chapter 6 gives an introduction to the tree-chromatic number of a graph. Instead of measuring the

independence number of the bags, we measure the chromatic number. This is another interesting graph
invariant, although it is not yet studied as much in depth as the tree-independence number. After
defining the tree-chromatic number and proving some basic properties, we are able to characterize
the perfect graphs in terms of this graph parameter. The main result of this chapter is the answer
to a question asked in [DMŠ24a] by Dallard, Milanič and Štorgel. They ask whether it is possible to
bound the treewidth of a graph from above by the product of its tree-independence number and its
tree-chromatic number. It turns out that this is not true and we construct certain graphs to prove that.
Although we can not bound the treewidth from above by the product of the two graph invariants, we
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1 Introduction

are able to give other upper bounds for the treewidth. In the general case, we give an exponential bound,
and for some specific graph classes, we can give a polynomial bound. We also construct graphs where
the treewidth is bounded from below by a function that is linear in the tree-independence number and
the tree-chromatic number.
The last chapter of this thesis deals with a very powerful, recently developed tool called the central

bag method. It is used in the literature to prove that certain graph classes have bounded treewidth.
We generalize this idea in order to not only bound the treewidth of a graph class, but also the tree-
independence number and the tree-chromatic number. Although the real-world applications of the
central bag method are very evolved and beyond the scope of this thesis, we can apply the method on a
very simple graph class, namely the outerplanar, 2-connected graphs. This does not bring us any new
results, but we see an example of how the method is used.
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2 Preliminaries

In this section, we introduce basic graph-theoretic definitions and notations that will be used throughout
the thesis.
We start by noting that all graphs considered in this thesis are simple and finite, except explicitly

stated otherwise. This means that there are no loops or parallel edges and the vertex set is finite. Given
a graph 𝐺 , we denote its vertex set and edge set by 𝑉 (𝐺) and 𝐸 (𝐺), respectively. For a vertex 𝜈 ∈ 𝑉 (𝐺),
by 𝑁𝐺 (𝜈) we denote the neighborhood of 𝜈 in 𝐺 and we set 𝑁𝐺 [𝜈] := 𝑁𝐺 (𝜈) ∪ {𝜈}, that is the closed
neighborhood of 𝜈 in 𝐺 . If there can be no confusion, we omit the subscript and write 𝑁 (𝜈) and 𝑁 [𝜈].

We say that two vertex subsets 𝐴, 𝐵 ⊆ 𝑉 (𝐺) are complete (resp. anticomplete) if each pair 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵
is adjacent (resp. non-adjacent).

A clique in 𝐺 is a subset of vertices 𝑋 ⊆ 𝑉 (𝐺) such that the vertices in 𝑋 are pairwise adjacent. The
clique number of 𝐺 , denoted by 𝜔 (𝐺), is defined as the size of a largest clique in 𝐺 . Analogously, an
independent set in 𝐺 is a subset of vertices 𝑋 ⊆ 𝑉 (𝐺) such that the vertices in 𝑋 are pairwise non-
adjacent. The independence number of𝐺 , denoted by 𝛼 (𝐺), is defined as the size of a largest independent
set in 𝐺 . A mapping 𝜙 : 𝑉 (𝐺) → ℕ is called a coloring of 𝐺 . A coloring 𝜙 of a graph 𝐺 is proper,
if for any edge 𝑢𝜈 ∈ 𝐸 (𝐺) it holds that 𝜙 (𝑢) ≠ 𝜙 (𝜈). The chromatic number of 𝐺 , denoted by 𝜒 (𝐺),
is the smallest integer 𝑘 such that 𝐺 can be colored properly with 𝑘 colors, i.e. there is a mapping
𝜙 : 𝑉 (𝐺) → {1, . . . , 𝑘} with 𝜙 (𝑢) ≠ 𝜙 (𝜈) if 𝑢𝜈 is an edge in 𝐺 .

In this thesis, we consider different containment relations of graphs. For a subset 𝑋 ⊆ 𝑉 (𝐺), by𝐺 [𝑋 ]
we denote the induced subgraph of 𝐺 , induced by the vertices of 𝑋 . Formally, we set

𝐺 [𝑋 ] :=
(
𝑋,

(
𝑋

2

)
∩ 𝐸 (𝐺)

)
.

If 𝐺 ′ is an induced subgraph of 𝐺 , we also write 𝐺 ′ ⊆ind 𝐺 . By subdividing an edge 𝑒 = 𝑢𝜈 ∈ 𝐸 (𝐺),
we define the operation of deleting the edge 𝑒 from 𝐺 and adding a vertex 𝑤 and two edges 𝑢𝑤 and
𝑤𝜈 . Formally, the graph obtained from this operation is (𝑉 (𝐺) ∪ {𝑤}, (𝐸 (𝐺) \ {𝑒}) ∪ {𝑢𝑤,𝑤𝜈}). A
subdivision (or a topological minor) of a graph 𝐺 is a graph 𝐺 ′ obtained from 𝐺 by a sequence of edge
subdivisions.
By contracting an edge 𝑒 = 𝑢𝜈 ∈ 𝐸 (𝐺), we define the operation of deleting 𝑢 and 𝜈 , adding a new

vertex𝑤 and making it adjacent to all vertices that were adjacent to𝑢 and 𝜈 before. All loops and parallel
edges that arise by this operation are deleted afterwards. A graph 𝐻 is a minor of a graph𝐺 , if 𝐻 can be
obtained from 𝐺 by a sequence of vertex deletions, edge deletions and edge contractions. A graph 𝐻 is
an induced minor of a graph 𝐺 , if 𝐻 can be obtained from 𝐺 by a sequence of vertex deletions and edge
contractions.
We denote the complete graph by 𝐾𝑛 , the empty graph (or edgeless graph) by 𝐸𝑛 , the complete

bipartite graph by 𝐾𝑚,𝑛 , the cycle by 𝐶𝑛 and the path by 𝑃𝑛 , respectively. Sometimes we refer to 𝐾3 as a
triangle.
The complement of a graph 𝐺 is denoted by 𝐺 and is obtained from 𝐺 by flipping all edges and

non-edges. Formally, we set

𝐺 :=
(
𝑉 (𝐺),

(
𝑉 (𝐺)
2

)
\ 𝐸 (𝐺)

)
.
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2 Preliminaries

A separation of a graph𝐺 is a triple (𝐴,𝐶, 𝐵) such that 𝐴,𝐶 and 𝐵 are disjoint, 𝐴 ∪𝐶 ∪ 𝐵 = 𝑉 (𝐺), and
𝐴 is anticomplete to 𝐵. If 𝑆 = (𝐴,𝐶, 𝐵) is a separation, we set 𝐴(𝑆) := 𝐴, 𝐵(𝑆) := 𝐵 and 𝐶 (𝑆) := 𝐶 . The
size of 𝑆 is |𝐶 |. We say that 𝑆 is balanced if |𝐴| ≤ 2𝑛/3 and |𝐵 | ≤ 2𝑛/3 with 𝑛 = |𝑉 (𝐺) |. The separation
number sn(𝐺) of 𝐺 is the smallest integer 𝑠 such that every subgraph of 𝐺 has a balanced separation of
size at most 𝑠 .
We consider and analyse many different graph classes in this thesis, two of the most important

ones, the chordal graphs and the perfect graphs, will be introduced in the following section. Another
important graph class is the class of planar graphs. We say that a graph𝐺 is planar, if we can draw𝐺 in
the plane such that no edges cross, except at their endpoints. This “definition” is far away from being
mathematically precise, but it is sufficient for our purpose.

2.1 Chordal graphs and perfect graphs

Two important and well-studied graph classes are the chordal graphs and the perfect graphs. In this
section we define chordal and perfect graphs and show some characterizations that we will use later.

A hole in a graph 𝐺 is an induced cycle of length at least four. An antihole in 𝐺 is an induced cycle of
length at least four in 𝐺 . Holes and antiholes are called odd (resp. even) if their number of vertices is
odd (resp. even).
A graph is chordal if it does not contain any hole. The word chordal arose from the following

equivalent definition. We call a graph 𝐺 chordal, if every cycle of 𝐺 of length at least four contains a
chord, i.e. an edge connecting two non-consecutive vertices of the cycle. An immediate consequence of
these definitions is that every induced cycle in a chordal graph is a triangle.
A graph 𝐺 is perfect if 𝜔 (𝐺 ′) = 𝜒 (𝐺 ′) holds for every induced subgraph 𝐺 ′ of 𝐺 . The celebrated

Strong Perfect Graph Theorem (SPGT), proven by Chudnovsky, Robertson, Seymour and Thomas in
[CRST06], is a characterization of perfect graphs in terms of odd holes and odd antiholes:

Theorem 2.1: [CRST06] A graph 𝐺 is perfect if and only if 𝐺 neither contains an odd hole nor an odd
antihole.

In Section 6.1, we present another characterization of perfect graphs using the SPGT. We can also use
the Strong Perfect Graph Theorem to show the following result.

Corollary 2.2: Every chordal graph is perfect.

Proof. Let 𝐺 be a chordal graph. By Theorem 2.1, it is sufficient to show that 𝐺 contains no odd holes
and no odd antiholes. By the definition of a chordal graph,𝐺 contains no holes and therefore no odd
holes.

Now, suppose that𝐺 contains an odd antihole𝐶 . If𝐶 = 𝐶5, then𝐺 contains𝐶5 as an induced subgraph.
Observe that 𝐶 = 𝐶5 = 𝐶5, so 𝐶5 is an induced subgraph of 𝐺 , a contradiction.

Now assume that 𝐶 = 𝐶𝑡 for 𝑡 > 5, 𝑡 odd. Then 𝐺 contains 𝐶𝑡 as an induced subgraph. Note that the
complement𝐶𝑡 of𝐶𝑡 contains a hole of length 4, therefore𝐺 contains a hole of length 4, a contradiction.
This concludes the proof.

The converse of Corollary 2.2 does not hold. For two positive integers𝑚,𝑛 ≥ 2, the complete bipartite
graph 𝐾𝑚,𝑛 is perfect, since it does not contain odd holes (which is a well-known characterization of
bipartite graphs). It also contains no odd antihole, since 𝐾𝑚,𝑛 = 𝐾𝑚 + 𝐾𝑛 is the disjoint union of two
cliques. But, clearly, 𝐾𝑚,𝑛 contains a 𝐶4 as an induced subgraph, and therefore it is not chordal. This
means that the chordal graphs are properly contained in the class of perfect graphs.

4



2.2 Tree decompositions and treewidth

We now want to present some characterizations of chordal graphs that we will use later in this thesis.
We begin with the following definition. Let𝐺 be a graph and let 𝜈 ∈ 𝑉 (𝐺). Then 𝜈 is called simplicial in
𝐺 , if the neighborhood of 𝜈 induces a clique. One can show the following characterization of chordal
graphs:

Lemma 2.3: [KN12 | TW15] A graph 𝐺 is chordal if and only if every induced subgraph 𝐺 ′ of 𝐺 contains a
simplicial vertex.

Given a family of sets {𝑅𝑖}𝑖∈𝐼 , the intersection graph of {𝑅𝑖}𝑖∈𝐼 is the graph𝐺 with𝑉 (𝐺) := {𝜈𝑖 | 𝑖 ∈ 𝐼 }
and there is an edge between 𝜈𝑖 and 𝜈 𝑗 if and only if 𝑅𝑖 ∩ 𝑅 𝑗 ≠ ∅. Some well-studied intersection graphs
are interval graphs and circular arc graphs. Here the sets 𝑅𝑖 are intervals on the real line and circular
arcs on the unit circle, respectively.

We want to consider other families of sets. Let𝐻 be a graph and let {𝐻𝑖} be a family of subgraphs of𝐻 .
We say that two subgraphs 𝐻𝑖 and 𝐻 𝑗 intersect, if they have a vertex in common, i.e. 𝑉 (𝐻𝑖) ∩𝑉 (𝐻 𝑗 ) ≠ ∅.
That being said, we can create an intersection graph 𝐺 of {𝐻𝑖}. Now, the second characterization of a
chordal graph is based on this idea.

Lemma 2.4: [Gav74] A graph 𝐺 is chordal if and only if there exists a tree 𝑇 and a family of subtrees
{𝑇𝜈 ⊆ind 𝑇 | 𝜈 ∈ 𝑉 (𝐺)} such that 𝜈𝑤 ∈ 𝐸 (𝐺) if and only if 𝑉 (𝑇𝜈 ) ∩𝑉 (𝑇𝑤) ≠ ∅.

In other words, a graph 𝐺 is chordal if and only if 𝐺 is the intersection graph of subtrees of a tree.

2.2 Tree decompositions and treewidth

One of the main graph parameters studied in both structural and algorithmic graph theory is the
treewidth of a graph. Roughly speaking, it measures how close a graph is to a tree. Treewidth was
first defined by Bertelè and Brioschi in [BB73]. It was examined in depth by Robertson and Seymour
in their famous series of papers from 1982 until 2004, where they introduced the graph minor theory,
culminating in the proof of Wagner’s conjecture [RS04], nowadays known as the Graph Minor Theorem
or the Robertson-Seymour Theorem. The treewidth of a graph is defined via its tree decompositions.

A tree decomposition of a graph 𝐺 is a pair (𝑇, {𝑋𝑡 }𝑡 ∈𝑉 (𝑇 ) ) where 𝑇 is a tree and every node 𝑡 ∈ 𝑉 (𝑇 )
is assigned a vertex subset 𝑋𝑡 ⊆ 𝑉 (𝐺) called a bag such that the following conditions are satisfied:

(i)
⋃

𝑡 ∈𝑉 (𝑇 ) 𝑋𝑡 = 𝑉 (𝐺), i.e. every vertex 𝜈 ∈ 𝑉 (𝐺) appears in at least one bag,

(ii) for every edge 𝑢𝜈 ∈ 𝐸 (𝐺) there exists a node 𝑡 ∈ 𝑉 (𝑇 ) such that 𝑢, 𝜈 ∈ 𝑋𝑡 ,

(iii) for every vertex 𝜈 ∈ 𝑉 (𝐺) the induced subgraph 𝑇𝜈 := 𝑇 [{𝑡 ∈ 𝑉 (𝑇 ) | 𝜈 ∈ 𝑋𝑡 }] of 𝑇 is connected,
i.e. 𝑇𝜈 is a subtree of 𝑇 .

We often refer to vertices of the tree 𝑇 as nodes for convenience, as we already did in the definition,
in order to distinguish between vertices of the original graph and vertices of the tree decomposition.
We abbreviate (𝑇, {𝑋𝑡 }𝑡 ∈𝑉 (𝑇 ) ) by (𝑇,𝑋𝑡 ) if the vertex set of the tree is clear from context.

Condition (iii) in the definition of a tree decomposition is sometimes replaced with the following,
equivalent condition:

(iii)* for all nodes 𝑖, 𝑗, 𝑘 ∈ 𝑉 (𝑇 ), if 𝑗 lies on the unique path from 𝑖 to 𝑘 in 𝑇 , then 𝑋𝑖 ∩ 𝑋𝑘 ⊆ 𝑋 𝑗 .

Given a tree decomposition T = (𝑇,𝑋𝑡 ) of a graph𝐺 , we define the width of T by max𝑡 ∈𝑉 (𝑇 ) |𝑋𝑡 | − 1.
The treewidth of𝐺 , denoted by tw(𝐺), is defined as the minimum possible width of a tree decomposition
of 𝐺 . More formally,

tw(𝐺) := min
(𝑇,𝑋𝑡 )

max
𝑡 ∈𝑉 (𝑇 )

|𝑋𝑡 | − 1,

5



2 Preliminaries

minimizing over all tree decompositions of 𝐺 .1
Figure 2.1 shows an example of a graph 𝐺 and a possible tree decomposition of 𝐺 . Since the width of

this tree decomposition is 3, we can conclude that tw(𝐺) ≤ 3, which is best possible, as we see later.

1 2 3

4 5

876

9

2,3,7,8

3,4,8

4,5

1,2,6,7 7,8,9

Figure 2.1: A graph 𝐺 and a possible tree decomposition of 𝐺 .

Now we prove some useful properties of tree decompositions which we use throughout the thesis.

Lemma 2.5: [KN12] Let 𝐺 be a graph. Then, there exists a tree decomposition T = (𝑇,𝑋𝑡 ) of 𝐺 of width
tw(𝐺) such that 𝑋𝑡1 ⊈ 𝑋𝑡2 for all 𝑡1, 𝑡2 ∈ 𝑉 (𝑇 ), 𝑡1 ≠ 𝑡2.

Proof. Let T = (𝑇,𝑋𝑡 ) be a tree decomposition of𝐺 of width tw(𝐺), such that T is minimal with respect
to the number of nodes in 𝑇 . We prove that T satisfies the stated property.
Assume that there exist two nodes 𝑡1, 𝑡2 ∈ 𝑉 (𝑇 ), 𝑡1 ≠ 𝑡2, such that 𝑋𝑡1 ⊆ 𝑋𝑡2 . Let 𝑡3 ∈ 𝑉 (𝑇 ) be a node

in 𝑇 sitting on the unique path 𝑃 between 𝑡1 and 𝑡2 in 𝑇 . Note that 𝑡3 = 𝑡1 or 𝑡3 = 𝑡2 is possible. By
condition (iii)* of the definition of a tree decomposition, we have 𝑋𝑡1 = 𝑋𝑡1 ∩𝑋𝑡2 ⊆ 𝑋𝑡3 . Hence, 𝑋𝑡1 ⊆ 𝑋𝑡3

for all 𝑡3 ∈ 𝑉 (𝑇 ) ∩𝑉 (𝑃).
Consider the tree 𝑇 ′ that is obtained from 𝑇 by contracting the edge 𝑡1𝑡 ′, where 𝑡 ′ is the neighbor

of 𝑡1 in 𝑃 (𝑡 ′ = 𝑡2 is possible). After contracting the edge 𝑡1𝑡 ′, we call the new node 𝑡∗ and we set
𝑋𝑡∗ := 𝑋𝑡 ′ . Observe that we obtain a valid tree decomposition of𝐺 of width tw(𝐺) and |𝑉 (𝑇 ′) | < |𝑉 (𝑇 ) |,
contradicting the minimality of 𝑇 .

Lemma 2.6: [KN12] Let 𝐺 be a graph and let 𝐶 be a clique in 𝐺 . Then, every tree decomposition T of 𝐺
has a bag that contains 𝐶 .

Proof. We prove the statement by induction on 𝑘 := |𝐶 |. For 𝑘 = 1 and 𝑘 = 2 the claim follows by the
first two conditions of the definition of a tree decomposition.
Now let 𝑘 ≥ 3, let 𝑢, 𝜈,𝑤 ∈ 𝐶 and let T = (𝑇,𝑋𝑡 ) be a tree decomposition of 𝐺 . By induction, there

are bags 𝑋𝑎, 𝑋𝑏 and 𝑋𝑐 with

𝐶 \ {𝑢} ⊆ 𝑋𝑎, 𝐶 \ {𝜈} ⊆ 𝑋𝑏 and 𝐶 \ {𝑤} ⊆ 𝑋𝑐 .

We may assume that 𝑎, 𝑏 and 𝑐 are distinct nodes in 𝑇 , otherwise we are done. Now consider the three
unique paths 𝑃𝑎,𝑏, 𝑃𝑏,𝑐 and 𝑃𝑎,𝑐 in 𝑇 , that connect the nodes 𝑎 and 𝑏, 𝑏 and 𝑐 and 𝑎 and 𝑐 , respectively.
These paths have a node 𝑑 ∉ {𝑎, 𝑏, 𝑐} in common, otherwise there would be a cycle in 𝑇 , a contradiction.
By condition (iii)* in the definition of a tree decomposition we conclude that

𝐶 \ {𝑢, 𝜈} ⊆ 𝑋𝑎 ∩ 𝑋𝑏 ⊆ 𝑋𝑑 , 𝐶 \ {𝑢,𝑤} ⊆ 𝑋𝑎 ∩ 𝑋𝑐 ⊆ 𝑋𝑑 and 𝐶 \ {𝜈,𝑤} ⊆ 𝑋𝑏 ∩ 𝑋𝑐 ⊆ 𝑋𝑑 .

This implies 𝐶 ⊆ 𝑋𝑑 , which finishes the proof.
1Indeed, the only reason for the −1 in the definition of the width is to make sure that trees have treewidth 1.
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2.2 Tree decompositions and treewidth

An immediate consequence of Lemma 2.6 is the following corollary.

Corollary 2.7: For every graph 𝐺 it holds that tw(𝐺) ≥ 𝜔 (𝐺) − 1. In particular, tw(𝐾𝑛) = 𝑛 − 1.
Referring back to Figure 2.1, Lemma 2.6 is the reason why the tree decomposition is optimal: The

graph 𝐺 contains a clique of size 4 and by Lemma 2.6, every tree decomposition of 𝐺 has a bag that
contains this clique. Therefore, tw(𝐺) ≥ 3 and hence tw(𝐺) = 3.

Lemma 2.8: [DMŠ24a] Let 𝐺 be a graph and let T = (𝑇,𝑋𝑡 ) be a tree decomposition of 𝐺 . Then there
exists a vertex 𝜈 ∈ 𝑉 (𝐺) and a node 𝑡 ∈ 𝑉 (𝑇 ) such that 𝑁 [𝜈] ⊆ 𝑋𝑡 .

Proof. Let 𝐺 ′ be the graph with vertex set 𝑉 (𝐺) such that two distinct vertices 𝑢 and 𝜈 are adjacent
in 𝐺 ′ if and only if there exists a bag 𝑋𝑡 of T with 𝑢, 𝜈 ∈ 𝑋𝑡 . Note that for every vertex 𝜈 ∈ 𝑉 (𝐺) it
holds that 𝑁𝐺 [𝜈] ⊆ 𝑁𝐺 ′ [𝜈]. Recall that for each vertex 𝜈 ∈ 𝑉 (𝐺 ′), the set of nodes 𝑡 ∈ 𝑉 (𝑇 ) such that
𝜈 ∈ 𝑋𝑡 induces a subtree 𝑇𝜈 of 𝑇 . Thus, two distinct vertices 𝑢 and 𝜈 of 𝐺 ′ are adjacent if and only if the
corresponding trees 𝑇𝑢 and 𝑇𝜈 have a node in common. This means that 𝐺 ′ is the intersection graph of
subtrees of a tree and hence, by Lemma 2.4,𝐺 ′ is chordal. Observe that T is also a tree decomposition of
𝐺 ′. Now since𝐺 ′ is chordal, it has a simplicial vertex 𝜈 by Lemma 2.3, which means that 𝑁𝐺 ′ [𝜈] forms a
clique. Thus, by Lemma 2.6, there exists a node 𝑡 ∈ 𝑉 (𝑇 ) such that 𝑁𝐺 ′ [𝜈] ⊆ 𝑋𝑡 . Therefore, 𝑁𝐺 [𝜈] ⊆ 𝑋𝑡 ,
which concludes the proof.

We already saw some characterizations of chordal graphs, that we used in the previous lemma, in
Section 2.1. Here we give another one that we need in Section 3.

Lemma 2.9: [Die17] A graph 𝐺 is chordal if and only if there exists a tree decomposition T of 𝐺 such that
the bags of T are exactly the maximal cliques in 𝐺 .

We point out that a maximal clique is not necessarily of maximum size. A clique 𝐶 in a graph 𝐺 is
called maximal if for every vertex 𝜈 ∈ 𝑉 (𝐺) \𝐶 , 𝐶 ∪ {𝜈} is not a clique. So, we can not add any other
vertex to a maximal clique and obtain a clique that is larger in size.

Clearly, the tree decomposition in Lemma 2.9 has a bag that contains a clique of 𝐺 of largest size.
Together with Lemma 2.6 we conclude that the treewidth of a chordal graph 𝐺 is equal to 𝜔 (𝐺) − 1.

We defined the treewidth of a graph as a measure of the bags of a tree decomposition. But we can
also define the treewidth in another way, closely relating it to chordal graphs. Before we state and
prove this statement, we want to note that every graph 𝐺 is a subgraph of some chordal graph 𝐻 . If
𝐺 itself is chordal, we are done. Otherwise, take a hole in 𝐺 and add a chord (an edge connecting
two non-consecutive vertices of the hole) to it. Repeat this process until there are no holes left in 𝐺 .
Eventually, this process has to stop, since the complete graph is chordal and we can not add any edges
to it. In fact, the graph obtained from the complete graph by deleting an arbitrary edge is already a
chordal graph.

Theorem 2.10: [Die17] Let 𝐺 be a graph. Then

tw(𝐺) = min{𝜔 (𝐻 ) − 1 | 𝐺 ⊆ 𝐻 and 𝐻 is chordal}.

Proof. Let 𝐺 be a graph and let 𝐻 be a graph obtained from 𝐺 by adding edges, such that 𝐻 is chordal.
By Lemma 2.6 and 2.9, there is a tree decomposition of 𝐻 of width 𝜔 (𝐻 ) − 1. This tree decomposition is
also one of 𝐺 , since adding edges does not break any of the conditions (i)-(iii) in the definition of a tree
decomposition. This shows tw(𝐺) ≤ 𝜔 (𝐻 ) − 1 for every such 𝐻 .
To show the converse, we construct a chordal graph 𝐻 with 𝐺 ⊆ 𝐻 such that 𝜔 (𝐻 ) − 1 ≤ tw(𝐺). Let

T = (𝑇,𝑋𝑡 ) be a tree decomposition of 𝐺 of width tw(𝐺). Let 𝐻 be a copy of 𝐺 and for every node
𝑡 ∈ 𝑉 (𝑇 ) and every pair 𝑢, 𝜈 ∈ 𝑋𝑡 we add an edge 𝑢𝜈 to 𝐻 . Clearly, T is also a tree decomposition of 𝐻 ,
where every bag of T now induces a complete graph in 𝐻 . Hence, by Lemma 2.9, 𝐻 is a chordal graph
and by Lemma 2.6, 𝜔 (𝐻 ) − 1 is at most the width of T , that is at most tw(𝐺). This finishes the proof.
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2 Preliminaries

We introduced the notion of a minor as a containment relation that is obtained by a sequence of
graph operations. There exists another definition of a graph minor, which we call minor models. A
minor model of a graph 𝐻 in a graph 𝐺 is a partition of 𝑉 (𝐺) into sets 𝑉1, . . . ,𝑉|𝑉 (𝐻 ) | such that for all
1 ≤ 𝑖 ≤ |𝑉 (𝐻 ) |, 𝐺 [𝑉𝑖] is connected and for every edge 𝑖 𝑗 ∈ 𝐸 (𝐻 ) there exists an edge in𝐺 connecting
the sets 𝑉𝑖 and 𝑉𝑗 .
The following lemma, that we state without a proof here, shows that the two definitions of a graph

minor are equivalent.

Lemma 2.11: [Die17] A graph 𝐻 is a minor of a graph 𝐺 if and only if there exists a minor model of 𝐻 in
𝐺 .

In Figure 2.2, we see that the graph 𝐻 is a minor of 𝐺 by Lemma 2.11. Note that 𝐻 is neither a
subgraph, nor an induced subgraph of 𝐺 .

H

G

V1

V2

V3

V4

Figure 2.2: The graph 𝐻 is a minor of 𝐺 , since there is a minor model of 𝐻 in 𝐺 .

Depending on the problem at hand, we can decide which definition of a minor suits us best.
For our next results we need another definition: We say that a family of sets {𝑇𝑖}𝑖∈𝐼 satisfies the Helly

property if for any 𝐽 ⊆ 𝐼 the following holds: if 𝑇𝑖 ∩𝑇𝑗 ≠ ∅ for all 𝑖, 𝑗 ∈ 𝐽 , then
⋂

𝑗∈ 𝐽 𝑇𝑗 ≠ ∅.
A family of closed intervals on the real line {[𝑎, 𝑏] | 𝑎, 𝑏 ∈ ℝ, 𝑎 ≤ 𝑏} is one example for a family that

satisfies the Helly property. On the other hand, a family of circular arcs on the unit circle does not fulfill
the Helly property. The following well-known result states that a family of subtrees of a tree satisfies
the Helly property.

Lemma 2.12: Let 𝑇 be a tree and let F = {𝑇𝑖}𝑖∈𝐼 be a family of subtrees of 𝑇 . Then F satisfies the Helly
property.

Proof. Assume that for all 𝑖 ≠ 𝑗 we have 𝑉 (𝑇𝑖) ∩𝑉 (𝑇𝑗 ) ≠ ∅. We need to show that
⋂

𝑖∈𝐼 𝑉 (𝑇𝑖) ≠ ∅.
We prove this by induction on 𝑛 = |𝑉 (𝑇 ) |, which is trivially true for the base case 𝑛 = 1. So let 𝑛 ≥ 2.

Observe that if there is a tree 𝑇𝑖 ∈ F with |𝑉 (𝑇𝑖) | = 1, we are done. So we may assume that each 𝑇𝑖 ∈ F
has at least 2 vertices. Let 𝜈 be a leaf of 𝑇 and let 𝑢 denote its unique neighbor. Set 𝑇 ′ := 𝑇 − {𝜈} and
F ′ := {𝑇𝑖 − {𝜈} | 𝑇𝑖 ∈ F}. Note that, since |𝑉 (𝑇𝑖) | ≥ 2 for each 𝑇𝑖 ∈ F , if two subtrees 𝑇𝑖 ≠ 𝑇𝑗 intersect
in 𝜈 , they also intersect in 𝑢. Therefore, if 𝑇𝑖 ∈ F and 𝑇𝑗 ∈ F intersect, for 𝑖 ≠ 𝑗 , then 𝑇𝑖 − {𝜈} ∈ F ′ and
𝑇𝑗 − {𝜈} ∈ F ′ also intersect. Now F ′ is a family of subtrees of 𝑇 ′ with 𝑉 (𝑇𝑖 − {𝜈}) ∩𝑉 (𝑇𝑗 − {𝜈}) ≠ ∅
for 𝑖 ≠ 𝑗 . It follows by induction that

⋂
𝑖∈𝐼 𝑉 (𝑇𝑖 − {𝜈}) ≠ ∅. We conclude that

⋂
𝑖∈𝐼 𝑉 (𝑇𝑖) ≠ ∅, which

completes the proof.

We can now prove the following useful lemma about tree decompositions and minor models.

Lemma 2.13: [CT24] Let 𝐺 be a graph and let T = (𝑇,𝑋𝑡 ) be a tree decomposition of 𝐺 . Assume that 𝐺
contains a 𝐾𝑟 as a minor and let𝑉1, . . . ,𝑉𝑟 be the minor model of 𝐾𝑟 in𝐺 . Then there exists a node 𝑠 ∈ 𝑉 (𝑇 )
such that 𝑋𝑠 contains at least one vertex from each 𝑉𝑖 , 1 ≤ 𝑖 ≤ 𝑟 .
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2.2 Tree decompositions and treewidth

Proof. Recall that for each 𝜈 ∈ 𝑉 (𝐺), the subgraph 𝑇𝜈 ⊆ind 𝑇 , induced by the set {𝑡 ∈ 𝑉 (𝑇 ) | 𝜈 ∈ 𝑋𝑡 },
is connected, i.e. 𝑇𝜈 is a subtree of 𝑇 . Now consider the subgraph 𝑇 (𝑉𝑖) ⊆ind 𝑇 , induced by the set
{𝑡 ∈ 𝑉 (𝑇 ) | 𝜈 ∈ 𝑉𝑖 , 𝜈 ∈ 𝑋𝑡 }, i.e. 𝑇 (𝑉𝑖) is the union of the trees 𝑇𝜈 for each 𝜈 ∈ 𝑉𝑖 . Since 𝑇𝜈 is connected
for each 𝜈 ∈ 𝑉𝑖 , and since 𝐺 [𝑉𝑖] is connected, it follows that 𝑇 (𝑉𝑖) is connected, i.e. 𝑇 (𝑉𝑖) is a subtree of
𝑇 .

Since 𝑉1, . . . ,𝑉𝑟 is a minor model of 𝐾𝑟 in 𝐺 , it follows that for each pair of distinct sets 𝑉𝑖 ,𝑉𝑗 , there
exist vertices 𝑢 ∈ 𝑉𝑖 and 𝑤 ∈ 𝑉𝑗 such that 𝑢𝑤 ∈ 𝐸 (𝐺). By condition (ii) of the definition of a tree
decomposition, there is a node 𝑡 ∈ 𝑉 (𝑇 ) such that 𝑢,𝑤 ∈ 𝑋𝑡 . Hence, 𝑡 ∈ 𝑉 (𝑇 (𝑉𝑖)) ∩ 𝑉 (𝑇 (𝑉𝑗 )). Now
{𝑇 (𝑉𝑖)}1≤𝑖≤𝑟 is a family of subtrees of 𝑇 with 𝑉 (𝑇 (𝑉𝑖)) ∩ 𝑉 (𝑇 (𝑉𝑗 )) ≠ ∅ for 𝑖 ≠ 𝑗 . By Lemma 2.12
{𝑇 (𝑉𝑖)}1≤𝑖≤𝑟 satisfies the Helly property, so there exists a node 𝑠 ∈ 𝑉 (𝑇 ) with 𝑠 ∈ ⋂𝑟

𝑖=1𝑉 (𝑇 (𝑉𝑖)). We
conclude that the bag𝑋𝑠 contains at least one vertex from each𝑉𝑖 , which is what we wanted to show.

The following lemma is another consequence of Lemma 2.12.

Lemma 2.14: [DMŠ24a] Let T = (𝑇,𝑋𝑡 ) be a tree decomposition of a graph 𝐺 and let 𝑆 ⊆ 𝑉 (𝐺). If every
pair of vertices in 𝑆 is contained in some bag of T , then there exists a bag 𝑋𝑡 with 𝑆 ⊆ 𝑋𝑡 .

Proof. Recall that for each vertex 𝜈 ∈ 𝑆 , the nodes {𝑡 ∈ 𝑉 (𝑇 ) | 𝜈 ∈ 𝑋𝑡 } induce a subtree 𝑇𝜈 of 𝑇 . Since
every pair of vertices 𝑢, 𝜈 in 𝑆 is contained in some bag of T , it follows that the subtrees 𝑇𝑢 and 𝑇𝜈 have
a node in common. So, {𝑇𝜈 | 𝜈 ∈ 𝑆} is a family of subtrees of a tree that pairwise intersect. By Lemma
2.12, there exists a node 𝑡 ∈ 𝑉 (𝑇 ) that is common to all subtrees 𝑇𝜈 , 𝜈 ∈ 𝑆 . So we have 𝜈 ∈ 𝑋𝑡 for every
𝜈 ∈ 𝑆 , hence 𝑆 ⊆ 𝑋𝑡 .

We finish this section by proving that the treewidth is monotone under taking minors.

Lemma 2.15: Let 𝐺 be a graph and let 𝐻 be a minor of 𝐺 . Then tw(𝐻 ) ≤ tw(𝐺).

Proof. Since 𝐻 is a minor of 𝐺 , it is obtained from𝐺 by a sequence of vertex deletions, edge deletions
and edge contractions. Therefore it is sufficient to show that none of these graph operations increase
the treewidth. For the rest of the proof, let T be a tree decomposition of 𝐺 .
Assume that 𝐻 is obtained from 𝐺 by deleting a vertex 𝜈 ∈ 𝑉 (𝐺). We create the following tree

decomposition T ′ = (𝑇 ′, 𝑋𝑡 ′) of 𝐻 : We set 𝑇 ′ := 𝑇 and 𝑋𝑡 ′ := 𝑋𝑡 \ {𝜈}. Observe that T ′ is a valid tree
decomposition of 𝐻 and the width of T ′ is at most the width of T .
If 𝐻 is obtained from 𝐺 by deleting an edge 𝑢𝜈 ∈ 𝐸 (𝐺), we set T ′ = T as a tree decomposition of 𝐻 ,

and observe that it is a valid tree decomposition for 𝐻 , too.
Now let 𝐻 be obtained from 𝐺 by contracting an edge 𝑢𝜈 ∈ 𝐸 (𝐺). We denote the new vertex by

𝑤 . We create a tree decomposition T ′ = (𝑇,𝑋𝑡 ′) of 𝐻 as follows: We set 𝑇 ′ := 𝑇 . If a bag 𝑋𝑡 does
neither contain 𝑢 nor 𝜈 , we set 𝑋𝑡 ′ := 𝑋𝑡 . Otherwise, if 𝑢 or 𝜈 (or both) are contained in 𝑋𝑡 , we set
𝑋𝑡 ′ := (𝑋𝑡 \ {𝑢, 𝜈}) ∪ {𝑤}. We observe that T ′ is a valid tree decomposition of 𝐻 and the width of T ′ is
at most the width of T . This concludes the proof.

Note that Lemma 2.15 already implies that the treewidth ismonotone under taking (induced) subgraphs,
since every (induced) subgraph of a graph 𝐺 is also a minor of 𝐺 .
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3 Tree-independence number

Researchers have recently defined and studied other graph parameters defined over tree decompositions
[Yol18 | DMŠ24a | Sey16 | Lim+24]. Instead of measuring the size of the bags, as the treewidth does, we
nowmeasure other graph invariants of the subgraphs induced by the bags, for example the independence
number.

Let𝐺 be a graph and let T = (𝑇,𝑋𝑡 ) be a tree decomposition of𝐺 . We define the independence number
of T , denoted by 𝛼 (T ), as the maximum independence number over all bags. Formally, we set

𝛼 (T ) := max
𝑡 ∈𝑉 (𝑇 )

𝛼 (𝐺 [𝑋𝑡 ])

The tree-independence number of𝐺 , denoted by tree-𝛼 (𝐺), is the minimum independence number taken
over all tree decompositions of 𝐺 .
We observe two simple upper bounds for the tree-independence number.

Observation 3.1: Let 𝐺 be a graph. Then

tree-𝛼 (𝐺) ≤ tw(𝐺) + 1, and

tree-𝛼 (𝐺) ≤ 𝛼 (𝐺).

Proof. For the first equality, let T be a tree decomposition of 𝐺 of width tw(𝐺). Each bag of T has at
most tw(𝐺) + 1 vertices, hence 𝛼 (T ) ≤ tw(𝐺) + 1, which implies the first inequality.
For the second inequality, consider the trivial tree decomposition of 𝐺 , where all vertices of 𝐺 are

contained in a single bag. The independence number of this bag is equal to the independence number of
𝐺 , which concludes the proof.

We are mostly interested in whether a graph class is bounded in terms of the tree-independence
number or not. We say that a graph class G is tree-𝛼-bounded, if there exists an integer 𝑐 such that
tree-𝛼 (𝐺) ≤ 𝑐 for all 𝐺 ∈ G. Otherwise, we say that G is tree-𝛼-unbounded.
Observation 3.1 has some important direct consequences. If we are given a graph class G that has

bounded treewidth or bounded independence number, we can conclude that G is tree-𝛼-bounded.
Unlike the treewidth of a graph, the tree-independence number is not monotone under taking minors.

In particular, the operation of deleting an edge might increase the tree-independence number; we show
that later. But, tree-𝛼 is monotone under taking induced minors.

Lemma 3.2: [DMŠ24a] Let 𝐺 ′ be an induced minor of a graph 𝐺 . Then tree-𝛼 (𝐺 ′) ≤ tree-𝛼 (𝐺).

Proof. We show that a vertex deletion does not increase the tree-independence number. Let T = (𝑇,𝑋𝑡 )
be a tree decomposition of 𝐺 and let 𝜈 ∈ 𝑉 (𝐺). Let T ′ be the tree decomposition obtained from T by
removing 𝜈 from every bag. Then T ′ is a tree decomposition of 𝐺 − 𝜈 . Hence, we have 𝛼 (T ′) ≤ 𝛼 (T )
which implies tree-𝛼 (𝐺 − 𝜈) ≤ tree-𝛼 (𝐺).

Now we prove that an edge contraction does not increase the tree-independence number. Let
𝑒 = 𝑢𝜈 ∈ 𝐸 (𝐺) and𝐺/𝑒 denote the graph obtained from𝐺 by contracting the edge 𝑒 . Let𝑤 be the vertex
in𝐺/𝑒 that corresponds to the contracted edge. We construct a tree decomposition T ′ = (𝑇, {𝑋 ′𝑡 }𝑡 ∈𝑉 (𝑇 ) )
of 𝐺/𝑒 as follows: For each node 𝑡 in 𝑇 , if 𝑋𝑡 neither contains 𝑢 nor 𝜈 we set 𝑋 ′𝑡 = 𝑋𝑡 , otherwise we
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set 𝑋 ′𝑡 = (𝑋𝑡 \ {𝑢, 𝜈}) ∪ {𝑤}. Then T ′ is a tree decomposition of 𝐺/𝑒 . Now fix a bag 𝑋 ′𝑡 of T ′ and let
𝐼 ⊆ 𝑋 ′𝑡 be an independent set in 𝐺/𝑒 . If 𝑤 ∉ 𝐼 , then 𝐼 is also an independent set in 𝐺 [𝑋𝑡 ] and hence
|𝐼 | ≤ 𝛼 (𝐺 [𝑋𝑡 ]). Otherwise, if𝑤 ∈ 𝐼 , then either (𝐼 \ {𝑤}) ∪ {𝑢} or (𝐼 \ {𝑤}) ∪ {𝜈} is an independent set
in 𝐺 [𝑋𝑡 ]. In both cases, we have |𝐼 | ≤ 𝛼 (𝐺 [𝑋𝑡 ]) and hence |𝐼 | ≤ 𝛼 (T ), which implies 𝛼 (T ′) ≤ 𝛼 (T )
and thus tree-𝛼 (𝐺/𝑒) ≤ tree-𝛼 (𝐺).
An induced minor𝐺 ′ of𝐺 is obtained by a sequence of vertex deletions and edge contractions, which

implies tree-𝛼 (𝐺 ′) ≤ tree-𝛼 (𝐺).

Lemma 3.2 is a nice tool to bound the tree-independence number of a graph class from below, by
showing that every graph in this class contains a certain graph of known tree-independence number as
an induced minor.
To show that the tree-independence number is not monotone under taking minors, we need the

following lemma, which is a another nice tool on its own.

Lemma 3.3: [DMŠ24a] Let𝐺 be a graph and let𝐺 ′ be obtained from two copies of𝐺 by adding all possible
edges between them. Then tree-𝛼 (𝐺 ′) = 𝛼 (𝐺).

Proof. Wedenote the two copies of𝐺 by𝐺1 and𝐺2 such that𝑉 (𝐺 ′) = 𝑉 (𝐺1)∪𝑉 (𝐺2) and𝑉 (𝐺1)∩𝑉 (𝐺2) =
∅. Since we add all possible edges between𝐺1 and𝐺2, every independent set in𝐺 ′ is completely contained
in either 𝐺1 or 𝐺2. This implies 𝛼 (𝐺 ′) = 𝛼 (𝐺) and therefore tree-𝛼 (𝐺 ′) ≤ 𝛼 (𝐺) by Observation 3.1.
To see that tree-𝛼 (𝐺 ′) ≥ 𝛼 (𝐺), we consider an arbitrary tree decomposition T of 𝐺 ′. By Lemma 2.8,

there exists a vertex 𝜈 ∈ 𝑉 (𝐺) and a node 𝑡 ∈ 𝑉 (𝑇 ) such that 𝑁 [𝜈] ⊆ 𝑋𝑡 . We may assume w.l.o.g. that
𝜈 ∈ 𝑉 (𝐺1). Then, by construction, 𝑉 (𝐺2) ⊆ 𝑁 (𝜈) ⊆ 𝑋𝑡 , which implies 𝛼 (𝐺 ′ [𝑋𝑡 ]) ≥ 𝛼 (𝐺2) = 𝛼 (𝐺).
Thus, every tree decomposition of𝐺 ′ contains a bag which induces a subgraph of independence number
at least 𝛼 (𝐺). This shows tree-𝛼 (𝐺 ′) ≥ 𝛼 (𝐺), and therefore tree-𝛼 (𝐺 ′) = 𝛼 (𝐺), which concludes the
proof.

Given a graph 𝐺 , we can easily compute the graph 𝐺 ′ of Lemma 3.3 in polynomial time. Since
computing 𝛼 (𝐺) is NP-hard, we conclude the following theorem.

Theorem 3.4: [DMŠ24a] Computing the tree-independence number of a graph is NP-hard.

Applying Lemma 3.3 to the empty graph 𝐺 := 𝐸𝑛 , we obtain 𝐺 ′ = 𝐾𝑛,𝑛 with tree-𝛼 (𝐺 ′) = 𝛼 (𝐸𝑛) = 𝑛,
which is worth noting in a separate corollary.

Corollary 3.5: For every positive integer 𝑛, we have tree-𝛼 (𝐾𝑛,𝑛) = 𝑛.

Here, we also see the reason why the tree-independence number is not monotone under taking minors.
Starting with a complete graph 𝐾2𝑛 , whose tree-independence number is obviously 1, we can delete
edges in a way such that we obtain the graph 𝐾𝑛,𝑛 with tree-independence number 𝑛.

By 𝐾 (1)𝑛 we denote the graph that is obtained from 𝐾𝑛 by subdividing every edge exactly once.

Corollary 3.6: For every positive integer 𝑛 ≥ 2, we have tree-𝛼 (𝐾 (1)𝑛 ) = 𝑛 − 1.

Proof. We denote the original vertices of the 𝐾𝑛 by 𝜈1 . . . , 𝜈𝑛 and for each 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, we denote
the subdivision vertex by 𝑥𝑖, 𝑗 . We set 𝐺 := 𝐾 (1)𝑛 . First, we show that tree-𝛼 (𝐺) ≤ 𝑛 − 1. Let T be the
following tree decomposition of 𝐺 : we take two bags 𝑋1 := {𝜈1, . . . , 𝜈𝑛−1} ∪ {𝑥𝑖,𝑛 | 1 ≤ 𝑖 ≤ 𝑛 − 1} and
𝑋2 := {𝜈𝑛} ∪ {𝑥𝑖,𝑛 | 1 ≤ 𝑖 ≤ 𝑛 − 1} and connect them by an edge. Then, for each 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 − 1, we
add a leaf bag 𝑋𝑖, 𝑗 := {𝜈𝑖 , 𝜈 𝑗 , 𝑥𝑖, 𝑗 } to 𝑋1. We see that T is a valid tree decomposition for 𝐺 . The leaf bags
𝑋𝑖, 𝑗 induce a path of length 2 in 𝐺 and hence, their independence number is 2. The bag 𝑋1 induces a
matching on 2(𝑛 − 1) vertices in 𝐺 and therefore, 𝛼 (𝐺 [𝑋1]) = 𝑛 − 1. The bag 𝑋2 induces a star on 𝑛
vertices in 𝐺 , thus 𝛼 (𝐺 [𝑋2]) = 𝑛 − 1. We conclude that 𝛼 (T ) = 𝑛 − 1, so tree-𝛼 (𝐺) ≤ 𝑛 − 1.
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Now we show that tree-𝛼 (𝐺) ≥ 𝑛 − 1. Let T = (𝑇,𝑋𝑡 ) be an arbitrary tree decomposition of 𝐺 . If
every pair of vertices in {𝜈1, . . . , 𝜈𝑛} is contained in some bag of T , then by Lemma 2.14, there exists a
bag 𝑋𝑡 in T such that {𝜈1, . . . , 𝜈𝑛} ⊆ 𝑋𝑡 . Hence, 𝛼 (𝐺 [𝑋𝑡 ]) ≥ 𝑛, and we are done. So we may assume
that there exist two vertices 𝜈𝑖 , 𝜈 𝑗 ∈ {𝜈1, . . . , 𝜈𝑛} such that no bag of T contains both 𝜈𝑖 and 𝜈 𝑗 . Then
there exists an edge 𝑒 = 𝑡1𝑡2 ∈ 𝐸 (𝑇 ) such that the two components 𝑇1 and 𝑇2 of 𝑇 − 𝑒 , with 𝑡1 ∈ 𝑇1
and 𝑡2 ∈ 𝑇2, contain only one vertex, say w.l.o.g. 𝜈𝑖 ∈ 𝑇1 and 𝜈 𝑗 ∈ 𝑇2. We partition the set {𝜈1, . . . , 𝜈𝑛}
as follows: let 𝐴 be the set of vertices in {𝜈1, . . . , 𝜈𝑛} that are only contained in 𝑇1, let 𝐵 be the set of
vertices in {𝜈1, . . . , 𝜈𝑛} that are only contained in 𝑇2 and let 𝐶 be the set of vertices in {𝜈1, . . . , 𝜈𝑛} that
are contained in both 𝑇1 and 𝑇2. Since 𝜈𝑖 ∈ 𝐴 and 𝜈 𝑗 ∈ 𝐵, we have |𝐴| ≥ 1 and |𝐵 | ≥ 1.
We now count the number of vertices in 𝑋𝑡1 (we could also count the vertices in 𝑋𝑡2 ). Clearly, every

vertex 𝜈𝑐 ∈ 𝐶 is contained in 𝑋𝑡1 . For every pair of vertices 𝜈𝑎 ∈ 𝐴 and 𝜈𝑏 ∈ 𝐵, their corresponding
subdivision vertex 𝑥𝑎,𝑏 is contained in𝑋𝑡1 . Therefore,𝑋𝑡1 contains at least |𝐶 |+|𝐴| · |𝐵 | ≥ |𝐶 |+|𝐴|+|𝐵 |−1 =
𝑛 − 1 vertices. The subdivision vertices are pairwise non-adjacent and the vertices in 𝐶 are pairwise
non-adjacent. Also, no vertex in 𝐶 is adjacent to any subdivision vertex 𝑥𝑎,𝑏 , since 𝑥𝑎,𝑏 connects two
vertices 𝜈𝑎 ∈ 𝐴 and 𝜈𝑏 ∈ 𝐵. Thus, all of these 𝑛 − 1 (or more) vertices are pairwise non-adjacent and we
conclude that 𝛼 (𝐺 [𝑋𝑡1]) ≥ 𝑛 − 1. This implies 𝛼 (T ) ≥ 𝑛 − 1 and so tree-𝛼 (𝐺) ≥ 𝑛 − 1.

Corollaries 3.5 and 3.6 yield two graph classes that are not tree-𝛼-bounded. Now, we want to show
that the class of planar graphs Gplanar is not tree-𝛼-bounded either. We prove that by showing that
a proper subclass of Gplanar is not tree-𝛼-bounded, and therefore, neither is Gplanar. We start with the
following definition. The Cartesian product 𝐺1□𝐺2 of two graphs 𝐺1 and 𝐺2 is defined as follows:
𝑉 (𝐺1□𝐺2) := 𝑉 (𝐺1) × 𝑉 (𝐺2) and two vertices (𝜈1,𝑤1) and (𝜈2,𝑤2) are adjacent if and only if either
(𝜈1𝜈2 ∈ 𝐸 (𝐺1) and 𝑤1 = 𝑤2) or (𝜈1 = 𝜈2 and 𝑤1𝑤2 ∈ 𝐸 (𝐺2)). Now, the class of square grid graphs is
defined as G := {𝑃𝑘□𝑃𝑘 | 𝑘 ∈ ℕ}. Figure 3.1 shows the square grid 𝑃4□𝑃4 as an example. Clearly, every
square grid graph is planar and hence G is a proper subset of Gplanar.

Figure 3.1: The square grid graph 𝑃4□𝑃4.

The following is a well-known result on the treewidth of square grid graphs.

Theorem 3.7: [Die17] The treewidth of the grid graph 𝑃𝑘□𝑃𝑘 is equal to 𝑘 .

The upper bound, i.e. tw(𝑃𝑘□𝑃𝑘 ) ≤ 𝑘 , is quite easy to show. Assume that the vertices of 𝑃𝑘□𝑃𝑘 are
enumerated row by row, i.e. the first vertex of the first row is labeled by 1, the last vertex of the first
row is labeled by 𝑘 , the first vertex of the second row is labeled by 𝑘 + 1 and so on. We create a tree
decomposition with the following bags 𝑋𝑖 := {𝑖, 𝑖 + 1, . . . , 𝑖 + 𝑘}, for 1 ≤ 𝑖 ≤ 𝑘 (𝑘 − 1). Then we connect
two bags 𝑋𝑖 and 𝑋 𝑗 if and only if 𝑗 = 𝑖 + 1. Clearly, this is a valid tree decomposition of 𝑃𝑘□𝑃𝑘 and each
bag has size 𝑘 + 1, which implies tw(𝑃𝑘□𝑃𝑘 ) ≤ 𝑘 .
Using this exact tree decomposition, we obtain tree-𝛼 (𝑃𝑘□𝑃𝑘 ) ≤ ⌈𝑘+12 ⌉, since every bag induces a

path of length 𝑘 + 1.
To show that tree-𝛼 (𝑃𝑘□𝑃𝑘 ) ≥ ⌈𝑘+12 ⌉, we need the following lemma.

Lemma 3.8: Let𝐺 be a bipartite graph and let𝐺 ′ be a subgraph of𝐺 with |𝑉 (𝐺 ′) | = 𝑘 . Then 𝛼 (𝐺 ′) ≥ ⌈𝑘2 ⌉.
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Proof. Observe that every subgraph of a bipartite graph is bipartite. Thus, the vertices of 𝐺 ′ can be
partitioned into two sets 𝐴 and 𝐵, one of them, say 𝐴, containing at least ⌈𝑘2 ⌉ vertices. This means that
𝐴 is an independent set of size at least ⌈𝑘2 ⌉, which proves the claim.

Corollary 3.9: The square grid graph 𝑃𝑘□𝑃𝑘 has tree-independence number at least ⌈𝑘+12 ⌉.

Proof. Let 𝐺 = 𝑃𝑘□𝑃𝑘 . Since tw(𝐺) = 𝑘 by Theorem 3.7, every tree decomposition of 𝐺 contains a bag
with at least 𝑘 + 1 vertices. This bag induces a subgraph of 𝐺 , and since𝐺 is bipartite, the claim follows
by Lemma 3.8.

This shows that the class of square grid graphs is not tree-𝛼-bounded and therefore, Gplanar is not
tree-𝛼-bounded.
Another important graph class we want to consider is the class of chordal graphs. There are many

characterizations of this graph class (we saw a few of them in this thesis already) with lots of different
applications. Here, we give another characterization of chordal graphs in terms of tree-independence
number. It implies that the class of chordal graphs is tree-𝛼-bounded.

Theorem 3.10: [DMŠ24a] Let 𝐺 be a graph. Then, tree-𝛼 (𝐺) ≤ 1 if and only if 𝐺 is chordal.

Proof. If 𝐺 is chordal, then, by Lemma 2.9, there exists a tree decomposition T such that the bags are
exactly the inclusion maximal cliques in 𝐺 . Thus, we have 𝛼 (T ) = 1 and tree-𝛼 (𝐺) ≤ 1.

Now, let𝐺 be a graph with tree-𝛼 (𝐺) ≤ 1. Then every bag of the corresponding tree decomposition
T = (𝑇,𝑋𝑡 ) is a clique in 𝐺 . Thus, two distinct vertices 𝑢 and 𝜈 of 𝐺 are adjacent if and only if they
belong to a same bag. Since T is a tree decomposition, for every vertex 𝑢 ∈ 𝑉 (𝐺) the subgraph 𝑇𝑢
of 𝑇 induced by the set {𝑡 ∈ 𝑉 (𝑇 ) : 𝑢 ∈ 𝑋𝑡 } is a tree (see condition (iii) of the definition of a tree
decomposition). We have

𝑢𝜈 ∈ 𝐸 (𝐺) ⇔ ∃𝑡 ∈ 𝑉 (𝑇 ) : 𝑢, 𝜈 ∈ 𝑋𝑡 ⇔ 𝑉 (𝑇𝑢) ∩𝑉 (𝑇𝜈 ) ≠ ∅.

We conclude that 𝐺 is the intersection graph of the collection of subtrees {𝑇𝑢 : 𝑢 ∈ 𝑉 (𝐺)} of 𝑇 , which
implies that 𝐺 is chordal by Lemma 2.4.

In [RTL76], Rose, Tarjan and Lueker present a linear-time algorithm for recognizing chordal graphs.
By Theorem 3.10, we obtain the following complexity result for computing the tree-independence
number.

Corollary 3.11: There exists a linear-time algorithm that decides whether a graph has tree-independence
number at most 1.

In [Dal+24] it is shown that deciding whether a given graph has tree-independence number at
most 𝑘 , for 𝑘 ≥ 4, is a NP-hard problem. For 𝑘 ∈ {2, 3}, the complexity of recognizing graphs with
tree-independence number at most 𝑘 is still an open problem in current research.
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4 𝜒-bounded and (tw, 𝜔)-bounded graph classes

In this chapter, we want to generalize the concept of chordal and perfect graphs. We start with a few
simple observations.

For every graph𝐺 , the clique number 𝜔 (𝐺) is a lower bound for the chromatic number 𝜒 (𝐺), because
every vertex in a largest clique in 𝐺 must be colored with a different color. So, the presence of a large
clique in a graph𝐺 is one reason for𝐺 to have a large chromatic number. But is it the only reason? Can
we construct graphs, that have bounded clique number, e.g. triangle-free graphs, with arbitrary large
chromatic number? The answer is yes. There are many constructions of triangle-free graphs that have
arbitrary large chromatic number. See [SS20] for a survey. But, we could be interested in graph classes
that have large chromatic number only due to the presence of a large clique. We define those graph
classes formally now.
A graph class G is called (𝜒, 𝜔)-bounded, or just 𝜒-bounded, if there exists a function 𝑓 : ℕ → ℕ

such that 𝜒 (𝐺 ′) ≤ 𝑓 (𝜔 (𝐺 ′)) for all𝐺 ∈ G and all induced subgraphs𝐺 ′ of𝐺 . We refer to 𝑓 as a binding
function.

Clearly, the class of all graphs Gall is not 𝜒-bounded, since there exist triangle-free graphs with arbitrary
large chromatic number. More specifically, even the class of triangle-free graphs {𝐺 ∈ Gall | 𝜔 (𝐺) ≤ 2}
is not 𝜒-bounded.

On the other hand, the class of perfect graphs is 𝜒-bounded. To see that, choose the identity 𝑓 = id as
the binding function. Then the statement follows immediately from the definition of a perfect graph.
By Lemma 2.6, a largest clique of a graph 𝐺 is contained in some bag of every tree decomposition

of 𝐺 . Hence, the clique number 𝜔 (𝐺) is a lower bound for the treewidth tw(𝐺). In other words, the
presence of a large clique in a graph is one reason for the graph to have large treewidth. Clearly, large
cliques are not the only reason for large treewidth, as can be seen on the class of planar graphs. Now
one can ask, what are the graph classes, that have large treewidth only due to the presence of a large
clique. These graph classes are called (tw, 𝜔)-bounded, which is defined as follows.
A graph class G is called (tw, 𝜔)-bounded if there exists a function 𝑓 : ℕ→ ℕ such that tw(𝐺 ′) ≤

𝑓 (𝜔 (𝐺 ′)) for all 𝐺 ∈ G and all induced subgraphs 𝐺 ′ of 𝐺 .
The class of planar graphs Gplanar is not (tw, 𝜔)-bounded. To see that, recall that 𝜔 (𝐺) ≤ 4 for all

𝐺 ∈ Gplanar by Kuratowski’s Theorem (see [Kur30]), but the treewidth of Gplanar is unbounded.
Every graph class that has bounded treewidth is also (tw, 𝜔)-bounded: If G is a graph class with

tw(𝐺) ≤ 𝑘 for all 𝐺 ∈ G, we set 𝑓 := 𝑘 as a binding function and see that G is (tw, 𝜔)-bounded.
Obviously, not every (tw, 𝜔)-bounded graph class has bounded treewidth. One example is the class of
complete graphs {𝐾𝑛 | 𝑛 ∈ ℕ}, which is (tw, 𝜔)-bounded, but has not bounded treewidth.
The concepts of 𝜒-bounded and (tw, 𝜔)-bounded graph classes can also be seen as generalizations

of perfect and chordal graphs, respectively. The class of perfect graphs is 𝜒-bounded by the identity
function and the class of chordal graphs is (tw, 𝜔)-bounded by the identity function. The latter statement
follows by the fact that tw(𝐺) = 𝜔 (𝐺) − 1 for every chordal graph 𝐺 , see Theorem 2.10.
By Corollary 2.2, every chordal graph is perfect. Speaking in terms of graph classes, the class of

chordal graphs is contained in the class of perfect graphs. We obtain a similar result for (tw, 𝜔)-bounded
graph classes and 𝜒-bounded graph classes. Before we can prove that, we need the following well-known
result.
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Lemma 4.1: Let 𝐺 be a graph. Then 𝜒 (𝐺) ≤ tw(𝐺) + 1.

Proof. By Lemma 2.5, there exists a tree decomposition T = (𝑇,𝑋𝑡 ) of 𝐺 of width tw(𝐺) such that
𝑋𝑡1 ⊈ 𝑋𝑡2 for all 𝑡1, 𝑡2 ∈ 𝑉 (𝑇 ), 𝑡1 ≠ 𝑡2. Note that every bag of T has size at most tw(𝐺) + 1. We pick an
arbitrary bag 𝑋𝑡 and color the graph 𝐺 [𝑋𝑡 ] properly, using at most tw(𝐺) + 1 colors. Once a vertex
𝜈 ∈ 𝑉 (𝐺) is colored, it keeps its color for the rest of the proof. Let 𝑡 ′ be a neighbor of 𝑡 in𝑇 and consider
the corresponding bag 𝑋𝑡 ′ . Since 𝑋𝑡 ′ ⊈ 𝑋𝑡 , there is a vertex 𝑢 ∈ 𝑋𝑡 ′ that has not been colored yet.
We consider the graph 𝐺 [𝑋𝑡 ′] and we color it properly. Since |𝑋𝑡 ′ | ≤ tw(𝐺) + 1, 𝑢 has at most tw(𝐺)
neighbors in 𝐺 [𝑋𝑡 ′] and hence we can color 𝑢 using a color from {1, . . . , tw(𝐺) + 1}.
We then pick another neighbor in𝑇 that has not been picked already and proceed like that, until there

is no bag left. In each step, we use at most tw(𝐺) + 1 colors and we do not succeed this bound, since
once a vertex is colored, it keeps its color for the rest of the procedure. By condition (ii) of the definition
of a tree decomposition, every edge of 𝐺 is contained in some bag, therefore, if two vertices 𝑢 and 𝜈 are
in the same bag 𝑋𝑡 , they get a different color. By condition (i) of the definition of a tree decomposition,
every vertex appears in at least one bag, so we do not miss any vertex. Thus, we properly colored 𝐺
with at most tw(𝐺) + 1 colors.

Theorem 4.2: Every (tw, 𝜔)-bounded graph class is 𝜒-bounded.

Proof. Let G be a (tw, 𝜔)-bounded graph class. Then there exists a function 𝑓 : ℕ → ℕ such that
tw(𝐺 ′) ≤ 𝑓 (𝜔 (𝐺 ′)) for all 𝐺 ∈ G and all induced subgraphs 𝐺 ′ of 𝐺 . By Lemma 4.1, every graph 𝐺
satisfies the inequality 𝜒 (𝐺) ≤ tw(𝐺) + 1. Hence, for 𝐺 ∈ G and 𝐺 ′ ⊆ind 𝐺 ,

𝜒 (𝐺 ′) ≤ tw(𝐺 ′) + 1 ≤ 𝑓 (𝜔 (𝐺 ′)) + 1.

Now set 𝑔 := 𝑓 + 1 as a binding function for 𝜒-boundedness. This completes the proof.

The converse direction does not hold in general. A counterexample is the class of balanced complete
bipartite graphs {𝐾𝑛,𝑛 | 𝑛 ∈ ℕ}. This graph class clearly is 𝜒-bounded, since 𝜒 (𝐾𝑛,𝑛) = 2. But it is not
(tw, 𝜔)-bounded, since 𝜔 (𝐾𝑛,𝑛) = 2 and tw(𝐾𝑛,𝑛) = 𝑛.
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5 The connection between tree-𝛼-bounded graph
classes and (tw, 𝜔)-bounded graph classes

In this chapter we want to discuss a conjecture made by Dallard, Milanič and Štorgel in [DMŠ24b]. They
conjectured the following.

Conjecture 5.1: Let G be a hereditary graph class. Then G is (tw, 𝜔)-bounded if and only if G has bounded
tree-independence number.

Here, a graph class G is called hereditary if it is closed under taking induced subgraphs, i.e. if for all
graphs 𝐺 ∈ G and all induced subgraphs 𝐺 ′ ⊆𝑖𝑛𝑑 𝐺 , it follows that 𝐺 ′ ∈ G.
The “only if” direction of Conjecture 5.1 is quite simple. Before we can prove it, we need some

definitions and facts about Ramsey Theory.
Let 𝑟 and 𝑏 be positive integers. Ramsey’s Theorem [Ram87] tells us that there exists a positive integer

𝑁 (𝑟, 𝑏) such that any edge-coloring of the complete graph 𝐾𝑁 (𝑟,𝑏 ) with two colors (say, red and blue)
contains a red clique of size 𝑟 or a blue clique of size 𝑏. The Ramsey Number 𝑅(𝑟, 𝑏) is defined as the least
such integer 𝑁 (𝑟, 𝑏). Note that the Ramsey Number is symmetric, i.e. 𝑅(𝑟, 𝑏) = 𝑅(𝑏, 𝑟 ) for all 𝑟, 𝑏 ∈ ℕ.
We want to discuss some simple Ramsey Numbers to get an intuition for this concept.

Lemma 5.2: For every positive integer 𝑟 it holds that 𝑅(𝑟, 2) = 𝑟 .

Proof. To see that 𝑅(𝑟, 2) ≥ 𝑟 holds, consider the complete graph 𝐾𝑟−1 with all edges colored in red.
This graph neither contains a red clique of size 𝑟 nor a blue edge.

On the other hand, consider an arbitrary red-blue-coloring of the complete graph 𝐾𝑟 . If there is one
edge that is colored in blue, we find a blue clique of size two. Otherwise, all edges are colored in red and
we obtain a red 𝐾𝑟 . This shows 𝑅(𝑟, 2) ≤ 𝑟 and therefore 𝑅(𝑟, 2) = 𝑟 .

In view of Lemma 5.2, the first interesting Ramsey Number where neither 𝑟 = 2 nor 𝑏 = 2 is 𝑅(3, 3).
We have 𝑅(3, 3) ≥ 6, since there exists an edge-coloring of 𝐾5 that contains neither a red triangle nor a
blue triangle. This coloring is shown in Figure 5.1.

Figure 5.1: Edge-coloring of 𝐾5 without monochromatic triangles.
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5 The connection between tree-𝛼-bounded graph classes and (tw, 𝜔)-bounded graph classes

To see that 𝑅(3, 3) ≤ 6, consider any red-blue edge-coloring of 𝐾6. Let 𝜈 be any vertex in this colored
𝐾6. Since 𝜈 has 5 neighbors in 𝐾6, it follows by the pigeonhole principle that at least 3 incident edges to
𝜈 are colored in the same color, say red. We denote the corresponding neighbors by 𝜈1, 𝜈2 and 𝜈3. Now,
if there is an edge between any pair of 𝜈1, 𝜈2 and 𝜈3 that is colored in red, say w.l.o.g. the edge 𝜈1𝜈2 is
colored in red, we find a red triangle with vertices 𝜈, 𝜈1 and 𝜈2. Otherwise, if all edges between 𝜈1, 𝜈2
and 𝜈3 are colored in blue, we find a blue triangle. This shows 𝑅(3, 3) ≤ 6 and hence 𝑅(3, 3) = 6.

We want to think about Ramsey Numbers in a slightly different way. Instead of edge-colorings with
two colors red and blue, we think about edges being present or not. We can imagine that red edges in
an edge-coloring represent edges that are present and blue edges represent non-edges.

That being said, we can reformulate Ramsey’s Theorem as follows: For every two positive integers 𝑟
and 𝑏 there exists a positive integer 𝑁 (𝑟, 𝑏) such that every graph on 𝑁 (𝑟, 𝑏) vertices contains either a
clique of size 𝑟 or an independent set of size 𝑏. Again, the least such integer is denoted by 𝑅(𝑟, 𝑏).

We are now able to prove the “only if” direction of Conjecture 5.1.

Lemma 5.3: [DMŠ24a] Let 𝑘 be a positive integer and let G be a graph class with tree-independence number
at most 𝑘 . Then G is (tw, 𝜔)-bounded.

Proof. Let 𝐺 ∈ G. By assumption, we have tree-𝛼 (𝐺) ≤ 𝑘 . Let T = (𝑇,𝑋𝑡 ) be a tree decomposition
of 𝐺 with independence number at most 𝑘 . Then, every bag of T induces a subgraph of 𝐺 with
independence number at most 𝑘 and clique number at most 𝜔 (𝐺). Therefore, for every bag 𝑋𝑡 of T , we
have |𝑋𝑡 | ≤ 𝑅(𝑤 (𝐺) + 1, 𝑘 + 1) − 1 by Ramsey’s Theorem. This implies tw(𝐺) ≤ 𝑅(𝑤 (𝐺) + 1, 𝑘 + 1) − 2.
We set 𝑓 (𝑥) := 𝑅(𝑥 + 1, 𝑘 + 1) as a binding function, which concludes the proof.

The question that remains is whether the converse direction of Conjecture 5.1 holds. Chudnovsky
and Trotignon disproved this question in [CT24], which implies that Conjecture 5.1 is not true. Their
construction is based on a concept called layered wheel. We will discuss this construction in Section 5.1.

Before we get there, we give a very simple construction of a graph class that is (tw, 𝜔)-bounded but
not tree-𝛼-bounded. Let 𝑘 be a positive integer. By𝐺𝑘 we denote the graph obtained from 𝑘 independent
sets, each of size 𝑘 , where all possible edges between each pair of independent sets are present. Set
G := {𝐺𝑘 | 𝑘 ∈ ℕ}. Clearly, 𝑛 := |𝑉 (𝐺𝑘 ) | = 𝑘2 and 𝜔 (𝐺𝑘 ) = 𝑘 =

√
𝑛 and therefore G is (tw, 𝜔)-bounded.

On the other hand, the complete balanced bipartite graph 𝐾𝑘,𝑘 is an induced minor of 𝐺𝑘 and hence,
by Lemma 3.2 and Corollary 3.5, tree-𝛼 (𝐺𝑘 ) ≥ tree-𝛼 (𝐾𝑘,𝑘 ) = 𝑘 =

√
𝑛. Thus, G is not tree-𝛼-bounded.

Unfortunately, G is not hereditary, since deleting any vertex from 𝐺𝑘 results in a graph that is not
contained in G. Therefore, it is not applicable to Conjecture 5.1.

5.1 Layered wheels

In this section we give an overview of the construction by Chudnovsky and Trotignon in [CT24] that
was used to disprove Conjecture 5.1. This section is the only part of the thesis where we consider graphs
with countably infinite vertex sets. Most definitions and theorems presented in this section are taken
from [CT24].
For convenience, we set ℕ+ := ℕ \ {0}. A function 𝑓 : ℕ+ → ℕ+ is called slow if 𝑓 (1) = 1, 𝑓 (2) =

2, 𝑓 (3) = 3 and for every 𝑖 ∈ ℕ+, 𝑓 (𝑖) ≤ 𝑓 (𝑖 + 1) ≤ 𝑓 (𝑖) + 1. Note that slow functions exist, e.g. the
identity 𝑓 = id is a slow function. By definition, slow functions are non-decreasing and thus they
either tend to infinity or there exists an 𝑖 ∈ ℕ+ such that 𝑓 (𝑖) = 𝑓 (𝑖′) for all 𝑖′ ≥ 𝑖 , i.e. slow functions
eventually become constant.

If 𝑓 is a slow function, we define 𝐹 (𝑘) := sup{𝑖 ∈ ℕ+ | 𝑓 (𝑖) ≤ 𝑘} and call 𝐹 the cumulative function of
𝑓 . If 𝑓 eventually becomes a constant function, i.e. 𝑓 (𝑖) = 𝑐 for all large enough 𝑖 and some constant 𝑐 ,
then 𝐹 (𝑘) = ∞ for all 𝑘 ≥ 𝑐 . If e.g. 𝑓 = id, then 𝐹 = 𝑓 .
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5.1 Layered wheels

We make the following observations about cumulative functions and slow functions.

Observation 5.4: [CT24] Let 𝑓 be a slow function and let 𝐹 be the cumulative function of 𝑓 . Then
𝐹 : ℕ+ → ℕ+ ∪ {∞}, 𝐹 (1) = 1, 𝐹 (2) = 2 and 𝐹 (𝑘 + 1) ≥ 𝐹 (𝑘) + 1 for all 𝑘 ∈ ℕ+.

Proof. We see that 𝐹 : ℕ+ → ℕ+ ∪ {∞}, 𝐹 (1) = 1 and 𝐹 (2) = 2 are immediate consequences of the
definitions of slow functions and their cumulative functions. It remains to prove that 𝐹 (𝑘 + 1) ≥ 𝐹 (𝑘) + 1
for all 𝑘 ∈ ℕ+.
If 𝐹 (𝑘 + 1) = ∞, we are done. So let 𝐹 (𝑘 + 1) = 𝑗 ∈ ℕ+. Then 𝑓 ( 𝑗) = 𝑘 + 1 and 𝑓 ( 𝑗 ′) ≤ 𝑓 ( 𝑗) for all

𝑗 ′ < 𝑗 . We need to show that 𝐹 (𝑘) ≤ 𝑗 − 1.
If 𝐹 (𝑘) = 𝑗 , then 𝑓 ( 𝑗) = 𝑘 , a contradiction, since 𝑓 ( 𝑗) = 𝑘 + 1. If 𝐹 (𝑘) = 𝑗 > 𝑗 , then 𝑓 ( 𝑗) = 𝑘 and

𝑓 ( 𝑗) ≤ 𝑓 ( 𝑗). But, 𝑓 ( 𝑗) = 𝑘 < 𝑘 + 1 = 𝑓 ( 𝑗), a contradiction. Therefore, 𝐹 (𝑘) ≤ 𝑗 − 1.

Observation 5.5: Let 𝐹 : ℕ+ → ℕ+ ∪ {∞} be a function that satisfies 𝐹 (1) = 1, 𝐹 (2) = 2 and
𝐹 (𝑘 + 1) ≥ 𝐹 (𝑘) + 1 for all 𝑘 ∈ ℕ+. Then, there exists a slow function 𝑓 such that 𝐹 is the cumulative
function of 𝑓 .

Proof. For all 𝑖 ∈ ℕ+, we set 𝑓 (𝑖) := min{𝑘 ∈ ℕ+ | 𝐹 (𝑘) ≥ 𝑖}. Clearly, 𝑓 : ℕ+ → ℕ+ and 𝑓 (1) = 1,
𝑓 (2) = 2 and 𝑓 (3) = 3. Now we prove 𝑓 (𝑖) ≤ 𝑓 (𝑖 + 1) ≤ 𝑓 (𝑖) + 1.
Suppose that 𝑓 (𝑖) > 𝑓 (𝑖 + 1). We may assume that 𝑓 (𝑖 + 1) = 𝑘 and 𝑓 (𝑖) = 𝑘 + 1. Then 𝐹 (𝑘) = 𝑖 + 1

and 𝐹 (𝑘 + 1) = 𝑖 , which implies

𝑖 = 𝐹 (𝑘 + 1) ≥ 𝐹 (𝑘) + 1 = 𝑖 + 1 + 1 = 𝑖 + 2,

a contradiction.
Now, suppose that 𝑓 (𝑖 + 1) > 𝑓 (𝑖) + 1. We may assume that 𝑓 (𝑖) = 𝑘 , hence 𝑓 (𝑖) + 1 = 𝑘 + 1 and

therefore 𝑓 (𝑖 + 1) = 𝑘 + 2. But then, 𝐹 (𝑘) = 𝑖 and 𝐹 (𝑘 + 2) = 𝑖 + 1, which implies

𝑖 + 1 = 𝐹 (𝑘 + 2) ≥ 𝐹 (𝑘) + 2 = 𝑖 + 2,

a contradiction. This finishes the proof.

For every slow function 𝑓 , we define a graph 𝐺 called the 𝑓 -layered wheel. Its vertex set 𝑉 (𝐺) is
countably infinite. Although we define𝐺 as an infinite graph, we pick a finite set𝑋 ⊆ 𝑉 (𝐺) and consider
the finite graph 𝐺 [𝑋 ] in later proofs. The set {𝐺 [𝑋 ] | 𝑋 ⊆ 𝑉 (𝐺), 𝑋 finite} forms a hereditary graph
class, and we will work with that graph class instead of 𝐺 directly.

We will define 𝐺 inductively, but we start with some construction rules before we do that.

Rule 1 𝑉 (𝐺) is partitioned into sets 𝐿𝑖 , 𝑖 ∈ ℕ+, called the layers of 𝐺 .

Rule 2 For every 𝑖 ∈ ℕ+ and every vertex 𝜈 ∈ 𝐿𝑖 , there exists an integer 𝑛𝜈 and a path 𝑃 (𝜈) = 𝜈1, . . . , 𝜈𝑛𝜈

such that𝑉 (𝑃 (𝜈)) ⊆ 𝐿𝑖+1 and 𝑃 (𝜈) contains all the neighbors of 𝜈 in 𝐿𝑖+1. The vertex 𝜈1 is adjacent
to 𝜈 , the paths 𝑃 (𝜈), 𝜈 ∈ 𝐿𝑖 , are vertex-disjoint, 𝐿𝑖+1 =

⋃
𝜈∈𝐿𝑖 𝑉 (𝑃 (𝜈)) and if 𝜈𝜈 ′ ∈ 𝐸 (𝐺), then

𝜈𝑛𝜈
𝜈 ′1 ∈ 𝐸 (𝐺).

It follows that a vertex 𝑢 ∈ 𝐿𝑖+1 has at most one neighbor in 𝐿𝑖 . If such a neighbor 𝜈 exists, we say
that 𝜈 is the parent of 𝑢 and 𝑢 is a child of 𝜈 .

Rule 3 If 𝜈 ∈ 𝐿𝑖 , then 𝜈 has at most 𝑓 (𝑖) − 1 neighbors in ⋃
1≤ 𝑗<𝑖 𝐿 𝑗 . These neighbors induce a clique

that contains at most one vertex in each layer. We denote this clique by 𝑁 ↑ (𝜈) and we define
𝑁 ↑ [𝜈] := 𝑁 ↑ (𝜈) ∪ {𝜈}.
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5 The connection between tree-𝛼-bounded graph classes and (tw, 𝜔)-bounded graph classes

Similar to the definition of a child vertex and a parent vertex, we say that a vertex 𝑤 ∈ 𝐿 𝑗 is an
ancestor of a vertex 𝑢 ∈ 𝐿𝑖 , if 𝑤 and 𝑢 are adjacent and if 𝑗 < 𝑖 . Conversely, 𝑤 ∈ 𝐿 𝑗 is a descendant of
𝑢 ∈ 𝐿𝑖 , if 𝑤 and 𝑢 are adjacent and if 𝑗 > 𝑖 . So, parent and child vertices lie in adjacent layers while
ancestor and descendant vertices can lie in layers that are arbitrary far away from each other.
Now we define the 𝑓 -layered wheel 𝐺 . We note that in [CT24], Chudnovsky and Trotignon define

the layered wheel with an additional parameter ℓ that is responsible for creating “large” holes in 𝐺 . We
do not need this for our purposes and therefore we omit this additional parameter.
The first layer 𝐿1 is a cycle of length 4. We assume inductively that 𝐺 is defined for the first 𝑖 layers

and explain how to construct layer 𝐿𝑖+1. We also inductively assume that Rules 1-3 hold for the first 𝑖
layers, which is trivially true for layer 𝐿1. Observe that, by Rule 3 and the fact that 𝑓 is a slow function,
for every 𝜈 ∈ 𝐿𝑖 , we have |𝑁 ↑ (𝜈) | ≤ 𝑓 (𝑖 + 1) − 1.
It is sufficient to define for each 𝜈 ∈ 𝐿𝑖 the integer 𝑛𝜈 , and for each 𝜈 𝑗 ∈ 𝑃 (𝜈) the set 𝑁 ↑ (𝜈 𝑗 ). Then

𝐿𝑖+1 can be described as the cycle formed by the consecutive paths 𝑃 (𝜈). So, let 𝜈 ∈ 𝐿𝑖 . We distinguish
two cases:

Rule 4 |𝑁 ↑ (𝜈) | < 𝑓 (𝑖 + 1) − 1:
Then we set 𝑛𝜈 := 2, so 𝑃 (𝜈) = 𝜈1𝜈2 and we set 𝑁 ↑ (𝜈1) := 𝑁 ↑ [𝜈] and 𝑁 ↑ (𝜈2) := ∅.

Rule 5 |𝑁 ↑ (𝜈) | = 𝑓 (𝑖 + 1) − 1:
By Rule 3, we have 𝑁 ↑ (𝜈) = {𝑤1, . . . ,𝑤 𝑓 (𝑖+1)−1} and for all 1 ≤ 𝑗 ≤ 𝑓 (𝑖 + 1) − 1, 𝑤 𝑗 ∈ 𝐿𝑖 𝑗 with
1 ≤ 𝑖1 < 𝑖2 < · · · < 𝑖 𝑓 (𝑖+1)−1 < 𝑖 . We set 𝑛𝜈 := 2(𝑓 (𝑖 + 1) − 1), hence 𝑃 (𝜈) = 𝜈1, . . . , 𝜈2(𝑓 (𝑖+1)−1)
and for all 1 ≤ 𝑗 ≤ 𝑓 (𝑖 + 1) − 1 we set 𝑁 ↑ (𝜈2( 𝑗−1)+1) := 𝑁 ↑ [𝜈] \ {𝑤 𝑗 } and 𝑁 ↑ (𝜈2( 𝑗−1)+2) := ∅.

The new layer 𝐿𝑖+1 satisfies the Rules 1-3 and therefore we successfully described 𝐺 inductively.
In Figure 5.2, we see the first three layers of the 𝑓 -layered wheel 𝐺 . Note that the first three layers

are always the same, independent of 𝑓 .

L1

L2

L3

Figure 5.2: First three layers of the 𝑓 -layered wheel 𝐺 .

In the next section, we prove some properties of the 𝑓 -layered wheel.
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5.2 Properties of layered wheels

5.2 Properties of layered wheels

During this section, let 𝑓 denote a slow function and let 𝐺 be the 𝑓 -layered wheel.
We start by proving that the layers of 𝐺 are pairwise connected by at least one edge. Hence, for each

𝑖 ∈ ℕ+, the layers 𝐿1, . . . , 𝐿𝑖 form a minor model of 𝐾𝑖 in 𝐺 .

Lemma 5.6: [CT24] For all integers 𝑖 ≥ 1 and all 𝑖′ > 𝑖 , every vertex 𝑢 ∈ 𝐿𝑖 has at least one neighbor in 𝐿𝑖′ .

Proof. We prove the claim by induction on 𝑖′. In the base case, if 𝑖′ = 𝑖 + 1, the statement follows directly
by Rule 2.
Now let 𝑖′ ≥ 𝑖 + 2. Then 𝑖′ + 1 ≥ 3 and since 𝑓 is a slow function, 𝑓 (𝑖′ + 1) ≥ 3. Let 𝑤 ∈ 𝐿𝑖 . By

induction,𝑤 has a neighbor 𝜈 ∈ 𝐿𝑖′ . We now check that the path 𝑃 (𝜈), defined in Rules 4 and 5, contains
a neighbor of𝑤 . Since 𝑃 (𝜈) is entirely contained in 𝐿𝑖′+1, we are done.
There are two cases.

|𝑁 ↑ (𝜈) | < 𝑓 (𝑖 + 1) − 1:
Rule 4 applies here and 𝜈1 is adjacent to𝑤 , since 𝑁 ↑ (𝜈1) = 𝑁 ↑ [𝜈] by construction.

|𝑁 ↑ (𝜈) | = 𝑓 (𝑖 + 1) − 1:
Rule 5 applies here. Since 𝑓 (𝑖′ + 1) − 1 ≥ 2, there exists a 𝑗 ∈ {1, . . . , 𝑓 (𝑖′ + 1) − 1} such that
𝑤 𝑗 ≠ 𝑤 . Hence, the vertex 𝜈2( 𝑗−1)+1 ∈ 𝑃 (𝜈) is adjacent to𝑤 because 𝑁 ↑ (𝜈2( 𝑗−1)+1) = 𝑁 ↑ [𝜈] \ {𝑤 𝑗 }
by construction.

This concludes the proof.

Roughly speaking, the following lemma tells us, that the slow function 𝑓 controls the clique number
of 𝐺 when adding a new layer. We then may intuitively think of 𝐹 as the maximum number of layers
where 𝑓 is at most 𝑘 (recall that 𝐹 is the cumulative function of 𝑓 ).

Lemma 5.7: [CT24] For all integers 𝑖 ≥ 2, we have 𝜔 (𝐺 [𝐿1 ∪ · · · ∪ 𝐿𝑖]) = 𝑓 (𝑖).

Proof. We prove by induction on 𝑖 that there exists a clique 𝐶 of 𝐺 [𝐿1 ∪ · · · ∪ 𝐿𝑖] on 𝑓 (𝑖) vertices such
that |𝐶 ∩ 𝐿𝑖 | = 1. This implies 𝜔 (𝐺 [𝐿1 ∪ · · · ∪ 𝐿𝑖]) ≥ 𝑓 (𝑖).
We start with a trivial base case when 𝑖 = 1.
In the induction step, we assume that such a clique 𝐶 exists for some fixed 𝑖 ≥ 1 with |𝑉 (𝐶) | = 𝑓 (𝑖)

and we denote the vertex in 𝐶 ∩ 𝐿𝑖 by 𝜈 . Since 𝑓 is slow, 𝑓 (𝑖 + 1) ∈ {𝑓 (𝑖), 𝑓 (𝑖) + 1}. We distinguish the
two possible cases.

𝑓 (𝑖 + 1) = 𝑓 (𝑖) + 1:
Then |𝑁 ↑ (𝜈) | = 𝑓 (𝑖) − 1 = 𝑓 (𝑖 + 1) − 2, so Rule 4 applies and 𝜈 has a unique child 𝜈1 with
𝑁 ↑ (𝜈1) = 𝑁 ↑ [𝜈]. Hence, 𝐶 ∪ {𝜈1} is a clique on 𝑓 (𝑖) + 1 = 𝑓 (𝑖 + 1) vertices.

𝑓 (𝑖 + 1) = 𝑓 (𝑖):
Then |𝑁 ↑ (𝜈) | = 𝑓 (𝑖) − 1 = 𝑓 (𝑖 + 1) − 1, so Rule 5 applies. Now any child 𝑢 of 𝜈 satisfies
𝑁 ↑ (𝑢) = 𝑁 ↑ [𝜈] \ {𝑤} for some𝑤 ∈ 𝑁 ↑ (𝜈). Thus, 𝐶 ∪ {𝑢} is a clique on 𝑓 (𝑖 + 1) vertices.

This shows that 𝜔 (𝐺 [𝐿1 ∪ · · · ∪ 𝐿𝑖]) ≥ 𝑓 (𝑖).
We now prove, again by induction on 𝑖 , that 𝜔 (𝐺 [𝐿1 ∪ · · · ∪ 𝐿𝑖]) ≤ 𝑓 (𝑖) also holds. Note that we

start with 𝑖 = 2, where the claim trivially holds. Now let 𝑖 ≥ 3 and let 𝐶 be a maximum clique of
𝐺 [𝐿1 ∪ · · · ∪ 𝐿𝑖] and let 𝑗 be the maximum integer such that 𝐶 ∩ 𝐿 𝑗 ≠ ∅. Rules 4 and 5 imply that
two adjacent vertices in the layer 𝐿 𝑗 have no common neighbor in the layer 𝐿 𝑗 ′ for all 𝑗 ′ ≤ 𝑗 . Hence,
|𝐶 ∩ 𝐿 𝑗 | = 1 and let 𝑢 be the vertex in𝐶 ∩ 𝐿 𝑗 . This implies𝐶 ⊆ 𝑁 ↑ [𝑢]. By Rule 3, |𝑁 ↑ (𝑢) | ≤ 𝑓 (𝑖) − 1, so
|𝑁 ↑ [𝑢] | ≤ 𝑓 (𝑖) and therefore |𝐶 | ≤ 𝑓 (𝑖). This concludes the proof.
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5 The connection between tree-𝛼-bounded graph classes and (tw, 𝜔)-bounded graph classes

Let 𝑖 ∈ ℕ+. An infinite path 𝑃 of 𝐺 is called a vertical path starting in layer 𝑖 , if 𝑃 = 𝑝𝑖 , 𝑝𝑖+1, 𝑝𝑖+2, . . .
and for all 𝑗 ≥ 𝑖 , 𝑝 𝑗 ∈ 𝐿 𝑗 .

Lemma 5.8: [CT24] Let 𝑃 = 𝑝𝑖 , 𝑝𝑖+1, 𝑝𝑖+2, . . . and 𝑄 = 𝑞𝑖 , 𝑞𝑖+1, 𝑞𝑖+2, . . . be two vertical paths starting in
layer 𝐿𝑖 . If 𝑝𝑖 ≠ 𝑞𝑖 , then 𝑉 (𝑃) ∩𝑉 (𝑄) = ∅.

Proof. Assume that there exists a vertex 𝜈 ∈ 𝑉 (𝑃) ∩𝑉 (𝑄). Let 𝐿 𝑗 be the layer containing 𝜈 such that 𝑗
is minimal. Then 𝜈 has two parents, contradicting Rule 2.

Lemma 5.9: [CT24] If 𝑃 = 𝑝𝑖 , 𝑝𝑖+1, 𝑝𝑖+2, . . . is a vertical path starting in layer 𝑖 , then for all 𝑗 ≥ 𝑖 ,

𝑁 ↑ [𝑝 𝑗 ] ⊆ 𝑉 (𝑃) ∪ 𝑁 ↑ (𝑝𝑖).

Proof. We prove the statement by induction on 𝑗 , with a trivial base case when 𝑗 = 𝑖 . So now assume
that 𝑗 > 𝑖 . It follows from the Rules 4 or 5 that 𝑁 ↑ (𝑝 𝑗 ) ⊆ 𝑁 ↑ [𝑝 𝑗−1]. By induction, we have 𝑁 ↑ [𝑝 𝑗−1] ⊆
𝑉 (𝑃) ∪ 𝑁 ↑ (𝑝𝑖), which implies 𝑁 ↑ [𝑝 𝑗 ] ⊆ 𝑉 (𝑃) ∪ 𝑁 ↑ (𝑝𝑖).

Recall that each layer of 𝐺 induces a cycle. We want to separate each layer of𝐺 into two parts in a
certain way. For each Layer 𝐿𝑖 , we fix an ordering of the vertices of 𝐿𝑖 such that adjacent vertices differ
by at most one in the ordering (we compute everything modulo |𝐿𝑖 |). Since each layer induces a cycle,
we might think of this ordering as enumerating the vertices of the cycle in clockwise order.

Now, let 𝑝 and 𝑞 be two vertices in the same layer 𝐿𝑖 . Note that, if 𝑝 ≠ 𝑞, there are two paths between
𝑝 and 𝑞 in the layer 𝐿𝑖 , since 𝐺 [𝐿𝑖] is a cycle. By 𝑝

−→
𝐿𝑖𝑞, we denote the path from 𝑝 to 𝑞 in 𝐺 [𝐿𝑖] in an

ascending order, with respect to the fixed ordering. If 𝑝 = 𝑞, then 𝑝
−→
𝐿𝑖𝑞 is the path just containing the

vertex 𝑝 . We set 𝑝
←−
𝐿𝑖𝑞 := {𝑝, 𝑞} ∪ (𝐿𝑖 \ 𝑝

−→
𝐿𝑖𝑞). We observe that 𝑝

−→
𝐿𝑖𝑞 and 𝑝

←−
𝐿𝑖𝑞 edge-wise partition 𝐺 [𝐿𝑖].

Hence, if 𝑝 ≠ 𝑞, (𝑉 (𝑝−→𝐿𝑖𝑞) \ {𝑝, 𝑞}, {𝑝, 𝑞},𝑉 (𝑝
←−
𝐿𝑖𝑞) \ {𝑝, 𝑞}) is a separation of 𝐺 [𝐿𝑖] of size 2.

Let 𝑃 = 𝑝𝑖 , 𝑝𝑖+1, 𝑝𝑖+2, . . . and 𝑄 = 𝑞𝑖 , 𝑞𝑖+1, 𝑞𝑖+2, . . . be two vertical paths starting in the same layer 𝐿𝑖 .
We define

𝐴(𝑃,𝑄) :=
⋃

𝑢∈𝑝𝑖
−→
𝐿𝑖𝑞𝑖

𝑁 ↑ [𝑢] ∪
⋃
𝑗>𝑖

𝑝 𝑗
−→
𝐿 𝑗𝑞 𝑗

and
𝐵(𝑃,𝑄) :=

⋃
1≤ 𝑗≤𝑖

𝐿 𝑗 ∪
⋃
𝑗>𝑖

𝑝 𝑗
←−
𝐿 𝑗𝑞 𝑗 .

Our next goal is to prove that𝐶 (𝑃,𝑄) := 𝐴(𝑃,𝑄) ∩ 𝐵(𝑃,𝑄) separates𝐺 into parts 𝐴∗(𝑃,𝑄) := 𝐴(𝑃,𝑄) \
𝐵(𝑃,𝑄) and 𝐵∗(𝑃,𝑄) := 𝐵(𝑃,𝑄) \𝐴(𝑃,𝑄). In other words, we show that (𝐴∗(𝑃,𝑄),𝐶 (𝑃,𝑄), 𝐵∗(𝑃,𝑄))
is a separation of 𝐺 . We start by proving the following lemma.

Lemma 5.10: [CT24] If 𝑃 and 𝑄 are two vertical paths starting in the same layer 𝐿𝑖 , then

𝐴(𝑃,𝑄) ∪ 𝐵(𝑃,𝑄) = 𝑉 (𝐺)

and
𝐶 (𝑃,𝑄) = 𝐴(𝑃,𝑄) ∩ 𝐵(𝑃,𝑄) = 𝑉 (𝑃) ∪𝑉 (𝑄) ∪

⋃
𝑢∈𝑉 (𝑝𝑖

−→
𝐿𝑖𝑞𝑖 )

𝑁 ↑ [𝑢] .

Proof. First, we show that 𝐴(𝑃,𝑄) ∪ 𝐵(𝑃,𝑄) = 𝑉 (𝐺). For all 1 ≤ 𝑗 ≤ 𝑖 , the vertices of layer 𝐿 𝑗 are
contained in 𝐵(𝑃,𝑄) by definition. For all 𝑗 > 𝑖 , vertices in layer 𝐿 𝑗 are contained in 𝑝 𝑗

−→
𝐿 𝑗𝑞 𝑗 or 𝑝 𝑗

←−
𝐿 𝑗𝑞 𝑗 .

So, by definition, they are contained in 𝐴(𝑃,𝑄) or 𝐵(𝑃,𝑄). This shows 𝐴(𝑃,𝑄) ∪ 𝐵(𝑃,𝑄) = 𝑉 (𝐺).
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5.2 Properties of layered wheels

Now we show that

𝐴(𝑃,𝑄) ∩ 𝐵(𝑃,𝑄) = 𝑉 (𝑃) ∪𝑉 (𝑄) ∪
⋃

𝑢∈𝑉 (𝑝𝑖
−→
𝐿𝑖𝑞𝑖 )

𝑁 ↑ [𝑢] .

By definition, 𝐵(𝑃,𝑄) contains all layers 𝐿1, . . . , 𝐿𝑖 and𝐴(𝑃,𝑄) contains only the vertices
⋃

𝑢∈𝑝𝑖
−→
𝐿𝑖𝑞𝑖

𝑁 ↑ [𝑢]
from the layers 𝐿1, . . . , 𝐿𝑖 . For 𝑗 > 𝑖 , the only vertices contained in both 𝐴(𝑃,𝑄) and 𝐵(𝑃,𝑄) are the
vertices from the paths 𝑃 and 𝑄 , since 𝑉 (𝑝 𝑗

−→
𝐿 𝑗𝑞 𝑗 ) ∩𝑉 (𝑝 𝑗

←−
𝐿 𝑗𝑞 𝑗 ) = {𝑝 𝑗 , 𝑞 𝑗 }. This concludes the proof.

Lemma 5.11: [CT24] Let 𝑃 and 𝑄 be two vertical paths starting in the same layer 𝐿𝑖 and let 𝑢 ∈ 𝐴∗(𝑃,𝑄).
Then, all descendants of 𝑢 are in 𝐴∗(𝑃,𝑄) and all ancestors of 𝑢 are in 𝐴(𝑃,𝑄).

Proof. We first prove that all descendants of 𝑢 are in 𝐴∗(𝑃,𝑄). We prove that by contradiction, i.e. we
assume that there exists an edge 𝑢𝑤 ∈ 𝐸 (𝐺) such that 𝑢 ∈ 𝐴∗(𝑃,𝑄) ∩ 𝐿 𝑗 and 𝑤 ∈ 𝐵(𝑃,𝑄) ∩ 𝐿 𝑗 ′ for
some 𝑗 ′ > 𝑗 . We choose such a pair 𝑢,𝑤 such that 𝑗 ′ − 𝑗 is minimal. Since 𝑢𝑤 ∈ 𝐸 (𝐺), Rule 4 or Rule 5
implies that𝑤 has a parent 𝜈 such that 𝑢 ∈ 𝑁 ↑ [𝜈]. We have 𝜈 ≠ 𝑢 since otherwise,𝑤 is a child of 𝑢 and
by Rule 2, the children of 𝑢 are in the interior of 𝑝 𝑗+1

−−→
𝐿 𝑗+1𝑞 𝑗+1, and therefore in 𝐴∗(𝑃,𝑄). If 𝜈 ∈ 𝑉 (𝑃),

Lemma 5.9 implies that 𝑢 ∈ 𝑉 (𝑃) ∪ 𝑁 ↑ (𝑝𝑖), a contradiction to 𝑢 ∈ 𝐴∗(𝑃,𝑄). Therefore, 𝜈 ∉ 𝑉 (𝑃)
and by symmetry 𝜈 ∉ 𝑉 (𝑄). Thus, if 𝜈 ∈ 𝑝 𝑗 ′−1

−−−→
𝐿 𝑗 ′−1𝑞 𝑗 ′−1, 𝜈 and 𝑤 contradict the minimality of 𝑗 ′ − 𝑗

and if 𝜈 ∈ 𝑝 𝑗 ′−1
←−−−
𝐿 𝑗 ′−1𝑞 𝑗 ′−1, 𝑢 and 𝜈 contradict the minimality of 𝑗 ′ − 𝑗 . In either case, we end up in a

contradiction, which implies that all descendants of 𝑢 are in 𝐴∗(𝑃,𝑄).
Now we prove that all ancestors of 𝑢 are in 𝐴(𝑃,𝑄). Again, we prove the claim by contradiction.

We suppose that there exists an edge 𝑤𝑢 ∈ 𝐸 (𝐺) such that 𝑢 ∈ 𝐴∗(𝑃,𝑄) ∩ 𝐿 𝑗 and 𝑤 ∈ 𝐵∗(𝑃,𝑄) ∩ 𝐿 𝑗 ′
for some 𝑗 ′ < 𝑗 . Here, we choose such a pair 𝑤,𝑢 such that 𝑗 − 𝑗 ′ is minimal. Since 𝑤𝑢 ∈ 𝐸 (𝐺), Rule
4 or Rule 5 implies that 𝑢 has a parent 𝜈 such that 𝑤 ∈ 𝑁 ↑ [𝜈]. If 𝜈 ∈ 𝑉 (𝑃), Lemma 5.9 implies that
𝑤 ∈ 𝑉 (𝑃) ∪ 𝑁 ↑ (𝑝𝑖), a contradiction to𝑤 ∈ 𝐵∗(𝑃,𝑄). Therefore, 𝜈 ∉ 𝑉 (𝑃) and by symmetry 𝜈 ∉ 𝑉 (𝑄).
If 𝜈 ∈ 𝑝𝑖

−→
𝐿𝑖𝑞𝑖 , then 𝑤 ∈ 𝑁 ↑ [𝜈], a contradiction to 𝑤 ∈ 𝐵∗(𝑃,𝑄). By Rule 2 it follows that 𝑗 ≥ 𝑖 + 2 and

𝜈 is contained in the interior of 𝑝 𝑗−1
−−−→
𝐿 𝑗−1𝑞 𝑗−1. Thus, 𝜈 ∈ 𝐴∗(𝑃,𝑄) ∩ 𝐿 𝑗−1. If 𝑗 − 𝑗 ′ = 1, the pair 𝑤,𝑢

contradict Rule 2 and otherwise the pair𝑤,𝜈 contradict the minimality of 𝑗 − 𝑗 ′. In either case, we end
up in a contradiction, which implies that all ancestors of 𝑢 are in 𝐴(𝑃,𝑄). This finishes the proof.

Now, we are able to prove that (𝐴∗(𝑃,𝑄),𝐶 (𝑃,𝑄), 𝐵∗(𝑃,𝑄)) is a separation of 𝐺 .

Lemma 5.12: [CT24] Let 𝑃 and 𝑄 be two vertical paths starting in the same layer 𝐿𝑖 . Then 𝑆 = (𝐴∗(𝑃,𝑄),
𝐶 (𝑃,𝑄), 𝐵∗(𝑃,𝑄)) is a separation of 𝐺 .

Proof. We assume that 𝑆 is not a separation of𝐺 . By Lemma 5.10, 𝐴∗(𝑃,𝑄) ∪𝐶 (𝑃,𝑄) ∪𝐵∗(𝑃,𝑄) = 𝑉 (𝐺)
and by definition, 𝐴∗(𝑃,𝑄), 𝐶 (𝑃,𝑄) and 𝐵∗(𝑃,𝑄) are pairwise vertex-disjoint. Thus, since 𝑆 is not
a separation of 𝐺 , there is an edge 𝑢𝜈 ∈ 𝐸 (𝐺) with 𝑢 ∈ 𝐴∗(𝑃,𝑄) and 𝜈 ∈ 𝐵∗(𝑃,𝑄). If 𝑢 and 𝜈 are
in the same layer 𝐿 𝑗 , then 𝑗 > 𝑖 since 𝐵(𝑃,𝑄) contains all layers 𝐿1 . . . , 𝐿𝑖 and 𝑢 ∉ 𝐵(𝑃,𝑄). Hence,
𝑢 ∈ 𝑉 (𝑝 𝑗

−→
𝐿 𝑗𝑞 𝑗 ) \ {𝑝 𝑗 , 𝑞 𝑗 } and 𝜈 ∈ 𝑉 (𝑝 𝑗

←−
𝐿 𝑗𝑞 𝑗 ) \ {𝑝 𝑗 , 𝑞 𝑗 }, a contradiction since 𝑢 and 𝜈 are adjacent but

there is no edge from 𝑉 (𝑝 𝑗
−→
𝐿 𝑗𝑞 𝑗 ) \ {𝑝 𝑗 , 𝑞 𝑗 } to 𝑉 (𝑝 𝑗

←−
𝐿 𝑗𝑞 𝑗 ) \ {𝑝 𝑗 , 𝑞 𝑗 } in 𝐺 [𝐿 𝑗 ]. So we may assume that 𝑢

and 𝜈 are not in the same layer. Then 𝜈 is either a descendant or an ancestor of 𝑢 and in either case, by
Lemma 5.11, 𝜈 ∈ 𝐴(𝑃,𝑄), a contradiction.
Therefore, such an edge 𝑢𝜈 cannot exist and we conclude that 𝑆 is a separation of 𝐺 .
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5 The connection between tree-𝛼-bounded graph classes and (tw, 𝜔)-bounded graph classes

We want to take a short break and get an overview of where we are right now. We defined the
𝑓 -layered wheel 𝐺 for a slow function 𝑓 and proved some basic properties, culminating in Lemma 5.12,
stating that we can separate𝐺 in a certain way. Why do we want to separate𝐺 in the first place? Recall
that our main goal is to find a hereditary graph class that is (tw, 𝜔)-bounded but not tree-𝛼-bounded.
Lemma 5.12 helps us to achieve (tw, 𝜔)-boundedness, since the treewidth of a graph can be bounded by
separators in the following way.

Theorem 5.13: [DN19] The treewidth of any graph 𝐺 is at most 15 sn(𝐺).

We showed that the 𝑓 -layered wheel𝐺 has a certain separation. What we need to show is that for any
finite set 𝑋 ⊆ 𝑉 (𝐺), the graph 𝐺 [𝑋 ] has a balanced separation of bounded size. This is our next goal.

As throughout the whole section, let 𝑓 be a slow function,𝐺 be the 𝑓 -layered wheel and let 𝑋 ⊆ 𝑉 (𝐺)
be a finite set. Furthermore, let 𝑘 be a positive integer such that 𝜔 (𝐺 [𝑋 ]) ≤ 𝑘 . We say that an edge
𝜈𝑢 ∈ 𝐸 (𝐺) is augmenting if 𝑢 is a child of 𝜈 and

𝑁 ↑ (𝑢) ∩ 𝑋 = 𝑁 ↑ [𝜈] ∩ 𝑋 .

In Figure 5.3, we see the first three layers of 𝐺 where each augmenting edge is colored in red. Note
that, if 𝑢 is a child of a vertex 𝜈 that was introduced by Rule 4, then the edge 𝑢𝜈 is augmenting by
construction.

Figure 5.3: First three layers of 𝐺 and its augmenting edges colored in red.

Lemma 5.14: [CT24] If 𝜈 ∈ 𝐿𝑖 and 𝑓 (𝑖 + 1) ≥ 𝑘 + 2, then there exists at least one child 𝑢 of 𝜈 such that 𝜈𝑢
is augmenting.

Proof. We distinguish two cases.

|𝑁 ↑ (𝜈) | < 𝑓 (𝑖 + 1) − 1:
Then Rule 4 applies and so there is a child 𝑢 of 𝜈 with 𝑁 ↑ (𝑢) = 𝑁 ↑ [𝜈], which implies 𝑁 ↑ (𝑢) ∩𝑋 =

𝑁 ↑ [𝜈] ∩ 𝑋 trivially. Thus, 𝜈𝑢 is augmenting.
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5.2 Properties of layered wheels

|𝑁 ↑ (𝜈) | = 𝑓 (𝑖 + 1) − 1:
We have |𝑁 ↑ (𝜈) | = 𝑓 (𝑖 + 1) − 1 ≥ 𝑘 + 1 and since 𝜔 (𝐺 [𝑋 ]) ≤ 𝑘 , there is a vertex𝑤 ∈ 𝑁 ↑ (𝜈) \ 𝑋 .
Rule 5 implies that 𝜈 has a child 𝑢 such that 𝑁 ↑ (𝑢) = 𝑁 ↑ [𝜈] \ {𝑤}. Now 𝑁 ↑ (𝑢) ∩ 𝑋 = 𝑁 ↑ [𝜈] ∩ 𝑋
follows because𝑤 ∉ 𝑋 . This means that the edge 𝜈𝑢 is augmenting and we are done.

For every 𝜈 ∈ 𝑉 (𝐺) we define 𝑎(𝜈) as follows: if 𝜈 has a child 𝑢 such that 𝜈𝑢 is augmenting, then
we set 𝑎(𝜈) := 𝑢. Otherwise, we pick any child 𝑢 of 𝜈 and set 𝑎(𝜈) := 𝑢. We call 𝑎(𝜈) the augmenting
child of 𝜈 . Note that 𝑎(𝜈) is not necessarily unique, but it exists. Therefore, there exists a vertical path
𝑃 = 𝜈, 𝑎(𝜈), 𝑎(𝑎(𝜈)), . . . which we call the augmenting path out of 𝜈 .

Lemma 5.15: [CT24] Let 𝜈 ∈ 𝑉 (𝐺) and let 𝑃 be the augmenting path out of 𝜈 . Then

©­«𝑉 (𝑃) ∩ ©­«
⋃

𝑖≥𝐹 (𝑘+1)
𝐿𝑖

ª®¬ª®¬ ∩ 𝑋
is a clique and

|𝑉 (𝑃) ∩ 𝑋 | ≤ 𝐹 (𝑘 + 1) + 𝑘 − 1.

Proof. If 𝐹 (𝑘 + 1) = ∞, then {𝑖 ∈ ℕ+ | 𝑖 ≥ 𝐹 (𝑘 + 1)} = ∅ and so the statement is trivially true.
Otherwise, if 𝐹 (𝑘 + 1) is finite, then 𝑉 (𝑃) ∩ (⋃𝑖≥𝐹 (𝑘+1) 𝐿𝑖) induces an infinite vertical path 𝑝1, 𝑝2, . . . ,

and for each 𝑗 ≥ 1, 𝑝 𝑗 is in a layer 𝐿𝑖 such that 𝑓 (𝑖 + 1) ≥ 𝑘 + 2. Thus, by Lemma 5.14, for all 𝑗 ≥ 1
there exists a child 𝑢 such that 𝑝 𝑗𝑢 is augmenting. By the definition of an augmenting path, 𝑝 𝑗𝑝 𝑗+1 is
augmenting.
We need to prove that {𝑝1, 𝑝2, . . . } ∩ 𝑋 induces a clique. We do so by proving by induction on 𝑗 that
{𝑝1, . . . , 𝑝 𝑗 } ∩𝑋 ⊆ 𝑁 ↑ [𝑝 𝑗 ] ∩𝑋 , which induces a clique by Rule 3. In the base case, if 𝑗 = 1, the statement
is true since 𝑝1 ∈ 𝑁 ↑ [𝑝1]. Now:

{𝑝1, . . . , 𝑝 𝑗+1} ∩ 𝑋 = ({𝑝1, . . . , 𝑝 𝑗 } ∩ 𝑋 ) ∪ ({𝑝 𝑗+1} ∩ 𝑋 )
⊆ (𝑁 ↑ [𝑝 𝑗 ] ∩ 𝑋 ) ∪ ({𝑝 𝑗+1} ∩ 𝑋 ) by induction
= (𝑁 ↑ (𝑝 𝑗+1) ∩ 𝑋 ) ∪ ({𝑝 𝑗+1} ∩ 𝑋 ) since 𝑝 𝑗𝑝 𝑗+1 is augmenting
= 𝑁 ↑ [𝑝 𝑗+1] ∩ 𝑋

Thus, {𝑝1, 𝑝2, . . . }∩𝑋 is a clique on at most 𝑘 vertices since𝜔 (𝐺 [𝑋 ]) ≤ 𝑘 . For the layers 𝐿1 . . . , 𝐿𝐹 (𝑘+1)−1,
the path 𝑃 contains at most one vertex in each layer and we conclude that |𝑉 (𝑃) ∩𝑋 | ≤ 𝐹 (𝑘 + 1) +𝑘 − 1,
which finishes the proof.

We call a separation 𝑆 = (𝐴,𝐶, 𝐵) of 𝐺 fair if there exists a pair of vertical paths 𝑃 = 𝑝𝑖 , 𝑝𝑖+1, . . . and
𝑄 = 𝑞𝑖 , 𝑞𝑖+1, . . . starting in the same layer such that

|𝑉 (𝑝𝑖
−→
𝐿𝑖𝑞𝑖) | ≤ 3,

the paths 𝑃 − {𝑝𝑖} = 𝑝𝑖+1, 𝑝𝑖+2, . . . and 𝑄 − {𝑞𝑖} = 𝑞𝑖+1, 𝑞𝑖+2, . . . are augmenting paths,

𝐴 = 𝐴∗(𝑃,𝑄), 𝐵 = 𝐵∗(𝑃,𝑄), 𝐶 = 𝐶 (𝑃,𝑄) = 𝐴(𝑃,𝑄) ∩ 𝐵(𝑃,𝑄) and

|𝐴(𝑃,𝑄) ∩ 𝑋 | ≥ 𝑛/3 with 𝑛 = |𝑋 |.

Lemma 5.16: [CT24] There exists a fair separation in 𝐺 .
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5 The connection between tree-𝛼-bounded graph classes and (tw, 𝜔)-bounded graph classes

Proof. We pick two distinct, non-adjacent vertices 𝑝 and 𝑞 in the first layer 𝐿1. Such vertices exist
and |𝑉 (𝑝−→𝐿1𝑞) | ≤ 3 and |𝑉 (𝑞−→𝐿1𝑝) | ≤ 3, since 𝐿1 induces a cycle of length 4. Let 𝑃 and 𝑄 be the
two augmenting paths out of 𝑝 and 𝑞, respectively. By Lemma 5.12, (𝐴∗(𝑃,𝑄),𝐶 (𝑃,𝑄), 𝐵∗(𝑃,𝑄)) and
(𝐴∗(𝑄, 𝑃),𝐶 (𝑄, 𝑃), 𝐵∗(𝑄, 𝑃)) are separations of 𝐺 .
We need to prove that |𝐴(𝑃,𝑄) ∩𝑋 | ≥ 𝑛/3 or |𝐴(𝑄, 𝑃) ∩𝑋 | ≥ 𝑛/3. Since 𝑝 ≠ 𝑞, by Lemma 5.8, 𝑃 and

𝑄 are vertex-disjoint, which implies 𝐴(𝑃,𝑄) ∪𝐴(𝑄, 𝑃) = 𝑉 (𝐺). Thus, either |𝐴(𝑃,𝑄) ∩ 𝑋 | ≥ 𝑛/3 holds
or |𝐴(𝑄, 𝑃) ∩ 𝑋 | ≥ 𝑛/3 holds, concluding the proof.

Now, we are able to prove that each induced subgraph of 𝐺 has a balanced separator of bounded size.

Lemma 5.17: [CT24] There exists a balanced separation of 𝐺 [𝑋 ] of size at most

2𝐹 (𝑘 + 1) + 5𝑘 − 2.

Proof. The statement is trivially true for 𝑛 ≤ 5, since 𝑘 ≥ 1 and so 𝐹 (𝑘 + 1) ≥ 2, so (∅, 𝑋, ∅) is a valid
separation. Thus, we may assume that 𝑛 ≥ 6.
Let 𝑆 = (𝐴,𝐶, 𝐵) be a fair separation of 𝐺 ; it exists by Lemma 5.16. We choose 𝑆 to be such that 𝑖 is

maximal and among all separations with maximal 𝑖 , such that |𝑝𝑖+1
−−→
𝐿𝑖+1𝑞𝑖+1 | is minimal. By Lemma 5.10,

we have
𝐴(𝑃,𝑄) ∩ 𝐵(𝑃,𝑄) = 𝑉 (𝑃) ∪𝑉 (𝑄) ∪

⋃
𝑢∈𝑉 (𝑝𝑖

−→
𝐿𝑖𝑞𝑖 )

𝑁 ↑ [𝑢]

and Lemma 5.15 implies that |𝑉 (𝑃 − {𝑝𝑖}) ∩ 𝑋 | ≤ 𝐹 (𝑘 + 1) + 𝑘 − 1. A similar inequality clearly holds
for 𝑄 . By Rule 3, we obtain for all 𝑢 ∈ 𝑝𝑖

−→
𝐿𝑖𝑞𝑖 that |𝑁 ↑ [𝑢] | ≤ 𝑘 . Putting this all together, we see that

(𝐴 ∩ 𝑋,𝐶 ∩ 𝑋, 𝐵 ∩ 𝑋 ) has size at most 2𝐹 (𝑘 + 1) + 5𝑘 − 2, since |𝑉 (𝑝𝑖
−→
𝐿𝑖𝑞𝑖) | ≤ 3.

We need to prove that (𝐴 ∩ 𝑋,𝐶 ∩ 𝑋, 𝐵 ∩ 𝑋 ) is balanced. For the sake of contradiction, we suppose
that it is not balanced. Since 𝑆 is fair, we have |𝐴 ∩ 𝑋 | ≥ 𝑛/3, which implies |𝐵 ∩ 𝑋 | ≤ 2𝑛/3. Therefore,
(𝐴 ∩ 𝑋,𝐶 ∩ 𝑋, 𝐵 ∩ 𝑋 ) can only be not balanced because |𝐴 ∩ 𝑋 | > 2𝑛/3.
We assume that no internal vertex of 𝑝𝑖+1

−−→
𝐿𝑖+1𝑞𝑖+1 has a parent. Then, by Rule 2, either 𝑝𝑖 = 𝑞𝑖 or

𝑝𝑖𝑞𝑖 is an edge in 𝐺 . By Rules 4 and 5, 𝑝𝑖+1
−−→
𝐿𝑖+1𝑞𝑖+1 induces a path on 3 vertices. We set 𝑃 ′ := 𝑃 − {𝑝𝑖}

and 𝑄 ′ := 𝑄 − {𝑞𝑖} and 𝐴′ := 𝐴∗(𝑃 ′, 𝑄 ′) and 𝐵′ := 𝐵∗(𝑃 ′, 𝑄 ′) and 𝐶′ := 𝐶 (𝑃 ′, 𝑄 ′). We show that
(𝐴′,𝐶′, 𝐵′) is a fair separation, which contradicts the maximality of (𝐴,𝐶, 𝐵). Clearly, 𝑃 ′ and 𝑄 ′ are
vertical paths starting in the same layer. We already showed that |𝑉 (𝑝𝑖+1

−−→
𝐿𝑖+1𝑞𝑖+1) | ≤ 3. Since 𝑆 is

fair, 𝑃 ′ and 𝑄 ′ are augmenting paths. At most two vertices of 𝐴′ are not in 𝐴 and by Rules 4 and 5,
at most one vertex is in 𝑁 ↑ [𝑝𝑖] \ 𝑁 ↑ (𝑝𝑖+1) and at most one vertex is in 𝑁 ↑ [𝑞𝑖] \ 𝑁 ↑ (𝑞𝑖+1). Therefore,
|𝐴′ ∩𝑋 | ≥ |𝐴 ∩𝑋 | − 2 > 2𝑛/3− 2 = 𝑛/3 + (𝑛 − 6)/3 ≥ 𝑛/3 because 𝑛 ≥ 6. This shows that (𝐴′,𝐶′, 𝐵′) is
a fair separation, a contradiction, since 𝑖 + 1 > 𝑖 .
So, we may assume that there is an internal vertex 𝑢 of 𝑝𝑖+1

−−→
𝐿𝑖+1𝑞𝑖+1 that has a parent 𝜈 . By Rule

2, 𝜈 ∈ 𝑝𝑖
−→
𝐿𝑖𝑞𝑖 . Let 𝑅′ be the augmenting path out of 𝑢 and set 𝑅 := 𝜈𝑢𝑅′. Figure 5.4 visualizes the

setup. Furthermore, set 𝐴′ := 𝐴∗(𝑃, 𝑅), 𝐴′′ := 𝐴∗(𝑅,𝑄), 𝐵′ := 𝐵∗(𝑃, 𝑅), 𝐵′′ := 𝐵∗(𝑅,𝑄), 𝐶′ := 𝐶 (𝑃, 𝑅) and
𝐶′′ := 𝐶 (𝑅,𝑄). We show that (𝐴′,𝐶′, 𝐵′) or (𝐴′′,𝐶′′, 𝐵′′) is a fair separation. Clearly, 𝑃 and 𝑅 start in the
same layer 𝐿𝑖 . Since 𝑆 is fair, 𝑃 − {𝑝𝑖} is an augmenting path and 𝑅 augmenting by definition. Also, since
𝑆 is fair, we have |𝑉 (𝑝𝑖

−→
𝐿𝑖𝑞𝑖) | ≤ 3. Furthermore, we have 𝐴 = 𝐴∗(𝑃,𝑄) = 𝐴∗(𝑃, 𝑅) ∪𝐴∗(𝑅,𝑄) = 𝐴′ ∪𝐴′′.

Thus, since |𝐴 ∩ 𝑋 | ≥ 2𝑛/3, either |𝐴′ ∩ 𝑋 | ≥ 𝑛/3 or |𝐴′′ ∩ 𝑋 | ≥ 𝑛/3. This means that either (𝐴′, 𝐵′) or
(𝐴′′, 𝐵′′) is fair, but that is a contradiction to the minimality of |𝑝𝑖+1

−−→
𝐿𝑖+1𝑞𝑖+1 |.

This finishes the proof.

We are finally ready to proof that the induced subgraphs of the 𝑓 -layered wheel form a (tw, 𝜔)-
bounded class of graphs.
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5.3 Disproving Conjecture 5.1
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Figure 5.4: The augmenting paths 𝑃 , 𝑅 and 𝑄 in the proof of Lemma 5.17.

Lemma 5.18: [CT24] Let 𝑓 be an unbounded slow function and let 𝐺 be the 𝑓 -layered wheel. Let G
be the hereditary graph class obtained from 𝐺 by taking all finite induced subgraphs of 𝐺 . Then, G is
(tw, 𝜔)-bounded.

Proof. Note that, since 𝑓 is unbounded, the cumulative function 𝐹 does not map any 𝑖 ∈ ℕ+ to∞, so the
value of 𝐹 (𝑖) is always finite. We prove that every finite induced subgraph 𝐻 of 𝐺 satisfies

tw(𝐻 ) ≤ 15(2𝐹 (𝜔 (𝐻 ) + 1) + 5𝜔 (𝐻 ) − 2).

Let 𝐻 ′ be an induced subgraph of 𝐻 and let 𝑘 := 𝜔 (𝐻 ′). By Lemma 5.17, 𝐻 ′ has a balanced separation
of size at most 2𝐹 (𝑘 + 1) + 5𝑘 − 2 ≤ 2𝐹 (𝜔 (𝐻 ) + 1) + 5𝜔 (𝐻 ) − 2. Theorem 5.13 implies

tw(𝐻 ) ≤ 15(2𝐹 (𝜔 (𝐻 ) + 1) + 5𝜔 (𝐻 ) − 2).

Setting 𝑔(𝜔 (𝐻 )) := 15(2𝐹 (𝜔 (𝐻 ) + 1) + 5𝜔 (𝐻 ) − 2) as a binding function completes the proof.

5.3 Disproving Conjecture 5.1

As a last ingredient to disprove Conjecture 5.1, we need the following lemma.

Lemma 5.19: [CT24] Let 𝑋 ⊆ 𝑉 (𝐺) be finite. If 𝑋 contains at most one vertex in each layer of 𝐺 , then
𝐺 [𝑋 ] is chordal.

Proof. Let 𝑖 be the maximum integer such that 𝑋 ∩ 𝐿𝑖 ≠ ∅. By assumption, there is a unique vertex
𝜈 ∈ 𝑋 ∩ 𝐿𝑖 and it has all its neighbors in layers 𝐿 𝑗 with 𝑗 < 𝑖 . Thus, 𝑁 (𝜈) ∩ 𝑋 = 𝑁 ↑ (𝜈) ∩ 𝑋 and Rule 3
implies that 𝜈 is simplicial. By Lemma 2.3 and the fact that we can apply this proof to every induced
subgraph of 𝐺 [𝑋 ], it follows that 𝐺 [𝑋 ] is chordal.

We have now everything together to disprove Conjecture 5.1.

Theorem 5.20: [CT24] Let 𝐹 : ℕ+ → ℕ+ be a super-linear function with 𝐹 (1) = 1, 𝐹 (2) = 2 and
𝐹 (𝑘 + 1) ≥ 𝐹 (𝑘) + 1 for every 𝑘 ≥ 1. Then there exists a hereditary graph class G such that G is (tw, 𝜔)-
bounded but G contains graphs of arbitrary large tree-independence number.

Proof. Let 𝑓 be the slow function whose cumulative function is 𝐹 . Such a slow function 𝑓 exists by
Observation 5.5. Let 𝐺 be the 𝑓 -layered wheel and let G be the class of finite induced subgraphs of 𝐺 .
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5 The connection between tree-𝛼-bounded graph classes and (tw, 𝜔)-bounded graph classes

Clearly, G is hereditary and Lemma 5.18 implies that G is (tw, 𝜔)-bounded.
We now show that G is not tree-𝛼-bounded. So let 𝑐 be a positive integer. Since 𝐹 is super-linear,

there exists a positive integer 𝑘 such that 𝐹 (𝑘) ≥ 𝑐𝑘 . Let 𝐻 := 𝐺 [𝐿1 ∪ · · · ∪ 𝐿𝐹 (𝑘 ) ]. Lemma 5.7 implies
𝜔 (𝐻 ) = 𝑘 and by Lemma 5.6, the layers 𝐿1, . . . , 𝐿𝐹 (𝑘 ) form a minor model of a complete graph in 𝐻 .

Let T = (𝑇,𝑋𝑡 ) be a tree decomposition of 𝐻 . Lemma 2.13 implies that there exists a node 𝑠 ∈ 𝑉 (𝑇 )
such that 𝑋𝑠 contains at least one vertex of each layer 𝐿𝑖 , 1 ≤ 𝑖 ≤ 𝐹 (𝑘). Now let 𝑌 be a subset of 𝑋𝑆 that
contains exactly one vertex in each layer. Then |𝑌 | = 𝐹 (𝑘) and 𝜔 (𝐻 [𝑌 ]) ≤ 𝑘 . By Lemma 5.19, 𝐻 [𝑌 ] is
chordal. Since every chordal graph is perfect (see Corollary 2.2), we have 𝜔 (𝐻 [𝑌 ]) = 𝜒 (𝐻 [𝑌 ]) and we
get

𝛼 (𝐻 [𝑋𝑠]) ≥ 𝛼 (𝐻 [𝑌 ]) ≥
|𝑌 |

𝜒 (𝐻 [𝑌 ]) =
𝐹 (𝑘)

𝜔 (𝐻 [𝑌 ]) ≥
𝑐𝑘

𝑘
= 𝑐,

where the second inequality holds in any graph. This shows that every tree decomposition of𝐻 contains
a bag 𝑋𝑠 with 𝛼 (𝐻 [𝑋𝑠]) ≥ 𝑐 , which implies tree-𝛼 (𝐻 ) ≥ 𝑐 . Since 𝑐 is arbitrary, G is not tree-𝛼-bounded.
This completes the proof.
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6 Tree-chromatic number

A graph parameter that was introduced in 2016 by Seymour in [Sey16], and that has not been examined
a lot yet, is the tree-chromatic number of a graph. It is defined in the same way the tree-independence
number is defined, replacing the independence number in definitions by the chromatic number: Given a
graph 𝐺 and a tree decomposition of T = (𝑇,𝑋𝑡 ) of 𝐺 , we define the chromatic number of T , denoted
by 𝜒 (T ), as follows:

𝜒 (T ) := max
𝑡 ∈𝑉 (𝑇 )

𝜒 (𝐺 [𝑋𝑡 ]) .

The tree-chromatic number of 𝐺 is defined as the smallest chromatic number taken over all tree decom-
positions of 𝐺 , and it is denoted by tree-𝜒 (𝐺). We observe similar upper bounds for the tree-chromatic
number as we did for the tree-independence number. Additionally, we give a lower bound.

Observation 6.1: Let 𝐺 be a graph. Then

tree-𝜒 (𝐺) ≤ tw(𝐺) + 1, and

𝜔 (𝐺) ≤ tree-𝜒 (𝐺) ≤ 𝜒 (𝐺).
Proof. The proofs of the inequalities tree-𝜒 (𝐺) ≤ tw(𝐺) + 1 and tree-𝜒 (𝐺) ≤ 𝜒 (𝐺) follow the same
approach as in Observation 3.1.
To see 𝜔 (𝐺) ≤ tree-𝜒 (𝐺), consider an arbitrary tree decomposition T of 𝐺 . By Lemma 2.6, each

clique in 𝐺 is contained in some bag of T , in particular a largest clique. Each vertex in a clique must be
colored in a different color, which implies 𝜔 (𝐺) ≤ tree-𝜒 (𝐺).

We give a very simple characterization of graphs that have tree-chromatic number 1.

Lemma 6.2: A graph 𝐺 is edgeless if and only if tree-𝜒 (𝐺) = 1.

Proof. Let 𝐺 be edgeless. We put every vertex of 𝐺 in a different bag, and connect the bags in a way
such that they form a tree. Then tree-𝜒 (𝐺) = 1.
Now assume that 𝐺 is not edgeless. Then there is an edge 𝑢𝜈 ∈ 𝐸 (𝐺) that is contained in a bag of

every tree decomposition of 𝐺 . A proper coloring assigns different colors to 𝑢 and 𝜈 , which implies
tree-𝜒 (𝐺) ≥ 2. This finishes the proof.

By Lemma 6.2 we obtain the following complexity result:

Corollary 6.3: There exists a linear-time algorithm that decides whether a graph has tree-chromatic
number equal to 1.

Unfortunately, the complexity of deciding whether tree-𝜒 (𝐺) ≤ 2 is unknown. In [HRWY21] it is
conjectured that this is already NP-complete.
Are the two graph invariants tree-chromatic number and tree-independence number connected in

some way? Especially, it would be interesting to know if one parameter is a bound for the other one.
This is not the case, as we see in the following example. The class of complete graphs G := {𝐾𝑛 | 𝑛 ∈ ℕ}
is a subclass of the chordal graphs, and hence, by Theorem 3.10, G is tree-𝛼 bounded. But G is not
tree-𝜒-bounded, since tree-𝜒 (𝐾𝑛) = 𝑛 by Observation 6.1. On the other hand, the class of balanced
complete bipartite graphs H := {𝐾𝑛,𝑛 | 𝑛 ∈ ℕ} is tree-𝜒-bounded, since 𝐾𝑛,𝑛 is bipartite and therefore
2-colorable. But H is not tree-𝛼-bounded, since tree-𝛼 (𝐾𝑛,𝑛) = 𝑛, see Corollary 3.5.
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6 Tree-chromatic number

Nevertheless, we give the following bound.

Observation 6.4: Let 𝐺 be a graph and let 𝐺 be the complement of 𝐺 . Then tree-𝛼 (𝐺) ≤ tree-𝜒 (𝐺).

Proof. By Observation 3.1, we have tree-𝛼 (𝐺) ≤ 𝛼 (𝐺). We observe that 𝛼 (𝐺) = 𝜔 (𝐺) holds in any
graph 𝐺 . Now, by Observation 6.1, we get 𝜔 (𝐺) ≤ tree-𝜒 (𝐺), hence

tree-𝛼 (𝐺) ≤ 𝛼 (𝐺) = 𝜔 (𝐺) ≤ tree-𝜒 (𝐺) .

This completes the proof.

The parameter tree-𝜒 is not monotone under taking minors. To see that, consider the graph 𝐾𝑛 . We
know that tree-𝜒 (𝐾𝑛) = 𝑛. Let 𝐺 be the graph obtained from 𝐾𝑛 by subdividing every edge once. Then
𝐺 is bipartite and therefore tree-𝜒 (𝐺) ≤ 𝜒 (𝐺) = 2. Since 𝐾𝑛 is a minor of 𝐺 , tree-𝜒 is not monotone
under taking minors. But tree-𝜒 is monotone under taking subgraphs, since deleting vertices and edges
does not increase the chromatic number of a graph.

6.1 Tree-chromatic number for odd holes and odd antiholes

We now want to find the tree-chromatic number for odd holes and their complements. We use these
results to give another characterization for the class of perfect graphs.

Lemma 6.5: For an odd integer 𝑛 ≥ 5, tree-𝜒 (𝐶𝑛) = 2 = 𝜒 (𝐶𝑛) − 1.

Proof. We denote the vertices of 𝐶𝑛 by 𝜈1, . . . , 𝜈𝑛 along the cycle. We give a tree decomposition of 𝐶𝑛

with chromatic number 2, which implies the claim. The bags are constructed in the following way:
𝑋𝑡𝑖 := {𝜈1, 𝜈𝑖 , 𝜈𝑖+1} for 2 ≤ 𝑖 ≤ 𝑛 − 1. Now connect every bag with its natural successor bag by an edge,
such that they form a path. Clearly, all conditions of the definition of a tree decomposition are satisfied
and 𝜒 (𝑋𝑡𝑖 ) = 2 for every bag 𝑋𝑡𝑖 .

So, the chromatic number of an odd hole is not equal to its tree-chromatic number. The same is true
for odd antiholes:

Lemma 6.6: For an odd integer 𝑛 ≥ 5, tree-𝜒 (𝐶𝑛) = ⌊𝑛2 ⌋ = 𝜒 (𝐶𝑛) − 1.

Proof. As in the previous lemma, we denote the vertices of𝐶𝑛 by 𝜈1, . . . , 𝜈𝑛 (along the cycle𝐶𝑛). Consider
the following tree decomposition of 𝐶𝑛 with two bags. One bag 𝑋1 contains the vertices 𝑉 (𝐶𝑛) \ {𝜈1}
and the other bag 𝑋2 contains the vertices 𝑉 (𝐶𝑛) \ {𝜈2}. Connect 𝑋1 and 𝑋2 by an edge.
First observe, that all conditions of a tree decomposition are satisfied. We now show that each bag

can be colored with ⌊𝑛2 ⌋ colors. We start with the bag 𝑋2. Since consecutive vertices are not adjacent in
𝐶𝑛 , we can color those vertices with the same color. So, we can color 𝜈1 and 𝜈𝑛 with color 1, 𝜈3 and 𝜈4
with color 2, 𝜈5 and 𝜈6 with color 3 and so on. We need |𝑋2 |

2 = 𝑛−1
2 = ⌊𝑛2 ⌋ colors for this process, which

is what we wanted to show.
We do the same procedure for bag 𝑋1, i.e. the vertices 𝜈2 and 𝜈3 get color 1, 𝜈4 and 𝜈5 get color 2 and

so on. This shows tree-𝜒 (𝐶𝑛) ≤ ⌊𝑛2 ⌋.
To see tree-𝜒 (𝐶𝑛) ≥ ⌊𝑛2 ⌋, observe that the vertices 𝜈2, 𝜈4, . . . , 𝜈𝑛−1 form a clique in 𝐶𝑛 of size ⌊𝑛2 ⌋.

Hence 𝜔 (𝐶𝑛) ≥ ⌊𝑛2 ⌋, which implies tree-𝜒 (𝐶𝑛) ≥ ⌊𝑛2 ⌋ by Observation 6.1. This concludes the proof.

With the previous two lemmas we are now able to give another characterization of the class of perfect
graphs.
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6.2 Bounding the treewidth by the tree-chromatic number and the tree-independence number

Corollary 6.7: A graph𝐺 is perfect if and only if tree-𝜒 (𝐺 ′) = 𝜒 (𝐺 ′) for every induced subgraph𝐺 ′ of𝐺 .

Proof. For the if part we assume that 𝐺 is perfect. By definition, we have 𝜔 (𝐺 ′) = 𝜒 (𝐺 ′) for every
induced subgraph 𝐺 ′ of 𝐺 and by Observation 6.1 we have tree-𝜒 (𝐺 ′) = 𝜒 (𝐺 ′).
We prove the only if part by contraposition. So we assume that𝐺 is not perfect. By the Strong Perfect

Graph Theorem (Theorem 2.1),𝐺 contains an odd hole or an odd antihole. As shown in Lemmas 6.5 and
6.6, the tree-chromatic number is not equal to the chromatic number for odd holes and odd antiholes,
which implies the claim.

6.2 Bounding the treewidth by the tree-chromatic number and the
tree-independence number

We now want to tackle a problem introduced in [DMŠ24a]. We need some observations to pose the
problem.

For every graph𝐺 , we have |𝑉 (𝐺) | ≤ 𝛼 (𝐺) · 𝜒 (𝐺). To see that, observe that every color class induces
an independent set, every independent set has size at most 𝛼 (𝐺) and we have 𝜒 (𝐺) independent sets.
Now let T be a tree-𝛼-optimal tree decomposition of𝐺 , i.e. 𝛼 (T ) = tree-𝛼 (𝐺). Let 𝑋𝑡 a bag of maximum
size in T . By the previous inequality, we obtain

tw(𝐺) + 1 ≤ |𝑋𝑡 | ≤ 𝛼 (T ) · 𝜒 (𝐺) = tree-𝛼 (𝐺) · 𝜒 (𝐺) .

Analogously, let T ′ be a tree-𝜒-optimal tree decomposition of 𝐺 and 𝑋 ′𝑡 be a bag of maximum size in
T ′. Then we obtain

tw(𝐺) + 1 ≤ |𝑋 ′𝑡 | ≤ 𝛼 (𝐺) · 𝜒 (T ′) = 𝛼 (𝐺) · tree-𝜒 (𝐺).

Now the question asked in [DMŠ24a], is whether the following natural strengthening also holds in
any graph 𝐺 :

Question 6.8: Does tw(𝐺) + 1 ≤ tree-𝛼 (𝐺) · tree-𝜒 (𝐺) hold for every graph 𝐺?

We give a negative answer to this question by constructing the following graph. We start with a
𝐶5 and call the vertices 𝜈1, . . . , 𝜈5. Then we add paths of length 2 between every pair of non-adjacent
vertices 𝜈𝑖 and 𝜈 𝑗 , with 𝑖 < 𝑗 and call the inner vertex of that path 𝑥𝑖, 𝑗 . Since the resulting graph is a
subdivision of 𝐾5, starting with 𝐶5, we call the resulting graph the 𝐶5-subdivision of 𝐾5, which is shown
in Figure 6.1, and denote it by 𝑆 (𝐶5). In general, given any graph𝐺 on 𝑛 vertices, if we connect any pair
of non-adjacent vertices in 𝐺 by a path of length 2, we call the resulting graph the 𝐺-subdivision of 𝐾𝑛
and denote it by 𝑆 (𝐺).

Clearly, 𝑆 (𝐶5) contains 𝐾5 as a minor, yielding tw(𝑆 (𝐶5)) ≥ 4 by Lemma 2.15 and Corollary 2.7. Also,
tree-𝜒 (𝑆 (𝐶5)) ≥ 2 since 𝑆 (𝐶5) is not edgeless (see Lemma 6.2) and tree-𝛼 (𝑆 (𝐶5)) ≥ 2 since 𝑆 (𝐶5) is not
chordal (see Theorem 3.10).
We have to show that tree-𝛼 (𝑆 (𝐶5)) ≤ 2 and tree-𝜒 (𝑆 (𝐶5)) ≤ 2. We start with tree-𝛼 (𝑆 (𝐶5)) ≤ 2.

To see that, consider the tree decomposition, consisting of one bag 𝑋 containing the original 𝐶5. For
every path connecting two non-adjacent vertices of 𝐶5, we create a leaf bag in the tree decomposition
containing the two endpoints and the inner vertex. This yields a valid tree decomposition T with
𝛼 (T ) = 2. Hence, tree-𝛼 (𝑆 (𝐶5)) ≤ 2 and therefore tree-𝛼 (𝑆 (𝐶5)) = 2.

We now prove tree-𝜒 (𝑆 (𝐶5)) ≤ 2. We start by defining two bags 𝑋1 := {𝜈1, 𝜈2, 𝜈3, 𝜈4, 𝑥25} and
𝑋2 := {𝜈1, 𝜈3, 𝜈4, 𝜈5, 𝑥25} and add an edge between them. We then add bags 𝑋13 := {𝜈1, 𝜈3, 𝑥1,3} and
𝑋24 := {𝜈2, 𝜈4, 𝑥2,4} and attach them as leaf bags to the bag 𝑋1. Also, we add bags 𝑋14 := {𝜈1, 𝜈4, 𝑥1,4} and
𝑋35 := {𝜈3, 𝜈5, 𝑥3,5} and attach them as leaf bags to the bag 𝑋2. One can easily check that this is a valid
tree decomposition T with 𝜒 (T ) = 2, which implies tree-𝜒 (𝑆 (𝐶5)) ≤ 2 and thus tree-𝜒 (𝑆 (𝐶5)) = 2.
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6 Tree-chromatic number
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Figure 6.1: A counterexample for Question 6.8.

We obtain tw(𝑆 (𝐶5)) + 1 ≥ 5 > 4 = tree-𝛼 (𝑆 (𝐶5)) · tree-𝜒 (𝑆 (𝐶5)), which is a negative answer to
Question 6.8.

Our construction exceeds the bound by exactly one. Now we want to know if we can construct graphs
whose treewidth can be bounded from below by the product of tree-𝛼 and tree-𝜒 and some constant
𝑐 ∈ ℝ. This is the subject of the following sections.

6.3 Pushing the lower bound

The construction of the counterexample in Figure 6.1 was based on the idea of introducing paths of
length 2 between any pair of non-adjacent vertices of𝐶5. We now study this case more generally: Given
any graph 𝐺 , we consider the 𝐺-subdivision of 𝐾𝑛 , 𝑆 (𝐺). Clearly, 𝑆 (𝐺) is a subdivision of 𝐾𝑛 and if
𝐺 = 𝐾𝑛 then 𝑆 (𝐺) = 𝐾𝑛 and if 𝐺 = 𝐸𝑛 then 𝑆 (𝐺) = 𝐾 (1)𝑛 (recall that 𝐾 (1)𝑛 is the graph obtained from 𝐾𝑛
by subdividing every edge exactly once). We prove some useful properties of the graph 𝑆 (𝐺).

Lemma 6.9: Let 𝐺 be a non-edgeless graph on 𝑛 ≥ 3 vertices. Then

(i) tw(𝑆 (𝐺)) = 𝑛 − 1,

(ii) 𝛼 (𝐺) − 1 ≤ tree-𝛼 (𝑆 (𝐺)) ≤ 𝛼 (𝐺),

(iii) tree-𝜒 (𝑆 (𝐺)) = tree-𝜒 (𝐺).

Proof. Since 𝑆 (𝐺) is a subdivision of 𝐾𝑛 , it contains 𝐾𝑛 as a minor. Thus tw(𝑆 (𝐺)) ≥ 𝑛 − 1 by Lemma
2.15 and Corollary 2.7. To see that tw(𝑆 (𝐺)) ≤ 𝑛 − 1, let T be the following tree decomposition of 𝑆 (𝐺):
We put the vertices 𝑉 (𝐺) in a bag 𝑋 and for every subdivision vertex 𝜈 , we add 𝜈 and its two neighbors
in a new bag 𝑋𝜈 and add 𝑋𝜈 as a leaf to 𝑋 . This yields a valid tree decomposition of 𝑆 (𝐺). The bag 𝑋
has size |𝑉 (𝐺) | = 𝑛 ≥ 3 and each leaf bag 𝑋𝜈 has size 3. Hence, T is a tree decomposition of 𝑆 (𝐺) of
width 𝑛 − 1. This implies tw(𝑆 (𝐺)) ≤ 𝑛 − 1, which completes the proof of (i).

For the first inequality in (ii), observe that a largest independent set in 𝐺 induces a 𝐾 (1)
𝛼 (𝐺 ) in 𝑆 (𝐺).

Thus, 𝐾 (1)
𝛼 (𝐺 ) is an induced minor of 𝑆 (𝐺), and by Lemma 3.2 and Corollary 3.6, we have tree-𝛼 (𝑆 (𝐺)) ≥

tree-𝛼 (𝐾 (1)
𝛼 (𝐺 ) ) = 𝛼 (𝐺) − 1.

To prove the second inequality in (ii), we take the same tree decomposition T of 𝑆 (𝐺) as in the proof
of (i) and see that the bag 𝑋 induces a subgraph with independence number 𝛼 (𝐺) and each leaf bag 𝑋𝜈

induces a subgraph of independence number 2. As long as 𝛼 (𝐺) ≥ 2, the second inequality of (ii) follows
immediately. If 𝛼 (𝐺) = 1, then 𝐺 = 𝐾𝑛 , thus 𝑆 (𝐺) = 𝐾𝑛 , and the claim follows by Observation 3.1.
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6.3 Pushing the lower bound

Now we prove (iii). We have tree-𝜒 (𝐺) ≤ tree-𝜒 (𝑆 (𝐺)) since 𝐺 is a subgraph of 𝑆 (𝐺) and tree-𝜒 is
monotone under taking subgraphs. To show tree-𝜒 (𝑆 (𝐺)) ≤ tree-𝜒 (𝐺), let T𝐺 be a tree-𝜒-optimal tree
decomposition of 𝐺 . Since 𝐺 is not edgeless, we have 𝜒 (T𝐺 ) ≥ 2 by Lemma 6.2. If 𝐺 is the complete
graph, then 𝑆 (𝐺) = 𝐺 and hence tree-𝜒 (𝑆 (𝐺)) = tree-𝜒 (𝐺). So we may assume that there exist two
non-adjacent vertices 𝑢 and 𝜈 in𝐺 . Let𝑤 be the corresponding subdivision vertex in 𝑆 (𝐺). We construct
a tree decomposition T𝑆 (𝐺 ) of 𝑆 (𝐺) from T𝐺 with 𝜒 (T𝑆 (𝐺 ) ) ≤ 𝜒 (T𝐺 ). If there is a bag 𝑋𝑡 in T𝐺 with
𝑢, 𝜈 ∈ 𝑋𝑡 , we add a leaf bag to 𝑋𝑡 containing 𝑢, 𝜈,𝑤 . Such a leaf bag induces a graph that is 2-colorable.
If there is no bag in T𝐺 containing both 𝑢 and 𝜈 , then we add𝑤 to every bag. This does not increase the
chromatic number of the tree decomposition, since 𝜒 (T𝐺 ) ≥ 2 and𝑤 has at most one neighbor in each
bag. We repeat this process for every pair of non-adjacent vertices in𝐺 . We see that T𝑆 (𝐺 ) is a valid tree
decomposition of𝐻 satisfying 𝜒 (T𝑆 (𝐺 ) ) ≤ 𝜒 (T𝐺 ) = tree-𝜒 (𝐺), which implies tree-𝜒 (𝑆 (𝐺)) ≤ tree-𝜒 (𝐺).
This completes the proof of (iii).

Our goal is to find a graph 𝐺 such that 𝑆 (𝐺) satisfies

tw(𝑆 (𝐺)) + 1 ≥ 𝑐 tree-𝛼 (𝑆 (𝐺)) tree-𝜒 (𝑆 (𝐺)) (6.1)

for some constant 𝑐 ∈ ℝ as large as possible. By Lemma 6.9, we have tree-𝛼 (𝑆 (𝐺)) ≤ 𝛼 (𝐺) and
tree-𝜒 (𝑆 (𝐺)) = tree-𝜒 (𝐺), so basically we want 𝐺 to have small 𝛼 (𝐺) · tree-𝜒 (𝐺) compared to 𝑛. If
tree-𝜒 (𝐺) = 1, then 𝐺 = 𝐸𝑛 by Lemma 6.2 and hence 𝛼 (𝐺) = 𝑛, so this will not work. Let’s focus on
the case where tree-𝜒 (𝐺) = 2. We want to have two disjoint subsets 𝐴, 𝐵 ⊆ 𝑉 (𝐺) such that 𝐺 −𝐴 and
𝐺 − 𝐵 are bipartite graphs and 𝐴 and 𝐵 are anticomplete to each other. In such a case, tree-𝜒 (𝐺) = 2 is
always satisfies, as shown in the following lemma.

Lemma 6.10: Let 𝐺 be a graph and let 𝐴, 𝐵 ⊆ 𝑉 (𝐺) be two disjoint, anticomplete subsets such that 𝐺 −𝐴
and 𝐺 − 𝐵 are bipartite graphs. Then tree-𝜒 (𝐺) ≤ 2.

Proof. If𝐺 is edgeless, then tree-𝜒 (𝐺) = 1 by Lemma 6.2. So we may assume that𝐺 contains at least one
edge. We construct a tree decomposition of 𝐺 with three bags: 𝑋1 := 𝑉 (𝐺) \ (𝐴 ∪ 𝐵), that is connected
to two leaf bags 𝑋2 := 𝑉 (𝐺) \𝐴 and 𝑋3 := 𝑉 (𝐺) \ 𝐵. Since 𝐴 and 𝐵 are anticomplete, all conditions of
the definition of a tree decomposition are satisfied. Since 𝐺 −𝐴 and 𝐺 − 𝐵 are bipartite, it follows that
𝐺 − (𝐴 ∪ 𝐵) is bipartite, too. Thus, all the bags 𝑋1, 𝑋2 and 𝑋3 induce subgraphs in 𝐺 with chromatic
number at most 2. This proves the claim.

Now if we find such a graph𝐺 with 𝛼 (𝐺) = 𝑐′𝑛 for some 𝑐′ ∈ ℝ, we get tree-𝛼 (𝑆 (𝐺)) tree-𝜒 (𝑆 (𝐺)) ≤
2𝛼 (𝐺) = 2𝑐′𝑛, and since tw(𝑆 (𝐺)) = 𝑛 − 1 by Lemma 6.9, we want 2𝑐′𝑛 < 𝑛 and hence 𝑐′ < 1/2.

But how small can 𝑐′ be under the given circumstances? Since 𝐺 −𝐴 is bipartite, we have

𝛼 (𝐺) ≥ 1
2
(𝑛 − |𝐴|) .

Analogously, we obtain
𝛼 (𝐺) ≥ 1

2
(𝑛 − |𝐵 |) .

Also, since 𝐴 and 𝐵 are anticomplete to each other and 𝐴 and 𝐵 are bipartite themselves (otherwise,
𝐴 ⊆ 𝑉 (𝐺 − 𝐵) would not induce a bipartite graph), we get

𝛼 (𝐺) ≥ 1
2
|𝐴| + 1

2
|𝐵 |.

Adding these three inequalities yields 3𝛼 (𝐺) ≥ 𝑛 which implies 𝛼 (𝐺) ≥ 1
3𝑛. So, the best constant we

can hope for is 𝑐′ = 1
3 . In fact, we will see later that 𝑐′ = 1

3 is not reachable. But first, we give a graph 𝐺
with 𝛼 (𝐺) = 3

8𝑛, hence 𝑐
′ = 3

8 , which is best possible, which we also prove later.
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6 Tree-chromatic number

Consider the graph in Figure 6.2, which is known as the Wagner graph𝑊8. It is named after the
Germanmathematician KlausWagner1. Wagner became famous for his results in graph theory, including
Wagner’s theorem, which characterizes planar graphs by the two forbidden minors 𝐾5 and 𝐾3,3. Also,
the Robertson-Seymour theorem was known as Wagner’s conjecture before it was proven.

b1

b2

a1

a2

c1

c3

c2c4

Figure 6.2: The Wagner graph𝑊8.

We have to show that𝑊8 fulfills all the properties discussed above. First of all, we set 𝐴 := {𝑎1, 𝑎2}
and 𝐵 := {𝑏1, 𝑏2} and see that 𝐴 ∩ 𝐵 = ∅, 𝐴 and 𝐵 are anticomplete to each other and𝑊8 − 𝐴 and
𝑊8 − 𝐵 are bipartite. Lemma 6.10 implies that tree-𝜒 (𝑊8) ≤ 2. One can easily verify that 𝛼 (𝑊8) =
3 = 3

8 |𝑉 (𝑊8) |, hence 𝑐′ = 3
8 . By Lemma 6.9 and the discussion above, we get tw(𝑆 (𝑊8)) = 7 and

tree-𝛼 (𝑆 (𝑊8)) tree-𝜒 (𝑆 (𝑊8)) ≤ 2𝛼 (𝑊8) = 6. So until now, there is no improvement compared to the
graph in Figure 6.1.
We generalize this idea as follows: Let now 𝐺𝑘 be the graph obtained by taking 𝑘 disjoint copies

of𝑊8. Clearly, |𝑉 (𝐺𝑘 ) | = 8𝑘 and 𝛼 (𝐺𝑘 ) = 3𝑘 . In each copy of𝑊8, we pick vertices 𝑎1, 𝑎2 and put
them in a set 𝐴, and pick vertices 𝑏1, 𝑏2 and put them in a set 𝐵, just as we did before. In this way,
we obtain two disjoint, anticomplete sets 𝐴, 𝐵 with 𝐺𝑘 − 𝐴 and 𝐺𝑘 − 𝐵 bipartite. Then, we have
tw(𝑆 (𝐺𝑘 )) = 8𝑘 − 1 and tree-𝛼 (𝑆 (𝐺𝑘 )) tree-𝜒 (𝑆 (𝐺𝑘 )) ≤ 2𝛼 (𝐺𝑘 ). Take for example 𝑘 = 10, then
tw(𝑆 (𝐺𝑘 )) = 79 and tree-𝛼 (𝑆 (𝐺𝑘 )) tree-𝜒 (𝑆 (𝐺𝑘 )) ≤ 60. As 𝑘 grows, tw(𝑆 (𝐺𝑘 )) gets arbitrary far away
from tree-𝛼 (𝑆 (𝐺𝑘 )) tree-𝜒 (𝑆 (𝐺𝑘 )). The graph 𝑆 (𝐺𝑘 ) satisfies

tw(𝑆 (𝐺𝑘 )) + 1 ≥
4
3
tree-𝛼 (𝑆 (𝐺𝑘 )) tree-𝜒 (𝑆 (𝐺𝑘 )),

hence, 𝑐 = 4/3 for the constant 𝑐 in the Inequality 6.1.
Our construction started with the Wagner graph𝑊8 that has 𝛼 (𝑊8) = 3

8 |𝑉 (𝑊8) |. Can we find another
graph with a smaller independence number and thereby improve the constant 𝑐 = 4/3? This is not
possible, as shown in the following theorem.

Theorem 6.11: Let𝐺 be a non-edgeless graph on 𝑛 ≥ 3 vertices, and let𝐴, 𝐵 ⊆ 𝑉 (𝐺) be two vertex-disjoint
subsets, such that 𝐴 and 𝐵 are anticomplete to each other and 𝐺 −𝐴 and 𝐺 − 𝐵 are bipartite graphs. Then
𝛼 (𝐺) ≥ 3

8𝑛.

1https://en.wikipedia.org/wiki/Klaus_Wagner
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6.4 Another lower bound using shift graphs

Proof. Let 𝐶 := 𝑉 (𝐺) \ (𝐴 ∪ 𝐵). Clearly, 𝐺 [𝐴 ∪𝐶] = 𝐺 − 𝐵 and 𝐺 [𝐵 ∪𝐶] = 𝐺 − 𝐴. Since 𝐺 [𝐴 ∪𝐶] is
bipartite, there is a coloring 𝜙𝐴 : 𝐴 ∪𝐶 → {1, 2}. Analogously, there is a coloring 𝜙𝐵 : 𝐵 ∪𝐶 → {1, 2}.
Now, we define the coloring 𝜙 with

𝜙 (𝜈) :=

𝜙𝐴 (𝜈), if 𝜈 ∈ 𝐴.
𝜙𝐵 (𝜈), if 𝜈 ∈ 𝐵.
(𝜙𝐴 (𝜈), 𝜙𝐵 (𝜈)), if 𝜈 ∈ 𝐶.

Note that two vertices 𝑐1, 𝑐2 ∈ 𝐶 can only be adjacent if 𝜙 (𝑐1) = (1, 1) and 𝜙 (𝑐2) = (2, 2) or 𝜙 (𝑐1) = (1, 2)
and 𝜙 (𝑐2) = (2, 1). Otherwise, if e.g. 𝜙 (𝑐1) = (1, 2) and 𝜙 (𝑐2) = (1, 1), then 𝜙𝐴 (𝑐1) = 𝜙𝐴 (𝑐2) = 1, a
contradiction. We denote by 𝑎1 and 𝑎2 the number of vertices in 𝐴 that have colors 1 and 2 respectively.
We do the same for vertices in𝐵 and𝐶 . Observe that𝑎1+𝑎2 = |𝐴|,𝑏1+𝑏2 = |𝐵 | and 𝑐1,1+𝑐1,2+𝑐2,1+𝑐2,2 = |𝐶 |.
Then we obtain the following inequalities:

𝛼 (𝐺) ≥ 𝑎1 + 𝑏1 + 𝑐2,2,
𝛼 (𝐺) ≥ 𝑎1 + 𝑏2 + 𝑐2,1,
𝛼 (𝐺) ≥ 𝑎2 + 𝑏1 + 𝑐1,2,
𝛼 (𝐺) ≥ 𝑎2 + 𝑏2 + 𝑐1,1.

Similarly, we get
𝛼 (𝐺) ≥ 𝑎1 + 𝑐2,1 + 𝑐2,2,
𝛼 (𝐺) ≥ 𝑎2 + 𝑐1,1 + 𝑐1,2,
𝛼 (𝐺) ≥ 𝑏1 + 𝑐1,2 + 𝑐2,2,
𝛼 (𝐺) ≥ 𝑏2 + 𝑐1,1 + 𝑐2,1.

Adding these 8 inequalities, we have

8𝛼 (𝐺) ≥ 3𝑎1 + 3𝑎2 + 3𝑏1 + 3𝑏2 + 3𝑐1,1 + 3𝑐1,2 + 3𝑐2,1 + 3𝑐2,2
= 3(𝑎1 + 𝑎2 + 𝑏1 + 𝑏2 + 𝑐1,1 + 𝑐1,2 + 𝑐2,1 + 𝑐2,2)
= 3( |𝐴| + |𝐵 | + |𝐶 |) = 3𝑛.

Thus, 𝛼 (𝐺) ≥ 3
8𝑛. This completes the proof.

In view of Lemma 6.10 and Theorem 6.11, the Wagner graph𝑊8 is best possible. So we cannot get
any better bounds with graphs that have two subsets 𝐴 and 𝐵 satisfying the discussed properties. In the
next section, we use another approach to improve our constant 𝑐 from Inequality 6.1.

6.4 Another lower bound using shift graphs

Remember that our goal is to find a graph𝐺 such that tw(𝑆 (𝐺)) + 1 ≥ 𝑐 tree-𝛼 (𝑆 (𝐺)) tree-𝜒 (𝑆 (𝐺)) for
some constant 𝑐 ∈ ℝ as large as possible. In the last section we showed that 𝑐 ≥ 4

3 is possible; we now
show how to improve this value.

If𝐺 is non-edgeless and has 𝑛 ≥ 3 vertices, then Lemma 6.9 implies tw(𝑆 (𝐺)) = 𝑛− 1, tree-𝜒 (𝑆 (𝐺)) =
tree-𝜒 (𝐺) and tree-𝛼 (𝑆 (𝐺)) ≤ 𝛼 (𝐺). Thus, we want tree-𝜒 (𝐺) ·𝛼 (𝐺) to be as small as possible compared
to 𝑛.
For an integer 𝑁 ≥ 2, the shift graph 𝑆𝑁 is a graph whose vertex set consists of real intervals [𝑎, 𝑏]

with 1 ≤ 𝑎 < 𝑏 ≤ 𝑁 and two vertices [𝑎, 𝑏] and [𝑐, 𝑑] are adjacent if and only if 𝑏 = 𝑐 or 𝑑 = 𝑎. Shift
graphs were introduced by Erdős and Hajnal in [EH68]. They form a class of graphs that is triangle-free
but has arbitrary large chromatic number.
We prove that every shift graph has tree-chromatic number equal to 2. It follows that there exist

graph classes with bounded tree-chromatic number but unbounded chromatic number.
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6 Tree-chromatic number

Theorem 6.12: [Sey16] Every shift graph 𝑆𝑁 has tree-chromatic number at most 2.

Proof. We give a tree decomposition T of 𝑆𝑁 with 𝜒 (T ) = 2. Let 𝑇 be a path with vertices 𝑡1, . . . , 𝑡𝑁
that are adjacent in the obvious way. For 1 ≤ 𝑖 ≤ 𝑁 , let 𝑋𝑖 contain all vertices [𝑎, 𝑏] ∈ 𝑉 (𝑆𝑁 ) with
𝑎 ≤ 𝑖 ≤ 𝑏. We claim that T = (𝑇,𝑋𝑡 ) is a tree decomposition of 𝑆𝑁 . First, observe that [𝑎, 𝑏] ∈ 𝑋𝑖 if and
only if 𝑎 ≤ 𝑖 ≤ 𝑏. If [𝑎, 𝑏] [𝑏, 𝑐] ∈ 𝐸 (𝑆𝑁 ) is an edge, then [𝑎, 𝑏] and [𝑏, 𝑐] are both contained in 𝑋𝑏 . Also,
if 𝑖 < 𝑗 < 𝑘 and [𝑎, 𝑏] ∈ 𝑋𝑖 ∩ 𝑋𝑘 , then 𝑎 ≤ 𝑖 ≤ 𝑏 and 𝑎 ≤ 𝑘 ≤ 𝑏, hence 𝑎 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑏, so [𝑎, 𝑏] ∈ 𝑋 𝑗

(that is condition (iii)* of the definition of a tree decomposition). Thus, T is a tree decomposition of 𝑆𝑁 .
Now for 1 ≤ 𝑖 ≤ 𝑁 , 𝑋𝑖 is the union of the two sets {[𝑎, 𝑏] | 𝑎 < 𝑖 ≤ 𝑏} and {[𝑎, 𝑏] | 𝑎 ≤ 𝑖 < 𝑏}.

These sets are independent in 𝑆𝑁 . Therefore, every bag induces a bipartite graph in 𝑆𝑁 , which implies
𝜒 (T ) = 2, and we are done.

In [ARS22] it is shown that there exists an induced subgraph 𝑆 ′
𝑁
of 𝑆𝑁 with

lim
𝑁→∞

𝛼 (𝑆 ′
𝑁
)

|𝑉 (𝑆 ′
𝑁
) | =

1
4
.

The proof of this result uses random graphs and is not constructive. Nevertheless, we use this result to
get a graph 𝑆 ′

𝑁
with tree-𝜒 (𝑆 ′

𝑁
) = 2 and 𝛼 (𝑆 ′

𝑁
) = 1

4 |𝑉 (𝑆
′
𝑁
) | as 𝑁 →∞. Collecting all these results, the

graph 𝑆 (𝑆 ′
𝑁
) satisfies

tw(𝑆 (𝑆 ′
𝑁
)) + 1 = |𝑉 (𝑆 ′

𝑁
) | = 4𝛼 (𝑆 ′

𝑁
)

≥ 4 tree-𝛼 (𝑆 (𝑆 ′
𝑁
))

= 2 tree-𝜒 (𝑆 ′
𝑁
) tree-𝛼 (𝑆 (𝑆 ′

𝑁
))

= 2 tree-𝜒 (𝑆 (𝑆 ′
𝑁
)) tree-𝛼 (𝑆 (𝑆 ′

𝑁
)),

as 𝑁 tends to infinity, improving the constant 𝑐 in Inequality 6.1 to be equal to 2.

6.5 Finding upper bounds

In this section wewant to find upper bounds for the treewidth of a graph in terms of its tree-independence
number and its tree-chromatic number. More precisely, we want to find a function 𝑓 : ℕ×ℕ→ ℕ such
that tw(𝐺) ≤ 𝑓 (tree-𝛼 (𝐺), tree-𝜒 (𝐺)). All the lower bounds that we constructed use 𝐺-subdivisions of
𝐾𝑛 , so we first consider the limitations of this construction by providing an upper bound.

Theorem 6.13: Let 𝐺 be a non-edgeless graph on 𝑛 ≥ 3 vertices and let 𝑆 (𝐺) be the 𝐺-subdivision of 𝐾𝑛 .
Then, tw(𝑆 (𝐺)) ∈ 𝑂 (tree-𝛼 (𝑆 (𝐺))2 tree-𝜒 (𝑆 (𝐺))).
Proof. By Lemma 6.9, we have tw(𝑆 (𝐺))+1 = 𝑛, tree-𝜒 (𝑆 (𝐺)) = tree-𝜒 (𝐺) and tree-𝛼 (𝑆 (𝐺)) ≥ 𝛼 (𝐺)−1.
Now let T = (𝑇,𝑋𝑡 ) be a tree-𝜒-optimal tree decomposition of 𝐺 . For each bag 𝑋𝑡 and for any

pair of vertices 𝑢, 𝜈 ∈ 𝑋𝑡 , we add an edge 𝑢𝜈 in 𝐺 . By this procedure, we obtain a graph 𝐺 ′ with
|𝑉 (𝐺 ′) | = |𝑉 (𝐺) |, 𝛼 (𝐺) ≥ 𝛼 (𝐺 ′) and T is a tree decomposition of 𝐺 ′ where every bag induces a clique
in 𝐺 ′. Lemma 2.9 implies that 𝐺 ′ is chordal.

Now, let 𝑋𝑡 be a largest bag of T . Clearly, |𝑋𝑡 | = 𝜔 (𝐺 ′) and we get

𝜔 (𝐺 ′) = |𝑋𝑡 | ≤ 𝛼 (𝐺 [𝑋𝑡 ]) · 𝜒 (𝐺 [𝑋𝑡 ]) ≤ 𝛼 (𝐺) · tree-𝜒 (𝐺),

where the first inequality holds in any graph. Since 𝐺 ′ is chordal, it is perfect by Corollary 2.2 and
therefore satisfies |𝑉 (𝐺 ′) | ≤ 𝛼 (𝐺 ′)𝜔 (𝐺 ′) (see [Lov72]). Putting all this together, we obtain

tw(𝑆 (𝐺)) + 1 = 𝑛 = |𝑉 (𝐺) | = |𝑉 (𝐺 ′) |
≤ 𝛼 (𝐺 ′)𝜔 (𝐺 ′)
≤ 𝛼 (𝐺)𝛼 (𝐺) tree-𝜒 (𝐺)
≤ (tree-𝛼 (𝑆 (𝐺)) + 1)2 tree-𝜒 (𝑆 (𝐺)),
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6.5 Finding upper bounds

so tw(𝑆 (𝐺)) ∈ 𝑂 (tree-𝛼 (𝑆 (𝐺))2 tree-𝜒 (𝑆 (𝐺))), which is what we wanted to show.

If we consider the general case, we are not able to give a polynomial function 𝑓 . Nevertheless, we can
give an exponential bound.

Theorem 6.14: Any graph 𝐺 satisfies

tw(𝐺) ∈ 𝑂 (4tree-𝜒 (𝐺 )+tree-𝛼 (𝐺 ) ) .

Proof. Let 𝐺 be a graph and let T be a tree-𝛼-optimal tree decomposition of 𝐺 , i.e. 𝛼 (T ) = tree-𝛼 (𝐺).
Every bag 𝑋𝑡 of T induces a subgraph 𝐺 [𝑋𝑡 ] with 𝛼 (𝐺 [𝑋𝑡 ]) ≤ tree-𝛼 (𝐺) and 𝜔 (𝐺 [𝑋𝑡 ]) ≤ 𝜔 (𝐺) ≤
tree-𝜒 (𝐺). By Ramsey’s Theorem (see also proof of Lemma 5.3), we have |𝑋𝑡 | ≤ 𝑅(tree-𝜒 (𝐺) +
1, tree-𝛼 (𝐺) + 1) − 1. Since 𝑅(𝑚,𝑚) ≤ 4𝑚 (see e.g. [AZ18]) and 𝑅(𝑚,𝑛) ≤ max{𝑅(𝑚,𝑚), 𝑅(𝑛, 𝑛)},
we obtain

𝑅(𝑚,𝑛) ≤ max{𝑅(𝑚,𝑚), 𝑅(𝑛, 𝑛)} ≤ max{4𝑚, 4𝑛} ≤ 4𝑚+𝑛 .

If we set𝑚 = tree-𝜒 (𝐺) + 1 and 𝑛 = tree-𝛼 (𝐺) + 1, we get |𝑋𝑡 | ≤ 4tree-𝜒 (𝐺 )+tree-𝛼 (𝐺 )+2. This holds for
every bag 𝑋𝑡 , in particular it holds for a largest bag and hence tw(𝐺) + 1 ≤ 4tree-𝜒 (𝐺 )+tree-𝛼 (𝐺 )+2, i.e.
tw(𝐺) ∈ 𝑂 (4tree-𝜒 (𝐺 )+tree-𝛼 (𝐺 ) ).

So, in the general case, there is a huge gap between the lower bound (a linear function in tree-𝛼 and
tree-𝜒) and the upper bound (an exponential function in tree-𝛼 and tree-𝜒). We ask a natural follow-up
question:

Question 6.15: Given a graph 𝐺 , is there any polynomial function 𝑓 : ℕ ×ℕ→ ℕ such that tw(𝐺) ≤
𝑓 (tree-𝛼 (𝐺), tree-𝜒 (𝐺))?
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7 The Central Bag Method

In this chapter, we will introduce a concept called the central bag method. It has application in different
papers, including [ACV22 | Abr+24b | CAHS22 | ACDR22]. The authors of these papers developed the
central bag method; in particular, Abrishami wrote a survey about this method in [Abr23]. Most
definitions and proofs are taken from this survey.
The method was invented to bound the treewidth of graph classes. The main idea is as follows:

Assume we are given a graph class G and we need to find out whether the treewidth of graphs in G is
bounded or not. In general, this is not an easy task. Instead, we try to find a “core” of a graph 𝐺 ∈ G for
which the task of determining its treewidth is easier than determining the treewidth of 𝐺 itself. Under
certain conditions, we can then extend the solution of this core to a solution of 𝐺 .

In fact, we generalize this method in a way, such that we can not only bound the treewidth of graph
classes, but also the tree-independence number and the tree-chromatic number.

7.1 The tree decomposition point of view

In the central bag method, everything is defined in terms of separations. Before we get there in the next
section, we want to give an intuition of the new concept using tree decompositions. The reason why we
do not work with tree decompositions directly, is that we often know more about the separations of a
graph class than we know about its tree decompositions. We will see in this section that these concept
are in fact equivalent. We follow the notation of [Abr23].

Let𝐺 be a graph. A function𝑤 : 𝑉 (𝐺) → ℝ is called a weight function on𝐺 . Given a weight function
𝑤 and a subset 𝑋 ⊆ 𝑉 (𝐺), we define𝑤 (𝑋 ) := ∑

𝑥∈𝑋 𝑤 (𝑥). A weight function𝑤 on𝐺 is a normal weight
function if𝑤 : 𝑉 (𝐺) → [0, 1] and𝑤 (𝑉 (𝐺)) = 1.

From now on, unless stated otherwise, let 𝐺 be a graph and let𝑤 be a normal weight function on 𝐺 .
A set 𝑋 ⊆ 𝑉 (𝐺) is called 𝑤-balanced separator of 𝐺 if for every component 𝐷 of 𝐺 − 𝑋 , it holds that
𝑤 (𝐷) ≤ 1/2. The existence of𝑤-balanced separators of small size for every normal weight function𝑤
is crucial in the central bag method, since it is equivalent of having bounded treewidth. We will show
this equivalence later. The following lemma is a well-known result and it is used very frequently when
working with tree decompositions.

Lemma 7.1: [Die17][Abr23] Let (𝑇,𝑋𝑡 ) be a tree decomposition of a graph 𝐺 , let 𝑡1𝑡2 ∈ 𝐸 (𝑇 ) be an edge
and let 𝑇1 and 𝑇2 be the two components of 𝑇 − 𝑡1𝑡2 with 𝑡1 ∈ 𝑉 (𝑇1) and 𝑡2 ∈ 𝑉 (𝑇2). Let 𝐶 := 𝑋𝑡1 ∩ 𝑋𝑡2 ,
𝐴 :=

⋃
𝑡 ∈𝑉 (𝑇1 ) 𝑋𝑡 \𝐶 and 𝐵 :=

⋃
𝑡 ∈𝑉 (𝑇2 ) 𝑋𝑡 \𝐶 . Then (𝐴,𝐶, 𝐵) is a separation of 𝐺 .

Proof. First we show that𝐴 and 𝐵 are disjoint. Assume that 𝜈 ∈ 𝐴∩𝐵 for the sake of contradiction. Then
𝜈 ∈ ⋃

𝑡 ∈𝑉 (𝑇1 ) 𝑋𝑡 and 𝜈 ∈
⋃

𝑡 ∈𝑉 (𝑇2 ) 𝑋𝑡 . Condition (iii) of the definition of tree decompositions implies that
𝜈 ∈ 𝑋𝑡1 and 𝜈 ∈ 𝑋𝑡2 , a contradiction. Hence, 𝐴 and 𝐵 are disjoint.

Now we need to show that 𝐴 and 𝐵 are anticomplete to each other. Assume that 𝑎𝑏 ∈ 𝐸 (𝐺) is an
edge with 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. By condition (ii) of the definition of a tree decomposition, there is a node
𝑡 ∈ 𝑉 (𝑇 ) with 𝑎, 𝑏 ∈ 𝑋𝑡 . Assume w.l.o.g. that 𝑡 ∈ 𝑉 (𝑇1). Then 𝑏 ∈

⋃
𝑡 ∈𝑉 (𝑇1 ) 𝑋𝑡 and by condition (iii) of

the definition of a tree decomposition it follows that 𝑏 ∈ 𝑋𝑡1 and 𝑏 ∈ 𝑋𝑡2 , a contradiction. Therefore, 𝐴
and 𝐵 are anticomplete. This shows that (𝐴,𝐶, 𝐵) is a separation of 𝐺 .
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7 The Central Bag Method

The previous lemma tells us that every edge of a tree decomposition, or rather the intersection of the
bags of its two endpoints, induces a separation of 𝐺 . Therefore, if T = (𝑇,𝑋𝑡 ) is a tree decomposition
of 𝐺 , we define 𝜏 (T ) as the set of all separations of 𝐺 induced by the edges of 𝑇 . More precisely, for
𝑒 = 𝑡1𝑡2 ∈ 𝐸 (𝑇 ), we set 𝐶𝑒 := 𝑋𝑡1 ∩𝑋𝑡2 , 𝐴𝑒 :=

⋃
𝑡 ∈𝑉 (𝑇1 ) 𝑋𝑡 \𝐶𝑒 and 𝐵𝑒 :=

⋃
𝑡 ∈𝑉 (𝑇2 ) 𝑋𝑡 \𝐶𝑒 , just as we did

in Lemma 7.1. The corresponding separation to 𝑒 is the triple (𝐴𝑒 ,𝐶𝑒 , 𝐵𝑒) and we denote it by 𝑆𝑒 . Then
𝜏 (T ) := {𝑆𝑒 | 𝑒 ∈ 𝐸 (𝑇 )} is the collection of separations corresponding to T . We say that T is𝑤-unbalanced,
if for every separation (𝐴,𝐶, 𝐵) ∈ 𝜏 (T ) it holds that𝑤 (𝐴) > 1

2 or𝑤 (𝐵) >
1
2 . On the other hand we say

that T is𝑤-balanced, if there exists a separation (𝐴,𝐶, 𝐵) ∈ 𝜏 (T ) with𝑤 (𝐴) ≤ 1
2 and𝑤 (𝐵) ≤

1
2 .

If T is𝑤-unbalanced, every edge of 𝑇 induces a separation that has a large 𝐴-part or a large 𝐵-part
with respect to𝑤 . Therefore, we can define the directed tree

−→
𝑇 obtained from 𝑇 by directing each edge

towards the larger side. We call
−→
𝑇 the𝑤-direction of 𝑇 .

We now prove some properties of
−→
𝑇 . The first one holds for every directed tree.

Lemma 7.2: [Abr23] Every directed tree 𝑇 has a sink, that is a vertex 𝜈 with only incoming edges.

Proof. We assume that 𝑇 does not have a sink. Let 𝑃 = (𝜈1, . . . , 𝜈𝑘 ) be a longest directed path in 𝑇 .
Since 𝑇 does not have a sink, the vertex 𝜈𝑘 has an outgoing edge to a neighbour 𝑥 . If 𝑥 ∉ 𝑉 (𝑃), then
𝑃 ′ = (𝜈1, . . . , 𝜈𝑘 , 𝑥) is longer than 𝑃 , a contradiction. If 𝑥 ∈ 𝑉 (𝑃), then 𝑇 contains a cycle, contradicting
the fact that 𝑇 is a tree. Therefore, 𝑇 must have a sink.

Lemma 7.3: [Abr23] Let 𝐺 be a graph, let T = (𝑇,𝑋𝑡 ) be a tree decomposition of 𝐺 and let𝑤 be a normal
weight function on𝐺 such that T is𝑤-unbalanced. Let

−→
𝑇 be the𝑤-direction of𝑇 . Then there exists a vertex

𝑟 ∈ 𝑉 (−→𝑇 ) such that every path 𝑃 in 𝑇 that ends in 𝑟 is a directed path to 𝑟 in
−→
𝑇 .

Proof. We start by proving the following property of
−→
𝑇 .

(1) Every vertex 𝜈 ∈ 𝑉 (−→𝑇 ) has at most one outgoing edge.

Assume that 𝜈 has two outgoing edges with corresponding neighbours 𝜈1 and 𝜈2. Let 𝑆1 be the separation
corresponding to the edge 𝜈𝜈1 and let 𝑆2 be the separation corresponding to the edge 𝜈𝜈2. Let𝑇1 and𝑇2 be
the components of

−→
𝑇 − {𝜈} containing 𝜈1 and 𝜈2, respectively. Since 𝜈𝜈1 is directed towards 𝜈1, it follows

that𝑤 (⋃𝑡 ∈𝑉 (𝑇1 ) 𝑋𝑡 \ (𝑋𝜈 ∩𝑋𝜈1)) > 1
2 . Analogously, we have𝑤 (

⋃
𝑡 ∈𝑉 (𝑇2 ) 𝑋𝑡 \ (𝑋𝜈 ∩𝑋𝜈2)) > 1

2 . Condition
(iii) of the definition of a tree decomposition implies that (⋃𝑡 ∈𝑉 (𝑇1 ) 𝑋𝑡 ) ∩ (

⋃
𝑡 ∈𝑉 (𝑇2 ) 𝑋𝑡 ) ⊆ 𝑋𝜈1 ∩𝑋𝜈 ∩𝑋𝜈2

and therefore
⋃

𝑡 ∈𝑉 (𝑇1 ) 𝑋𝑡 \ (𝑋𝜈1 ∩𝑋𝜈 ) is disjoint from
⋃

𝑡 ∈𝑉 (𝑇2 ) 𝑋𝑡 \ (𝑋𝜈2 ∩𝑋𝜈 ). But then𝑤 (𝑉 (𝐺)) > 1,
a contradiction to the fact that𝑤 is a normal weight function on 𝐺 . This finishes the proof of (1).

Now, by Lemma 7.2,
−→
𝑇 has a sink 𝑠 . We prove the statement of the lemma by induction on the length

of the path. In the base case, consider all paths of length 1 in 𝑇 to 𝑠 . Since 𝑠 is a sink, every edge is
directed towards 𝑠 , which proves the base case. Now let 𝑃 = (𝜈1, . . . , 𝜈𝑘−1, 𝑠) be a path of length 𝑘 from
𝜈1 to 𝑠 . By induction, the path (𝜈2, . . . , 𝜈𝑘−1, 𝑠) is directed towards 𝑠 . By (1), since 𝜈2𝜈3 is directed towards
𝜈3, we conclude that the edge 𝜈1𝜈2 is directed towards 𝜈2. Hence 𝑃 is a directed path towards 𝑠 . This
completes the proof.

We call the vertex 𝑟 in the previous lemma the𝑤-heavy vertex of𝑇 and the bag 𝑋𝑟 the𝑤-heavy bag of
T . This bag 𝑋𝑟 is essentially our “central bag”, the induced subgraph to which we want to reduce our
problem to. Although we will define the central bag in another way later, the way of thinking about it
as a heavy vertex in a tree decomposition gives us good intuition.
Now we prove the equivalence between the existence of balanced separators and bounded graph

invariants, namely the treewidth, tree-independence number and tree-chromatic number.
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7.1 The tree decomposition point of view

Lemma 7.4: [Abr23][RS86] Let 𝐺 be a graph, let 𝑘 be a positive integer and let 𝜌 ∈ {tw, tree-𝛼, tree-𝜒}.
Suppose that 𝜌 (𝐺) ≤ 𝑘 . Then for every normal weight function𝑤 on 𝐺 , there exists a set 𝑋𝑤 ⊆ 𝑉 (𝐺) such
that 𝑋𝑤 is a𝑤-balanced separator of 𝐺 with

(1) |𝑋𝑤 | ≤ 𝑘 + 1, in case 𝜌 = tw,

(2) 𝛼 (𝑋𝑤) ≤ 𝑘 , in case 𝜌 = tree-𝛼 ,

(3) 𝜒 (𝑋𝑤) ≤ 𝑘 , in case 𝜌 = tree-𝜒 .

Proof. Throughout the proof, we distinguish three cases: (1): 𝜌 = tw, (2): 𝜌 = tree-𝛼 , (3): 𝜌 = tree-𝜒 . Let
T = (𝑇,𝑋𝑡 ) be a tree decomposition of 𝐺 such that

(1) the width of T is at most 𝑘 .

(2) 𝛼 (T ) ≤ 𝑘 .

(3) 𝜒 (T ) ≤ 𝑘 .

First, assume that T is𝑤-balanced. Then, there exists an edge 𝑡1𝑡2 ∈ 𝐸 (𝑇 ) and a corresponding separation
𝑆𝑒 = (𝐴𝑒 ,𝐶𝑒 , 𝐵𝑒) ∈ 𝜏 (T ) with 𝑤 (𝐴𝑒) ≤ 1

2 and 𝑤 (𝐵𝑒) ≤ 1
2 . Since 𝐶𝑒 = 𝑋𝑡1 ∩ 𝑋𝑡2 and 𝜌 (𝐺) ≤ 𝑘 , we

conclude that

(1) |𝐶𝑒 | ≤ 𝑘 + 1. Now 𝑋𝑤 = 𝐶𝑒 is a𝑤-balanced separator of 𝐺 of size at most 𝑘 + 1.

(2) 𝛼 (𝐶𝑒) ≤ max{𝛼 (𝑋𝑡1), 𝛼 (𝑋𝑡2)} ≤ 𝑘 . Now 𝑋𝑤 = 𝐶𝑒 is a𝑤-balanced separator of𝐺 of independence
number at most 𝑘 .

(3) 𝜒 (𝐶𝑒) ≤ max{𝜒 (𝑋𝑡1), 𝜒 (𝑋𝑡2)} ≤ 𝑘 . Now 𝑋𝑤 = 𝐶𝑒 is a 𝑤-balanced separator of 𝐺 of chromatic
number at most 𝑘 .

So we can assume that T is𝑤-unbalanced. Let 𝑟 be the𝑤-heavy vertex of 𝑇 and let 𝑡1, . . . , 𝑡𝑚 be the
neighbours of 𝑟 in 𝑇 . Each edge 𝑟𝑡𝑖 ∈ 𝐸 (𝑇 ) induces a corresponding separation 𝑆𝑖 = (𝐴𝑖 ,𝐶𝑖 , 𝐵𝑖) of 𝐺 .
We may assume w.l.o.g. that𝑤 (𝐴𝑖) < 1

2 for each 1 ≤ 𝑖 ≤ 𝑚. The connected components of 𝐺 − 𝑋𝑟 are
exactly the sets 𝐴1, . . . , 𝐴𝑚 . Hence, 𝑋𝑤 = 𝑋𝑟 is a𝑤-balanced separator of 𝐺 of

(1) size at most 𝑘 + 1.

(2) independence number at most 𝑘 .

(3) chromatic number at most 𝑘 .

This finishes the proof.

We state the treewidth-version of the converse direction without a proof here.

Lemma 7.5: [Abr+24b] Let 𝐺 be a graph, let 𝑘 be a positive integer and assume that 𝐺 has a𝑤-balanced
separator of size at most 𝑘 for every normal weight function𝑤 . Then tw(𝐺) ≤ 2𝑘 .

Now we prove the tree-𝛼- and tree-𝜒-version. The proof is an adjustment from [Abr+24a].

Lemma 7.6: [Abr+24a] Let𝐺 be a graph, let 𝑘 be a positive integer and let 𝜌 ∈ {𝛼, 𝜒}. Suppose that 𝐺 has
a𝑤-balanced separator 𝑋𝑤 with 𝜌 (𝐺 [𝑋𝑤]) ≤ 𝑘 for every normal weight function𝑤 . Then,

(1) tree-𝛼 (𝐺) ≤ 5𝑘 , in case 𝜌 = 𝛼 ,
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7 The Central Bag Method

(2) tree-𝜒 (𝐺) ≤ 5𝑘 , in case 𝜌 = 𝜒 .

Proof. During this proof, we distinguish the cases when (1): 𝜌 = 𝛼 and (2): 𝜌 = 𝜒 . In case (1), we show
the tree-𝛼-version of the proof; in case (2), we show the tree-𝜒-version.
We recursively show the following stronger statement:

(*) Let (𝐺,𝐴) be a pair where 𝐺 is a graph as in the lemma and 𝐴 ⊆ 𝑉 (𝐺) has 𝜌 (𝐺 [𝐴]) ≤ 4𝑘 . Then
there exists a tree decomposition T = (𝑇,𝑋𝑡 ) of 𝐺 with 𝜌 (T ) ≤ 5𝑘 such that 𝐴 ⊆ 𝑋𝑡 for some
𝑡 ∈ 𝑉 (𝑇 ). This implies (1) tree-𝛼 (𝐺) ≤ 5𝑘 or (2) tree-𝜒 (𝐺) ≤ 5𝑘 .

The statement (*) clearly holds if 𝜌 (𝐺) ≤ 4𝑘 . If 𝜌 (𝐺) > 4𝑘 , we pick a set 𝐴 ⊆ 𝑉 (𝐺) with |𝐴| = 4𝑘 and
𝜌 (𝐺 [𝐴]) = 4𝑘 . We need to show that there exists a tree decomposition T = (𝑇,𝑋𝑡 ) of𝐺 with 𝜌 (T ) ≤ 5𝑘
such that 𝐴 ⊆ 𝑋𝑡 for some 𝑡 ∈ 𝑉 (𝑇 ). We define a weight function𝑤 : 𝑉 (𝐺) → [0, 1] with

𝑤 (𝜈) :=
{

1
4𝑘 , if 𝜈 ∈ 𝐴
0, if 𝜈 ∉ 𝐴.

Observe that 𝑤 is a normal weight function on 𝐺 . Recall that, by assumption, 𝐺 has a 𝑤-balanced
separator 𝑋𝑤 with 𝜌 (𝐺 [𝑋𝑤]) ≤ 𝑘 . Thus, for every component 𝐷 of 𝐺 − 𝑋𝑤 we have𝑤 (𝐷) ≤ 1/2 and
so there are at least 2𝑘 vertices of 𝐴 outside of 𝐷 . Since 𝜌 (𝐺 [𝑋𝑤]) ≤ 𝑘 , there are at least 𝑘 vertices
𝜈1, . . . , 𝜈𝑘 ∈ 𝐴 which do not belong to 𝐷 ∪ 𝑋𝑤 .

Let us now consider the set 𝑌 := 𝐴 ∩ 𝐷 . The vertices 𝜈1, . . . , 𝜈𝑘 do not belong to 𝑌 , so 𝜌 (𝐺 [𝑌 ]) ≤
4𝑘 − 𝑘 = 3𝑘 . This implies 𝜌 (𝐺 [𝑌 ∪𝑋𝑤]) ≤ 𝜌 (𝐺 [𝑌 ]) + 𝜌 (𝐺 [𝑋𝑤]) ≤ 3𝑘 + 𝑘 = 4𝑘 and we recursively find
a tree decomposition of 𝐷 ∪ 𝑋𝑤 by applying (*) to the pair (𝐷 ∪ 𝑋𝑤, 𝑌 ∪ 𝑋𝑤).

We do the previous procedure for each component𝐷𝑖 of𝐺−𝑋𝑤 , obtaining for each 𝑖 a set𝑌𝑖 analogously
to𝑌 and a tree decomposition T𝑖 of𝐷𝑖∪𝑋𝑤 with a node 𝑡𝑖 ∈ 𝑉 (𝑇𝑖) such that𝑌𝑖∪𝑋𝑤 ⊆ 𝑋𝑡𝑖 . We then create
a tree decomposition of𝐺 , obtained from the union of the 𝑇𝑖 ’s and adding a node 𝑡 that is adjacent to all
𝑡𝑖 ’s with 𝑋𝑡 := 𝐴 ∪𝑋𝑤 . Observe that 𝜌 (𝐺 [𝑋𝑡 ]) = 𝜌 (𝐺 [𝐴 ∪𝑋𝑤]) ≤ 𝜌 (𝐺 [𝐴]) + 𝜌 (𝐺 [𝑋𝑤]) ≤ 4𝑘 + 𝑘 = 5𝑘 .
This yields a tree decomposition of 𝐺 with the desired properties, which completes the proof.

Together, the Lemmas 7.4, 7.5 and 7.6 show the equivalence of graphs having bounded treewidth,
tree-independence number or tree-chromatic number and the existence of 𝑤-balanced separators of
bounded size, independence number or chromatic number, respectively. This characterization of the
different graph invariants is powerful in a sense that we often know more about separators of graph
classes than we know about its tree decompositions.

Given a separation (𝐴,𝐶, 𝐵), it does not really matter which part of the graph is𝐴 and which other part
of the graph is 𝐵; it is just a naming of the parts. Therefore, we fix the following convention for the rest
of this chapter: The 𝐴-part in a separation is always the part with lower weight, i.e. 𝑤 (𝐴) ≤ 𝑤 (𝐵). Now,
two separations (𝐴1,𝐶1, 𝐵1) and (𝐴2,𝐶2, 𝐵2) are non-crossing if 𝐴1 ∪𝐶1 ⊆ 𝐵2 ∪𝐶2 and 𝐴2 ∪𝐶2 ⊆ 𝐵1 ∪𝐶1.
A collection S of separations of 𝐺 is called laminar if the separations of S are pairwise non-crossing.

Intuitively, two separations are non-crossing if the small part of one separations is contained in the
large part of the other one. We want to illustrate this concept on an example.

Consider the graph𝐺 (that was introduced in Figure 2.1) and another possible tree decomposition of
𝐺 as shown in Figure 7.1.

If we assume for the moment, that𝑤 is a normal weight function that assigns each vertex the same
weight, then this tree decomposition admits the following corresponding collection of separations
S = {𝑆1, 𝑆2, 𝑆3} with

𝑆1 = ({1, 6}, {2, 7}, {3, 4, 5, 8, 9}),
𝑆2 = ({9}, {7, 8}, {1, 2, 3, 4, 5, 6}),
𝑆3 = ({4, 5}, {3, 8}, {1, 2, 6, 7, 9}).
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1 2 3

4 5

876

9

2,3,7,8

3,4,5,81,2,6,7 7,8,9

Figure 7.1: Example graph 𝐺 and another possible tree decomposition of 𝐺 .

As one easily checks, 𝑆1, 𝑆2 and 𝑆3 are pairwise non-crossing and thus S is a laminar collection of
separations. On the other hand, take an arbitrary laminar collection of separations, say S′ = {𝑆 ′1, 𝑆 ′2}
with

𝑆 ′1 = ({1, 6}, {2, 3, 7, 8}, {4, 5, 9}),
𝑆 ′2 = ({5}, {3, 4, 8}, {1, 2, 6, 7, 9}).

We see that there exists a tree decomposition T of 𝐺 with 𝜏 (T ) = S′; it is shown in Figure 7.2.

2,3,4,7,8,9 3,4,5,81,2,3,6,7,8

Figure 7.2: Tree decomposition T of 𝐺 with 𝜏 (T ) = S′.

This connection between tree decomposition and laminar collection of separations holds in general.
Given a graph 𝐺 and a tree decomposition T of 𝐺 , it holds that 𝜏 (T ) is laminar. Also, no matter which
laminar collection of separations S we choose, there exists a tree decomposition whose corresponding
collection of separations is equal to S . We record this correspondence in the following theorem.

Theorem 7.7: [Abr23][RS91] Let 𝐺 be a graph and let T be a tree decomposition of 𝐺 . Then 𝜏 (T ) is
laminar.

On the other hand, for every laminar collection of separations S of𝐺 , there exists a tree decomposition T
of 𝐺 with 𝜏 (T ) = S .

7.2 Everything in the language of separations

In this section we do not talk about tree decompositions anymore, but rather about collections of
separations. Even the central bag is not defined as a bag of a tree decomposition; it is defined in terms
of separations.
Again, let 𝐺 be a graph and let 𝑤 be a normal weight function on 𝐺 . Also, let S be a collection of

separations of 𝐺 . The central bag for S , denoted as 𝛽S , is defined as

𝛽S :=
⋂
𝑆∈S
(𝐵(𝑆) ∪𝐶 (𝑆)).

To get an intuition of this concept we refer back to the tree decomposition in Figure 7.1 and its
corresponding collection of separations S . We see that

𝛽S = (𝐵(𝑆1) ∪𝐶 (𝑆1)) ∩ (𝐵(𝑆2) ∪𝐶 (𝑆2)) ∩ (𝐵(𝑆3) ∪𝐶 (𝑆3))
= {2, 3, 4, 5, 7, 8, 9} ∩ {1, 2, 3, 4, 5, 6, 7, 8} ∩ {1, 2, 3, 6, 7, 8, 9}
= {2, 3, 7, 8}.
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7 The Central Bag Method

Recall that (in this example) we are assuming that the weight function𝑤 assigns each vertex the same
weight, i.e. 𝑤 (𝜈) = 1

9 for all 𝜈 ∈ 𝑉 (𝐺). Then this central bag is exactly what we would expect it to be,
since the𝑤-direction of𝑇 would direct each edge towards the bag with vertices {2, 3, 7, 8}. So the central
bag corresponds to the𝑤-heavy bag of the tree decomposition.

We make the same observation if we look at the tree decomposition in Figure 7.2: Its corresponding
collection of separations S admits a central bag 𝛽S = {2, 3, 4, 7, 8, 9}, which again corresponds to the
𝑤-heavy bag of the𝑤-direction of 𝑇 .

We make the following simple observation.

Observation 7.8: Let 𝛽S be the central bag for a graph 𝐺 and a collection of separations S . Then
𝑉 (𝐺) \ 𝛽S =

⋃
𝑆∈S 𝐴(𝑆).

We want our collections of separations to fulfill some additional properties. Let 𝐺 be a graph, let𝑤
be a normal weight function on 𝐺 and let 𝑘 be a positive integer. Let 𝜌 ∈ {| · |, 𝛼, 𝜒}. A collection of
separations S of 𝐺 is 𝑘-aligned if the following conditions are satisfied:

(1) For every 𝑆 ∈ S it holds that

(i) 𝐶 (𝑆) ∩ 𝛽S is connected,

(ii) there exists a set𝛿 (𝑆) ⊆ 𝐶 (𝑆)∩𝛽S such that 𝜌 (𝛿 (𝑆)) ≤ 𝑘 and (𝐴(𝑆)∪(𝐶 (𝑆)\𝛿 (𝑆)), 𝛿 (𝑆), 𝐵(𝑆))
is a separation of 𝐺 ,

(iii) 𝑤 (𝐴(𝑆) ∪ (𝐶 (𝑆) \ 𝛿 (𝑆))) < 1
2 , and

(2) for every component 𝐷 of
⋃

𝑆∈S 𝐴(𝑆), there exists a separation 𝑆 ∈ S such that 𝐷 ⊆ 𝐴(𝑆).

Given the graph 𝐺 of Figure 7.1, together with its laminar collection of separations S = {𝑆1, 𝑆2, 𝑆3}
and the corresponding central bag 𝛽S = {2, 3, 7, 8}, we see that S is 2-aligned, with 𝛿 (𝑆) = 𝐶 (𝑆) for all
𝑆 ∈ S . But S is not 1-aligned, because any proper subset of 𝐶 (𝑆) (for all 𝑆 ∈ S) does not separate the
graph and therefore violates condition (1ii).
We note that condition (1i) is not necessary in our proofs, but it is required in most applications.

Therefore, it was chosen to be part of the definition.
Condition (1iii) of the definition of 𝑘-aligned implies that 𝑤 (𝐴) < 1

2 . In most applications, that is
achieved by ensuring that𝑤 (𝐵) > 1

2 . This matches our convention that𝑤 (𝐴) ≤ 𝑤 (𝐵) holds for every
separation (𝐴,𝐶, 𝐵).

Condition (2) is satisfied whenever we deal with a laminar collection of separations, as shown in the
following lemma.

Lemma 7.9: [Abr23] Let 𝐺 be a graph and let S be a laminar collection of separations. Then S satisfies
condition (2) of the definition of 𝑘-aligned.

Proof. Let𝐷 be a component of
⋃

𝑆∈S 𝐴(𝑆). Clearly, there exists 𝑆1 ∈ S such that𝐷∩𝐴(𝑆1) ≠ ∅. Since 𝑆1
is a separation, we have 𝑁 (𝐴(𝑆1)) ⊆ 𝐶 (𝑆1). Since S is laminar, we have 𝐴(𝑆1) ∪𝐶 (𝑆1) ⊆ 𝐵(𝑆2) ∪𝐶 (𝑆2)
for all 𝑆1 ≠ 𝑆2 ∈ S , so 𝐶 (𝑆1) ⊆ 𝐵(𝑆2) ∪𝐶 (𝑆2). Suppose that there is a vertex 𝜈 ∈ 𝐶 (𝑆1) ∩𝐴(𝑆2) for any
𝑆1 ≠ 𝑆2. Then, 𝜈 ∈ 𝐴(𝑆2) and 𝜈 ∈ 𝐵(𝑆2) ∪𝐶 (𝑆2), a contradiction. Therefore, 𝐶 (𝑆1) ∩ 𝐴(𝑆2) = ∅ for all
𝑆1 ≠ 𝑆2 ∈ S .

Now assume that there is a vertex 𝜈 ∈ 𝐷 and 𝜈 ∉ 𝐴(𝑆1). Note that 𝜈 ∉ 𝐵(𝑆1), since 𝐷 is a connected
component. Thus, 𝜈 ∈ 𝐶 (𝑆1), which implies 𝜈 ∉ 𝐴(𝑆2) for all 𝑆2 ∈ S , i.e. 𝜈 ∉

⋃
𝑆∈S 𝐴(𝑆), a contradiction.

We conclude that 𝐷 ⊆ 𝐴(𝑆1), which finishes the proof.
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Assume we are given a collection of separations S that is 𝑘-aligned. For every separation 𝑆 ∈ S , we
set 𝐴∗(𝑆) := 𝐴(𝑆) ∪ (𝐶 (𝑆) \ 𝛿 (𝑆)). So, 𝐴∗(𝑆) is the new 𝐴-part of the new separation. Furthermore, we
define the anchor map 𝛿∗(𝑆) that intuitively chooses a representative of a separation 𝑆 , that we call the
anchor for 𝑆 . Formally, 𝛿∗(𝑆) maps a separation 𝑆 to a vertex 𝜈 ∈ 𝛿 (𝑆).

The following observation follows by condition (1ii) of the definition of 𝑘-aligned and by construction
𝛿∗(𝑆) ∈ 𝛿 (𝑆).

Observation 7.10: Let 𝐺 be a graph, let 𝑤 be a normal weight function on 𝐺 and let S be a 𝑘-aligned
collection of separations of 𝐺 . Then, for all 𝑆 ∈ S , the anchor of 𝑆 is in 𝛽S .

Remember that we want to reduce the problem for the graph𝐺 to a core part of𝐺 , the central bag 𝛽S .
Therefore, we want to infer a new weight function𝑤S on 𝛽S , which we call the inherited weight function
for S . We fix an ordering O of the vertices of 𝐺 . For each component 𝐷 of

⋃
𝑆∈S 𝐴(𝑆), let 𝑓 (𝐷) denote

the minimum vertex with respect to the ordering, such that 𝐷 ⊆ ⋃
𝑆∈𝛿∗−1 (𝜈 ) 𝐴(𝑆). By 𝐴O (𝜈), we denote

the union of the components 𝐷 of
⋃

𝑆∈S 𝐴(𝑆) such that 𝑓 (𝐷) = 𝜈 . By Observation 7.10, the anchor for
each separation is in 𝛽S . Thus, {𝐴O (𝜈) | 𝜈 ∈ 𝛽S} is a partition of

⋃
𝑆∈S 𝐴(𝑆). Now, for all 𝜈 ∈ 𝛽S , we

define

𝑤S (𝜈) := 𝑤 (𝜈) +𝑤 (𝐴O (𝜈)) .

Let us take a look at an example. We consider the graph 𝐺 of Figure 7.1 and its 2-aligned collection of
separations S = {𝑆1, 𝑆2, 𝑆3}. As anchors, we set 𝛿∗(𝑆1) := 2, 𝛿∗(𝑆2) := 7 and 𝛿∗(𝑆3) := 3. Assume that the
ordering O is the identity. There are three components 𝐷1, 𝐷2, 𝐷3 ∈

⋃
𝑆∈S 𝐴(𝑆), namely 𝐷1 = {1, 6},

𝐷2 = {9} and 𝐷3 = {4, 5}. Therefore, we have 𝑓 (𝐷1) = 2, 𝑓 (𝐷2) = 7 and 𝑓 (𝐷3) = 3. Also, we have
𝐴O (2) = 𝐷1, 𝐴O (3) = 𝐷3 and 𝐴O (7) = 𝐷2 and 𝐴O (𝜈) = ∅ for all 𝜈 ∉ {2, 3, 7}. Assuming that the weight
function𝑤 on 𝐺 is assigning each vertex the same weight 1/9, we obtain the inherited weight function
𝑤S on 𝛽S with

𝑤S (2) = 𝑤 (2) +𝑤 (𝐴O (2)) = 𝑤 (2) +𝑤 (𝐷1) =
1
9
+ 2
9
=
3
9

and in the same way

𝑤S (3) =
3
9
,𝑤S (7) =

2
9
,𝑤S (8) =

1
9
.

Note that 𝑤S is a normal weight function on 𝛽S , which holds in general and we prove that in the
following lemma.

Lemma 7.11: [Abr23] Let 𝐺 be a graph, let𝑤 be a normal weight function on 𝐺 and let S be a 𝑘-aligned
collection of separations of 𝐺 . Then,𝑤S is a normal weight function on 𝛽S .

Proof. Clearly, we have that𝑤S : 𝛽S → [0, 1], since𝑤 is a normal weight function and by definition of
𝑤S . We show that𝑤S (𝛽S) = 1. By definition of𝑤S , we have

𝑤S (𝛽S) =
∑︁
𝜈∈𝛽S

𝑤S (𝜈)

=
∑︁
𝜈∈𝛽S

𝑤 (𝜈) +
∑︁
𝜈∈𝛽S

𝑤 (𝐴O (𝜈)).
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Recall that {𝐴O (𝜈) | 𝜈 ∈ 𝛽S} is a partition of
⋃

𝑆∈S 𝐴(𝑆) and thus
⋃

𝜈∈𝛽S 𝐴O (𝜈) =
⋃

𝑆∈S 𝐴(𝑆). Therefore,
and by Observation 7.8, we have

𝑤S (𝛽S) =
∑︁
𝜈∈𝛽S

𝑤 (𝜈) +
∑︁
𝜈∈𝛽S

𝑤 (𝐴O (𝜈))

=
∑︁
𝜈∈𝛽S

𝑤 (𝜈) +
∑︁

𝜈∈𝑉 (𝐺 )\𝛽S

𝑤 ((𝜈))

=
∑︁

𝜈∈𝑉 (𝐺 )
𝑤 (𝜈)

= 1,

since𝑤 is a normal weight function on 𝐺 . This concludes the proof.

We are almost ready to prove that finding a solution for the central bag helps us to find a solution
for the original graph. We need just one more definition. Let S be a 𝑘-aligned collection of separations
with an anchor map 𝛿∗ and let 𝑋 ⊆ 𝛽S . We say that a separation 𝑆 ∈ S crosses 𝑋 if either 𝛿∗(𝑆) ∈ 𝑋 or if
there exist two distinct components 𝐷1, 𝐷2 of 𝛽S \ 𝑋 such that 𝐶 (𝑆) ∩ 𝐷1 ≠ ∅ and 𝐶 (𝑆) ∩ 𝐷2 ≠ ∅.

Figure 7.3 shows an example. The central bag 𝛽S is separated by a set 𝑋 into two parts𝑄1 and𝑄2. The
separation 𝑆1 does not cross 𝑋 , the separation 𝑆3 crosses 𝑋 and separation 𝑆2 crosses 𝑋 if 𝛿∗(𝑆2) = 𝑢.

Q1 Q2X

βS

C1 A1

C2

C3

A2

A3

u

Figure 7.3: An illustration for the central bag 𝛽S , a set 𝑋 ⊆ 𝛽S that separates 𝛽S into two parts 𝑄1 and
𝑄2, and three separations of 𝐺 that cross or do not cross 𝑋 .

Finally, we are ready to prove the following main theorem of this chapter.

Theorem 7.12: [Abr23] Let 𝐺 be a graph, let 𝑤 be a normal weight function on 𝐺 , let S be a 𝑘-aligned
collection of separations of 𝐺 , let 𝛿∗ be the anchor map for S and let𝑤S be the inherited weight function
for S . Let 𝜌 ∈ {| · |, 𝛼, 𝜒}. If 𝐺 [𝛽S] has a 𝑤S-balanced separator 𝑋𝑤S with 𝜌 (𝑋𝑤S ) ≤ 𝛾 , then 𝐺 has a
𝑤-balanced separator 𝑋𝑤 with 𝜌 (𝑋𝑤) ≤ 𝛾 + 𝑐𝑘 , where 𝑐 denotes the number of separations of S that cross
𝑋𝑤S in 𝛽S .

Proof. Let S′ ⊆ S denote the set of all separations 𝑆 of S such that 𝐶 (𝑆) crosses 𝑋𝑤S . We define

𝑌 := 𝑋𝑤S ∪
( ⋃
𝑆∈S′

𝛿 (𝑆)
)
.
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7.3 An application of the central bag method

By condition (1ii) of the definition of 𝑘-aligned, it follows that 𝛿 (𝑆) ⊆ 𝛽S for all 𝑆 ∈ S and hence 𝑌 ⊆ 𝛽S .
We prove that 𝑌 is a𝑤-balanced separator of𝐺 with 𝜌 (𝑌 ) ≤ 𝛾 + 𝑐𝑘 . We first show that 𝜌 (𝑌 ) ≤ 𝛾 + 𝑐𝑘 .

By definition, 𝜌 (𝑌 ) ≤ 𝜌 (𝑋𝑤S ) + |S′ | ·max𝑆∈𝑆 ′ 𝜌 (𝛿 (𝑆)). Since S is 𝑘-aligned, it follows that 𝜌 (𝛿 (𝑆)) ≤ 𝑘
for all 𝑆 ∈ S . By assumption, we have 𝜌 (𝑋𝑤S ) ≤ 𝛾 and S′ ≤ 𝑐 . Thus, 𝜌 (𝑌 ) ≤ 𝛾 + 𝑐𝑘 .

Now we show that 𝑌 is a𝑤-balanced separator of 𝐺 . Let𝑀 be a component of 𝐺 − 𝑌 . We show that
𝑤 (𝑀) ≤ 1/2.

Suppose that𝑤 (𝑀) > 1/2. Let 𝑄1, . . . , 𝑄𝑚 be the components of 𝛽S \ 𝑋𝑤S and let 𝐷1, . . . , 𝐷ℓ be the
components of 𝐺 − 𝛽S . Observe that 𝑀 ⊆ (

⋃𝑚
𝑖=1𝑄𝑖) ∪ (

⋃ℓ
𝑖=1 𝐷𝑖). Also, since 𝑌 ⊆ 𝛽S , if 𝐷𝑖 ∩𝑀 ≠ ∅,

then 𝐷𝑖 ⊆ 𝑀 . By condition (2) of the definition of 𝑘-aligned, it follows that for every 1 ≤ 𝑖 ≤ ℓ , there
exists a separation 𝑆𝑖 ∈ S such that 𝐷𝑖 ⊆ 𝐴(𝑆𝑖).
Now we distinguish several cases. First, we assume that 𝑄1 ∩𝑀 ≠ ∅ and 𝑄2 ∩𝑀 ≠ ∅. Since 𝑄1 and

𝑄2 are components of 𝛽S \𝑋𝑤S , it follows that there exists 𝐷𝑖 such that 𝐷𝑖 ∩𝑀 ≠ ∅,𝐶 (𝑆𝑖) ∩𝑄1 ≠ ∅ and
𝐶 (𝑆𝑖)∩𝑄2 ≠ ∅. Thus, 𝑆𝑖 crosses𝑋𝑤S and therefore 𝛿 (𝑆𝑖) ⊆ 𝑌 . Condition (1ii) of the definition of𝑘-aligned
implies that (𝐴∗(𝑆𝑖), 𝛿 (𝑆𝑖), 𝐵(𝑆𝑖)) is a separation of𝐺 . Since𝑀∩𝐴∗(𝑆𝑖) ≠ ∅ and 𝛿 (𝑆𝑖) ⊆ 𝑌 , it follows that
𝑀 ⊆ 𝐴∗(𝑆𝑖). Now condition (1iii) of the definition of 𝑘-aligned implies that𝑤 (𝑀) ≤ 𝑤 (𝐴∗(𝑆𝑖)) ≤ 1/2, a
contradiction.
So we may assume w.l.o.g. that 𝑄𝑖 ∩𝑀 = ∅ for 2 ≤ 𝑖 ≤ 𝑚. Then we have to distinguish two cases:

First, suppose that 𝑄1 ∩𝑀 = ∅. Then there exists 1 ≤ 𝑖 ≤ ℓ such that 𝑀 = 𝐷𝑖 . Since 𝐷𝑖 ⊆ 𝐴(𝑆𝑖), we
obtain𝑤 (𝑀) = 𝑤 (𝐷𝑖) ≤ 𝑤 (𝐴(𝑆𝑖)) ≤ 1/2, a contradiction.
We may therefore assume that 𝑄1 ∩𝑀 ≠ ∅. Let

𝑀 ′ := 𝑄1 ∪
⋃

𝑆∈S,𝐶 (𝑆 )⊆𝑄1∪𝑋𝑤S

𝐴∗(𝑆) .

By definition,𝑀 ⊆ 𝑀 ′, and we get

𝑤 (𝑀) ≤ 𝑤 (𝑀 ′) because𝑀 ⊆ 𝑀 ′
= 𝑤 (𝑄1) +

∑︁
𝑆∈S,𝐶 (𝑆 )⊆𝑄1∪𝑋𝑤S

𝑤 (𝐴∗(𝑆)) by definition of𝑀 ′

≤ 𝑤S (𝑄1) by definition of𝑤S
≤ 1

2 since 𝑋𝑤S is a𝑤S-balanced separator of 𝛽S ,

again, a contradiction. This completes the proof.

7.3 An application of the central bag method

Unfortunately, the real world applications of the central bag method are very advanced and beyond the
scope of this thesis. Therefore, we consider a very simple toy example and apply the central bag method
on this graph class. We need the following two definitions.

A graph𝐺 is called outerplanar, if𝐺 is planar and if it can be drawn in the plane such that all vertices
of 𝐺 lie on the boundary of the outer face. For a positive integer 𝑘 , a graph 𝐺 is called 𝑘-connected, if
|𝑉 (𝐺) | ≥ 𝑘 + 1 and𝐺 − 𝑆 is connected for all 𝑆 ⊆ 𝑉 (𝐺) with |𝑆 | ≤ 𝑘 − 1. Clearly, a graph is 1-connected
if and only if it is connected (except for the case when𝐺 consists of a single vertex: then𝐺 is connected
but not 1-connected, since it contains only one vertex).
Now, let G be the class of outerplanar, 2-connected graphs. Assume that our task is to determine

whether G has bounded treewidth or not. In fact, we know that every outerplanar graph has treewidth
at most 2, but let’s forget about this for the moment in order to show an application of the central bag
method.
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7 The Central Bag Method

One can show that every graph 𝐺 ∈ G has a Hamiltonian cycle that forms the boundary of the outer
face (see [Sys79]). Figure 7.4 shows two graphs: the left one is outerplanar, but not 2-connected and
contains no Hamiltonian cycle. The right graph is outerplanar and 2-connected and therefore contains a
Hamiltonian cycle, which is visualized by red edges.

Figure 7.4: Two outerplanar graphs: the left one contains no Hamiltonian cycles; the right one is
2-connected and thus contains a Hamiltonian cycle.

Let 𝐶 denote the Hamiltonian cycle of 𝐺 ∈ G and let 𝑤 be a normal weight function on 𝐺 (𝑤 is an
arbitrary weight function, but in examples we may assume that𝑤 assigns each vertex the same weight:
𝑤 (𝜈) := 1

𝑛
for each 𝜈 ∈ 𝑉 (𝐺) and 𝑛 = |𝑉 (𝐺) |). Observe that every edge 𝑒 = 𝑢𝜈 ∈ 𝐸 (𝐺) \ 𝐸 (𝐶) separates

𝐺 . Thus, we set 𝑆𝑒 := (𝐴𝑒 ,𝐶𝑒 , 𝐵𝑒) with 𝐶𝑒 := {𝑢, 𝜈} and we choose 𝐴𝑒 such that 𝑤 (𝐴𝑒) ≤ 1/2. We call
𝑆𝑒 the canonical separation for 𝑒 . Now let S be a collection of separations with 𝑆𝑒 ∈ S if and only if
𝑒 ∈ 𝐸 (𝐺) \ 𝐸 (𝐶) and 𝑆𝑒 is the canonical separation for 𝑒 . We may assume that S contains at least one
separation, since otherwise, if S = ∅, 𝐺 is a cycle and therefore tw(𝐺) = 2, so we are done.

Consider the right graph from Figure 7.4 The collection of separations S for this graph consists of all
black edges; these are exactly the edges that disconnect the graph. Figure 7.5 shows the central bag 𝛽S
for this graph.

βS

e1

e2

Figure 7.5: The central bag for the example graph from Figure 7.4 induces a cycle.

Observe that the collection of separations S′ := {𝑆𝑒1, 𝑆𝑒2} yields the same central bag as S , because for
every separation 𝑆 ∉ S′ there is a separation 𝑆 ′ ∈ S′ such that 𝐴(𝑆) ⊆ 𝐴(𝑆 ′) and hence 𝐵(𝑆 ′) ∪𝐶 (𝑆 ′) ⊆
𝐵(𝑆) ∪𝐶 (𝑆). Thus, the separation 𝑆 plays no important role for the central bag: it does not “contribute”
anything new to 𝛽S . Therefore we define the collection of separations S′ := {𝑆𝑒 ∈ S | 𝐶 (𝑆𝑒) ⊆ 𝛽S}.
Indeed, the central bag for S′ is the same as the central bag for S . We prove that this holds in general.

Lemma 7.13: Let𝐺 be a graph, let S be a collection of separations of𝐺 and let S′ := {𝑆 ∈ S | 𝐶 (𝑆) ⊆ 𝛽S}.
Then 𝛽S = 𝛽S′ .

Proof. By Observation 7.8 we have 𝛽S = 𝑉 (𝐺) \ ⋃
𝑆∈S 𝐴(𝑆) and 𝛽S′ = 𝑉 (𝐺) \ ⋃

𝑆 ′∈S′ 𝐴(𝑆 ′). We
prove that

⋃
𝑆∈S 𝐴(𝑆) =

⋃
𝑆 ′∈S′ 𝐴(𝑆 ′), which implies the claim. Clearly, since S′ ⊆ S , we have⋃

𝑆 ′∈S′ 𝐴(𝑆 ′) ⊆
⋃

𝑆∈S 𝐴(𝑆).
Now we show that

⋃
𝑆∈S 𝐴(𝑆) ⊆

⋃
𝑆 ′∈S′ 𝐴(𝑆 ′). Let 𝜈 ∈

⋃
𝑆∈S 𝐴(𝑆). Then there exists a separation

𝑆1 ∈ S with 𝜈 ∈ 𝐴(𝑆1). Suppose that 𝜈 ∉
⋃

𝑆 ′∈S′ 𝐴(𝑆 ′), so for all 𝑆 ′ ∈ S′ it holds that 𝜈 ∉ 𝐴(𝑆 ′). It
follows that 𝑆1 ∉ S′, so 𝐶 (𝑆1) ⊈ 𝛽S =

⋂
𝑆∈S (𝐵(𝑆) ∪𝐶 (𝑆)). Hence, there is a vertex 𝑥1 ∈ 𝐶 (𝑆1) and a
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7.3 An application of the central bag method

separation 𝑆2 ∈ S with 𝑥1 ∈ 𝐴(𝑆2). If 𝑆2 ∈ S′, then 𝜈 ∈ ⋃
𝑆 ′∈S′ 𝐴(𝑆 ′), a contradiction. Thus, 𝑆2 ∉ S′.

Then 𝐶 (𝑆2) ⊈ 𝛽S and again, there is a vertex 𝑥2 ∈ 𝐶 (𝑆2) and a separation 𝑆3 ∈ S with 𝑥2 ∈ 𝐴(𝑆3). We
repeat this process until we eventually find a separation 𝑆 ′ ∈ S′ with 𝜈 ∈ 𝐴(𝑆 ′), a contradiction. Thus,
𝜈 ∈ ⋃

𝑆 ′∈S′ 𝐴(𝑆 ′), which completes the proof.

By Lemma 7.13, we can work with S′ instead of S from now on. We see in Figure 7.5 that the central
bag 𝛽S induces a cycle in 𝐺 and the following lemma states that this holds in general in the graph class
G. Since 𝛽S = 𝛽S′ , we do not need the collection S′ in the proof of this lemma.

Lemma 7.14: Let 𝐺 ∈ G be a graph with a corresponding collection of separations S . Then, 𝛽S induces a
cycle in 𝐺 .

Proof. Let 𝑆 ∈ S be a separation. Note that for every vertex 𝜈 ∈ 𝐴(𝑆), we have 𝜈 ∉ 𝛽S by the definition of
the central bag. Now let𝐺 ′ := 𝐺 −𝐴(𝑆). Since𝐺 ′ is an induced subgraph of𝐺 and since𝐺 is outerplanar,
it follows that 𝐺 ′ is outerplanar. Also, 𝐺 ′ contains a Hamiltonian cycle. To see that, let 𝐶 (𝑆) = {𝑢, 𝜈}
and let 𝐻 denote the Hamiltonian cycle in 𝐺 . If we remove the vertices in 𝐴(𝑆) from 𝐻 , we obtain a
Hamiltonian path 𝑃 from 𝑢 to 𝜈 in 𝐺 ′. But then 𝐻 ′ := 𝑃 + 𝑢𝜈 forms a Hamiltonian cycle in 𝐺 ′. Clearly,
removing any vertex from 𝐶′ does not disconnect 𝐺 ′, hence 𝐺 ′ is 2-connected.

So, if we remove the set 𝐴(𝑆) from 𝐺 for any 𝑆 ∈ S , we obtain a smaller graph 𝐺 ′ that is 2-connected
and outerplanar. Therefore, we can recursively remove the sets 𝐴(𝑆) for every 𝑆 ∈ S and we end up in a
cycle, that contains exactly the vertices of the central bag 𝛽S .
If there is a chord 𝑒 = 𝑢𝜈 in 𝐺 [𝛽S], then there is a corresponding separations 𝑆𝑒 ∈ S , that separates

𝐺 [𝛽S] into two components 𝐴(𝑆𝑒) and 𝐵(𝑆𝑒). But this is a contradiction, since we just removed all sets
𝐴(𝑆), in particular the set 𝐴(𝑆𝑒). Hence, there is no chord in 𝐺 [𝛽S]. This completes the proof.

Now we refer back to the collection S′ and prove that it satisfies all properties we need for the central
bag method.

Lemma 7.15: The collection of separations S′ is laminar.

Proof. Let 𝑆 ′1, 𝑆
′
2 ∈ S′ be two distinct separations. We need to show that 𝐴(𝑆 ′1) ∪𝐶 (𝑆 ′1) ⊆ 𝐵(𝑆 ′2) ∪𝐶 (𝑆 ′2)

and 𝐴(𝑆 ′2) ∪𝐶 (𝑆 ′2) ⊆ 𝐵(𝑆 ′1) ∪𝐶 (𝑆 ′1).
Assume w.l.o.g. that 𝐴(𝑆 ′1) ∪𝐶 (𝑆 ′1) ⊈ 𝐵(𝑆 ′2) ∪𝐶 (𝑆 ′2). Then there exists a vertex 𝜈 ∈ 𝐴(𝑆 ′1) ∪𝐶 (𝑆 ′1)

and 𝜈 ∉ 𝐵(𝑆 ′2) ∪𝐶 (𝑆 ′2), which implies 𝜈 ∈ 𝐴(𝑆 ′2) and hence 𝜈 ∉ 𝛽S . Now if 𝜈 ∈ 𝐶 (𝑆 ′1), then 𝜈 ∈ 𝛽S by the
definition of S′, a contradiction. So 𝜈 ∈ 𝐴(𝑆 ′1). But then we have 𝐴(𝑆 ′1) ⊆ 𝐴(𝑆 ′2) which implies 𝑆 ′1 ∉ S′,
a contradiction. Therefore, 𝐴(𝑆 ′1) ∪𝐶 (𝑆 ′1) ⊆ 𝐵(𝑆 ′2) ∪𝐶 (𝑆 ′2) and the other case works analogously.

Lemma 7.16: The collection of separations S′ is 2-aligned.

Proof. Let 𝑆𝑒 ∈ S′ be a canonical separation for 𝑒 = 𝑢𝜈 ∈ 𝐸 (𝐺). Clearly, 𝐶𝑒 ∩ 𝛽S is connected, so
condition (1i) of the definition of 𝑘-aligned is fulfilled. We set 𝛿 (𝑆𝑒) := 𝐶 (𝑆𝑒) ⊆ 𝛽S and so condition
(1ii) of the definition of 𝑘-aligned is satisfied with 𝑘 = 2, since |𝐶 (𝑆𝑒) | = 2 and (𝐴(𝑆𝑒) ∪ (𝐶 (𝑆𝑒) \
𝛿 (𝑆𝑒)), 𝛿 (𝑆𝑒), 𝐵(𝑆𝑒)) = (𝐴(𝑆𝑒),𝐶 (𝑆𝑒), 𝐵(𝑆𝑒)) is a separation of𝐺 . We have𝑤 (𝐴(𝑆𝑒) ∪ (𝐶 (𝑆𝑒) \ 𝛿 (𝑆𝑒))) =
𝑤 (𝐴(𝑆𝑒)) ≤ 1/2, so condition (1iii) is satisfied, too.

Since S′ is laminar by Lemma 7.15, it follows by Lemma 7.9 that S′ satisfies condition (2) of the
definition of 𝑘-aligned. This completes the proof.

For each pair of distinct separations 𝑆 ′1, 𝑆
′
2 ∈ S′, we set the anchors 𝛿∗(𝑆 ′1) and 𝛿∗(𝑆 ′2) such that

𝛿∗(𝑆 ′1) ≠ 𝛿∗(𝑆 ′2). To see that such a choice is possible, note that 𝛿∗(𝑆 ′1) ∈ 𝛿 (𝑆 ′1) := 𝐶 (𝑆 ′1) and 𝛿∗(𝑆 ′2) ∈
𝛿 (𝑆 ′2) := 𝐶 (𝑆 ′2). There are two possible cases: 𝐶 (𝑆 ′1) ∩ 𝐶 (𝑆 ′2) = ∅ and |𝐶 (𝑆 ′1) ∩ 𝐶 (𝑆 ′2) | = 1 (note that
|𝐶 (𝑆 ′1) ∩𝐶 (𝑆 ′2) | = 2 is not possible, since otherwise𝐶 (𝑆 ′1) = 𝐶 (𝑆 ′2) and therefore 𝑆 ′1 = 𝑆

′
2, a contradiction

49



7 The Central Bag Method

because 𝑆 ′1 and 𝑆
′
2 are distinct separations). In the case when𝐶 (𝑆 ′1) ∩𝐶 (𝑆 ′2) = ∅, we are free in the choice

of 𝛿∗(𝑆 ′1) and 𝛿∗(𝑆 ′2). In the worst case, for each separation 𝑆 ′1 ∈ S′ with 𝐶 (𝑆 ′1) = {𝑢, 𝜈} there are two
separations 𝑆 ′2, 𝑆

′
3 ∈ S′ with 𝐶 (𝑆 ′1) ∩𝐶 (𝑆 ′2) = {𝑢} and 𝐶 (𝑆 ′1) ∩𝐶 (𝑆 ′3) = {𝜈}. In this case, the separations

in S′ form a cycle of length |S′ |. But then, for each separation 𝑆 ′ ∈ S′ we can set 𝛿∗(𝑆 ′) as a vertex
of that cycle, where distinct separations get distinct anchors. Figure 7.6 shows an example of such a
situation. The Hamiltonian cycle of the graph is visualized in red.

e1

e2

e5

e4

e3

x1

x5

x2

x3

x4

C

S ′ = {Se1 , Se2 , Se3 , Se4 , Se5} and δ∗(Sei) = xi

δ∗(Se1)

δ∗(Se2)
δ∗(Se3)

δ∗(Se4)

δ∗(Se5)

Figure 7.6: An illustration for the choice of the anchors in a collection of separation S′.

Since 𝛽S′ = 𝛽S induces a cycle by Lemma 7.14, it follows that tw(𝐺 [𝛽S]) = 2. Now Lemma 7.4 implies
that there exists a balanced separator 𝑋 of 𝐺 [𝛽S] of size at most 3.

The last ingredient to show that 𝐺 has bounded treewidth is the number of separations that cross 𝑋 .

Lemma 7.17: At most 3 separations in S′ cross 𝑋 .

Proof. Let 𝑆 ′ ∈ S′. Assume there are two distinct components 𝐷1 and 𝐷2 of 𝛽S \ 𝑋 . Recall that 𝐶 (𝑆 ′)
induces an edge 𝑥𝑦 ∈ 𝐸 (𝐺). If 𝐶 (𝑆 ′) ∩ 𝐷1 ≠ ∅ and 𝐶 (𝑆 ′) ∩ 𝐷2 ≠ ∅, then we may assume w.l.o.g. that
𝑥 ∈ 𝐷1 ⊆ 𝛽S and 𝑦 ∈ 𝐷2 ⊆ 𝛽S . This contradicts the fact that 𝛽S induces a cycle by Lemma 7.14 (see
Figure 7.7 for an illustration).

Since |𝑋 | ≤ 3, and since each separation in S′ gets a different anchor, there are at most 3 separations
𝑆 ′1, 𝑆

′
2, 𝑆
′
3 ∈ S′ such that 𝛿∗(𝑆 ′1), 𝛿∗(𝑆 ′2), 𝛿∗(𝑆 ′3) ∈ 𝑋 . This means that at most 3 separations in S′ cross 𝑋 ,

which completes the proof.

βS
D1

D2

x
y

u

v

Xw = {u, v}

Figure 7.7: An illustration for the proof of Lemma 7.17.

50



7.3 An application of the central bag method

We can now apply Theorem 7.12 with 𝑘 = 2, 𝛾 ≤ 3 and 𝑐 ≤ 3 to obtain a𝑤-balanced separator of𝐺 of
size 𝛾 + 𝑐𝑘 ≤ 9. Since𝑤 is an arbitrary weight function, Lemma 7.5 implies that tw(𝐺) ≤ 18. Clearly,
this result is not optimal, since the treewidth of any outerplanar graph is at most 2. But we are mainly
interested in whether the treewidth of a graph class is bounded or not, and not so much in the exact
value. For that reason, our result is what we wanted to show, and it is an application of the central bag
method, which is what we wanted to present.
In this example, we showed how to bound the treewidth of the graph class G using the central bag

method. Our framework allows us to bound the tree-independence number or the tree-chromatic
number of G. In this particular example, there would have been no interesting difference in either
approach. Additionally, by bounding the treewidth of G we already bounded the tree-independence
number and the tree-chromatic number of 𝐺 using the Observations 3.1 and 6.1. But in general, there
could be structure theorems of graph classes that ensure us the existence of separations 𝐶 that are not
bounded in size, but maybe 𝛼 (𝐺 [𝐶]) ≤ 𝑘 or 𝜒 (𝐺 [𝐶]) ≤ 𝑘 for some constant 𝑘 . In such a case, we could
try to apply the central bag method with respect to 𝛼 or 𝜒 , in order to bound the tree-independence
number or the tree-chromatic number of the given graph class.
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8 Conclusion and Future Work

In this thesis, we gave an introduction to the tree-independence number and the tree-chromatic number
of a graph. We proved some basic properties of these invariants and showed the connection to other
concepts in structural graph theory, e.g. (tw, 𝜔)-bounded graph classes. Although we did not talk about
computational complexity a lot, the problems of computing tree-𝛼 (𝐺) and tree-𝜒 (𝐺), given a graph
𝐺 , are NP-hard in general. At least, for the tree-independence number, deciding whether a graph 𝐺
satisfies tree-𝛼 (𝐺) ≤ 1 is computable in linear time, since those are exactly the chordal graphs. Deciding
whether tree-𝛼 (𝐺) ≤ 𝑘 for 𝑘 ≥ 4 is NP-hard. The computational complexity for the cases 𝑘 ∈ {2, 3}
are still unknown and open problems in current research. Clearly, deciding whether tree-𝜒 (𝐺) ≤ 1 for
a given graph 𝐺 is computable in linear time as well, since those are exactly the edgeless graphs. But
already the complexity of deciding tree-𝜒 (𝐺) ≤ 2 is unknown. It is conjectured to be NP-complete in
[HRWY21].
By Ramsey’s theorem, it follows that every tree-𝛼-bounded graph class is (tw, 𝜔)-bounded. It was

conjectured that the converse also holds, i.e. that every (tw, 𝜔)-bounded graph class is tree-𝛼-bounded.
It was shown by Chudnovsky and Trotignon in [CT24] that the conjecture is false. We showed their
construction using the concept of a layered wheel, which is a nice tool to study on its own.
For the tree-chromatic number, we were able to give a characterization of the class of perfect

graphs in terms of tree-𝜒 , that reminds us of the Strong Perfect Graph Theorem. In fact, we used
the SPGT in our characterization. Furthermore, we were able to answer a question (in the nega-
tive) from [DMŠ24a]: Does tw(𝐺) + 1 ≤ tree-𝛼 (𝐺) tree-𝜒 (𝐺) hold for any graph 𝐺? By constructing
certain graphs, namely the 𝐺-subdivisions of 𝐾𝑛 for some graphs 𝐺 , we showed that tw(𝑆 (𝐺)) ≥
4
3 tree-𝛼 (𝑆 (𝐺)) tree-𝜒 (𝑆 (𝐺)). We could improve this bound further by using shift graphs, and we
obtained tw(𝑆 (𝑆 ′𝑛)) ≥ 2 tree-𝛼 (𝑆 (𝑆 ′𝑛)) tree-𝜒 (𝑆 (𝑆 ′𝑛)), where 𝑆 ′𝑛 is an induced subgraph of a shift graph.

On the other hand, we gave upper bounds for the treewidth of a graph in terms of tree-𝛼 and tree-𝜒 . In
particular, we showed that tw(𝑆 (𝐺)) ∈ 𝑂 (tree-𝛼 (𝑆 (𝐺))2 tree-𝜒 (𝑆 (𝐺))), where 𝑆 (𝐺) is the𝐺-subdivision
of 𝐾𝑛 . In general, we showed that tw(𝐺) ∈ 𝑂 (4tree-𝜒 (𝐺 )+tree-𝛼 (𝐺 ) ) holds for any graph 𝐺 . Obviously,
the gap between the lower bound and the upper bound is huge in general, as the upper bound is an
exponential function and the lower bound is a linear function in tree-𝛼 and tree-𝜒 . Therefore, closing
this gap is a natural next thing to do. Especially, we ask (see Question 6.15): Is there any polynomial
function 𝑓 : ℕ ×ℕ→ ℕ such that tw(𝐺) ≤ 𝑓 (tree-𝛼 (𝐺), tree-𝜒 (𝐺)) for every graph 𝐺?

Finally, we studied the central bag method that was developed to bound the treewidth of graph classes.
We were able to generalize this concept in order to bound tree-𝛼 and tree-𝜒 of graph classes, too. With
this tool in our pocket, we might be able to prove that certain graph classes are bounded in one of the
parameters tw, tree-𝛼 or tree-𝜒 .
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