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Abstract

A graph U is an induced-universal graph for a family of graphs F if every graph in
F is an induced subgraph of U . We define by gv(F) the minimum number of vertices
of an induced-universal graph for F .
Alon investigated induced-universal graphs for the family F(n) of undirected graphs
n vertices, and showed the lower and upper bounds of gv(F(n)) have the same order
of magnitude. Furthermore, he suggested that his proof can be expanded to other
types of graphs.
In this thesis, we take a look at the family K(k, r) of complete graphs on k vertices
and edges colored by r colors and, by adapting Alon’s proof, show that gv(K(k, r)) =
(1 + o(1))r(k−1)/2.

Deutsche Zusammenfassung

Ein graph U heißt induzierter universaler graph für eine Familie von Graphen F ,
falls jeder Graph in F ein induzierter Teilgraph von U ist. Wir definieren gv(F) als
die minimale Anzahl an Knoten eines induzierten universalen Graphen für F .
Alon untersuchte indizierte universale Graphen für die Familie F(n) von ungerichteten
Graphen auf n Knoten und zeigte, dass die untere Schranke und die Obere Schranke
von gv(F(n)) dieselbe Größenordnung haben. Darüber hinaus, deutet er hin, dass
seine Methoden für andere Typen von Graphen angewandt werden können.
In dieser Masterarbeit analysieren wir komplette Graphen auf k Knoten und Kanten
gefärbt mit r Farben und zeigen, dass gv für diese Familie Größenordnung (1 +
o(1))r(k−1)/2 hat.
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1. Introduction

1.1. Motivation
How to represent data is a fundamental data structuring problem in computer science.
A conventional approach to this problem is to find and exploit structural uniformities in
families of data structures. These uniformities allow us for example to statically allocate
storage for the entire family instead of dynamically allocating for each member of the
family [CRS83]. However, we still require an exponential number of memory locations to
represent the family. This motivates the problem of minimizing the number of memory
locations needed. We look for a “universal” structure that can simulate every structure in
a family.
A data graph is obtained from a data structure by masking out the data items which
appear at the nodes of the structure and concentrating only on the linkages. Data
graphs are particularly interesting in a computational environment as many important
properties of data structures are independent of the explicit data items at the nodes of the
structure [Ros71]. We may formalize a definition of universality for data graphs as follows.
Given a collection of graphs Γ, each member of Γ containing labelled vertices possibly
shared with other members, a graph U is universal for Γ if it contains every graph of Γ
as a subgraph. Our goal is thus is minimize properties of a universal graph depending on
the specification at hand. Very often, we seek to optimize the number of vertices or the
number of edges.
Moving on from data representation, universality is also an important component in the
study of VLSI circuit design. The circuitry of a computer chip may be viewed as a graph.
Designing a circuit that simulate a family of other circuits is then equivalent to designing a
graph that is universal for the family of the corresponding graphs of the other circuits. It
is expensive to design new computer chips. The cost of replication of the chip is relatively
low. Universal graphs come here into play as they allow manufacturers to design chips
with many functionalities that can be later on configured to the need of the customers.

Universal graphs enjoy a broad spectrum of research in the field of graph theory. They
belong to the area of extremal graph theory as we not only try to find a graph that
“contains” all graphs in a specific family of graphs, but also optimize (minimize) certain of
its properties. It can be interesting to broaden the concept of “containment” beyond the
relation of simple subgraph. Another type of containment are homomorphic subgraphs
where a graph G contains another graph H if G contains a homomorphic copy of H. In
this thesis, we are particularly interested in induced-universal graphs.
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1. Introduction

Let F be a family of graphs. A graph G is called induced universal for the family F
if every member of F is isomorphic to an induced subgraph of G. We denote by gv(F)
the minimum number of vertices in an induced-universal graph for F and by ge(F) the
minimum number of edges in an induced-universal graph F . Often in this thesis, we will
only investigate the minimum number of vertices.

1.2. Overview of related work
Universal graphs were introduced by Rado [Rad64] in 1964. He provided a universal graph
for the family of all finite or countably infinite graphs. Since then, the notion of universal
graph has been studied for diverse families of graphs: planar graphs, bipartite graphs,
hypergraphs, graphs with bounded maximum-degree, trees or more generally graphs with
bounded arboricity, etc...

Let F(n) be the family of all undirected graphs on n vertices. Moon [Moo65] observed
in 1965 that 2(n−1)/2 ≤ gv(F(n)) ≤ O(n2n/2). Using a probabilistic approach, Bollobás
and Thomason [BT81] showed that the binomial random graph on n22n/2 vertices with
probability p = 0.5 is with high probability induced-universal for F(n) (as n tends to
infinity). This result was later improved to O(n2n/2) by Brightwell and Kohayakawa [BK93].
Using adjacency labeling schemes, Alstrup, Kaplan, Thorup and Zwick [AKTZ15] further
improved the upper bound to 16 · 2n/2. The latest result on this family of graphs is
due to Alon [Alo17] who showed that upper and lower bounds have the same order,
gv(F(n)) = (1 + o(1))2(n−1)/2.

Moving on to the family bipartite graphs B(n), using simple counting arguments, we
can see that gv(B(n)) ≥ 2n/4(1−O(1/n)). Analyzing characteristics of infinite hereditary
classes, Lozin and Rudolf showed that gv(B(n)) ≤ O(n22n/4). Alstrup, Kaplan, Thorup and
Zwick [AKTZ15] improved this bound to gv(B(n)) ≤ O(c2n/4) for some absolute constant
less than 100. Later on, Alon [Alo17] proved that gv(B(n)) = (1 + o(1))2n/4.

The next family we consider is the family of graphs with bounded maximum degree. Let
F(n, d) be the family of all graphs on n vertices with maximum degree at most d, d
even. Petersen’s 2-factor theorem allows us to decompose graphs in F(n, d) into several
spanning subgraphs with maximum degree at most 2. Butler [But09] constructed an
induced-universal graphs for the family F(n, 2). Then using a reduction technique by
Chung [Chu90], he showed that Ω(nd/2) ≤ gv(F(n, d)) ≤ O(nd/2). Esperet, Labourel and
Ochem later improved on the upper bound by a multiplicative factor by construction an
induced-universal for F(n, 2) that requires less vertices. Using a different reduction and
construction, Alon and Nenadov [AN17] showed that those bounds even when d is odd.

The family of planar graphs has also seen major improvements over the years. Let P(n)
denote the family of planar of n. Gonçalves [Gon06, Gon09] showed that planar can
be edge-decomposed into three spanning forests. Using this fact with a later result on
forests by Bonichon, Gavoille and Labourel [BGL07], we can show that gv(P(n)) ≤ O(n3).
Gavoille and Labourel [GL07] improved this result shortly after, gv(P(n)) ≤ O(n2+o(1)).
The best result to date is very recent, February 2021. Dujmović, Esperet, Gavoille, Joret,
Micek and Morin proved that gv(P(n)) ≤ O(n1+o(1)).

We conclude this section with forests. Using adjacency labeling schemes, it can easily be
shown that the family of forests on n vertices admits an induced-universal graph on at
most n2 vertices. In 2017, Alstrup, Dahlgaard and Knudsen showed an adjacency labeling
schemes for the family of forests on n vertices that only requires logn+O(1) bits, proving
that gv ≤ O(n). This result can be extrapolated to graphs on n vertices with arboricity k,
ending with the bounds nk

2O(k2) ≤ gv ≤ O(nk). As for graphs on n vertices of treewidth k,
Gavoille and Labourel [GL07] proved that n2Ω(k) ≤ gv ≤ n(log n

k )O(k).
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1.3. Contribution and Outline

1.3. Contribution and Outline
We mentioned earlier that Alon showed for the family F(n) of undirected graphs on n, we
have gv(F(n)) = (1 + o(1))2(n−1)/2. Similar arguments can be made for differents classes
to provide asymptotically tight bounds. In this thesis, we focus on the case of edge-colored
complete graphs and provide a detailed proof to

r(k−1)/2 ≤ gv(K(k, r)) ≤ r(k−1)/2
(

1 +O

( log3/2
r k√
k

))
.

K(k, r) is the family of complete graphs on k vertices and edges colored with r colors.

In Chapter 2, we introduce the notions and concepts necessary for the comprehension of
the thesis. This includes basic definitions in graph theory, homomorphism of edge-colored
graphs and induced-universal graphs.

In Chapter 3, we introduce implicit graph representations with a heavy focus on adjacency
labeling schemes. We provide a few examples and also show a generalization of this concept
to informative labeling schemes.

In Chapter 4, we provide more details to previous work on induced-universal graphs. We
provide a complete construction by Butler of induced-universal graphs for the family of
graphs with bounded maximum degree. We also provide an analysis of this construction
and discuss ways to improve it. We show a reduction by Chung that allows us a construct
an induced-universal graph from a universal graph. We show how this technique can be
used for the family of planar graphs. Finally, we take a look at hereditary families of
graphs.

In Chapter 5, we adapt Alon’s proof for the family of undirected graphs to the setting of
edge-colored complete graphs. Wherever necessary, we expanded on his proof to provide
more details for the reader’s comprehension.
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2. Preliminaries

In this chapter, we introduce theoretical notions used throughout this thesis. In this thesis,
unless stated otherwise, all log are of base 2.

2.1. Basic notions
A graph G is a pair of sets V (G), E(G). We called the elements of V (G) vertices and the
elements of E(G) edges. An edge is a set of two vertices. For an edge u, v, we often simply
write uv. If a graph G has an edge uv, we say that the vertices u and v are connected or
adjacent. A loop is an edge connecting a vertex to itself. We say that a graph has multiple
edges if two or more edges connects the same two vertex with the graph. We call a graph
without loops and multiple edges a simple graph. Throughout this thesis, unless stated
otherwise, all graphs we handle are simple graphs.
We call a graph finite if the set of its vertices is finite. A graph that is not finite is infinite.
The neighborhood N(u) of a vertex u is the set of vertices adjacent to u in G. If a vertex
v is in the neighborhood of a vertex u, we say that v is a neighbor of u. The degree of
a vertex u in G is the number of vertices in its neighborhood.The maximum degree of a
graph G is the maximum of the degrees of its vertices. The minimum degree of a graph is
minimum of the degrees of its vertices.
A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If H is a subgraph
of G, we write H ⊆ G. We say that a subgraph H of G is an induced subgraph if
E(H) = {uv ∈ E(G) | u, v ∈ E(H)}. As such, if H is an induced subgraph of G, then
uv ∈ E(H) if and only if uv ∈ E(G). For a subset K ⊆ V (G), we call the induced subgraph
G[K] of G with vertex set K induced subgraph of G on K. We also say that K induces
G[K]. For the induced subgraph of G obtained by removing a subset X of the vertices, we
write G−X.

An homomorphism from a graph G to another graph H is a map f : V (G)→ V (H) such
that if uv ∈ E(G) then f(u)f(v) ∈ E(H). An isomorphism from a graph G to another H
is a bijective homomorphism from G to H. An isomorphism is an automorphism if G = H.

A path in a graph is a sequence (v1, . . . , vq) of vertices of G such that vertex vi is connected
to vertex vi+1, i = 1, . . . , q−1. If we add the edge v1vq, we obtain a cycle. A graph without
cycle is called acyclic. The length of a path is its number of edges. The distance between
two vertices in a graph is the minimum length of a path connecting them. A Hamiltonian
path is path that visits each vertex exactly once. A Hamiltonian cycle is a Hamiltonian
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2. Preliminaries

path that is a cycle. A connected component of a graph is an induced subgraph in which
any two vertices are connected to each other by a path. A graph is connected if it only had
one connected component. Otherwise, we call it disconnected. A graph is k-connected if we
need to remove at least k vertices to make it disconnected.

A matching M ∈ E(G) is a subset of the edges without common vertices. A matching M
is (inclusion) maximal if there is no other matching M with M ⊂M .

2.2. Basic families
A graph is complete if it contains every possible edges. We denote Kn the complete graph on
n vertices. A clique is a subset of vertices that induces a complete graph. An independent
set is a set of vertices in a graph, no two of which are adjacent. The complement of a
graph G is a graph H on the same vertices such that uv ∈ E(G) if and only in uv 6∈ E(H).
Cliques and independent sets are complement of one another. We call a graph bipartite
if its vertices can be divided into two disjoint and independent sets A and B such that
every edge connects a vertex in A to a vertex in B. The complete bipartite graph is the
graph with all possible edges between A and B. We write Kn,m if |A| = n and |B| = m. A
star Sk is the complete bipartite graph K1,k. A graph is said to be regular if each of its
vertices has the same number of neighbors. A regular graph with vertices of degree k is
called k-regular. A k-degenerate graph is a graph in which every subgraph has a vertex of
degree at most k.

A forest is an acyclic graph. A tree is a connected graph without cycles (i.e. a connected
forest). In a forest, a leaf is a vertex degree 1. A caterpillar is a tree for which removing
the leaves and incident edges produces a path graph. For k ∈ N a graph G is a k-tree if and
only if it is the complete graph Kk+1 or a vertex v exists such that N(v) induces a copy of
Kk and G− v is a k-tree. The definition of trees and 1-trees are equivalent. The arboricity
of a graph is the minimum number of forests into which its edges can be partitioned.
The k-power Gk of a graph G is another graph with the same set of vertices, but in which
two vertices are adjacent when their distance in G is at most k.

A graph G can be drawn on the plane with its vertices mapped to points and its edges
mapped to curves connecting the corresponding endpoints. G is if it can be drawn on the
plane in such a way that its edges intersect only at their endpoints.

A graph is covered by subgraphs G1, . . . , Gk of G if every edge of G belongs to one of these
subgraphs. A graph G is (t,D)-coverable if it can be covered by t forests and a graph H of
maximum degree D. A graph is F (d1, . . . , dk)-coverable if it can be covered by k forests
F1, . . . , Fk such that Fi has maximum degree di for all i = 1, . . . , k. di =∞ is possible.
A class of graph is X is called hereditary if G ∈ X implies H ∈ X for every graph H
isomorphic to an induced subgraph of G.

The binomial random graph model G(n, p) is a model for generating random graphs on n
vertices with each edge included in the graph with probability p, independently from every
other edge.

2.3. Edge colored graphs
An edge colored graph is a pair (G, c) consisting of a simple graph G and a coloring c of its
edges. We say that (H, cH) is an induced subgraph of (G, c) if H is an induced subgraph of
G and cH(uv) = c(uv) for every edge uv ∈ H. A graph isomorphism from an edge colored
graph (G, c1) to an edge colored graph (H, c2) is a bijection g : V (G)→ V (H) such that
uv ∈ E(G) if and only if g(u)g(v) ∈ E(H), and c1(uv) = c2(g(u)g(v)) for every edge uv of

6



2.4. Universal Graphs

G. An automorphism of an edge colored graph is a graph isomorphism with itself. Let X
be a family of edge colored graphs. Analogously to simple graphs, we call an edge colored
graph (G, c) induced universal for the family X if every member of X is isomorphic to an
induced subgraph of (G, c). The edge colored graph pictured in Figure 2.1 has exactly two
automorphisms, namely id and (14).

Figure 2.1.: An edge colored graph with exactly two automorphisms: id and (14).

For an edge coloring c with color set {1, . . . , r} and for a set P = {p1, . . . , pr} with
0 ≤ pi ≤ 1, 1 ≤ i ≤ r, and p1 + · · ·+ pr = 1, a multinomial random graph G(n,P) is an
edge colored graph (G, c) where G is a complete graph on n vertices and c independently
assigns label i (color) to each edge with probability pi. If p = p1 = p2 = · · · = pr = 1

r , we
simply write G(n, p).

2.4. Universal Graphs
Let F be a family of graphs.A graph G is called universal for the family F if G contains
every member of F as a subgraph. G is called induced universal for the family F if every
member of F is isomorphic to an induced subgraph of G. We denote by gv(F) the minimum
number of vertices in an induced-universal graph for F and by ge(F) the minimum number
of edges in an induced-universal graph F . We denote by fv(F) the minimum number
of vertices in a universal graph for F and by fe(F) the minimum number of edges in a
universal graph F .

7





3. Implicit Graph Representation

Traditionally, a simple graph is represented by its vertices and its edges. In a computer
memory, the names of the vertices, which we refer to as labels, are holders that allow data
on the edges to encode the structure of the graph. They betray nothing about the graph
itself. For a graph on n vertices and logn bit labels, we may need O(n2 logn) space to
store the graph if we decide to store each edge individually. This space requirement can be
slightly decreased if we use a different data structure such as an adjacency list. It can be
further decreased if we are handling specific classes of graphs. Finding efficient represention
of various classes of graphs is a fundamental data structuring question in computer science.

If we have an understanding, even partial, of the structure of the graphs in the family we
are investigating, we may approach this question differently. Instead of describing all the
edges explicitly, we may only need to store a subset of the edges and determine the rest of
the edges upon reconstruction of the graph. Suppose a graph G is transitive and has edges
ab, bc. By transitivity, G also has the edge ac. Instead of storing ab, bc and ac, we only
need to store ab and bc. Let us consider a more sophisticated example, the case of interval
graphs.

3.1. Interval Graphs
We recall that an interval graph is a graph where each vertex can be associated with
an interval on the real line in such way that two vertices are adjacent if and only if the
associated intervals have a nonempty intersection. For an interval graph on n vertices,
consider the set of n intervals that are associated with the vertices (interval model) and
enumerate the endpoints of the intervals from left to right and label each vertex with the
two endpoints of its interval (concatenated in binary). This associates with each vertex
a some interval I(a) ⊆ [1, 2n] with integer endpoints (see Figure 3.1). Clearly, a and b
are adjacent if and only if I(a) ∩ I(b) 6= ∅. The label of a vertex u is the concatenation
of its associated endpoints in binary. The interval model can also be reconstructed from
the set of labels of the vertices. In our example, the vertex u is associated to the interval
[−3, 7], the vertex v to [1, 3] and the vertex w to [5, 10]. Then we have L(u) = 001 | 101,
L(v) = 010011 and L(w) = 100110. With this representation, we may check whether two
vertices are adjacent by comparing the labels they are associated with and verifying that
they define overlapping intervals. Although our graph may have a quadratic number of
edges, we only need 2 logn+ O(1) bits per vertex to represent our graph. This number
is asymptotically tight [GP08]. In this graph representation, the labels of the vertices

9



3. Implicit Graph Representation

(a) interval model (b) graph with vertices as-
sociated to intervals

(c) labelled vertices accord-
ing to our enumeration

Figure 3.1.: An interval graph and an adjacency labeling scheme of its vertices.

give enough information so that some properties (adjacency in our case) can be efficiently
determined. We call this type of representation implicit graph representation.

3.2. Adjacency Labeling Scheme
A family of simple graphs F admits an adjacency labeling scheme if, for every graph G ∈ F ,
we can assign labels to vertices of G so that for any two vertices u, v, whether u and v
are adjacent can be determined by an efficient algorithm that examines only their labels.
Adjacency labeling schemes are implicit graph representations. Each vertex is associated to
some information so that adjacency can be algorithmically efficiently determined without
the need of the global data-structure. Let us consider a tree on n vertices. We want to
label its vertices such that we can efficiently determine adjacency. To this effect, we root
the tree and prelabel each vertex with arbitrary, distinct, positive integers. We set the
label of each vertex as its prelabel appended with the prelabel of its parent (the root is
its own parent). Then two vertices are adjacent if and only if the first part of one label is
identical to the second part of the other label (see Figure 3.2).

(a) tree rooted on red vertex with prelabelled
vertices

(b) vertices are labelled

Figure 3.2.: A rooted tree on 10 vertices with labelled vertices.

The importance of shorter label sequences cannot be understated. Besides memory storage,
BFS traversal can be done in O(n) time for certain classes of graphs given a succinct
representation [ACJS19, RLDL94]. Adjacency labeling schemes are also tightly connected
to universal graphs. Indeed, a family of graphs F admits a labeling scheme with L-bit
labels if and only if F has an induced universal graph with at most 2L vertices. Given
an adjacency labeling scheme with L-bit labels for a family of graphs, the graph whose

10



3.3. Informative Labeling Schemes

vertices are all possible L-bit labels in which two vertices are adjacent if and only if their
labels correspond to adjacent vertices is an induced universal graph for the family. Thus,
the shorter the length of the label, the smaller the resulting induced universal graph. We
formalize this notion in the following theorem.

Theorem 3.1. A graph family F admits a labeling scheme with L-bit labels if and only if
F admits an induced universal graph with at most 2L vertices.

Proof. Let F be a graph family which admits a labeling scheme with L-bit labels. We
label the vertices of F randomly. The graph whose vertices are all possible labels and for
which two vertices are adjacent if and only if their labels correspond to adjacent vertices in
F is an induced universal graph for F . This graph has at most 2L vertices. Conversely,
if F admits an induced universal graph U with at most 2L vertices. We can label its
vertices with L-bit labels. The labeling scheme which determines adjacency if and only if
the corresponding vertices in U are adjacent is an adjacency labeling scheme for F .

The family of non-isomorphic trees with 5 vertices consists of three graphs: a path, a
star and a caterpillar. Thus, we need 15 labels (4 bits) to represent all its vertices. By
Theorem 3.1, this family admits an induced-universal graph on 16 vertices.

(a) family of non-isomorphic trees with 5 vertices

(b) induced-universal graph for the family

Figure 3.3.: The family of non-isomorphic trees with 5 vertices (randomly labelled) with
an induced-universal graph for the family according to our random labels.

Before we formally define adjacency labeling schemes, we consider a general and broader
concept.

3.3. Informative Labeling Schemes
Until now, we have described adjacency labeling schemes as they pertain to simple graphs.
However, they are not suitable to describe edge colored graphs. For an edge colored graph
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3. Implicit Graph Representation

(G, c) and a pair of vertices u, v ∈ G, we are not only interested in whether u and v are
adjacent, but also in the color c(uv) of the edge connecting them. Therefore, we want our
labeling scheme to encode the color of the edge in the label.

Peleg [Pel00] formally introduced the concept of informative labeling schemes.
A vertex-labeling of the graph G is a function L assigning a label L(u) to each vertex u of
G. A labeling scheme is composed of two major components:

• A marker algorithmM, which given a graph G, selects a label assignment L =M(G)
for G.

• A decoder algorithm D, which given a set of labels L̂ = {L1, . . . , Lk}, returns a value
D(L̂). The time complexity of the decoder is required to be polynomial in its input.

Let f be a function defined on sets of vertices in a graph. Given a family G of weighted
graphs, an f labeling scheme for G is a marker-decoder pair 〈Mf ,Df 〉 with the following
property. Consider any graph G ∈ G, and let L =Mf (G) be the vertex labeling assigned by
the markerMf to G. Then for any set of verticesW = {v1, . . . , vk} in G, the value returned
by the decoder Df on the set of labels L̂(W ) = {L(v) | v ∈W} satisfies Df (L̂(W )) = f(W ).
The decoder Df is independent of G or its number of vertices.

Let us consider a boolean function f that determines adjacency for a graph G, i.e.
f({u, v}) = TRUE if and only if uv ∈ E(G). If we feed our decoder algorithm pairs
of labels, our labeling scheme determines adjacency. We can see thus that adjacency
labeling schemes are just a special case of informative labeling schemes. Indeed, two
vertices u and v are adjacent if and only if Df (L̂({u, v})) = f({u, v}) = TRUE.

A weighted graph is a graph in which a number is assigned to each edge. Formally, it is a
triple G(V,E,w) where V is the set of vertices, E the set of edges and w is a weight function
w : E(G) → R. The length of a path is the combined weight of the edges composing it.
The distance between two vertices u, v, denoted dist(u, v,G), is defined as the length of
the shortest path connecting them. Another example of informative labeling schemes are
so-called distance labeling schemes. In this case, the function f computes the distance
between vertices of a weighted graph G. Given only the labels of two vertices u and v, our
decoder D returns f({u, v}) = dist(u, v,G). Using distance labeling schemes, Peleg [Pel99]
showed that the family of n-vertex weighted trees admits a distance labeling scheme with
O(M logn+ log2 n) bit labels.

Lemma 3.2 (Peleg [Pel99]). The family of n-vertex weighted trees admits a distance
labeling scheme with O(M logn+ log2 n) bit labels, where M denotes the maximum number
of bits required for representing a weight in the graph.

In the case of an edge colored graph (G, c), we want the function f to determine the color of
edges. With only the labels of vertices u, v as input, our decoder returns D({L(u), L(v)}) =
f({u, v}) = c(uv) if u and v are have a connecting edge, ⊥ otherwise. We shall revisit
informative labeling scheme in Section ?? to find an induced-universal graph for the family
of edge-colored complete graphs.
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4. Related Work

Induced-universal graphs have been investigated for a wide variety of families of graphs. In
this chapter, we explore interesting approaches developed over the years (both implicit and
explicit constructions). We take a look at hereditary classes of graphs, families of graphs
with bounded degree and a technique to construct induced-universal graphs from universal
graphs.

4.1. Graph of bounded-degree
We consider the family of bounded-degree graphs with n vertices. For positive integers d
and n, let H(n, d) denote the family of all graphs on n vertices with maximum degree at
most k. Here, we consider d a constant and n an arbitrarily large number. Universal graphs
for H(n, d) have been considered in various papers. They relied mainly of probabilistic
methods [ACK+00, ACK+01, AA02, AC07, CK99, Cap02]. The study of induced-universal
graphs for H(n, d) however has been a bit sparse. The first results on induced-universal
graphs for bounded-degree graphs are comparatively very recent. The first studies were
conducted by Butler [But09] in 2009. He provided narrow bounds on gv(H(n, d)) and
ge(H(n, d)).
We know from Janson et al. [JLR11] that there are

(1 + o(1))
√

2e−(d2−1)/4
(
dd/2

ed/2d!

)n
ndn/2

labeled d-regular graphs on n vertices when dn is even. Any induced-universal graph U for
H(n, d) satisfies |V (U)|n

n! ≥
(|V (U)|

n

)
≥ |H(n, d)|. The following counting argument naturally

follows and yields a lower bound on gv(H(n, d)),

|V (U)|n

n! ≥
(
|V (U)|
n

)
≥ |H(n, d)| ≥

√
2e−(d2−1)/4

(
dd/2

ed/2d!

)n
ndn/2/n!.

Thus, we have gv(H(n, d)) ≥ cnd/2 where c is a constant depending only on d.

4.1.1. A first upper bound

Butler showed that this is the correct order of magnitude for gv(H(n, d)) when d is even,
namely gv(H(n, d)) < O(nd/2).

13
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Theorem 4.1 (Butler [But09]). We have

gv(H(n, d)) ≤ Cnb(d+1)/2c, and ge(H(n, d)) ≤ Dn2b(d+1)/2c−1,

where C and D are constants which depend only on d.

To prove this, he gives an explicit construction of an induced-universal graph for H(n, d)
and show that it indeed contains every graph of H(n, d) as an induced subgraph. There are
three major steps for the proof. Using Petersen’s 2-factor theorem, we can decompose d-
regular graphs into several 2-regular graphs. Then we construct an induced-universal graph
for 2-regular graphs. Finally, using the reduction of Chung [Chu90], we can recompose our
desired induced-universal graphs from those induced-universal graphs for 2-regular graphs.
We start with the reduction of Chung.

4.1.1.1. Reduction of Chung

Investigating relations between universal graphs and induced-universal graphs, together
with the techniques in [KNR92], Chung gave the following approach.

Theorem 4.2. Let Ui be an induced-universal graph for the family of graphs Fi for
i = 1, 2, . . . , k. H is a family such that H ∈ H can be decomposed into edge-disjoint
spanning subgraphs H1, H2, . . . ,Hk where Hi ∈ Fi.
Let W be the graph with vertices (u1, u2, . . . , uk) where ui ∈ Ui for all i, and an edge
connecting (u1, u2, . . . , uk) and (u′1, u′2, . . . , u′k) if and only if there is an edge connecting ui
to u′i for some i = 1, 2, . . . , k. Then W is an induced-universal graph for H and we have

|V (W )| =
k∏
i=1
|V (Ui)| , and |E(W )| ≤

k∑
i=1
|E(Ui)|

∏
j 6=i
|V (Uj)|2

Proof. Clearly, |V (W )| = ∏k
i=1 |V (Ui)|. For a fixed i, we observe that an edge uiu′i in Ui cre-

ates at most ∏j 6=i |V (Uj)|2 new edges in W . Thus, |E(W )| ≤∑k
i=1 |E(Ui)|

∏
j 6=i |V (Uj)|2.

We now show that W is an induced-universal graph for H. Let H ∈ H. By assumption,
H can be edge-partitioned into H1, H2, . . . ,Hk and the vertex set of Hi is the same as
V (H) for all i = 1, . . . , k. Let Hi denote the mapping from V (Hi) to V (Ui) such that hi(v)
and hi(w) are adjacent in Ui if and only if v and w are adjacent in Hi. In other words,
hi(v) denotes the vertex that v ∈ H maps to when Hi is embedded into Ui. The following
statements are equivalent:

1. (h1(v), h2(v), . . . , hk(v)) and (h1(w), h2(w), . . . , hk(w)) are adjacent in W .

2. hi(v) and hi(w) are adjacent for some i = 1, 2, . . . , k.

3. v and w are adjacent in Hi for some i = 1, 2, . . . , k.

4. v and w are adjacent in H.

1⇔ 2 follows from the definition of W , 2⇔ 3 holds because hi, i = 1, . . . , k, are mappings.
3⇔ 4 becauseHi, i = 1, . . . , k, are edge-decomposition ofH. Thus, (h1(v), h2(v), . . . , hk(v))
and (h1(w), h2(w), . . . , hk(w)) are adjacent in W if and only if v and w are adjacent in H,
and W is an induced-universal graph for H.

If we can decompose graphs of H(n, d) into edge disjoint smaller graphs and find induced-
universal for each of these small graphs, then we can construct an induced-universal graph
for H(n, d).

14
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4.1.1.2. Decomposition of graphs

Here, we show how to decompose graphs of maximum degree at most d into b(d+ 1)/2c
2-regular graphs.

Lemma 4.3. Let G be a graph n vertices with maximum degree at most d. Then G can
be decomposed into b(d+ 1)/2c edge disjoint subgraphs where the maximum degree of each
such subgraph is at most 2.

Proof. This lemma is a simple corollary of Peterseon’s 2-factor theorem for hypergraphs
which states that every (2k)-regular hypergraph can be decomposed into k edge-disjoint
2-regular graphs. Let G be a graph n vertices with maximum degree at most d. We add
edges randomly (possibly multi-edges and loops) until every vertex has degree d if d is
even or degree d+ 1 if d is odd. Our new hypergraph is now d-regular (or (d+ 1)-regular if
d is odd). We can now apply Peterson’s 2-factor theorem and obtain an decomposition
into b(d + 1)/2c 2-regular edge-disjoint graphs. From each 2-regular graphs, we remove
the edges that we initially added. This results in a decomposition of G into b(d+ 1)/2c
edge-disjoint graphs with maximum degree at most 2.

4.1.1.3. Induced-universal graph for graphs with maximum degree at most 2

We construct an induced-universal graph for the family of graphs on n vertices with
maximum degree at most 2, H(n, 2).

Figure 4.1.: An induced-universal graph for the family of graphs H(n, 2).

Let U denote the graph in Figure 4.1. We claim that U is induced-universal for H(n, 2).
To see this, we use the following characteristic of graphs in H(n, 2): a graph G with
maximum degree at most 2 is a collection of cycles and paths. Obviously, we can embed
the paths of G into the path of 2n vertices. 3-cycles and 4-cycles can be respectively
embedded into the bn/3cK3 and bn/4cK4. We now consider cycles of length b1, . . . , bq with
bi ≥ 5, i = 1, . . . , q. If the cycle is odd, then it has length 3 + 2k for some k ≥ 2. We need
k tiles. We take 2 edges of the first tile, then use 2(k − 1) of the edges connecting the tles
and finally 3 edges on the last tiles. If the cycle is even, then it has length 2 + 2k for some
k ≥ 2. We need k tiles. We take 2 edges of the first tile, then use 2(k − 1) of the edges
connecting the tles and finally 2 edges on the last tiles (see Figure 4.1). A cycle bj needs
bbj/2c − 1 tiles. Between two induced cycles, we need to skip a tile. Thus, we need at most
b b1

2 c+ · · ·+ b bq

2 c − 1 ≤ 1
2(b1 + · · ·+ bq)− 1 ≤ bn2 c tiles. We also have:

|V (U)| = 2n+ 3bn3 c+ 4bn4 c+ 5bn2 c ≤ 6.5n,
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Figure 4.2.: Embedding of long cycles into U .

|E(U)| = (2n− 1) + 3bn3 c+ 4bn4 c+ (7bn2 c − 2) ≤ 7.5n.

We have now gathered all the necessary ingredients to prove Theorem 4.1. Let G be a
graph in H(n, d).

1. Apply Lemma 4.3 to decompose G into b(d + 1)/2c edge disjoint subgraphs with
maximum degree at most 2.

2. The graph U in Figure4.1 is an induced-universal graph for H(n, 2).

3. Apply Theorem 4.1 with b(d+ 1)/2c copies of U to construct an induced-universal
graph for H(n, d).

4.1.2. Improving the bound

The bounds offered by Butler are not tight. In this subsection, we explore the improvements
that can be made. There are two major factors to consider.
First, Butler’s strategy yields an upper bound of O(nb(d+1)/2c) for gv(H(n, d)). This order
matches that of the lower bound when n is even. When n is odd, the bound is of order
O(nd/2+1/2). Unfortunately, we cannot use his approach to bridge this gap. It would
necessitate the graph W in Theorem 4.2 to need vertices with d/2 coordinates (we cannot
have half coordinates). Alon and Capalbo [AC07] offered a new type of decomposition
which decomposes a graph with maximum degree at most d into d subgraphs. We shall
expand a little on this below.
Second, to minimize |V (W )| in Theorem 4.2, our only avenue is to minimize |V (Ui)| for
some i = 1, . . . , k. Thankfully, the induced-universal graph for H(n, 2) proposed by Butler
is in no way optimal. Esperet, Labourel and Ochem [ELO08] constructed an induced-
universal graph requiring less vertices. This results in an improvement of our upper bound
by a multiplicative factor.

4.1.2.1. Case when n is odd

Alon and Nenadov [AN17] gave in 2017 an upper bound of gv(H(n, d)) with order matching
that of the lower bound when n is odd. Formally, we have the following theorem.

Theorem 4.4 (Alon, Nenadov [AN17]). There is a constant c > 1 such that for every
integer d ≥ 2 and n ∈ N there exists an induced-universal graph W for H(n, d) with at
most (cd)dnd/2 vertices.

We will only offer an outline of the proof of this theorem as it is quite expansive. For more
details, we refer the reader to Alon’s and Nenadov’s paper [AN17]. We start with an idea
similar to Butler’s: decomposition of graph and patching together small induced-universal
graphs. Instead of Peterson’s 2-factor theorem, we decompose our graphs into so-called
“thin” graphs.
An augmentation of a graph H is any graph obtained from H by choosing an arbitrary
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Figure 4.3.: A graph on the left with an augmentation on the right. New added vertices
are in red and the edges of the matching in bold.

Figure 4.4.: A thin graph with 4 components.

(possibly empty) subset U ⊂ V (H), adding a new set U ′ of |U | vertices, and adding a
matching between U and U ′ (see Figure 4.3). Obviously, any graph is an augmentation of
itself.
We call a graph thin if its maximum degree is at most 3 and each connected component of
it is either an augmenation of a path or a cycle, or a graph with at most two vertices of
degree 3 (see Figure 4.4).
Any thin graph H on n vertices has an (H,P )-homomorphism to a path P on n vertices
with a loop at each vertex, such that the inverse image of any vertex of P consists of at
most 4 vertices. We can see that every thin graph on at most n vertices is a subgraph of P 4

n ,
the 4th power of a path with n vertices. We recall that the kth power of a graph is a graph
with the same set of vertices and an edge between two vertices if and only if there is path
of length at most k between them. The following theorem by Alon and Capalbo [AC07]
states that we can decompose any graph with degree at most d into d thin subgraphs.

Theorem 4.5. Let d ≥ 2 be an integer, and let H be an arbitrary graph of maximum
degree at most d. Then there are d spanning subgraphs H1, H2, . . . ,Hd of H such that each
Hi is thin, and every edge of H lies in precisely two graphs Hi.

With this decomposition, in order to construct an induced-universal graph W following
Theorem 4.2’s approach and achieve the bound in Theorem 4.4, we need each coordinate to
represent a graph of size O(

√
n). We also require W to have an edge between two vertices

if they are adjacent in at least two coordinates. Obviously, Petersen’s 2-factor theorem
does not hold for thin graphs in general. Thus, we also need to find an alternative to
embed our thin graphs into graphs Ui of size O(

√
n. Alon and Capalbo achieve this using

homomorphisms of graphs and results on non-bipartite r-regular Ramanujan graphs. A
r-regular graph is a Ramanujan graph if all non-trivial eigenvalues have absolute value at
most 2

√
r − 1.

4.1.2.2. Case when n is even

As already mentioned above, when n is even, the simplest way to improve our upper bound
is to reduce the number of vertices of the induced-universal graph for H(n, 2). Slightly
modifying Butler’s construction, Esperet, Labourel and Ochem [ELO08] gave a construction
requiring at most 5(bn/2c+ 5) vertices and 9(bn/2c+ 5)− 4 edges.
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Figure 4.5.: A smaller induced-universal graph for H(n, 2).

Theorem 4.6 (Esperet, Labourel and Ochem [ELO08]). The graph depicted in Figure 4.5
is induced-universal for H(n, 2).

Proof. Let U be depicted in Figure 4.5 and let G ∈ H(n, 2). Our goal is to show that we
can embed any graph of H(n, 2) into U . Let ni denote the number of components of G on
i vertices. We recall that graphs in H(n, 2) are a collection of cycles and paths.

• For components of size 1, we need dn/2e+ 1 tiles for our embedding. One tile covers
at most 2 vertices and we need an additional tile to ensure that our embedding is
correct.

dn/2e+ 1 tiles.

• For components of size 2, we require n2 + 1 tiles for our embedding.

n2 + 1 tiles.

• For components of size 3, we require n3 + 1 tiles for our embedding.

n3 + 1 tiles.

• For components of size 4, we require 2n4 + 1 tiles for our embedding.

2n4 + 1 tiles.

• For components of size 5, we require 2n5 tiles for our embedding.

18
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2n5 tiles.

• Each component of size 2k, k ≥ 3, requires k tiles. Thus, we need kn2k tiles.

Embedding of paths and cycles of length 8. It requires 8 tiles.

• Each component of size 2k + 1, k ≥ 3, requires k tiles. Thus, we need kn2k+1 tiles.

Embedding of paths and cycles of length 8. It requires 8 tiles.

We now count the number of tiles required. In total, we need

n

2 + 2 + n2 + 1 + n3 + 1 + 2n4 + 1 + 2n5 +
bn/2c∑
k=3

kn2k +
bn/2c∑
k=3

kn2k+1

≤ 5 +
n∑
i=1

i
ni
2

≤ 5 +
⌊
n

2

⌋
tiles. Here, we used the known fact ∑n

i=1 ini = n. Thus, W has at most 5(bn/2c + 5)
vertices and 9(bn/2c+ 5)− 4 edges.

Inserting these numbers into Theorem 4.2, we see that gv(H(n, d)) ≤ (1 + o(1))
(

5n
2

)d/2
and ge(H(n, d)) ≤

(
9d
10 + o(1)

) (
5n
2

)d−1
. These results are not sharp. Esperet, Labourel

and Ochem conjecture that there exists an induced-universal graph for H(n, 2) with only
2n+ o(n) vertices [ELO08].

4.2. From Universal Graphs to Induced-Universal Graphs
In this section, we analyse relations between universal graphs and induced-universal graphs.
In particular, we will see a construction by Chung [Chu90] that aims to bridge the gap
between universal graphs and induced-universal graphs for particular families of graphs.

We recall that a graph is universal U for a family of graphs F if U contains every graph of
F as a subgraph. In other words, for any graph G ∈ F there is a one-to-one mapping σ
from V (G) to V (U) such that σ(u) is adjacent to σ(v) in U if u is adjacent to v in G. This
contrasts from induced-universal graphs where we would require our mapping to satisfy
adjacency if and only if u is adjacent to v in G. For a family of graphs F , we denote by
fv(F) and fe(F) respectively the minimum number of vertices and the minimum number
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of edges of a universal graph for F . We denote by fe,v(F) the minimum number of edges
in a universal graph for F on fv(F) vertices. Since an induced subgraph is still a subgraph,
we obviously have fe ≤ ge and fv ≤ gv for any family of graphs.

The gap between fv and gv varies drastically depending on the family we are investigating.
For example, we saw in Section 4.1 that gv(H(n, d)) ∈ O(nd/2). Kohayakawa, Rödl and
Schacht [KRSS11] showed in 2011 that fv(H(n, d)) ∈ O(n). In fact, they proved a much
stronger statement. For every d ≥ 2 and fixed integer r, there exists constants B and
C such that for every n and N satisfying N ≥ Bn there exists a graph G on N vertices
and at most CN2−1/d log1/dN edges such that any r-coloring of the edges of G contains a
monochromatic universal graph for H(n, d). B and C are constants depending only on d
and r. If we consider the class of planar graphs on n vertices P(n), the gap between fv
and gv becomes much smaller. In fact, they both have the same order. Dujmović, Joret,
Micek, Morin, Ueckerdt and Wood [DJM+20] proved in 2020 that every planar graph is a
subgraph of the strong product between a graph of treewidth at most 8 and a path. Very
recently, this fact was used by Esperet et al. [EJM20] to show that fv(P(n)) ∈ O(n1+o(1)),
and by Dujmović et al. [DJM+20] to show that gv(P(n)) ∈ O(n1+o(1)).

4.2.1. Constructing Induced-Universal Graphs from Universal Graphs

We now take a look at another of Chung’s reduction showing that an induced-universal
graph can be constructed from a universal graph for graphs with bounded arboricity. This
translates to the relation gv ≤ 2fe,v + fv for the family of acyclic graphs.

Theorem 4.7 (Chung [Chu90]). Let Ak denote the family of graphs with arboricity at
most k. Let U be a universal graph for Ak. Then we have

gv(Ak) ≤
∑
i

(di + 1)k

and
ge(Ak) ≤

∑
vi∼vj

(di + 1)kdk−1
k

where di denotes the degree of the ith vertex in U and vi ∼ vj denotes that vi and vj are
adjacent.

Proof. We construct an induced-universal graph W for Ak as follows.

• V (W ) = {(u0, u1, . . . , uk) | u0 is a vertex of U, ui, i 6= 0, is either ∗ (a special symbol)
or is a neighbor of u0}.

• Two vertices (u0, u1, . . . , uk) and (u′0, u′1, . . . , u′k) are adjacent if u0 = u′i or u′0 = ui
for some i 6= 0.

We need to show that contains every graph from Ak as an induced subgraph. Let G ∈ Ak.
Then G can be partitioned into k edge-disjoint spanning forests F1, . . . , Fk. In constructing
W and its vertices (u0, u1, . . . , uk), our aim is to have each dimension (except the first)
represent the forest Fi and model its adjacency.
In each Fi we orient the edges so that each connected component is an out-tree with a root,
i.e. all edges are oriented from the root to the leaves. U is universal for Ak, so there is a
mapping α from V (G) to V (U) so that α(u) and α(v) are adjacent if u and v are adjacent.
Let σ : V (G)→ V (W ) map each vertex u to (α(u), β(v1), . . . , β(vk)) where vi is the parent
of u in Fi and β(vi) = α(vi) if u is not a root, and β(vi) = ∗ otherwise.
If u and w are adjacent in G, then α(u) and α(w) are adjacent in U . There must be some
forest Fi where u is the parent of w or w is the parent of u. Say w is the parent of u in Fi.
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Then σ(u) has the form (α(u), . . . , α(w), . . . ) where α(w) sits at the ith coordinate. Hence,
σ(u) and σ(w) are adjacent in W .
If σ(u) = (α(u), α(v1), . . . , α(vk)) and σ(w) = (α(w), α(x1), . . . , α(xk)) are adjacent in W ,
then, by construction of W , α(u) = α(xi) or α(w) = α(vi) for some i = 1, . . . , k. Say
α(w) = α(vi). Then by definition of σ, w is the parent of u in Fi. Thus, u and w are
adjacent in G and W contains G as an induced subgraph.
We now count the vertices and edges of W to conclude the proof of our theorem. The
i vertex vi in G has degree at most di in G and, thus, degree at most di in each forest
decomposition of G. Hence, the ith vertex generates at most (di+1)k vertices inW (we need
to account for the special character ∗). We have |V (W )| ≤∑i(di + 1)k. The fixed vertex
(u, v1, . . . , vi−1, w, vi+1, . . . , vk) has neighbors of the form (w, x1, . . . , xj−1, u, vj+1, . . . , xk).
Thus, we have |E(W )| ≤∑vi∼vj

(di + 1)k · dk−1
j .

An obvious corollary of Theorem 4.7 is the following.

Corollary 4.8. Let A denote a family of acyclic graphs and let U be a universal graph for
A. Then we have

gv(A) ≤ 2 |E(U)|+ |V (U)| ,
gv(A) ≤ 2fe,v(A) + fv(A).

4.2.2. Applications
The construction in Theorem 4.7 has a lot of applications in the literature. Indeed, If a
family of graphs with arboricity k admits a universal graph with bounded-degree d, then
the induced-universal graph for that family has O(n(d+ 1)k) vertices. An interesting family
we can, although indirectly, apply this logic to is the family of planar graphs.
We recall that a graph G is covered by subgraphs G1, . . . , Gk of G if every edge of G
belongs to one of these subgraphs. A graph F (d1, . . . , dk)-coverable if it can be covered by
k forests F1, . . . , Fk such that the maximum degree of each Fi is at most di, i = 1, . . . , k.

Theorem 4.9 (Gonçalves [Gon06, Gon09]). Planar graphs are F (∞,∞, 4)-coverable.

To prove this theorem, Gonçalves shows that every triangulation can be decomposed into
three graphs satisfying specific conditions. We can then proceed by induction to conclude
the proof.

Theorem 4.10. The family of planar graphs on n vertices P(n) admits an induced-universal
graph on O(n3) vertices.

Proof. We construct a labeling scheme for P(n) as follows. Let G be a graph from P(n).
We know by Theorem 4.9 that G is F (∞,∞, 4)-coverable. In other words, G can be
decomposed into three forests F1, F2, F3, one of which is a spanning forest of degree at
most 4. Let F3 be the forest of degree at most 4. Using the Traversal and Jumping
technique, Bonichon, Gavoille and Labourel [BGL07] showed bounded degree forests enjoy
an adjacency labeling scheme L with labels of length log(n) + O(1) bits. For a vertex
u, let the label u in G be its label in F3 plus the label of its parent in F1 and F2. It is
easy to verify that this is indeed an adjacency labeling scheme for P(n) and it requires
3 logn+O(1) bits.
By Theorem 3.1, P(n) admits an induced-universal graph with at most 23 logn+O(1) = c ·n3

vertices for a constant c.

This bound has long since been improved by Dujmović et al. [DEG+20] to gv(P(n)) ∈
O(n1+o(1)).
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4.3. Hereditary families of graphs
To find an induced-universal graph for a given family of graphs, the main strategy often
used is to try to infer as much information as possible on the underlying structure of
the graphs composing said family, hoping to find helpful characteristics. For a family of
graphs F and an induced-universal graph U for F , we know that |F| ≤ |U |n , offering us
a natural lower bound on |U |. In this section, we take interest in hereditary classes of
graphs. We will analyze their speed of growth, classify them by their size, fully characterize
so-called “exponential” classes and from this characterization build an induced-universal
for exponential classes of graphs. We recall that a class of graphs is hereditary if it contains
with each graph G all induced subgraphs of G.

We start with some definitions. For a class of graphs X , let Xn be the class of graphs in X
on n vertices. The entropy of a class of graphs X is defined as

h(X ) = lim
n→∞

(log |Xn|)(n
2
) .

We denote by Ei,j the class graphs which permit a partition of the vertex set into i + j
subsets inducing i cliques and j independent sets. For example, E0,2 is the class of bipartite
graphs, E1,1 is the class of split graphs [FH77] and E2,0 is the class of co-bipartite graphs.
For an infinite hereditary a class of graphs X different from the class of graphs, we define
the index k(X ) as the largest integer k such that a class Ei,j ⊆ X with i+ j = k. We set
k(X ) = 0 for any finite hereditary class of graphs and k(X ) =∞ for the class of all graphs.
Alekseev [Ale92] provided a way to evaluate the entropy of hereditary classes of graphs.

Theorem 4.11 (Alekseev [Ale92]). For every infinite hereditary classes of graphs (except
the class of all graphs), we have

h(X ) = 1− 1
k(X ) .

We can thus partition the classes of hereditary graphs into a countable set layers. The kth
layer consists of the classes with entropy h(X ) = 1−1/k(X ). Only the classes Ei,j , i+ j = k
are minimal within the kth layer. The minimal classes of second layer are bipartite graphs,
split graphs and co-bipartite graphs.
Of particular interest are the classes of the first layer. In this layer resides classes of graphs
that do not contain E2,0, E1,1 and E0,2: forests, planar graphs, interval graphs, line graphs,
cographs, etc. These graphs do not all have the same rate of growth as n tends to infinity.
Scheinerman [SZ94] identified four main growth rates:

• the constant tier contains classes X with log |X | = O(1),

• the polynomial tier contains classes X with log |X | = O(logn),

• the exponential tier contains classes X with log |X | = O(n),

• the factorial tier contains classes X with log |X | = O(n logn).

Alexseev [Ale97] provided a description of the minimal classes of these tiers, leading the
following theorem.

Theorem 4.12. For each exponential class X , there is a constant p such that every graph
G ∈ X can be partitioned into at most p subsets each of which is either an independent set
or a clique and between any two subsets there are either all possible edges or none of them.
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4.3. Hereditary families of graphs

Given this full characterization, Lozin and Rudolf [LR07] constructed an induced-universal
graph for the exponential class of graphs on n vertices.

Theorem 4.13 (Lozin and Rudolf [LR07]). Let X be an exponential class of graphs and p
a constant associated to it. Let Γk be the class of all graphs on p vertices and let Γp contain
exactly one graph from each isomorphism class of Γk. The graph W defined as follows

• The vertex set of W is V (W ) =
{
(G, i, j, δ)

∣∣ G ∈ Γk, i ∈ [p], j ∈ [n], δ ∈ {0, 1}
}
.

• Two distinct vertices (G1, i1, j1, δ1) and (G2, i2, j2, δ2) are adjacent in W if and only
if G1 = G2 and either i1i2 ∈ E(G1) or i1 = i2, δ1 = δ2 = 1.

is induced-universal for the class Xn.

We give here Lozin’s and Rudolf’s proof to the theorem.

Proof. Let G be a graph in X . Then G can be partitioned into independent sets V1, . . . , Vr
and cliques Vr+1, . . . , Vt with t ≤ p such that if two vertices u and v belong to the same
subset Vi, then they share the same neighborhood in G \ Vi. For each subset Vi, we define
a bijection φi : Vi → [Vi] ⊂ [n]. Let H be the graph obtained from G by contracting each
subset Vj into a single vertex vj . H has at most p vertices. There is an isomorphism
ψ : V (H)→ V (H) = [p] for some H ∈ Γp.
Mapping a vertex v ∈ Vi to (H,ψ(vi), φ(vi), δi), where δi = 0 if i ≤ r and δi = 1 otherwise,
provides us with an embedding of G into W .
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5. Case of edge-colored Complete Graphs

Let F(k) the family of undirected graphs on k vertices. In 2017, Alon [Alo17] extensively
studied this class of graphs and showed that gv(F(k)) = (1 + o(1))2(k−1)/2, improving on
previous results. His proof can be expanded to different settings. In this chapter, we focus
on the case of edge colored complete graphs and will show in detail how to make to adapt
his proof.

We recall that for a fixed positive integer r, K(k, r) denotes the set of all complete graphs
on k vertices with edges colored with the r colors {1, . . . , r}. It is a known fact that a
complete graph on k vertices has

(k
2
)
edges. Since each edge can take r colors and there

are k! permutations of the vertices, K(k, r) contains at least r(
k
2)/k! graphs. Furthermore,

an induced universal graph for K(k, r) must have at least |K(k, r)| induced subgraphs with
k vertices. With these simple counting arguments, it is easy to see that

gv(K(k, r))k
k! ≥

(
gv(K(k, r))

k

)
≥ |K(k, r)| ≥ r(

k
2)
k! .

Thus, we have gv(K(k, r)) ≥ r(k−1)/2.

Theorem 5.1 (Alon [Alo17]). For every fixed r and large k, we have

r(k−1)/2 ≤ gv(K(k, r)) ≤ r(k−1)/2
(

1 +O

( log3/2
r k√
k

))
.

We define a few notions before starting with our proof. Let r be a fixed positive integer. We
call an edge-colored graph (G, c) ∈ K(k, r) asymmetric if every induced subgraph of (G, c)
has at most k4m automorphisms, wherem = 2

√
k logr k. In particular, an asymmetric graph

has at most k4m automorphisms. Since any graph k vertices has at most k! automorphisms,
we have k4m ≤ k!. This holds for k = 1 or extremely large k, justifying the condition of
the theorem. An edge colored graph in K(k, r) is symmetric if it is not asymmetric. We
denote by H(k, r) the family of all asymmetric complete graphs on k vertices with edges
colored with the r colors {1, . . . , r}, and by T (k, r) = K(k, r) −H(k, r) the family of all
symmetric complete graphs on k vertices with edges colored with the r colors {1, . . . , r}.

We recall that for an edge coloring c with color set {1, . . . , r} and for a set P = {p1, . . . , pr}
with 0 ≤ pi ≤ 1, 1 ≤ i ≤ r, and p1 + · · ·+pr = 1, a multinomial random graph G(n,P) is an
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5. Case of edge-colored Complete Graphs

edge colored graph (G, c) where G is a complete graph on n vertices and c independently
assigns label i (color) to each edge with probability pi. If p = p1 = p2 = · · · = pr = 1

r , we
simply write G(n, p). Obviously, each graph G(n,P) is an element of K(n, r). For a graph
(G, c) ∈ K(n, r), let Gi be the subgraph that only contains edges of color i, 1 ≤ i ≤ r. The
G(n,P) model assigns to a graph G the probability

Prob[G] =
∏
i

p
|E(Gi)|
i .

If r = 2, we have a binomial random graph.

Our induced universal graph for K(k, r) consists of two vertex disjoint parts. One part is
induced universal for asymmetric graphs and the other part induced universal for symmetric
graphs. We will show that, for an appropriate n, the multinomial random graph G(n, 1/r)
is induced universal for H(k, r) with high probability. Using information on the structure
of symmetric graphs, we will then give an explicit construction of an induced universal
graph for T (k, r).

5.1. Asymmetric graphs
In this section, we are interested in finding an induced universal graph for the family of
asymmetric graphs. Let n be the smallest integer that satisfies the following inequality(

n

k

)
k!
k8m r

−(k
2) ≥ 1. (5.1)

For the smallest n satisfying this condition, we have
(n+1
k

)
k!
k8m r

−(k
2)
/(n

k

)
k!
k8m r

−(k
2) = n+1

n−k+1 .

This ratio is close to 1 as n is much larger than k. Thus, the left-hand side of (5.1) for this
smallest n is 1 + o(1). Solving for n, we have(

n

k

)
k!
k8m r

−(k
2) = 1 + o(1)

nk
1
k8m · r

k(k−1)/2 = 1 + o(1)

nk = rk(k−1)/2 · k8m · (1 + o(1))
n = r(k−1)/2 · k8m/k · (1 + o(1))1/k

n = r(k−1)/2 · e16 log3/2
r k√

k · (1 + o(1))1/k

n = r(k−1)/2 ·
(

1 +O

( log3/2
r k√
k

))
In particular, n = (1 + o(1)) · r(k−1)/2. We prove that the multinomial random graph
G(n, 1/r), for n = (1+o(1))r(k−1)/2, contains with high probability an induced copy of every
asymmetric graph with k vertices. Using Talagrand’s inequality and other probabilistic
arguments, we show that the probability that any specific graph of H(k, r) does not appear
in G(n, 1/r) is very small.

Theorem 5.2. Let n = (1 + o(1)) · r(k−1)/2. The multinomial random graph (G, c) =
G(n, 1/r) is, with high probability, induced universal for H(k, r).

We need the following lemma to prove Theorem 5.2.
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5.1. Asymmetric graphs

Lemma 5.3. Let (H, cH) ∈ H(k, r). Let K and K ′ be two graphs with labelled vertices,
each of size k, where |V (K) ∩ V (K ′)| = k − i. Then the number of pairs of colorings
(c1, c2), from the color set {1, . . . , r}, so that the edge colored graph (K, c1) is isomorphic
to (H, cH) and the edge colored graph (K ′, c2) is also isomorphic to (H, cH) is at most

k!
|Aut(H, cH)|k

ik4m.

Proof. There are k! ways to assign labels to the vertex set of K and each automorphism
class of (H, cH) is represented only once on K. Thus, there are exactly k!

|Aut(H,cH)| copies
of (H, cH) on K. Each such copy represents an edge coloring c1 of K. For each fixed
coloring c1 of K, we bound the number of possible embeddings of (H, cH) into K ′. Each
such embedding will represent a coloring c2 of K ′ satisfying the condition of the lemma.
Since |V (K) ∩ V (K ′)| = k− i, there are at most k(k− 1) · · · (k− i+ 1) < ki ways to choose
the vertices of H mapped to the vertices V (K ′)− V (K). Fix a set T of these i vertices
and their embedding. In order to complete the embedding, the induced colored subgraph
of (K, c1) on the set of vertices V (K) ∩ V (K ′) has to be isomorphic to the induced colored
subgraph of (H, cH) on V (H) − T . The number of embeddings of these k − i vertices
corresponds to the number of automorphisms of this induced colored subgraph of (H, cH).
It is at most k4m since (H, cH) is asymmetric.

We can now proceed with the proof of Theorem 5.2. Let (H, cH) be a fixed member ofH(k, r)
and let s = |Aut((H, cH))| be the size of its automorphism group. Let (G, c) = G(n, 1/r)
be a multinomial random graph, where n = (1 + o(1)) · r(k−1)/2.
For every subset K ⊂ V (G) of size k, let XK be the indicator random variable that
takes value 1 if the induced colored subgraph of (G, c) on K is isomorphic to (H, cH).
Let the random variable X be equal to the number of copies of (H, cH) in (G, c). Thus
X = ∑

K XK , where the summation is over all subsets K ⊂ V (G) of size k. There are k!/s
copies of (H, cH) on K. The color of each edge of the induced colored subgraph of (G, c)
on K is chosen independently with probability 1/r. Therefore, the expected value of each
XK is

E(XK) = k!
s
r−(k

2).

By linearity of expectation, we have

E(X) =
(
n

k

)
k!
s
r−(k

2).

It holds

E(X) =
(
n

k

)
k!
s
r−(k

2) =
(
n

k

)
k!
k8m r

−(k
2)k

8m

s
≥ k8m

s
≥ k8m

k4m ≥ k
4m.

Here, we used (5.1) and the inequality s ≤ k4m. Since n = (1 + o(1)) · r(k−1)/2, we have
that k = (2 + o(1)) logr n and thus,

E(X) =
(
n

k

)
k!
s
r−(k

2) =
(
n

k

)
k!
k8m r

−(k
2)k

8m

s
= (1 + o(1))k

8m

s
≤ (1 + o(1))k8m < n0.01.

The last inequality holds since k8m has order (logr n)
√

(logr n)·(logr logr n).

We say that two copies of (H, cH) in (G, c) have a nontrivial intersection if they share at
least two vertices. Let the random variable Z be equal to the number of pairs of copies of
(H, cH) in (G, c) that have a nontrivial intersection. We have Z = ∑

K,K′ XKXK′ , where
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5. Case of edge-colored Complete Graphs

the summation is over all pairs of k-subsets of V (G) that satisty 2 ≤ |K ∩K ′| ≤ k− 1. Let
µ = E(X) and ∆ = E(Z). Then ∆ = ∑k−1

j=2 ∆j where ∆j is the expected number of pairs
K,K ′ with XK = X ′K = 1 and |K ∩K ′| = j.

We claim that for each 2 ≤ j ≤ k − 1,

∆j ≤ µ
1

n0.48 . (5.2)

We consider two cases:

• Case 1: 2 ≤ j ≤ 3k/4.
There are

(n
k

)
ways to choose the set K, and

(k
j

)(n−k
k−j
)
ways to choose K ′ with

|K ∩K ′| = j (choose j vertices from K for the intersection, the remaining vertices
are chosen from G−K). There are k!

s ways to place a copy of (H, cH) in K and k!
s

ways to place a copy of (H, cH) in K ′ (we are overcounting here, as these two copies
have to agree on the edges in their common part). This determines the color of each
edge in the induced colored subgraph of (G, c) on K and on K ′. The probability that
(G, c) indeed has exactly these edges is r−(k

2) · r−(k
2)+(j

2). Thus, we have

∆j ≤
(
n

k

)
k!
s
r−(k

2)
(
k

j

)(
n− k
k − j

)
k!
s
r−(k

2)+(j
2).

We have k = (2 + o(1)) logr n and since j ≤ 3k/4, it follows that

r(j−1)/2 ≤ r( 3k
4 −1)/2 ≤ r

(
3
4 + 3

8o(1)
)

logr n− 1
2 = n

3
4 + 3

8o(1)r−
1
2 ≤ n

3
4 +o(1).

Therefore,

∆j

µ2 ≤
(n
k

)
k!
s r
−(k

2)(k
j

)(n−k
k−j
)
k!
s r
−(k

2)+(j
2)((n

k

)
k!
s r
−(k

2)
)2

≤
(k
j

)(n−k
k−j
)
r−(j

2)(n
k

) ≤
(
k2r(j−1)/2

n

)j
≤
( 1
n1/4−0.005

)j
≤ 1
n0.49 .

Recall that µ ≤ n0.01 and thus

∆j

µ
= µ

∆j

µ2 ≤
1

n0.48 .

• Case 2: j = k − i, i ≤ k/4.
There are

(n
k

)
ways to choose the set K, and

(k
j

)(n−k
k−j
)
ways to choose K ′ with

|K ∩K ′| = j. By Lemma 5.3, for each such choice there are at most k!
s k

ik4m ways to
place copies of H in K and K ′. The probability that this coincides with edges of the
induced colored subgraph of (G, c) on K and on K ′ is r−2(k

2)+(j
2). Thus, we have

∆j ≤
(
n

k

)(
k

j

)(
n− k
k − j

)
k!
s
kik4mr−2(k

2)+(j
2).

We have

−
(
k

2

)
+
(
j

2

)
= −k

2 + k + j2 − j
2 = −k

2 + k + (k − i)2 − (k − i)
2 ≤ −ki+ i2
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5.1. Asymmetric graphs

and

nr−(k−i) ≤ nr−(k− k
4 ) = nr−

3
4 (2+o(1)) logr n = n · n−

3
4 (2+o(1)) = 1

n0.5+o(1) .

Recall that µ ≥ k4m > 1 and thus

∆j

µ2 <
∆j

µ
≤
(
k

j

)(
n− k
k − j

)
kik4mr−(k

2)+(j
2)

≤
(
k

i

)(
n− k
i

)
kik4mr−i(k−i) (j = k − i)

≤ ki(n− k)ikik4mr−i(k−i)

≤ (k2nr−(k−i))ik4m ≤ 1
n0.5−o(1) ≤

1
n0.48 .

We recall Chebyshev’s inequality, Markov’s inequality and Talagrand’s inequality.

Lemma 5.4 (Chebyshev’s Inequality). Let X be random variable with expected value µ
and variance σ2. Then for any real number t > 0,

Prob[|X − µ| ≥ tσ] ≤ 1
t2
.

Lemma 5.5 (Markov’s Inequality). For a positive random variable X ≥ 0, with finite
mean, we have

Prob[X ≥ t] ≤ E(X)
t

.

Theorem 5.6 (Talagrand’s Inequality). Let Ω = ∏p
i=1 Ωi, where each Ωi is a probability

space and Ω has the product measure, and let h : Ω→ R be a function. Assume that h is
Lipschitz, that is, |h(x)− h(y)| ≤ 1 whenever x, y differ in at most one coordinate. For a
function f : N → N,h is f -certifiable if whenever h(x) ≥ s there exists I ⊆ {1, . . . , p} with
|I| ≤ f(s) so that for every y ∈ Ω that agrees with x on the coordinates I we have h(y) ≥ s.
Suppose that h is f -certifiable and let Y be the random variable given by Y (x) = h(x) for
x ∈ Ω. Then for every b and t

Prob[Y ≤ b− t
√
f(b)] · Prob[Y ≥ b] ≤ e−t2/4.

Returning to our proof, the variance of the random variable X satisfies

Var(X) = Var(
∑
K

XK) =
∑
K

Var(XK) +
∑
K,K′

Cov(XK , XK′)

where the summation is over all ordered pairs K,K ′ where 2 ≤ |K ∩K ′| ≤ k − 1. For
|K ∩K ′| ∈ {0, 1}, XK and XK′ are independent and thus have covariance zero. We have

Cov(XK , XK′) = E(XKXK′)− E(XK)E(XK′) ≤ E(XKXK′)

and since XK is an indicator random variable, it holds

Var(XK) ≤ E(XK).
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5. Case of edge-colored Complete Graphs

It follows from the claim (5.2) that

Var(X) =
∑
K

Var(XK) +
∑
K,K′

Cov(XK , XK′)

≤
∑
K

E(XK) +
∑
K,K′

E(XKXK′)

= µ+ ∆ (∆ = E(Z) =
∑
K,K′

E(XKXK′))

≤ µ+ k − 2
n0.48 µ

≤ (1 + o(1))µ.

Therefore, by Chebyshev’s inequality and the fact that µ is large, we have

Prob[|X − µ| ≥ 1
4µ] ≤ 16Var(X)

µ2 ≤ 161 + o(1)
µ

� 1
4 .

Thus, Prob
[
X ∈ [3

4µ,
5
4µ]
]
� 3

4 and the probability that X ≥ 3µ/4 is much bigger than
3/4. By Markov’s inequality, we have

Prob[∆ ≥ µ

4 ] ≤ 4∆
µ
� 1

4 =⇒ Prob[∆ ≤ µ

4 ]� 3
4 .

Hence, both events happen simutaneously with probability greater than 1/2, that is, the
number of copies of (H, cH) in (G, c) is at least 3µ/4 and the number of pairs of copies
of (H, cH) in G with nontrivial intersection is smaller than µ/4. If we remove one copy of
(H, cH) from each pair with a nontrivial intersection, then G contains a family of at least
µ/2 copies of (H, cH) with no two having a nontrivial intersection.
Let h((G, c)) be the maximum cardinality of a family of copies of (H, cH) in (G, c) in
which no two members have a nontrivial intersection, and let Y be the random variablle
Y = h((G, c)). We want to apply Talagrand’s inequality to conclude our proof.
If the value of c changes for one edge of G, this change affects at most one copy of (H, cH) in
(G, c). Thus, the value of Y can change by at most 1 if we change the color of an edge in G
and h is Lipschitz. Let L be a set of n labelled vertices. Consider the function f(x) = x

(k
2
)

and a multinomial random graph (U, cU ) on L. If h((U, cU )) ≥ s, let I be the set of edges
from s copies of (H, cH) in (U, cU ) in which no two members have a nontrivial intersection.
Obviously, |I| = s

(k
2
)
≤ f(s). For every multinomial random graph (W, cW ) on L that

agrees with (U, cU ) on I, i.e. cU (uv) = cW (uv) for every uv ∈ I , we have h((W, cW )) ≥ s.
Thus, h is f -certifiable for f(s) = s

(k
2
)
. All the conditions for Talagrand’s theorem are met,

and we have with b = µ/2 and t = √µ/k

Prob
[
Y ≤ µ

2 −
√
µ

k

√
f(µ2 )

]
· Prob

[
Y ≥ µ

2

]
≤ e−µ/4k2

=⇒ Prob
[
Y ≤ µ

2

(
1−

√
k(k − 1)
k

)]
· Prob

[
Y ≥ µ

2

]
≤ e−µ/4k2

.

As we have seen above, the probability that Y ≥ µ/2 is greater than 1/2. We can conclude
that the probability that Y = 0 is smaller than e−µ/4k2 which is much smaller than r−k2

.
As Y = 0 if and only if there is no copy of (H, cH) in (G, c), and as the total number
of graphs in H(k, r) is smaller than r(

k
2), we conclude that (G, c) is induced universal for

H(k, r) with high probability.

30



5.2. Symmetric graphs

5.2. Symmetric graphs
In this section, we use information on the structure of graphs with a lot of automorphisms
to construct an adjacency labeling scheme for symmetric graphs. We recall that T (k, r) is
the family of all symmetric complete graphs on k vertices with edges colored with the r
colors {1, . . . , r}.
Let Sp denote the symmetric group on {1, . . . p}. For a permutation h ∈ Sp define its
support supp(h) by

supp(h) = {i ∈ {1, . . . , n} : h(i) 6= i}.

The minimal degree of a permutation group is the size of the minimum support of a
nontrivial (non-identity) element of H. The following lemma states that large permutation
groups may have nontrivial elements with small supports.

Lemma 5.7. For any p > 1 and t, any subgroup S of size at least p4t of the symmetric
group Sp contains a permutation with at least t and at most p− 3t fixed points.

Proof. The subgroup S is a group of permutations of [p]. Consider all t-permutations of
[p] and for each ordering T = (a1, . . . , at), ai ∈ [p], i ∈ [t], the permutations in S satisfying
σ(i) = ai. There are p(p − 1) · · · (p − t + 1) t-permutations of [s]. By the pigeonhole
principle, there is a t-element subset A = {a1, . . . , at} of [p] so that there are at least

|S|
p(p−1)···(p−t+1) > p3t permutations σ in S satisfying σ(i) = ai for all i ∈ [t]. For any two
such permutations σ1, σ2, the product σ1σ

−1
2 fixes all points of A. Let S′ be the subgroup

of S that fixes all points of A. Then |S′| > p3t. The number of permutations in S′ that
fixes all points but at most i is at most

(p−t
i

)
i! < pi (choose i non-fixed points in [p]−A).

The number of permutations in S′ that fixes all points of [p] but at most 3t− 1 is at most
p3t−1. However, we know that |S′| > p3t > p3t−1. Thus, there must be a permutation in S′
that fixes at most p− 3t points, i.e. a permutation with at least 3t non-fixed elements.

We recall that an edge colored graph on k vertices is asymmetric if no induced subgraph of
it has more than k4m automorphisms, where m = 2

√
k log k. A graph is symmetric if it is

not asymmetric. We denote by T (k, r) the family of all symmetric complete graphs on k
vertices with edges colored with the r colors {1, . . . , r}.

We provide the next Corollary and Lemma complete with Alon’s proof of them.

Corollary 5.8. Let (T, c) be a graph in T (k, r). Then there are three pairwise disjoint
sets of vertices A,B,C of T , each of cardinality m, so that the following holds. There
is a numbering of the elements of A,B,C : A = {a1, . . . , am}, B = {b1, . . . , bm} and
C = {c1, . . . , cm} such that for any 1 ≤ i, j ≤ m, we have c(aibj) = c(aicj), i.e. the edge
aibj shares the same color with the edge aicj.

Proof. By the definition of T (k, r), there is an induced colored subgraph (T ′, c) of (T, c)
on p ≤ k vertices whose group of automorphisms S is of size at least k4m ≥ p4m. By
Lemma 5.7 this group contains a permutation σ with at least m and at most p− 3m fixed
points. Let A = {a1, . . . , am} be m of these fixed points and consider the expression of σ
as a product of nontrivial cycles. A cycle of length q contains q points. There are at least
3m non-fixed points. Thus, the total length of these cycles is at least 3m. From each cycle
(w1, w2, . . . , wl) of length l, define bl/2c disjoint pairs

(w1, w2), (w3, w4), . . . , (w2bl/2c−1, w2bl/2c).

Altogether we get at least m such pairs since we lose at most one point per cycle. Let
(bici), (1 ≤ i ≤ m) be m of them. Observe now that for every 1 ≤ j ≤ m, σ maps bj to cj
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5. Case of edge-colored Complete Graphs

and fixes all elements ai. As σ is an automorphism of (T, c) this means that for every i,
the edge aibj has the same color as the edge aicj .

Lemma 5.9. Let T ′ be the graph obtained from a complete graph on k vertices by removing
all edges of a complete bipartite graph Km,m in it, where, as before, m = 2

√
k logr k.

Let [k] = {1, . . . , k} be the set of vertices of T ′ and suppose A′ = {1, . . . ,m}, B′ =
{m + 1, . . . , 2m}, C ′ = {2m + 1, . . . , 3m} and D′ = {3m + 1, . . . , k}, where there are no
edges between A′ and C ′ and all other pairs of vertices of T ′ are adjacent. Then there is an
orientation T ′′ of the edges of T ′ in which all edges between A′ and B′ are oriented from A′

to B′ and the maximum outdegree of a vertex in T ′′ is at most k
2 −

m2

k +O(1) < k
2 − 2 log k.

Proof. We need two facts.

• Fact 1: For any integer g > 1, the edges of the complete graph Kg on g vertices can
be oriented so that every outdegree is at most g/2.
We recall that an undireced graph has an Eulerian cycle if and only if every vertex
has even degree, and all its vertices with nonzero degree belong to a single connected
component. If g is odd, then Kg has an Eulerian orientation in which every outdegree
is exactly (g − 1)/2. If g is even, omit a vertex from an Eulerian orientation of Kg+1
to get an orientation as needed.

• Fact 2: For any positive integers p, q and s ≤ q there is a bipartite graph with classes
of vertices P and Q of sizes p and q, respectively, so that every vertex of P has degree
exactly s and every vertex of Q has degree either bps/qc or dps/qe.
To prove this fact, we number the vertices of Q : u1, u2, . . . , uq and connect, for each
i, vertex number i of P to the vertices

u(i−1)s+1, u(i−1)s+2, . . . , uis

where the indices are reduced modulo q.

We now construct an orientation T ′′ of T ′. Using Fact 1, orient the edges of the complete
graph on A′ so that each outdegree is at most m/2, orient the edges of the complete graph
on B′∪C ′ so that every outdegree is at most m, and orient the edges of the complete graph
on D′ so that every outdegree is at most (k − 3m)/2. Orient all edges between A′ and B′
from A′ to B′. By Fact 2, for any real x ∈ (0, 1), the edges of the complete bipartite graph
with vertex classes A′ and D′ can be oriented so that the outdegree of each vertex of A′ is
at most s = x |D′|+ 1 = x(k − 3m) + 1 and the outdegree of each vertex of D′ is at most
m−b mr

k−3mc = (1− x)m+O(1). Similarly, for any real y ∈ (0, 1), the edges of the complete
bipartite graph with vertex classes B′ ∪C ′ and D′ can be oriented so that the outdegree of
each vertex of B′ ∪ C ′ is at most y(k − 3m) + 1 and the outdegree of each vertex of D′ is
at most (1− y)2m+O(1). In the resulting orientation, the outdegrees of the vertices of A′,
B′ ∪ C ′ and D′ are bounded, up to absolutely bounded additive terms, by

3
2m+ x(k − 3m), m+ y(k − 3m) and k − 3m

2 + (1− x)m+ (1− y)2m,

respectively. Since m = o(k), there are x, y ∈ (0, 1) so that these 3 quantities are equal.
We have:

x = k2 − 3km− 2m2

2k(k − 3m) = 1
2 −

m2

k(k − 3m) −
3m

2(k − 6m) ,

y = k2 − 2km− 2m2

2k(k − 3m) = 1
2 −

m2

k(k − 3m) −
m

k − 3m.

With these x and y, all three quantities above are exactly k
2 −

m2

k . Therefore, there is
an orientation T ′′ in which all outdegrees are equal, up to an O(1) additive error. The
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5.2. Symmetric graphs

total number of edges is
(k

2
)
−m2. This implies that every outdegree in T ′′ is at most

k
2 −

m2

k +O(1) = k
2 −

4k logr k
k +O(1) < k

2 − 2 logr k.

We can now fully properly describe a labeling scheme for the family T (k, r). We start with
the marker algorithmM. Let (T, c) ∈ T (k, r). By Corollary 5.8, T contains three disjoint
subsets of vertices A = {a1, . . . , am}, B = {b1, . . . , bm} and C = {c1, . . . , cm} such that for
any 1 ≤ i, j ≤ m, c(aibj) = c(aicj). Number the vertices of T by the integers 1, 2, . . . , k so
that ai gets the number i, bi gets the number m+ i, ci gets the number 2m+ i and the rest
of the numbering is arbitrary. We want to apply Lemma 5.9 and construct an orientation
T ′′ satisfying its condition. Let T ′ be the graph obtained from T by removing all edges
between A and C. Then by Lemma 5.9, there is orientation T ′′ of the edges of T ′ in which
all edges between A and B are oriented from A to B and the maximum outdegree of a
vertex in T ′′ is at most k

2 −
m2

k +O(1). The label of vertex number i of (T, c) assigned by
the marker algorithmM is the number i in binary followed by the binary representation
of the color c(j) of each outneighbor j of i in (T ′′, c), in order.
The decoder algorithm D, which knows (T ′′, c), works as follows. Given the labels of two
vertices u, v, if it is not the case that one of them lies in A and the other in C, then
one of the labels contains the information about the color of the edge between the two
vertices (since one of the vertices is an outneighbor of the other in (T ′′, c)). The decoder
returns this color as output. If one vertex lies in A and the other in C, then one vertex is
ai and the other cj . The label of ai determines the color c(ai, bj). By Corollary 5.8, we
have c(ai, bj) = c(ai, cj). The decoder returns c(ai, bj) as output. Thus, (M,D) is a valid
labeling scheme for T (k, r).
For the label of vertex i, we need log2 k bits for the number i and log2 r bits for the color
of each outneighbor in (T ′′, c). The maximum outdegree of (T ′′, c) is k

2 −
m2

k + O(1) <
k
2 − 2 logr k. Thus, the length of each label is at most log2 k + (k/2− 2 logr k) log2 r bit. It
follows from Theorem 3.1 that T admits an induced universal graph with at most

2log2 k+( k
2−2 logr k) log2 r = k · r

k
2−2 logr k = 1

k
rk/2

vertices.
This completes the proof of Theorem 5.2.
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6. Conclusion

In this thesis, we surveyed a multitude of families of graphs, bounded degree-graphs, planar
graphs, forests, infinite hereditary graphs just to name a few. For each of those families, we
analyzed previous work on their induced-universal graphs. Table 6.1 provides an overview
on lower and upper bounds on the minimum number of vertices of an induced-universal
graph for various classes of graphs.

Table 6.1.: Bounds on the number of vertices of induced-universal graphs for various families
of graphs. In the case of graphs of maximum degree d, d is a constant. In
the result for families of graphs excluding a fixed minor, the O(1) term in the
exponent depends on the fixed minor excluded.

Graph family Lower bound Upper bound Reference

General graphs 2 n−1
2 O(2 n−1

2 ) Moon [Moo65], Alon [Alo17]
Tournaments 2 n−1

2 O(2 n−1
2 ) Moon [Moo15], Alon [Alo17]

Bipartite graphs Ω(2 n
4 ) O(2 n

4 ) Alon [Alo17]
Graphs of max degree d, d even Ω(n d

2 ) O(n d
2 ) Butler [But09]

Graphs of max degree d, d odd Ω(n d
2 ) O(n d

2 ) Butler [But09], Alon and Nenadov [AN17]
Graphs of max degree 2

⌊
11n
6

⌋ ⌊
5n
2

⌋
+O(1) Esperet, Labourel and Ochem [ELO08]

Graphs excluding a fixed minor Ω(n) n2(logn)O(1) Gavoille and Labourel [GL07]
Planar graphs Ω(n) O(n1+o(1)) Dujmović, Esperet, Gavoille, Joret, Micek and Morin [DEG+20]

Outerplanar graphs Ω(n) O(n1+o(1)) Dujmović, Esperet, Gavoille, Joret, Micek and Morin [DEG+20]
Outerplanar graphs of bounded degree Ω(n) O(n) Chung [Chu90]

Graphs of treewidth k n2Ω(k) n(log nk )O(k) Gavoille and Labourel [GL07]
Graphs of arboricity k nk

2O(k2) O(nk) Alstrup, Dahlgaard and Knudsen [ADK17]
Forests Ω(n) O(n) Alstrup, Dahlgaard and Knudsen [ADK17]

In Chapter 5, we provided a detailed proof of Alon’s suggestion that his work on undirected
graphs can be expanded to edge-colored complete graphs, yielding an upper bound of
(1 + o(1)) · r(k−1)/2. To this purpose, we introduced the concept of multinomial random
graphs and showed how to adapt each theorem and lemma from Alon’s paper.

Throughout this thesis, we saw that there is three main groups of thinking in approaching
induced-universal graphs (or universal graphs for that matter). We can try to provide a
very explicit construction of the induced-universal graph and then prove that every graph
in the family we are investigating appear as an induced subgraph in our induced-universal
graph. We also can try a probabilistic approach by showing that a particular graph is
induced-universal with high probability. Lastly, we can try to implicit generate the graph
by providing a labeling scheme for the family at hand with as few bits as possible.
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6. Conclusion

A few questions arose throughout the thesis.

• It is easy to that Butler’s construction in Section 4.1 can be extrapolated to edge-
colored complete graphs where each color defines a graph with bounded maximum
degree.
Let H be a family of complete graphs on n vertices whose edges are colored by k
colors {1, . . . , k}. If each color i ∈ {1, . . . , k − 1} defines a family with bounded
maximum degree. Obviously, Petersen’s 2-factor theorem is no longer applicable for
the graph defined by color k. Then what bounds does gv(H) satisfy?

• Alon’s proof in Chapter 5 sets requirements for a few variables. For example, r is
fixed, k is large, m depends on k. We saw that k indeed has to be large for the proof
to work. A graph can only be asymmetric if k! > k4m. This inequality hold for k = 1
and very large k. Also if we change m, we may break a few components of the proof.
For example, Lemma 5.9 can only hold if m is very small compared to k. What can
we say if we let r be a function of k?
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