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Abstract

Schnyder realizers are a well-known concept for planar triangulations. We define a more

generalized version of Schnyder realizers with more than three colors for triangulations in

higher dimensions. For these triangulations, we notice that there exists a discrepancy between

the minimal and maximal possible number of edges. We discover that we can embed every

Kn in R3
as a tetrahedization. For all minimal triangulations of higher dimension, we show

their relation to k-trees. We show that minimal triangulations and simple k-trees are the same

graph class. Along the way we use a generalized version of canonical orderings for higher-

dimensional triangulations. In addition, we show that minimal triangulations induce a Schnyder

realizer with k colors. Based on these results and an additional alternative representation of

simple k-trees, we find in our research a tetrahedron contact representation and an octahedron

side-contact representation for simple 4-trees in R3
.
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Kurzfassung

Schnyder-Realisierer sind ein bekanntes Konzept für planare Triangulationen. Wir definie-

ren eine verallgemeinerte Version von Schnyder-Realisierern mit mehr als drei Farben für

Triangulationen in höheren Dimensionen. Bei diesen Triangulationen stellen wir fest, dass

es eine Diskrepanz zwischen der minimalen und maximalen Anzahl von Kanten gibt. Wir

entdecken, dass wir jedes Kn in R3
als Tetraedisierung einbetten können. Für alle minimalen

Triangulationen höherer Dimension zeigen wir deren Beziehung zu k-trees auf. Wir zeigen, dass

minimale Triangulationen und simple k-trees die gleiche Graphenklasse sind. Zwischendurch

verwenden wir eine verallgemeinerte Version von kanonischer Ordnungen für höherdimen-

sionale Triangulationen. Darüber hinaus zeigen wir, dass minimale Triangulationen einen

Schnyder-Realisierer mit k Farben beinhalten. Basierend auf diesen Ergebnissen und einer

zusätzlichen alternativen Darstellung von simple k-trees finden wir in unserer Forschung eine

Tetraeder-Kontakt-Repräsentation und eine Oktaeder-Seitenkontakt-Repräsentation für simple

4-trees in R3
.
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1. Introduction

A planar graph is a graph that can be drawn in the plain. This means for each planar graph

exists a drawing where no edge crosses another except in the endpoints. We call a face of a

planar graph, the area that is bounded by the surrounding edges. A maximal planar graph

has the maximum number of edges. This means we cannot find two non-connected vertices

that can be connected and the resulting graph is still planar. A direct result of the maximality

of a planar graph is that each face is a triangle. We call the maximal planar graphs planar

triangulations. In the following Figure 1.1 a planar triangulation is illustrated.

Figure 1.1.: A planar triangulation with a schnyder coloring.

Schnyder realizers are a fundamental concept for drawing planar graphs. In Figure 1.1 a

Schnyder realizer is illustrated. The most known use case is the drawing of planar graphs as

straight-line drawings.Schnyder realizers are also important for other planar graph representa-

tions. Apart from graph drawing, the concept is more widely used like encodings [2], routing

algorithms [14] or even quantum mechanics [17].

A Schnyder realizer yields an edge-decomposition of a planar triangulation into three colored

trees and an outer triangle. The definition of Schnyder realizers naturally induces the question:

What does a graph that has a Schnyder realizer with more than three colors look like, and is

there a relation to higher-dimensional triangulations.

Despite our knowledge that the number of edges for a planar triangulation is 3n− 6 (where
n is the number of vertices), we do not know the number of edges of a higher-dimensional

triangulation. This number of edges depends on the internal structure of the specific higher-

dimensional triangulation. We show that the tight lower bound for the number of edges is

1



1. Introduction

kn−
(
k+1
2

)
for d-dimensional triangulation. For 3-dimensional triangulations, we present a

construction to embed Kn for all n ∈ N into a triangulation. Therefore, the upper bound for

the 3rd dimension is

(
n
2

)
.

To show the lower bound of the number of edges for a higher-dimensional triangulation, we

look into a generalized version of canonical orderings. For planar triangulations, the canon-

ical ordering respects the structure of the triangulations. In the graph-decomposition of a

canonical ordering process, only vertices that are not part of a chord can be removed. For

higher-dimensional triangulations, we use a generalized version of a chord we call chord

simplex. Based on chord simplices, we define a canonical ordering for triangulations of higher

dimension.

If a triangulation is edge-minimal, we find a surface regular canonical ordering, which can be

used to find a Schnyder realizer. In addition, it can be shown that these minimal triangulations

are simple k-trees.

Based on the theoretical results of this thesis, we present a construction for contact repre-

sentations for minimal triangulations. We use the fact, that minimal triangulations of higher

dimension are simple k-trees. We show in this thesis that minimal triangulations and simple

k-trees can be represented as k-color trees and vice versa.

For 4-color trees, we show two different constructions for contact representations. The first

construction represents a 4-color tree as a tetrahedron contact representation. The second con-

struction represents the 4-color tree in a hole-free octahedron side-contact representation. The

constructions for the shown representations use a common technique based on the structure of

the k-color tree. This technique can be used for all k-color trees and for all geometrics objects

if a proper invariant for these shapes can be found.

2



2. RelatedWork

In this thesis, we look into higher-dimensional triangulations. In the plane we know the number

of edges for a triangulation with n vertices is 3n− 6. For higher-dimensional triangulations,

the number of vertices does not determine the number of edges. The book Triangulations:

structures for algorithms and applications [7, p. 85] describes a way to build higher-

dimensional triangulations based on gluing together simplices. The shown construction also

produces a triangulation with the minimal number of edges. But since we want to find cor-

responding graphs to triangulations, we demand, that the convex hull of the triangulation is

a simplex. This property distinguishes the triangulations described in the book [7] from the

triangulations we observe in this thesis. The triangulations described in the book [7] and other

triangulations with a non-simplicial convex hull later will be referred as inner triangulations.

We show that the number of edges has a tight lower bound for a d-dimensional triangulation

ant that the the bound is kn−
(
k+1
2

)
for k = d+ 1. In the same book [7] the authors describe

the concept of a cyclic polytope C(n, d). A cyclic polytope is an inner triangulation, which

represents aKn for all Rd
. We will use this to find for our definition of triangulations that we

can embed for all n ∈ N a Kn in the d-dimensional space.

Walter Schnyder firstly introduced Schnyder realizers, also known as Schnyder Woods, in 1989

in his paper Planar graphs and poset dimension [19]. Since then, they not only got used in

graph drawing [20], but also in other fields like routing algorithms [14]. Schnyder originally

defined the Schnyder Woods on planar triangulations, since then, others have tried to find

similar constructs for other graphs.

We call a graph connected, if for each vertex exists a path to each of the other vertices. We

call a graph G = (V,E) k-connected, if for each subset Ṽ ⊂ V of the vertices of size k−1 the
induced subgraph G[V \ Ṽ ] is connected.
For 3-connected planar graphs, there is a similar definition of Schnyder realisers [3]. To ac-

commodate the missing edges, some edges are bidirected and bicolored. Others have found a

version for graphs that are embeddable on surfaces of higher genus [4].

In this thesis, we look at Schnyder realizers with more than three colors. The concept of d-
realizers as described in Graphs admitting d-realizers: spanning-tree-decompositions

and box-representations [8] are a pure combinatorial generalized version of Schnyder realiz-

ers from 3 to d colors. Evans et al. show that any homothetic k-simplex contact representation

of a graph has a k-realizer. In addition, they stated that simple k-trees have a k-realizer. Even
though, we show based on Schnyder realizers with 4 colors that a simple 4-tree have a tetra-
hedron contact representation, we cannot answer the question from the paper [8] if a simple

4-tree has a homothetic contact representation. It is unclear what the relation between our

generalized definition of Schnyder realizers and the the k-realizers of the paper [8] is. We will

discuss this further in the conclusion of this thesis.

3



2. Related Work

Apart from concepts closely related to Schnyder realizers, there are other concepts, which yield

other decompositions of graphs. Schnyder subdivides the internal edges into three spanning

trees. There are a few edge-decompositions, which subdivide graphs into two spanning sub-

graphs, sometimes even trees. Regular edge labelings [15] described by G. Kant and X. He are

an edge-decomposition of 4-connected planar graphs. Éric Fusy rediscovered the concept and

called it traversal structures [11]. For Traversal structures, we can find straight-line drawings

[15] and visibility representations [11].

Quadrilanguations are planar graphs and all faces are surrounded by four edges. For quadrilan-

guations, we can find a separating decompositions [9]. A separating decomposition (Q, Y ) is a
coloring and orientation Y of the edges from the quadrilateral Q. The vertices of Q are colored

black or white and the edges of Q are colored red and blue. The vertices s, t are the sinks of
Q and therefore have only red or blue incoming edges, respectively. Depending on the color

(black or white) of the other vertices they, are split into two intervals of red and blue edges.

The arrangement inside the intervals is an incoming edge and then outgoing edges for a vertex

of white color in clockwise order, or vise versa for a black vertex. Seperating decompositions

have a relation to Baxter permutations, twin pairs of binary trees, and other related objects [9].

In the second part of this thesis, we show representations for simple 4-trees. For planar trian-
gulations, we can find a lot of different representations and a lot of them are based on Schnyder

realizers. The original paper of Walter Schnyder [20] shows an embedding of every planar

triangulation onto a grid of size (n− 2)× (n− 2). Based on the earlier result of Schnyder, a

lot of other representations for planar triangulations have been found. We will now look at

contact graphs for planar triangulations.

In the paper Equilateral L-contact graphs [5] axis-aligned L-shapes are used to represent

a planar triangulation in a contact representation. An L-shape are two orthogonal axis-aligned

line segments that are connected in an endpoint. To represent the graph only one of the four

rotations is used and the ends of the L-shape therefore end on another orthogonal line segment

of an other L-shape corresponding, to an outgoing neighbor in the Schnyder realizer. De

Fraysseix et al. describes contact representation with T -shapes [6]. T -shapes axis-aligned
T-shapes are two orthogonal axis-aligned line segments that form a T . In this representation

oriented axis-aligned T -shapes are used to represent the graph. In the same paper the autors

show a Y -shape contact representation. Both representations originate from a triangle contact

representation described in the paper. The triangle contact representation induces an edge, if

a triangle touches the edge of an other triangle by its edge. This representation is similar to

the tetrahedron representation of this thesis. Other tetrahedron contact representations are

known for tripartite graphs, for allKn (n ∈ [10]) and all graphs with less than seven vertices [1].

The octahedron side-contact representationwe provide in this thesis is similar to the correspond-

ing hexagon side-contact representation for planar graphs described in Optimal polygonal

representation of planar graphs [12]. Instead of a touching corner we require for a side-

contact representation, that two geometric objects share a line segment in the plane or a

polygon for 3-dimensional representations. If we look at the octahedron side-contact represen-

tation of a specific simple 4-trees the resulting octahedron side-contact representation is the

Sierpinski-tetrahedron [22], but all holes are filled with octahedrons. For better understanding

you may look at Figure 5.15.
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3. Theoretical Background

This chapter offers an introduction to the fundamental knowledge needed to understand this

thesis. Part of the introduction is a clarification of definitions and notations used in this thesis.

Firstly, we introduce Schnyder realizers for planar graphs. Based on the definition of the

original properties of Schnyder realizers for three colors, we define a more general version for

more than three colors. After clarifying what Schnyder realizers are, we focus on a graph class

known as k-trees. By looking at simple k-trees we will give an intuition why they naturally

induce a Schnyder realizer with k colors. In the next chapter we will show this property of

simple k-trees. The Schnyder coloring will be useful in the third and fourth chapter for our

discussion about calculating contact representations for these kind of graphs. Prior to looking

at the calculations of the representations, we will introduce a compact encoding of simple

k-trees.

3.1. Preliminaries

In this section, we introduce the most common notations used throughout this thesis. We

call G = (V,E) a graph, V or V (G) are called the vertices of G and E = E(G) ⊆
(
V
2

)
the edges of G. For this section v is a vertex, V,W are vertex sets, E,F are edge sets and

G = (V,E), H = (W,F ) are graphs :

notation definition meaning

[n] {1, . . . , n} the set of the first n integers

En ([n], ∅) the empty graph with n vertices

Kn ([n],
(
[n]
2

)
) the ‘complete graph with n vertices

Pn ([n], {{i, i+ 1} | i ∈ [n− 1]}) the path with n vertices

NG(v) {u | {u, v} ∈ E(G)} the neighborhood of v in G

N⋆
G(v) NG(v)∪̇{v} the neighborhood of v and v in G

degG(v) |NG(v)| the degree of vertex v

H ⊆ G H = (W,F ),W ⊆ V, F ⊆ E H is a subgraph of G

G[W ] (W,E(G) ∩
(
W
2

)
) G[W ] is the induced subgraph ofG by

the vertex setW ⊆ V
L(G) (E, {{e1, e2}|e1, e2∈E, v∈e1, v∈e2}) L(G) is the line graph of G

5



3. Theoretical Background

3.2. Schnyder Realizers

In 1990 Walter Schnyder published Embedding planar graphs on the grid [20]. In this

publication he described the properties of a Schnyder realizer. For any planar triangulated

graph G = (V,E) (n := |V |,m := |E|) and a chosen outer triangle △, we call E△ = E(△)
the outer edges of G and E� = E\E△ the inner edges of G. Analogously we define the outer

vertices V△ = V (△) = {vr, vg, vb} and the inner vertices V� = V \V△. Schnyder proved that

we can divideE� into three directed trees T1, T2, T3 and the corresponding edge setsE1, E2, E3.

For a more intuitive explanation, we assign a color to each of these trees, denoting T1 as the

red tree (Tr = (V� ∪ {vr}, Er = E1)), T2 as the green tree (Tg = (V� ∪ {vg}, Eg = E2)) and
T3 as the blue tree (Tb = (V� ∪ {vb}, Eb = E3)). Because the trees split up E� in disjoint sets,

E = E△∪̇Er∪̇Eg∪̇Eb holds. When we shift our focus on the number of edges, we know a

planar triangulation has 3n− 6 edges. Further we know each tree with n vertices has n− 1
edges. Every of our colored trees uses all inner vertices and one of the outer vertices. As a result

|E| = |E△|+ 3 · |V�| = 3 + 3 · (n− 3) = 3n− 6. This is no proof that a described division of

the edges always exists, but the proof can be found in the original paper from Schnyder. We

restate a Schnyder Realizer for the outer triangle△ from Schnyders paper:

Definition 3.1 (Schnyder realizer). For a planar triangulation G, an outer triangle △ =
{vr, vg, vb}, an edge coloring which devides the inner edges into Er, Eg, Eb, and an orientation of
the inner edges, we define a Schnyder realizer R△ = (Tr, Tg, Tb). Where Tx = (V� ∪ {vx}, Ex)
is a tree and all edges of Tx are colored with the color x. The Schnyder realizer holds the following
properties:

1. For all v ∈ V�, v has exactly one outgoing edge in Tr, Tg and Tb.

2. For all v ∈ V� the edges around v are ordered starting from the outgoing edge in Tr. Going
clockwise, v has incoming edges from Tb, the outgoing edge in Tg , incoming edges from Tr,
the outgoing edge in Tb, incoming edges from Tg and again the outgoing edge in Tr.

3. For all vx ∈ V△, vx has only incoming edges from inside the outer triangle of color x.

Going forward, we disregard which triangle is the outer triangle, therefore we will denote R△ as R.

Illustration of Schnyder realizer properties

Figure 3.1.: property 1 and 2 Figure 3.2.: property 3 Figure 3.3.: property 4

6



3. Theoretical Background

In Figure 3.1 property 1 and 2 are illustrated. Bear in mind that the inner vertex v may have

incoming edges from Tr, Tg and Tb. In other words, it is also possible that two outgoing edges

are next to each other and there is no incoming edge between them. For example if v has a red

and green outgoing edge next to each other, v is a leaf in the blue tree. In Figure 3.2 property 3

is illustrated. For any outer vertex, the two edges of the outer triangle separate the plane into

two regions. The outer region which contains no edges and the inner region that contains all

incoming edges of one tree. Since an outer vertex has no outgoing edges, it is the root-vertex

of one of the three trees.

Based on the three properties, it is easy to show a fourth property illustrated in Figure 3.3.

Given a vertex v, there is a unique path to each root of our colored trees. The paths separate the

inside of the outer triangle into three areas. This property is for example used when drawing

G in a straight-line drawing.

3.3. Simplices (S)
Definition 3.2. (k-simplex) For k ∈ N0 and a set of k vertices V = {v1, . . . , vk} we define a
simplex Sk = {s1, . . . , sk}.

For k ∈ N a simplex or k-simplex is the simplest polytope in the (k−1)-th dimension. If the

vertices of a k-simplex are a subset of Rk−1
, we require that the k points are in general position.

k points are in general position, if the coordinates of the points are linearly independent. A

point or vertex is a 1-simplex, a line segment is a 2-simplex, a 3-simplex is known as a triangle

and a simplex with four points is a tetrahedron. These four simplices can be represented in R3
,

for all k > 4, all k-simplices cannot be represented.

A k-simplex Sk
has for all l ∈ [k−1] substructures of size l. The substructures of size l are

l-simplices and are subsets of the vertices of S . We call these substructures the l-faces of Sk
.

the subsets of size l. A simplex S always contains simplices of a smaller number than k as a

substructure. For example the tetrahedron T = {v1, v2, v3, v4} has a 3-face {v1, v2, v3} as a

substructure, or in other words a triangle.

The vertices and 2-faces of a k-simplex define the graph of a k-simplex, which is always

isomorph to a complete graph with k vertices or short Kk.

3.3.1. Barycentric Coordinates

Barycentric coordinates are used to interpolate between points in space. In computer graphics,

three points in R2
form a triangle. To calculate the color of a pixel we need to interpolate

between the three colors of the triangle’s corners. Let us denote p1, p2, p3 the three corners
and c1, c2, c3 their colors, respectively. The pixel p has a position inside the triangle, therefore

we can write p = λ1 · p1 + λ2 · p2 + λ3 · p3. Since we interpolate between points, the sum

λ1+λ2+λ3 = 1 and λ1, λ2, λ3 ∈ [0, 1]. The color, can be calculated as c = λ1 ·c1+λ2 ·c2+λ3 ·c3.
We now generalize this approach to k points in Rk−1

.

7



3. Theoretical Background

Definition 3.3 (Convex Combination). For a given k ∈ N, k points P = {p1, . . . , pk} in Rk,
we define a convex combination λ = (λ1, . . . , λk)

⊺ ∈ Rk with the properties:
∑k

i=1 λi = 1 and
λ1, . . . , λk ∈ [0, 1].

We call p = barP (λ) =
∑k

i=1 = λi · pi the λ generated barycentric point.

Definition 3.4 (Convex Hull). For a set of points P = {p1, . . . , pk} ∈ Rk−1 we define the convex
hull conv(P ) = {barP (λ) | λ ∈ {x | x ∈ [0, 1]k ∧

∑k
i=1 xi = 1}}. We define the inner convex

hull conv⋆(P ) = conv(P ) \ (
⋃

x∈( P

k−1)
conv(x))

3.3.2. Simplicial Complex (K)
For n,m ∈ N we can glue together simplices Sn

1 , S
m
2 by finding a vertex-correspondence for

l ∈ [min(n,m)] between an l-face in S1 with an l-face in S2. After gluing together the two

simplices, they both contain the same vertices as an l-face. We call a structure of multiple glued

together simplices a simplicial complex K.

Definition 3.5 (k-Simplicial Complex). For k ∈ N, i ∈ [k] and a vertex set V , we define a
k-simplicial complex Kk as a k-tuple (T 1, . . . , T k). The set T i ⊂

(
V
i

)
holds the simplices of size i

of Kk. The k-simplicial complex holds the property:

For all i ∈ [k] all i-simplices s ∈ T i : ∅ ≠ t ⊂ s ⇒ t ∈ T |t|.

We call E = T 2
, T 3

and T 4
the edges, the triangles, and the tetrahedrons of the simplicial

complex respectively. Since we have defined vertices and edges, we call G = (V,E) the graph
of the simplicial complex.

In addition, we define a few functions on K. We define the dimension of a simplicial complex,

as the maximal number of vertices in a simplex in K (dim(K) = max{k | T k ̸= ∅}). To get all

l-faces of a simplicial complex of dimension k, we define fl.

fl(K) =

{
∅, dim(K) < l

T l, otherwise

Definition 3.6 (l-Dual Graph for a k-Simplicial Complex). For a k-simplicial complex Kk we
define the l-dual graph dkl (Kk) = (fk(Kk), {(s, t) | s, t ∈ fk(Kk) : s ∩ t ∈ fl(Kk)})

We call a simplicial complex pure, if each l-simplex(with l ∈ [0, k − 1]) in K is a face of at least

one k-simplex in K.

Definition 3.7. Space-partitioning Drawing For a pure k-simplicial complex Kk, we define a
space-partitioning drawing as a straight-line drawing of the underlying graph in Rk−1. We choose
an outer simplex and call the other simplices, the inner simplices of the simplicial complex. In the
drawing only the vertices of the outer simplex ofKk form the convex hull and the inner vertices lay
inside the convex hull. In addition, the inner k-simplices subdivide the convex hull of the drawing
into non-intersecting simplices. We call two simplices S1, S2 intersecting if a vertex v ∈ S1 exists
such that v ∈ conv⋆(S2).

8



3. Theoretical Background

Definition 3.8 (Geometric Simplicial Complex). We call a Simplicial Complex K a Geometric
Simplicial Complex, if K has a geometric realization in Rdim(K)−1 in form of a space partitioning
drawing.

Definition 3.9 (k-Triangulation (T k
)). For k ≥ 2 a k-triangulation T k is a pure geometric

k-simplicial complex and every k−1-face is part of exactly two k-simplices.

Remark 3.10. Because a k-triangulation is a pure geometric k-simplicial complex for every
k−1-face holds: the face is part of two k-simplices.

For this thesis we will only look at connected k-triangulations. Therefore k-triangulations
have only one connected component in the underlying graph. For k = 2 a 2-triangulation is a

cycle, a more detailed explanation can be found in 4.1. We call a k-triangulation a triangulation

for k = 3 and a tetrahedization for k = 4.

We will later look at k-triangulations that can be drawn in Rk−1
. To draw the k-triangulation,

we have to choose an outer simplex. All other simplices and vertices of the triangulation are

drawn inside this outer simplex. That is why we call the other vertices, edges and simplices that

are not part of the outer simplex, inner vertices, inner edges and inner simplices, respectively.

When we talk about the convex hull of a k-triangulation, we mean the convex hull of the outer

simplex.

Remark 3.11. A k-triangulation has at least k + 1 vertices. If we try to build a k-triangulation
with only k vertices, we are only able to build one k-simplex with the k vertices. But for every
k−1-face of the k-triangulation, the face is part of two k-simplices. As a result no k-triangulation
with k vertices is possible. For k + 1 vertices, G = Kk+1 yields a k-triangulation, if we use(
V (G)
k

)
as the set of k-simplices. The k-simplices S1, S2 ∈

(
V (G)
k

)
, S1 ̸= S2 share k−1 vertices and

therefore a k−1-face.

Figure 3.4.: K4 as a 3-triangulation Figure 3.5.: K5 as a 4-triangulation

Lemma 3.3.1. For the corresponding graph GT k of a k-triangulation T k a vertex v ∈ V (GTk)
has degree of at least k.

Proof. Every vertex v is at least part of two k-simplices, since a k-triangulation is a pure

simplicial complex. As a result v is part of at least one k−1-face and two different k-simplices.

The vertex v is with k−2 other vertices part of the k−1-face. In addition, each of the k-simplices

contains a unique vertex, which the other simplex does not contain. For the corresponding

graphG, this gives us at least k neighbors, since v forms a 2-face with each of these vertices.

9



3. Theoretical Background

We call a k-triangulation T k
aminimal k-triangulation, if we cannot find anotherk-triangulation

with the same number of vertices and fewer edges. Later we will show that the minimal number

of edges is ST k(|V (T k)|) = k · n −
(
k+1
2

)
and this lower bound is tight. For now, we only

prove that we cannot have a certain type of edges in a minimal k-triangulation.

Definition 3.12 (Removable Edge). We call an edge {v, w} in a k-triangulation T k removable, if
the common neighbors of v and w induce a k−1-simplex in T k, but the simplex is not in fk−1(T k).

Lemma 3.3.2 (Minimal-Removable-Lemma). A minimal k-triangulation contains no removable
edge.

Proof. We assume we have a minimal k-triangulation T k
and a removable edge e = {v, w}.

The set R = {v, w} ∪ NT k(v) ∩ NT k(w) induces the k-simplices around e. By removing e
and the adjacent k-simplices from the triangulation, we leave a hole inside the triangulation.

This results in k−1-faces that are no longer part of two k-simplices. We accommodate this, by

adding two new k-simplices R \ {v} and R \ {w} to the complex. They fill the hole to satisfy

the properties of a k-triangulation. In detail, the k−1-faces (
(R\{v}

k−1

)
∪
(R\{w}

k−1

)
) \NT k(v) are

the k−1-faces which are only part of one simplex after the removal of e. These k−1-faces are
for the glued together

1
simplices R \ {v} and R \ {w}, the only k−1-faces which are only part

of one simplex. This replacement of simplices inside the triangulation is a contradiction to the

minimality.

Further down the line, we will need to find a decomposition of a k-triangulation. While we

decompose the triangulation, we cannot keep our outer simplex, but we can keep our inner

structure of the triangulation.

Definition 3.13 (Inner k-Triangulation). For a k ≥ 3 and two disjoint vertex sets VS and VI we
define an inner k-triangulation as a pure geometric k-simplicial complex T k on the vertices VS

and VO. The inner k-triangulation has the property: every k−1-face that is a subset of VS is part
of exactly one k-simplex all other k−1-faces are part of two k-simplices.
We call VI the inner vertices and VS the outer vertices of the inner k-triangulation. All k−1-
faces which are a subset of VS are part of a k−1-triangulation on the vertices VS . We call this
k−1-triangulation the surface of the inner k-triangulation and it triangulates the surface of an
k−1-sphere.

Remark 3.14. The k−1 dual graph dk
k−1

(T k) of an inner k-triangulation T k is connected. This
is a necessary condition for an inner k-triangulation because the surface is a k−1-triangulation.

For an inner k-triangulation T k
and a vertex v of the triangulation we define the functions

NO
T k(v) = NT k(v) ∩ VS as the neighborhood on the surface, and N I

T k(v) = NTk(v) ∩ VI the

neighborhood inside the triangulation.

When we remove only the outer simplex
2
of a k-triangulation the left simplicial complex also

holds the properties of an inner k-triangulation. This observation helps us in the next section,

so we do not need to distinguish between a k-triangulation and an inner k-triangulation.

1R \ {v} and R \ {w} are glued together by the k−1-face NT k(v)
2
We only remove the outer simplex. In particular, we keep for all l ∈ [k−1] the l-faces of the outer simplex

10



3. Theoretical Background

3.4. Schnyder Realizers with k Colors

Since we now have defined a Schnyder realizer, a simplex, and a k-triangulation, we can define

what we call a Schnyder realizer on k colors or short a k-color realizer (Rk
). We define a k-color

realizer for a straight-line drawing of a graph G. In particular, even though we will later only

look at k-triangulations, we define k-color realizers for graphs with a straight-line drawing in

Rk−1
.

When we refer to an embedding or an embedding in Rk−1
of a graph or a k-triangulation in

the rest of a thesis, we mean a straight-line drawing and therefore a mapping from the vertices

to the points in Rk−1
. The drawing of the edges and other faces in case of a k-triangulation get

induced by the line segment between the vertices or the convex hull of the face.

The convex hull of an embedding is a k-simplex. These k vertices, called the outer vertices V△,

form a clique in G. All other vertices V� are elements of conv⋆(V△). Analogously, we define
the outer and inner edges E△ and E�.

In the definition of Schnyder realizers, we use that we can draw a 3-triangulation in the plane

and therefore we can order the edges around a vertex clockwise. We look at the chirotope to

order the neighboring edges around a vertex.

Definition 3.15 (Chirotope). For an ordered k-tuple of points P = (p1, . . . , pk), p1, . . . , pk ∈
Rk−1 we define the chirotope χ(p1, . . . , pk) : Rk−1×k → {−1, 0, 1} :

χ(p1, . . . , pk) = sgn(det


| | . . . |
p1 p2 . . . pk
| | . . . |
1 1 . . . 1

)

The chirotope χ(P ) describes the combinatorial orientation of the points P . If the points p1, . . . , pk
are not in general position, every ordered tuple T ′ on these points has the result χ(T ′) = 0. If the
points p1, . . . , pk are in general position based on the order of the points the sign of the results is
positive or negative.

We now look at two properties of chirotopes:

Lemma 3.4.1. For n points p1, . . . , pn in Rn−1 and a translation v ∈ Rn−1 the orientation of the
chirotope does not change: χ(p1 − v, . . . , pn − v) = χ(p1, . . . , pn).

11
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Proof.

χ(p1 − v, . . . , pn − v) = sgn(det


| | . . . |

p1 − v p2 − v . . . pn − v
| | . . . |
1 1 . . . 1

)

= sgn(det(


| | . . . |
p1 p2 . . . pn
| | . . . |
1 1 . . . 1

 ·
(
In−1 −v
0 1

)
))

= sgn(det(


| | . . . |
p1 p2 . . . pn
| | . . . |
1 1 . . . 1

) · det(
(
In−1 −v
0 1

)
)︸ ︷︷ ︸

= 1

) = χ(p1, . . . , pn)

Lemma 3.4.2. For n points p1, . . . , pn in Rn−1 and a point v in R for n factors λ1, . . . , λn in
R,
∑

i∈[n] λi = 1, if we can find λ1, . . . , λn such that v =
∑

i∈[n] λipi than the chirotope of
p1, . . . , pn has the following properties for two cases:

∀l ∈ [k] : λl ∈ [0, 1]
For all i ∈ [n] : χ(p1, . . . , pi−1, v, pi+1, . . . , pn) = χ(p1, . . . , pn)

∃i ∈ [k] : λi < 0
χ(p1, . . . pi−1, v, pi+1, . . . , pn) = −χ(p1, . . . , pn)

Proof.

χ(p1, . . . , pi−1, v, pi+1, . . . , pn) = sgn(det(


| . . . | | | . . . |
p1 . . . pi−1 v pi+1 . . . pn
| . . . | | | . . . |
1 . . . 1 1 1 . . . 1

))

= sgn(
∑
l∈[n]

det(


| . . . | | | . . . |
p1 . . . pi−1 λlpl pi+1 . . . pn
| . . . | | | . . . |
1 . . . 1 λl 1 . . . 1

))

= sgn(
∑
l∈[n]

λl det(


| . . . | | | . . . |
p1 . . . pi−1 pl pi+1 . . . pn
| . . . | | | . . . |
1 . . . 1 1 1 . . . 1

)

︸ ︷︷ ︸
= 0, for l ̸= i

)

= sgn(λi det(


| . . . |
p1 . . . pn
| . . . |
1 . . . 1

)) = sgn(λi) · χ(p1, . . . , pn)

12
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Therefore, if λi ∈ [0, 1] : χ(p1, . . . , pi−1, v, pi+1, . . . , pn) = χ(p1, . . . , pn) and for λi < 0 :
χ(p1, . . . , pi−1, v, pi+1, . . . , pn) = −χ(p1, . . . pn).

Since we have to find the orientation of the edges around an inner vertex v, we define the
chirotope for an ordered edge k-tuple (e1, . . . , ek), ei = {v, wi} ∈ E(G[N⋆(v)]), i ∈ [k] in
relation to the vertex v:

χv(e1, . . . , ek) = χ(w1 − v, . . . , wk − v)

With this definition of the orientation of the edges, we can define a Schnyder realizer with k
colors.

Definition 3.16 (k-Color Realizer). For k > 3 a given graph with an embedding in Rk−1, an
outer k-simplex△ = V△ = {v1, . . . , vk}, the colors c1, . . . , ck and a coloring and orientation of
the inner edges we define a k-color realizer Rk

△ = (T1, . . . , Tk). T1, . . . , Tk subdivide the inner
edges of G into E1, . . . , Ek of color c1, . . . , ck respectively. For x ∈ [k] Tx describs the subgraph
of color x : Tx = (V� ∪ {vx}, Ex). The realizer Rk

△ has the following properties:

1. For the outer vertices the orientation of the chirotope χ(v1, . . . , vk) = 1 is positive.

2. All incoming edges of the outer vertices vi, i ∈ [k] are of color ci.

3. For all v ∈ V� has exactly one outgoing edge of each color c1, . . . , ck e1, . . . , ek in T1, . . . , Tk

respectively and χv(e1, . . . , ek) = 1. For the incoming edges of v hold:

For l ∈ [k], χv(e1, . . . , el−1, e, el+1, . . . , ek) = −1 if e has color cl.

To find and prove that for each minimal k-triangulation a k-color realizer exists, we now need

to define another construct called a k-canonical ordering.

A canonical order or canonical representation, as described in Small sets supporting Fary

embeddings of planar graphs [10], is an order on the vertices of a planar triangulation. Let

v1, . . . , vn be the canonical ordered vertices of a planar triangulation. We can reconstruct a

triangulation and a proper Schnyder-coloring by the edge set of the triangulation.

Starting with G3 as the triangle {v1, v2, v3} which also forms the border. The border is a

cycle ci = {ci1, ci2, . . . , cis}. The vertices ci1 = v1 and ci2 = v2, always stay on the cycle in the

following construction, since they are part of the outer triangle. We construct the triangulation

by adding the vertices v4, . . . , vn in the provided order. In the i-th step vi gets connected to

ci−1
l , . . . , ci−1

r , l < r. As a result vi gets inserted inbetween ci−1
l and ci−1

r , and the vertices

between ci−1
l and ci−1

r get concealed and are no longer on the border of the new graph Gi.

When inserting the vertex vi, we color and orient the new edges. The directed edge {vi−1
l , vi}

gets colored green, the edge {vi−1
r , vi} gets colored blue, and all other edges get colored red

and are incoming edges of vi. When inserting vn we do not color the edges to cn−1
l and cn−1

r

because these are two edges of the outer triangle and do not get colored as described in section

3.2. Note that at the start of the construction we color {v3, v1} and {v3, v2} blue and green

respectively if n ̸= 3.
In the construction above, we can observe, that in every step of the construction, Gi is an inner

3-triangulation. This observation will be important later.
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The resulting coloring of the constructed triangulation is a Schnyder realizer as described in

[20] and a canonical ordering always exists as proven in [10]. Since we now have at least a

rough understanding about a canonical ordering, we shall define the more general version the

k-canonical ordering.

Definition 3.17 (Chord Simplex). For an inner k-triangulation we call for l ∈ [2, k1] a chord
l-simplex an induced simplex of l vertices on the surface of an inner k-triangulation, if and only if
the induced l-simplex is not part of the surface of the inner k-triangulation.

Note that a chord k−1-simplex is always a simplex in the inside of the inner k-triangulation. By
the definition of an inner k-triangulation, every chord k−1-simplex is part of two k-simplices.

As a result the k−1-dual graph of a k-triangulation is always connected if we do not remove a

vertex of a chord k−1-simplex.

Definition 3.18 (Steady k-Triangulation). We call a k-triangulation T k a steady k-triangulation
if for each Ṽ ⊆ V (T k) withG(T k)[Ṽ ] is an inner k-triangulation T k

Ṽ
: T k

Ṽ
has no chord l-simplex

with l ∈ [2, k − 2].

Assumption 3.19. For the rest of the thesis we assume all k-triangulations are steady k-
triangulations.

Lemma 3.4.3 (Peeling Lemma). For any inner k-triangulation of a steady k-triangulation with
k or more vertices, there always exist a vertex v which is not part of a chord k−1-simplex. We call
such a vertex a chord-free vertex. When removing v and all incident edges, the remaining graph is
still an inner k-triangulation.

Proof. We start by looking at an inner k-triangulation a choosen forbidden k−1-simplex sf
of the surface and a vertex v ∈ VS \ sf . If v is not part of a chord k−1-simplex, we are done.

In the other case we find a chord k−1-simplex s. The chord simplex s separates the inner

triangulation into to halves. In both halves, s is part of the surface. We choose the half which

does not contain the forbidden sf and mark s as our new sf . We repeat this process until we

find a vertex which is not part of a chord simplex or the half has only k vertices. In the case of

k vertices we find a vertex w which was not part of the last chord simplex.

Since we choose every iteration, the half which did not contain a previous forbidden k−1-
simplex, the vertex w is part of the surface of the original inner triangulation and is not part of

a chord simplex. By removing this vertex we keep our inner triangulation. The removal of w
may bring new vertices to the surface of the k−1-triangulation, but most importantly, we keep

the k−1-dual graph connected, since we did not remove a chord k-simplex.

Definition 3.20 (k-Canonical Ordering). We call an order on the vertices v1, . . . , vn of a k-
triangulation T k a k-canonical ordering if for every subsetVi = {v1, . . . , vi}, the induced subgraph
T k
i = G(T k)[Vi] is an inner k-triangulation and vi is a vertex inside VS for T k[V ].

We call a k-canonical ordering ṽ1, . . . , ṽn l surface regular, if for every step i ∈ [k, n] we
remove a chord-free vertex ṽi which has l vertices on the surface of the inner k-triangulation
|NO

T k[{ṽ1,...,ṽi}](ṽi)| = l.
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Theorem 3.21. For every steady k-triangulation T k we can find at least one k-canonical order of
the vertices.

Proof. We start with a k-triangulation and remove the outer simplex to get an inner k-triangulation
T k

. We enumerate the outer vertices V△ = {v△1 , . . . , v
△
k }. For all steps of the decomposition,

we choose the simple sf = {v△1 , . . . , v
△
k−1

}. We start with T k
n = T k

. As long as we have more

than k vertices left, we repeat the following step, where i is the number of vertices left. With

Lemma 3.4.3, we find a chord-free vertex ṽi for the forbidden k−1-simplex sf in T k
i . When

there are different chord-free vertices in T k
i , we have to decide which vertex we choose, by the

decision the resulting order is determined and therefore might vary. We remove ṽi from T k
i

and get T k
i−1 as a new inner k-triangulation. When we get to T k

k we have only one k-simplex

left. The k-simplex contains all vertices of sf and an additional vertex ṽk. We have found a

canonical order: v△1 , . . . , v
△
k−1

, ṽk, . . . , ṽn = v△k .

3.5. k-Trees

Trees are one of the simplest if not the simplest non-trivial graph class. We can construct a

tree by induction. A graph with one vertex is a tree of size 1. Adding one vertex to a tree of
size n and connecting it to one of the vertices of the tree, yields a tree of size n+ 1. k-trees can
be constructed similarly, in particular 1-trees are the same graph class as trees.

Definition 3.22 (k-Tree). We can construct a k-tree with n vertices in the following inductive
way, we start with Kk+1 and repeat the following steps n− k − 1 times:

1. Choose k vertices that induce a clique in the current k-tree

2. Add a new vertex and connect it to all vertices of the chosen clique

We can enumerate the vertices v1, . . . , vn by the order in which they were added to the tree and
call this order on the vertices a construction ordering.

Lemma 3.5.1. k-trees are chordal graphs.

Proof. To show that k-trees are chordal, we argue a perfect elimination ordering [21] exists for

every k-tree. We call a vertex a simplicial vertex if its neighborhood is a clique. If we can find a

decomposition of a k-tree, where in each step we find a simplicial vertex, then we have found

a perfect elimination ordering for the k-tree. We know the vertices vk+2 to vn got added in the

order vk+2, . . . , vn. When a vertex vi got added in the construction, we connect only the new

vertex to a clique, so the vertex is in this step a simplicial vertex. Thus the reverse construction

order is a perfect elimination ordering for vk+2, . . . , vn Since v1 to vk+1 form a clique, every

vertex is also simplicial and we find a perfect elimination ordering vn, . . . , v1.

Lemma 3.5.2. Every perfect elimination ordering of a k-tree is the reverse of a construction
ordering.

Proof. Keep in mind, in every perfect elimination ordering for a k-tree we remove in every

step a vertex vi which is not part of a clique Cj of another vertex vj . In other words, the vertex
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vi is at the point of the decomposition only connected to its clique, otherwise there are at least

two vertices in the neighborhood of vi, which are not connected. As a result, when we use the

perfect elimination ordering, the right neighborhood of the vertex is the clique of size k, we
connected it in the construction of the k-tree.

3.5.1. Simple k-Trees

In the construction of a k-tree we allow that in every step we can choose a clique among any

cliques in the current k-tree. We call a k-tree a simple k-tree if in every step of the construction,

we choose a clique that was not chosen in a previous step.

Definition 3.23 (Simple k-Tree). We can construct a simple k-tree STk with n vertices by
starting withKk+1 and the vertices v1, . . . , vk+1. To track the already connected cliques, we define
Ck+1 = {v1, . . . , vk} and Qk+1 = {Ck+1}. Now we repeat the following steps n− k − 1 times:

1. Find a clique Ci /∈ Qi−1 in STk, connect the vertex vi to the simple k-tree by connecting it
to all vertices of Ci

2. Add the clique Ci to the covered cliques Qi = Qi−1∪̇Ci

Lemma 3.5.3. A simple k-tree is a k-triangulation and has a space-partitioning drawing.

Proof. A simple k-tree has a construction order v1, . . . , vn by its definition. We assign a position

in Rk−1
to the first k vertices of the construction in such a way that these outer vertices do not

lay on a hyperplane. In addition we require that χ(v1, . . . , vk) = 1. If χ(v1, . . . , vk) is negative
we can swap the positions of v1 and v2, the resulting chirotope is positive.
These first k vertices form the outer simplex S△. We now assign a position to the remaining

vertices in the construction order and show, that after each step the induced subgraph of

the points with a position is a k-triangulation and the positioning of the vertices yields a

space-partitioning drawing.

We assign vk+1 a position inside conv⋆({v1, . . . , vk}), for example bar{v1,...,vk}((
1
k
, . . . , 1

k
)⊺).

Now the induced subgraph for the first k + 1 vertices form a k-triangulation and a space-

partitioning drawing. The simplices of the triangulation are S =
({v1,...,vk+1}

k

)
and for all

S1, S2 ∈ S, S1 ̸= S2, the simplices S1 and S2 share a k−1-face S1 ∩ S2.

By placing vk+1 inside S△ the simplices around vk+1 subdivide the outer simplex S△ into

k non-intersecting simplices and therefore. The simplices and therefore the drawing of the

induced subgraph of the first k + 1 vertices is space-partitioning.

Using an inductive argument, we add the rest of the vertices. In the step where we add the

vertex vi, the vertices v1, . . . , vi−1 induce a k-triangulation and a space-partitioning drawing.

In the construction, we connect vi to a clique Ci. These vertices form a k-simplex in the

triangulation and the space-partitioning drawing. We subdivide these simplices the same way

we subdivided the outer simplex S△ with the vertex vk+1. As a result, we remove the simplex Si

from the triangulation and the space-partitioning drawing and replace it with the k simplices(
Si∪{vi}

k

)
\ Si. After we added the vertex vi to the triangulation and the space-partitioning

drawing, they are still a triangulation and a space-partitioning drawing.
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Conjecture 3.24. We conjecture that simple k-trees are steady k-triangulations.

For our work later, we need another representation of a simple k-tree. We use a tree with

directed colored edges to represent a simple k-tree. For this representation, the k outer vertices

(v1, . . . , vk) are no vertices in this tree-representation.

Definition 3.25 (k-Color Tree). We define a k-color tree CTk as a directed tree and every edge
has one of the k colors c1, . . . , ck. Every vertex has at most one outgoing edge of one color and at
most one edge of each color as an incoming edge.

Remark 3.26. If we don’t restrict the number of incoming edges of one color, the concept of a
k-color tree could be generalized for all k-trees not only simple k-trees. Because we only need the
definition in this thesis for simple k-trees, we introduce the k-color trees in the way we defined
them in Definition 3.25, even though they should be called simple k-color trees and the name
k-color trees should be reserved for the corresponding concept for k-trees.

Definition 3.27 (k-Vertex Color Set). We define a k-vertex color set as a tuple of k vertices
(v1, . . . , vk). The vertices get assigned the colors c1, . . . , ckaccording to there position in the tuple.

We define four functions on a k-vertex color set ν = (v1, . . . , vk) the vertex v, the index i, the
color c, and the elements e:

vν(l) = vl iν(v) =

{
i v = vi

undefined otherwise

cν(v) = ciν(v) e(ν) = {vν(l) | l ∈ [k]}

When we use k-vertex color sets we always use a map q that maps from the vertices of a k-color
tree to k-vertex color sets.

Construction 3.28 (Simple k-Tree to k-Color Tree Transformation).
When we look at a construction of a simple k-tree, we can define a different structure as

Qk+1, . . . , Qn. Instead of remembering already used cliques, we can remember which cliques

are available. We start with Wk+1 =
({v1,...,vk+1}

k

)
. When we add a new vertex vi, we use

clique Ci /∈ Qi−1. We know Ci ∈ Wi−1, so we can define the new set of available cliques

Wi = (Wi−1 \ Ci) ∪ {{vi} ∪ x | x ∈
(

Ci

k−1

)
}. When we now connect a new vertex vi to

the vertex of the highest index vm in the construction order, we get a tree with vk+1 as the

root. We direct the edges every step from vi to vm as a result, we get a directed tree. Our

alternative representation of a simple k-tree STk
is a k-color tree on the vertices vk+1, . . . , vn

and a function q : V (CTk) → V (STk)k.
The mapping q maps vertices in CTk

to k-vertex color sets. Part of this mapping is the implicit

coloring of our previously described tree to get the k-color tree. When we connect vi to Ci

in our construction, we know vm is the last vertex of Ci that we added to the simple k-tree.
Because of the way, we constructedWi we know q(vm) has only one vertex vo, which is not

part of Ci. We denote o = iq(vm)(vo) as the index into the tuple q(vm) = (t1, . . . , tk). We assign

q(vi) := (t1, . . . , to−1, vm, to+1, . . . , tk) and color the edge with the color co. Because we only
replace the o-th element of the tuple q(vm) once, the resulting tree is a k-color tree, since vm
has only one incoming edge of each color.
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3. Theoretical Background

Lemma 3.5.4. For a vertex set V = {v1, . . . , vn}, V△ = {v1, . . . , vk}, and V� = {vk+1, . . . , vn},
we know a k-color tree CTk and a map q that maps from V� to k-vertex color sets are equivalent
to a simple k-tree if they hold the following properties:

1. V△ ∩ V (CTk) = ∅ and q(vk+1) = (v1, . . . , vk)

2. ∀e = (v, w) ∈ E(CTk):

a) e has color cq(v)(w)

b) w = vq(v)(iq(v)(w))

c) |e(q(v)) ∩ e(q(w))| = k−1

The properties of the Lemma 3.5.4 follow from the above described construction of a k-color
tree from a simple k-tree.

Construction 3.29 (k-Color Tree to Simple k-Tree Transformation).
We can reconstruct the k-tree from a k-color-tree and a mapping q by connecting every vertex

vi ∈ V� to e(q(vi)). In addition, we have to connect the outer vertices to a k-simplex. When

we add the edges in the construction order, we build the simple k-tree as described in the

definition. After v1, . . . , vk+1 are added the k-tree is a Kk+1. Any other vertices get connected

to their k-vertex color set, which corresponds to the clique of the construction.

When we direct the edges from the inner vertices vi and give all incoming edges to vertices

in e(q(vi)) the color of the vertex in the tuple, we can easily see that each inner vertex and

outer vertex fulfill part of the properties of a k-color realizer. But we do not have an embedding

for the simple k-tree. We will show in the next chapter that we can find a representation in

Rk−1
for a simple k-tree, such that all conditions are satisfied and every simple k-tree induces

a Schnyder realizer with k colors.

Remark 3.30. We only need the k-vertex color set in the case of the construction of a k-color
tree from a simple k-tree or to construct a simple k-tree from a k-color tree. The only important
information stored in the mapping q is the tuple of vk+1. The tuple of vk+1 determines, which color
gets assigned to which outer vertex, but this information is only important for the naming of the
vertices and not the structure of the graph itself, since the outer simplex is aKk.

With this realization we know every k-color tree induces a simple k-tree, besides the renaming

of the outer vertices. This understanding about k-color trees will help us find an encoding of

simple k-trees.

3.5.2. Simple k-Tree Encoding

In this section we will present an intuitive encoding of simple k-trees. This encoding will be
useful to describe simple k-trees with a simple notation and evenwithout seeing a representation

of the simple k-tree, we can get a rough understanding of its structure. We use the fact that we

can convert the representation of a simple k-tree to a k-color tree and vice versa. In order to

encode simple k-trees we encode k-color trees and transform them later into simple k-trees.
We start with a set of colors. In our case, we start with four colors, since we will later only look

at k-trees with k ≤ 4. We use the four colors red, green, blue, and lilac. We abbreviate red to r,
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3. Theoretical Background

green to g, blue to b and lilac to l. When we look at three colors we only use red, green, and

blue.

We decode the encoding as a string. When the string is empty, the k-color tree is aKk+1. In

order to construct k-color trees from a string, we keep track, which vertex we added last. We

start with vk+1 as the last added vertex. When the next character in the string is a color, we

add a child under the last added vertex in the k-color tree and color the edge with the color of

the character. We remember the new vertex as our last added vertex. If the next character is

again a color, we add a new vertex, color the edge and update our last vertex. But with only

colors, our k-color tree is a directed colored path. To build a tree, we need another operation.

We introduce two new characters “ ( ” and “ ) ”. If the next character is a “ ( ”, we push the

current last vertex to a stack. If the next character is a “ ) ”, we pop a vertex from the stack

and remember it as our last added vertex. This operation introduces a new problem. If we have

e.g. the following sequence of characters “ (r)r ”, we would add two vertices of the red color

under vk+1, this would not be a valid k-color tree and therefore no valid simple k-tree. Since
we have added two vertices to the same clique of the simple k-tree.

We accommodate this problem, by checking if we already added a vertex of such a color

under our last added vertex. In this case, we do not add a new vertex, we only update our

last vertex to the child, which is connected with the corresponding color. With these two

operations, we can build every possible k-color tree. We only give an intuition on why we can

generate all k-color trees. A k-color tree is a tree and for trees, we know that for every two

vertices in the tree, there exist a unique path between two vertices. Let us denote the unique

paths from vk+1 to vk+2, . . . , vn as P k+2, . . . , P n
, respectively. For an directed edge e = a, b

of CTk
, we can get the color using c(e) = cq(a)(b) and for an path P = {p1, . . . , pl} we can

get the string that generates this path by appending c({p1, p2}), c({p2, p3}), . . . , c({pl−1, pl}).
We can get this string with s(P ). We can now decode the CTk

with the following string

“ (s(P k+2))(s(P k+3)) . . . (s(P n)) ”.
With only these two operations, it is quite tedious to specify a k-color tree. To remedy this, we

introduce two new characters “ { ” and “ } ”. Every Operation inside “ { ” and “ } ” starts
with the last vertex at the point we read “ { ” in the string. In addition, when we complete an

operation inside “ { ” and “ } ”, we continue after “ } ” until we get to the end of the string

or reach “ ) ” character, we then continue with the next operation inside the curly brackets.

When we evaluated all Operations inside “ { ” and “ } ” we jump to the end of the string or

after the next “ ) ”.
The next operation that we allow is represented by a number, when we write “ 5r ” it is the
same as “ rrrrr ”. In the following, we will define a few 3-color trees as CTk

S with S as a string.

We will draw the k-color tree and the simple 3-tree with a Schnyder coloring next to each

other.
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3. Theoretical Background

CT3
6r

CT3
2{rgb}

CT3
({rg}bb)(b2{rg})

The drawings represent the 3-color trees above such that we can observe that the 3-color trees
always are a subgraph of the decoded 3-tree. This holds for all k, not just for k = 3. Additional
the coloring of the k-color tree is a subset of the colored edges of the Schnyder realizer.
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4. Properties of k-Triangulations and Simple
k-Trees

In this chapter, we will show a few properties of k-triangulations and simple k-trees. We start

at looking at the number of edges of a k-triangulation. We will notice that for k = 3, every
triangulation has 3n− 6 edges, but for k > 4, there exists a gap between the minimal and the

maximal number of edges. Since we have seen the gap of edges for k > 3, we want to know
how many simplices are inside an given k-triangulation. After we looked at triangulations,

we want to know for which k-triangulations we can find a Schnyder realizer with k colors.

We show that a k-triangulation has a k-color realizer if and only if the k-canonical order is
k−1-surface regular. With this property, we can show that for k > 3 minimal triangulations

are exactly the same graph class as simple k-trees.

4.1. Number of Edges in a k-Triangulation

In this section we will look at the number of edges of k-triangulations. When we look at the

definition of a k-triangulation, we have defined a k-triangulation as a pure geometric simplicial

complex and every k−1-face is part of two k-simplices. Note that in the first chapter where we

introduced k-triangulations we demanded a connected underlying graph.

As a result for k = 1, we cannot find a graph with such a property, since 0-faces are undefined
and they would be part of two vertices. Since we have no edges in the underlying graph, it is

not even possible to be part of two vertices in any way. For k = 2, we get a cycle. A cycle has

exactly n edges where n is the number of vertices. This can be shown easily. Every vertex is

part of two edges. As a result, we can start walking along the edges. Since every vertex has two

edges, we always walk the edge we did not originate from. We cannot visit a vertex multiple

times because a vertex only has two edges. In the end we will again arrive at the vertex we

have started at, since the number of vertices is finite.

Lemma 4.1.1. For k = 3 a k-triangulation has 3n− 6 edges.

Proof. We know for a 3-triangulation T 3
the Euler’s formula holds n−m+ f = 2, where n is

the number of vertices, m is the number of edges and f is the number of faces. Because T k

is a triangulation all faces are triangles. We use the argument of double counting |{(e, f) |
e ∈ f2(T 3) ∧ e ⊂ t ∈ f3(T 3)}| = 3f = 2m, since every edge e is part of two triangles

and every triangle t has three edges. When we put this into the Euler’s formula we get

2 = n− e+ f = n−m+ 2
3
m = n− 1

3
m and thereforem = 3n− 6.
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4. Properties of k-Triangulations and Simple k-Trees

The graph has 8 vertices, 4 edges of color
red, green, blue and lilac and 6 edges of

black color.

The graph has 8 vertices, 3 edges of color
red, green, blue and lilac color and 6 edges

each of black and cyan color.

Figure 4.1.: There are two 4-triangulations represented, each with 8 vertices. The graph on the

left has 22 edges, while the graph on the right has 24 edges.

Now, we look at the number of edges of a k-triangulation for k > 3. For k ≤ 3 we have

shown that the number of edges can be derived from the number of vertices. In the following

Figure 4.1, we have two 4-triangulations with 8 vertices, which have a different number of

edges.

Due to the fact that the two different 4-triangulations on 8 vertices exist we cannot determine

the number of edges for a k-triangulation for k > 3 from the number of vertices. To find

the number of edges of a k-triangulation for k > 3, we have to look at the structure of the

k-triangulation. A logical reasoning for this discovery is the lower and upper bound on the

number of edges for a k-triangulation with n vertices.

Theorem 4.1. For every k > 3 and any steady k-triangulation T k with n vertices, the number
of edges is limited by ST k(n) ≤ |E(T k)| ≤

(
n
2

)
The upper bound is clear, since a graph with n vertices has at most

(
n
2

)
edges. We later show

for k = 4, this bound is tight, but first we will look at the lower bound of the theorem. We start

by showing a construction that connects n points with ST k(n) edges to a k-triangulation.

Lemma 4.1.2. For every set of points P = {p1, . . . , pn} of n points in general position in Rk−1

with n > k and exactly k points of P on the convex hull of P , there exists a k-triangulation with
vertex set P and ST k(n) edges.

Proof. We reorder the points p1, . . . , pn, such that p̃1, . . . , p̃k are the points S△ that span the

convex hull and p̃k+1, . . . , p̃n are all inside this convex hull. We start with the first k + 1
vertices that form a k-triangulation Sk+1 =

({p̃1,...,p̃k+1}
k

)
. We build a k-triangulation by using a
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4. Properties of k-Triangulations and Simple k-Trees

recursice construction. For the step i ∈ [k + 2, n], Si−1 are the simplices of the k-triangulation
with the points p̃1, . . . , p̃i−1. We find a simplex K ∈ Si−1 \ S△, such that p̃i ∈ conv⋆(K). The
simplex K can be subdivided into k simplices

(
K∪p̃i

k

)
\ K. We found a new k-triangulation

Si = (Si−1 ∪
(
K∪{p̃i}

k

)
) \ K. Every k−1-face of K is now again part of two simplices. The

one it was before besides K and the new one with p̃i. In addition, the new k−1-faces which
contain p̃i are also part of two k-simplices because the new simplices

(
K∪{p̃i}

k

)
share pairwise

k−1 vertices.
After the last step where we have added Sn, we have added all vertices to Sn and Sn is a

k-triangulation of the points p1, . . . , pn. We now count the number of edges. We start with

(
k
2

)
edges and in every step from i ∈ [k + 1, n] we add k edges to the k-triangulation:

k·(n−k)+
(
k
2

)
= k·n−k2+

(
k
2

)
= k·n− 2k2−k(k−1)

2
= k·n−k(k+1)

2
= k·n−

(
k+1
2

)
= ST k(n).

From the way we construct the k-triangulation in the proof of Lemma 4.1.2, we can conclude

that the k-triangulation is a simple k-tree because the construction is the same as for a simple

k-tree with n vertices and the construction order is p1, . . . , pn. This means we can conclude:

Corollary 4.2. A minimal k-triangulation has at most ST k(n) edges.

We can conclude this corollary, because the number of edges of a simple k-tree with n vertices

is ST k(n).

To show the lower bound is tight we need to proof that we cannot find a k-triangulation with

less than ST k(n) edges. This statement is part of the following theorem:

Theorem 4.3. The following statements for a graph G = (V,E) with |V | = n are equivalent:

(I) G is a steady k-triangulation and has ST k(n) edges.

(II) G is a minimal steady k-triangulation

(III) G has a k−1 surface regular k-canonical ordering

Before we prove Theorem 4.3, we will first show a lemma to simplify the proof of Theorem 4.3.

Lemma 4.1.3. Every vertex on the surface of an inner k-triangulation has at least k−1 edges to
other vertices on the surface.

Proof. The surface of an inner k-triangulation is, by the definition, a k−1-triangulation. Because
of Lemma 3.3.1, we know that each vertex of a k−1-triangulation has at least k−1 edges.

The following proof shows Theorem 4.3:

Proof. For any steady k-triangulation, we can find a k-canonical ordering v1, . . . , vn. Because
of Lemma 4.1.3, we know that in each step i ∈ [k + 1, n] of our decomposition of the k-
triangulation we remove at least k−1 edges to vertices with lower index. The other edges are to

vertices with higher index than vi that are after this step new vertices on the surface of inner

k-triangulation. For a k-canonical ordering v1, . . . , vn we denote T k
i = T k[{v1, . . . , vi}] as the

inner k-triangulation in step i, we can count the number of edges of T k
:
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n∑
i=k+1

|NO
T k
i
(vi)|︸ ︷︷ ︸

(1)

+(n− k)︸ ︷︷ ︸
(2)

+

(
k

2

)
︸︷︷︸
(3)

≥

(
n∑

i=k+1

k − 1

)
+ (n− k) +

(
k

2

)
︸ ︷︷ ︸

(4)

= (k − 1) · (n− k) + (n− k) +

(
k

2

)
= k · (n− k) +

(
k

2

)
= ST k(n)

(1) edges from vi to the surface

(2) edges that brought vk, . . . , vn−1 to the surface

(3) edges of the k-simplex {v1, . . . , vk}

(4) edges of a k-triangulation with a k−1-surface regular k-canonical ordering

The two sides of the estimation are equal, if in each step |NO
T k
i
(vi)| = k− 1 holds. As a result in

this case the k-canonical ordering is k−1-surface regular. Additionally, because of Lemma 4.1.3

and Lemma 3.3.1 we know in addition the number of edges is minimal. Equation (4) describes

the number of edges of a k-triangulation with a k−1-surface regular k-canonical ordering and

the number of edges is equal to ST k(n).

We now show that the upper bound for the number of edges of a k-triangulation is tight. We

will show this upper bound only for k = 4.

Theorem 4.4. For every n > 4 there exists a 4-triangulation with n vertices and
(
n
2

)
edges.

We only have to show that we can construct a tetrahedization, which represents a Kn since

a fully connected graph has the maximum number of edges for a graph with n vertices and

|E(Kn)| =
(
n
2

)
.

In the following, we define the moment curve and a cyclic polytope the same way as described

in the book Triangulations. Structures for algorithms and applications [18].

Definition 4.5 (Moment Curve). We define the moment curve as the function momd(t) : R →
Rd, t 7→ {t, t2, . . . , td}.

Definition 4.6 (Cyclic Polytope). For a set of real numbers R = r1, . . . , rn, we define the cyclic
polytope C(n, d) as the convex hull of the points {momd(r1), . . . ,momd(rn)}.

Figure 4.2 illustrates a cyclic polytope with 18 vertices, but from the illustrated angle not all

vertices are visible.

To show that we can create a tetrahedization, with n ≥ 5 vertices we will calculate the

coordinates in R3
, but first we will show why a cyclic polytope with n vertices forms aKn and

induces an inner tetrahedization.

Lemma 4.1.4. For k = 4, the cyclic polytope C(n, 3) with n > 4 is a Kn and in addition an
inner k-triangulation.
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Figure 4.2.: A cyclic polytope with 18 vertices.

Proof. For the sorted numbers R = {r1, . . . , rn} ⊂ R : r1 < r2 < · · · < rn we will show how

the cyclic polytope on these numbers formsKn and a inner k-triangulation by induction. We

write P = {p1 = mom3(r1), . . . , pn = mom3(rn)} as vertices of the cyclic polytope. We start

our induction with {p1, p2, p3, p4} as a tetrahedron.

The vertices {p1, p2, p4} and {p2, p3, p4} form two triangles on the surface of the tetrahedron.

Since r5 is larger than any of the previous numbers r1, r2, r3 and r4, the point p5 is outside
the convex hull of the tetrahedron. In addition, the corresponding line segments from p5 to
p1, p2, p3, p4 do not intersect with the convex hull of the tetrahedron. Therefore, we can connect
p5 with the two triangles of the surface of the inner tetrahedization and form a new inner

tetrahedization T 4
5 .

We can now use an inductive argument for i ∈ [6, n] to show that each additional point is also

outside the convex hull of T 4
i−1. The inner tetrahedization defines the triangles T1, . . . , Ti−3

as Tx = {px, px+1, pi−1} : x ∈ [1, i − 3] and the corresponding line segments to pi do not

intersect with the convex hull of T 4
i−1. The line segments cannot intersect with the con-

vex hull of T 4
i−1 since ri > r1, . . . , ri−1 and the properties of the moment curve. As a result,

we add i−1 edges and i−3 tetrahedron in each step. In every step, we thereby embedKi inR3
.

We now summarize this induction again and give an argument why the cyclic polytope has a

canonical ordering. The construction order in the this induction is the reverse of a 4-canonical
ordering, since every vertex we add in the construction is a chord-free vertex.

When we add a vertex, we do not change any of the vertices, edges, triangles, and tetrahedrons

of the T 4
i−1, but only cover triangles on the surface of the polytope. The triangles get a

new second tetrahedron and are now inside the inner tetrahedization. The new triangles

T̃y = {py, pi−1, 4i} : y ∈ [2, i − 3] are also triangles inside T 4
i and are part of tetrahedron

{py−1, py, pi−1, pi} and {py, py+1, pi−1, pi}. All other triangles are part of the surface of the new
inner tetrahedization T 4

i .

Since we now know, we can embed a Kn into an inner tetrahedization, we want to know how

we can embed the Kn into a tetrahedization to get a tetrahedron as a convex hull. We will

embed aKn. For n ≥ 5 into the tetrahedron (−1,−1, 1)⊺, (−1, 1,−1)⊺, (1,−1,−1)⊺, (1, 1, 1)⊺.
Be aware of that mom3(−1) = (−1, 1,−1)⊺ and mom3(1) = (1, 1, 1)⊺, we will use for the
following construction only points on the moment curve between [−1, 1] ⊂ R.

Theorem 4.7. The graph Kn can be embedded into R3 such that the embedding is a tetrahediza-
tion.

25



4. Properties of k-Triangulations and Simple k-Trees

Lemma 4.1.5. If a continuoes function f has no root in the interval (x, y), then for all v ∈ (x, y) :
f(v) < 0 or f(v) > 0.

Proof. This is a direct implication of the intermediate value theorem, since the sign of the

values of a function only changes in the root of a function.

Proof. We use the points in P = {p1, . . . , pn} as the vertices of the tetrahedization. We define

map(v, a, b, x, y) := y−x
b−a

(v − a) + x to map v ∈ [a, b] to the interval [x, y].

pi =



(−1,−1, 1)⊺ i = 1

(1,−1,−1)⊺ i = 2

(−1, 1,−1)⊺ i = 3

(1, 1, 1)⊺ i = n

mom3(map(i, 3, n,−1, 1)) otherwise

For n = 5, the point p4 = momd(r4) is described by r4 = map(4, 3, 5,−1, 1) = (1−−1
5−3

(4 −
3) +−1) = 1− 1 = 0 ⇒ p4 = (0, 0, 0)⊺. Obviously, p4 is inside the outer tetrahedron. We can

connect the vertex with the outer tetrahedron toK5. Now we look for the other cases where

n > 5.
The points p3, . . . , pn form a cyclic polytope C(n− 2, 3) and therefore embedKn−2 in an inner

tetrahedization as shown in Lemma 4.1.4. We now show that every point p4, . . . , pn−1 is inside

the outer tetrahedron p1, p2, p3, pn.

Our outer simplex spans 4 planes, we now have to argue, that all points on the moment curve

in the interval (−1, 1) are on the inside of the tetrahedron and therefore on the same side of

the plane as (0, 0, 0)⊺:

Ep1,p2,p3 = {(x, y, z)⊺ | −x− y − z = 1}:
We have to show ∀x ∈ (−1, 1) : f{p1,p2,p3}(x) = −x− x2 − x3 < 1.
The polynomial fp1,p2,p3(x)− 1 has only −1 as its real root.

Ep1,p2,pn = {(x, y, z)⊺ | x− y + z = 1}:
We have to show ∀x ∈ (−1, 1) : f{p1,p2,pn}(x) = x− x2 + x3 < 1.
The polynomial fp1,p2,pn(x)− 1 has only 1 as its real root.

Ep1,p3,pn = {(x, y, z)⊺ | −x+ y + z = 1}:
We have to show ∀x ∈ (−1, 1) : f{p1,p2,pn}(x) = −x+ x2 + x3 < 1.
The polynomial fp1,p3,pn(x)− 1 has only −1 and 1 as its root.

Ep2,p3,pn = {(x, y, z)⊺ | x+ y − z = 1}:
We have to show ∀x ∈ (−1, 1) : f{p2,p3,pn}(x) = x+ x2 + x3 < 1.
The polynomial fp2,p3,pn(x)− 1 has only −1 and 1 as its root.

To show that the moment curves in the interval (−1, 1) lays inside the tetrahedron, we show
that all points of the moment curve lay on the same side of each plain than the point (0, 0, 0)⊺.
In all four cases we know because of Lemma 4.1.5 fP (x) − 1 < 0 : P ∈

({p1,p2,p3,p4}
3

)
that
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Figure 4.3.: A K15 embedded into a 4-triangulation

fP (0) − 1 = −1 < 0 : 0 = x ∈ (−1, 1) therefore fP (v) < 1 : ∀v ∈ (−1, 1) and therefor the

moment curve mom3(x) is inside the convex hull of outer simplex for x ∈ [1, 1].

Now that we know all points inside [−1, 1] of the moment curve are inside the convex hull of

the outer tetrahedron, we show that we can now connect p1 and p2 two all vertices and the

resulting simplicial complex is a tetrahedization. When we connect p2 pairwise to p3, . . . , pn,
we know that p3, . . . , pn form a cyclic polytope and every point spans the convex hull. We

have choosen p1 and p2 such that both of them see half of all surfaces of the cyclic polytope.

We now connect first p2 and after then p1.
The triangles Tz = {p3, pz, pz+1, pn} : z ∈ [4, n−1] all get connected to p2 and form a new inner

tetrahedization, similar to the way we expand a cyclic polytope. But now, p1 has in addition to

the triangles Ta = {pb, pb+1, pn} : b ∈ [3, n− 2] the triangles Tb = {p2, p3, pa} : a ∈ [4, n] that
are visible. These triangles connected to tetrahedrons with p1. As a result, the convex hull is
a tetrahedron with the vertices p1, p2, p3, pn. When we add the simplex {p1, p2, p3, pn} to the

inner triangulation, the inner triangulation becomes a tetrahedization, since every triangle is

part of two tetrahedrons.

Remark 4.8. The 4-canonical ordering of this tetrahedization of a Kn is given by p1, . . . , pn.
For the cyclic polytope, we already know that p3, . . . , pn is a 4-canonical ordering. So we only
have to argue for every pi : i ∈ [4, n] that the tetrahedrons {p1, p2, pi−1, pi}, {p1, p3, pi−1, pi} and
{p2, p3, pi−1, pi} contain no chord triangle. Since pi has only vertices on the surface [18, p. 86] of
the inner tetrahedization, it cannot be part of a chord triangle. After removing pn, . . . , p5, the only
tetrahedron left is {p1, p2, p3, p4} and we can easily find a canonical order for the tetrahedron.

For k = 4, we have shown that the maximal number of edges of a k-triangulation is

(
n
2

)
.

Figure 4.3 illustrates how a K15 can be embedded into a 4-triangulation. But we assume for
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4. Properties of k-Triangulations and Simple k-Trees

k > 4, that it is possible to construct a similar k-triangulation with a cyclic polytopeC(n, k−1)
as shown in the proof of Theorem 4.7. That is why we state the following conjecture:

Conjecture 4.9. For k > 4, we suspect the upper bound of Theorem 4.1 is tight.

Now that we know and suspect the bounds of the number of edges of a k-triangulation, we
want to know how many k-simplices are inside a k-triangulation. We first look at the known

case for k = 3.

Lemma 4.1.6. The number of triangles of a triangulation is 2n− 4.

Proof. For a triangulation T 3
with n vertices, m edges and f triangles, every edge is part

of two triangles and every triangle has three edges. By the argument of double counting

2m = |{{e, t} | e = {v, w} ⊂ t ∈ f3(T 3)}| = 3f ⇒ m = 3
2
f We can put this inside Euler’s

formula n−m+ f = 2.

n− 3

2
f + f = n− 1

2
f = 2 ⇒ n− 2 =

1

2
f ⇒ f = 2n− 4

For k = 4, we can show a similar result, but be aware of the fact that for k = 3 the number

of edges was determined, by the number of vertices. For k = 4, we do not know the number

of edges for a given number of vertices. As a result, the number of tetrahedrons has to be

dependent on the number of vertices and edges.

Lemma 4.1.7. A tetrahedization hasm− n tetrahedrons.

Proof. First we prove that every vertex v in a tetrahedization is surrounded by deg(v) tetrahe-
drons.

We draw a small sphere around the vertex v such that no other vertex is inside the sphere and

the edges intersect with the sphere. The triangles around v induce with the n intersection

points a 3-triangulation on the surface on the sphere. Because of Lemma 4.1.6 we know that

this triangluation has 2n− 4 triangles. The triangles correspond to the tetrahedrons around v,
as a result the number of tetrahedrons around v is the same number as triangles on the sphere.

We can conclude further that every vertex v in a tetrahedization is part of 2 ·deg(v)−4 tetrahe-
drons, since the number of vertices of the triangulation on the sphere is the number of edges of v.

We shall prove the statement again by the argument of double counting. A tetrahedron has

four vertices and a vertex is part of 2 · deg(v)− 4 tetrahedrons., therefore:

4t = |{{v, t} | v ∈ t ∈ f4(T k)}| =
∑
v∈V

(2 · deg(v)− 4) = 2 ·
∑
v∈V

deg(v)− 4 · n (⋆)
= 2 · 2m− 4n

⇒ t = m− n

(⋆) handshake lemma: 2m =
∑
v∈V

deg(v)

Corollary 4.10. We can conclude for n vertices, m edges, f triangles and t tetrahedrons that
because of Euler’s formula n−m + f − t = 0, that n−m + f − (m− n) = 0 and therefore
f = 2(m− n) = 2t
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4.2. Minimal k-Triangulations are Simple k-Trees

In this section we show that minimal k-triangulations are simple k-trees under the Conjec-
ture 3.24. We discuss later the implications of this equivalence.

Theorem 4.11. We assume that the Conjecture 3.24 holds and simple k-trees are steady k-
triangulations, the following statements for k > 3 about a graph G = (V,E) with n vertices are
equivalent:

(I) G is a steady k-triangulation and has kn−
(
k+1
2

)
edges.

(II) G has a k−1 surface regular k-canonical ordering

(III) G has a Schnyder realizer with k colors

(IV) G is a simple k-tree

Proof. (I) ⇒ (II)

We have already shown in Theorem 4.3, that (I) and (II) are equivalent.

(II)⇒ (IV)

To proof that a k-triangulation with a k−1-surface regular canonical ordering v1, . . . , vn is a

simple k-tree, we will build a k-color tree which represents the k-triangulation.

To construct the k-color tree in the k-canonical ordering, we skip the first k vertices, to start

with the inner k-triangulation as the k-simplex {v1, . . . , vk}. Then we start with vk as the

current root of the k-color tree.

We look at vi as the next vertex of the ordering. The current inner k-triangulation is called

T k
i and vi is connected to k−1 vertices ṽ1, . . . , ṽk−1 on the surface of the inner k-triangulation.

The vertex ṽm : m ∈ [1, k−1] is the vertex with the highest position in the k-canonical ordering.

We have to look at a few nested cases, in which we assign one of the colors c2, . . . , ck to each

of the k−1 surface neighbors, in such a way that we can put them into a k-color vertex set for
vi. In a later step, we will fill in the vertex of color c1 in q(vi).
We now look at the possible cases:

(1) vi covers vertices on the surface of T k
i−1

We need to look at the vertices that are covered by vi. We look at the vertex vl, which is

lowest in the canonical ordering. We copy the k-vertex color set of vl and assign it to vi.
In the k-color tree, we attache vl below vi as a child with the color c1 and add vi as the
vertex of color c1 to the k-vertex color sets of all the covered vertices.

(1.1) vl was root of CT
k

we are done with vi.

(1.2) vl was not the root of the CT
k

Since vl was not the root of the CT
k
, we remember the parent of vl as vp and the

color of the connecting edge as cp. We remove vl as the child of cp.
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4. Properties of k-Triangulations and Simple k-Trees

Why are the changes to vl valid? All vertices that are covered by vi below vl have no
edge of color c1 in the path from vi to vl in the k-color tree. As a result, vi is a neighbor
of each of these vertices and is part of their k-vertex color set at position 1.

(2) vi does not cover vertices on the surface of T k
i−1

We have to find out, which vertex is our parent and what color the parent has. Since vi
does not cover any vertex on the surface, vi connects directly to a k−1-face of a k-simplex.

As a result, we find the neighbor of vi called vp with the highest number in the canonical

ordering. The vertex vp has a k-vertex color set, and we copy it for vi. The vertex vp
has a neighbor on the surface, let us call it x, not in common with vi, since we only
connected vi to a k−1-face of the simplex. We replace x with vp in the k-vertex color set
and therefore implicitly assign a color to vp, called cp.

In all of these cases, we have found a parent vp of vi, except for the case where vi is the new
root of the CTk

. We set vi as the cp colored child of vp. The resulting k-color tree is valid, since
when the parent previously had a vertex with the color cp, we moved it under vi, so that every

vertex of the CTk
does not have two children of the same color.

We do this construction until we have added vn−1. Since vn is part of the outer simplex and

therefore not part of the k-color tree. To finish our mapping and show that the k-color tree has
the properties of a k-color tree that encodes the original k-triangulation.
For vn, we have to do the same as in the previous cases, except that we do not need to change

the k-color tree. The vertex vn covers all inner vertices that are currently on the surface of the

inner k-triangulation. This means vn gets placed at position 1 of all k-vertex color sets of the
inner vertices on the surface of T k

n−1.

We now check the properties of Lemma 3.5.4 and that they align with the structure of k-
triangulation and the build k-color tree. Let us recall the properties:

Lemma 3.5.4. For a vertex set V = {v1, . . . , vn}, V△ = {v1, . . . , vk}, and V� = {vk+1, . . . , vn},
we know a k-color tree CTk and a map q that maps from V� to k-vertex color sets are equivalent
to a simple k-tree if they hold the following properties:

1. V△ ∩ V (CTk) = ∅ and q(vk+1) = (v1, . . . , vk)

2. ∀e = (v, w) ∈ E(CTk):

a) e has color cq(v)(w)

b) w = vq(v)(iq(v)(w))

c) |e(q(v)) ∩ e(q(w))| = k−1

We start with property 1 The first partV△∩V (CTk) = ∅ is fullfilled. The vertices v1, . . . , vk−1, vn
for the outer simplex are not part of the k-color tree. For the second part of property 1, we

look at the root vr of the CT
k
. Note that in the current construction, we have another encoding

than in Lemma 3.5.4. We now have to show q(vr) = (vn, v1, . . . , vk−1).
The vertex vn gets set at the first position of q(vr) in the last step, since the root of the CTk

is

always a vertex on the surface of T k
k , . . . , T k

n−1.
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For the other vertices in q(vr) we look at the case (1.1) of the k-color tree construction. At
the beginning of the construction, vk is the root of the k-color tree and is initalized with the

k-vertex color set q(vk) = (⊥, v2, . . . , vk−1). This k-vertex color set does not change until

another vertex replaces vk as the root of the k-color tree. The new root vp gets the same

k-vertex color set as vk and after this step, we alter q(vk) to (vp, v1, . . . , vk−1). This behavior of
the k-vertex color set for the root does not change until we have added vn−1. As a result, the

other vertices in the k-vertex color set of vr are the other outer simplices. We conclude after

the construction: q(vr) = (vn, v1, . . . , vk−1).

Now we have to assure that property 2 of Lemma 3.5.4 for the other vertices holds. We have to

show, that for each edge e = (v, w) ∈ E(CTk) the properties a), b) and c) hold. We now look

at two cases:

e has color c1
If e has color c1, at some point in the construction w removed v from the surface. As

a result at position 1 of the k-vertex color set of v is w and therefore cq(v)(w) = c1. In
addition, property b) holds. Because of the way, we calculated q(w) from q(v) we only
set the first position different, |e(q(v)) ∩ e(q(w))| = k − 1.

e does not have the color c1
In this case, we either got w and the color of the edge of the previous child of w (case

1.2 of the construction) or v got connected to an existing k−1-face of a simplex (case 2

of the construction). In the second case, we found w as the vertex of the simplex with

the highest position in the canonical ordering and the color by the only non-common

neighbor of v and w. In both cases we placed w at the corresponding position of the

color c in the vertex set of v (this shows a) and b)).

All the other vertices are eighter directly derived from w, or can be identified because of

the previous children that got connected to the same k−1-face of the simplex where w
was the vertex with the highest position in the canonical ordering. As a result, if v and w
get covered, they have the covering vertex in common at position 1 of the k-vertex color
set. In the case that they do not get covered by an inner vertex, they get covered by vn
in the last step of the construction. Regardless, they hold property c), since they only

differentiate in the position iq(v)(w).

(IV)⇒ (III)

We know because of Lemma 3.5.3 that a simple k-tree is a k-triangulation and that we can find

a corresponding space-partitioning drawing. Now we need to show that we can find for such a

space-partitioning drawing a k-color realizer. Note, a space-partitioning drawing constructed by
the proof of Lemma 3.5.3 already fulfills the property 1 of a k-color realizer(χ(v1, . . . , vk) = 1).
To find a k-color realizer, we need to color and direct the inner edges of the k-tree. We do this

in the construction order of the vertices and add step by step the vertices by there position

defined in the space partitioning drawing. In addition, we will use the corresponding k-color
tree CTk

of the simple k-tree. According to the CTk
w use the map q from V (CTk) to the

k-vertex color sets.
Before we can start with the recursion we have to color and direct the edges of vk+1. The vertex
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vk+1 is the root of the k-color tree CT
k
and therefor connected to the vertices v1, . . . , vk. We

direct these edges as outgoing edges and color them with the colors c1, . . . , ck, respectively.
For a simple k-tree of size k + 1 we realize that this is a valid Schnyder realizer with k colors.

Property 2 is met, since the only inner vertex vk+1 has exactly k outgoing edges of different

colors to each of the vertices of the outer simplex.

Property 3 is met, since for all inner vertices there are no incoming edges and for the outgoing

edges e1 = {vk+1, w1}, . . . , ek = {vk+1, wk} of colors c1, . . . , ck respectively have the property:
χvk+1

(e1, . . . , ek) = χ(w1 − vK+1, . . . , wk − vk+1) = χ(w1, . . . , wk) = 1.
Now we start to add vertices recursively. When we add the inner vertex vi, we add him to the

clique Ci = q(vi) and therefore inside th convex hull of the positions of the vertices of Ci. The

k-vertex color set of a vertex contains exactly the vertices of Ci. We now look at the vertex cm
at positionm ∈ [k] of the k-vertex color set q(vi). We direct the edge from vi to vm with the

color cm.

For each vertex vi we may add a new color to an outer vertex vo. As a result in the k-color tree
the path between vi and vk+1 does not contain an edge of color cq(vi)(vo). We can conclude

vo iq(vi)(vo) = iQ(vk+1)(vo). Therefore, we colored the edge to vo in the same color as the edge

from vk+1 to vo. Therefore, property 2 of a k-color realizer holds.
For all colored edges that do not get connect to an outer vertex we have to show that they

fulfill property 3. First, since we only added k outgoing edges of all k colors to vi All inner
vertices have after the step where we added vi still k colored and outgoing edges.

We call the vertices of the clique Ci = (ṽi, . . . , ṽk) = q(vi) because of Lemma 3.4.2 for all

l ∈ [k] : χ(ṽ1, . . . , ṽl−1, vi, ṽl+1, . . . ṽn) = χ(ṽ1, . . . , ṽk). Since this holds also for vk and the

clique/outer simplex v1, . . . vk we can use an inductive argument, that this holds for all inner

vertices. Since we get this property for vi from its parent in the k-color tree CTk
and find

it for all children in CTk
for vi. We know χ(ṽ1, . . . , ṽn) = 1 since χ(v1, . . . , vk) = 1 and

of the previous inductive argument. Therefore, we can follow for the outgoing edges of vi
χ({vi, ṽ1}, . . . , {vi, ṽk}) = χ(ṽ1−vi, . . . , ṽk−vi) = 1. We now have to show that the outgoing

edges that induce incoming edges on other vertices hold the second part of property 3. For

an outgoing edge el = {vi, w} of the color cl we look at w, el is an incoming edge of w. The
vertex w has the outgoing edges f1, . . . , fk, and we know χ(f1, . . . , fk) = 1. We have to show

χ(f1, . . . , fl−1, vi, fl+1, . . . , fk) = −1.

The vertex fl spans with the other vertices f1, . . . , fl−1, fl+1, . . . , fk of the other outgoing edges
of w a cone where l ∈ [k] is the index of the base point of the cone:

Cl(f1, . . . , fk) = {w | ∀λ1, . . . , λl−1, λl+1, . . . , λk ∈ R>0, w = fl +
∑

l ̸=i∈[k]

λi(fi − fl)}

For a point p ∈ Cl(f1, . . . , fk) we know p = fl +
∑

l ̸=i∈[k] λi(fi − fl), we can calculate λl to

find the barycentric coordinates of p:
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p = fl +
∑

l ̸=i∈[k]

λi(fi − fl)

= fl + (
∑

l ̸=i∈[k]

λifi)− (
∑

l ̸=i∈[k]

λifl)

= (1−
∑

l ̸=i∈[k]

λi)︸ ︷︷ ︸
λl

fl + (
∑

l ̸=i∈[k]

λifi)

Since p is outside of the simplex of f1, . . . , fk
∑

l ̸=i∈[k] λi > 1 and therefore λl < 0 we can

conclude

with Lemma 3.4.2 and Lemma 3.4.1 thatχw({w, f1}, . . . , {w, fl−1}, {vi, w}, {w, fl+1}, . . . , {w, fk}) =
−χ(f1, . . . , fk) = −1.

This holds for all outgoing edges of vi and by the inductive argument for all inner vertices.

(III)⇒ (I)

Given a Schnyder realizer with k colors R△ for a k-triangulation T k
, we can separate the

vertices in V△ and V�. We can count the number of edges:∑
v∈V�

k

︸ ︷︷ ︸
(1)

+

(
k

2

)
︸︷︷︸
(2)

= k · (n− k) +

(
k

2

)
= kn−

(
k + 1

2

)
= ST k(n)

(1) the outgoing edges of the inner vertices

(2) the edges of the outer simplex

Be aware that we have counted every edge in T k
, since the vertices of the outer simplex does

not have outgoing edges. For inner vertices, we only count the outgoing edges for each vertex.

As a result, we count every edge only once.

The proof of Theorem 4.11 has a few implications. We only showed the theorem for k > 3,
even though the minimal number of edges for a 3-triangulation is ST k(n). The reason for this

restriction is based on a simple observation. For k = 3, a minimal and a maximal k-triangulation
has the same number of edges, but not all triangulations are simple k-trees.
Figure 4.4 shows the embedding of an octahedron in the plane. The graph is a 3-triangulation,
which is not a simple 3-tree. Every 3-triangulation has a 2-surface regular canonical ordering,

but because we are in the plane, the conditions of minimal edge number are not strong enough

to enforce that every triangulation is a simple 3-tree. We need an additional property for

the triangulation, so we know it is a simple k-tree. Such a property is for example that the

triangulation is chordal. The reason for that is the simple fact that for k > 3, we have to

connect k − 1 edges to the surface, but they have to connect to a k−1-face of a simplex. For

k = 3, in every step of the canonical ordering, vi only has to be to two connected vertices on

the border of the inner triangulation. In fact, the two vertices on the surface of the triangulation

may not have any relation to each other. This brings us to our next corollary:
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Figure 4.4.: the octahedron graph

Corollary 4.12. For a 3-triangulation T 3 and the corresponding canonical ordering v1, . . . , vn,
the vertex vi : i ∈ [4, n] connects to two vertices u and w on the surface of T k[{v1, . . . , vi−1}]. If
in each step, the vertices u and w are connected by an edge, then the 3-triangulation is a simple
3-tree.

The most important implication of Theorem 4.11 is the fact that k-triangulations and simple

k-trees are the same graph class. If we need a triangulation of higher dimension for our

application and our application does not require a specific triangulation we always can use a

simple k-tree as the triangulation. This is for example the case if, we need a triangulation of n
points in Rd

. In such a use case, we can efficiently build a simple d+1-tree. This is particularly
interesting, since simple k-trees are chordal. For chordal graphs we have efficient algorithms

to solve a lot of graph problems [13, 16]. In addition, we can represent the triangulation as

a k-color tree. A k-color tree can be used to recursively process the structure of the graph.

This might help finding efficent algorithms for minimal triangulations like our construction of

contact representations in chapter 5.
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For k > 4, k-simplices cannot be represented for humans, that is the reason why we will look

in the following part at k = 4. For k = 3 we can find a triangle contact representation for a

k-triangulation as described in the paper On triangle contact graphs [6]. When we look at

k = 4, we have previously shown that a k-triangulation has a variable number of edges for

k > 3, but only the minimal k-triangulations have a k-color realizer. That is the reason, why we
will only show show contact representations in the following part for minimal k-triangulations.
We use the facts of Theorem 4.11 and Construction 3.28 that minimal k-triangulations are
simple k-trees and that we can transform them into k-color trees.

Definition 5.1 (Contact Representation). In a contact representation we use geometric objects
to represent the vertices of a graph. The representation is for a specific dimension, typically the
plane or the 3-dimensional space. The geometric objects that represent the graph have the same
dimension as the representation. To represent the graph we arrange and form the geometric objects
in such a way that the connected vertices and the corresponding objects touch, but do not cross
each other. IN addition, three objects do not touch each other in a single point.

Definition 5.2 (Side-Contact Representation). A side-contact representation is similar to a
contact representation. The difference is that for two connected vertices the corresponding objects
have to share an area in the representation. It is not sufficient that two objects touch each other in
a single point. This means in a side-contact representation on the plane, two objects have to share
a line segment and in the 3rd dimension they have to share a flat intersection area.

We call a side-contact representation hole-free, if the geometric objects corresponding to the

vertices subdivide the occupied space of the drawing without leaving any gaps.

In this chapter we will look at contact representations of simple 4-trees and in the next chapter

we will look at side-contact representations. A contact representation is a drawing of a graph,

we will use drawing in the following as a synonym for contact representation and side-contact

representation. A drawing Γ is a mapping from vertices to geometric objects.

We will now introduce a notation we need for the rest of the thesis to construct contact represen-

tations. For a drawing Γ and for two vertices u, v we write iscΓ(O1, O2), O1 = Γ(u), O2 = Γ(v)
as the intersection point between the objects of vertex u and v.
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5.1. General Approach

We describe in the following part the general approach on how we construct contact repre-

sentations for simple k-trees. This construction can be used for all recursive constructions of

representations of simple k-trees.

We start a construction by transforming the simple k-tree into a k-color tree. This transfor-
mation is always possible because of construction 3.28. Since v1, . . . , vk are not part of CT

k

which represents the simple k-tree STk
. The construction start by handling these outer vertices.

This means for the constructions of the following sections, that we will look for a starting

configuration for the outer vertices. In addition, we will describe for each construction an

invariant so we only need to explain one step of the recursion.

With the starting configuration, the invariant and an arbitrary construction order of the k-tree,
we will recursively construct the drawing. We will show that at each step we find a free spot in

the drawing where we place a vertex vi of CT
k
and all children of vi.

5.2. Triangle Contact Representation for Simple 3-Trees

Before we look at the tetrahedron contact representation of a simple 4-tree we will look into

another way to construct a triangle contact representation for simple k-trees. This way of

constructing triangle contact representations is not as powerful as the previous described

method of On triangle contact graphs [6], since we can only calculate triangle contact

representations only for simple 3-trees and not for all planar triangulations. Even though we

have a stronger restriction to the graph we can represent, we use this as an easier motivating

application for our results of chapter 3. This will help to understand the more complex con-

struction of the tetrahedron contact representation of the simple 4-trees.

Theorem 5.3. Every simple 3-tree can be represented as a triangle contact representation in the
plane.

Construction 5.4 (Triangle Contact Representation).
We start with a simple 3-tree ST3

, because of construction 3.28 we know we can construct a

3-color tree CT3
which represents ST3

. Our constructions start with three arbitrary triangles

T1, T2, T3 that are arranged in such a way that they touch each other and together enclose a

free space of the shape of a triangle. We call this triangle S = {s1, s2, s3}. We find another

triangle S ′
such that each line segment of S ′

contains one vertex of S.
We call the vertices of S ′ = {s′1, s′2, s′3}, the center of T1, T2, T3 even though that si and
Ti : i ∈ [1, 3] have nothing in common with the centroid of those triangles. We use these

new centers, to simulate a specific setup of surrounding triangles, to construct the contact

representation, but we only need these points for the construction and can place T1, T2 and T3

around the later constructed triangles of the inner vertices.
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Tx

Ty

Tz

Ti

Tf

T ′
f

iscΓ(Tx, Ty)

iscΓ(Tx, Tz)

iscΓ(Ty, Tz)

iscΓ(Ti, Tx)

iscΓ(Ti, Ty)

iscΓ(Ti, Tz)

Figure 5.1.: invariant of construction 5.4

The three triangles T1, T2, T3 belong to the corresponding vertices of the outer triangle v1, v2, v3
respectively. The other vertices are sorted by the construction order of the k-tree. We now

add the vertices in the construction order. For this we use the mapping q of our k-color tree.
Be aware of the fact, that for vi : i > 3 all vertices of e(q(vi)) have a lower position in the

construction order than vi. Therefore, if we add vi all vertices of e(q(vi)) have already been

added to the drawing and we know each triangle they represent.

Now we look at the step of how we add a vertex vi to the drawing. We start by defining an

invariant. We always find for each vertex vi a triangle Tf in which we want to embed vi and a

triangle T ′
f such that each corner of Tf intersect with on edge of T ′

f . Figure 5.1 illustrates the

invariant.

In the step where we add vi the corresponding triangles To, Tp, Tq of {vo, vp, vq} = e(q(vi))
pairwise touch each other and enclose an unoccupied space in shape of a triangle Tf . The

triangle Tf = {iscΓ(To, Tp), iscΓ(To, Tq), iscΓ(Tp, Tq)} is created by the intersection points of

the surrounding triangles. We now pick a point pi ∈ conv⋆(Tf ).

This point induces the shape of the triangle representing vi. After we have chosen pi, pi
and the centers of each surrounding triangle form a line. Each line intersects with a line

segment of the surrounding triangle which gives us three intersection points So, Sp, Sq . These

three intersection points form a new triangle Ti inside the triangle Tf . Additionally, since

Pi ∈ conv⋆(Tf ), Ti and each pair of the surrounding triangles form a new free triangle shaped

space. We use these three triangles to add the possible children of vi in CT3
.

We now prove that the Construction 5.4 generates a contact representation and therefor proves

Theorem 5.3.

Proof. When we look at the invariant of the construction, it is clearly true that for T1, T2 and T3

and the initial triangle S, since we have chosen a surrounding triangle S ′
with these properties.
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Now we look at the step where we add vi to the representation. We find Tf and T ′
f for vi

and the 3-vertex color set q(vi) so that the corners of T ′
f are the centers of the corresponding

triangles Tx, Ty, Tz of the vertices {x, y, z} = e(q(vi)). We denote the center of a triangle T as

c(T ). The triangle T ′
f = {c(Tx), c(Ty), c(Tz)}. Since the iscΓ(Ti, Tk) : k ∈ {x, y, z} is on the

line segment between c(Ti) and c(Tk) we find six new Triangles:

• To = {iscΓ(Tx, Ty), iscΓ(Ti, Tx), iscΓ(Ti, Ty)}, T ′
o = {c(Tx), c(Ty), c(Ti)}

• Tp = {iscΓ(Tx, Tz), iscΓ(Ti, Tx), iscΓ(Ti, Tz)}, T ′
p = {c(Tx), c(Tz), c(Ti)}

• Tq = {iscΓ(Ty, Tz), iscΓ(Ti, Ty), iscΓ(Ti, Tz)}, T ′
q = {c(Ty), c(Tz), c(Ti)}

They form for the triangles for the children of vi in CT3
the triangles to embed the children.

Be aware, if S = {s1, s2, s3} is a valid triangle in particular the three corners s1, s2, s3 are
not collinear all other constructed triangles are also not collinear. Since we choose c(Ti) from
conv⋆(Tf ). For d ∈ {o, p, q} the corners of Td intersect respectively with one edge of the

triangle T ′
d. The children of vi can find a triangle T̃f so it is surrounded by the triangles

corresponding to the 3-vertex color set of the child, since Ti replaces one of the surrounding

triangles Tz, Ty, Tx of Tf in To, Tp, Tq respectively.

Remark 5.5. The construction 5.4 is very unrestricted and in every step of the construction we
could choose a different strategy to choose a point. This also applies to the three starting triangles.
We can choose them as similar or completely different triangles. In particular, we can choose them
in a way, such that the convex hull of the drawing is a triangle.

5.3. Tetrahedron Contact Representation for Simple 4-Trees

Now that we understand how we can construct a triangle contact representation for simple

3-trees we look at simple 4-trees. We will use a similar construction to find a tetrahedron

contact representation for simple 4-trees. But we will use tetrahedrons and octahedrons in the

invariant.

Theorem 5.6. For every simple 4-tree exists a tetrahedron contact representation in R3.

Construction 5.7 (Tetrahedron Contact Representation).
We start with the simple 4-tree ST4

and the corresponding 4-color tree CT4
with the colors

C = {c1 = r, c2 = g, c3 = b, c4 = l}. The colors are orderd: r < g < b < l. The construction
of the representation Γ starts with one Tetrahedron T , that we subdivide in four tetrahedrons

and one free octahedron.

We subdivide the edges of the tetrahedron T , we get p1, p2, p3, p4, p5, p6 that form an octahedron

O inside T . We color the vertices of T = {pr, pg, pb, pl} we can rename p1, p2, p3, p4, p5, p6
to prg, prb, prl, pgb, pgl, pbl in respect to the endpoints of the corresponding endpoints of the edge.

We find the tetrahedrons Tr = {pr, prg, prb, prl}, Tg = {prg, pg, pgb, pgl}, Tb = {prb, pgb, pb, pbl}
and Tl = {prl, pgl, pbl, pl} respectively for the outer vertices v1, v2, v3, v4 of ST

4
. The tetrahe-

drons Tr, Tg, Tb, Tl and O subdivide T :(
conv(O) ∪

⋃
c∈C

conv(Tc)

)
⊂ conv(T )
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The tetrahedron Ti corresponding to vi in
yellow and the surrounding tetrahedrons

T i
r , T

i
g , T

i
b , T

i
l in red.

The tetrahedron corresponding to vi in yel-

low and the green lines form the outlines

of the octahedrons Oo, Op, Oq, Or for the

possible children of vi

Figure 5.2.: invariant of construction 5.7

The octahedron O intersects pairwise with the tetrahedrons Tc, c ∈ C on one common faces,

we color these face in the color c in respect to Tc. We call these four colored triangles△c. In the

octahedron we call the triangles in the opposite position of△c △′
c(△′

c has no vertex in common

with △c). For the construction below we remember the center of Tc as c(Tc) = pc : c ∈ C .

We start the construction by adding vi we find for vi q(vi) and therefore the tetrahedrons

T i
r , T

i
g , T

i
b , T

i
l that will touch the next generated tetrahedron Ti representing vi. The centers

of all T i
c : c ∈ C form a tetrahedron Tf . In addition, the tetrahedrons intersect pairwise and

pc1c2 = iscΓ(T
i
c1
, T i

c2
) : c1, c2 ∈ C ∧ c1 < c2 form a free octahedron Of . This relation between

Tf and Of form the invariant for our construction. Figure 5.2 illustrates the invariant.

We will now choose a point pi ∈ conv⋆(Of ). We now find the intersection point pic of the line
segment between pi and c(T

i
c) and the face of the tetrahedron T i

c called△i
c. These intersection

points describe the new tetrahedron Ti = {pir, pig, pib, pil}. We remember c(Ti) = pi as the
center of Ti. We occupied a part of the octahedron Of with Ti and the rest of the space is

subdivided into four octahedrons Oo, Op, OqOr by the points (Ti \ pic) ∪△′
c for c ∈ C :

• Oo = {pig, pib, pil, iscΓ(Ti, T
i
g), iscΓ(Ti, T

i
b ), iscΓ(Ti, T

i
l )} To = {c(T i

g), c(T
i
b ), c(T

i
l ), c(Ti)}

• Op = {pir, pib, pil, iscΓ(Ti, T
i
r), iscΓ(Ti, T

i
b ), iscΓ(Ti, T

i
l )} Tp = {c(T i

r), c(T
i
b ), c(T

i
l ), c(Ti)}

• Oq = {pir, pig, pil, iscΓ(Ti, T
i
r), iscΓ(Ti, T

i
g), iscΓ(Ti, T

i
l )} Tq = {c(T i

r), c(T
i
g), c(T

i
l ), c(Ti)}

• Or = {pir, pig, pib, iscΓ(Ti, T
i
r), iscΓ(Ti, T

i
g), iscΓ(Ti, T

i
b )} Tr = {c(T i

r), c(T
i
g), c(T

i
b ), c(Ti)}

The octahedrons Oo, Op, Oq, Or are inside the tetrahedrons To, Tp, Tq, Tr respectively. And we

can place the children of vi in CTk
in a further step of the construction.
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Proof. We look at the invariant of the construction. We find for every vertex vi a tetrahedron Tf

and an octahedronOf . All vertices ofOf lay on the line segment of one edge of Tf as described

in the invariant. Since we choose pi ∈ conv⋆(Of ), pi is also in conv⋆(Tf ). Consider that Of

shares pairwise the triangle with △c with T i
c : c ∈ C . Therefore, conv⋆(△c) ⊂ conv⋆(Tf )

which gives us that, iscΓ(Ti, T
i
c) is inside conv

⋆(Tf ). In addition, c(Ti) = pi is inside conv
⋆(Ti).

Assume not, then pi would lay outside of the tetrahedron Ti. In this case pi and c(T
i
c) have to lay

with iscΓ(Ti, T
i
c) on one line, which is only possible if pi /∈ conv⋆(Tf ), which is a contradiction.

As a result conv(Ti) ⊂ conv⋆(Tf ) and the remaining space ofOf gets subdivided intoOo, Op, Oq ,

Or and To, Tp, Tq, Tr respectively. These tetrahedrons and octahedrons form the invariant for

the children of vi. With this invariant the construction is valid for all simple 4-trees, if the
starting points of T are in general position, since then conv⋆(T ) ̸= ∅.

Remark 5.8. Like in Construction 5.4 we could use any configuration of four tetrahedrons that
touch each other pairwise. For such a more general starting configuration we need to find a
tetrahedron T which fulfills the invariant as Tf . When we have found such a tetrahedron T we
could use the vertices of T as the centers of the tetrahedrons representing the outer simplex. That
way we can use any starting configuration for the construction analogously to the way we have
described it already in Construction 5.4 for simple 3-trees.

Conjecture 5.9. We conjecture it is possible to find similar contact representations for k > 4 in
Rk−1 with k-simplices as the geometric objects.

We base this conjecture based on the fact of the existence of the k-color tree for a simple

k-tree. The invariant for k = 3 and k = 4 can be more generalized, Tf for k = 3 and Tf

for k = 4 are k-simplices. T ′
f for k = 3 and Of for k = 4 are the line graph of Tf in both

cases. In this thesis, we do not prove that we can subdivide a k-simplex into another k-simplex

and k geometric objects of the line graphs of a k-simplex, but if it is possible the conjecture holds.

Now we show a few results for this representation, more can be found in the Appendix A:

the full graph

the inner vertices the inner vertices from

above

Figure 5.3.: the simple 4-tree CT4
4{rgbl}
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the full graph

the inner vertices

the inner vertices from

above

Figure 5.4.: the simple 4-tree CT4
4{rg}

the full graph

the graph without the ver-

tices of the outer simplex

the full graph but only the

lines are visible

Figure 5.5.: the simple 4-tree CT4
(r{rg}{bl})(gblr)(b2{rg}g)(l{gb}r)({rl}b)

5.4. Hexagon Side-Contact-Representation for Simple 3-Trees

Now that we have looked into contact representations of simple 4-trees we want to look into

side-contact representations of simple 4-trees. We first start with an easier to understand case

of a side-contact representation for simple 3-trees. We can find a hexagon side-contact rep-

resentation for all planar triangulations as described in Optimal polygonal representation

of planar graphs [12]. Despite the fact, that we already can find a hexagon side-contact

representation we will show another way for simple 3-trees in preparation to find hole-free

octahedron side-contact representations for simple 4-trees.
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5. Contact Representation

Ta

Tb

Tc

Ti

Figure 5.6.: Invariant of construction 5.11

Theorem 5.10. For every simple 3-tree exists a hole-free hexagon side-contact representation in
the plane.

Construction 5.11 (Hexagon Side-Contact Representation).
For this construction we use, that a pentagon, quadrilateral and triangle are all deformed

hexagons with 1, 2 and 3 duplicate vertices respectively. We start the construction by finding

a starting configuration for the outer vertices v1, v2 and v3. The outer vertices have to be

hexagons, such that they surround a free triangle and share an edge pairwise. We use the free

triangle to embed v4, . . . , vn in the construction order of the simple 3-tree.

The invariant for the construction is, that for each vertex vi ∈ CT3
we find a triangle Ti such

that the triangle shares an edge with each of the corresponding triangles of the vertices in

e(q(vi)) = {Ta, Tb, Tc}. The invariant is illustraded in Figure 5.6.

In the step when we place a hexagon Hi for vi in the drawing Γ, we look at the children of vi.
We encounter four cases, based on the number of children vi has in CT3

. We write N c
CT3(v) as

the set of the children of v in CT3
:

N c
CT3(vi) = ∅

If vi has no children, we use Ti as Hi.

N c
CT3(vi) = {vr}

If vi has one child, we subdivide Ti into one triangle Tr and a quadrilateral Hr. We use

Tr to embed the k-color subtree under vr.

N c
CT3(vi) = {vr, vs}

If vi has two children, we subdivide Ti into two triangles Tr, Ts and a pentagon Hi. We

embed the subtrees from vs, vr into Tr and Ts respectively.
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5. Contact Representation

N c
CT3(vi) = {vr, vs, vt}

If vi has all possible children, we cut each corner of the triangle in such a way that we

get a hexagonHi and three triangles Tr, Ts and Tt. We embed the subtree under vr, vs, vt
in Tr, Ts, Tt respectively.

In each case for vi we find a deformed hexagonHi and leave space so we can embed the children

of vi.

Proof. We have to show that in each case Hi shares a line segment of the edges of Ti. But this

is always possible, because we can choose how we subdivide Ti. Therefore, we have to choose

for each edge of Ti two points, Hi always connects between the two points to the sides of the

surrounding hexagons corresponding to the vertices in e(q(vi)). This results in all hexagons

share a line segment with the hexagons corresponding to the vertices in the 3-vertex color

set.

Remark 5.12. The construction allows a free starting configuration. This gives us the opportu-
nity for example to embed every simple 3-tree inside a hexagon or inside a triangle. The start
configurations for this are illustrated in the following Figure 5.7 and 5.8:

T4

Figure 5.7.: Triangle starting configuration

T4

Figure 5.8.: Hexagon starting configuration

5.5. Octahedron Side-Contact Representationf for Simple 4-Trees

Now that we have looked into side-contact representations for simple 3-trees we will look at

the side-contact representation for simple 4-trees.

Theorem 5.13. For every simple 4-tree exists a hole-free octahedron side-contact representation
in R3.

Construction 5.14.
Octahedron Side-Contact Representation For this construction we use that, we can deform an

octahedron into a bipyramid or a tetrahedron by edge-contraction one or two edges respectively.

In addition, a frustum is a deformed octahedron, that is the result of a rotated face.

We start our construction again by transforming the simple 4-tree ST4
into a 4-color tree CT4

by Construction 3.28. For the outer vertices we find four octahedrons that are arranged in such

a way, that the surround a free space of the shape of a tetrahedron.

43



5. Contact Representation

Figure 5.9.: The starting configuration for the construction, the yellow tetraeder is the free

inside

This is for example possible when we start with four frustums and arrange them, such that

four bases of the frustums create the convex hull of a tetrahedron for all four frustums. The

other four bases form the convex hull in the shape of the tetrahedron that surrounds the free

space inside the four frustums. This startingconfiguration is illustraded in Figure 5.9.

The invariant for this construction is: For each vi in the step of the construction where we

place vi, we find a free tetrahedron inside the drawing, where the tetrahedron is surrounded by

the octahedrons corresponding to the vertices of e(q(vi)).

We now look at one step of the construction. For vi we want to find the corresponding

octahedron based on the structure of the CT4
. We find Ti as the tetrahedron that is surrounded

by the octahedrons corresponding to the vertices in e(q(vi)). We now look at all possible

combinations of children, we write N c
CT4(v) for the children of v in CT4

. In respect to the

children of vi, we subdivide Ti into an octahedron for vi and a tetrahedron for each child of

vi. We therefore cut Ti with the |N c
CT4(vi)| cuts into the same number of tetrahedrons and a

resulting rest which forms a deformed octahedron. We look at all possible cases, they are each

represented in one Figures 5.10, 5.11, 5.12, 5.13, and 5.14.

N c
CT4(vi) = ∅

When vi has no children we use Ti as Oi.

N c
CT4(vi) = {vr}

When vi has a child vr, we can subdivide Ti in a tetrahedron Tr and a frustum Oi.

N c
CT4(vi) = {vr, vs}

We subdivide Ti into a bipyramid Oi and two tetrahedrons Tr and Ts. This subdivision is
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not trivial but possible if it holds the following conditions:

(1) |Tr ∩ Ts| = 1

(3) |Oi ∩ Ti| = 2

(2) |Tr ∩ Ti| = 2

(4) |Ts ∩ Ti| = 2

These conditions enforce that the two dividing cuts each cut through a vertex of Ti and

one common point on the edge of Ti. The result is Tr, Ts and Oi. If the cuts do not hold

the conditions, Oi can have more than six vertices and therefore is no octahedron.

N c
CT4(vi) = {vr, vs, vt}

When vi has three children, we subdivide Ti in three tetrahedrons Tr, Ts, Tt and an

octahedron Oi. The three tetrahedrons share pairwise a vertex. In addition, one of the

tetrahedrons share two vertices with Ti, the others only share one vertex with Ti.

N c
CT4(vi) = {vr, vs, vt, vu}

We subdivide Ti in four tetrahedrons Tr, Ts, Tt, Tu and the octahedron Oi. This subdivi-

sion is possible, since we can cut Ti such that:

∀x ∈ {r, s, t, u}∀y ∈ {r, s, t, u} \ x : |Tx ∩ Ty| = 1

As a result in each step we find Oi as the deformed octahedron for vi. In addition, we cut away

|N c
CT4(vi)| tetrahedrons from Ti to place the children of vi.

0 degree 135 degree 225 degree

Figure 5.10.: The case of no child, yellow is the octahedron

Figure 5.11.: The case of one child, yellow is the octahedron of vi and the green tetrahedron is

the free-space of the child.
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Figure 5.12.: The case of one child, yellow is the octahedron of vi and the green tetrahedrons

are the freespace for the children.

Figure 5.13.: The case of one child, yellow is the octahedron of vi and the green tetrahedrons

are the freespace for the children.

Figure 5.14.: The case of one child, yellow is the octahedron of vi and the green tetrahedrons

are the freespace for the children.

Remark 5.15. The subdivisions in each of the five cases of Construction 5.14 are all possible if we
use the vertices of Ti and all midpoints of all edges of Ti. It is possible that we use an arbitrary
point on the edge instead of the midpoint for each edge.

Proof. We have to show that in each case Oi shares an area with Ti and therefore with the

surrounding octahedrons. In addition, we have to show for each children vd that we find a Td

that shares the faces with the surrounding octahedrons.

When we cut a corner of Ti it is always adjacent to three of the surrounding octahedrons, since

Ti has four corners and each has three different surrounding tetrahedrons as neighbors. We

find for each possible child of the 4-color tree a corner with the correct adjacent octahedrons.

In addition, after the cut Oi is adjacent to a free tetrahedron Td, so it is always possible to cut

the corners of Ti for the children of vi in every CT4
.

Now we look at the octahedron Oi, Oi is the resulting geometric form of the cut Ti. As long

as we do not cut away a complete face of Ti, Oi after the cuts Oi still shares an area with

the surrounding octahedrons. With one cut we cannot cut away a complete face of Ti since
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the resulting object would not be a tetrahedron and would not suffice the invariant of the

construction. With two or more cuts, it would be possible to cut away a surface of Ti if two

cuts share a line segment on the surface of Ti. But we require that two resulting tetrahedrons

Tx and Ty for the children vx and vy only share one common point and therefore such cuts are

also not possible.

We now show a few results for the octahedron representation, for all representations, we

removed theoctahedrons corresponding to the vertices of the outer simplex:

rotated 0 degree rotated 135 degree rotated 225 degree

Figure 5.15.: the simple 4-tree CT4
4{rgbl}

rotated 0 degree rotated 135 degree rotated 225 degree

Figure 5.16.: the simple 4-tree CT4
4{rg}
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rotated 0 degree rotated 135 degree rotated 225 degree

Figure 5.17.: the simple 4-tree CT4
(r{rg}{bl})(gblr)(b2{rg}g)(l{gb}r)({rl}b)

In Figure 5.15 we leafes of the CTk
form the Sierpinski-tetrahedron, all other vertices fill the

holes between the tetrahedrons with regular octahedrons. In particular the tetrahedrons in

the representation of CT4
n{rgbl} for n ∈ N form the tetrahedrons of the Sierpinski-tetrahedron

constructed in the n-th step of the recursive construction.
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In this thesis we looked into a generalized version of Schnyder realizers for higher dimensions.

When looking into the structure of triangulations for higher dimension, we recognized a connec-

tion between minimal k-triangulations, simple k-trees and Schnyder realizers with k colors. For

maximal k-triangulations, we prove for k = 4 that Kn can be embedded into a tetrahedization.

We assume, but do not prove, that this also holds for even higher dimensions. Furthermore, we

believe that this can be proven by a similar construction as ours for 4-triangulations.

We have shown, under the Assumption 3.19 that minimal triangulations have a Schnyder real-

izer on k colors. We use a generalized version of canonical orderings to find the corresponding

simple k-tree and the k-color realizer itself.

Under the Conjecture 3.24 that for k > 3 simple k-trees are minimal triangulations has a few

implications. If the application does not require a specific structure for the higher dimensional

triangulation, we can always use a minimal triangulation. This is also possible if the convex

hull is not a k-simplex. In this case where we can use a minimal inner triangulation.

In addition, k-trees are chordal, that is why we can use the efficient chordal graph algorithms

to find a vertex coloring, for example.

In the paper [8] the authors describe a combinatorical generalized version of a Schnyder realizer.

They are described by k orderings of the vertices. We now look at the Venn diagramm of the

k-triangulations, k-realizers and k-color realizers.
Figure 6.1 describes the relations between the graphs which are a k-triangulation, a k-realizer
or a k-color realizer. The simple-k-trees are the graphs which are k-triangulations and have

a k-realizer and a k-color realizer. They are the only graphs which are k-triangulations and
have a k-color realizer. Therefore, no k-triangulation exists which has a k-color realizer but no
k-realizer. For k-realizer we can state the same result. Since k-realizers on n vertices have also

ST k(n) edges and a k-triangulation with ST k(n) vertices is minimal, the only triangulations

with a k-realizer are simple k-tree.
Apex triangulations are k−1-triangulations with ST k−1(n) vertices and an additional vertex

that is fully connected to all other vertices. These graphs have a k-realizer and a k-color
realizer, but are no k-triangulation. In addition, some non-simple k-trees have a k-realizer [8].
Non-simple k-trees are all k-trees that are not a simple k-tree. We know, that all k-trees have a
k-color realizer. Since we can embed every vertex of the k-tree inside the convex hull of the
clique

1
we can show by a similar to the proof Theorem 4.11 (IV) ⇒ (III) that k-trees have a

1
We have to ensure that no edge collides with other edges of other vertices that are connected to the same clique,

but this is always possible
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simple

k-trees

k-realizers

k-color realizers

k-triangulations

non-simple

k-trees

apex

triangul-

ations

∅∅

Figure 6.1.: The Venn diagramm of the known graph classes for k-triangulations, k-realizers
and k-color realizers.

k-color realizer. This result shows that k-realizers and k-color realizers are not the same concept.

Based on the results on the connections between k-triangulations, simple k-trees, the k-realizers,
k-color realizers and the k-realizers of the paper [8], we state a few new questions:

The first and most important, do we need the Assumption 3.19.

Question 1. Do we need that a k-triangulation is steady, or can we find for all k-triangulation a
canonical ordering?

We have only proven under Conjecture 3.24 that a simple k-tree is a minimal k-traingulation.

Question 2. Can we prove Conjecture 3.24?

Besides k-triangulations, simple k-trees and apex traingulations, we do not know many exam-

ples, that induce a k-color realizer.

Question 3. What are other graph classes have a k-color realizer?

We have shown that minimal k-triangulations have a k-realizer and a k-color realizer and
that there exist other graphs that have both realizers, but also graphs that have only a k-color
realizer. The difference between the two generalizations of a Schnyder realizers is interesting

and leads to the following question.

Question 4. Do all graphs with a k-realizer also have a k-color realizer or are there graphs with
a k-realizer but no k-color realizer?
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Together with the previous two question, the next question arises.

Question 5. Are the apex triangulations the only graphs that are no k-triangulations which
induce a k-realizer and a k-color realizer or are there other graphs with this property?

For Schnyder realizers we know that the edge set of the planar triangulation decomposes into

three trees and the outer triangle. For a graph with a k-color realizer it is unclear if the graph
decomposes into k trees and a k-simplex.

Question 6. Is it possible for a k-color realizer that the graph has a directed cycle of one color?

In the second part of the thesis we looked into representations of simple k-trees. We have

shown for k = 3 and k = 4 there exists a k-simplex contact representation for all simple k-trees.
For k = 3 this was already shown in the papers [6, 12] for all planar triangulations. Our main

contribution for k = 3 is a construction on a new technique for building representations for

k-color trees. k-color trees, are compact representation of simple k-trees and are a subgraph of

the k-color realizer.
We use this technique to find a tetrahedron contact representation and the octahedron side-

contact representations for simple 4-trees.

The tetrahedron contact representation described in this thesis only constructs irregular tetra-

hedrons. We have a flexibility in constructing the tetrahedrons, but we are limited by the

surrounding tetrahedrons. In complex simple k-trees the free-space of a vertex is sometimes

degenerated and we think it is not possible to find for all simple k-trees a homothetic tethra-

hedron contact representation. But with the current knowledge we are not possible to proof this.

The octahedron contact representations for simple 4-trees is hole-free but for a vertex in a

k-color tree with two, three and four children the octahedrons are irregular and have no

geometric properties. If we look at the case of the k-color tree CT4
n{rgbl} for n ∈ N. The

representation of this special simple k-trees are equivalent to a Sierpiński-tetrahedron if we

remove the tetrahedrons of the outer vertices v1, v2, v3, v4. In the representation only the leaves

of the CT4
n{rgbl} form the tetrahedrons, all other vertices fill the gaps between the tetrahedron

with regular octahedrons. An image of the representation can be seen in Figure 5.15.

The newly presented representations of simple k-trees raise further questions:

Question 7. Can we proof that for all simple k-trees there exists no homothetic tetrahedron
contact representation based on our construction of irregular tetrahedrons?

For planar triangulations there are a lot of different contact representations.

Question 8. Can we find other contact representations that visualize simple k-trees or even graphs
with a k-color realizer?
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A. Appendix

A.1. Grut

The source code implementing the representations of this thesis is open-source on github:

https://github.com/knorrfix/grut

In the following are a few pictures of the software:
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A.2. Additional Representations

A.2.1. Tetrahedron Contact Representation

full graph

inner vertices

the outline of the full graph

inner vertices from above

Figure A.1.: The simple 4-tree CT4
4r.
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full graph

inner vertices

the outline of the full graph

inner vertices from above

Figure A.2.: The simple 4-tree CT4
4{rg}.
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full graph

inner vertices

the outline of the full graph

inner vertices from above

Figure A.3.: The simple 4-tree CT4
4{rgb}.
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full graph

inner vertices

the outline of the full graph

inner vertices from above

Figure A.4.: The simple 4-tree CT4
4{rgbl}.
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full graph inner vertices from above

inner vertices 0 degree inner vertices 135 degree inner vertices 225 degree

Figure A.5.: The simple 4-tree CT4
(r{rg}{bl})(gblr)(b2{rg}g)(l{gb}r)({rl}b).
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A.2.2. Octahedron Side-Contact Representation

0 degree 135 degree 225 degree

Figure A.6.: The simple 4-tree CT4
4r.

0 degree 135 degree 225 degree

Figure A.7.: The simple 4-tree CT4
4{rg}.
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0 degree 135 degree 225 degree

Figure A.8.: The simple 4-tree CT4
4{rgb}.

0 degree 135 degree 225 degree

Figure A.9.: The simple 4-tree CT4
4{rgbl}.
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0 degree 135 degree 225 degree

Figure A.10.: The simple 4-tree CT4
4{rgbl}.

0 degree 135 degree 225 degree

Figure A.11.: The simple 4-tree CT4
(r{rg}{bl})(gblr)(b2{rg}g)(l{gb}r)({rl}b).
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