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Abstract

LetG = (V, E) be a plane graph. We say that a face f ofG is guarded by an edge vw ∈ E
if at least one vertex from {v,w} is on the boundary of f. For a planar graph class G

the function ΓG : N→ Nmaps n to the minimal number of edges needed to guard all

faces of any n-vertex graph in G.

This thesis contributes new bounds on ΓG for several graph classes, in particular

on Γ4,stacked for stacked triangulations, on Γ� for quadrangulations and on Γsp for

series parallel graphs. Specifically we show that

• b(2n− 4)/7c 6 Γ4,stacked(n) 6 b2n/7c,

• b(n− 2)/4c 6 Γ�(n) 6 bn/3c and

• b(n− 2)/3c 6 Γsp(n) 6 bn/3c.

Note that the bounds for stacked triangulations and series parallel graphs are tight

(up to a small constant). For quadrangulations we identify the non-trivial subclass

of 2-degenerate quadrangulations for which we further prove Γ�,2-deg(n) 6 bn/4c
matching the lower bound.

Deutsche Zusammenfassung

Eine Facette f eines eingebetteten planaren Graphen G = (V, E) wird von einer

Kante vw ∈ E überwacht, wenn mindestens einer der Knoten aus {v,w} auf dem

Rand von f liegt. Für eine Unterklasse G der planaren Graphen ordnet die Funk-

tion ΓG : N→ N jeder natürliche Zahl n die minimale Anzahl an Kanten zu, mit der

alle Facetten jedes Graphen mit n Knoten aus G überwacht werden können.

Diese Masterarbeit liefert neue Schranken für ΓG für mehrere Unterklassen planarer

Graphen, insbesondere für Stacked-Triangulierungen (Γ4,stacked), für Quadran-

gulierungen (Γ�) und für Serien-Parallele Graphen (Γsp). Wir zeigen, dass

• b(2n− 4)/7c 6 Γ4,stacked(n) 6 b2n/7c,

• b(n− 2)/4c 6 Γ�(n) 6 bn/3c und

• b(n− 2)/3c 6 Γsp(n) 6 bn/3c.

Die Schranken für Stacked-Triangulierungen und Serien-Parallele Graphen sind

scharf (bis auf kleine Konstanten). Für Quadrangulierungen betrachten wir weiter

die nicht-triviale Unterklasse der 2-degenerierten Quadrangulierungen und zeigen

für diese, dass Γ�,2-deg(n) 6 bn/4c. Diese Schranke entspricht der unteren Schranke,

ist also scharf.
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1. Introduction

1.1. Motivation and History
In 1975 Chvátal [7] laid the foundation for the widely studied field of art gallery problems by
answering a question that was posed by Victor Klee in 1973 [20]. We rephrase this question

using one of its geometric interpretations:

What is the smallest number f(n) of guards necessary, such that in any simple,

n-sided polygon P each interior point is visible by at least one guard? The

guards must be positioned in the corners of P and a point p is visible by a

guard g, if and only if the line segment connecting g and p lies completely

inside the polygon P.

We can imagine the polygon P to be the floor plan of an art gallery containing exhibits

both on its walls and in its interior. For example, consider the gallery shown in Figure 1.1.

It is bounded by a 20-sided polygon P and can be guarded by four guards. For each guard

we shaded the area of P that is in its field of vision. In fact, this gallery needs at least

four guards but this is neither obvious nor is it easy to compute a minimal set of guard

positions. Lee and Lin [16] showed that the decision problem, whether an n sided art

gallery can be guarded by k guards is NP-complete.

Chvátal showed that bn/3c guards are occasionally necessary and always sufficient. He

presented an infinite family of art galleries bounded by polygons Pk with 3k+ 2 vertices

Figure 1.1.: An art gallery bounded by a polygon P with n = 20 vertices. As we can see,

four guards are sufficient to guard any interior point. To illustrate this, each

guard is assigned a color and its field of vision in the interior of P is shaded in

this color.
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1. Introduction

Figure 1.2.: An art gallery bounded by a polygon P with n = 14 sides. It has four spikes,
each of them needing its own guard. This example can easily be extended to

contain more spikes so that more guards are needed.

that need k guards (for k = 4 this is shown in the Figure 1.2). Polygon Pk contains k spikes

and each of them needs its own guard. To prove sufficiency he already employed graph

theoretic methods, but his original proof was rather complicated. Only a few years later,

Fisk [13] gave a very short – six lines (!) – and elegant proof: Triangulate the interior of P

and find a proper 3-coloring of the vertices of the obtained graph G (such a 3-coloring

exists by [26]). Then every face of G is triangular and incident to vertices of all three

colors. Since each face is convex, it can be guarded from any of its boundary vertices.

The smallest color class contains at most bn/3c vertices and can therefore be used as a

guard set. Figure 1.3 shows a possible triangulation of the art gallery from Figure 1.1 and a

proper 3-coloring of the vertices. There are seven red vertices, seven green vertices and six

blue vertices, so the smallest color class is the blue one and its vertices guard the whole art

gallery. However, this strategy does not necessarily provide a minimal number of guards:

We know from above that four guards are sufficient in this case.

Until now, all guardswere so called vertex guards. Starting in 1983, O’Rourke [21] considered

more powerful types of guards, which he calledmobile guards. These guards are not fixed at

a vertex but are allowed to move in a restricted area R and their field of vision is defined as

all points visible from at least one point in R. If they are wisely placed, fewer guards might

be necessary in this setting. Countless variants and specializations of art gallery problems

have been developed, a survey of results is given by Shermer [29] and O’Rourke [20]

published a whole book about it.

In another attempt to generalize the original question, we can free ourselves from the

geometric notion of visibility and ask what the smallest number of vertex guards for

any n-vertex plane graph G = (V, E) is, such that each face of G is guarded. Here a vertex

guard g ∈ V guards all faces that have g on their boundary. Note that f does not need to

be convex in this generalization. Bose et al. [5] answered this question in 1997 showing

that bn/2c vertex guards are sometimes necessary and always sufficient. Mobile guards

are also considered in this setting: Out of these the so called edge guards received most

Figure 1.3.: The plane graph obtained from triangulating the art gallery from Figure 1.1

and a proper 3-coloring of the vertices. Each color class is a possible guard set.

2



1.2. Variants and Related Work

attention in the literature and are what this thesis is about. In our graph theoretic setting,

an edge guard is just an edge vw of the plane graph and it guards all faces that have at least

one vertex from {v,w} on their boundary. The ultimate goal is to answer the following

open question giving a conjecture about the minimal number of edge guards needed for

all n-vertex plane graphs:

Can any n-vertex plane graph be guarded by bn/3c edge guards?

It is easy to see that bn/3c edge guards are sometimes necessary: Assume that n = 3k for

some k ∈ N and let G =
(⋃k

i=1

{
v1i , v

2
i , v

3
i

}
,
⋃k

i=1

{
v1i v

2
i , v

2
i v

3
i , v

3
i v

1
i

})
be the disconnected

graph consisting of pairwise unconnected triangles. Each of them needs its own edge

guard. Even though upper bounds were considered in several publications [2, 5, 12]

and gradually improved, there is still a theoretic gap between the best currently known

lower and upper bounds. This led to the study of several subclasses of plane graphs, like

triangulations [5, 12] and (maximal) outerplanar graphs [5, 7, 21].

1.2. Variants and Related Work

This thesis is about edge guard sets, i.e. edges guarding all faces of a plane graphG = (V, E).
In the previous section we saw how this question evolved since the original art gallery

problem from 1972. Now we alter the rules to discover variants related to this question:

A plane graph consists of three types of combinatorial structures, namely the vertices, the

edges and the faces. Each of these three can be the guarding entity and the object to be

guarded giving rise to nine different combinations. Some of these combinations are well

known and widely studied under their own names while others have not yet received

further attention. In the following we shortly explore each of these combinations.

• Let us say that a vertex v guards itself and all vertices in its neighborhood. The

problem to find a subset of the vertices guarding all vertices in V is exactly the

dominating set problem. A dominating set D ⊆ V is a subset of the vertices, such

that each v 6∈ D has a neighbor in D. Mathworld1 shows bounds on the domination

number for several (not necessarily planar) graph classes. Matheson and Tarjan [18]

conjectured in 1996 that bn/4c vertices are always enough to dominate any n-vertex

plane triangulation. Their conjecture remains unsettled. Good bounds were only

shown for extremely restricted graph classes as in [15, 25]. The best known upper

bound is b17n/53c given by Špacapan [30].

• Another classical graph theoretic problem appears when we assume that vertices

guard their incident edges. A vertex cover is a subset X ⊆ V of the vertices, such that

each edge e ∈ E has at least one endpoint in X. Again, the vertex cover problem has

been studied for many different graph classes2. For n-vertex planar graphs we can

easily construct a vertex cover X of size b3n/4c by applying the 4-Color Theorem and

selecting the three smallest color classes. All remaining vertices have the same color

and therefore form an independent set, so X is indeed a vertex cover.

Recently even stronger vertex guards have been considered, where a vertex v guards

all edges incident to v or one of its neighbors [22].

• The setting in which vertices guard faces was already mentioned in the previous

section. Recall that Bose et al. [5] showed that bn/2c vertex guards are sometimes

necessary and always sufficient.

1 http://mathworld.wolfram.com/DominationNumber.html
2 http://mathworld.wolfram.com/VertexCover.html
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1. Introduction

• Now we consider all variants where faces guard some object of the graph. There is

no established name for any of the three problems, because they are just the duals of

the ones above: For a planar graph G consider its dual G∗. Then the faces of G are

the vertices of G∗, so face guards can be treated as vertex guards in the dual graph.

• This thesis is about edges guarding the faces of a plane graph. Here we say that

an edge vw guards a face f if at least one vertex from {v,w} is on the boundary of f.

Bose et al. [4] called this weak edge coverage and defined strong edge coverage to require

that both v and w are on the boundary of f. Under this circumstances, each edge can

guard at most two faces. Any maximal plane n-vertex graph contains 2n− 4 faces,
so n− 2 strong edge guards are necessary. The dual of a maximal plane graph G is

cubic and 3-connected, so by Petersen’s Theorem [23] it contains a perfect matching.

This matching can be used to group the faces of G into pairs that can share a strong

edge guard. Therefore n − 2 strong edge guards are also sufficient for maximal

plane graphs. For a general plane graph G consider a maximal plane graph
˜G on the

same vertex set that contains G as a subgraph. Any strong edge guard set
˜Γ for ˜G

can be augmented to a strong edge guard set for G of the same size: Every e ∈ ˜Γ

with e 6∈ E(G) is a chord of a unique face f in G, so we can choose any edge incident

to f instead.

• Assuming that edges guard the vertices of a graph G = (V, E) leads us to another

well known problem. A subset C ⊆ E of the edges is known as an edge cover, if each
vertex v ∈ V is the endpoint of at least one edge in C. The problem to find edge

covers also arises if we look at the dual graph in the setting of strong edge coverage

from the previous item. If G contains a perfect matchingM∗, this is obviously also a

minimal edge cover as each edge inM∗ guards two vertices that are not guarded

by any other edge. If on the other hand no perfect matching exists, a minimal edge

cover is found by computing a maximum matchingM and taking one additional

edge per vertex that is not guarded byM. Nishizeki [19] presented bounds on the

size of a maximum matching in planar graphs depending on its minimum degree.

These then give upper bounds for the size of edge covers.

• For the last remaining setting we assume that edges guard other edges of G = (V, E).
This is again a classical problem known as the edge dominating set problem. An

edge dominating set D ⊆ E is a subset of the edges such that each e 6∈ D is adjacent

to an edge in D. When removing all edges and their endpoints in D from G, the

remaining vertices are all independent, because otherwise any remaining edge would

not be dominated. Using this observation we see that we can use inclusion maximal

matchings as edge dominating sets. The smallest cardinality of an inclusion maximal

matching of a graph G is also known as its saturation number s(G). Bounds for the
saturation number were found for example for fullerene graphs [9].

1.3. Outline of this Thesis
This thesis explores three more graph classes, namely the stacked triangulations, the

quadrangulations and the series parallel graphs. In each case we present new lower and

upper bounds on the number of edge guards that are sometimes necessary and always

sufficient. The document is organized as follows:

Chapter 2 introduces the needed mathematical notation and concepts. We repeat some

classic graph theoretic results that are used throughout this thesis (without proving them).

In Chapter 3 we give an outline of the current best known results for different graph

classes. In some cases we restrict ourselves to citing the theorems from the corresponding

4



1.3. Outline of this Thesis

publications while in other cases we also present their proofs. This can be either because

they are particularly elegant or because we use a similar approach later on for one of our

own results.

The next three chapters describe our own contribution, starting with Chapter 4 giving

matching lower and upper bounds for stacked triangulations. We see that they have a

hierarchical structure and use it to describe a finite list of subgraphs, at least one of which

must appear in the graph. By locally changing these subgraphs we obtain a smaller stacked

triangulation, thus allowing us to use induction on the number of vertices. To show that

this bound is tight, we borrow a technique that is also used to prove the best known lower

bound for general triangulations.

In Chapter 5 we study quadrangulations. Quadrangular faces have proven to be prob-

lematic in previous strategies to find small edge guard sets. We improve the current best

known upper bound for the number of edge guards, even though we conjecture that our

given bound is not yet tight. As a first step towards a better bound, we further look at the

subclass of 2-degenerate quadrangulations. For those we are able to present a better upper

bound that also matches the lower bound.

The third considered graph class are the series parallel graphs in Chapter 6. Again we

present a matching lower and upper bound. It is noteworthy that the upper bound is

achieved using only vertex guards, so for this graph class edge guards provide no benefit

over vertex guards. An important subclass are the maximal series parallel graphs, which

are exactly the 2-trees. We show that they need the same number of guards.

The conclusion in Chapter 7 looks back on this thesis. We repeat our and all previous

results and put them into context. Gaps between lower and upper bounds directly lead to

a list of open questions.

The Appendix is split into two parts. We conducted experiments to find edge guard sets

for small instances of different graph classes. The results are presented in Appendix A.

These gave first hints towards some of the bounds proven in the main part of this thesis.

The second part in Appendix B contains several proofs for 2-degenerate quadrangulations

that were skipped in Chapter 5 for space reasons and improved readability.
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2. Preliminaries

This chapter introduces the mathematical and graph theoretic terms and definitions used

throughout this thesis. We adopt most notation from the book "Graph Theory" by Reinhard

Diestel [8].

2.1. General Definitions
By Nwe denote the set of natural numbers where 0 6∈ N, so zero is not a natural number.

To include the zero we use N0 := N ∪ {0}. For a non-negative real number x ∈ R we define

the floor-function as bxc := max{n ∈ N0 | n 6 x}.

A graph G = (V, E) is a pair of disjoint sets. Here V contains the vertices and E ⊆ V × V
contains the edges. Often we also use the functions V(G) := V and E(G) := E to get

the vertex and edge set of a graph. The number of vertices |G| := |V(G)| is called the

order of a graph and the number of edges ‖G‖ := |E(G)| is its size. Typically we use the

variables n := |G| and m := ‖G‖ for this. An edge e = {v,w} is a 2-element subset of V

and expresses a relation between the vertices v and w. All graphs considered here are

undirected, so edge e = {v,w} = {w, v}. As a shorthand notation we write e = vw in

the following. For a vertex v ∈ V the set N(v) := {w ∈ V | vw ∈ E} is its neighborhood.
Further the degree of v is the size |N(v)| of its neighborhood. A graph H is a subgraph of G,

if V(H) ⊆ V(G) and E(H) ⊆ E(G). If E(H) = {vw ∈ E | v,w ∈ V(H)} then H is an induced
subgraph. For the induced subgraph obtained by removing a subset X of the vertices we

write G− X. A matchingM ⊆ E(G) is a subset of the edges, such that no two edges inM

share an endpoint. MatchingM is maximal (by inclusion), if there is no bigger matching
˜M

withM ⊂ ˜M (i.e.M is a proper subset of
˜M).

There are countless subclasses of graphs, the "Information System on Graph Classes and

their Inclusions" [27] lists about 1600 of them. A few important ones appear in this thesis:

In a complete graph Kn :=
(
{v1, . . . , vn}, {vivj | 1 6 i < j 6 n}

)
every possible edge exists.

A path Pn :=
(
{v1, . . . , vn}, {v1v2, . . . , vn−1vn}

)
is a sequence of vertices joined by edges

between consecutive vertices. The length of a path is its number of edges. By adding another

edge vnv1 we get a cycle Cn :=
(
V(Pn), E(Pn) ∪ {vnv1}

)
. We say that a graph is connected,

if there is a path between any pair of vertices, otherwise it is disconnected. A connected

graph without cycles is called a tree. This can be generalized to k-trees: For k ∈ N a graphG

is a k-tree, if and only if it is the complete graph Kk+1 or a vertex v exists, such that N(v)
induces a copy of Kk and G− {v} is a k-tree. Trees are exactly the 1-trees. A graph Gwhere

every subgraph H has a vertex of degree at most k is called k-degenerate.

7



2. Preliminaries

A graph G can be drawn in the plane with its vertices mapped to points and its edges

mapped to curves connecting the corresponding endpoints. Graphs that are already drawn

such that the curves for no two edges cross (except in common endpoints) are called plane
graphs and such drawings are plane drawings. Graphs for which a plane drawing exists are

planar graphs. In a plane drawing the edges subdivide the plane into disjoint regions, called

faces. The only unbounded face is the outer face, all others are inner faces. Let G = (V, E)
be a plane graph and let f be an arbitrary face. By ∂f := {v ∈ V | v is incident to f} we

denote the set of boundary vertices. The degree of f is its number |∂f| of boundary vertices.

If ∂f = {v1, . . . , vk} appear in counterclockwise order along the boundary of f, we also

write f = (v1, . . . , vk). Two faces f, g are h-hop apart, if the shortest path connecting a vertex

from ∂fwith a vertex from ∂g has length h.

This thesis focuses on subclasses of plane graphs. The maximal plane graphs are plane

graphs that contain the maximum possible number of edges. Any additional edge cannot

be drawn without crossing one of the existing ones. An outerplane graph is a plane graph
where every vertex is incident to the outer face. Similarly the maximal outerplane graphs
are outerplane graphs that contain the maximum number of edges. The corresponding

subclasses of planar graphs are defined analogously.

Given a plane graph G = (V, E) with face set F we define its dual graph G∗ = (V∗, E∗).
Here V∗ := F, so each dual vertex corresponds to one of the faces in F. For each edge e ∈ E
let f, g ∈ F be the two faces on the two sides of e. Then there is an associated dual

edge e∗ ∈ E∗ connecting the dual vertices f∗ and g∗ originating from f and g. Note that G∗

can be a multigraph: If there is an edge touching the same face on both of its sides, then G∗

contains a loop (an edge where both endpoints coincide). If there are two adjacent faces

sharing at least two boundary edges,G∗ contains amultiedge (several simple edges between

the same pair of vertices). The dual graph G∗ has an inherited plane drawing: For each

face f ∈ F place the dual vertex f∗ inside f and draw a the dual edge e∗ such that is crosses

the corresponding edge e ∈ E exactly once.

Now that we introduced all graph theoretic basics we finish this section defining the central

concept of this thesis: Guard sets. A vertex v ∈ V of a plane graph G = (V, E) guards all
faces f where ∂f ∩ {v} 6= ∅. Now a set of vertices Λ ⊆ V is a vertex guard set if any face of G

is guarded by at least one vertex in Λ. Similarly, an edge e = vw ∈ E guards all faces f

where ∂f ∩ {v,w} 6= ∅, so all faces that are guarded by v and/or w. Subset Γ ⊆ E is an edge
guard set if any face of G is guarded by at least one edge in Γ . Even though Γ is a set of

edges, we write V(Γ) to denote the set of vertices that are endpoints of at least one edge

in Γ (as if Γ were a graph).

For a graph class Gwe use the short notation ΓG(n) to denote the smallest number k ∈ N,
such that every n-vertex G ∈ G can be guarded by an edge guard set of size k. For the

following graph classes ΓG(n) appears in this thesis:

• Γ
plane

(n) for general plane graphs

• Γ4(n) for triangulations

• Γ4,stacked(n) for stacked triangulations

• Γ4,4-con(n) for 4-connected triangulations

• Γ�(n) for quadrangulations

• Γ�,2-deg(n) for 2-degenerate quadrangulations

• Γsp(n) for series parallel graphs

• Γ2-tree(n) for 2-trees

8



2.2. Classical Theorems

To avoid writing constant terms too often, we introduce an asymptotic notation for ΓG(n):
We write ΓG(n) ∼ cn, if the quotient between ΓG(n) and cn approaches 1 as n goes to

infinity, so limn→∞(ΓG(n)/cn) = 1.
2.2. Classical Theorems
The previous section laid the graph theoretic foundation. In this section we continue with

some additional concepts amended with classical results from the respective area.

Let G = (V, E) be a graph and C be a set of colors. A function χ : V → C is called a coloring
of G. If for any edge e = vw ∈ E the condition χ(v) 6= χ(w) holds, we say that χ is a proper
coloring. Colorings play a central role in several chapters of this thesis. One of the most

important breakthroughs regarding colorings of planar graphs is the following 4-Color

Theorem, that was applied to construct guard sets in the literature.

Theorem 2.1 (Appel, Haken 1976 [1]) For every planar graph there is a proper 4-coloring.

The theorem was proven in 1976 by a computer assisted case distinction considering 1936

different cases [1]. This was later reduced by Robertson et al. [28] to 633 cases, but there is

still no non-assisted, purely combinatorial proof. Given a coloring χ of a plane graph Gwe

call edges and faces monochromatic if all incident vertices are assigned the same color by χ.

In this case we say that the edge/face is colored in the same color as its incident vertices.

We proceed with a plane graph G = (V, E) and faces F. Euler observed and proved that:

Theorem 2.2 (Euler 1758 [11]) For every connected plane graph we get |V |− |E|+ |F| = 2.

An important consequence is that the number of edges and faces in triangulations and

quadrangulations (graphs where every face has degree four) only depends on their number

of vertices. The proofs only differ in the numbers plugged in, so we only give one of them.

Corollary 2.3 An n-vertex triangulation has 3n− 6 edges and 2n− 4 faces.

Proof A triangulation G = (V, E) is a connected plane graph. By Euler’s Formular we

know that |V | − |E| + |F| = 2. Any face is incident to three edges and any edge touches

exactly two faces, therefore we get 3|F| = 2|E|. We rewrite this as |E| = 3|F|/2 and plugging

into Euler’s Formular gives |V |− 3|F|/2+ |F| = 2which solves to |F| = 2|V |− 4. By plugging

in |F| = 2|E|/3 instead, we get |E| = 3|V |− 6. �

Corollary 2.4 An n-vertex quadrangulation has 2n− 4 edges and n− 2 faces.

To conclude this section we again consider general graphs. A graph is called k-regular

if every vertex has degree k. Further, a d-factor F of a graph G is a spanning subgraph

such that F is d-regular. Here spanning means that V(G) = V(F). Petersen gave a sufficient

condition for a graph to contain a 2-factor in his 2-Factor Theorem.

Theorem 2.5 (Petersen 1891 [23]) Every k-regular graph with even k has a 2-factor.
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3. Previous Work

Several papers regarding edge guard sets in plane graphs have been published over the

last 40 years. Here we present some of this work, displaying the currently best known

lower and upper bounds. The authors mainly distinguish between general plane graphs

and triangulations (the maximal plane graphs). While we limit ourselves to stating the best

known results for general plane graphs, we quote the work of Bose et al. [5] and Biniaz et

al. [2] for triangulations in more detail. On the one hand because we correct a small error

in a constant term of the published lower bound, on the other hand because the upper

bound can be generalized to general graphs. We use that same technique in Chapter 5 to

prove an upper bound for quadrangulations.

3.1. Triangulations
We start by looking at Γ4(n), the minimal number of edge guards needed to guard all

faces of any n-vertex triangulation. For a lower bound we repeat a construction by Bose

et al. [5]. Their idea is to create a plane triangulation G that contains several copies of a

special subgraph H, all of them at least 2-hop apart from all others. Graph Hwas chosen

such that it needs a big number of edge guards relative to its small number of vertices.

Theorem 3.1 (Theorem 3.6 in [5]) It is b(4n− 8)/13c 6 Γ4(n).

Proof Consider the 6-vertex triangulation shown in Figure 3.1 that is known as the

octahedron graph. A single edge guard is not enough to guard all of its faces, an edge

guard set of size two is shown in the figure. We now show how to create a graph that

contains many copies of the octahedron graph, any two of them at least 2-hop apart. Let S

Figure 3.1.: The octahedron graph with two edge guards (shown in red). No single edge

guards all of its eight faces.

11



3. Previous Work

Figure 3.2.: A triangulation with 28 vertices needing at least eight edge guards. The red

subgraph is the skeleton graph S, the copies of the octahedron graph are blue

and the black edges were added to obtain a triangulation.

be a plane triangulation with v vertices and call this the skeleton triangulation. It has 2v−4
faces. Put a copy of the octahedron graph into each face of S and triangulate the resulting

plane graph in an arbitrary way to obtain a triangulation G. The number of vertices of G

is n = v+6 · (2v−4) = 13v−24which leads to v = (n+24)/13. The shortest path between

any two copies of the octahedron graph must contain a vertex of the skeleton graph S,

therefore they are at least 2-hop apart. In total there are 2v− 4 such copies and any edge

guard set Γ contains two edge guards for each of them. Plugging in we get

Γ4(n) > |Γ | > (2v− 4) · 2 =
(
2
n+ 24

13
− 4

)
· 2 = 4n− 8

13
.

A complete example of a triangulation obtainedby this construction is shown inFigure 3.2.�

Remark 3.2 Bose et al. [5] give a lower bound of b(4n − 4)/13c 6 Γ4(n) in their publication.
They obtain this bound the same way as in the proof above, but they put three copies of the octahedron
graph into the outer face of the skeleton triangulation S. However, the resulting graph is impossible
to triangulate such that all copies of the octahedron are 2-hop apart, therefore their argument that
each copy exclusively needs two edge guards does not work here.

Remark 3.3 To further improve the lower bound, Bose et al. posed the question whether there is
a 9-vertex triangulation needing three edge guards. If so, this could be used instead of the octahedron
graph to obtain a better lower bound. From our experiments presented in Appendix A we now know
that such a graph does not exist (and neither do 12/15/18-vertex triangulations needing 4/5/6 edge
guards).

Let us now consider the upper bound for triangulations that was originally proved by

Bose et al. [4]. They start by defining a specific non-proper 2-coloring of the vertex set that

can be used to construct a guard set. Then they show the existence of such a coloring for

triangulations.

Definition 3.4 (Guard Coloring) A guard coloring of a plane graph G is a 2-coloring of the
vertices such that no face is monochromatic but each face is incident to a monochromatic edge.

12



3.2. General Plane Graphs

Lemma 3.5 Let G be a plane graph with n vertices. If G has a guard coloring, then it can be
guarded by bn/3c edge guards.

Proof Without loss of generality let 1 and 2 be the two colors of the guard coloring

and let G1 and G2 be the two subgraphs of G induced by the vertices colored 1 and 2,

respectively. Further let M1 and M2 be maximal matchings in G1 and G2. We claim

thatMi (for i ∈ {1, 2}) guards any face that has a monochromatic edge e = vw of color i.

Otherwise we would have v,w 6∈ V(Mi) and Mi ∪ {vw} would be a bigger matching

and thusMi would not be maximal. Therefore Γ12 :=M1 ∪M2 is an edge guard set of

size |Γ12| = |M1|+ |M2|.

We define two more edge guard sets: For i ∈ {1, 2} define Γi := Mi ∪ Ei where Ei
is a set of edges containing one edge incident to each vertex in V(Gi) \ V(Mi). Be-

cause no face is monochromatic, Γi touches every face. It is an edge guard set and has

size |Γi| = |Mi|+ |V(Gi)|− 2|Mi| = |V(Gi)|− |Mi|.

The total size of all three edge guard sets is

|Γ12|+ |Γ1|+ |Γ2| = |M1|+ |M2|+ |V(G1)|− |M1|+ |V(G2)|− |M2|

= |V(G1)|+ |V(G2)|

= |V(G)|

= n

and therefore the smallest one of these three must be of size at most bn/3c. �

Theorem 3.6 Any triangulation G has a guard coloring, therefore Γ4(n) 6 bn/3c.

Proof Apply the 4-Color Theorem to obtain a proper 4-coloring of G with colors

from {1, 2, 3, 4}. Now group colors 1 and 2 into a new color A and colors 3 and 4

into a new color B. The resulting 2-coloring (with colors from {A,B}) is a guard coloring

for G. This is true, because each face of G is a triangle and thus has exactly three different

colors from {1, 2, 3, 4} among its boundary vertices. Therefore each face has a boundary

vertex of both colors from {A,B}, so there are no monochromatic faces. Further each

non-monochromatic 2-coloring of a triangle contains a monochromatic edge. �

3.2. General Plane Graphs

It is conjectured that Γ
planar

(n)
?

= bn/3c edge guards are sometimes necessary and always

sufficient for an n-vertex plane graph. A lower bound is trivially given by a set of copies

of triangles (a disconnected graph), each of them needing exactly one edge guard (see

Figure 3.3). Stating an upper bound is much more difficult and there are two different

strategies used throughout the previous work.

. . .

Figure 3.3.: A graph consisting of pairwise unconnected triangles. Each triangle needs its

own edge guard.

13
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a b

c

s

v1 v6

v2

v3 v4

v5

Figure 3.4.: A plane graph that does not admit a guard coloring. Assume that we want to

find a guard coloring in red and blue. Face (a, b, c)must not bemonochromatic,

so without loss of generality we choose a and b to be blue while c is red. Then

either v1 or v6 needs to be blue. The graph is symmetric, so we choose v1 to be

blue. Then v2 must be blue as well to have a monochromatic edge incident to

face (a, v2, v1, c). In the next step, we color v3 and s red, because otherwise

we would get monochromatic faces. For the same reason v4 then becomes

blue and v5 becomes red. This leaves only v6 uncolored. It cannot be red, as

triangle (s, v5, v6) would become monochromatic, and it cannot be blue, as

triangle (c, v6, v5, b) would have no monochromatic edge.

3.2.1. Iterative Guarding

The following was shown by Biniaz et al. [2].

Theorem 3.7 (Theorem 3 in [2]) Γ
planar

(n) 6 b3n/8c for plane graphs with n > 3 vertices.

To prove this, the authors use a technique they call iterative guarding that can be described

as follows: For a graph G0 = (V0, E0) they start with an empty partial edge guard

set Γ0 := ∅ and iteratively extend it until it guards every face. In step i > 1 they choose two

sets V ′i ⊆ Vi−1 and E ′i ⊆ Ei−1, such that E ′i guards all faces of Gi−1 incident to vertices

in V ′i . The edges in E ′i are added to the partial guard set, so Γi := Γi−1 ∪ E ′i. Then the

vertices in V ′i as well as all incident edges are removed from the graph: Gi := (Vi, Ei)
with Vi := Vi−1 \ V ′i and Ei := Ei−1 \ {vw | v ∈ V ′i or w ∈ V ′i }. If the sets V ′i and E ′i are
carefully chosen – in each step such that |E ′i| 6 c|V

′
i | for some constant c – this leads to a

complete guard set Γ of size at most cn.

Biniaz et al. [2] use a theorem by Borodin [3] about local structures in planar graphs. It

guarantees them at least one of eight configurations to appear, which they use to find

sets V ′i and E
′
i, such that |E ′i| 6 (3/8) · |V ′i | leading to the desired bound.

3.2.2. Guarding by Coloring

We used guard colorings to show that bn/3c edge guards are always sufficient for

triangulations but this method is much more powerful. In fact, Bose et al. [4] show that

any plane graph without quadrilateral faces has a guard coloring and they further give an

algorithm that can compute one in linear time without applying the 4-Color Theorem (for

which no simple and constructive proof is known). However there are graphs that do not

allow a guard coloring, one of them is shown in Figure 3.4 that was presented originally

by Biniaz et al. [2].

Theorem 3.8 (Theorem 5 in [2]) For every plane graph with n > 3 vertices and α quadrilateral
faces bn/3+ α/9c edge guards are sufficient.
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3.2. General Plane Graphs

The proof of Theorem 3.8 is very similar to the proof of Theorem 3.6. The authors describe

how to triangulate a plane graph G in such a way, that each non-quadrilateral face has

vertices from at least three of the four color classes on its boundary. When grouping

two of the four colors each into new colors A and B, we get a 2-coloring that fulfills

the requirements of a guard coloring for all non-quadrilateral faces. There are three

pairwise non-symmetric ways to define A and B (A1 := {1, 2}, A2 := {1, 3}, A3 := {1, 4} and

Bi := {1, 2, 3, 4} \ Ai for i ∈ {1, 2, 3}). Using the technique form Lemma 3.5 this leads to

nine guard sets with a total size of 3n (that guard all non-quadrilateral faces). Now their

key observation is that any quadrilateral face is always guarded by at least eight of the

nine guard sets. So for each such face only one edge needs to be added to only one guard

set. We get nine guard sets guarding all faces each and they haves a total size of 3n+ α.
The smallest one must be of size at most bn/3+ α/9c.
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4. Stacked Triangulations

In the previous section we saw that n-vertex triangulations can be guarded by bn/3c
edge guards. However, no family of triangulations is known for which this number of

edge guards is actually necessary. This chapter considers a subclass of triangulations,

the so called stacked triangulations and develops bounds for Γ4,stacked(n), the minimal

number of edge guards needed to guard any n-vertex stacked triangulation. They have a

hierarchical structure which allows us to prove that Γ4,stacked(n) ∼ 2n/7 by giving a lower

and an upper bound.

First we define what stacked triangulations are and explore their hierarchical structure.

Then we present a construction for stacked triangulations needing many edge guards for

the lower bound in Section 4.1. This chapter finishes with an inductive proof for the upper

bound in Section 4.2.

Definition 4.1 (Stacked Triangulations) A plane triangulation is a stacked triangulation if
it can be formed by the following recursive process:

• A triangle is a stacked triangulation.

• LetG = (V, E) be a stacked triangulation and f be an inner face with ∂f = {x, y, z}. Then the
graph G ′ = (V ∪ {v}, E∪ {xv, yv, zv}) formed by adding a new vertex v into f subdividing it
into three smaller triangles is also a stacked triangulation.

The stacked triangulations are also known as Apollonian Networks. Our definition immedi-

ately shows that they are exactly the planar 3-trees. Further it can be shown that the class

is equivalent to the maximal planar chordal graphs [17] and to the uniquely 4-colorable

planar graphs [14].

Figure 4.1 shows two graphs: Subfigure (a) shows a stacked triangulation and the vertices

are numbered in the order they could be added according to Definition 4.1. Subfigure (b)

shows the octahedron graph, which is not a stacked triangulation. We can give two

different reasons for this: Firstly, none of the three inner vertices is connected with all three

outer vertices. Secondly, the last added vertex must be of degree three, but the octahedron

graph does not contain such a vertex.

Defining a stacked triangulation G = (V, E) as a sequence of face subdivisions as in

Definition 4.1 gives it a hierarchical structure. Number the vertices v1, v2, . . . , v|V | in the

order in which they were added. Note that v1, v2 and v3 form the outer face.
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4. Stacked Triangulations

(b)(a)

v1 v2

v3

v4

v5
v6

v7

v8

Figure 4.1.: (a) A stacked triangulation. The vertices are numbered in the order they were

added. (b) The octahedron graph is not a stacked triangulation, because it does

not have any vertex of degree 3.

Definition 4.2 (Level, Parent) The function level : V → N assigns each vertex an integer level
giving its depth in the subdivision hierarchy:

level(vi) 7→


0 for 1 6 i 6 3
max

j<i
vjvi∈E

level(vj) + 1 otherwise

Further the function parent : V → V assigns each vertex to its unique neighbor of the previous
level (exceptions for the first four vertices):

parent(vi) 7→

{
v1 for 1 6 i 6 4
vj such that vjvi ∈ E and level(vj) + 1 = level(vi)

The parent function defines an implicit tree T on the vertices. By S(v) we denote the

subtree of v ∈ V in T including v itself. If we do not want v to be included, we

define S◦(v) := S(v) \ {v}. A vertex that has k ∈ {0, 1, 2, 3} children in T is called a k-vertex.

Definition 4.3 (3-Wheel) Let G = (V, E) be a stacked triangulation. A 3-wheel is a trian-
gle (x, y, z) containing exactly one vertex v inside it, subdividing it into three triangular faces.

4.1. Lower Bound

To construct a stacked triangulation needing many edge guards, we apply the same

technique as we did for general triangulations in Theorem 3.1. We start with a skeleton

graph S – itself a stacked triangulation – and further subdivide each face. Then we analyze

how many edge guards are necessary for the resulting graph.

Theorem 4.4 For stacked triangulations we have b(2n− 4)/7c 6 Γ4,stacked(n).

Proof Start with a stacked triangulation Swith v vertices. By Euler’s Theorem it has 2v−4
triangular faces. Into each face fwith ∂f = {x, y, z}we add as in Figure 4.2:

1. Vertex af and edges afx, afy and afz into face f.

2. Vertex bf and edges bfaf, bfy and bfz into face (af, y, z).

3. Vertex cf and edges cfaf, cfbf and cfz into face (af, bf, z).
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4.2. Upper Bound

x y

z

af
bf

cf

Tf

Figure 4.2.: Face f of Swith boundary vertices ∂f = {x, y, z} gets subdivided by the three

vertices af, bf and cf, which form a face in G.

Call the resulting graph G. It is still a stacked triangulation, which is easy to see by the

order in which we added af, bf and cf. Vertices (af, bf, cf) form a triangle Tf and no edge

from any edge guard set Γ of G guarding Tf can also guard triangle Tg = (ag, bg, cg) in
another face g of S, because they are at least 2-hop apart.

The number n of vertices of G is given by n = (2v − 4) · 3 + v = 7v − 12. Isolating v we

get v = (n+ 12)/7. For any edge guard set Γ of Gwe now have:

Γ4,stacked(n) > |Γ |

> 2v− 4 (at least one edge per face of S)

=
2n− 4

7
(substituting v)

�

4.2. Upper Bound
For a stacked triangulation Gwe want to use induction on the number of vertices, so we

need to create a smaller stacked triangulation G ′. We can apply the induction hypothesis

on G ′ to find an edge guard set Γ ′ and this edge guard set can then be turned into an edge

guard set Γ for G. We guarantee that (|Γ |− |Γ ′|)/(|G|− |G ′|) 6 2/7 which allows us to find

an edge guard set containing about 2n/7 edge guards.

Before describing how to create G ′ in which situation, we state several lemmas that can be

grouped into two kinds.

1. We start with two forcing lemmas. They describe how to extend a stacked triangulation

such that some of its vertices are forced to appear in any minimum cardinality edge

guard set.

2. Next we construct edge guard sets for several small stacked triangulations that

appear as induced subgraphs inG ′. Applying these lemmas allows us to augment Γ ′

to an edge guard set Γ with only one or two additional edges.

Lemma 4.5 (Weak Forcing Lemma) Let f be a face of a stacked triangulation G with boundary
vertices∂f = {x, y, z}. By subdividing fwith two verticesa andb and edges {xa, xb, ya, yb, za, ab}
we get another stacked triangulation H. Figure 4.3 (a) shows how f is subdivided. Then an edge
guard set Γ of H exists that has minimum cardinality among all edge guard sets for H and for
which x, y ∈ V(Γ).

Proof Let Γ be any edge guard set of minimum cardinality for H. If both x, y ∈ V(Γ),
we are done. So from now on, at most one of them is in V(Γ). Consider the triangular

face (x, y, b). At least one of its three boundary vertices must be in V(Γ).
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x y

z(a)

x y

z(b)

a

b

a

b c

Figure 4.3.: (a) The face f = (x, y, z) subdivided by vertices a and b for the Weak Forcing

Lemma. (b) The face f = (x, y, z) subdivided by vertices a, b and c for the

Strong Forcing Lemma.

Case 1: b ∈ V(Γ):
Then there must be an edge vb ∈ Γ for some v ∈ V(H). We can set

˜Γ := (Γ \ {vb})∪ {xy}
to get an edge guard set of the same size with x, y ∈ V( ˜Γ). This is possible, because
for every neighbor v of b, edge xy guards a superset of what vb guards.

Case 2: b 6∈ V(Γ):
Without loss of generality assume that x ∈ V(Γ) (and neither b nor y). But then

face (a, b, y) can only be guarded through a and vertex amust be part of an edge wa

for some w ∈ V(H). But every neighbor of a is also a neighbor of y, so we can

set
˜Γ := (Γ \ {wa})∪ {wy} to get an edge guard set of the same size with x, y ∈ V( ˜Γ). �

The Weak Forcing Lemma allows us (at the cost of adding two vertices) to assume that an

edge guard set Γ ′ given by applying the induction hypothesis contains a given edge e (or

at least that V(e) ⊆ V(Γ ′)). This is important, because not any Γ ′ might be augmentable to

an edge guard set Γ for G not needing too many edges. Next we see how to enforce an

even stronger property of Γ ′ by adding three vertices into a face.

Lemma 4.6 (Strong Forcing Lemma) Let f be a face of a stacked triangulation G with bound-
ary ∂f = {x, y, z}. Create a stacked triangulation H by subdividing f with three vertices {a, b, c}
and edges {xa, xb, xc, ya, yc, za, ab, ac, bc}. This is shown in Figure 4.3 (b). Then an edge
guard set Γ of H exists that has minimum cardinality among all edge guard sets of H and for
which x ∈ V(Γ) and |{xa, xb, xc, ya, yc, za} ∩ Γ | > 1.

Proof Let Γ be any edge guard set of minimum cardinality of H. Assume that Γ does not

yet fulfill the requirements.

Case 1: ∃uv ∈ Γ with u, v ∈ {a, b, c}:

We define an edge guard set
˜Γ := (Γ \ {uv}) ∪ {xa} which fulfills the requirements.

This is possible, because edge xa guards a superset of the faces that uv guards.

Case 2: otherwise:

We can deduce several things from the fact that Γ does not fulfill all requirements and

that Case 1 does not apply: Firstly, there must be an edge uv guarding face (a, b, c)
with u ∈ {y, z} and v ∈ {a, b, c}. Secondly, we follow that x 6∈ V(Γ)which further leads

to b 6∈ V(Γ). This leaves vertex c to be the only possible vertex to guard face (x, c, b),
and vertex a to be the only possible vertex to guard face (x, b, a). Thus there are two

edges av1, cv2 ∈ Γ with v1, v2 ∈ {y, z}. If v1 = v2 = y, we define
˜Γ := (Γ \ {ay})∪ {ax}.

Otherwise we have v1 = z and v2 = y and we define
˜Γ := (Γ \ {cy}) ∪ {xy}.

So in both cases either Γ already fulfilled the requirements or we could locally change it to

an edge guard set
˜Γ of the same size that does so. �
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Lemma 4.7 (3-Wheel Lemma) Let G = (V, E) be a stacked triangulation and let (x, y, z) be a
triangle with exactly one vertex v inside it, subdividing it into three triangular faces (so these four
vertices form a 3-wheel). For any edge guard set Γ of G, we have |{x, y, z, v} ∩ V(Γ)| > 2.

Proof Let Γ be an edge guard set for G. Vertex v is the only vertex guarding all three

faces (x, y, v), (z, y, v) and (x, v, z), but V(Γ) ∩ {x, y, z, v} = {v} is impossible, because v

must be part of an edge vw with w ∈ {x, y, z}. Now assume without loss of generality

that x ∈ V(Γ). Then face (v, y, z) is not guarded, so it must be V(Γ) ∩ {v, y, z} 6= ∅. �

Let H be a 3-wheel with x, y, z and v as described above in a graph G with an edge

guard set Γ . We can use the 3-Wheel Lemma and one additional edge e to make sure that

{x, y, z, v} ⊆ V(Γ ∪ {e}). This then guards the three faces (x, y, v), (z, y, v) and (x, v, z) each
at all three boundary vertices, which is a property that we further explore in Lemma 4.8.

Lemma 4.8 (Doubly/Triply Guarded Faces) Let G be a stacked triangulation, f := (x, y, z)
be one of its faces and Γ be an edge guard set.

1. If |∂f ∩ V(Γ)| = 2, we call f doubly guarded. Then Γ is also an edge guard set for the
stacked triangulation H obtained from G by subdividing f with a single vertex v into three
smaller triangular faces.

2. If |∂f ∩ V(Γ)| = 3, we say that f is triply guarded. Then Γ is also an edge guard set for
every H that is obtained by subdividing f with a single vertex v into three smaller triangular
faces and optionally subdividing each of them one more time into even smaller triangular
faces.

Proof For part 1 assume that x, y ∈ V(Γ) (all other cases are symmetric). Each of the

triangular faces (x, y, v), (z, y, v) and (x, v, z) has at least one boundary vertex in {x, y}, so

they are all guarded by Γ . For part 2 note that after subdividing with vertex v, each of the

three new triangular faces (x, y, v), (z, y, v) and (x, v, z) is doubly guarded by Γ . Therefore

part 1 can be applied to show that even another subdivision of each of them would still be

guarded by Γ . �

Now we have enough knowledge about stacked triangulations that we can construct edge

guard sets for stacked triangulations with n ∈ {6, 7, 8, 9, 10} vertices. To find an edge guard

set for a bigger stacked triangulation G, we find copies of these small instances in it and

use one of the following lemmas to obtain an edge guard set for G.

Lemma 4.9 Let G be a stacked triangulation with n = 6 vertices. Then:

1. G can be guarded by a single (and unique) edge guard.

2. If an outer vertex x is given as a vertex guard, then the remaining faces of G can be guarded
with one additional edge guard e = vw, where w 6= x is another outer vertex.

Proof There is only a single stacked triangulation G with n = 6 vertices. To prove

Statement 1, Figure 4.4 shows its three different planar embeddings1. In each case, only the

red edge uv guards all faces, where we always name the vertices such that u is an outer

vertex.

For Statement 2 first assume that x 6= u. Then edge uv can be used together with x and u

is a different outer vertex. If on the other hand x = u, edge vw guards the remaining faces

of G, where w 6= x can be any other outer vertex. In Figure 4.4 we see, that v is adjacent to

all three outer vertices (or is one of them and adjacent to the other two), so this is always

possible. �

1 Considering different planar embeddings is not necessary to prove this lemma. However, all three can

appear as subgraphs inside bigger stacked triangulations and the endpoints u and v of the unique edge

guard have different levels depending on the embedding.
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u

u u

v

v v

Figure 4.4.: The unique stacked triangulation with six vertices. There are three possible

planar embeddings.

Figure 4.5.: The four possible stacked triangulations with seven vertices that are not formed

from a stacked triangulation with six vertices and an additional outer vertex.

The colors encode how to form an edge guard set using one additional edge: If

for example the green outer vertex is a vertex guard, the thick green edge can

be used to guard the remaining faces.

Lemma 4.10 Let G be a stacked triangulation with n = 7 vertices and outer vertices x, y and z.
Further let v be the unique other vertex that is adjacent to all three outer vertices. If any of the three
outer vertices is given as a vertex guard, the rest ofG can be guarded with one additional edge guard.

Proof We start by considering the case that one of the three outer vertices (without loss of

generality z) can be removed to get a stacked triangulation46 with six vertices. If zwas

given as a vertex guard, we could just guard46 with one additional edge by Lemma 4.9.

Otherwise, ifw ∈ {x, y}was given as a vertex guard, we can form a guard set Γ for46 with

an edge containing a vertex from {x, y, v} \ {w} by Lemma 4.9. Then both {x, v, z}∩V(Γ) 6= ∅
and {y, z, v} ∩ V(Γ) 6= ∅, so all faces not belonging to46 are also guarded.

Now assume that it is impossible to remove one outer vertex to get a stacked triangulation.

There are only four such stacked triangulations, all shown in Figure 4.5. For each of them

we give three guard sets in different colors: They all consist of one vertex guard at an outer

vertex and one edge guard. �

The two above lemmas can be seen as base cases for six and seven vertices. Now we state

three lemmas that handle stacked triangulations that are particularly hard cases from the

proof of Theorem 4.14. Treating them in isolation here, allows us to formulate a cleaner

proof later on.

Lemma 4.11 LetG = (V, E) be a stacked triangulation with n = 8 vertices and outer face (x, y, z)
such that the following configuration from Figure 4.6 (a) applies:

• Vertex v ∈ V is the unique vertex adjacent to all x, y and z.

• Triangle (x, y, v) and all vertices inside it form a stacked triangulation46 with six vertices.

• Triangle (x, v, z) and all vertices inside it form a stacked triangulation44 with four vertices.

• Triangle (v, y, z) is a face43.
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4.2. Upper Bound

Then any edge guard set Γ ′ for the subgraph G ′ induced by {x, y, z, v} ⊆ V can be extended by one
edge e to an edge guard set for G.

Proof By the 3-Wheel Lemma 4.7 we have |{x, y, z, v}∩V(Γ ′)| > 2. Face43 is then already

guarded. If we even have |{x, z, v} ∩ V(Γ ′)| > 2, then triangle (x, v, z) is doubly guarded

and therefore 44 is guarded by Lemma 4.8. In this case set e to be the unique edge

guarding46, which exists by Lemma 4.9.

If otherwise |{x, z, v} ∩ V(Γ ′)| = 1, then we have y ∈ V(Γ ′), thus 43 is guarded. By

Lemma 4.9 an edge e = ab exists, such that 46 is completely guarded by e and y and

further a ∈ {x, v}. If a 6∈ V(Γ ′), then it is a second guarded outer vertex of44, such that it

is guarded by Lemma 4.8. Otherwise if a ∈ V(Γ ′), then edge e ′ = a ′b can be used instead,

where a ′ 6= a is the other vertex from {x, v}. �

Lemma 4.12 LetG = (V, E) be a stacked triangulation with n = 9 vertices and outer face (x, y, z)
such that the following configuration from Figure 4.6 (b) applies:

• Vertex v ∈ V is the unique vertex adjacent to all x, y and z.

• Triangle (x, y, v) and all vertices inside it form a stacked triangulation46 with six vertices.

• Triangle (x, v, z) and all vertices inside it form a stacked triangulation45 with five vertices.

• Triangle (v, y, z) is a face43.

Then we can create a new stacked triangulation G ′ with n ′ = 5 vertices, such that any edge guard
set Γ ′ for G ′ can be augmented to an edge guard set Γ for G with |Γ | = |Γ ′| + 1. Further Γ is
constructed to doubly guard43.

Proof We create G ′ by removing all inner vertices and adding two vertices a and b as in

the Weak Forcing Lemma 4.5. This allows us to force two adjacent vertices of {x, y, z} to

be in V(Γ ′). Note that a stacked triangulation with five vertices can always be guarded

with a single outer edge. Depending on which edge from {xz, xv, vz} guards45 we force

different outer vertices. Let e = uw be the unique edge guarding46 such that u ∈ {v, x, y}

is an outer vertex of46.

Case 1: xz guards45:

Place a and b such that x, z ∈ V(Γ ′). Then45 and face43 are guarded by the forced

vertices. If edge e contains a vertex from {v, y}, we can use it additionally to guard the

faces of46 and to get another outer vertex of43. Otherwise Lemma 4.9 allows us

to change e to an edge e ′, such that it guards46 and contains a second outer vertex

of43.

(a) (b) (c)

x y

z

v

x y

z

v

x y

z

v

46 46 4A
6

4B
644 4543 43 43

Figure 4.6.: (a) Stacked triangulation as in Lemma 4.11. (b) Stacked triangulation as in

Lemma 4.12. (c) Stacked triangulation as in Lemma 4.13.
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4. Stacked Triangulations

Case 2: xv guards45:

Place a and b such that x, y ∈ V(Γ ′). Then face 43 is already guarded. If u = v,

set Γ := Γ ′ ∪ {e} to guard 45 and 46 and to doubly guard 43. Otherwise we can

change e to e ′ := vw by Lemma 4.9 and use Γ := Γ ′ ∪ {e ′} instead.

Case 3: vz guards45:

In any of the following possibilities we get v, z ∈ V(Γ), so 43 is doubly guarded.

If u = v, we can place a and b to force y, z ∈ V(Γ ′). Then Γ := Γ ′ ∪ {e} guards 46

and45. Otherwise, place a and b so that u, z ∈ V(Γ ′) and set e ′ := vw by Lemma 4.9.

Edge guard set Γ := Γ ′ ∪ {e ′} fulfills the requirements. �

Lemma 4.13 LetG = (V, E) be a stacked triangulationwithn = 10 vertices and outer face (x, y, z)
such that the following configuration from Figure 4.6 (c) applies:

• Vertex v ∈ V is the unique vertex adjacent to all x, y and z.

• Triangle (x, y, v) and all vertices inside it form a stacked triangulation4A
6 with six vertices.

• Triangle (x, v, z) and all vertices inside it form a stacked triangulation4B
6 with six vertices.

• Triangle (v, y, z) is a face43.

Then we can create a new stacked triangulation G ′ with n ′ = 6 vertices, such that any edge guard
set Γ ′ for G ′ can be used to construct an edge guard set Γ for G with |Γ | = |Γ ′|+ 1.

Proof We create G ′ by removing all inner vertices and adding three vertices a, b and c

as in the Strong Forcing Lemma 4.6. This allows us to force one vertex of {x, y, z} to be

in V(Γ ′). Further we have an edge e = uw ∈ Γ ′, such that u ∈ {x, y, z} and w ∈ {a, b, c}

which we can change to any uw ′ ∈ E.

First we name two special edges: Edge uAwA is the unique edge guarding4A
6 and uBwB

is the unique edge guarding4B
6 by Lemma 4.9. Let the naming be so that uA and uB are

incident to the outer face of4A
6 and4B

6, respectively. Depending on which vertices of G

the vertices uA and uB correspond to, we apply the Strong Forcing Lemma differently. In

any case we then show which edge uw ′ to use instead of edge uw and which other edge to

add. To avoid further case distinction we might end up with edges where both endpoints

coincide. We can then either interpret those as vertex guards or use an arbitrary neighbor

in G to form a real edge.

Case 1: x = uA = uB:
Force vertex x. If u = x, use edge uw ′ = xwA and additionale edge uBwB. If

otherwise u 6= x, it must be either u = y or u = z. Without loss of generality we

assume u = y (the other case u = z works symmetrically). Then use uw ′ = ywA and

additional edge uBwB.

Case 2: x = uA 6= uB: (x = uB 6= uA can be handled symmetrically)

Force vertex x. Now if u = x, use edge uw ′ = xwA and additional edge uBwB.

If u = y, use uw ′ = ywA and additional edge uBwB. If otherwise u = z,

use uw ′ = zwB and additional edge wAv.

Case 3: v = uA = uB:
Force vertex x. Then if u = x or u = y, use uw ′ = uwA and additional edge vwB. If

otherwise u = z, use uw ′ = zwB and additional edge vwA.

Case 4: y = uA: (z = uB can be handled symmetrically)

Force vertex y. If u = y or u = x, use uw ′ = uwA and additional edge uBwB. If

otherwise u = z, use uw ′ = zwB and additional edge wAv. This always works,

because uB ∈ {v, z} since otherwise Case 1 applies.
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4.2. Upper Bound

In all cases {uA, wA, uB, wB} ⊆ V(Γ), so all faces of 4A
6 and 4B

6 are guarded. If face 43

is also guarded by Γ , we are done, so assume it is not. Then vertex xmust appear twice

inside {uA, wA, uB, wB}, because both uAwA and uBwB contain an outer vertex of 4A
6

and4B
6, respectively. Without loss of generality, assume that uA = uB = x. Then we can

change the edge containing uB to end at v instead. �

We now have everything we need to prove the main theorem of this section giving an upper

bound for the number of edge guards that are always sufficient for stacked triangulations.

Theorem 4.14 For stacked triangulations we have Γ4,stacked(n) 6 b2n/7c.

Proof Let G = (V, E) be a stacked triangulation with n vertices. We give an inductive

proof. As the induction base we first note that if G has n 6 6 vertices, it can be guarded

with a single edge by Lemma 4.9. So from now on assume n > 6. The induction hypothesis

is that every plane stacked triangulation with n ′ < n vertices can be guarded by b2n ′/7c
edge guards.

We describe how to construct a new graph G ′ with n − k vertices for wich we use the

induction hypothesis to find an edge guard set Γ ′ of size b2(n−k)/7c. Here k := |V−|− |V+|

where V− ⊆ V is a subset of vertices removed fromG and V+
is a set of new vertices added

to it. We then show, that we can augment Γ ′ to an edge guard set Γ for G with |Γ | = |Γ ′|+ l.
By guaranteeing that l/k 6 2/7we then get |Γ | 6 b2n/7c.

Let T be the tree that is defined by G’s parent function. We start with any vertex w ∈ V
that is a leaf in T of maximum level and define x := parent(w), y := parent(x) and

z := parent(y).

Case 1: x is a 3-vertex:
Set V− := S(x), that is x and its three children in T . They all lie inside the same face f

ofG ′ and at least one boundary vertex in ∂f is in V(Γ ′). The vertices in V−∪∂f induce
a seven-vertex stacked triangulation, so by Lemma 4.10 we then need one additional

edge to guard G.

Case 2: x is a 2-vertex:
Then |S(x)| contains only three vertices, so we need to step up to its parent y. Note

that y cannot be incident to the outer face of G, because otherwise Gwould have only

six vertices.

Case 2.1: y is a 1-vertex:

Set V− := S(y) to be all four vertices in y’s subtree. As above they lie in the same

face of G ′ which is guarded by Γ ′. By Lemma 4.10 one additional edge suffices.

Case 2.2: y is a 2- or 3-vertex:

Now |S◦(y)| > 4, so we can set V− := S◦(y). Then G ′ contains a 3-wheel with y

as its center. By the 3-Wheel Lemma 4.7 we can use one additional edge e to

have y and its three neighbors inG ′ all in V(Γ ′∪ {e}). Then each face incident to y

in G ′ is triply guarded. Becausewwas a vertex of maximum level, by Lemma 4.8

this then guards all faces of G.

Case 3: x is a 1-vertex:
In this casew is the only child of x in T . We step up to its parent y, which again cannot

be incident to the outer face, because otherwise Gwould have only five vertices.

Case 3.1: y is a 3-vertex:

With the same reasoning as in Case 2.2, we can set V− := S◦(y) and use the

3-Wheel Lemma.
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4. Stacked Triangulations

Case 3.2: y is a 2-vertex:

If |S(y)| = 4, we set V− := S(y). Then V−
lies inside a single face f of G ′

and V− ∪ ∂f induces a stacked triangulation with seven vertices, so we can

use Lemma 4.10 to only need one additional edge. If otherwise |S(y)| > 5,

set V− := S◦(y) and use the 3-Wheel Lemma as in Case 2.2.

Case 3.3: y is a 1-vertex:

We have |S(y)| = 3, so we need to step up to y’s parent z. The first thing to note is,

that for any child y ′ of z, we have |S(y ′)| 6 3, otherwise one of the earlier cases

applies for that subtree. Therefore |S(z)| 6 10. Additionally note that z cannot be

incident to the outer face, because otherwise Gwould contain only six vertices.

Case 3.3.1: z is a 1-vertex:
We can set V− := {w, x, y, z} and they all lie in the same face f of G ′.
Again, V− ∪ ∂f induces a stacked triangulation with seven vertices, so we

can use Lemma 4.10 to use just one additional edge.

Case 3.3.2: z is a 2-vertex:
We need to distinguish how big |S(z)| is. For this let y ′ 6= y be the other

child of z in T .

If y ′ is a leaf in T , we can set V− := {w, x, y, y ′}. Lemma 4.11 describes how

the 3-Wheel Lemma can be applied then so that one additional edge suffices.

If |S(y ′)| = 2, then y ′ is a 1-vertex and has exactly one vertex x ′ below it

in T . We can set V− := {w, x, y, z, x ′, y ′} and V+ := {a, b}, where a and b are

added to use the Weak Forcing Lemma. Lemma 4.12 describes how a and b

need to be inserted into G, so that one additional edge suffices.

If |S(y ′)| = 3, we set V− := S(z) and V+ := {a, b, c}, where a, b and c are

added to use the Strong Forcing Lemma. Lemma 4.13 describes in detail,

how one additional edge suffices.

Case 3.3.3: z is a 3-vertex:
Again we need to distinguish how big |S(z)| is. For this let y ′, y ′′ 6= y be the

two other children of z in T .

If without loss of generality |S(y ′)| = 3, remove S(y ′) from G. We can then

solve the remaining graph as in Case 3.3.2. Using one additional edge we

can then guard all still unguarded faces incident to a vertex from S(y ′).
This is possible, because in Case 3.3.2 we removed at least four vertices and

needed only one additional edge. Combined with S(y ′) we made G ′ at
least k = 7 vertices smaller than G and needed l = 2 additional edges, so we

end up with a ratio of l/k 6 2/7.

If |S(y ′)| = 2 and |S(y ′′)| = 2, set V− := S◦(z). This way we removed

seven vertices and it remains a 3-wheel with z at its center. By the 3-Wheel

Lemma 4.7 we can use one additional edge, to guard the whole 3-wheel

and a second additional edge to guard all faces incident to vertices in S(y).
Since the whole 3-wheel is guarded, all faces of it are triply guarded and

therefore by Lemma 4.8 all faces incident to vertices in S(y ′) and S(y ′′) are
also guarded.

If otherwise without loss of generality |S(y ′)| = 2 and |S(y ′′)| = 1, re-

move S(y ′′) from G. The remaining graph can then again be solved using

Case 3.3.2. This needs Lemma 4.12, which is strong enough to doubly guard

the triangle containing S(y ′′). Since |S(y ′′)| = 1, all faces incident to the

unique vertex in it are then guarded by Lemma 4.8.
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4.2. Upper Bound

In all remaining cases both y ′ and y ′′ are leaves in T . Let (v1, v2, v3) be
the triangle in G that contains S(z) in it such that 4 := (v1, v2, z) is the

triangle containing S(y). Define V− := {w, x, y, z, y ′, y ′′} and V+ := {a, b}.

We use the Weak Forcing Lemma to place a and b, such that v1, v2 ∈ V(Γ ′).
Triangle4 togetherwithS(y) induce a six-vertex stacked triangulation46, so

byLemma4.9 there is an edge ewith v ∈ V(e) that guards the remaining faces

of46. Then all faces inside46 are guarded. Further, both triangles (v1, v, v3)
and (v2, v3, v) are doubly guarded, so by Lemma 4.8 all faces incident to

their only subdivision vertices y ′ and y ′′ are also guarded. �
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5. Quadrangulations

In this chapter we consider quadrangulations i.e. plane graphs where every face f is

quadrangular. We develop bounds for Γ�(n) which is the smallest number of edge guards

needed for any n-vertex quadrangulation. These quadrangulations are interesting for

different reasons: Firstly, they are exactly the maximal planar bipartite graphs. Secondly,

faces of degree four seem to be problematic for edge guarding strategies: Biniaz et

al. [2] showed that bn/3+ α/9c edge guards suffice for general plane graphs on n vertices

whereα is the number of their quadrangular faces. In a quadrangulationwithn vertices we

have α = n− 2, so that until now the best known upper bound for large quadrangulations

is b3n/8c also shown in [2]. This bound is valid for all plane graphs, therefore not using

any of the structure a quadrangulation has.

We start this chapter with a construction in Theorem 5.1 showing that asymptotically n/4

edge guards can be necessary. Then we prove an upper bound of bn/3c edge guards

in Theorem 5.2 using guard colorings that were introduced by Bose et al. [4] and also

described here in Definition 3.4. The two bounds are not yet matching and how to further

improve them stands as an open question. As a first step towards an answer, we conclude

this chapter by looking at 2-degenerate quadrangulations. These form a subclass that

has a similar structure to the stacked triangulations considered in Chapter 4 allowing us

to prove an upper bound of bn/4c. This is best possible, because the quadrangulations
constructed in Theorem 5.1 are 2-degenerate.

5.1. Lower Bound

Via a simple construction we prove a lower bound for the number of edge guards that are

sometimes necessary for quadrangulations. We construct such quadrangulations in a way

that they can easily be extended by four more vertices so that they need one additional

edge guard.

Theorem 5.1 For any k ∈ N there is a quadrangulationsQk with n = 4k+2 vertices that needs k
edge guards. Therefore b(n− 2)/4c 6 Γ�(n).
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v11 v21

v41

v31

v12 v22

v42

v32

v1k−1 v2k−1

v4k−1

v3k−1

v1k v2k

v4k

v3k

. . .

t

s

Figure 5.1.: A quadrangulation with 4k+ 2 vertices needing k edge guards. The thick, red

edges show an edge guard set of minimum cardinality.

Proof For k ∈ N we construct a quadrangulation Qk = (V, E) with n = 4k + 2 vertices
that needs k edge guards. Solving for k yields k = (n− 2)/4 as needed. Define

V := {s, t} ∪
k⋃

i=1

{
v1i , v

2
i , v

3
i , v

4
i

}
and

E :=

k⋃
i=1

{
sv1i , sv

2
i , tv

1
i , tv

2
i , v

1
i v

3
i , v

1
i v

4
i , v

2
i v

3
i , v

2
i v

4
i

}
.

Figure 5.1 shows this and a planar embedding. Now for any 1 6 i, j 6 k with i 6= j the

two quadrilateral faces

(
v1i , v

2
i , v

3
i , v

4
i

)
and

(
v1j , v

2
j , v

3
j , v

4
j

)
are 2-hop apart. Therefore, no

two of them can share an edge guard and we need at least k edge guards for Qk. On the

other hand it is easy to see that

{
sv11, . . . , sv

1
k

}
is an edge guard set of size k, so Qk needs

exactly k edge guards. �

5.2. Upper Bound
For the upper bound we use guard colorings, a technique introduced by Bose et al. [4].

In earlier publications [2, 4, 5] this and similar coloring approaches were used to prove

upper bounds of bn/3c edge guards for all n-vertex plane graphs not containing any

quadrangular faces. They all however fail to construct guard colorings for graphs with such

quadrangular faces. In this section we show how to find a guard coloring for plane graphs

containing only quadrangular faces using a classical theorem by Petersen about 2-factors.

We are explicitly not using the 4-Color Theorem here and our construction can easily be

turned into an efficient algorithm.

Theorem 5.2 It is Γ�(n) 6 bn/3c.

Proof Let G = (V, E) be a quadrangulation with n vertices. We show that G has a guard

coloring. By Lemma 3.5 it can then be guarded by bn/3c edge guards. Remember that a

guard coloring is a 2-coloring of the vertex set, where no face is monochromatic but each

face is incident to a monochromatic edge.

Consider the dual graph G∗ = (V∗, E∗) of Gwith its inherited plane embedding, so each

vertex f∗ ∈ V(H) is placed inside the face f ofG that it corresponds to. Since every face ofG

is of degree four, its dual graph G∗ is 4-regular. Using Petersen’s 2-Factor Theorem [23]1

we get that G∗ contains a 2-factor H. Any vertex of H is of degree 2, so H is a set of

1 Diestel [8, Corollary 2.1.5] gives a very short and elegant proof of this theorem in his book. He only

considers simple graphs there, but all steps in the proof (including the given proof of Hall’s Theorem [8, 24,

Theorem 2.1.2]) also work for multigraphs likeG∗ that have at most two edges between any pair of vertices.
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5.3. 2-Degenerate Quadrangulations

Figure 5.2.: A graph G (with black edges) and its dual graph G∗ (red vertices and edges)

with its inherited embedding. The thick red edges form a 2-factor H of G∗ and
subdivide the plane in which the vertices of G lie. Coloring the vertices in

these regions in green and blue where touching regions get different colors

yields a guard coloring.

vertex-disjoint cycles. These cycles subdivide the plane into a set of closed regions R that

are nested inside each other. For each region r ∈ R we define depth(r) to be the number of

cycles that r lies in. The only unbounded region r0 has depth(r0) = 0 and for each level of

nesting the depth increases by one.

Nowdefine a 2-coloringC for the vertices ofGwith the colors from {0, 1}: Every vertex v ∈ V
of G lies inside exactly one region r ∈ R. The color of v is determined by the parity

of depth(r) as

C(v) := depth(r) mod 2.

We claim that this yields a guard coloring of G: Any edge e = ab ∈ E has a corresponding

dual edge e∗. If e∗ ∈ E(H), vertices a and b lie in different but touching regions ra, rb ∈ R,
so depth(ra) = depth(rb)± 1 and therefore C(a) 6= C(b). Otherwise e 6∈ E(H), so its two

endpoints are in the same region ra,b ∈ R, therefore C(a) = C(b) and e is monochromatic.

Because H is a 2-factor, each face has exactly two monochromatic edges. �

Figure 5.2 shows an example graph together with its dual and a 2-factor of it. These are

then used to get the shown guard coloring. The upper bound of bn/3c presented here does

not match the lower bound of b(n− 2)/4c presented in the previous section. To bridge this

gap we look at a subclass of quadrangulations in the next section for which we can show a

stronger upper bound.

5.3. 2-Degenerate Quadrangulations

A 2-degenerate quadrangulation G is a quadrangulation where any subgraph has a vertex of

degree 2. In this section we look at Γ�,2-deg(n), the minimal number of edge guards needed

to guard any face of an n-vertex 2-degenerate quadrangulation. The construction from The-

orem 5.1 yields 2-degenerate quadrangulations, so we know that b(n− 2)/4c 6 Γ�,2-deg(n).
In the following we present a matching upper bound.

2-degenerate quadrangulations are very similar to the stacked triangulations considered

in Chapter 4 and we might also call them stacked quadrangulations, because they can be

constructed iteratively:

• A 4-cycle C4 is a stacked quadrangulation.
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5. Quadrangulations

• LetG be a stacked quadrangulation and f be an inner face of it with two non-adjacent

boundary vertices x and y. Then the graph obtained by adding a new vertex v

inside f and edges vx and vy gives another stacked quadrangulation.

As the similarity of the definitions might suggest, the strategy used to prove an upper

bound is the same as for stacked triangulations. Before proving the theorem, we introduce

some notation and state a few lemmas covering special cases. The conditions for these

special cases might seem a bit technical at first but they allow us to formulate a short proof

for Theorem 4.14.

Defining a 2-degenerate quadrangulation G = (V, E) as a sequence of face subdivisions as

described above gives it a hierarchical structure. Number the vertices v1, v2, . . . , v|V | in the

order in which they were added. The outer face is (v1, v2, v3, v4).

Definition 5.3 (Level) The function level : V → N assigns each vertex an integer level that is its
depth in the subdivision hierarchy:

level(vi) 7→


0 for 1 6 i 6 4
max

j<i
vivj∈E

level(vj) + 1 otherwise

When a vertex v is added into a face f := (w, x, y, z) it subdivides f into two new faces,

a left one fL := (w, v, y, z) and a right one fR := (w, x, y, v). By S◦L(v) we denote the set

of vertices that further subdivide fL and symmetrically the vertices placed inside fR are

in S◦R(v). Combining them we define S◦(v) := S◦L(v) ∪ S◦R(v) and S(v) := S◦(v) ∪ {v}.

Definition 5.4 (Height) For a vertex v of a 2-degenerate quadrangulation, we further define the
function height : {S(v) | v ∈ V}→ N as

height(S(v)) 7→
(

max

w∈S(v)
level(w)

)
− level(v).

We now state three lemmas covering most of the cases that need to be considered for an

upper bound. The proof of Theorem 5.9 then just combines them. Verifying the lemmas

themselves is a lot of case work, so we skip their proofs here and give them in detail in

Appendix B.

Definition 5.5 Let G = (V, E) be a 2-degenerate quadrangulation. We define the following two
properties (that G can but does not need to satisfy):

(P1) ∀v ∈ V : height(S(v)) = 1 =⇒ |S(v)| 6 3

(P2) ∀v ∈ V : height(S(v)) = 2 =⇒ |S(v)| = 3

Lemma 5.6 Let G = (V, E) be a 2-degenerate quadrangulation satisfying (P1) and v ∈ V be
a vertex with 4 6 |S(v)| 6 7 and |S◦L(v)|, |S

◦
R(v)| 6 3. Then we can construct a 2-degenerate

quadrangulation G ′ with |G ′| 6 |G|− 4 and an edge guard set Γ ′ for it that can be augmented to
an edge guard set Γ of G with |Γ | = |Γ ′|+ 1.

Lemma 5.7 Let G = (V, E) be a 2-degenerate quadrangulation satisfying (P1) and v ∈ V be a
vertex with height(S(v)) = 2 and max

{
|S◦L(v)|, |S

◦
R(v)|

}
> 4. Then we can construct a 2-dege-

nerate quadrangulationG ′ with |G ′| 6 |G|−4 and an edge guard set Γ ′ for it that can be augmented
to an edge guard set Γ of G with |Γ | = |Γ ′|+ 1.

32



5.3. 2-Degenerate Quadrangulations

n = 4 n = 5 n = 6 n = 7

Figure 5.3.: All 2-degenerate quadrangulations with 4 6 n 6 7 vertices. Each of them can

be guarded by a single edge, drawn in red.

Lemma 5.8 LetG = (V, E) be a 2-degenerate quadrangulation satisfying (P1) and (P2) and v ∈ V
be a vertex with height(S(v)) = 3 and max

{
|S◦L(v)|, |S

◦
R(v)|

}
> 4. Then we can construct a

2-degenerate quadrangulation G ′ with |G ′| 6 |G|− 4 and an edge guard set Γ ′ for it that can be
augmented to an edge guard set Γ of G with |Γ | = |Γ ′|+ 1.

Theorem 5.9 For 2-degenerate quadrangulations we have Γ�,2-deg(n) 6 bn/4c.

Proof Let G = (V, E) be a 2-degenerate quadrangulation with n vertices. We give an

inductive proof. For 4 6 n 6 7 all possible 2-degenerate quadrangulations are shown

in Figure 5.3. As shown, they can be guarded by a single edge guard. Now assume

that n > 8. Our induction hypothesis is that for any 2-degenerate G ′ with |G ′| < n an

edge guard set Γ ′ of size |Γ ′| = b|G ′|/4c exists. In the inductive step, we describe how to

create G ′ with |G ′| 6 |G| − 4, such that we can augment Γ ′ to an edge guard set Γ for G

with |Γ | = |Γ ′|+ 1 6 b(n− 4)/4c+ 1 = bn/4c.

Case 1: ∃v ∈ V : height(S(v)) = 1 and |S(v)| > 4:
Let G ′ be the induced subgraph G ′ := G− S(v). Any edge guard set Γ ′ for G ′ can be

extended to a guard set forG by a vertex guard at v, therefore we can set Γ := Γ ′∪ {vw}
for an arbitrary neighbor w of v.

From now on we can assume that any vertex v ∈ V with height(S(v)) = 1 has |S(v)| 6 3,

because otherwise we could use Case 1. This condition is exactly property (P1) that we

stated above.

Case 2: ∃v ∈ V : 4 6 |S(v)| 6 7 and |S◦L(v)|, |S
◦
R(v)| 6 3:

When this case applies, its conditions and property (P1) satisfy the requirements

of Lemma 5.6. It describes how to find G ′ with |G ′| 6 |G| − 4 and the induction

hypothesis gives an edge guard set Γ ′ of size b|G ′|/4c. Using the lemma again, we can

turn this into an edge guard set Γ for G of size bn/4c.

Case 3: ∃v ∈ V : height(S(v)) = 2 and max

{
|S◦L(v)|, |S

◦
R(v)|

}
> 4:

Together with property (P1) these conditions allow us to use Lemma 5.7. The same

way as above we can construct an edge guard set for G.

If neither of the Cases 1, 2 nor 3 applied, then we can follow that any vertex v ∈ V
with height(S(v)) = 2 has |S(v)| = 3, which is the definition of property (P2). Therefore all

graphs considered in the last case satisfy both properties (P1) and (P2).

Case 4: ∃v ∈ V : height(S(v)) = 3 and max

{
|S◦L(v)|, |S

◦
R(v)|

}
> 4:

Graph G satisfies properties (P1) and (P2), so we can use Lemma 5.8 in this case.

Combined with the induction hypothesis we again get a valid edge guard set for G. �
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6. Series Parallel Graphs

This chapter is about series parallel graphs. They can be motivated as a model for series

and parallel compositions in electrical circuits but also have applications in graph drawing,

for example to display flow charts. The main results of this chapter are a lower and an

upper bounds for series parallel graphs with n vertices showing that Γsp(n) ∼ n/3. We

start with some necessary definitions before showing the lower bound in Theorem 6.3 by a

construction for a family of series parallel graphs needing many edge guards. Then we

use the fact that all series parallel graphs are 3-colorable to construct a small guard set in

Theorem 6.6. We finish this chapter by taking a look at the maximal series parallel graphs,

showing that the same number of edge guards is required for them.

Definition 6.1 (Series Parallel Graphs) A connected graph G with two distinguished vertices
called terminals is a series parallel graph if it can be recursively built up by one of the following
operations:

Base Case: The complete graph K2 = (V={s, t}, E={st}) is a series parallel graph. The two
vertices s and t are its terminals.

S-composition: Let G1 (with terminals s1 and t1) and G2 (with terminals s2 and t2) be two
series parallel graphs. A series composition identifies the terminal t1 of G1 with the
terminal s2 of G2, such that the resulting graph has terminals s1 and t2.

P-composition: Let G1 and G2 be as above. A parallel composition identifies s1 with s2 into a
new terminal vertex s and symmetrically identifies terminal t1 with t2 into a new terminal
vertex t. This is only allowed, if the resulting graph remains a simple graph.

Figure 6.1 shows both types of compositions for some series parallel graphs G1 and G2.

This recursive definition allows us to construct a series parallel graph G from smaller

ones via a sequence of S- and P-compositions. Let G1 and G2 be the two series parallel

graphs that were composed into G. Obviously the order of compositions forming G1 is

independent of the order of compositions forming G2 but all of them need to be done

strictly before G1 and G2 are composed into G. This induces a partial order on the

compositions and motivates the following definition:

Definition 6.2 (Decomposition Tree) LetG be a plane series parallel graph. A decomposition

tree for G is a binary tree T with vertices of three types:

• If G is a single edge, T consists only of a single vertex of type Q.
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6. Series Parallel Graphs

(a)

G2

G1

t2

t1 = s2

s1

(b) t1 = t2

s1 = s2

G2G1

Figure 6.1.: S- and P-compositions for two series parallel graphs G1 (with terminals s1
and t1) and G2 (with terminals s2 and t2). (a) An S-composition: Terminals t1
of G1 and s2 of G2 have been identified. (b) A P-composition: Terminal s1 was

identified with terminal s2 and t1 was identified with t2.

• If G is the series composition of two series parallel graphs G1 and G2, let the root of T be
an S-type vertex with two subtrees: The decomposition trees of G1 and G2.

• If G is the parallel composition of two series parallel graphs G1 and G2, let the root of T be
a P-type vertex with two subtrees: The decomposition trees of G1 and G2.

Figure 6.2 shows an example series parallel graph and one of its decomposition trees.

Note that the decomposition tree for a series parallel graphGmay not be unique. Consider

again Figure 6.2 as an example. The root node is of type P and decomposes the graph into

two subgraphs with four and six vertices. A decomposition into three and seven vertices

would have also been possible, separating the left path between the two terminals from

the rest of the graph.

6.1. Lower Bound
We show the lower bound by constructing a family of n-vertex series parallel graphs that

all need about n/3 edge guards. Our strategy here is to iteratively add three vertices such

that a new triangular face arises that is 2-hop apart from all previous inner faces of the

graph, thus needing a new edge guard.

Theorem 6.3 For any k ∈ N there is series parallel graph Gk with n = 3k+ 2 vertices needing k
edge guards. Therefore we have b(n− 2)/3c 6 Γsp(n).

Proof Graph Gk is the parallel composition of k smaller series parallel graphs G1
k, . . . , G

k
k.

For i ∈ {1, . . . , k} define

V
(
Gi

k

)
:=
{
si, v

1
i , v

2
i , v

3
i , ti
}

and

E
(
Gi

k

)
:=
{
siv

1
i , v

1
i v

2
i , v

1
i v

3
i , v

3
i v

2
i , v

2
i ti
}

and choose a planar embedding as in Figure 6.3 (a). Subfigure (b) shows a decomposition

tree of Gi
k, proving that it is indeed series parallel. The parallel composition of G1

k, . . . , G
k
k,

where vertices s1, . . . , sk and t1, . . . , tk have been identified to the new vertices s and t is

then shown in subfigure (c). The edges

{
sv11, . . . , sv

1
k

}
form an edge guard set of size k.

On the other hand, for any two different i, j ∈ {1, . . . , k} the two triangles

(
v1i , v

2
i , v

3
i

)
and

(
v1j , v

2
j , v

3
j

)
are 2-hop apart, so they cannot be guarded by the same edge. ThereforeGk

needs exactly k edge guards. �
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6.1. Lower Bound

(a) (b) P-type
S-type
Q-type

Figure 6.2.: (a) A series parallel graph G. (b) One of the decomposition trees of G. The

colors of the vertices show their type.

(a) (b)

(c)

v3i

v1i

v2i

ti

si

v31

v11

v21

v3k

v1k

v2k. . .

. . .

. . .

t

s

P-type
S-type
Q-type

Figure 6.3.: (a) Series parallel graph Gi
k, a building block of Gk. (b) The decomposition

tree of Gi
k to show that it is series parallel. (c) The parallel composition Gk

of G1
k, . . . , G

k
k.
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6. Series Parallel Graphs

Remark 6.4 We can show the same lower bound indirectly via the relation between series parallel
and outerplanar graphs. Duffin [10, Corollary 1] shows that outerplanar graphs are a subclass of
series parallel graphs. From Bose [5] we know that an n-vertex outerplanar graph might need bn/3c
edge guards. This is therefore also a lower bound for series parallel graphs.

6.2. Upper Bound
The upper bound is based on a proper 3-coloring of a series parallel graph G. We carefully

add edges to G, that keep it series parallel but allow us to use color classes as guard sets.

The smallest color class can then be a used as a vertex guard set.

Lemma 6.5 Series parallel graphs are 3-colorable.

Proof We show a slightly stronger claim, namely that series parallel graphs can be

3-colored such that the two terminal vertices have a different color. The proof is by

structural induction using the decomposition tree. Let G be a series parallel graph, T be its

decomposition tree and r be the root of T . The base case is when r is of type Q and G is

a single copy of K2: Its endpoints are the terminals and they are of different color in all

proper colorings.

Now assume that G has at least three vertices and terminals s and t. Graph G was

constructed from two of its series parallel subgraphs G1 (with terminals s1 and t1) and G2

(with terminals s2 and t2) via a series or parallel composition. By the induction hypothesis

both G1 and G2 have a proper 3-coloring such that their terminals have different colors.

We need to distinguish, whether r is of type S or of type P.

First assume that r is of type S, so the last composition was a series composition. Permute

the three colors of G2, such that the color of t1 equals the one of s2 and that the color of s1
is different to the one of t2. This is always possible, because we assumed that in both G1

and G2 the colors of the two terminals were different. Then the graph G obtained by

identifying t1 with s2 is properly 3-colored and its terminals s and t have different colors.

Now assume that r is of type P, so the last composition was a parallel composition. We

permute the colors of G2, this time such that the colors of s1 and s2 are equal and that the

colors of t1 and t2 are equal. Again, this is always possible, because both G1 and G2 had

their terminals colored differently. Then the graph G obtained by identifying s1 with s2
and t1 with t2 is properly 3-colored and its terminals s and t have different colors. �

Knowing that series parallel graphs are 3-colorable already implies that they are so even

when we require the terminals s and t to be of a different color. In any series parallel

graph Gwe can add the edge st (if it is not already there) by a parallel composition with

another copy of K2. Then any proper coloring of G has different colors for s and t.

Theorem 6.6 Any series parallel graph with n vertices can be guarded by bn/3c vertex guards,
so Γsp(n) 6 bn/3c.

Proof Definition 6.1 tells us that a series parallel graph can be built from a set of copies

of K2 by a sequence of S- and P-compositions. We now define a third type of composition.

Let G1 and G2 be two series parallel graphs with terminals s1, t1 and s2, t2, respectively.

The S ′-composition is a combination of an S- and a P-composition as follows:

1. Do an S-composition of the two series parallel graphs G1 and G2 to get G1,2.

2. Do a P-composition of G1,2 with a new copy of K2. If this leads to a multigraph,

ignore this step.
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6.3. Maximal Series Parallel Graphs

(a) (b)

Figure 6.4.: (a) A series parallel graphG. (b) Series parallel graphG ′ obtained by replacing

all of the S-compositions in the creation process of G by S ′-compositions. The

red edges were added in this process. They guarantee that any face created by

a P-composition is incident to three vertices of pairwise different color.

An S ′-composition guarantees that the terminal vertices s1 and t2 of G1,2 are connected

and therefore have different colors in all proper colorings.

Let G be a series parallel graph with n vertices and m edges. Further let C1, . . . , Cm−1

be all S- and P-compositions that create G from a set of m copies of K2. Replace any

S-composition in C1, . . . , Cm−1 by an S ′-composition and call the resulting series parallel

graph G ′.

Now use Lemma 6.5 to find a 3-coloring χ of G ′. Graphs G and G ′ have the same vertex

set and E(G) ⊆ E(G ′), so we can use coloring χ for both of them. We claim that any face

of G is incident to vertices of all three color classes and therefore the smallest color class is

a vertex guard set of size bn/3c.

The key observation here is that exactly one new face arises under a P-composition,

while the face set is invariant under an S-composition. So for any face f of G consider

the P-composition P∗ that formed it by combining two series parallel graphs G1 and G2

into a series parallel graph G1,2. Let s, t be the two terminal vertices of G1,2. Face f is

bounded by two st-paths P1 and P2, subgraphs of G1 and G2, respectively. Since we only

consider simple graphs we know that |∂f| > 3 and therefore without loss of generality,

path P1 consists of at least three vertices. Let S∗ be the last S-composition that was done

in G1 before P∗ and v ∈ V(P1) be the vertex where the two subgraphs of G1 were glued

together by S∗. There is an S ′-composition S ′∗ corresponding to S∗ that was used to

create G ′. It guarantees that in any 3-coloring of G ′ the vertices s, t and v have three

different colors. Since we used the coloring of G ′ for G, these three boundary vertices of f

are of different colors in G, too. �

Figure 6.4 (a) shows a series parallel graph G and subfigure (b) shows a corresponding

graph G ′ on the same vertex set that was created by replacing the S-compositions with

S ′-compositions. In both graphs the same proper vertex coloring is used and we can see

that any face of G has indeed vertices of all three color classes on its boundary.

In Theorem 6.6 we showed that bn/3c vertex guards are enough for any series parallel

graph with n vertices. Of course we only need at most the same number of edge guards.

Since this asymptotically matches the lower bound from Theorem 6.3, we cannot get a

better upper bound by considering edge guards.

6.3. Maximal Series Parallel Graphs
To end this chapter, we consider the maximal series parallel graphs. These are series

parallel graphs that contain the maximum possible number of edges: Any additional edge
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6. Series Parallel Graphs

a

c

b

v11

v31

v21

v1k

v3k

v2k

. . .

Figure 6.5.: A 2-tree that needs k edge guards. The thick red edges form an edge guard set.

would lead to a graph that is not series parallel any more. The class of maximal series

parallel graphs is equal to the class of 2-trees, so this also relates to Chapter 4 about stacked

triangulations. Remember that the stacked triangulations are exactly the planar 3-trees

(we do not consider k-trees for k > 4 in this thesis, because they are not planar).

Considering the maximal graphs of a graph class is motivated by the fact, that sometimes

fewer edge guards are necessary than for the non-maximal graphs of the same class. For

exampleweknow that outerplanar graphs onnvertices sometimesneedn/3 edgeguards [7]

while bn/4c edge guards are always sufficient for maximal outerplanar graphs [21].

Additionally we know that general plane graphs sometimes need n/3 edge guards1, but

we conjecture that triangulations (which are the maximal plane graphs) can be guarded by

strictly less than that, even though this is not yet proven.

We show here that themaximal series parallel graphs do not follow this trend by presenting

how to construct 2-trees that asymptotically need n/3 edge guards. The upper bound is

then given by Theorem 6.6 above which is valid for all series parallel graphs.

Theorem 6.7 For any k ∈ N there is a maximal series parallel graph Gk with n = 3+ 3k vertices
that needs k edge guards. Therefore b(n− 3)/3c 6 Γ2-tree(n).

Proof For k ∈ N we construct a 2-tree Gk = (V, E) that has n = 3+ 3k vertices and needs

exactly k = (n− 3)/3 edge guards. The vertex and edge sets are given by

V := {a, b, c} ∪
k⋃

i=1

{
v1i , v

2
i , v

3
i

}
and

E := {ab, bc, ac} ∪
k⋃

i=1

{
av1i , cv

1
i , v

1
i v

2
i , cv

2
i , v

1
i v

3
i , v

2
i v

3
i

}
.

To see thatGk is indeed a 2-tree, we describe how to construct it step by step from an initial

triangle formed by the vertices {a, b, c} by always adding one new vertex and connecting it

with exactly two adjacent ones of the previous vertices. Repeat the following steps k times.

In step i (1 6 i 6 k):

1. Add vertex v1i and connect it with neighbors a and c.

2. Add vertex v2i and connect it with neighbors v1i and c.

3. Add vertex v3i and connect it with neighbors v1i and v2i .

A complete example can be seen in Figure 6.5. For any two different i, j ∈ {1, . . . , k} the

two triangles

(
v1i , v

2
i , v

3
i

)
and

(
v1j , v

2
j , v

3
j

)
are 2-hop apart. Therefore they cannot share an

edge guard and we need at least k edge guards. Further
{
av11, . . . , av

k
i

}
is an edge guard

set of size k, so that Gk needs exactly k edge guards. �

1 As discussed in Chapter 3, general plane graphs on n vertices might need even more than n/3 edge guards.

This is still an open question.
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7. Conclusion and Open Questions

This thesis broadened the understanding of edge guard sets for plane graphs by providing

new bounds for stacked triangulations, quadrangulations and series parallel graphs. All

previous and new results are summarized in Table 7.1, where we either cite the original

source or link to the corresponding theorem in this thesis.

We started with matching lower and upper bounds for stacked triangulations and showed

that Γ4,stacked(n) ∼ 2n/7. The lower bound was achieved by reusing a technique that was

already applied to obtain the best know lower bound for general triangulations. However,

the best known upper bound for triangulations (bn/3c edge guards) relies on 4-colorings
of the vertex set and chances are that this bound is not yet tight. We developed a new

approach to locally reduce the order of a stacked triangulation, allowing us to use induction

on the number of vertices and to get an upper bound of strictly less than bn/3c edge guards
for a non-trivial subclass of triangulations.

Next up we considered quadrangulations, motivated by the fact that the previous coloring

approaches stumbled over quadrangular faces. We were able to improve the best known

upper bound from b3n/8c edge guards to bn/3c by describing how to construct guard

colorings for quadrangulations. These colorings can be turned into small edge guard sets

as described in Lemma 3.5. Although this is an improvement, this result does not yet

match the lower bound. We have b(n− 2)/4c 6 Γ�(n) 6 bn/3c raising the following open

question:

What is the minimal number of edge guards necessary to guard any n-vertex

quadrangulation?

The results from the experiments in Appendix A together with our lower bound lead

to the conjecture that bn/4c edge guards are always sufficient. With the 2-degenerate

quadrangulations we presented a subclass for which we could improve the upper bound to

match the lower bound, so Γ�,2-deg(n) ∼ n/4. For the proof we applied the same technique

that we originally developed for stacked triangulations.

Our third contribution are bounds for series parallel graphs, we showed that Γsp(n) ∼ n/3.
We even showed the stronger claim that bn/3c vertex guards are sufficient, but the selected

vertices always form an independent set, so we cannot directly decrease this number by

switching to edge guards. In fact, we constructed an infinite family of series parallel graphs

needing at least n/3 edge guards, showing that edge guards provide no benefit over vertex

guards for this graph class.
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7. Conclusion and Open Questions

Table 7.1.: Overview of previous and new bounds for n-vertex planar graphs of different

classes. Parameter α denotes the number of quadrilateral faces.

Graph Class Lower Bound Upper Bound

Outerplanar bn/3c [5] bn/3c [7]

Maximal Outerplanar bn/4c [21] bn/4c [21]

Planar bn/3c [5] bmin {n/3+ α/9, 3n/8}c [2]

Triangulation b(4n− 8)/13c [5] bn/3c [12]
Stacked Triangulation

(= Planar 3-Tree)
b(2n− 4)/7c [Thm. 4.4] b2n/7c [Thm. 4.14]

Quadrangulation b(n− 2)/4c [Thm. 5.1] bn/3c [Thm. 5.2]

2-Degenerate

Quadrangulation

b(n− 2)/4c [Thm. 5.1] bn/4c [Thm. 5.9]

Series Parallel b(n− 2)/3c [Thm. 6.3] bn/3c [Thm. 6.6]

2-Tree

(= Maximal Series Parallel)

b(n− 3)/3c [Thm. 6.7] bn/3c [Thm. 6.6]

On a closing note we would like to repeat two open questions concerning general plane

graphs and triangulations that already received attention in the literature, but as we can

see in Table 7.1, their known lower and upper bounds do not match, calling for further

investigation.

What is the minimal number of edge guards for any n-vertex plane graph?

What is the minimal number of edge guards for any n-vertex triangulation?

While the conjectured answer for general plane graphs is bn/3c, this most probably needs

new ideas to be proven. The currently known bounds either fail on quadrilateral faces

or seem to be limited by their local operations only considering a small subgraph in

each step. For triangulations we cannot conjecture a fixed value yet, but our result on

stacked triangulations and our experiments on 4-connected triangulations lead us to the

assumption that it is strictly less than n/3.
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Appendix

A. Experiments

In order to get an intuition for the number of edge guards needed for different graph

classes, we computed minimum cardinality edge guard sets for small graphs within each

class. For each graph class G, we used the program plantri provided by Brinkmann and

McKay [6] to exhaustively generate all (up to isomorphism) planar embeddings of all

contained graphs. For each graph G ∈ Gwith |V(G)| = n, we then computed a minimum

cardinality edge guard set Γ to find the value

ΓG(n) := max

G∈G
|G|=n

{
|Γ | | Γ is a minimum cardinality edge guard set of G

}
.

To find a minimum cardinality edge guard set for an embedded graph G = (V, E) ∈ Gwith

face set F, we first build a bipartite auxiliary graph H with vertex set V(H) := E∪̇F and
edge set E(H) := {ef | edge e ∈ E is incident to face f ∈ F in G}. With a highly optimized

backtracking algorithm we then computed a minimum cardinality hitting set S ⊆ E, that is
a minimum cardinality subset of E, such that each face f ∈ F has at least one neighbor e ∈ S
in H. Since these computations are independent for any two different graphs in G, the

program can be naively parallelized.

A.1. General Triangulations

Table A.1 shows the experimental results for triangulations with up to n = 18 vertices.

Sequence A0001091 from the On-Line Encyclopedia of Integer Sequences (OEIS) gives the

number of triangulations with n vertices.

From Bose et al. [5] we know that b(4n− 8)/13c edge guards are sometimes necessary. In

their paper they note that this can be improved, if a 9-vertex triangulation existed that

needs three edge guards. They could not find one and raised the question whether such a

triangulation exists. With the results from this experiment we can negatively answer this

question. This suggests that their lower bound might actually be the best possible but as

seen in Chapter 3 the best known upper bound is still bn/3c.

1 https://oeis.org/A000109
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7. Appendix

Table A.1.: Experimental results for triangulations. Each line shows how many triangula-

tions there are with n vertices and what the maximal size among all minimum

cardinality edge guard sets is.

n A000109 Γ4(n)

3 1 1

4 1 1

5 1 1

6 2 2

7 5 2

8 14 2

9 50 2

10 233 3

n A000109 Γ4(n)

11 1249 3

12 7595 3

13 49 566 3

14 339 722 4

15 2 406 841 4

16 17 490 241 4

17 129 664 753 4

18 977 526 957 5

Table A.2.: Experimental results for stacked triangulations. Each line shows how many

stacked triangulations there are with n vertices and what the maximal size

among all minimum cardinality edge guard sets is.

n A027610 Γ4,stacked(n)

3 1 1

4 1 1

5 1 1

6 1 1

7 3 2

8 7 2

9 24 2

10 93 2

11 434 3

n A027610 Γ4,stacked(n)

12 2110 3

13 11 002 3

14 58 713 3

15 321 776 4

16 1 792 133 4

17 10 131 027 4

18 57 949 430 4

19 334 970 205 5

20 1 953 890 318 5

A.2. Stacked Triangulations

Table A.2 shows the experimental results for stacked triangulations with up to n = 20

vertices. Sequence A0276102 from the OEIS gives the number of stacked triangulations

with n vertices.

By looking at the values, we would expect the number of edge guards that are always

sufficient to be b(n− 2)/4c. However, in Chapter 4 we showed that Γ4,stacked(n) ∼ 2n/7
(Theorems 4.4 and 4.14). The smallest stacked triangulation known to us needing strictly

more than b(n− 2)/4c edge guards contains n = 30 vertices and can be obtained through

the construction presented in Theorem 4.4 3.

2 https://oeis.org/A027610
3 Using the notation from the proof of Theorem 4.4: Choose a stacked triangulation Swith v = 6 vertices and
subdivide it as described in the proof. The resulting stacked triangulation G with n = 30 vertices needs at
least 8 edge guards.

44

https://oeis.org/A027610


A. Experiments

Table A.3.: Experimental results for 4-connected triangulations. Each line shows how

many 4-connected triangulations there arewithn vertices andwhat themaximal

size among all minimum cardinality edge guard sets is.

n A007021 Γ4,4-con(n)

4 1 1

5 1 1

6 1 2

7 1 2

8 2 2

9 4 2

10 10 2

11 25 3

12 87 3

13 313 3

n A007021 Γ4,4-con(n)

14 1357 3

15 6244 4

16 30 926 4

17 158 428 4

18 836 749 4

19 4 504 607 5

20 24 649 284 5

21 136 610 879 5

22 765 598 927 5

23 4 332 047 595 6

A.3. 4-connected Triangulations

Table A.3 shows the experimental results for 4-connected triangulations with up to n = 23
vertices. Sequence A0070214 from the OEIS gives the number of 4-connected triangulations

with n vertices.

The values suggest that Γ4,4-con(n) ∼ n/4. Note that the unique 4-connected triangulation

with six vertices needs two edge guards and therefore contradicts this bound. This

triangulation is the octahedron graph, wichwas already considered in Section 3.1. However,

no 4-connected triangulation G with more than six vertices can contain the octahedron

graph as a subgraph, because otherwise Gwould contain a separating triangle5. We state

a lower bound on Γ4,4-con(n) to substantiate our conjectured bound. How to prove a

matching upper bound remains an open problem.

Theorem A.1 We have b(n− 2)/4c 6 Γ4,4-con(n).

Proof We use the same strategy as for general triangulations in Theorem 3.1 and for

stacked triangulations in Theorem 4.4. Let S be a quadrangulation with v vertices. By

Euler’s Theorem it has v − 2 faces and into each face f we put three vertices forming a

triangular face tf. Triangulate the obtained graph in an arbitrary way. The resulting

graph G is 4-connected, because it does not contain any separating triangles. Further we

have n := |V(G)| = v + (v − 2) · 3 = 4v − 6 and isolating v we get v = (n + 6)/4. For any
edge guard set Γ of Gwe now have:

Γ4,4-con(n) > |Γ |

> v− 2 (at least one edge per face of S)

=
n− 2

4
(substituting v)

�

4 https://oeis.org/A007021
5 A separating triangle is a triangle (x, y, z) ⊆ V(G), such that there are vertices inside and outside of it in

any planar embedding of G. It is a well known fact, that a graph is 4-connected, if and only if it does not

contain any separating triangle.
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7. Appendix

Table A.4.: Experimental results for quadrangulations. Each line shows how many quad-

rangulations there are with n vertices and what the maximal size among all

minimum cardinality edge guard sets is.

n A113201 Γ�(n)

4 1 1

5 1 1

6 2 1

7 3 1

8 9 2

9 18 2

10 62 2

11 198 2

12 803 2

13 3378 3

n A113201 Γ�(n)

14 15 882 3

15 77 185 3

16 393 075 3

17 2 049 974 4

18 10 938 182 4

19 59 312 272 4

20 326 258 544 4

21 1 815 910 231 4

22 10 213 424 233 5

23 57 974 895 671 5

A.4. Quadrangulations

Table A.4 shows the experimental results for quadrangulations with up to n = 23 vertices.
Sequence A1132016 from the OEIS gives the number of quadrangulations with n vertices.

The values suggest that b(2n+ 2)/9c edge guards would be always sufficient but in

Chapter 5 we showed that this is not enough. In fact, Theorems 5.1 and 5.2 show

that b(n−2)/4c 6 Γ�(n) 6 bn/3c. Our presented upper bound of bn/3c edge guards from
Theorem 5.2 is most probably not tight. For the subclass of 2-degenerate quadrangulations

we could show a better bound of Γ�,2-deg(n) 6 bn/4c that matches the lower bound.

6 https://oeis.org/A113201
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B. Skipped Proofs for 2-Degenerate Quadrangulations

B. Skipped Proofs for 2-Degenerate Quadrangulations
This section contains the proofs for Lemmas 5.6, 5.7 and 5.8 that were skipped in Chapter 5

for improved clarity. The three proofs all make use of the following two observations

which we state in the form of forcing lemmas as we already did similarly in Chapter 4 for

stacked triangulations. They allow us to assume certain properties of the edge guard sets

that are given by the induction hypothesis in the proof of Theorem 5.9.

Lemma B.1 (Weak Forcing Lemma) Let f be a face of a quadrangulation G with boundary
vertices ∂f = {w, x, y, z}. By subdividing f with two vertices a and b and edges {xa, xb, za, zb}
we get another quadrangulation H shown in Figure B.1 (a). Then an edge guard set Γ of H exists
that has minimum cardinality among all edge guard sets for H and for which |{x, z} ∩ V(Γ)| > 1.

Proof Face f = (x, b, z, a) of Hmust be guarded by Γ , so we have |{x, b, z, a} ∩ V(Γ)| > 1.
Assume that {x, y} ∩ V(Γ) = ∅, so f is guarded by a and/or b. Since Γ consists only of

edge guards (and not vertex guards), at least one of their neighbors must also be in V(Γ),
but N(a) ∪N(b) = {x, z}, so we get |{x, z} ∩ V(Γ)| > 1, a contradiction to our assumption.�

Lemma B.2 (Strong Forcing Lemma) Let f be a face of a quadrangulation G with boundary
vertices ∂f = {w, x, y, z}. By subdividing f with three vertices {a, b, c} and edges {xa, xb, za, zb,
ac, bc} we get another quadrangulation H shown in Figure B.1 (b). Then an edge guard set Γ
of H exists that has minimum cardinality among all edge guard sets for H and for which one of the
following two properties holds:

1. {x, z} ⊆ V(Γ) or

2. ∃vw ∈ Γ with v ∈ {x, z} and w ∈ {a, b}

Proof We assume that property 1 does not hold, because otherwise we are done. Then

we must have an edge vw ∈ Γ with {v,w} ⊆ {x, z, a, b, c}, to guard the two faces (x, b, c, a)
and (z, a, c, b). Either property 2 holds for this edge vw or we have {v,w} ⊆ {a, b, c}. In the

latter case, we can set
˜Γ = (Γ \ {vw}) ∪ {xa} to get a guard set of equal cardinality fulfilling

the requirements. �

w z

yx

a

b

w z

yx

a

b

c

(a) (b)

Figure B.1.: (a) The face f subdivided by vertices a and b. Any edge guard set contains at

least one vertex from {x, z}.

(b) The face f subdivided by vertices a, b and c. Any edge guard set contains

either both {x, z} or an edge with both endpoints in {a, b, c, x, z}.

B.1. Proof of Lemma 5.6

Proof Let G = (V, E) be a 2-degenerate quadrangulation. The conditions of the lemma

require that G satisfies property (P1) and has a vertex v ∈ V with 4 6 |S(v)| 6 7 and

|S◦L(v)|, |S
◦
R(v)| 6 3. When vertex vwas added, it subdivided a quadrangular face (w, x, y, z)

into two: fL = (w, x, y, v) and fR = (w, v, y, z) (this is visualized in Figure B.2). There

are only a few ways how a single face incident to v can be subdivided by at most three
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w z

yx

v

S◦L(v)

S◦R(v) fR := (w, v, y, z)

fL := (w, x, y, v)

Figure B.2.: Vertex v lies inside quadrangle (w, x, y, z) and subdivides it into two faces

fL := (w, x, y, v) and fR := (w, v, y, z). Both of them can be further subdivided

by vertices in S◦(v) where S◦L(v) is inside fL and S◦R(v) is inside fR.

(1.1)

(3.1) (3.2) (3.3) (3.4)

(3.5) (3.6) (3.7)

v

v

v

vv v

v v

(2.1) (2.2)

v v

Figure B.3.: All possible ways to subdivide a quadrangular face with up to three vertices.

The colors show (partial) guard sets. Their exact meaning is described in the

proof of Lemma 5.6.

(1.1): The only way to subdivide with a single vertex.

(2.1)–(2.2): The two possible ways to subdivide with two vertices.

(3.1)–(3.7): All seven ways to subdivide with three vertices.
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additional vertices such that the vertices are in S(v): All of them are shown in Figure B.3.

The vertices in S◦L(v) and S
◦
R(v) each resemble one of theseways such that their combination

satisfies the lemma’s requirements.

In any of these combinations we remove S(v) from V and sometimes add a set V+
of new

vertices to it (together with some new edges). We call the resulting graphG ′ and guarantee

that |G ′| 6 |G| − 4. Now let Γ ′ be an edge guard set of G ′. We use it to construct a new

edge guard set Γ for G of size |Γ | = |Γ ′| + 1. How this works is dependent on |S(v)|. To
avoid looking at symmetric cases, we assume |S◦L(v)| 6 |S◦R(v)| in the following.

Case 1: |S(v)| = 4:
The three vertices in S◦(v) can be distributed to the left and the right side in two

ways. If |S◦L(v)| = 0 and |S◦R(v)| = 3, we can extend Γ ′ by the red edge shown for the

corresponding 3-vertex subdivision of S◦R(v) in Figure B.3. It guards all faces incident

to vertices in S◦R(v) and also the remaining face left of v.

If otherwise |S◦L(v)| = 1 and |S◦R(v)| = 2, we can extend Γ ′ by the red edge shown in

subdivisions (2.1) or (2.2). It guards all faces incident to vertices in S◦R(v) and contains

vertex v, which alone guards the two faces incident to the unique vertex in S◦L(v).

Case 2: |S(v)| = 5:
Assume first that |S◦L(v)| = 1 and |S◦R(v)| = 3. If the vertices in S

◦
R(v) follow one of the

combinations (3.1)–(3.6), we can extend Γ ′ by the red edge shown for the respective

subdivision. This edge has v as an endpoint, so that it also guards the faces incident

to vertices in S◦L(v). It remains the case that the vertices in S◦R(v) are as in (3.7).
Figure B.4 shows how to guard this case.

Nowwe consider the case |S◦L(v)| = 2 and |S◦R(v)| = 2. If at least one side is subdivided
as in (2.1), we use the red edge from the combination of the other side. It contains v

and therefore guards all needed faces incident to vertices in S(v). Otherwise both

sides are as in (2.2) and again we reference to Figure B.4 showing how to guard these

cases (there are two, because (2.2) can be reflected).

Case 3: |S(v)| = 6:
In this case we have |S◦L(v)| = 2 and |S◦R(v)| = 3. Let us first consider the cases

where the vertices in S◦R(v) are as in (3.1), (3.2), (3.3), (3.5) or (3.6). They can all be

guarded by three vertex guards at v, x and z (x and z correspond to the blue vertices

in the figures). Since |S(v)| = 6, we can afford to add two new vertices to G after

removing S(v). So we use the Weak Forcing Lemma B.1 to get |{x, z} ∩ V(Γ ′)| > 1.

If x ∈ V(Γ ′), we can use the red edge of the subdivision for the vertices in S◦R(v).
Otherwise, if z ∈ V(Γ ′), we can use the red edge of the subdivision for the vertices

in S◦L(v). In both cases, we have {v, x, z} ⊆ V(Γ), so all faces are guarded.

The remaining cases are when S◦R(v) is subdivided as in (3.4) or (3.7). Figure B.4

shows how to guard these cases.

Case 4: |S(v)| = 7:
Now we have both |S◦L(v)| = |S◦R(v)| = 3, so |S(v)| = 7. In this case |S(v)| = 7 is big

enough to use the Strong Forcing Lemma B.2 for the vertices x and z. Then one of the

two cases applies:

• Wehave {x, z} ⊆ V(Γ ′). Any combinationwhere neither side is (3.4) is guarded by

the three vertex guards {x, z, v}, so we just need to add another edge containing v

as an endpoint to Γ ′. If exactly one side is (3.4), we can use the red edge of (3.4)
to extend Γ ′. The case that both sides are subdivides as in (3.4) is again shown

in Figure B.4 (now using the Weak Forcing Lemma).
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• We have an edge xa ∈ Γ ′ with a ∈ S◦L(v) (or symmetrically an edge zb ∈ Γ ′
with b ∈ S◦R(v)). All subdivisions for S◦L(v) except for (3.6) can be guarded by a

single edge containing x. This edge is shown in purple in drawings of Figure B.3

and we use it instead of xa in Γ ′. The other side can then be guarded by the red

edge for the subdivision of S◦R(v).

If however S◦L(v) is subdivided as in (3.6) but S◦R(v) is not (3.7), we can again

use the purple edge for S◦L(v) and the red edge for S◦R(v), because the latter one
contains v and {x, v} is a vertex guard set for (3.6). The only remaining case is

a combination of (3.6) and (3.7) Guardings for them are again shown with the

other special cases in Figure B.4. �
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(1.1) + (3.7)
w z

yx

v

(2.2) + (2.2)
w z

yx

v

w z

yx

v

(2.1) + (3.4)
w z

yx

v

(2.2) + (3.4)
w z

yx

v

w z

yx

v

(2.1) + (3.7)
w z

yx

v

(2.2) + (3.7)
w z

yx

v

w z

yx

v

(3.4) + (3.4)
w z

yx

v

w z

yx

v

(3.6) + (3.7)
w z

yx

v

w z

yx

v

Figure B.4.: Special cases from the proof of Lemma 5.6 that need to be considered one by one.

Any edge guard set Γ ′ contains an edgewith an endpoint among {w, x, y, z}. We

color code these four possibilities: If for example the green vertex w ∈ V(Γ ′),
then the green edge works to set Γ := Γ ′ ∪ {green edge}.

When we only give edge guard sets for two opposing corners ({x, z} or {w,y}),

this is because we have |S(v)| > 6 and we can use the Weak Forcing Lemma B.1

to guarantee that Γ ′ contains at least one of them.

The two combinations for (3.6)+(3.7) use the Strong Forcing Lemma B.2. Here

a purple edge completes an edge guard set Γ ′, if x, z ∈ V(Γ ′). Blue and green

edges show how to find Γ , if Γ ′ contained an edge from x (blue) or z (green).
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B.2. Proof of Lemma 5.7

Proof Let G = (V, E) be a 2-degenerate quadrangulation satisfying property (P1). We

assume that a vertex v exists with

1. height(S(v)) = 2 and

2. max

{
|S◦L(v)|, |S

◦
R(v)|

}
> 4. Without loss of generality, we assume that |S◦R(v)| > 4.

We show how to find at least four vertices from S◦R(v) that we can remove to getG ′. Further
we describe how any edge guard set Γ ′ for G ′ can be turned into an edge guard set Γ for G

of size |Γ | = |Γ ′|+ 1.

Let (v, x, y, z) be the 4-cycle containing S◦R(v) and w1, w2, . . . , wk ∈ N(v) ∩ S◦R(v) be the

common neighbors of v and y inside S◦R(v) in clockwise order (see Figure B.5). Each wi

(for 1 6 i 6 k) can have further neighbors, but we have |S(wi)| 6 3 (since property (P1)

applies) and all vertices in S◦(wi) must be on the same level (because height(S(v)) = 2

and therefore height(S(wi)) 6 1). Note that k > 2, because |S◦R(v)| > 4 and with k ∈ {0, 1}

we would get |S◦R(v)| 6 3.

To start, assume there is an i ∈ {1, . . . , k − 1}, such that wi and wi+1 share two neigh-

bors {a, b} of deeper level as shown in Figure B.6. Then by above observation these must

be their only neighbors except for v and y, so we have S(wi) ∪ S(wi+1) = {wi, wi+1, a, b}

and we can remove these four vertices from G to get G ′. Any edge guard set Γ ′ for G ′ can
then be extended by edge vwi to be an edge guard set Γ for G. In all following cases, we

assume that no such i exists.

Note that S◦R(v) can contain arbitrarily many elements. We can consider only a finite

number of cases, so we do not remove the complete set S◦R(v). Instead we identify

induced 4-cycles Ci,j := (v,wi, y,wj) (0 6 i < j 6 k+ 1 with w0 := x and wk+1 := z) that
contain at least four vertices inside of them. We show that we can always find one, that

allows us to remove all its interior vertices.

v

x
w1

w2

. . .
wk

y

z

Figure B.5.: Face (v, x, y, z) was further subdivided by vertices w1, w2, . . . , wk. The result-

ing faces might be further subdivided, so S◦R(v) =
⋃k

i=1 S(wi).

x

v

y

z

wi

wi+1

a

b

. . .

. . .

Figure B.6.: Vertices wi and wi+1 share two neighbors a and b of a deeper level. Then

S(wi) ∪ S(wi+1) = {wi, wi+1, a, b} and all four of them can be removed.

Edge vwi extends any edge guard set of the obtained smaller graph to an edge

guard set for the original graph.

52



B. Skipped Proofs for 2-Degenerate Quadrangulations

v

y

wi+3 v

y

wi+3 v

y

wi+3

v

y

v

y

v

y

wi+3 wi+3 wi+3

wi wi wi

wiwiwi

Figure B.7.: All six ways how the interior of Ci,i+3 = (v,wi, y,wi+3) can be subdivided,

such that it contains at least four vertices. Configurations that are symmetric

when the order ofwi andwi+3 is changed, are not displayed. The color coding

is as in Figure B.4.

The first, fourth and sixth configuration can only appear if wi = x, because

otherwise we would have a configuration as in Figure B.6. For the same reason

the sixth configuration is further only possible, if wi+3 = z.

v

y

wi+4 v

y

v

ywi wi wi

wi+4 wi+4

Figure B.8.: All three ways how the interior of Ci,i+4 = (v,wi, y,wi+4) can be subdivided,

such that it contains at least four vertices and none of the configurations from

Figure B.7. Configurations that are symmetric when the order of wi and wi+4

is changed, are not displayed. The color coding is as in Figure B.4.

Assume there is an i (0 6 i 6 k − 2), such that Ci,i+3 = (v,wi, y,wi+3) has at least four
vertices inside it. Figure B.7 shows all six possible ways how its inside can look like. In

each case, we remove all inner vertices to obtain G ′7. The color coding then shows how to

extend and edge guard set Γ ′ to an edge guard set Γ for G by a single edge.

If above case does not apply, we instead look for an i (0 6 i 6 k − 3), such that the

4-cycle Ci,i+4 = (v,wi, y,wi+4) has at least four vertices inside it. Since neither Ci,i+3

norCi+1,i+4 may have four vertices inside them, there are only three ways how the interior

of Ci,i+4 can be subdivided, all shown in Figure B.8. Again, we remove all inner vertices

and the color coding shows how to handle the three cases.

It is possible that none of the above cases applies. Then we can always find an i

(0 6 i 6 k − 4), such that Ci,i+5 = (v,wi, y,wi+5) contains at least four vertices, which

must be exactly the common neighbors of v and y. This is shown in Figure B.9. There

7 In one case we need to apply the Weak Forcing Lemma B.1, so after deleting the inner vertices we add two

new ones. Since the inside of Ci,i+3 contained six vertices in this case, we still get |G ′| = |G|− 4.

53



7. Appendix

v

y

wi+5

wi

Figure B.9.: The unique way how the interior of Ci,i+5 = (v,wi, y,wi+5) must be subdi-

vided, such that it contains at least four vertices and none of the configurations

from Figures B.7 and B.8. The color coding is as in Figure B.4.

are no further subdivisions inside Ci,i+5, because otherwise an earlier case would apply.

Edge vwi+1 suffices to extend any edge guard set ofG ′ to become an edge guard set ofG.�

B.3. Proof of Lemma 5.8

Proof LetG = (V, E) be a 2-degenerate quadrangulation satisfying properties (P1) and (P2).

We assume that a vertex v exists with

1. height(S(v)) = 3 and

2. max

{
|S◦L(v)|, |S

◦
R(v)|

}
> 4. Without loss of generality, we assume that |S◦R(v)| > 4.

We show how to find at least four vertices from S◦R(v) that we can remove to getG ′. Further
we describe how any edge guard set Γ ′ for G ′ can be turned into an edge guard set Γ for G

of size |Γ | = |Γ ′|+ 1.

The proof is very similar to the one of Lemma 5.7 which is given above. Again we

let (v, x, y, z) be the 4-cycle containing S◦R(v) and w1, w2, . . . , wk ∈ N(v) ∩ S◦R(v) be the

common neighbors of v and y inside S◦R(v) in clockwise order (see Figure B.5 from the

previous proof). Further remember the definition of the 4-cycles Ci,j := (v,wi, y,wj)
(0 6 i < j 6 k+ 1 with w0 := x and wk+1 := z).

First, assume that there is an i (1 6 i 6 k − 1), such that there are two vertices a, b

with {a, b} ⊆ S◦(wi)∩ S◦(wi+1). The three possible ways for this are shown in Figure B.10.

Property (P1) then gives us that S(wi) ∪ S(wi+1) = {wi, wi+1, a, b} and we can remove

these four vertices to getG ′. Any edge guard set Γ ′ forG ′ can be extended by a single edge

(which is drawn red in the subfigures). In the following we assume that no such i exists.

For all remaining cases we look at 4-cycles Ci,j (0 6 i < j 6 k+ 1) that have at least four
vertices inside and where j − i is minimal. If the vertices inside Ci,j are of at most two

different levels, one of the cases from the proof of Lemma 5.7 applies and we saw there

x

v

y

z

wi

wi+1

. . .

. . .

x

v

y

z

wi

wi+1

. . .

. . .

a

b

b

a

x

v

y

z

wi

wi+1

a

b

. . .

. . .

Figure B.10.: We have S(wi) ∪ S(wi+1) = {wi, wi+1, a, b} and all four of them can be

removed. Each subfigure contains a thick, red edge that extends any edge

guard set of the obtained smaller graph to an edge guard set for the original

graph.
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w3

x

v

y

w3

x

v
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w3

x

Figure B.11.: All ways that C0,3 can be subdivided by at least four vertices. Here we ignore

configurations that are obtained by changing the role of v and y. The color

coding is as in Figure B.4.

how to handle them. Thus we only need to consider such Ci,j that contain vertices of

three different levels inside of them. The only way this is possible such that Ci,j does

not contain a configuration from Figure B.10 is that we have i = 0 and/or j = z. Without

loss of generality we restrict ourselves here to the case that i = 0 (the other case works

symmetrically). Because of property (P1), the 4-cycles C0,1 and C0,2 can contain at most

three vertices, so we look at all possible ways, how C0,3 can be subdivided: Figure B.11

shows all of those possibilities. In all cases we can remove the inner vertices to get G ′. Any

edge guard set Γ ′ for G ′ can be extended by a single edge to an edge guard set Γ for G as

shown by the given color coding. �
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