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Abstract

Recently, Kaufmann et al. introduced the “Density Formula”. It relates edges, vertices, cross-
ings, and cells in drawings of graphs. They use it to unify edge-density proofs of a wide
range of beyond-planar graph classes — whose members can be drawn while satisfying some
property — into a single framework. Their proofs of earlier known results are comparatively
streamlined and for some classes they are able to improve on the previous best bounds. How-
ever, in some cases, their results rely on a slight assumption on the drawings. We prove that
this assumption can be lifted for certain classes, strengthening the Density Formula results
for 1-planar, 2-planar and quasiplanar graphs to match the most general bounds from the
literature.

Further, we consider outer variants of beyond-planar graph classes, in which drawings are
restricted so that every vertex is incident to the outer cell. We derive edge density bounds of
ten outer classes, of which seven are new and all but two are tight. All but one of our bounds
are derived using a simple framework for translating Density Formula results into the outer
setting.

We also introduce new topological restrictions — forbidden cell types — for drawings. We
study the edge densities of the resulting graph classes and establish upper bounds that are
tight up to lower-order terms for all but three cell types.

Finally, to show the optimality of our bounds, we provide many lower bound constructions.
In addition, we give a lower bound for the edge density of simple quasiplanar graphs, improving
the previous best bound in the leading coefficient.

Zusammenfassung

Vor kurzem haben Kaufmann et al. die “Density Formula” vorgestellt, die Knoten, Kanten,
Kreuzungen und Zellen in Zeichnungen von Graphen in Zusammenhang bringt. Diese ver-
wenden sie um eine Vielzahl Ergbenisse zu Kantendichten von “Beyond-Planar” Graphklassen
— deren Graphen Zeichnungen mit gewissen Eigenschaften zulassen — mit einer einheitlichen
Methode zu beweisen. Die resultierenden Beweise sind vergleichsweise kurz und für mehrere
Klassen verbessern die Autoren die bisher besten Schranken. In einigen Fällen benötigen
die Autoren jedoch eine Annahme an die Zeichnungen der Graphen. Wir zeigen, dass diese
Annahme für viele Klassen aufgehoben werden kann. Damit verallgemeinern wir die mit der
Density Formula erzielten Ergebnisse für 1-planare, 2-planare und quasiplanare Graphen und
gleichen sie somit an die allgemeinsten in der Literatur bekannten Schranken an.
Außerdem betrachten wir äußere Varianten von Beyond-Planar Graphklassen, in denen

in Zeichnungen gefordert wird, dass jeder Knoten zur äußeren Facette inzident ist. Wir
bestimmen obere Schranken an die Kantendichten von zehn solcher Klassen. Von diesen
sind sieben neu und alle bis auf zwei scharf. Fast alle unserer Schranken wurden mit einer
einfachen Methode bestimmt, die es erlaubt Ergebnisse die mit der Density Formula bewiesen
wurden auf äußere Varianten zu übertragen.

Weiterhin führen wir neue topologische Einschränkungen — verbotene Zelltypen — für
Zeichnungen ein. Wir untersuchen die Kantendichten der abgeleiteten Graphklassen und
bestimmen für alle außer drei dieser Klassen obere Schranken die scharf bis auf Terme
niedrigerer Ordnung sind.
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Um die Optimalität unserer oberer Schranken zu belegen, präsentieren wir außerdem eine
Vielzahl Konstruktionen für untere Schranken. Zusätzlich zeigen wir eine untere Schranke
für die Kantendichten einfacher quasiplanarer Graphen, mit der wir die bisher beste Schranke
im Leitkoeffizient verbessern.
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1 Introduction

When dealing with relational data, connections between concepts, or complex systems in
general, getting a good grasp on the underlying structure of the system is often paramount.
To this end, visualizations in the form of drawings of graphs are often employed. While
this can be done successfully, using a drawing that is hard to take in visually or even con-
ceals some important structure in the underlying graph, can lessen its positive effect. For
example, cognitive scientists have established evidence that the number of crossings and
their features, e.g. the size of angles at crossings, impact the effectiveness of a visualization
[Pur00 ,WPCM02 ,HEH14 ,Hua07]. Usually, finding a drawing of a graph that optimizes
just one of the relevant criteria is computationally difficult. For example, determining the
minimum number of crossings needed to draw a graph is NP-hard in general [GJ83] and even
for complete graphs, these numbers are unknown (see e.g. [Buc+13]).
Instead of minimizing some criterion, an undesired configuration in a drawing can also

be forbidden entirely. For example, graphs which admit drawings without crossings are
called planar. This family of graphs has been studied extensively and shows a wide range of
structural properties. However, there are also non-planar graphs that admit easily understand-
able drawings. Thus, many other, less restrictive forbidden configurations were considered,
especially in recent years. As these forbidden patterns give rise to graph classes that usually
contain planar graphs, they are often called beyond-planar graph classes (for an overview see
[DLM20]). One example are quasiplanar graphs, in which no three edges are permitted to
pairwise intersect.
One of the key features of a beyond-planar graph class is the maximum number of edges

its member graphs can contain when the number of vertices is fixed. This is the class’ edge
density. Intuitively, it measures the complexity of graphs that can be drawn without violating
the forbidden pattern. Thus, knowing the edge density of a beyond-planar graph class, one
has a simple condition for when a graph can not be visualized while avoiding the forbidden
pattern. However, for many beyond-planar graph classes, the edge densities are still not fully
understood.

Recently, the “Density Formula” was introduced in [Kau+24]. With it, the authors reprove
and improve on many bounds for edge densities of beyond-planar graph classes using a single
framework. This is in stark contrast to the previous state of edge density proofs, which were
distinctly non-unified (see for example [Ari+12 , Bin+24 , PT97 , Tót23]). Part of this thesis
aims to integrate further edge density results into the Density Formula approach.

1.1 Contribution

Upper bounds proven via the Density Formula often rely on the assumption that drawings
are “non-homotopic”. We show that this assumption can be lifted when the graph class is
defined via a “forbidden combinatorial crossing configuration” and apply this to generalize
multiple edge density results to arbitrary drawings.

1



1 Introduction

We introduce a new method based on the Density Formula for translating established edge
density results of beyond-planar graph classes to their outer variants in which every vertex is
incident to the outer cell. We demonstrate its effectiveness by proving nine upper bounds for
outer variants, of which seven are tight and only two were previously known. Via a different
method, we also determine the exact edge density of outer quasiplanar graphs. Further, we
suggest a new collection of graph classes defined by forbidden cell types (topological patterns)
in drawings. We study their edge densities and for all but three of them either establish that
the edge density is quadratic or provide upper bound proofs that are tight up to an additive
constant. Finally, we provide many tight lower bound constructions for the above families and
additionally for simple quasiplanar graphs, improving the density in the leading coefficient.

1.2 Related Work

Apart from outerplanar graphs, the first outer drawing class was considered in the 80s by
Eggleton [Egg86] (although we were unable to access the work and confirm this), who gives
structural properties of graphs that admit an outer drawing with at most one crossing per
edge (called outer 1-planar). Their density was determined in [Aue+16] where many further
algorithmic and structural properties of outer 1-planar graphs are explored. Further, in contrast
to unrestricted 1-planar and 𝑘-planar graphs, whose recognition is NP-hard [GB07 , UW21],
both outer 1-planarity and outer 2-planarity can be tested for in linear time [Hon+15 , HN19].
In general, it is common that a hard problem in a beyond-planar graph class is easier in

its outer variant. Another example of this is for 𝑘-quasiplanar graphs which can be drawn
such that no set of 𝑘 edges cross pairwise. It is conjectured that for any 𝑘 , there is some 𝑐𝑘
such that the edge density of 𝑘-quasiplanar graphs is at most 𝑐𝑘𝑛. This was first posed as a
question by Gärtner in a paper of Pach [Pac91] but is only proven for 𝑘 ≤ 4 [AT07 , Ack09]. For
outer 𝑘-quasiplanar graphs, however, Capolyeas and Pach [CP92] were able to confirm this
by deriving the exact densities. Other outer variants whose edge densities were considered
include 𝑘+-real face graphs [Bin+24] and fan-planar graphs [Bin+15].
Other edge density results for beyond-planar graph classes that are not superseded by

[Kau+24] are found for example in [ZL13] for IC graphs, in [Zha14] for NIC graphs and in
[CHKK15] for fan-crossing free graphs. For bipartite variants, the edge density of 1-planar
graphs can be found in [Kar14] and a treatment of multiple other classes is given in [Ang+19].
Another variant commonly considered is straight-line drawings. The edge density of straight-
line RAC graphs (edges may only cross at right angles) is discussed in [DEL11]. Drawings of
1-planar graphs with only straight lines and their density are considered in [Did13].

1.3 Outline

After introducing some basic notions necessary for this thesis in Chapter 2, we generalize
some edge density results for non-homotopic drawings to an arbitrary setting in Chapter 3.
Afterwards, we present multiple edge density results for various outer variants of beyond-
planar graph classes in Chapter 4. We give an improved lower bound for simple quasiplanar
graphs in Chapter 5. In Chapter 6 we consider edge densities of drawings in which a single
cell type is forbidden. Finally, in Chapter 7, we discuss questions left unanswered by this
thesis and give ideas for further work.
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2 Preliminaries

This chapter gives an introduction to notions from graph theory, combinatorial geometry,
and graph drawing that are necessary for this thesis.

2.1 Graph Theory

A (simple) graph 𝐺 = (𝑉 , 𝐸) consists of a ground set 𝑉 =: 𝑉 (𝐺) of vertices, and a set of
edges 𝐸 =: 𝐸 (𝐺) ⊆

(
𝑉
2
)
. For us, the vertex set 𝑉 will be finite and we consider graphs up to

isomorphism, i.e., relabelling of vertices. Thus, we will assume𝑉 = [𝑛] and call𝐺 an 𝑛-vertex
graph. An edge connects two vertices and is incident to them. Two vertices connected by an
edge are called adjacent and edges incident to a common vertex are also called incident and
otherwise independent. For brevity, we will write 𝑢𝜈 for an edge {𝑢, 𝜈}. However, note that
edges are undirected so 𝑢𝜈 = 𝜈𝑢.
At multiple points in the thesis, we will talk about graphs that differ from the above

definition. That is, we will allow multiple edges connecting the same two vertices — called
parallel edges. We call a graph in which parallel edges are allowed a multigraph or non-
simple. Formally, the edge set of a multigraph can be defined as a multiset of elements in(
𝑉
2
)
. Whenever considering multigraphs, we make the distinction to simple graphs explicit.

However, if not specified, such a distinction is not made and our graphs are assumed to be
simple. Since many of our results carry over from [Kau+24], let us make explicit that “graphs”
in their terminology are “multigraphs” in ours.
For some vertex 𝜈 in a graph 𝐺 , deg(𝜈) is the degree of 𝜈 , i.e. the number of edges it is

incident to. Further, 𝛿 (𝐺) is the minimum degree of𝐺 . A basic theoremwe employ a few times
throughout the thesis is the Handshake Lemma. It can be easily proven by double-counting
the edge-vertex incidences in a graph.

Theorem (Handshake Lemma): In any multigraph 𝐺 = (𝑉 , 𝐸),

|𝐸 | = 1
2

∑︁
𝜈∈𝑉

deg(𝜈) .

A graph family or family (of graphs) F is a set of graphs. The (edge) density of such a family
is the function

𝑓 : ℕ → ℕ

𝑛 ↦→ max
𝐺∈F

|𝑉 (𝐺 ) |=𝑛

|𝐸 (𝐺) |.

In our theorems, we will be precise for which 𝑛 an upper or lower bound on an edge density
holds. However, when we say “The edge density of [...] graphs is 𝑓 ”, this is usually meant less
formally. We allow ourselves to omit that 𝑓 is not a valid upper bound for small 𝑛 and only for
infinitely many 𝑛 (and not all) are we aware of a lower bound construction on 𝑛 vertices and
𝑓 (𝑛) edges. Thus, while not fully precise, such assertions still explain the general behaviour
of the edge density.

3



2 Preliminaries

2.2 Graph Drawing

An (arbitrary) drawing Γ of a graph 𝐺 = (𝑉 , 𝐸) is formally a map

Γ : 𝑉 → ℝ2,

Γ : 𝐸 → C0( [0, 1],ℝ2),

from vertices to points and edges to continuous paths in the plane. Let Γ(𝐺) := ∪𝜈∈𝑉 Γ(𝜈) ∪𝑒∈𝐸
Γ(𝑒) ( [0, 1]) ⊆ ℝ2 be the image of Γ. A point 𝑝 ∈ ℝ2 for which two edges 𝑒1, 𝑒2 ∈ 𝐸 and real
numbers 𝑡1, 𝑡2 ∈ (0, 1) exist such that (𝑒1, 𝑡1) ≠ (𝑒2, 𝑡2) and Γ(𝑒1) (𝑡1) = Γ(𝑒2) (𝑡2) is called a
crossing. We say that 𝑒1 and 𝑒2 cross. The set of crossings is denoted as X (Γ) or just X if the
drawing is clear from context. For any drawing, we require that

Γ is injective on 𝑉 .

for any edge 𝑒 ∈ 𝐸, Γ(𝑒) : [0, 1] → ℝ2 is injective.

for any 𝑢𝜈 = 𝑒 ∈ 𝐸, Γ(𝑒) (0) = Γ(𝑢) and Γ(𝑒) (1) = Γ(𝜈) or vice versa.

for any edge 𝑒 ∈ 𝐸 and any 𝑡 ∈ (0, 1), Γ(𝑒) (𝑡) ≠ Γ(𝜈) for any vertex 𝜈 ∈ 𝑉 .

at any crossing 𝑝 there are exactly two distinct edge-time pairs (𝑒1, 𝑡1), (𝑒2, 𝑡2) with
Γ(𝑒1) (𝑡1) = Γ(𝑒2) (𝑡2) = 𝑝 .

there are only finitely many crossings.

for any 𝑒1, 𝑒2 ∈ 𝐸, 𝑡1, 𝑡2 ∈ (0, 1) with (𝑒1, 𝑡1) ≠ (𝑒2, 𝑡2) and 𝑝 := Γ(𝑒1) (𝑡1) = Γ(𝑒2) (𝑡2),
there is some neighbourhood 𝑈𝑝 ⊆ ℝ2 of 𝑝 such that 𝑋 := 𝑈𝑝 ∩ Γ(𝐺) = Γ(𝑒1) (𝐼1) ∪
Γ(𝑒2) (𝐼2) for some intervals 𝐼1, 𝐼2 ⊆ (0, 1), 𝑋 is homeomorphic to a “cross” [−1, 1] ×
{0} ∪ {0} × [−1, 1] and the ends of the cross alternately belong to 𝑒1 and 𝑒2. That is,
when two edges touch, they also have to cross.

every image of an edge under Γ is “well-behaved” as a curve. That is, it has finite length,
positive but bounded speed at every point, its image has no accumulation point outside
the image, etc.

We will often make no clear distinction between a drawing and the underlying graph. For
example, we will talk about the edge of a drawing to mean either the edge of the underlying
graph, the respective curve in ℝ2, or its image.
In most settings, we are only interested in the combinatorial properties of a drawing, e.g.

which edges cross another and in which order the crossings appear along an edge. Thus,
using a stereographic projection, we can alternatively assume that a drawing maps onto a
sphere S2 instead of ℝ2.

The crossings along an edge in a drawing split it into edge segments. The first and last edge
segments are called outer and any other edge segment is inner. Denote by S the set of all edge
segments. An edge is planar if it has no crossing in Γ. Let 𝐸𝑝 ⊆ 𝐸 be the set of planar edges
and 𝐸𝑥 = 𝐸 \ 𝐸𝑝 the crossed edges. If 𝐸𝑥 = ∅, the drawing is called plane. A graph that admits
a plane drawing is called planar.
A cell in a drawing Γ of a graph 𝐺 is a connected component of ℝ2 \ Γ(𝐺). We call the

unique unbounded component the outer cell of Γ. A drawing is outer if and only if every
vertex lies on the boundary of the outer cell. If Γ is plane, cells are also called faces. For a cell
𝑐 , its boundary 𝜕𝑐 is made up of closed curves, each of which is a sequence of edge segments

4



2.2 Graph Drawing

Figure 2.1: The three types of lenses in drawings of multigraphs. The first lens is empty and
the others are not, since they contain crossings and vertices.

separated by crossings and vertices, which are incident to 𝑐 . We call these sequences the
(boundary) chains of the cell. Note that if Γ is connected, each cell is only bounded by a single
chain. Note further that the same edge segment or vertex can occur multiple times in the
same chain in which case we call the cell degenerate. For a cell 𝑐 we denote by 𝑒 (𝑐) and 𝜈 (𝑐)
the number of edge segments and vertices on 𝜕𝑐 counted with multiplicity. The size of a cell
𝑐 is ∥𝑐 ∥ := 𝜈 (𝑐) + 𝑒 (𝑐). By C𝑘 , C≥𝑘 we denote the set of all cells of size 𝑘 and at least 𝑘 in a
drawing. We emphasize that with our definition, a crossing does not count towards the size
of a cell.

We say that two cells are of the same type if their number of boundary chains and the order
of vertex- and crossing-incidences thereon coincide. Note that when talking about the type
of a cell, we “forget” when multiple vertex-, crossing- or edge segment-incidences are with
the same vertex, crossing or edge segment. We denote a cell type by a pictogram in which
we inscribe its size, e.g. 6 , 4 , and 3 . While these only depict inner cells, they can also
describe the type of the outer cell. It turns out that in connected drawings on at least three
vertices, there are only a few small cell types.

Observation 2.1: In any drawing of a simple connected graph on at least 3 vertices

C1 = ∅,

C2 is the set of 2 -cells,

C3 is the set of 3 - and 3 -cells,

C4 is the set of 4 -, and 4 -cells,

C5 is the set of 5 -, 5 -, and 5 -cells.

If no cells of type 𝔠 occur in a drawing, we call it 𝔠-free. Further, a graph that admits a 𝔠-free
drawing is also called 𝔠-free.

2.2.1 Types of drawings

Often, we further limit the previously defined arbitrary drawings to two increasingly restrictive
drawing styles. These restrictions concern lenses. A lens is a region bounded by a closed curve
that can be split into two parts, each being part of a single edge. In other words, a lens is a
region formed by two edges with two intersections, illustrated in Figure 2.1. We call a lens
empty if its interior contains neither a crossing nor a vertex.

A drawing is non-homotopic if it contains no empty lenses. Thus, 2 - and 3 -cells do not
occur in non-homotopic drawings.

5



2 Preliminaries

Observation 2.2: In any non-homotopic drawing of a connected multigraph on at least 3 vertices

C1 = C2 = ∅,

C3 is the set of 3 -cells,

C4 is the set of 4 -, and 4 -cells,

C5 is the set of 5 -, 5 -, and 5 -cells.

By contrast, a drawing is simple if it does not contain any lens. Thus, the underlying
graph of any simple drawing has no parallel edges and is itself simple. We will also use the
adjective non-homotopic for a graph to denote that a non-homotopic drawing of the graph
with certain properties exists. For example, a non-homotopic quasiplanar graph admits a
non-homotopic quasiplanar drawing. For the adjective simple, we refrain from similar usage to
avoid confusion with simple graphs. Let us remark that had we not forbidden self-intersection
of edges already for arbitrary drawings, we would exclude them explicitly for non-homotopic
and simple drawings.
In graph drawing, one often also considers some geometric restrictions to the way edges

and vertices are drawn. We will not encounter this frequently in the present thesis, so there
are only a few definitions we need. A drawing is called straight-line if every edge is drawn as
a straight line segment. If all vertices in a drawing lie on a common circle, we call it a circular
layout. In a 𝑘-bend drawing each edge is a polyline with at most 𝑘 bends. That is, each edge
can be divided into at most 𝑘 + 1 parts such that each part is a straight-line segment.

2.2.2 Beyond-planar graph classes

Frequently in Graph Drawing, one is interested in drawings that satisfy a specific property
𝑃 . In this context, it is useful to ask which graphs even admit a drawing that adheres to 𝑃 .
We call the family of graphs that can be drawn while satisfying 𝑃 a beyond-planar graph
class. This is justified because 𝑃 will usually be a forbidden crossing pattern or restrict some
property of crossings, in which case the resulting family is a superset of planar graphs. We
now define all beyond-planar graph classes that appear in this thesis. We do this implicitly by
only presenting the relevant properties for drawings. The names will always carry over to
graphs and the relevant graph classes.

A drawing is 𝑘-quasiplanar if there are no 𝑘 edges which cross pairwise. So, 2-quasiplanarity
is the usual planarity-restriction. We will only consider 3-quasiplanar graphs in this thesis,
which we henceforth call quasiplanar. A drawing is 𝑘-planar if there are at most 𝑘 crossings
on each edge. Thus, 0-planar drawings are just planar drawings. We call a drawing 𝑘+-face real
if every cell is incident to at least 𝑘 vertices. A drawing is 𝑘-bend RAC (Right Angle Crossing)
if it is 𝑘-bend, crossings do not occur on bends and all crossings are at a right angle. We call a
drawing fan-crossing if for every edge 𝑒 , the edges crossing 𝑒 form a star (i.e. are incident to a
common vertex) in the underlying graph. In a fan-crossing free drawing on the other hand, if
an edge 𝑒 crosses edges 𝑓1 and 𝑓2 then 𝑓1 and 𝑓2 are independent in the underlying graph.

2.3 The Density Formula

The Density Formula is a tool introduced by Kaufmann et al. [Kau+24] which will be useful to
us for proving edge density bounds of beyond-planar graph classes.
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2.3 The Density Formula

Theorem (Density Formula): Let 𝑡 be a real number and Γ some connected drawing of a
multigraph 𝐺 = (𝑉 , 𝐸) with at least one edge. Then,

|𝐸 | = 𝑡 ( |𝑉 | − 2) −
∑︁
𝑐∈C

(
𝑡 − 1

4
∥𝑐 ∥ − 𝑡

)
− |X |.

The authors most often use the Density Formula by choosing some 𝑡 , then upper bounding
the positive terms in the sum by the number of crossings and ignoring the negative terms.
For example, for 𝑡 = 3, 4, 5, one obtains the following inequalities.

Observation 2.3: For any connected drawing of a multigraph𝐺 = (𝑉 , 𝐸) with at least one edge

|𝐸 | ≤ 3( |𝑉 | − 2) + 3
2
|C3 | + |C4 | +

1
2
|C5 | − |X | (2.1)

|𝐸 | ≤ 4( |𝑉 | − 2) + 7
4
|C3 | + |C4 | +

1
4
|C5 | − |X | (2.2)

|𝐸 | ≤ 5( |𝑉 | − 2) + 2|C3 | + |C4 | − |X |. (2.3)

For many beyond-planar graph classes, these inequalities can be used to find upper bounds
on their edge densities by relating the number of cells of different sizes and the number of
crossings. We exploit this proof structure in Chapter 4 to translate results from Kaufmann et
al. to the outer setting.
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3 Generalizing results

In this chapter, we inspect the relationship between arbitrary and non-homotopic drawing
variants of beyond-planar graph classes. We find that under some assumptions on the property
𝑃 , the family of graphs that admit an arbitrary drawing satisfying 𝑃 coincides with those
graphs with a non-homotopic drawing that satisfies 𝑃 . We obtain the same result when further
restricting to outer drawings. Recall that a drawing is outer if and only if every vertex is
incident to the outer cell. At the end of the chapter, we apply these results to translate edge
density proofs for non-homotopic drawings that are obtained via the Density Formula to
arbitrary drawings.

Definition 3.1: Let 𝑃 be a property of drawings. For some drawing Γ of a graph 𝐺 = (𝑉 , 𝐸),
define the multiset

𝐶Γ := {𝑘 · {𝑒, 𝑓 } | 𝑒, 𝑓 ∈ 𝐸 cross 𝑘 times in Γ}

of size |X |. Here, 𝑘 · {𝑒, 𝑓 } denotes that 𝐶Γ contains the set {𝑒, 𝑓 } 𝑘 times. We call 𝑃 a forbidden
combinatorial crossing configuration ( fccc for short) if it has the following properties.

1 Whether 𝑃 holds for Γ only depends on 𝐺 and 𝐶Γ .

2 Let two graphs 𝐺 = (𝑉 , 𝐸) and 𝐺 = (𝑉 , 𝐸′) with 𝐸 ⊂ 𝐸′ be drawn in Γ, Γ′ such that
𝐶Γ′ ⊂ 𝐶Γ . Then, if 𝑃 holds for Γ, it must also hold for Γ′. In other words, 𝑃 is closed under
adding planar edges and removing crossings.

The majority of beyond-planar graph classes we introduced in Chapter 2 are defined via a
fccc. Other classes like 𝑘-bend RAC and 𝑘+-real face are inherently topological and therefore
do not fulfil 1 . An example of a property that fulfils 1 but not 2 is “any two edges cross an
even number of times”.

Observation 3.2: Let 𝑘 ∈ ℕ0 be any natural number. The drawing properties 𝑘-planar, 𝑘-
quasiplanar, fan-crossing, and fan-crossing free are forbidden combinatorial crossing configura-
tions. On the other hand, 𝑘+-real face for 𝑘 ≥ 1 and 𝑘-bend RAC are not fcccs.

Proof. Let Γ be some drawing of a graph 𝐺 and define for an edge 𝑒 ∈ 𝐸 (𝐺) the set of all its
crossing edges 𝐸𝑒 := {𝑒′ ∈ 𝐸 (𝐺) | {𝑒, 𝑒′} ∈ 𝐶Γ}. Note that 𝐸𝑒 only depends on 𝐺 and 𝐶Γ .
We first reformulate the properties claimed to be fccc so that they only depend on 𝐺 and

𝐶Γ . This proves that they all fulfil 1 . The drawing Γ is 𝑘-planar if and only if for every edge
𝑒 ∈ 𝐸 (𝐺), 𝐶Γ contains at most 𝑘 sets with 𝑒 as a member. The drawing is 𝑘-quasiplanar if and
only if there is no 𝑘-element set 𝐴 ⊆ 𝐸 (𝐺) with 2(𝐴2) ⊆ 𝐶Γ , where 2𝑋 denotes the powerset of
𝑋 . The drawing is fan-crossing if and only if for every edge 𝑒 ∈ 𝐸 (𝐺) there is some 𝜈 ∈ 𝑉 (𝐺)
such that 𝑒′ is incident to 𝜈 for all 𝑒′ ∈ 𝐸𝑒 . Finally, the drawing is fan-crossing free if and only
if all edges in 𝐸𝑒 are independent in 𝐺 .

For 2 , note that none of the four properties depend on the planar edges in a drawing and,
by the above formulations, the properties are closed under taking subsets of 𝐶Γ . This shows
that these properties are fccc as claimed.

9



3 Generalizing results

Figure 3.1: Two drawings of the same graph. Although they coincide in 𝐶Γ , the left one is
1+-real face while the right one is not.

On the other hand, 𝑘-bend RAC fails 1 as both polylines and angles at crossings are
inherently topological properties and thus cannot be encoded only in𝐺 and 𝐶Γ . The property
𝑘+-real face also fails 1 if 𝑘 ≥ 1, as properties of cells cannot be determined from 𝐺 and 𝐶Γ

alone. For example, Figure 3.1 depicts two drawings of the same graph, only one of which is
1+-real face, but which coincide in𝐶Γ . Similar examples can be constructed for any 𝑘 ≥ 1.

We now begin with proving the key theorem of this chapter. That is, if a drawing of a
graph 𝐺 satisfies some fccc 𝑃 , then there is also a non-homotopic drawing of 𝐺 that fulfils 𝑃 .
First, we show that lenses without interior vertices can be eliminated without changing the
structure of the drawing. Here we use that multigraphs are disallowed.

Lemma 3.3: Let 𝐺 be a graph which admits a drawing Γ that contains a lens without a vertex
in its interior. Then, there is some drawing Γ′ of 𝐺 with 𝐶′

Γ ⊊ 𝐶Γ that contains only lenses with
interior vertices. Additionally, if Γ is outer, then Γ′ preserves the outer property.

Proof. We start with Γ and eliminate lenses without interior vertices one after another.
Throughout, we show that the subset of 𝐶Γ that is our current multiset of crossing edge-pairs
shrinks with each eliminated lens. Thus, this process has to end after finitely many steps.
Further, we show that the outer property is preserved in each step, thereby finishing the
proof.
Let 𝑙 be an inclusion-minimal lens without a vertex in its interior. Let 𝑒 and 𝑓 be the two

edges that bound 𝑙 . Further, let 𝑝, 𝑞 ∈ ℝ2 be the intersections of 𝑒 and 𝑓 at the tips of the lens.
Depending on the type of lens, there might be a vertex 𝜈 at either 𝑝 or 𝑞. We are agnostic about
whether such a vertex exists and thus all references to 𝜈 can be ignored when 𝑙 is bounded by
two crossings.

Since 𝑙 contains no vertices, no edge can have an endpoint in the interior of 𝑙 . So, an edge
incident to 𝜈 cannot leave 𝜈 through 𝑙 , since it would cross either 𝑒 or 𝑓 , creating a smaller lens
contained in 𝑙 (see Figure 3.2a) — a contradiction to inclusion-minimality of 𝑙 . Further, an edge
cannot enter and subsequently exit 𝑙 through 𝑒 (and similarly with 𝑓 ). Otherwise, as depicted
in Figure 3.2b, it would form a smaller lens with 𝑒 that is entirely contained within 𝑙 . This,
again, contradicts inclusion-minimality. Thus, 𝑒 and 𝑓 are crossed by the same (multi-)set of
edges on the boundary of 𝑙 . By switching the paths that 𝑒 and 𝑓 take along the boundary of 𝑙
(see Figure 3.2c), at least one of their crossings is eliminated and no new crossing is introduced.
So, in the resulting drawing the multiset of edge crossings is a proper subset of 𝐶Γ . Note that
switching 𝑒 and 𝑓 does not destroy any cell-vertex incidence. So, if Γ was outer, this property
is retained. As argued in the beginning, this finishes the proof.
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3.1 1- and 2-planar graphs

𝑒

𝑓

𝑣

(a) If the lens is bounded by a
vertex 𝜈 , an incident edge that
leaves 𝑙 through the lens cre-
ates a smaller lens.

𝑒

𝑓

𝑣

(b) If an edge enters and ex-
its the lens through the same
boundary edge, it creates a
smaller lens.

𝑓

𝑒

𝑣

(c) By switching the paths of
the boundary edges, the lens is
destroyed while getting rid of
one crossing.

Figure 3.2: The steps in the proof of Lemma 3.3. An inclusion-minimal lens without a vertex
in its interior cannot be crossed by edges in certain ways (Subfigure a and b). Thus, the lens
can be eliminated without introducing new crossings (Subfigure c).

With this we can show our desired result.

Theorem 3.4: Let 𝑃 be a forbidden combinatorial crossing configuration and 𝐺 a graph that
admits a drawing satisfying 𝑃 . Then, 𝐺 also admits a non-homotopic drawing that satisfies 𝑃 .

Proof. Take a drawing Γ of 𝐺 that satisfies 𝑃 . By Lemma 3.3, there is a drawing Γ′ of 𝐺 that
contains no empty lenses — thus it is non-homotopic — and fulfils 𝐶Γ′ ⊊ 𝐶Γ . By the latter
property and since 𝑃 is a fccc, Γ′ also satisfies 𝑃 .

What Theorem 3.4 shows, is that for any fccc 𝑃 , the family of graphs that admit an arbitrary
drawing satisfying 𝑃 coincides with the respective non-homotopic family. Thus, in particular,
the edge densities of two such families coincide. Before applying this knowledge, we prove
an analogous result for outer drawings which we will apply later in Chapter 4.

Theorem 3.5: Let 𝑃 be a forbidden combinatorial crossing configuration and 𝐺 a graph that
admits an outer drawing Γ that satisfies 𝑃 . Then 𝐺 also admits an outer non-homotopic drawing
that satisfies 𝑃 .

Proof. Take an outer drawing Γ of𝐺 that satisfies 𝑃 . By Lemma 3.3, there is an outer drawing
Γ′ of𝐺 that is non-homotopic and fulfils 𝐶′

Γ ⊊ 𝐶Γ . By the latter property and since 𝑃 is a fccc,
Γ′ also satisfies 𝑃 .

We now take the edge density results in [Kau+24] for non-homotopic 1-planar, 2-planar, and
quasiplanar graphs and generalize them to the arbitrary setting. While none of the resulting
theorems were previously unknown, this represents their first proofs via the Density Formula.
Let us note that these results are not strict generalizations, since the results in Kaufmann et al.
also apply to non-homotopic multigraphs.

3.1 1- and 2-planar graphs

The tight edge density upper bounds for 1- and 2-planar graphs were first proven in [PT97].

Theorem 3.6: Any 1-planar graph on 𝑛 ≥ 3 vertices contains at most 4𝑛 − 8 edges.

Proof. Kaufmann et al. [Kau+24] proved the upper bound in the non-homotopic setting. By
Observation 3.2, 1-planarity is a fccc and so with Theorem 3.4 the result translates to the
arbitrary setting.
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3 Generalizing results

Theorem 3.7: Any 2-planar graph on 𝑛 ≥ 3 vertices contains at most 5𝑛 − 10 edges.

Proof. Kaufmann et al. [Kau+24] proved the bound in the non-homotopic setting. In Observa-
tion 3.2 we noted that 2-planarity is a fccc and so Theorem 3.4 gives the result for the arbitrary
setting.

3.2 Quasiplanar graphs

The following tight upper bound on the edge density of quasiplanar graphs were previously
proven by Ackerman and Tardos [AT07] .

Theorem 3.8: Any quasiplanar graph on 𝑛 ≥ 3 vertices contains at most 8𝑛 − 20 edges.

Proof. For the non-homotopic setting, this bound was proven by Kaufmann et al. [Kau+24].
This can be translated to the arbitrary setting by involving Theorem 3.4 and noting that
quasiplanarity is a fccc (Observation 3.2).
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4 Outer variants

In this chapter, we consider many classic beyond-planar graph classes and their edge density
when restricted to outer variants (the resulting classes might be called beyond-outerplanar
graph classes). An outer variant of a beyond-planar graph class contains those graphs which
admit an outer drawing under the restrictions given by the graph class. A well-known such
variant is the class of outerplanar graphs, whose edge density is 2𝑛 − 3 for 𝑛 ≥ 2 in contrast
to planar graphs with at most 3𝑛 − 6 edges if 𝑛 ≥ 3.

4.1 Applying the Density Formula

The bulk of our results are easily derived from the proofs by Kaufmann et al. [Kau+24] by
applying knowledge about the outer cell in the Density Formula. All we need is that the outer
cell has large size.

Lemma 4.1: In an outer drawing of a connected graph on 𝑛 ≥ 2 vertices, the outer cell has size
at least 2𝑛.

Proof. Since the graph is connected, the outer cell 𝑐𝑜 is bounded by a single boundary chain.
Because of the outer property, this chain contains at least 𝑛 vertices, so 𝜈 (𝑐𝑜 ) ≥ 𝑛. Between
two vertices on the chain, there is at least one edge segment. So, 𝑒 (𝑐𝑜 ) ≥ 𝑛 and in total
∥𝑐𝑜 ∥ ≥ 2𝑛.

Let Cin be the set of all inner cells. Then, in an outer drawing of a connected graph on 𝑛 ≥ 2
vertices, the Density Formula can be rewritten to

|𝐸 | ≤ 𝑡 ( |𝑉 | − 2) −
∑︁
𝑐∈Cin

(
𝑡 − 1

4
∥𝑐 ∥ − 𝑡

)
− 𝑡 − 1

2
|𝑉 | + 𝑡 − |X |

=
𝑡 + 1

2
|𝑉 | − 𝑡 −

∑︁
𝑐∈Cin

(
𝑡 − 1

4
∥𝑐 ∥ − 𝑡

)
− |X |.

Under the assumption |𝑉 | ≥ 3 and choosing 𝑡 = 3, 4, 5, we obtain formulas similar to those
in Observation 2.3 by noticing that the outer cell has size at least 6 and so is not already
counted by the relevant C𝑖 .

Observation 4.2: For any outer drawing of a connected graph 𝐺 = (𝑉 , 𝐸) with |𝑉 | ≥ 3 and at
least one edge

|𝐸 | ≤ 2|𝑉 | − 3 + 3
2
|C3 | + |C4 | +

1
2
|C5 | − |X |

|𝐸 | ≤ 5
2
|𝑉 | − 4 + 7

4
|C3 | + |C4 | +

1
4
|C5 | − |X |

|𝐸 | ≤ 3|𝑉 | − 5 + 2|C3 | + |C4 | − |X |.
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4 Outer variants

Now let us see via an example how an edge density proof that relies on the Density Formula
can be translated into an edge density proof for the outer variant. For this, we consider
outerplanar graphs.

Theorem 4.3: A connected outerplanar graph on 𝑛 ≥ 3 vertices has at most 2𝑛 − 3 edges.

Proof. To demonstrate our general framework, let us first consider a proof for the edge density
of planar graphs. We will use the first formula in Observation 2.3 for 𝑡 = 3.
To prove |𝐸 | ≤ 3|𝑉 | − 6 for connected planar graphs, we are left with showing

3
2
|C3 | + |C4 | +

1
2
|C5 | − |X | ≤ 0. (4.1)

This inequality immediately follows from the fact that a planar drawing on at least three
vertices contains no cells of size less than 6.

Now, getting back to proving the edge density of outerplanar graphs, we will use the
inequality for 𝑡 = 3 from Observation 4.2. Note that to obtain a 2𝑛 − 3 upper bound we again
need to prove Equation (4.1). Thus, by viewing the proof of Equation (4.1) as a black box, the
result is obtained for connected outerplanar graphs.

We will now apply this framework to derive upper bounds for edge densities of outer
variants. All arguments in the remainder of Section 4.1 are identical to Theorem 4.3 and
we thus omit the proofs. Proofs of the counterparts for non-outer multigraphs we rely on
are found in [Kau+24]. Additionally, in the case of outer 1-, and 2-planar graphs we apply
Theorem 3.5 to generalize from non-homotopic to arbitrary drawings of graphs. Slightly more
involved arguments using our method will be given in Section 4.2.

4.1.1 𝑘-planar graphs

We begin with outer 𝑘-planar graphs which have been introduced by Eggleton [Egg86]. A
tight upper density result for outer 1-planar graphs has been proven before for arbitrary
drawings of simple graphs by Auer et al. [Aue+16].

Theorem 4.4: Let𝐺 be a simple connected outer 1-planar graph or a connected non-homotopic
outer 1-planar multigraph on 𝑛 ≥ 3 vertices. Then, 𝐺 has at most 5

2𝑛 − 4 edges.

There is essentially no literature about outer 2-planar graphs, so, to the best of our knowl-
edge, the following result is new.

Theorem 4.5: Let𝐺 be a simple connected outer 2-planar graph or a connected non-homotopic
outer 2-planar multigraph on 𝑛 ≥ 3 vertices. Then, 𝐺 has at most 3𝑛 − 5 edges.

4.1.2 Fan-crossing graphs

For simple outer fan-crossing drawings of graphs, Binucci et al. [Bin+15] proved a density of
3𝑛 − 5. We give the same result.

Theorem 4.6: A connected multigraph on 𝑛 ≥ 3 vertices with a simple outer fan-crossing
drawing has at most 3𝑛 − 5 edges.
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4.1 Applying the Density Formula

4.1.3 1+- and 2+-real face graphs

Recently, the class of 𝑘+-real face graphs in which every cell is incident to at least 𝑘 vertices
was introduced by Binucci et al. [Bin+24]. They prove — among many other results — density
results for simple drawings of simple outer 𝑘+-real face graphs for every 𝑘 . We start with a
bound for 𝑘 = 1 which is worse than the 3𝑛 − 6 bound given by Binucci et al. but also applies
to a more general setting. We do not know whether our bound is optimal.

Theorem 4.7: A connected non-homotopic outer 1+-real face multigraph on 𝑛 ≥ 3 vertices has
at most 3𝑛 − 5 edges.

Next, we consider 𝑘 = 2 where our bound is tight. As it applies to non-homotopic drawings
of multigraphs, this is a slight generalization of the result for simple drawings of simple graphs
in [Bin+24]. We will consider 𝑘+-real face graphs for 𝑘 ≥ 3 in a later section, as the argument
will differ slightly from the established framework.

Theorem 4.8: A connected non-homotopic outer 2+-real face multigraph on 𝑛 ≥ 3 vertices has
at most 5

2𝑛 − 4 edges.

4.1.4 0- and 1-bend RAC graphs

Finally, we consider RAC graphs. While they have been extensively studied in graph drawing
literature, as far as we are aware there are no results concerning their outer variant. Thus,
the following results are novel.

Theorem 4.9: A connected outer 0-bend RAC multigraph on 𝑛 ≥ 3 vertices has at most 5
2𝑛 − 4

edges.

Theorem 4.10: A connected non-homotopic outer 1-bend RAC multigraph on 𝑛 ≥ 3 vertices has
at most 3𝑛 − 5 edges.

We tend to outer 2-bend RAC graphs in the next section because the proof involves a few
more steps.

4.1.5 Lower bounds

Before moving on to proving further upper bounds by other methods, we discuss optimality
of the upper bounds presented above. For many of the upper bounds, we can indeed construct
a matching family of lower bound examples. We start with a family of outer graphs with
5
2𝑛 − 4 edges.

Construction 4.11: For infinitely many 𝑛, there is a simple outer 1-planar, 2+-real face, 0-bend
RAC graph on 𝑛 vertices with 5

2𝑛 − 4 edges.

Proof. As a base graph for our construction, we use 𝐾4. Draw the graph with the vertices
arranged in a square and all edges straight. This drawing clearly fulfils all desired conditions.
We construct further drawings, as depicted in Figure 4.1a, by glueing copies of the drawing
along uncrossed edges. Each further copy adds 2 vertices and 5 edges, thus fitting the 5 : 2-
ratio.

Similarly, a family of outer graphs with 3𝑛 − 5 edges can be constructed.

Construction 4.12: For infinitely many 𝑛, there is a simple outer fan-crossing 2-planar, 1-bend
RAC graph on 𝑛 vertices with 3𝑛 − 5 edges.
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4 Outer variants

(a) Outer family of graphs with density 5
2𝑛 − 4. (b) Outer family of graphs with density 3𝑛 − 5.

Figure 4.1: Constructing chains of these graphs as indicated gives rise to families of outer
graphs. These families give tight lower bound examples for multiple of our upper bounds on
outer variants.

Figure 4.2: Example for 𝑛 = 7 of an outer 1+-real face graph with 𝑛 vertices and 3𝑛 − 6 edges.
This can be attained for any 𝑛 by taking an 𝑛-cycle, then connecting one vertex with every
other and finally connecting vertices at distance 2 except those at the high-degree vertex.

Proof. Note that 𝐾5 achieves the required density. We use it as a base graph. To obtain a
drawing of 𝐾5, take a drawing of 𝐶5 as a regular pentagon and add the remaining edges with
one bend each inside such that every crossing is at a right angle. The resulting drawing is
outer, 1-bend RAC, and each edge is crossed at most twice. Now, as depicted in Figure 4.1b,
construct further graphs in the family by glueing copies of the drawing along uncrossed edges.
Each further copy adds 3 vertices and 9 edges, thus attaining the 3 : 1-ratio.

The only previous bound that is not matched is in the outer 1+-real face setting. Here,
Binucci et al. [Bin+24] prove that the edge density of simple outer 1+-real face drawings of
simple graphs is 3𝑛 − 6. Figure 4.2 shows how such graphs can be constructed. Since our
result is in a more general setting, it might be possible to fit in one extra edge. We believe this
is unlikely, however.
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4.2 More involved arguments

Figure 4.3: An outer 2-bend RAC graph with 12 vertices and 40 edges. By glueing copies of
this graph along uncrossed edges, a family of graphs with 4|𝑉 | − 8 edges is constructed.

4.2 More involved arguments

In this section, we prove further density results for outer variants with methods more involved
than the simple approach used in the last section. These will come in the form of less direct
usages of the Density Formula and later a discharging argument.

4.2.1 2-bend RAC graphs

We begin with 2-bend RAC graphs. Here, the argument mostly remains the same as in the
last section. However, we give the proof explicitly, as it provides an unusual bound. The
main difference in the argument is that the proof we rely on in [Kau+24] upper bounds the
right-hand terms of the equation for 𝑡 = 5 in Observation 2.3 by a value different from zero.

Theorem 4.13: A connected non-homotopic outer 2-bend RAC multigraph on 𝑛 ≥ 3 vertices has
at most 6𝑛 − 8 edges.

Proof. Recall that in a drawing, 𝐸𝑥 and 𝐸𝑝 are the sets of edges that are crossed and planar,
respectively. We use the Density Formula for 𝑡 = 5 in Observation 4.2. In [Kau+24, Lemma
4.1] the relation 2|C3 | + |C4 | − |X | ≤ 1

2 ( |𝐸𝑥 | + 1) is proven for connected non-homotopic 2-bend
RAC multigraphs. We thus obtain

|𝐸 | ≤ 3|𝑉 | − 5 + 1
2
|𝐸𝑥 | + 1.

Now the argument follows analogously

|𝐸 | ≤ |𝐸 | + |𝐸𝑝 | = 2|𝐸 | − |𝐸𝑥 | ≤ 2(3|𝑉 | − 4) = 6|𝑉 | − 8.

While we do not believe that our upper bound is tight (see Chapter 7), we think it might be
tight up to an additive constant. A fitting candidate graph for a glueing construction which
would achieve this is 𝐾11. If 𝐾11 admits an outer 2-bend RAC drawing, glueing copies of this
drawing along uncrossed edges as in Figure 4.1 would give a family of graphs with 6𝑛 − 11
edges.
The best lower bound construction we are aware of also uses the glueing construction.

The base graph, depicted in Figure 4.3 has 12 vertices and is adapted from a construction for
2-bend RAC graphs in [Ari+12]. Graphs in the resulting family have 4𝑛 − 8 edges.
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4 Outer variants

4.2.2 𝑘+-real face graphs for 𝑘 ≥ 3

Next, we consider 𝑘+-real face graphs for 𝑘 ≥ 3. The upper bound we derive here using the
Density Formula generalizes the result in [Bin+24] from simple to non-homotopic drawings.

Theorem 4.14: For 𝑘 ≥ 3, 𝑛 ≥ 3, any connected non-homotopic 𝑘+-real face multigraph on 𝑛
vertices has at most 𝑘−1

𝑘−2𝑛 −
𝑘

𝑘−2 edges.

Proof. Note that in a 𝑘+-real face drawing any cell has size at least 2𝑘 and the outer cell 𝑐0 has
size at least 2|𝑉 |. Choosing 𝑡 = 2𝑘

2𝑘−4 , we obtain
𝑡−1

4 = 1
2𝑘−4 and an application of the Density

Formula yields the Theorem

|𝐸 | = 𝑘

𝑘 − 2
( |𝑉 | − 2) −

∑︁
𝑐∈Cin

(
∥𝑐 ∥

2𝑘 − 4
− 2𝑘

2𝑘 − 4

)
− ∥𝑐0∥

2𝑘 − 4
+ 𝑘

𝑘 − 2

≤ 𝑘

𝑘 − 2
( |𝑉 | − 2) − |𝑉 |

𝑘 − 2
+ 𝑘

𝑘 − 2

=
𝑘 − 1
𝑘 − 2

|𝑉 | − 𝑘

𝑘 − 2
.

We do not want to retread the arguments by Binucci et al. and therefore refer to their paper
for matching lower bound examples.

4.2.3 Quasiplanar graphs

Now, we tend to outer quasiplanar (multi-)graphs. First, we show that we may assume the
outer cell of an outer quasiplanar drawing to be bounded by a planar 𝑛-cycle. The same holds
for all families of outer (multi-)graphs defined by some fccc.

Lemma 4.15: Let 𝑃 be a forbidden combinatorial crossing configuration and 𝐺 be a possibly
non-simple graph on at least 3 vertices with an outer drawing Γ that satisfies 𝑃 . Then, after
possibly adding edges to 𝐺 , the resulting graph admits an outer drawing Γ′ that satisfies 𝑃 in
which the outer cell is bounded by a cycle on 𝑛 vertices. That is, the drawing is connected, every
vertex is incident exactly once to the outer cell, and there is no crossing incident to the outer cell.
The final drawing retains simplicity and non-homotopicity if either were properties of Γ.

Further, the underlying graph retains simplicity, if 𝐺 was simple.

Proof. Consider some outer drawing Γ of 𝐺 that satisfies 𝑃 . If Γ is not connected, choose two
vertices from different connected components and connect them via a planar edge in the outer
cell. This retains that the drawing is outer but reduces the number of connected components.
Thus, repeating this until there is only a single component, we obtain a connected drawing Γ′.

Now there is a single cyclic sequence 𝑆 of vertices on the unique boundary chain of the outer
cell of Γ′. Suppose some vertex 𝜈 exists that appears multiple times on 𝑆 and so 𝑆 = 𝜈𝑈𝜈𝑊 .
Both𝑈 and𝑊 contain at least one vertex as otherwise the two occurrences of 𝜈 would coincide.
Because both appearances of 𝜈 on 𝑆 are incident to the outer face,𝑈 and𝑊 share no vertices
and there is no edge between the vertices of the two subsequences. Now, by drawing a planar
edge from the last vertex in𝑈 to the first vertex in𝑊 , the second occurrence of 𝜈 on the cyclic
sequence is removed while keeping the drawing outer. Further, as no crossing is added, the
drawing still satisfies 𝑃 . Since this strictly reduces the size of the cyclic sequence, this process
can be repeated until obtaining Γ′′ — a drawing in which no vertex has multiple incidences
with the outer cell.
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4.2 More involved arguments

If Γ′′ has no crossing incident to the outer cell, we are done. Otherwise, let 𝜈0, 𝜈1, . . . , 𝜈𝑛−1
be the cyclic sequence of vertices along the outer cell. In what follows, all index calculations
are modulo 𝑛. For every 𝑖 ∈ [𝑛], draw an edge 𝑒𝑖 := 𝜈𝑖𝜈𝑖+1 through the outer cell of Γ′′. By
tracing the new edges sufficiently close to the boundary of the outer cell, all 𝑒𝑖 are planar and
the drawing remains outer quasiplanar. By next removing for every 𝑖 ∈ [𝑛] an edge 𝜈𝑖𝜈𝑖+1 that
was already present in Γ′′ (if any such edge exists), we obtain Γ′′′. Note that because of the
edge removal, no new parallel edges are created in the underlying graph. Further, note that
the underlying graph does not lose any edges in this step. Some edges are redrawn, however,
with less crossings than before.
The 𝑒𝑖 form an 𝑛-cycle on the boundary of Γ′′′. As argued throughout, Γ′′′ is an outer

drawing whose underlying graph has𝐺 as a subgraph. Also, as all added edges are planar and
𝐶′′′
Γ ⊆ 𝐶Γ , the resulting drawing satisfies 𝑃 and is non-homotopic and simple if Γ was.

Our best upper bound for the density of outer quasiplanar graphs is not proven via the
Density Formula but instead with a discharging argument. Before we present this, let us first
give an easier argument for a slightly worse bound that can be obtained with a Density Formula
argument. We use the fact that any — not necessarily simple — 𝑛-vertex non-homotopic
quasiplanar multigraph has at most 8𝑛 − 20 edges as proven in [Kau+24].

Lemma 4.16: Any non-homotopic outer quasiplanar multigraph on 𝑛 ≥ 3 vertices has at most
4.5𝑛 − 10 edges.

Proof. Let 𝐺 be a non-homotopic outer quasiplanar multigraph on 𝑛 vertices. By Lemma 4.15
there is a multigraph 𝐺 ′ ⊇ 𝐺 that admits a non-homotopic outer quasiplanar drawing Γ′

whose outer cell is bounded by an 𝑛-cycle 𝐶 .
Let 𝐸in ⊆ 𝐸 (𝐺 ′) be the set of edges not on the 𝑛-cycle in Γ′. Consider Γ′ as drawn on the

lower hemisphere of 𝕊2 such that the image of 𝐶 in 𝐺 ′ under Γ′ is the equator. Let Γ′′ be
created from Γ′ by creating for every edge 𝑒 ∈ 𝐸in a copy 𝑒 ∈ 𝐸in and mirroring it along the
centre of the sphere.
The new drawing Γ′′ is quasiplanar as no edge crosses the equator and the lower and upper

hemispheres are copies of Γ′ which was quasiplanar by assumption. For the same reason,
non-homotopicity is not broken by any set of edges living entirely in one hemisphere. So, if
an empty lens exists in Γ′′ it must span both hemispheres. Such a lens would thus be bounded
by some 𝑒 ∈ 𝐸in and 𝑓 ∈ 𝐸in neither of which are edges in 𝐶 .
If the vertices 𝑢 and 𝜈 that 𝑒 and 𝑓 share have distance at least 2 on 𝐶 , a lens spanned by

𝑒 and 𝑓 contains some other vertex in its interior and is thus non-empty. If instead 𝑢, 𝜈 are
neighbours on the 𝑛-cycle, let 𝑔 ∉ {𝑒, 𝑓 } be the edge that connects them in 𝐶 . Then, the lens
spanned by 𝑒 and 𝑓 contains the lens spanned by 𝑒 and 𝑔 which was already present in Γ′. So,
as Γ′ is non-homotopic, the lens is non-empty.

Now we can apply the result about non-homotopic quasiplanar multigraphs from [Kau+24].
The underlying graph𝐺 ′′ of the drawing Γ′′ has |𝐸 (𝐺 ′′) | = 2|𝐸 (𝐺 ′) | − 𝑛 ≥ 2|𝐸 (𝐺) | − 𝑛 edges.
So, we obtain

|𝐸 (𝐺) | ≤ 1
2
|𝐸 (𝐺 ′′) | + 𝑛

2

≤ 1
2
(8𝑛 − 20) + 𝑛

2
= 4.5𝑛 − 10.
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4 Outer variants

Next, we turn to prove a better, tight bound for the edge density of outer quasiplanar graphs.
The proof is via discharging and only a slight variation of the edge density proof for non-outer
quasiplanar graphs in [AT07]. To prepare, we prove a general identity that is also one of the
core ingredients in deriving the Density Formula.

Lemma 4.17: For any drawing Γ of a connected mutligraph 𝐺 with at least one edge,

|𝑉 (𝐺) | − 2 =
∑︁
𝑐∈C

(
1
4
∥𝑐 ∥ − 1

)
.

Proof. Recall that we denote by S,X and C the sets of edge segments, crossings, and cells in Γ.
Consider the planarization of Γ. That is, the planar graph 𝐺 ′ whose vertices are the vertices
of 𝐺 and the crossings in Γ and whose edges are the edge segments of Γ.

Note that by applying the Handshake Lemma on 𝐺 ′ we get

|S | = |𝐸 (𝐺 ′) | = 1
2
©«

∑︁
𝜈∈𝑉 (𝐺 )

deg𝐺 (𝜈) + 4|X |ª®¬
= |𝐸 (𝐺) | + 2|X |.

With this equality and further double counting of edge segment-cell and vertex-cell incidences,
we can rewrite the sum in the statement as∑︁

𝑐∈C

(
1
4
∥𝑐 ∥ − 1

)
=
∑︁
𝑐∈C

(
1
4
(𝑒 (𝑐) + 𝜈 (𝑐)) − 1

)
=

1
4
(2|S | + 2|𝐸 (𝐺) |) − |C |

=
1
4
(4|𝐸 (𝐺) | + 4|X |) − |C |

= |𝐸 (𝐺) | + |X | − |C |.

Let Γ′ be the planar drawing of 𝐺 ′ induced by Γ. Then, the faces of Γ′ are precisely the cells
of Γ when viewed as subsets of ℝ2. Denote the set of faces in Γ′ as 𝐹 (𝐺 ′). Using the previous
equalities and Euler’s formula for planar graphs, one thus obtains∑︁

𝑐∈C

(
1
4
∥𝑐 ∥ − 1

)
= |𝐸 (𝐺) | + |X | − |C |

= |S | − |X | − |𝐹 (𝐺 ′) |
= |𝐸 (𝐺 ′) | − (|𝑉 (𝐺 ′) | − |𝑉 (𝐺) |) − |𝐹 (𝐺 ′) |
= |𝑉 (𝐺) | − 2,

as desired.

Now, to the proof of our tight upper bound. Note that this result is a special case of a
theorem by Capoyleas and Pach [CP92] who for any 𝑘 give tight density bounds for outer
𝑘-quasiplanar graphs. Our approach is closer to a Density Formula approach, however. We
use discharging with an initial assignment of charges and a first discharging step exactly as
in [AT07]. The second step then incorporates the special structure of the outer drawing.
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Figure 4.4:A simple graph on 8 vertices with the initial charge 𝑐ℎ in the proof of Theorem 4.18.

Theorem 4.18: Let 𝑛 ≥ 4 be a natural number. Let𝐺 be either a simple outer quasiplanar graph
or an outer non-homotopic quasiplanar multigraph on 𝑛 vertices. Then 𝐺 has at most 4𝑛 − 10
edges.

Proof. Since quasiplanarity is defined via a fccc, by Theorem 3.5 𝐺 admits an outer non-
homotopic quasiplanar drawing Γ. If the outer cell of Γ is not bounded by an 𝑛-cycle, we
instead work on the supergraph 𝐺 ′ of 𝐺 and drawing Γ′ obtained from Lemma 4.15. Note
that this retains non-homotopicity. Let 𝐶 denote the 𝑛-cycle bounding the outer cell of Γ′.

Before we begin the discharging argument, let us argue why we may assume 𝛿 (𝐺 ′) ≥ 3. To
this end, let 𝜈 be a vertex only adjacent to its two neighbours on 𝐶 . We apply induction on
𝐺 ′ − 𝜈 and obtain that 𝐺 ′ has at most 4(𝑛 − 1) − 10 + 2 ≤ 4𝑛 − 10 edges. Note that the base
case 𝑛 = 4 is trivial.
Now, we assign to each cell an initial charge 𝑐ℎ(𝑐) := ∥𝑐 ∥ − 4. Throughout the proof, we

give the changing charge distribution for the example graph depicted in Figure 4.4.

Claim 1: The total charge distributed initially is∑︁
𝑐∈C

(∥𝑐 ∥ − 4) = 4𝑛 − 8.

Proof of Claim. The claim immediately follows from multiplying both sides of Lemma 4.17 by
4.

In the first discharging step, we aim to redistribute the charges such that every cell has
charge at least 𝜈 (𝑐 )

5 . As Γ is non-homotopic and quasiplanar, it contains no cells of size 3 or
less by Observation 2.2. Thus, the only cell type which does not have charge 𝜈 (𝑐 )

5 initially is
the 4 -cell. Cells of type 4 have initial charge 0 as desired and for any cell 𝑐 of size at least 5,
the inequality can be confirmed by noticing 𝜈 (𝑐) ≤ ∥𝑐 ∥

2 and a short calculation:

𝜈 (𝑐)
5

≤ ∥𝑐 ∥
10

≤ ∥𝑐 ∥ − 4

⇔ ∥𝑐 ∥ ≥ 40
9

≈ 4.4
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Figure 4.5: Resulting charge 𝑐ℎ′ after the first discharging step from the proof of Theorem 4.18.
Each arrow indicates a charge of 1

5 being sent from a donor cell to another cell.

We assign to each 4 -cell a donor-cell fromwhich it receives the required 1
5 charge. Consider

any 4 -cell 𝑐 . Let 𝑒, 𝑓 be the two edges incident to the vertex on 𝑐 and consider the cell 𝑐′ on
the other side of the inner edge segment on 𝑐 . If 𝑐′ is not a 4 -cell, set 𝑐′ as the donor of 𝑐 . If
instead 𝑐 is a 4 -cell, consider the next cell after 𝑐′ to which 𝑒 and 𝑓 are incident. Repeat this
process until a cell is reached that is not a 4 -cell and assign it as a donor to 𝑐 . Note, that a

4 -cell cannot be the donor of another 4 -cell as 𝑒 and 𝑓 would then span an empty lens.
Now, gather for each 4 -cell 1

5 charge from its donor and denote the resulting charge
distribution by 𝑐ℎ′. We think of a donor as sending charge through its incident inner edge
segments. Thus, any cell loses at most 𝑒𝑖𝑛 (𝑐 )

5 charge in this first discharging step. For our
example graph, the charges after the first step are depicted in Figure 4.5.

Claim 2: For any cell 𝑐 , its charge after the first step is 𝑐ℎ′(𝑐) ≥ 𝜈 (𝑐 )
5 .

Proof of Claim. For 4 - and 4 -cells this is immediate from the construction. For any other
cell 𝑐 — again by Observation 2.2 and quasiplanarity — ∥𝑐 ∥ ≥ 5 and by using 𝑒𝑖𝑛 (𝑐)+𝜈 (𝑐) ≤ ∥𝑐 ∥
we obtain

𝑐ℎ′(𝑐) − 𝜈 (𝑐)
5

= ∥𝑐 ∥ − 4 − 𝑒𝑖𝑛 + 𝜈 (𝑐)
5

≥ 4
5
∥𝑐 ∥ − 4 ≥ 0

and thus 𝑐ℎ′(𝑐) ≥ 𝜈 (𝑐 )
5 .

In the second and final discharging step, we collect for each vertex the excess charge of its
incident inner cells. That is, each inner cell 𝑐 distributes 𝑐ℎ′(𝑐) − 𝜈 (𝑐 )

5 charge equally between
its incident vertices. We denote the resulting charge distribution (now a function on cells
and vertices) by 𝑐ℎ′′. Note that Claim 2 also holds for 𝑐ℎ′′. Charges after the second step are
shown for our example graph in Figure 4.6.

Claim 3: For any vertex 𝜈 , 𝑐ℎ′′(𝜈) ≥ 3
5 .

Proof of Claim. Let 𝜈 be any vertex. Since we assume that every vertex has degree at least 3,
𝜈 is incident to at least two inner cells. Consider the two inner cells incident to the previous
and next vertex on 𝐶 . We will argue that both cells send at least 3

10 charge to 𝜈 , thus proving
the inequality.
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Figure 4.6: Resulting charge 𝑐ℎ′′ after the second and final discharging step 𝑐ℎ′′ from the
proof of Theorem 4.18. Each arrow indicates a charge of 3

10 being sent from a cell to a vertex.

Let 𝑐 be one such cell. Note that 𝑒 (𝑐) ≥ 3 as 𝑐 is incident to a planar edge 𝑢𝜈 on 𝐶 and —
since 𝛿 (𝐺 ′) ≥ 3 — two edge segments incident to 𝑢 and 𝜈 respectively that are distinct by
non-homotopicity. Note further that 𝑒𝑖𝑛 (𝑐) ≤ 𝑒 (𝑐) − 3 as each of these three edge segments is
incident to a vertex. With this, we can bound the charge at 𝑐 after the first step

𝑐ℎ′(𝑐) ≥ ∥𝑐 ∥ − 4 − 1
5
𝑒𝑖𝑛 (𝑐)

≥ 𝑒 (𝑐) + 𝜈 (𝑐) − 4 − 1
5
(𝑒 (𝑐) − 3)

=
4
5
𝑒 (𝑐) + 𝜈 (𝑐) + 3

5
− 4

≥ 12
5

+ 𝜈 (𝑐) + 3
5
− 4

= 𝜈 (𝑐) − 1.

Finally, using 𝜈 (𝑐) ≥ 2, the charge sent to each incident vertex of 𝑐 is

1
𝜈 (𝑐)

(
𝑐ℎ′(𝑐) − 𝜈 (𝑐)

5

)
≥ 1
𝜈 (𝑐)

(
𝜈 (𝑐) − 1 − 𝜈 (𝑐)

5

)
=

4
5
− 1
𝜈 (𝑐)

≥ 4
5
− 1

2
=

3
10
.

So, in total 𝑐ℎ′′(𝜈) ≥ 3
5 , proving the Claim.
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4 Outer variants

Figure 4.7: A simple graph on 8 vertices illustrated in an outer quasiplanar drawing. The
depicted graph is densest possible with this property as it matches the bound in Theorem 4.18.
It is also the example graph used throughout the proof of the Theorem.

To finish the proof, notice that the outer cell 𝑐0 was initially assigned 2𝑛 − 4 charge and
did not send any charge to other cells or vertices. Thus, 𝑐ℎ′′(𝑐0) = 𝜈 (𝑐0 )

5 + 9
5𝑛 − 4. Using all

previous claims, we thus obtain

4𝑛 − 8 =
∑︁
𝑐∈C

𝑐ℎ(𝑐) =
∑︁
𝜈∈𝑉

𝑐ℎ′′(𝜈) +
∑︁
𝑐∈C

𝑐ℎ′′(𝑐)

≥
∑︁
𝑐∈C

𝜈 (𝑐)
5

+
∑︁
𝜈∈𝑉

3
5
+ 9

5
𝑛 − 4

=
2
5
|𝐸 | + 12

5
𝑛 − 4

where we double count the vertex-cell incidences for the last equality. Solving for |𝐸 | we get

|𝐸 | ≤ 5
2

(
8
5
𝑛 − 4

)
= 4𝑛 − 10

as desired.

The next construction shows that the bound in Theorem 4.18 is optimal. For 𝑛 = 8 an
example achieving the bound is depicted in Figure 4.7.

Construction 4.19: For infinitely many 𝑛 there is a simple 𝑛-vertex outer quasiplanar graph
with 4𝑛 − 10 edges.

Proof. We construct the family by taking subdrawings of a family of quasiplanar graphs given
in [Kau+24]. Thus, quasiplanarity of the drawing is immediate.

Start with an 𝑛-cycle 𝐶 drawn as a regular simple polygon. Connect any pair of vertices at
distance 2 on 𝐶 by a straight line. Now, add two zig-zag paths on the inside of 𝐶 such that all
the edges connect vertices with distance at least 3 on 𝐶 .
The 𝑛-cycle and the edges of “length” 2 give 2𝑛 edges. Further, each zig-zag path introduces

𝑛 − 5 further edges. We thus obtain the claimed density.

Note that our lower bound construction produces simple drawings. Hence — in contrast to
the non-outer case — the edge density of outer quasiplanar graphs does not change when
restricting to simple drawings.
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5 Lower bounds for simple quasiplanar
graphs

This chapter presents a short detour from the main topics of this thesis. Kaufmann et al.
[Kau+24] give the only known examples of non-homotopic quasiplanar drawings which
achieve the optimal upper bound of 8𝑛 − 20 edges. However, their underlying graphs have
parallel edges and are thus not simple..

Indeed, the exact edge density of simple graphs that admit quasiplanar drawings is currently
unknown. A first lower bound construction with 7𝑛 − 29 edges is given by Ackerman and
Tardos in [Ack09]. By removing parallel edges in the 8𝑛 − 20 construction of Kaufmann et al.,
one obtains a slightly better lower bound of 7𝑛 − 28.
In this chapter, we improve on this in the linear term by constructing a family of simple

graphs with 7.5𝑛 − 28 edges that admit quasiplanar drawings.

Construction 5.1: For every even 𝑛 ≥ 16, there is a simple graph on 7.5𝑛 − 28 edges that admits
a non-homotopic quasiplanar drawing.

Proof. Let 𝑛 be even. We describe a drawing on 𝑛 vertices with the desired properties but
only outline the edges’ paths. Figure 5.1 depicts the paths more precisely. We draw

1 an 𝑛
2 -cycle 𝐶0 drawn as a circle with equidistant points.

2 another 𝑛
2 -cycle 𝐶1, a concentric copy of 𝐶0 with larger diameter such that vertices on

𝐶0 and 𝐶1 are radially aligned.

Call two aligned vertices on 𝐶0 and 𝐶1 partners. Further, for any vertex 𝑥 let us denote the
vertex reached by taking 𝑘 clockwise steps on the cycle of 𝑥 as 𝑥+𝑘 . Also denote by 𝑥 ′+𝑘 the
partner of 𝑥+𝑘 . We continue drawing

3 an edge between any pair of partners.

4 for any vertex 𝜈 , a straight edge to 𝜈 ′+1.

5 for any vertex 𝜈 on 𝐶0 an edge from 𝜈 to 𝜈+2, drawn through the interior of 𝐶0.

6 for any vertex 𝜈 on 𝐶1 an edge from 𝜈 to 𝜈+2, drawn through the exterior of 𝐶1.

7 for any vertex 𝜈 on 𝐶0, an edge to 𝜈 ′+2. The edge first moves through the space between
𝐶0 and 𝐶1, crosses 𝐶1 between the partner of 𝜈 and its neighbour and then continues
through the exterior of 𝐶1.

8 for any vertex 𝜈 on 𝐶1, an edge to 𝜈 ′+2. Edges are drawn symmetrically to the last step
with the roles of 𝐶0 and 𝐶1 reversed.

9 an edge between 𝜈 and 𝜈+3 for any vertex 𝜈 on𝐶0. Going clockwise, the edge first passes
through the space between𝐶0 and𝐶1. It crosses𝐶0 between the two vertices on𝐶0 after
the starting vertex and then goes through the interior of 𝐶0.
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5 Lower bounds for simple quasiplanar graphs

10 an edge between 𝜈 and 𝜈+3 for any vertex 𝜈 on 𝐶1. The edge travels as in the previous
step with the roles of 𝐶0 and 𝐶1 reversed.

11 a zig-zag path in the interior of 𝐶0 whose edges connect vertices of distance at least 4
on 𝐶0. By zig-zag path we mean a path that starts at some vertex 𝜈0 on 𝐶0, connects it
to the vertex 𝜈1 reached by 4 clockwise steps, then connects 𝜈1 to 𝜈2 reached from 𝜈1
by 5 counterclockwise steps. This goes on — increasing the number of steps by 1 for
each new vertex and alternating between clockwise and counterclockwise — until two
vertices are connected that are at distance 4 on 𝐶0.

12 a second zig-zag path in the interior of 𝐶0 that starts at some other vertex such that no
parallel edges are created.

13 a zig-zag path in the exterior of 𝐶1, again connecting vertices of distance at least 4 on
𝐶1.

14 another such zig-zag path in the exterior of 𝐶1.

The first three steps add 𝑛
2 edges each, the next step 𝑛 edges, the six steps after that again

𝑛
2 edges each, and the last four steps 𝑛

2 − 7 edges each. Thus, in total, the drawing contains

13
𝑛

2
+ 𝑛 − 4 · 7 = 7.5𝑛 − 28

edges. As each step connects vertices at different distances, the underlying graph is simple.
We now argue quasiplanarity of the drawing. First, consider all edges except those in

zig-zag paths. These edges can be coloured in three colours as depicted in Figure 5.1 such
that edges of the same colour do not cross. Now, the edges coloured black, that is those from
3 , only cross two edges each, which in turn do not cross. So, as any three pairwise crossing
edges would involve one black edge, we have confirmed quasiplanarity except for the zig-zag
paths.

Now consider without loss of generality the zig-zag paths 𝑃 and 𝑃 ′ in the interior of𝐶0 and
some edge 𝑒 = 𝑢𝜈 in 𝑃 . We argue that 𝑒 is not part of three pairwise crossing edges. Observe
that 𝑒 is crossed by three groups of edges: 1. Edges in 𝑃 ′, 2. edges that are not on zig-zag
paths and cross 𝑒 at 𝑢, and 3. edges that are not on zig-zag paths and cross 𝑒 at 𝜈 .

We argue that no edges from 1., 2., or 3. cross. To start, no pair of edges in the same group
cross since 𝑃 ′ is drawn without self-crossing and edges in 2. and 3. have the same colour in
Figure 5.1. Next, an edge from 2. cannot cross an edge from 3. since 𝑢 and 𝜈 have distance at
least 4 on 𝐶0, which two edges cannot span while crossing. Further, note that no edge in 1. is
incident to 𝑢 or 𝜈 . However, edges in 2. and 3. cross edges from zig-zag paths only at 𝑢 and 𝜈 ,
so they cannot cross edges from 1. Thus, 𝑒 is not part of three pairwise crossing edges and in
total, the drawing is quasiplanar.
Note that the existence of a non-homotopic drawing is guaranteed by Theorem 3.4. Still,

the given drawing is already non-homotopic. To argue this, it can be observed that when
constructing the drawing iteratively as above, its simplicity is only broken by the edges added
in 8 and 9 . Each such edge is part of four lenses. One with an edge that has a common
vertex and three with edges it crosses twice. However, as highlighted in Figure 5.1, the four
lenses are non-empty and thus the drawing is non-homotopic.
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Figure 5.1: The drawing constructed in Construction 5.1 for 𝑛 = 24 with the outer zig-zag
paths omitted for visual clarity. The edges are coloured such that identically coloured edges
do not cross. Although a global colouring of this kind can only be found if 4 divides 𝑛, locally
such a colouring is always possible. The thick dashed cyan line forms lenses with the four
thick dashed magenta lines, none of which are empty, however.
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6 Forbidding cells

In this chapter, we investigate edge densities of graphs that admit drawings not including
some fixed cell type 𝔠. Recall that a graph is called 𝔠-free if it admits a drawing without cells
of type 𝔠. To keep the scope of this chapter manageable, we restrict our discussion to simple
graphs. In this setting, we will find that a forbidden cell either admits drawings of graphs
with quadratic or linear edge density. Our results are collected in Table 6.1.

6.1 Arbitrary drawings

Before considering non-homotopic or simple drawings in the following sections, we prove
that edge densities of arbitrary drawings without a single cell type are always quadratic.

Theorem 6.1: For any cell type 𝔠, the edge density of 𝔠-free graphs is in Θ(𝑛2).

Proof. Let 𝔠 be any cell type, and 𝑘 = ∥𝔠∥ the size of 𝔠. The implied upper bound of O(𝑛2) is
trivial, as the number of edges in a graph is at most quadratic. Thus, in future proofs, we omit
this step.
For the lower bound, we distinguish two cases. If 𝑘 ≤ 2, consider straight line drawings

of 𝐾𝑛 with vertices on a circle as in Figure 6.2. For 𝑛 ≥ 3 the boundary of any cell in such
drawings is a convex polygon and so every cell has size at least 3.
If otherwise 𝑘 ≥ 3 we prove that for any 𝑛 ≥ 3, there is some graph on 𝑛 vertices with(

𝑛−4
2
)
+ 2 edges and an arbitrary 𝔠-free drawing. To this end, consider any drawing Γ of 𝐾𝑛−4.

Then, take a curve 𝑠 that adheres to all the properties we assume of edges in drawings and that
passes through every cell of type 𝔠 in Γ. This is depicted in Figure 6.1a. Take a “thickening” 𝑠′
of 𝑠 , i.e. choose a sufficiently small width𝑤 ∈ ℝ such that

⋃
𝑡 ∈[0,1] 𝐵𝑤 (𝑠 (𝑡)) only intersects

edges of Γ where 𝑠 does.
We alter Γ by adding two vertices 𝜈1, 𝜈2 on one end of 𝑠′ and two further vertices 𝑢1, 𝑢2

on the other end. Further, draw two edges 𝑒1 = 𝜈1𝑢1, 𝑒2 = 𝜈2𝑢2 through 𝑠′ which intersect
𝑘 + 1 times whenever 𝑠 passes through a cell. If 𝔠 = 3 , we additionally add some crossings
whenever 𝑠′ crosses an edge in Γ as depicted in Figure 6.1. Thus, if 𝔠 ≠ 3 any cell in the

Drawing \ Forbidden cell 3 4 4 5 Other
arbitrary Θ(𝑛2) Θ(𝑛2) Θ(𝑛2) Θ(𝑛2) Θ(𝑛2)

non-homotopic 8𝑛 − 20 Θ(𝑛2) ≥ 6𝑛 − 12 6𝑛 − 12 Θ(𝑛2)
simple 6.5𝑛 − 20 ≥ 4.2(𝑛 − 2) ≥ 6𝑛 − 12 6𝑛 − 12 Θ(𝑛2)

Table 6.1: Overview of edge density bounds for simple 𝑛-vertex graphs that admit an
arbitrary/non-homotopic/simple drawing (rows) without some fixed cell type (columns).
An entry Θ(𝑛2) indicates quadratic asymptotic growth of the edge density. Entries preceded
by “≥” claim a lower bound for infinitely many 𝑛. An entry without this prefix is an upper
bound for 𝑛 ≥ 4 as well as a lower bound for infinitely many 𝑛.
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6 Forbidding cells

(a)

> k

> k

3 2 2 2 2 2 2 3

(b)
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Figure 6.1: In the proof of Theorem 6.1, undesired cells of size 𝑘 are eliminated by drawing a
path through all of them (a) and replacing it with two edges which cross 𝑘 + 1 times in each
cell the path traverses (b). If 3 -cells are forbidden, the pattern the two edges form when
crossing an edge in the original drawing is slightly altered (c).

resulting drawing that is incident to 𝑒1 or 𝑒2 is either one of the many 2 - and 3 -cells created
by the intersection of 𝑒1 and 𝑒2 or has size at least 𝑘 +1. If otherwise 𝔠 = 3 , instead of 3 -cells,
the construction creates 4 - and 5 -cells. As 𝑠 visits all cells of type 𝔠 in Γ, this cell type is not
present in the altered drawing. Finally, because the number of vertices and edges is as above
and the construction works for any 𝑛 we have found a family with the desired properties and
edge density Θ(𝑛2).

For some cell types 𝔠, we will later give simpler constructions of arbitrary 𝔠-free drawings
with quadratic edge density. In light of the previous theorem, these will not give us new
results. Instead, the goal of presenting them will be either for contrast to the non-homotopic
or simple case, or to introduce a new method of eliminating cells.

6.2 Uncommon cell types

The results in this chapter will be mostly proven by giving explicit drawings of families of
dense graphs without the forbidden cell type. All of these give quadratic lower bounds in
the setting of simple drawings. Naturally, these translate to the less restrictive settings of
non-homotopic and arbitrary drawings.
There are alternative proofs for Lemma 6.2 and Lemma 6.3 which show that any drawing

containing the forbidden cell type can be augmented by adding a linear number of vertices
and edges so that all occurrences of the forbidden cells vanish. While these proofs show more
general results, we do not give them here, as their ideas are simple and do not assist our aim
of computing edge densities further.

Lemma 6.2: For any cell type 𝔠 whose boundary contains at least two vertices, the edge density
of graphs that admit a simple 𝔠-free drawing is in Θ(𝑛2).

Proof. Let 𝔠 be such a cell type and 𝑢, 𝜈 ∈ 𝜕𝔠 two vertices on its boundary.
If 𝑢 and 𝜈 are connected by an edge on 𝔠, this edge is planar. Thus, taking a drawing Γ of a
complete graph on 𝑛 vertices with 𝑝 planar edges, we achieve a drawing without cells of type
𝔠 by adding 𝑝 edges on 2𝑝 new vertices to cross all planar edges. We are left with an altered
drawing on at most 𝑛 + 2𝑝 ≤ 𝑛 + 2 · 3(𝑛− 6) ∈ O(𝑛) vertices and at least 𝑛 (𝑛−1)

2 ∈ Ω(𝑛2) edges.
This proves the claim in this case.
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6.3 The 3 -cell

Figure 6.2: A circular layout straight line drawing of a complete graph contains only few
different cell types incident to at least one vertex. This is used in Lemma 6.2 and Lemma 6.3.

If 𝑢 and 𝜈 are not connected, we consider a straight-line drawing Γ of a complete graph on 𝑛
vertices in a circular layout as shown in Figure 6.2. If Γ does not contain a copy of 𝔠, we are
done. Otherwise, 𝔠 is the outer cell. Thus, any other choice of 𝑛 does not contain the forbidden
cell type, so for 𝑛 large enough we have examples with a quadratic number of edges.

Lemma 6.3: For any cell type 𝔠 whose boundary contains one vertex except the 4 -cell, the edge
density of simple 𝔠-free graphs is in Θ(𝑛2).

Proof. Consider the circular layout drawing of 𝐾𝑛 in Figure 6.2. The only cells with one
incident vertex it contains are 4 -cells, finishing the proof.

To show quadratic edge density for cells without incident vertices, we consider a different
drawing of the complete graph.

Lemma 6.4: For any cell type 𝔠 whose boundary contains no vertices except the 3 -, 4 and
5 -cell, the edge density of simple 𝔠-free graphs is in Θ(𝑛2).

Proof. We consider 3-bend drawings of𝐾𝑛 as depicted for 𝑛 = 8 in Figure 6.3 where all vertices
lie on a straight line 𝑙 .
Note that no two incident edges cross. Since any other pair of edges cross if and only if

their endpoints alternate on 𝑙 and then only once, the drawing is simple. Finally, because all
cells with no incident vertices are 3 -, 4 -, and 5 -cells, the claim follows.

With this, 3 -, 4 -, 4 - and 5 -cells are the only cells for which we have not yet determined
the edge densities. For 3 - and 5 -cells we will fully characterize the respective edge densities
for non-homotopic and simple drawings. In the case of 4 - and 4 -cells, we can only present
partial results, however.

6.3 The 3 -cell

For the case of 3 -cells, one has to look no further than the proof of the first tight upper
bound for the edge density of quasiplanar graphs by Ackerman and Tardos [AT07].

31



6 Forbidding cells

3
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4

4
4
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Figure 6.3: A 3-bend drawing of a complete graph. All cells without incident vertices have
size 3, 4 or 5.

In their paper, they recognize “We have not used the quasi-planarity assumption in full
generality [...]. All we used is the assumption that the drawing does not yield 0-triangles, i.e.,
three pairwise crossing edges determining an empty triangle with no vertex inside.”

By “0-triangle” they denote a cell with three incident edge segments and no incident vertex,
i.e., a 3 -cell.

6.3.1 Non-homotopic drawings

Ackerman and Tardos [AT07] prove that any graph on 𝑛 ≥ 3 vertices and drawn without
3 -cells has at most 8𝑛− 20 edges. They implicitly use that their drawings are non-homotopic.
Formally, they assume that the number of crossings in their quasiplanar drawing is minimal.
However, they only apply this to rule out empty lenses and cells of size 1 similar to what we
did in Theorem 4.18. We thus obtain the following without proof.

Theorem 6.5: A non-homotopic 3 -free graph on 𝑛 ≥ 3 vertices contains at most 8𝑛 − 20 edges.

For non-homotopic multigraphs, this bound is tight as already apparent from the respective
examples for quasiplanar graphs from [Kau+24]. However, in contrast to quasiplanar graphs
(see Chapter 5), we can even give examples of simple graphs which achieve this bound up to
an additive constant. The previously best known lower bound was 7.5𝑛 −O(1), found also in
[AT07].

Construction 6.6: For infinitely many 𝑛, there is a simple graph on 𝑛 vertices and 8𝑛 − 28 edges
that admits a non-homotopic drawing without 3 -cells.

Proof. Take Construction 5.1 as a base drawing. Recall that 𝐶0 is the inner cycle, 𝐶1 the outer
cycle and two aligned vertices on the cycles are partners. Also, recall that we denote a vertex
as 𝑥+𝑘 if it is reached by taking 𝑘 clockwise steps from 𝑥 on its cycle. Further, denote by 𝑥 ′+𝑘
the partner of 𝑥+𝑘 .

32



6.3 The 3 -cell

Figure 6.4: A graph with 𝑛 = 24 vertices drawn as in Construction 6.6 with no 3 -cells. The
drawing is as in Figure 5.1 with some additional edges, drawn thick and green. The drawing is
not quasiplanar as shown by the three dashed edges. However, each region bounded by a triple
of edges which pairwise cross contains a vertex. This region is marked for the highlighted
triple with a pink background.
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6 Forbidding cells
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Figure 6.5: By adding 𝑛 − 4 edges, all 5 -cells can be eliminated in drawings of 𝐾𝑛 as depicted
in Figure 6.3. This introduces empty lenses (the marked triangle in the zoomed-in region),
however.

Now, for any vertex 𝜈 on 𝐶1 draw an edge from 𝜈 to 𝜈 ′+3 that first moves through the space
between 𝐶0 and 𝐶1, crosses 𝜈+1𝜈

′
+1, enters the interior of 𝐶0 through 𝜈 ′+1𝜈

′
+2 and then ends in

𝜈 ′+3. The resulting drawing is shown in Figure 6.4. Checking along the paths of the newly
added edges, it can be verified that the drawing remains 3 -free. Note that this process adds
𝑛
2 edges, none of which are parallel to each other or previous edges. Therefore we obtain the
claimed density.

6.3.2 Simple drawings

Here, Ackerman and Tardos [AT07] provide a better upper bound which again holds in the
3 -free setting.

Theorem 6.7: A graph on 𝑛 ≥ 4 vertices that admits a simple 3 -free drawing contains at most
6.5𝑛 − 20 edges.

The tightness of this bound — even for simple graphs — has already been implicitly estab-
lished by Kaufmann et al. in [Kau+24] who give an infinite family with the desired properties.

6.4 The 5 -cell

We will prove that the density of 5 -free graphs depends on whether we restrict to non-
homotopic drawings or not. For the arbitrary case, as an alternative to Theorem 6.1, we give
a simpler construction without 5 -cells.

Theorem 6.8: The edge density of 5 -free graphs is in Θ(𝑛2).

Proof. Consider the drawings of 𝐾𝑛 used in Lemma 6.4. There are 𝑛− 4 layers of 5 -cells, each
of which can be eliminated by drawing a horizontal edge. The resulting drawing in which
each new edge is adjacent to two new vertices is depicted in Figure 6.5.
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6.4 The 5 -cell

Evidently, no new 5 -cells are introduced. As the number of new vertices is linear in 𝑛, the
density of this family remains in Θ(𝑛2).

Note that the drawing is not non-homotopic as the new edges form empty lenses.

The following proof for the edge density of non-homotopic 5 -free cells uses a similar
core idea as the proof of Theorem 4.18. We will not present this in the form of discharging,
however (although it is possible) but by relating the number of cells of different types.

Theorem 6.9: For 𝑛 ≥ 3, any 𝑛-vertex graph that admits a non-homotopic drawing without
5 -cells has at most 6𝑛 − 12 edges.

Proof. Consider any 𝑛-vertex graph 𝐺 and a non-homotopic drawing Γ of 𝐺 without 5 -cells.
We may assume that 𝐺 is connected as otherwise an induction on the connected components
completes the argument.
The proof can essentially be reduced to proving the following claim.

Claim 1: We denote by C≥5 the set of cells with size at least 5. Then,

3# 3 -cells + # 4 -cells ≤
∑︁
𝑐∈C≥5

(3𝑒 (𝑐) + 2𝜈 (𝑐) − 12) .

Suppose, we had a proof of this claim. Then, since there are no cells of size less than 3 by
Observation 2.2 and for 4 -cells, 3𝑒 (𝑐) + 2𝜈 (𝑐) − 12 = 0, we equivalently get

0 ≤ −3
2

# 3 -cells − 1
2

# 4 -cells +
∑︁
𝑐∈C≥5

(
3
2
𝑒 (𝑐) + 𝜈 (𝑐) − 6

)
=
∑︁
𝑐∈C

(
3
2
𝑒 (𝑐) + 𝜈 (𝑐) − 6

)
.

Used in conjunction with the identity in Lemma 4.17 multiplied on both sides by 6, the
Theorem follows

|𝐸 | = 1
2

∑︁
𝑐∈C

𝜈 (𝑐) ≤
∑︁
𝑐∈C

(
3
2
𝑒 (𝑐) + 3

2
𝜈 (𝑐) − 6

)
=
∑︁
𝑐∈C

(
3
2
∥𝑐 ∥ − 6

)
= 6(𝑛 − 2) .

We are thus only left with proving the claim.

Proof of Claim. Note that 3# 3 -cells + # 4 -cells counts the number of inner edge segments
that are incident to 3 - or 4 -cells.
To each such segment, we assign a cell of size at least 5 in the same manner as in the first

discharging step of Theorem 4.18. Consider an inner edge segment 𝑠 at a 3 - or 4 -cell 𝑐0 and
let 𝑒 be the two edges on 𝑐0 that cross 𝑠 . The cell 𝑐1 on the other side of 𝑠 is also incident to 𝑒
and 𝑓 . If 𝑐1 is a 4 -cell, consider the next cell 𝑐2 when following 𝑒 and 𝑓 through 𝑐1. Otherwise
assign 𝑐1 to 𝑠 . Repeat this process for 4 -cells, until a cell 𝑐𝑘 that is not a 4 -cell is encountered
and assign it to 𝑠 . Note that 𝑐𝑘 ∈ C≥5 since if it was a 3 - or 4 -cell, 𝑒 and 𝑓 would form an
empty lens — contradicting non-homotopicity.

Since the above assignment is unambiguous and the “paths” of 4 -cells can also be uniquely
followed backwards, each cell 𝑐 ∈ C≥5 is assigned at most 𝑒𝑖𝑛 (𝑐) inner edge segments and
therefore

3# 3 -cells + # 4 -cells ≤
∑︁
𝑐∈C≥5

𝑒𝑖𝑛 (𝑐).
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6 Forbidding cells

We prove 𝑒𝑖𝑛 (𝑐) ≤ 3𝑒 (𝑐) + 2𝜈 (𝑐) − 12 for each 𝑐 ∈ C≥5 via a case analysis. This then implies the
claim. Note that the inequality does not hold for 5 -cells, so here is where we use 5 -freeness.

If ∥𝑐 ∥ ≥ 6, then

3𝑒 (𝑐) + 2𝜈 (𝑐) − 12 = 𝑒 (𝑐) + 2 ∥𝑐 ∥ − 12 ≥ 𝑒 (𝑐) ≥ 𝑒𝑖𝑛 (𝑐) .

If 𝑐 is a 5 -cell, then
3𝑒 (𝑐) + 2𝜈 (𝑐) − 12 = 2 = 𝑒𝑖𝑛 (𝑐) .

If otherwise 𝑐 is a 5 -cell, then

3𝑒 (𝑐) + 2𝜈 (𝑐) − 12 = 1 ≥ 0 = 𝑒𝑖𝑛 (𝑐) .

By the previous argument, this completes the proof.

The next construction implies that this bound is optimal not only for non-homotopic but
also for simple graphs.

Construction 6.10: There are infinitely many 𝑛 for which there is a simple graph on 𝑛 vertices
and 6𝑛 − 12 edges with a simple 5 -free drawing.

Proof. To see this, take any graph 𝐺 with a plane triangulation. Then draw for each vertex 𝜈
and each incident face 𝑓 an edge starting in 𝜈 . Let 𝑒 be the edge opposite 𝜈 on 𝑓 , 𝑓 ′ the face
on the other side of 𝑒 , and 𝜈 ′ the vertex opposite to 𝑒 on 𝑓 ′. Draw the new edge by starting in
𝜈 , traversing 𝑓 and 𝑓 ′ by crossing 𝑒 and ending in 𝜈 ′.

Note that we need some structural assumptions on our starting triangulation of 𝐺 to not
obtain parallel edges or loops during the construction. To avoid loops, no edge 𝑒 should be
opposite to the same vertex on both its incident faces. For no parallel edges to be created, there
may not be two edges opposite to the same two vertices on their incident faces. Constructing
triangulations that fulfil these assumptions is not difficult. An infinite family emerges, for
example, by taking a plane triangulation of the icosahedral graph and iteratively replacing
the innermost face by plane triangulations of the icosadrehal graph.
Figure 6.6 depicts how the construction affects the surroundings of a face in the plane

triangulation. It is apparent that indeed no 5 -cells are created and no 4 - and 3 -cells form
any lenses.

For the edge density, note that the procedure doubles the degree of each vertex. Since the
number of edges in plane triangulations on 𝑛 ≥ 3 vertices is 3𝑛 − 6, the resulting drawing has
6𝑛 − 12 edges, as desired.

6.5 The 4 -cell

We will only mention preliminary results for this cell type as we were unable to determine any
non-trivial upper bounds or superlinear lower bounds. The best lower bound we are aware
of stems from the family of graphs obtained in Construction 6.10 as the simple drawings
constructed of these graphs are 4 -free. We thus obtain the following theorem which we state
without proof.

Theorem 6.11: There are infinitely many 𝑛 such that there is a graph on 𝑛 vertices and 6𝑛 − 12
edges that admits a simple 4 -free drawing.

We postpone a discussion of why better lower and upper bounds might be hard to find to
Chapter 7.
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6.6 The 4 -cell

Figure 6.6: Illustration of the local construction process used for non-homotopic drawings of
graphs with 6𝑛 − 12 edges and no 5 -cell.

Figure 6.7: Illustration of the wave pattern used in the proof of Lemma 6.12 and how the
pattern can be bent around a vertex to eliminate any occurrence of 4 -cells.

6.6 The 4 -cell

We will consider arbitrary, non-homotopic, and simple drawings independently in this section,
as the relatively straightforward approach we use to deal with arbitrary and non-homotopic
drawings is insufficient to deal with simple drawings.

6.6.1 Arbitrary and non-homotopic drawings

Lemma 6.12: Any drawing of a graph on 𝑛 vertices can be made 4 -free by adding 4𝑛 vertices
and 2𝑛 edges. In particular, the edge density of graphs that can be drawn without 4 -cells is in
Θ(𝑛2).

Proof. Take for each vertex 𝜈 a neighbourhood 𝑈𝜈 around its position in the plane such that
its intersection with the drawing only contains 𝜈 and a single connected segment of each
incident edge of 𝜈 . W.l.o.g. these neighbourhoods are disjoint as otherwise one can shrink
them while preserving the conditions.
In each 𝑈𝜈 , draw two new edges 𝑒1, 𝑒2 on four new vertices. The two edges form a wave

pattern, crossing each other multiple times as depicted in Figure 6.7. This pattern is then bent
into a circle around 𝜈 such that 𝑒1 and 𝑒2 alternate being closer or farther from 𝜈 . Then, let
the edges incident to 𝜈 cross over this circle before leaving 𝑈𝜈 so that no two edges cross the
same edge segment of 𝑒1 and 𝑒2.
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6 Forbidding cells

Figure 6.8: Illustration of the braid pattern used in proving Theorem 6.13. When it is drawn
from left to right, no crossing except those marked green on the left can introduce an empty
lens.

In the resulting drawing, there is no 4 -cell incident to 𝜈 as all edges incident to 𝜈 cross
different edge segments first. Further, the four new vertices in 𝑈𝜈 are only incident to one
cell, which they all share. Thus, they are also not incident to any 4 -cell. There is no 4 -cell
in the drawing and so the Lemma holds.

The construction in the previous proof does not result in a non-homotopic drawing, as the
wave pattern creates empty lenses. However, a more complex edge pattern will allow us to
apply the same idea while preserving non-homotopicity.

Theorem 6.13: Any non-homotopic drawing of a graph on 𝑛 vertices can be made 4 -free while
preserving non-homotopicity by adding 14𝑛 vertices and 7𝑛 edges. In particular, the edge density
of graphs that admit non-homotopic drawings without 4 -cells is in Θ(𝑛2).

Proof. We proceed as in the proof of Lemma 6.12, only changing the pattern we put around
each vertex.
Consider the partial braid pattern consisting of 7 curves depicted in Figure 6.8. Drawing

this pattern from left to right, notice that under the assumption that the crossings on the left
marked in green can be drawn without introducing empty lenses, the remaining crossings can
all be drawn without breaking non-homotopicity — no matter how the edges behave left of
the green crossings. This holds in particular for the crossings on the right marked in orange,
which form the same pattern as the green crossings, only mirrored along a horizontal axis. By
induction, the pattern can thus be repeated indefinitely if the green crossings can be drawn a
first time. This can be accomplished by having no crossings preceding to the left.

Note that in this braid pattern, the number of distinct edge segments on the bottom can be
increased indefinitely. So, bending one such pattern around each vertex as in Lemma 6.12
and drawing the edges straight through the braid pattern, we are left with no 4 -cells.
The resulting drawing is non-homotopic as both the braid pattern and original drawing are
non-homotopic and edges crossing a braid pattern cross each braid edge at most once.

6.6.2 Simple drawings

In the remainder of this chapter, we consider the edge density of 4 -free simple drawings.
For this, we assume all drawings referred to from now on to be simple. Let us already remark
that we found neither a subquadratic upper bound nor a superlinear lower bound in this
setting. Nonetheless, we can make some observations that we believe give further insight
into the problem.
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6.6 The 4 -cell

We begin by trying to approach the problem as in the arbitrary and non-homotopic setting.
Thus, our goal is to find a pattern similar to the braid or wave pattern. We will argue why a
pattern with the properties we desire cannot exist.

The general framework is as before: For some vertex 𝜈 in our drawing, we want a configu-
ration of edges on a small number of vertices that has a comparatively large number of edge
segments that are incident to the outer cell. If we have this, bending the pattern around 𝜈 ,
we would redirect the edges incident to 𝜈 such that each edge crosses a unique outer edge
segment of the configuration first. Thus, the number of outer edge segments in our pattern
cannot be smaller than the degree of 𝜈 .
We only consider patterns with a linear edge density as we do not want to rely on the

existence of 4 -free graphs with superlinear edge density. Thus, we may assume — by
splitting each vertex 𝜈 into deg(𝜈) vertices of degree 1 — that our pattern is a simple drawing
of 𝑘 independent edges on 2𝑘 vertices. Such a configuration can be viewed as a collection of
curves in the plane and is called a pseudoline arrangement in the literature.

If one could actually achieve a superlinear number of outer edge segments in a pseudoline
arrangement on 𝑘 pseudolines, we could obtain a superlinear edge density for 4 -free simple
drawings using the strategy used for the arbitrary and non-homotopic case. However, we can
use the “Zone Theorem” for pseudoline arrangements to show that this is not possible.

Theorem 6.14 (Zone Theorem): Consider a pseudoline arrangement on 𝑘 + 1 pseudolines. Let 𝑝
be one of the pseudolines and 𝐶 (𝑝) the set of cells that 𝑝 is incident to. Then,∑︁

𝑐∈𝐶 (𝑝 )
𝑒 (𝑐) ≤ 9.5𝑘 −O(1)

where we denote by 𝑒 (𝑐) the number of pseudoline segments incident to 𝑐 counted with multiplicity.

A proof of this is given by Bern et al. [BEPY90]. From this, we immediately get a bound on
the number of outer edge segments in a graph with 𝑘 edges.

Corollary 6.15: In any simple drawing of a graph with 𝑘 edges, the outer cell has at most
9.5𝑘 −O(1) incident edge segments (counted with multiplicity).

Proof. Turn such a drawing Γ into a pseudoline arrangement Γ′ on 𝑘 pseudolines by removing
small neighbourhoods around each vertex. Choose the neighbourhoods sufficiently small
such that no crossing is removed. Then, the number of pseudoline segments on the outer cell
of Γ′ is larger than the number of edge segments on the outer cell of Γ.
Add on the outer cell of Γ′ a 𝑘+1th pseudoline 𝑝 that does not intersect any other pseudoline.

We apply Theorem 6.14 with 𝑝 . Since 𝐶 (𝑝) is just the outer cell the statement follows for Γ′
and by the monotonicity argued above also for Γ.

Now, we can formally prove the impossibility of the pattern approach.

Lemma 6.16: Let 𝐺 be a graph with a simple drawing Γ, F a family of graphs, and 𝑐 ∈ ℕ such
that for any graph 𝐻 ∈ F , |𝐸 (𝐻 ) | ≤ 𝑐 |𝑉 (𝐻 ) |. Create a new drawing Γ′ by adding in a small
enough neighbourhood around each vertex 𝜈 in Γ a graph 𝐹𝜈 ∈ F such that

the 𝐹𝜈 are drawn simply,

every edge incident to 𝜈 crosses some edge segment in the drawing of 𝐹𝜈 first,

distinct edges incident to 𝜈 cross different edge segments first.
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6 Forbidding cells

Then, Γ′ is a drawing of a graph 𝐺 ′ with |𝐸 (𝐺 ′) | ≤ 23
4 𝑐 |𝑉 (𝐺 ′) | edges.

Proof. Let Γ′ be the drawing of a graph𝐺 ′ as constructed in the claim from a graph 𝐺 and a
family with edge density ≤ 𝑐𝑛. Denote the total number of added vertices and edges by 𝑛′ :=∑

𝜈∈𝑉 (𝐺 ) |𝑉 (𝐹𝜈 ) | and𝑚′ :=
∑

𝜈∈𝑉 (𝐺 ) |𝐸 (𝐹𝜈 ) |. Corollary 6.15 tells us that |𝐸 (𝐹𝜈 ) | ≥ 2
19 deg(𝜈)

and so (applying the Handshake Lemma)𝑚′ ≥ 4
19 |𝐸 (𝐺) |. From the edge density of the family,

we also get 𝑛′ ≥ 𝑚′

𝑐
. Therefore, in total

|𝐸 (𝐺 ′) |
|𝑉 (𝐺 ′) | =

|𝐸 (𝐺) | +𝑚′

|𝑉 (𝐺) | + 𝑛′ ≤
23
4 𝑚

′

|𝑉 (𝐺 ′) | + 𝑛′ ≤
23
4 𝑚

′

𝑚′
𝑐

=
23
4
𝑐

as claimed.

We remark thatwhile we have shown the impossibility of constructing dense non-homotopic
graphs using patterns of global linear density, we did not rule out the feasibility of an iterative
approach. Starting with patterns of edge density 𝑐0𝑛 it might be possible to construct graphs
of edge density 𝑐1𝑛, 𝑐1 > 𝑐0 which could then be used as patterns for constructing even denser
graphs and so on. We will not investigate this further, however, as we see little chance of this
succeeding. Instead, we take the remainder of this section to investigate a different approach.

Recall that for 3 -cells, there is a generalized pattern which is the characteristic forbidden
configuration of quasiplanar graphs. In Section 6.3 were able to capitalize on the fact that
edge density proofs for quasiplanar drawings only used that the 3 -cell was forbidden. For

4 -cells, there is a similar generalized combinatorial configuration. It consists of an edge
that crosses two edges incident to the same vertex. We call this pattern a fan and graphs that
can be drawn without it are fan-crossing free. Cheong et al. proved in [CHKK15] that the
edge density of 𝑛 ≥ 3-vertex fan-crossing free graphs is 4𝑛 − 8. In contrast to the 3 -case,
their proof uses that fans (and not only 4 -cells) are forbidden multiple times. This cannot be
avoided, as there are 4 -free graphs with more than 4𝑛 − 8 edges. The following construction
is the best lower bound we are aware of.

Construction 6.17: For infinitely many 𝑛, there is an 𝑛-vertex graph with 4.2(𝑛 − 2) edges that
admits a simple 4 -free drawing.

Proof. Take a graph𝐺 with a plane drawing Γ in which every face is a 7-cycle. We require that
any two vertices of 𝐺 have distance 3 along at most one face of Γ. This condition is to avoid
adding parallel edges in the next step. Constructing arbitrarily large graphs and drawings
which satisfy this is not hard, see Figure 6.9. Let 𝑛,𝑚, 𝑓 be the number of vertices, edges and
faces of 𝐺 and Γ. By double counting the edge-face incidences in Γ we have 2𝑚 = 7𝑓 . With
Euler’s formula, we get𝑚 = 𝑛 + 𝑓 − 2 = 𝑛 + 2

7𝑚 − 2 and so

𝑚 =
7
5
(𝑛 − 2) .

On every face of Γ, connect every vertex-pair at distance 3 as depicted in Figure 6.9. The
resulting drawing is simple, 4 -free, and its number of edges is

𝑚 + 7𝑓 = 3𝑚 =
21
5
(𝑛 − 2) = 4.2(𝑛 − 2)

as desired.
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6.6 The 4 -cell

(a) (b)

(c)

Figure 6.9: Construction of simple 4 -free drawings of graphs with edge density 4.2(𝑛 − 2).
Subfigure (a) is a plane drawing of a dodecahedral graph with a Hamiltonian path through
its faces that subdivides each edge it crosses. Thus, each face is bounded by a 7-cycle. This
property is retained by iteratively copying this drawing into the innermost face as in (b).
Adding 7 edges to each face in these drawings as in (c), a family of 4 -free drawings with no
parallel edges and the desired edge density is obtained.

While the proof of Cheong et al. cannot be translated to our setting, we will investigate the
𝑛-stars they introduce. Our hope is that upper bounds for the edge density in this somewhat
simpler setting translate can be related to the edge density of 4 -free drawings in general.
We do not have proof of this fact, however.

Definition 6.18 (𝑛-stars): An 𝑛-star (𝑃, 𝐸) is a simple 𝑛-gon 𝑃 (usually regular) and a set of
arrows 𝐸. An arrow is a ray starting at a vertex of 𝑃 , pointing into the interior of 𝑃 and leaving
it through one of its sides. We require that the drawing obtained when interpreting the arrows
and sides of the polygon as edges is simple. We further require that no 4 -cells occur in any
𝑛-star. Thus, two arrows starting at the same vertex cannot both have their first crossing with the
same side of the polygon or arrow in the 𝑛-star.

An arrow 𝑒 ∈ 𝐸 is the witness of an arrow 𝑓 ∈ 𝐸 if 𝑒 is the first arrow that 𝑓 crosses. We
call an arrow planar if it first crosses a side of the polygon, i.e. it does not cross any other
arrow. The number of planar arrows in an 𝑛-star is linear in 𝑛.

Lemma 6.19: In an 𝑛-star with 𝑛 ≥ 2, the number of planar arrows is at most 𝑛 − 2.

Proof. We use induction over 𝑛. Because of the simplicity of our drawings, an arrow cannot
exit through a side of the polygon that is next to the arrow’s starting vertex. Thus, for 𝑛 = 2,
there can be no planar arrow.

Now let𝑛 ≥ 3 be arbitrary and (𝑃, 𝐸) an𝑛-star with some planar arrow 𝑒 ∈ 𝐸. Cutting 𝑃 into
two halves along 𝑒 , we essentially obtain a 𝑘-star and an 𝑛 + 1−𝑘-star for some 𝑘, 𝑛 + 1−𝑘 ≥ 2.
By induction, the 𝑛-star thus contains at most 1 + (𝑘 − 2) + (𝑛 + 1 − 𝑘 − 2) = 𝑛 − 2 arrows.

Achieving a linear amount of arrows in 𝑛-stars without planar arrows is not difficult.
Consider for example an 𝑛-star with one arrow at each vertex that runs straight through the
side of the polygon after the next vertex in clockwise order. Thus, the previous Lemma tells
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6 Forbidding cells

Figure 6.10: An 8-star with 25 arrows. Note that more arrows can be added to the drawing
but we only need that 25 > 3 · 8 so we prefer to retain some visual clarity.

us that ignoring planar arrows does not change the asymptotics of the maximum number
of arrows in an 𝑛-star. So, we will assume from now on that there are no planar arrows in
𝑛-stars and accordingly define

𝑠 (𝑛) := max{|𝐸 | | (𝑃, 𝐸) is an 𝑛-star without planar arrows}.

With this convention, we can now assign to every arrow 𝑒 a unique witness we call𝑤 (𝑒).
Let us note note that not only do our 𝑛-stars differ in their definition from those by Cheong

et al. but ours can also contain strictly more arrows. In their paper, Cheong et al. prove that
their 𝑛-stars contain at most 3𝑛 − 8. In contrast, 𝑠 (𝑛) grows at least linearly in 𝑛 with a factor
strictly above 3. We prove this by first showing superadditivity.

Lemma 6.20: The function 𝑠 is superadditive. That is, for all 𝑛1, 𝑛2 ∈ ℕ,

𝑠 (𝑛1) + 𝑠 (𝑛2) ≤ 𝑠 (𝑛1 + 𝑛2) .

Proof. Take two polygons 𝑃1, 𝑃2 of size 𝑛1 and 𝑛2 joined at a vertex 𝜈 . Now, draw 𝑠 (𝑛1) arrows
in 𝑃1 and 𝑠 (𝑛2) arrows in 𝑃2. Split 𝜈 into 𝜈1 and 𝜈2 and let each arrow incident to 𝜈 now begin
at 𝜈1. The split does not introduce any 4 -cells as all arrows and sides existed before the
split. Thus, the construction yields an 𝑛1 +𝑛2-star with 𝑠 (𝑛1) + 𝑠 (𝑛2) arrows which proves the
claim.

With this and and using the 8-star in Figure 6.10 we thus obtain a lower bound for our
𝑛-stars.

Construction 6.21: For infinitely many 𝑛, there is an 𝑛-star with 3.125𝑛 arrows.
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𝑣

𝑓

𝑓 ′

𝑐𝑣

(a)

𝑤 (𝑒3) 𝑤 (𝑒2) 𝑤 (𝑒1)

𝑢

𝑐𝑣

𝑣
(b)

Figure 6.11: Illustration of the contradictions arrived at in the proof of Lemma 6.22. In (a),
𝑓 ′ needs to leave the grey area by crossing 𝑓 twice. Subfigure (b) depicts why three arrows
starting at the same vertex cannot all be witnesses to arrows at some other vertex.

Proof. It can be checked that the creature depicted in Figure 6.10 is indeed an 8-star. Thus,
𝑠 (8) ≥ 25 = 3.125 · 8. By Lemma 6.20, 𝑠 is superadditive and so for any 𝑛 that is a multiple of
8, 𝑠 (𝑛) ≥ 3.125𝑛.

Finally, let us give an upper bound. A priori, it is unclear whether the number of arrows
in 𝑛-stars is bounded at all. The following proves that — in accordance with graphs —, their
density grows at most quadratic in 𝑛.

Lemma 6.22: The number of arrows in an 𝑛-star is at most quadratic in 𝑛. More precisely,

𝑠 (𝑛) ≤ 2𝑛(𝑛 − 1) .

Proof. Let 𝑆 be some 𝑛-star. We show that the number of arrows at a single vertex of 𝑆 is at
most 2(𝑛 − 1). As there are 𝑛 vertices, this then finishes the proof.
Suppose there was a vertex 𝜈 of 𝑆 with at least 2(𝑛 − 1) + 1 incident arrows. As the drawing
is simple, no arrow at 𝜈 is witnessed by another arrow starting in 𝜈 . Thus, by pigeonhole
principle, there are three edges 𝑒1, 𝑒2, 𝑒3 starting in 𝜈 whose witnesses 𝑤 (𝑒𝑖) all start in the
same vertex 𝑢 ≠ 𝜈 .
First, we argue that 𝑤 (𝑒𝑖) ≠ 𝑤 (𝑒 𝑗 ) for 𝑖 ≠ 𝑗 . Suppose this was not the case and w.l.o.g.
𝑓 = 𝑤 (𝑒1) = 𝑤 (𝑒2). Denote by 𝑐𝜈 the cell in the interior of 𝑆 incident to 𝜈 that is created when
removing the first segment (including the crossing) of all arrows starting in 𝜈 . Then 𝑓 occurs
as at least two distinct segments on 𝜕𝑐𝜈 . These are separated by the occurrence of at least one
segment of another edge 𝑓 ′. However, for 𝑓 ′ to escape 𝑐𝜈 it has to cross 𝑓 twice as depicted
in Figure 6.11a. This contradicts simplicity and thus the𝑤 (𝑒𝑖) are distinct.
Now, let the 𝑒𝑖 be indexed such that the𝑤 (𝑒𝑖) leave 𝑢 clockwise in the order they are indexed.
As 𝑤 (𝑒2) cannot cross 𝑤 (𝑒1) or 𝑤 (𝑒3) by simplicity, it can only reach the boundary of 𝑆
through 𝑐𝜈 . This would then make it impossible either for𝑤 (𝑒1) or 𝑤 (𝑒3) to appear on the
boundary of 𝑐𝜈 — depicted in Figure 6.11b — a contradiction to our assumption.
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7 Conclusion and outlook

In this thesis, we have proven edge density results for various beyond-planar graph classes.
Using the Density Formula, we were able to generalize results, improve on others and also
gave some first upper bounds, especially for outer variants. In doing so, we further established
the usefulness of the Density Formula. Additionally, as our second main contribution, we
considered new families of drawings and graphs, respectively, in which we forbade certain
cell types.

However, some parts of our discussion of these topics leave unanswered questions. In this
chapter, we give an overview of the most glaring and important of these gaps and present the
problems we had in trying to fill them. Furthermore, we discuss other possible applications of
the Density Formula for edge densities.

7.1 Lower bounds for outer 2-bend RAC graphs

In Section 4.2.1, we presented a 6𝑛 − 8 upper bound for the edge density of non-homotopic
2-bend RAC graphs but only a lower bound of 4𝑛 − 8. We believe that our upper bound is
not tight. An indication of this is that the corresponding upper bound for non-outer 2-bend
RACs in [Kau+24] does not match the lower bound either. However, the linear term of the
lower bound example constructed by Kaufmann et al. does match the upper bound. We do,
however, not know of any family achieving this in the outer case either.

7.2 Simple quasiplanar graphs

In Chapter 5 we were able to improve the lower bound for the edge density of simple quasipla-
nar graphs from 7𝑛 − 28 to 7.5𝑛 − 28. The upper bound remains at 8𝑛 − 20, however, currently
only matched by examples of non-homotopic drawings of multigraphs. We suspect that even
for simple graphs, the upper bound is tight up to an additive constant.

7.3 Non-homotopic and simple 4 -free drawings

A proof of a non-trivial upper bound seems elusive. As a possible reason for this, recall that
the discharging scheme used in Theorem 4.18 seemed to ignore 4 -cells entirely. Charge
was never taken from or distributed to them. They were only the carrier through which
charge flowed. Similarly, 4 -cells can be ignored in the Density Formula: For any 𝑡 , a 4 -cell
contributes +1 to the sum on the right side of the Density Formula. At the same time, the
−|X | term in the Density Formula can be evenly distributed such that every cell-crossing
incidence contributes − 1

4 . Since a 4 -cell has 4 crossing incidences, these contribute −1 in
total, cancelling the contribution of the 4 -cell. Thus, any proof of a non-trivial upper bound
would likely need to use some method not considered in this thesis.
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Figure 7.1: Three bundles of edges can cross without introducing 4 -cells, while two such
bundles cannot.

We therefore believe it plausible that even for simple 4 -free drawings the edge density
is quadratic. All simple drawings of dense graphs we are aware of contain many 4 -cells,
however. In chaotic drawings, e.g. the circular layout drawings, 4 -cells are abundant because
they are small enough to occur randomly. In more uniform drawings, e.g. the three-bend
drawings of complete graphs, 4 -cells occur because one often chooses multiple edges to run
somewhat parallel and so if multiple such bundles cross, many 4 -cells appear. It might be
possible to avoid this by always having three such bundles cross at once as in Figure 7.1 to
only create cells of size 3 and 6. Our attempts at incorporating this idea in a drawing of a
dense graph have not yet been successful, however.

7.4 Simple 4 -free drawings

Similarly to the case of 4 -free drawings, this setting seems impenetrable both by a discharging
approach and an application of the Density Formula. In the discharging approach, the first
discharging step fails because a 5 -cell that spans corridors on all sides with 3 -cells would
obtain a negative charge. Similarly, the Density Formula approach for the usual choices of 𝑡
seems to fail because either the number of 3 -cells or corridors of 3 - and 5 -cells cannot be
accounted for. Thus, we know of no “intuitive” reason why the density of 4 -free drawings
would be linear.

On the other hand, constructing simple 4 -free drawings with superlinear edge density
seems challenging. This is mostly because we were able to rule out the approach of adding a
pattern around each vertex. Thus, in any such construction, there cannot be a clear separation
between the edges which contribute to the superlinear edge density and those which are
witness (using this term as in the context of 𝑛-stars) to the edges incident to some fixed vertex.
This implies that many edges must pass close to vertices they are not incident to.

While the setting of 𝑛-stars seems somewhat simpler, we were equally unable to provide
good upper and lower bounds for their edge density. This is also true in some further
restrictions to the 𝑛-star setting we considered, e.g., when vertices are added iteratively. Even
with better bounds, the usefulness of 𝑛-stars in the case of 4 -free drawings hinges on some
connection between their edge densities. During the majority of writing this thesis, we
believed we had such a relation. We had a faulty proof — based on a section by Cheong et al.
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7.5 Further Density Formula application

[CHKK15] — that upper bounds for the edge density of 𝑛-stars carry over in order of growth
to upper bounds for the general 4 -free setting. Only shortly before this thesis’ completion
did we notice the error which did not appear to be easily fixable.

7.5 Further Density Formula application

A main motivation for this thesis was the prospect of using the Density Formula to prove
other edge density results than those found in [Kau+24]. We were able to achieve this to
some extent by lifting a restriction to non-homotopic drawings in some cases and finding
edge densities of outer variants in many others. However, throughout our efforts, we have
considered other beyond-planar graph classes, for which we failed to give Density Formula
proofs.

Fan-crossing free graphs have edge density 4𝑛 − 8 as determined in [CHKK15]. Finding
a Density Formula proof for this might also lead to an approach for simple drawings of

4 -free graphs as these can be considered a special case of fan-crossing free graphs.

For graphs that admit arbitrary 1- and 2-bend RAC drawings, the best known density
upper bounds are 5.5𝑛 − 11 and 20𝑛 − 24 respectively, proven in [ABFK20] and [Tót23].
For 1-bend RAC drawings, the linear term is optimal as proven also in [ABFK20].
Applying the Density Formula as for the non-homotopic variants fails since one of the
main ideas of the proof in [Kau+24] uses the absence of empty lenses.

Bipartite variants (considered for example in [Ang+19 , Kar14]) might provide another
general setting in which the Density Formula could be applied effectively.

The proofs of Theorems 6.9 and 4.18 rely on the discharging method. However, a full
reformulation using only the Density Formula (or a variation) might be possible. We
believe this is indicated by the fact that in Theorem 6.9 we could phrase the discharging
step as an inequality (Claim 1) very similar to those found when working with the
Density Formula. Further, Lemma 4.17 which is used in both discharging proofs is also
essential in deriving the Density Formula. The main reason why we were unable to
provide a full mapping is that the Density Formula does not only use Lemma 4.17 but
is made up of another equation which gives the relation to |𝐸 |. In contrast, both our
discharging proofs introduce a relation to |𝐸 | instead via double counting vertex-cell
incidences.
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