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Abstract

The power grid is the largest machine humankind has ever built. However, this
machine is facing wide-ranging structural change. The transition towards intensive
usage of renewable energy sources introduces new challenges: How do we cope with
their volatility and how can we use them as efficiently as possible? Exploiting
structural properties may be one answer to this.
On one hand it is known that purposefully removing transmission lines from a power
grid, so called switching, can in fact resolve congestions and overloads, which can
eventually lead to a higher power throughput. In the language of graph theory
this can be formalized as an optimization problem on flow networks, the Maximum
Transmission Switching Flow Problem.
On the other hand the concern is that the power grid can be compromised by such
big topological interventions as the removal of a whole transmission line. Stable
operation has to be guaranteed at all times which means adhering to the network’s
utility frequency. The oscillator model, used in statistical physics, can be utilized to
study the transient behavior of the power grid. With it we can investigate whether
switchings still allow network synchronization. Additionally, small signal analysis
can be used to analyze the stability of the system after the switching took place.

In this work we give a comparative analysis of the two mentioned approaches. We
study how optimization results from the static world of graph theory behave in the
dynamic setting of real world power grids and assess if they are reasonable with
regards to the stability of the network frequency. We want to shed light on the
derivation of the models and give a first answer to the question whether we can safely
use switching in order to improve our power grids.

Deutsche Zusammenfassung

Das Stromnetz ist die größte Maschine, die die Menschheit jemals gebaut hat. Allerd-
ings steht diese Maschine vor weitreichenden Veränderungen. Mit dem Übergang zu
einer intensiveren Nutzung erneuerbarer Energien kommen einige Herausforderungen:
Wie können wir mit deren Unbeständigkeit umgehen und wie können wir sie so
effizient wie möglich nutzen? Das ausnutzen struktureller Eigenschaften könnte eine
Antwort darauf liefern.
Auf der einen Seite ist bekannt, dass man mit dem gezielten Entfernen von Übertra-
gungsleitungen, sogenanntem Switching, tatsächlich Verstopfungen und Überlasten
verhindern kann, was wiederum zu einem größeren Leistungsdurchsatz führt. Graphen-
theoretisch ausgedrückt kann dies als ein Optimierungsproblem auf Flussnetzwerken
formuliert werden, dem Maximum Transmission Switching Flow Problem.
Andererseits existiert die Sorge, dass das Stromnetz durch so umfangreichen Ein-
wirkungen, wie das zeitweise entfernen ganzer Übertragungsleitungen, Schaden davon
tragen kann. Ein sicherer Netzbetrieb, um genau zu sein das Halten der Netzfre-
quenz, muss zu jedem Zeitpunkt garantiert werden. Physikalisch ausgedrückt: Ist die
Synchronisation im Netzwerk immer gewährleistet? Das Oszillator Modell aus der
statistischen Physik ist ein Werkzeug um eben dieses Verhalten zu untersuchen. Zusät-
zlich können wir Kleinsignalanalyse verwenden, um kritische Zeitpunkte während des
Switching-Vorgangs zu untersuchen.

In dieser Arbeit stellen wir eine vergleichende Analyse der zwei erwähnten Ansätze an.
Wir untersuchen, inwiefern Optimierungen aus der statischen Betrachtungsweise der
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Graphentheorie in der dynamischen Welt echter Stromnetze genutzt werden können
und bewerten, ob diese im Bezug auf die Stabilität der Netzfrequenz sinnvoll sind.
Wir wollen Licht die auf Herleitung der Modelle werfen und eine erste Antwort darauf
geben, ob Switchings eingesetzt werden können, um unser Stromnetz zu verbessern,
ohne es dabei zu beschädigen.
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1. Introduction

Robustness and efficient operation of critical infrastructures, such as telecommunication,
transportation and water or electricity supply are the key prerequisites for the functioning
of our modern society. Satisfying them is becoming a more and more challenging task.
This is especially true for power distribution and transmission. With society’s growing
hunger for power on the one side and the aim to get rid of the enormous carbon footprint
of conventional energy production on the other, a shift towards renewable energy sources is
inevitable.
However, their increasing share on the energy market leads to new challenges and an
operational paradigm shift. Renewables are harvested in a more decentralized manor and
in different geographical locations. Offshore wind farms are located in remote areas, while
photovoltaics allow each individual person to produce power and inject it to the power grid
wherever they live. So instead of a few power stations with central positions in the grid
there are now many power producers spread across it, providing a wide range of energy
input. One arising problem here is that there is no active control concerning all the smaller
power sources to regulate them according to the currently present energy consumption.
This trend is only going to advance in the future with efforts aiming at carbon neutral
power production such as the ‘Energiewende’ in Germany [PAH14].
Furthermore, power from renewable sources does not come in consistent rates, but can
heavily fluctuate due to factors such as weather changes. Peaks of heavy production as
well as periods of low winds or no sun light make the task of providing a stable operation
of the power grid more problematic [HvBG+10]. Transmission lines may be congested and
even get damaged due to transgression of their thermal limits. It is therefore mandatory to
explore and refine possible solutions for these emerging challenges in order to guarantee
the reliable operation of this key infrastructure of our modern world.

As a power grid plays such a critical role for our society and is operating around the clock,
simply trying out solutions and modifications is not a viable option, as interventions can
have wide-ranging consequences. In order to tackle the described problems we therefore
need a proper way to model it. There are several layers of abstraction and coarseness we
can look at. In this work we study high-level approaches that aim at the topology and
stability properties of the transmission grid. The choice of how implies what can actually
be modeled. Static models for optimization algorithms for example are not capable to
capture the transient behavior. When looking at the grid from a high-level perspective there
are several criteria one may be interested in: making the grid more stable or redundant,
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1. Introduction

increase its throughput or identify critical parts that may be prone to attacks or overload
in the future.

The obvious way to add redundancy is by installing additional network infrastructure.
This however is a costly endeavor and construction projects often face opposition [mdr19].
Another way to account for congested transmission lines therefore is to temporarily remove
transmission lines purposefully from the grid in order to actually increase throughput.
This method is called switching. A graph-theoretic representation of the power grid using
flow networks turns out to be a useful way to analyze topological properties of it and
find optimal switching positions. In this work we take a look at the results of Grastien
et al. [GRW+18]. The authors use a flow network extended with physical properties for
finding optimal power flows with switching and give complexity bounds for certain scenarios.

However, the graph-theoretic model has a drawback. It is just a static representation of
the transmission network. This means we only observe one ‘snap shot’ in time and cannot
express more complex behavior such as the transience after a transmission line got switched
out. This can lead to unforeseen consequences and threaten network operation [faz06].
Hence, it is not enough to solely optimize the power throughput. We want to analyze how
power grids behave over a certain time and what effect interventions such as switching
may have. The mathematical property to describe a stable operation of a network is the
synchronization between the involved units. The framework of coupled oscillators [FNP08]
has proven to be a valuable tool for modeling the dynamic behavior of power grids. The
representation via ordinary differential equation allows us to see how switching and other
network perturbations (e.g. change in network load) affect the network stability over time.

1.1. Related Work
The analysis of power grids and ways to model it has always been of great importance
for smooth and efficient operation. In recent years research in this field advanced a lot as
it has to tackle a lot of new issues caused by the drastic changes happening due to the
shift to renewable energy and growing power demand. The aspects to analyze and the
properties to model in a power grid are numerous. Rhoden et al. [RSTW12] pin down two
types of approaches when studying them. On the one hand there is the detailed component
based approach of electrical and power engineering, giving very precise simulations. It
allows for close investigation of the nonlinear dynamic behavior present in AC power grids.
Although more realistic, this approach comes at the cost of a lot of parameters to take
into account. The other approach is more abstract and coarse grained, looking at the
power grid as a network with buses and branches as smallest components. It allows for
a large-scale analysis, however only allowing a static topological view with no dynamics
involved. Additionally, the authors also discuss a third method that tries to combine
nonlinear dynamics with the large-scale approach. In this work we look at the latter two.

Some of the most essential equations that capture the operation of power grids are the load-
flow equations [Sto74]. Calculating their numerical solutions is a key task for dispatching
power properly to the transmission network. The model based on these equations is
called the AC model, as it describes the nonlinear behavior of alternating current (AC).
A simplified version of the AC model is retrieved by linearizing the power flow equations.
The resulting, so-called linear DC model [SR70] behaves much like direct current (DC),
hence the name. In his work Schweppe presents the main underlying assumptions of small
line resistance, flat voltage profiles and small voltage angle differences which allows for
significant simplifications of the power flow formulation.
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1.1. Related Work

Purchala et al. [PMVB05] later showed that certain problems can arise when applying
these simplifying assumptions and that reliability can only be expected when modeling the
high voltage layer of the grid. However, in this case they prove to be a good approximation
that allow for more feasible computations.

For load flow studies the MATPOWER [ZMsT+11] platform provides tools and datasets of
power grids as well as a comprehensive derivation of the underlying algorithms. The Nicta
Energy System Test Case Archive (NESTA) [CGS14] provides a collection of refined case
files e.g. from the MATPOWER or IEEE platform [UoW14].

Network Optimizations

Augmenting the power grid for the future challenges provided by renewable energies can
be approached from several directions. One is transmission network expansion planning
[GMM92, BPG01]. Adding more transmission lines and circuits may provide redundancy
in case of overload scenarios by increasing transmission capacities. Yet, this approach
requires heavy construction effort and is rather expensive.
Placing Flexible AC Transmission Systems (FACTS) [LMM+15, LGHV15] in the existing
grid can be used to alter the line susceptance and also potentially resolves overload scenarios.
This does not require new transmission lines, but still is a costly investment and hence
finding optimal and as few as possible placements is crucial.

Another approach is based on an observation originally made in traffic networks. Already
in 1968 Dietrich Braess discovered that adding additional roads can actually lead to worse
over-all commute times [Bra68]. Having new connections may cause congestions in parts
of the network that are not capable of handling an increase in traffic. This phenomenon
is nowadays coined Braess’s Paradox. It can also be connected to power grids [Blu06]
and gives the prime motivation to apply switching. Switching is the temporary removal of
transmission lines using switches such as circuit breakers in order to increase the power
flow. Fisher et al. [FOF08] found, using a mixed-integer linear program that switchings
can in fact improve prower grid operation and saw a reduction of up to 25% in generator
dispatch cost. Finding optimal operational costs via switchings is known as the Optimal
Transmission Switching Problem. This means minimizing the generation cost while
satisfying a given power demand.

Graph-Theoretic View

It is obviously convenient to represent a power grid‘s buses and transmission lines with a
graph. Especially when it comes to structural considerations as mentioned above. Graph-
theoretical results on the complexity of power engineering problems help to classify them.
A common way is to consider flow networks in which we can embed the load flow.
Prominent problems are the feasibility problem (FEAS) which requires to find a power
flow serving all loads while satisfying the capacity constraints on the transmission lines.
The Maximum Power Flow Problem (MPF) asks for the highest power flow possible.
Moreover, the Maximum Transmission Switching Flow (MTSF) asks for the maximum
value when we allow for switchings.

Finding optimal solutions to these problems is difficult. Lehman et al. [LGV16] for example
show that the feasibility problem for AC networks is NP-hard already on star networks.
Using the DC approximation they also show that finding optimal power flows and maximum
transmission switching flows are NP-hard problems on limited graph classes [LGV14]. For
general graphs they cannot even be approximated within any constant factor. The authors
furthermore extend their findings in [LGHV15] to show that MPF is not only NP-complete
under switchings but also when placing FACTS.
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1. Introduction

Grastien et al. [GRW+18] provide more insight into the structural properties of the MTSF
problem. Their formulation of dominating theta paths allows for MTSFs on penrose-minor
free graphs with one generator and one load and is suggested as a heuristic for general
graphs representing power grids. They furthermore provide a 2-approximation for cactus
graphs.

Finding the maximal power flow with switchings is actually a subproblem of the power
system restoration problem [Adi00]. It asks for the choice of transmission lines to be
repaired first after a disaster in order to restore as much power transmission as quickly as
possible.

Transient Analysis

While graph-theoretic approaches and linearization assumptions may give good insights
into the mentioned problems and how to solve them, a power grid remains a dynamical
system with nonlinear interactions happening and evolving over time. Applying changes
to its topology may destroy the stability of its operation. Kundur et al. [KPA+04] give a
classification of different kinds of network stability - rotor angle, voltage and frequency
stability. Transient analysis looks at the system in order to determine whether perturbing
or altering the network may destroy that stability.

Dynamical systems however cover an even wider range of real world processes from
pendulums, to predator-prey-behavior up systems as complex as climate models. The aim
is to harness findings and theories from this interdisciplinary field.
One very important property emerging in dynamical networks is synchronization. The
interaction between network components is described by coupled oscillators that synchronize
their oscillations when in a stable state. One of the most versatile models to study how,
when and why this happens is the Kuramoto model [Kur75]. Over the years it has seen
applications in biology [MV06], chemistry [Kur03], seismology, neuronal Networks and
many more fields [RPJK16].

In 2008 Filatrella [FNP08] was the first to connect power grids with the Kuramoto model.
By representing power generators and loads with the oscillator equations he was able to
study the system behavior after perturbations such as load spikes took place. The system
however becomes more complex as damping and inertia also play a role in a generator’s
behavior.

There have been several successful applications ever since. Witthaut et al. [WT12]
demonstrate that Braess’ Paradox is present in oscillator networks as well and link it to
geometric frustration. Rhoden et al. [RSTW12] study how self organized synchronization
happens in decentralized power grids. Their findings are that decentralization, e.g., due
to renewable energy production increases sensitivity to perturbations but also increases
robustness regarding topological changes.

The criticality of a transmission line means how sensitive the network synchronization
reacts to the removal of this link [Win19]. Lozano et al. found in [LBDG12] that the loss of
transmission lines connecting national power grids is often more prone to desynchronizing.
They link transient behavior to network topology, as transboundary power grids tend to
be clustered per nation. Criticality and flow redistribution is also studied in [WRZ+16a].

Motter & Lai [ML02] show how redistribution after a line outage can lead to a cascade of
failures as the overload propagates through the network. This is what happens during major
blackouts. Works such as [RJTK16] and [SWTL18] further investigate this phenomenon
using the oscillator model.

Cascading failures have also been studied using an other approach stemming from statistical
physics. Simonsen et al. [SAMS04, Sim05] establish a connection between diffusion
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processes on networks and random walks. Flow can be understood as many random walkers
moving randomly along a network’s edges. This induces a current by the probabilities
of taking a certain direction. Later the model was used for transient analysis [SBP+08]
on power grids. The findings suggested a connection between cascading failures and line
capacities.

Direct methods allow for an immediate assessment of the system stability after a fault
or switching took place. They do not require numerical integration but make use of
Lyapunov’s first and second method [APV79]. Another method, the equal area criterion
and Lyapunov’s method are discussed in [WJSO12] for real time applicability to transient
stability analysis. Finally, Kyesswa et al. present a hybrid method [KCG+19], combining
the efficiency of direct methods with the power to derive the system trajectory of numerical
integration.

1.2. Contribution
In this work we give first answers to the questions whether we we can use the switching
heuristics based on dominating theta paths proposed in [GRW+18] and if a stable operation
of the power grid is possible afterwards. We present the linear DC model with its underlying
assumptions and how it is put to use on graph-theoretic flow networks to find MTSFs.
We show limitations of such a static representation and give a detailed derivation of the
oscillator model as a dynamic counterpart. Based on it we use small-signal analysis in order
to get insights into the networks’ stability and numerical integration for the synchronization
behavior after switching out an edge. We carry out our analysis on the NESTA case files.
The static heuristic from Grastien et al. gives a new notion of centrality based on dominating
theta path betweenness, denoted by cDTPB and gives an ordering on the edges suggesting
which one to switch for an MTSF. We connect this to dynamical properties such as
the change of a network’s frequency amplitudes and load redistribution. We can show
proportional behavior in a lot of cases and point out reasons for the scenarios in which
such a correspondence could not be found. Applying small-signal analysis our findings
are that edge switchings with smaller cDTPB-values are more likely to leave the system
in an unstable state. The highest cDTPB-value on the other hand almost always leaves
the network in an operable state. We conclude that that edges with a higher centrality in
many cases lead to less severe system disruption. We also identify a special case where the
network behaves highly instable and the heuristic seems not to work as well. We can link
this behavior to its topological properties, namely many tree-like subgraphs that disconnect
the network for a lot of switchings. This eventually leads to more load redistribution and
worse synchronization behavior.
Finally, we also look at the mean-field values [Str00] of the power grids as another measure
for the transient behavior after switching. Again, we observe that in most cases a lower
cDTPB-value can be linked to a reduced coherence between the network’s oscillations.

1.3. Outline
The rest of this work is structured as follows. Chapter 2 Gives an overview of the
mathematical and technical background of this work. It provides the a brief introduction
to concepts from graph theory, electrical and power engineering and ordinary differential
equations. In Chapter 3 we present the derivation of the linear DC model. We then give
the graph-theoretic representation of the power flow using flow networks. A definition of
the Maximum Transmission Switching Flow Problem and a power flow specific
centrality measure are given. The second approach to model a power network is provided
in Chapter 4 where we introduce the oscillator model. We look at its derivation, and
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properties such as synchronization and steady states. Chapter 5 describes the procedures
we used to analyze a power grid under switching. Small-signal analysis, according to
Lyapunov’s first method is explained as well as numeric integration that is used for the
calculation of solutions to the oscillator equations. We present our evaluation results in
Chapter 6. Here we build the connection between the derived heuristics from the graph
model and the stability results of the transient analysis. We show how switchings could
affect the network and discuss correlations in the observed behavior. Finally, a conclusion
of the work and a prospect on further steps is given in Chapter 7.
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2. Preliminaries

2.1. Graph Theory
In this section we introduce some basic graph-theoretic notation and define flow networks.

Definition 2.1 (Undirected Graph [Die05]). An undirected graph is a pair G = (V,E) of
sets, where V = {v1, v2, ...vn} is the set of nodes with n ∈ N and E ⊆ {{u, v} | u, v ∈ V }
the set of undirected edges.

Definition 2.2 (Directed Graph [Die05]). A Directed graph is a pair ~G = (V, ~E) of sets
with V = {v1, v2, ...vn}, n ∈ N and the elements of ~E ⊆ {(u, v) | u, v ∈ V } = V × V are
called directed edges. For an edge e = (u, v) ∈ ~E we call u from-node and v to-node.

In the case of a directed graph ~G = (V, ~E), the set of incoming edges at a node v
is defined by δ+(v) := {e = (u, v) ∈ ~E | u ∈ V } and the set of outgoing edges is
δ−(v) := {e = (v, u) ∈ ~E | u ∈ V }.

In this work we are often interested in graphs whose edges have a direction. However, the
original graph we are provided with may be undirected, as it is the case with power grid
datasets. The following definition gives an equivalent representation of an undirected graph
as one with directed edges. The idea is to replace every undirected edge e = {u, v} ∈ E in
the graph with two directed edges (u, v), (v, u) ∈ ~E, pointing towards opposite nodes.

Definition 2.3. Let G = (V,E) be an undirected graph. Define ~E := {(u, v), (v, u) |
{u, v} ∈ E} and ~G = (V, ~E). Such a graph ~G is called bi-directed.

This construction can be applied in the opposite direction analogously.

Definition 2.4 (Subgraph [Die05]). Let G = (V,E) be an undirected graph. If V ′ ⊆ V
and E′ ⊆ E then we call G′ = (V ′, E′) a subgraph of G and write G′ ⊆ G.

The definition for subgraphs of directed graphs is analogous.

As we want to study how power in a power grid is transmitted from A to B we need to
add some properties to the graph in order to express this. Networks are used to model how
units of some good are passing from some source node of the graph to a destination via
the edges, while constraining their capacity.
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2. Preliminaries

Definition 2.5 (Network). Let G = (V,E) be a graph and ~G = (V, ~E) its bi-directed
corespondent, s, t ∈ V, s 6= t two unique nodes and cap : ~E → R≥0 a map. The tuple
N = (~G, s, t, cap) is then called network. We refer to s as source and t as sink of the
network and call cap the capacity function.

This definition can be generalized by replacing s and t with (disjoint) sets of sources S ⊆ V
and sinks T ⊆ V respectively and requiring S ∩ T = ∅.
Next, we define a function on the edges of the network’s graph that expresses how many
units move along them. It has to satisfy three properties:

1. Skew symmetry: What is send into one direction has to be equated by the correspond-
ing negative value on the edge going towards the other directions (Equation (2.1)).

2. Flow conservation: Nodes that are not sources or sinks have to send out as much as
they receive (Equation (2.2)).

3. Capacity constraint: It is illegal to send more units over an edge than its capacity
allows for (Equation (2.3)).

A function satisfying these constraints is called a feasible flow or just flow and is formally
defined as follows:
Definition 2.6 (Flow[Die05]). Let N = (~G, S, T, cap) be a network. The function f : ~E →
R on the directed edges of G is called a feasible flow or just flow if it satisfies the following
three conditions:

f(u, v) = −f(v, u) , ∀(u, v) ∈ ~E (2.1)∑
e∈δ+(v)

f(e) =
∑

e∈δ−(v)
f(e) ,∀v ∈ V \ S ∪ T (2.2)

|f(e)| ≤ cap(e) ,∀e ∈ ~E (2.3)

An important subclass of graphs are paths, going from one vertex to another. We provide
the definition based on undirected graphs but the one for directed graphs again is analogous
with respect to the edge directions.
Definition 2.7 (Path [Die05]). A path is a graph P = (V,E) of the form V = {v0, v1, . . . , vk},
E = {{v0, v1}, {v1, v2} . . . {vk−1, vk}} s.t. all vi are distinct. We denote it by π(v0, vk) and
call it a path from v0 to vk.

In this work we look at paths as subgraphs of networks and hence are interested in the set
of all paths that lead from one node to another.
Definition 2.8. Let G = (V,E) be an undirected graph. We denote the set of all paths
from v0 to vk in G with Π(v0, vk) := {π(v0, vk) | π(v0, vk) ⊆ G}.

2.2. Electrical Engineering
This section is supposed to give a very brief introduction into the fundamental results from
physics and electrical engineering that are used in this work.
A direct current (DC) circuit is a circuit consisting of sources of constant voltage and
current as well as resistors. It is convenient to regard a circuit as an undirected graph
G = (V,E). The nodes V are the junction points, also called buses and the edges E are
the connections between, laso called branches. It is the well-known equation U = R · I that
describes the relation between the three properties voltage U , current I and resistance R.
Furthermore, There are two fundamental laws every electrical circuit obeys, the so-called
Kirchhoff’s circuit laws:
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2.2. Electrical Engineering

1. Kirchhoff’s current law (KCL): At every node of a circuit the sum of currents entering
and leaving that point are zero:

n∑
k

Ik = 0 (2.4)

where n is the number of branches meeting at that bus. This is illustrated in
Figure 2.1a.

2. Kirchhoff’s voltage law (KVL): The sum of all voltages in a closed loop of circuit is
zero:

n∑
k

Uk = 0 (2.5)

where n is the total number of voltages measured in a loop. This is illustrated in
Figure 2.1b.

(a) KCL [Kru18]. Incoming currents equal the out-
going, i.e., I1 = I2 + I3 (Bus 1) and I4 = I2 + I3
(Bus 2).

(b) KVL [Kru18]. All voltages in a loop sum up to
zero, e.g., U1 + U2 + U4 + Us = 0 (loop1).

Figure 2.1.: Visualization of Kirchhoff’s circuit laws.

In modern power grids the standard way to distribute energy is alternating current (AC).
It is called alternating since the voltages and currents oscillate periodically, due to the way
power is typically produced and transmitted. The following equations describe the current
and voltage at a node in an AC circuit:

Definition 2.9 (Alternating Current & Voltage). Let t ∈ R≥0 be a point in time. The
values of the oscillations of alternating current and voltage at this time are then given by
the functions:

i(t) = Î · cos(ωt+ θi) (2.6)
u(t) = Û · cos(ωt+ θu) (2.7)

where Î (Û) is the amplitude of the oscillations, called peak current (peak voltage). The
angular velocity ω = 2π

T represents the oscillations per second, with T denoting their period
and 2π their wavelength. The shifts of the oscillations are given by θi, θu ∈ [0, 2π) and
called phase angles.

Figure 2.2 illustrates the oscillations with all mentioned parameters. The assumption here
is that we are dealing with perfect curves, which may be slightly off in the real world for
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Figure 2.2.: Alternating current [Weg19]. The phase diagram (left) shows how voltage (u),
current (i) and apparent power (s) oscillate over time and their representation
in the complex plane (right).

technical and physical reasons. The frequency of AC is given by f = 2π
T with the unit being

1
s = 1Hz.

Note that from now on we omit the time parameter in these terms, if it is not needed for
disambiguation in order to increase readability. It is often convenient to express AC in
terms of complex values. The oscillations of current and voltage can then be interpreted as
rotating vectors around the origin of the complex plane, see Figure 2.2.

2.2.1. Power Grids

In a certain sense a power grid can be viewed as a large-scale electronic circuit with electrical
components and wires connecting them. It consists of three essential building blocks:

• Branches represent the transmission lines that connect the other components.

• Buses bundle the ends of multiple branches as well as power generators and loads.

• Transformers are used to step the voltage up or down between subnetworks of different
voltage levels.

Figure 2.3 shows an example diagram for a power grid consisting of 14 buses.

In an electric power grid the frequency of the oscillations of AC transmitted between the
power stations and the end users are given by the utility frequency. The most widespread
values for this are 60 and 50 Hz. The latter is also used in the European mainland power
grid and is what we take in this work. Sticking to this frequency with only small deviations
is imperative for a safe operation. A value undercutting the utility frequency means that
the power demand is greater than the supply. Values exceeding it on the other hand
imply an oversupply in produced power. Table 2.1 shows the measures taken in order to
compensate for a frequency drop in the German power grid. Already a deviation of −0.2
Hz requires compensating actions and already at −2.5 Hz off the utility frequency the
complete operation of the power grid comes to a halt in order to prevent major damage.

In the field of power engineering it is common practice to use the per-unit system which
unifies the used units with regards to a reference value. Every quantity is converted to
a per-unit quantity by dividing its actual value by the base value of the same dimension.
This allows for the direct comparison of relevant electric parameters

Definition 2.10 (Per-unit Value). A per-unit value is a dimensionless value relative to a
base value given by the following formula:

per-unit quantity = actual quantity
base value of quantity (2.8)

10
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Figure 2.3.: Diagram for the IEEE 14-bus test case [AR15], representing a portion of the
American electric power system. The thick horizontal numbered lines are
buses. The circles labeled with G represent generators and the ones with C
synchronous condensers. A load at a bus is depicted by an arrow, note that
generators and loads can be connected to a bus simultaneously. The lines
connecting the buses represent the branches.

Stage Frequency Compensation / Safety Action

1 49.8 Hz Use of operating reserve
2 49.0 Hz Immediate drop of 10− 15% of net load
3 48.7 Hz Immediate drop of additional 10− 15% of net load
4 48.4 Hz Immediate drop of additional 15− 20% of net load
5 47.5 Hz Disconnect all power plants from the net

Table 2.1.: Safety measures in the German power grid to compensate for under frequency
according to the TransmissionCode 2007 [H+07].
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where the actual and the base quantity are of the same unit.

The procedure is then to pick two base values arbitrarily and derive the others from them.
These are usually Ubase ∈ {100kV, 400kV}, the base voltage and Pbase ∈ {1MVA, 1000MVA, 1GVA},
the base power where the sets denote values commonly chosen. For the derivation of, for
example, the base current we then calculate: Ibase = Pbase

Ubase
.

2.2.2. Power-Flow Equations

Next, we present how to model the power transmission in a power grid. The basic relation
between voltage and current in a circuit is given by Ohm’s law. In the case of AC this
gives the following two important complex values:

Definition 2.11 (Impedance). The resistive value of an element in an AC circuit is called
impedance, denoted by Z. It is the ratio between voltage and current and:

Z = U

I
= R+ j ·X (2.9)

where R = Re(Z) is the electrical resistance and X = Im(Z) the electrical reactance.

Definition 2.12 (Admittance). The admittance Y is defined as the reciprocal of impedance:

Y = 1
Z = R

R2 +X2 + j · −X
R2 +X2 = G+ j ·B (2.10)

where G = Re(Y ) is the electrical conductance and B = Im(Y ) the electrical susceptance.

Admittance, as the inverse to impedance is a measure to express how easily load can pass
through a conducting material. These are the values usually used to model the transmission
lines of a power grid and hence are known as line parameters.

We model the branches by means of an RLC circuit where RLC stands for: resistor (R),
inductor (L) and capacitor (C). Such a model of the transmission lines is according to
[SR70] and called Π-equivalent model. Figure 2.4 shows a Π-equivalent representation of a
transmission line. The name resembles the structure of the circuit.

Figure 2.4.: Representation of a transmission line using a Π-equivalent circuit [pi-]. V1 and
I1 are the voltage and current at the sending end, V2 and I2 at the receiving
end respectively. Y is the shunt admittance and Z the impedance.

We now want to look at the electrical power in AC circuits, the complex power is defined
as follows:

12
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Definition 2.13 (Complex Power). The complex power S in an AC circuit is given by:

S = P + j ·Q (2.11)

, where j =
√
−1 denotes the complex unit. We call P = Re(S) real power and Q = Im(S)

reactive power.

The imaginary reactive power is temporarily stored in capacities or inductances. This effect
arises because of the induced currents from the AC oscillating in the transmission lines.

With this we can finally introduce the equations that are referred to as AC load-flow
equations [GSO12]. They describe how much power is produced or consumed at one node
with regard towards the other nodes in the network.

Definition 2.14 (Load-Flow Equations). Consider a power grid with n buses. The injected
real and reactive power at bus i = 1, ..., n are:

Pi = Ûi

n∑
k=1

Ûk(Gki cos(θk − θi) +Bki sin(θk − θi)) (2.12)

Qi = Ûi

n∑
k=1

Ûk(Gki sin(θk − θi)−Bki cos(θk − θi)) (2.13)

where Ûi is the maximum voltage at bus i, Gki is the conductance on the branch connecting
bus k with i, Bki is its susceptance and θk − θi is the voltage angle difference between buses
k and i.

2.3. Ordinary Differential Equations
In mathematics, a phenomenon which evolves with time in a way such that only the present
affects the future is called a dynamical system. The behavior of such a system is expressed
in the terms of differential equations. As the system function (usually called y) is often
unknown, a differential equation describes this function with the function‘s values and the
ones of its derivatives.

A special case are so-called ordinary differential equations (ODEs) in which the searched
function and its derivatives contain only one independent variable. Most commonly, as
also in this work, the independent variable is the time and is hence denoted by t.

Definition 2.15 (Ordinary Differential Equation). Let D ⊆ R×Rn, n ∈ N and f : D → R
a continuous function. We call

f
(
t, y(t), y′(t), . . . , y(n)(t)

)
= 0

an ordinary differential equation of order n, where (y′, y′′, . . . , y(n)) is Lagrange’s notation
to depict the i-th derivative, i.e., y(i) = diy

dxi .

The value y(t) is called the state of the system at time t. In the above definition the ODE
is in so-called implicit form. If the ODE is solved for the highest derivative on one side,
i.e., f

(
t, y(t), y′(t), . . . , y(n−1)(t)

)
= y(n)(t) we call it explicit.

For some ODEs the development of states is not depending on the time but only on
the previous state the system was in. Then we can omit t as a parameter and the only
time-dependent variables are the ones represented by y(t) and its derivatives. We call such
an ODE autonomous.

13
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Definition 2.16 (Autonomous Ordinary Differential Equation). An ordinary differential
equation f

(
t, y(t), y′(t), . . . , y(n−1)(t)

)
= y(n)(t) is called autonomous, if

f
(
y(t), y′(t), . . . , y(n−1)(t)

)
= y(n)(t)

for all t in the function domain.

For this work we are only interested in autonomous ODEs and hence consider only these
from now on.

More complex phenomena are described not only by one ODE but by several coupled
equations. Together they form a system of ordinary differential equations.

Definition 2.17 (System of Ordinary Differential Equations). Let y be a vector whose
elements are functions y = (y1(t), y2(t), . . . , ym(t)), m ∈ N and f : (Rm)n → Rm a
vector-valued function of y and its derivatives then

y(n) = f
(
y,y′ . . .y(n−1)

)
is a system of ODEs with order n and dimension m. In column vector form:

y
(n)
1 (t)
y

(n)
2 (t)
...

y
(n)
m (t)

 =


f1(y,y′, . . . ,y(n−1))
f2(y,y′, . . . ,y(n−1))

...
fm(y,y′, . . . ,y(n−1))

 .

A system of autonomous differential equations is also called autonomous system.

When it comes to performing computations with autonomous ODEs it is convenient to
only look at systems of first order. We reduce an equation of order n by introducing n new
independent functions yi(t) = y(i)(t), i = 1, 2, . . . , n:

y0(t) = y(t)

y1(t) = y′(t) = dy0
dt

y2(t) = y′′(t) = dy1
dt

. . .

yn−1(t) = y(n−1)(t) = dyn−1
dt

yn(t) = f(y0, y1, . . . , yn−1)

So each consecutive function is a first order derivation of the introduced equation before.
With this we get a system of n ·m equations when we reduce a system of m equations of
order n.

It often is very hard or even infeasible to find analytical solutions for differential equations.
However, in many cases it suffices to study a system in its fixed points in order to be
able to make qualitative statements about the behavior. At such points the system is
time-invariant, i.e. does not change its behavior in the future.
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Definition 2.18 (Equilibrium Point). Let f
(
y,y′ . . .y(n−1)

)
= y(n) be an autonomous

system of order n. A point ye ∈ Rn that solves the system is called a equilibrium point, if

f (ye) = 0

Equilibrium points are also known as fixed points. Note that in this point all derivatives
y′,y′′, . . . become zero.

For the analysis of dynamical systems we are interested in how they behave close to an
equilibrium point. An equilibrium is called stable if a system’s states that lie in an area
with small distance ε around an equilibrium will never develop out of this area. Whereas
an equilibrium is called unstable, if the system’s states develop away from it and sometimes
behave in unwanted ways.

Definition 2.19 (Stability of an Equilibrium Point). An equilibrium point ye is called
stable, if for every ε > 0 there exists a δ > 0 s.t. for every solution f(y(t)) having initial
conditions within distance δ, i.e., ‖f(y(t0))− f(ye)‖ < δ remains within distance ε, i.e.,
‖f(y(t))− f(ye)‖ < ε for all t ≥ t0.

For the assessment of the stability of equilibrium points we will need to calculate eigenvalues
which are defined as follows.

Definition 2.20 (Eigenvector, Eigenvalue). Let V be a vector space over a field K and
f : V → V a linear transformation from V into itself. We call v ∈ V,v 6= 0 an eigenvector,
if f(v) is a scalar multiple of v, i.e.,

f(v) = λv

where λ ∈ K. We call λ the eigenvalue associated with v.

As there is a direct correspondence between square matrices and linear transformations
the above definition can be as Av = λv where A is the matrix representation of f .
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In this chapter we introduce a graph-theoretic representation of the power grid that can be
used to optimize the power flow based on topological properties. One of the simplest ways
to model electrical power grids is the so-called DC model which is a linear approximation of
the nonlinear AC load-flow equations we saw in Definition 2.14. The resulting model shows
similar properties to the behavior of direct current which is why it is referred to as DC
model. Its derivation is based on three central assumptions, as presented in [ZMsT+11].

3.1. Derivation
As this work focuses on state- or countrywide high and highest voltage networks, the
coarseness and high voltage levels at these layers of the power grid allow for some convenient
simplifications. The established model relies on the following important assumptions in
order to be computationally more tractable.

A1 Negligible line resistance. We assume the transmission line resistance R to be
very small, compared to the reactance X i.e., R � X for all lines. This means we
ignore ohmic losses and consequently set R = 0. The justification for this is that
with increasing voltage levels the resistances are getting quadratically smaller. With
Definition 2.12 this simplifies the parameters

Gij = Rij
R2
ij +X2

ij

= 0

Bij = −Xij

R2
ij +X2

ij

= − 1
Xij

Hence, the admittance in the DC model is purely imaginary and the power flow
equations become:

Pi = Ûi

n∑
k=1

Ûk ·Bik sin(θk − θi)

Qi = Ûi

n∑
k=1

Ûk ·Bik cos(θk − θi)
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A2 Flat voltage profile. The voltage profiles are assumed to be flat at each node.
This means the voltage magnitudes are usually set to the reference voltage level:
Ûi = 1.0 p.u. for all buses i. The load-flow equations therefore simplify further to:

Pi =
n∑
k=1

Bik sin(θk − θi)

Qi =
n∑
k=1

Bik cos(θk − θi)

A3 Negligible voltage angle differences. In power grids voltage angle differences
are usually rather small. In [PMVB05] the authors found that for the Belgian high
voltage network most of the observed angle differences are below 2◦, while the peak
values are at around 6◦− 7◦. Therefore, using the angle differences directly is feasible
and results in the following approximation:

sin(θj − θi) ≈ θj − θi
cos(θj − θi) ≈ 1

Note that the slope of the sine function around the origin is close to linear while that
of the cosine is almost flat. This leads to the approximations with a linear term and
constant 1 respectively. With this, we can omit the reactive power equations and the
power flow equations finally reduce to:

Pi =
n∑
k=1

Bik(θk − θi) (3.1)

We have reduced the nonlinear, non-convex problem formulation of the AC power flow to a
system of linear equations. With these we now can introduce a power grid model based on
a flow network.

3.2. Graph-Theoretic Representation
Every power grid can be described as a connected, undirected graph G = (V,E). Figure 3.1a
shows the example power grid of Section 2.2. Figure 3.1b shows the corresponding graph to
it. The branches and branch related equipment such as transformers are now represented
by the edges E, where one edge represents all the lines between two buses combined. The
set of nodes V corresponds to the buses. We partition them into two disjoint subsets
V = VG∪̇VC , where VG represents the generators and VC the consumers connected to the
grid. Note that a bus can be connected to generators and loads simultaneously (e.g. bus 2).
We consider the corresponding node to be a generator if the real power injected exceeds
the amount of load at this bus, Pi > 0 and to be a consumer if Pi ≤ 0. Transformers
(bus 7) are neither of the above and are implicitly represented by edges and other network
parameters.

In order to capture DC power flows as derived in the previous section we take the graph
representation of a power grid and then define a flow network as in Definitions 2.5 and 2.6
with additional properties to capture the physical world we are talking about. Following
[GRW+18], a graph-theoretic representation of a power grid can be defined as follows: The
sources of the network correspond to the generators VG of the power grid and the sinks to the
loads VC . The capacity function cap represents the thermal line limits of the transmission
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(a) Power grid diagram [AR15].
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(b) Graph representation.

Figure 3.1.: The IEEE 14-Bus system diagram and its corresponding graph. Generators G
and Condensers C become VG ( ), outgoing arrows indicating loads become
VC . Transformers ( ) are implicitly modeled by the edges and only shown
for completeness.

lines. This constraint is introduced to make the upcoming optimization problems well-
defined by limiting the flows. Beyond the capacity we also define a susceptance function b
mapping the line parameter to each of the edges. The minimal demand of the load nodes
is given by function pd, the maximum by pd and the lower and upper bounds for the power
a generator node can provide are given by pg and pg.

Definition 3.1 (DC Network [GRW+18]). Let ~G = (V, ~E) be a bi-directed graph. The DC
network, representing a power grid, is then given by the tuple N = (~G, VG, VC , cap, b, pd, pd, pg, pg)
with:

VG ⊆ V generator nodes
VC ⊆ V consumer nodes

cap : ~E → R≥0 capacity function
b : ~E → R≥0 susceptance function

pd : VC → R≥0 consumer’s minimum demand
pd : VC → R≥0 consumer’s maximum demand
pg : VG → R≥0 generation’s lower bound
pg : VG → R≥0 generation’s upper bound

Given a DC network N , a flow on this network is a function f : ~E → R satisfying the
conditions of Definition 2.6. We furthermore define the net flow at a node in Definition 3.2.

Definition 3.2 (Net Flow [GRW+18]). Let N = (~G, VG, VC , cap, b, pd, pd, pg, pg) be a DC
network with ~G = (V, ~E) and f : ~E → R a flow. The net flow at a node v ∈ V is defined as

fnet(v) :=
∑

(v,w)∈ ~E

f(v, w) (3.2)

It has to satisfy the following three constraints:

fnet(v) = 0 ∀v ∈ V \ (VG ∪ VC) (3.3)
−∞ ≤ fnet(v) ≤ −pd(v) ∀v ∈ VC (3.4)
pg(v) ≤ fnet(v) ≤ pg(v) ∀v ∈ VG (3.5)
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Equation (3.3) resembles Kirchhoff’s current law (see Equation (2.4)) that itself is equivalent
to the flow conservation in Equation (2.2). In these cases Equation (3.4) constraints the
net flow with the demands lower limit at a consumer node and Equation (3.5) limits the
net flow with the generation bounds.

The flow value F of a flow f on network N is given by the total amount of units of flow
injected by the generator nodes into the network, see Equation (3.6).

F (f,N ) :=
∑
v∈VG

fnet(v) (3.6)

The maximal achievable flow value for a feasible flow defined on a network N is called
Maximum Flow (MF) and is defined as follows:

Definition 3.3 (Maximum Flow). Let N be a DC network with ~G = (V, ~E). A feasible
flow f : ~E → R≥0 is called Maximum Flow (MF) if

f = arg max
f

F (f,N ). (3.7)

Its value is given by OPTMF (N ) := maxF (f,N ).

So far the definitions mostly correspond to the ones of a classical network flow model.
Now, additionally we want to be able to represent the physical properties of electrical grids.
More precisely, we aim to express the linearized power flow of Section 3.1 in graph-theoretic
notation.
First, we define a function Θ : V → R mapping a potential value to each bus. In an electric
grid the difference in voltage angles between two buses is proportional to the amount of
power that can be transmitted over a line at once. Note that Equation (2.3) already puts an
upper bound to this difference in constraining how much flow actually can be transmitted.
The other property that influences how much power can flow through a branch is given
by the susceptance b. An electrically feasible flow has to satisfy the conditions given in
Definition 3.4.

Definition 3.4 (Electrical Feasibility).

b(v, w) · (Θ(w)−Θ(v)) = f(v, w) ∀(v, w) ∈ ~E (3.8)
Θmin(v) ≤ Θ(v) ≤ Θmax(v) ∀v ∈ V (3.9)

Equation (3.8) resembles the linearization assumptions of Section 3.1. We see that the
higher the susceptance, the more power can flow between two potentials. This equation,
together with Equation (2.2), also implicitly models the KVL. Nodes in any cycle in a
graph have to be assigned with voltage levels such that summed up they become zero.
Equation (3.9) gives a limitation to the maximum phase angles and hence also to the
maximum phase angle difference Θ(u)−Θ(v) between two adjacent nodes. Values from
the NESTA dataset suggest Θmin = −30◦ and Θmax = 30◦.
With this expansion of the model, giving an edge (v, w) ∈ ~E a positive flow value f(v, w) > 0
means power proportional to this value is transmitted from node v to node w. If f(v, w) < 0
the power is actually transmitted from w to v. We call a flow f that is electrically feasible
a power flow.

Analogously to Definition 3.3, the electrically feasible power flow for a network N that
maximizes F (f,N ) is called Maximum Power Flow (MPF) and its value is given by
OPTMPF (N ) := maxF (f,N ).
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3.2.1. Switching

It can happen that the maximum power flow of a given DC network is limited by certain
edges. In that case removing them can actually achieve a greater flow value. Figure 3.2
shows such a situation. The maximal possible power flow in Figure 3.2a is 3

2 , as edge (s, t)
is saturated and the resulting potential of 1 at node t does not allow for more flow via node
x. After removing edge (s, t) (Figure 3.2b) the flow increases to 2 with higher potentials
possible at the nodes.

1
2

0 1s t

x

3
2
/2

1
2
/2 1

2
/2 3

2
/2

1/1

(a) Network without switching.
OPTMP F (N ) = 3
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(b) Network after switching edge (s, t).
OPTMT SF (N ) = 2

Figure 3.2.: Example for applied switching increasing the flow [Weg19]. All line susceptances
are set to b = 1. The gray edge labels denote the capacity cap, the black labels
the flow f . The blue numbers in the nodes give the potential Θ.

We now give a formal definition of switching. Let G = (V,E) be an undirected graph
and S ⊆ E the set of edges we want to remove from G. We obtain G − S := (V,E \ S).
For the corresponding directed graph ~G = (V, ~E) define the set of removed edges as
~S := {(v, w), (w, v) | {v, w} ∈ S} and get ~G− ~S := (V, ~E \ ~S).
The DC network with switched-out edges S is then given by N−S := (~G−~S, VG, VC , cap′, b′,
pd, pd, pg, pg) where b′ : ~E \ ~S → R≥0 and cap′ : ~E \ ~S → R≥0 are the susceptance and
capacity function restricted to the remaining edges.

Definition 3.5 (Maximum Transmission Switching Flow). Let N be a DC network. A
Maximum Transmission switching Flow (MTSF) on N is given by

MTSF (N ) := maxS⊆EMPF (N − S) (3.10)

Its value is given by OPTMTSF (N ).

Note that this definition only regards electrically feasible flows.

The following lemma shows the relationship between the maximum flow values. A general
MF without physical constraints is always the best we can achieve and gives an upper
bound. An MTSF is always at least as good as an MPF, since we can just set S = ∅.

Lemma 3.6 ([GRW+18]). Let N be a DC network. The following relations hold:

OPTMPF (N ) ≤ OPTMTSF (N ) ≤ OPTMF (N ).
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Dominating Theta Paths

Now, in order to find edges that lead to optimal switchings we look at a new centrality
measure introduced by the authors, the dominating theta path (DTP)-betweenness centrality.
For this we need two more definitions. Paths π(v, w) are defined as in Definition 2.7.
The susceptance norm for a path π(v, w) in a DC network N is given by Equation (3.11):

‖π(v, w)‖b :=
∑

e∈π(v,w)
b(e)−1 (3.11)

The minimum capacity on a path π(v, w) is given by Equation (3.12).

cap(π) := min
(v,w)∈π

cap(u,w) (3.12)

The potential difference on a path, i.e. between the start and the finish node can then be
calculated as given in Definition 3.7.

Definition 3.7.
∆Θ(π(v, w)) := ‖π(v, w)‖b · cap(π(v, w)) (3.13)

Let Π(v, w) be the set of all paths from v to w in a given graph (Definition 2.8). A switching
is assumed to be beneficial if it removes an edge sitting on a path that limits the maximum
flow. Such a path is limiting, if it has the smallest the potential difference ∆Θπ(v, w) of
all v-w-paths. We call this path a dominating theta path.

Definition 3.8 (Dominating Theta Path [GRW+18]). The Dominating Theta Path
(DTP) between two nodes v and w is given by:

πDTP(v, w) := arg min
π(v,w)∈Π(v,w)

∆Θ(π(v, w)) (3.14)

In [GRW+18] the authors present an algorithm for finding DTPs in DC networks. For
every pair of nodes (u, v) there exists such a DTP. The metric for the removal of an edge is
now not, whether there is a DTP going through this edge, but how many. By looking at
edges like this we receive a new centrality measure that is not based on shortest paths but
rather following the intuition of the ‘path of least resistance’.

Definition 3.9 (DTP Betweenness Centrality [GRW+18]). Let N be a DC network. The
DTP betweenness centrality cDTPB : E → R≥0 is given by

cDTPB(e) := 1
mB

∑
s∈V

∑
t∈V \{s}

σDTP(s, t, e)
σDTP(s, t) (3.15)

where σDTP(s, t, e) is the number of DTP-paths between s and t that use e, σDTP(s, t) is the
total number of DTP-paths from s to t and mB = |V |(|V | − 1) is a normalizing constant.

With the normalization constant mB we get cDTPB(e) ∈ [0, 1] for all edges. Where a higher
values implies e is element of more DTP-paths.
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3.3. Limitations of the Model
As it was shown in [LGV14, LGHV15] finding the MTSF in general is NP-hard and only
for certain rather limited graph classes better results on the problem complexity are known.
For general graphs it was even shown that there exists no effective approximation algorithm
to solve the switching problem. Yet, in [GRW+18] the authors present an algorithm that
computes the dominating theta paths of which is not known whether it runs in polynomial
time, but shows reasonable running times and results on realistic problem instances.

They also show that their algorithm computes a correct MTSF for a specific graph class,
so-called penrose-minor-free graphs with only one generator and one consumer. Beyond
that there are only simulation results for more general graphs, e.g. of the NESTA dataset,
so far. The suggestion hence is to use the DTP-betweenness definition from above as
a heuristic for finding edges most likely to be congested and therefore being the best
candidates to remove in order to increase the overall power flow.

While we can use the DTP-betweenness as an indicator for how beneficial a switching may
be, even though in most cases only heuristically, up to now we have no evidence whether
the removal of the computed edges will actually leave us with an intact power grid. This is
because the performed analysis is static. We only look at a snapshot of the power grid at
one point in time with the corresponding load, generation and phase angles. We compute
the switchings and optimize flow values based on this state. So far, there is no way to
express how the power grid is going to behave over time, after we perform such a big
intervention as topologically altering it. The result is a relocation of load on the network
edges which will also alter the phase angles of the generators and loads as well as the net
frequency.

However, as mentioned in Section 2.2, deviations from the utility frequency of 50Hz that
are too large can cause severe damage and leave the power grid inoperable. We therefore
want to be able to analyze what happens at the different buses after a switching took place.
Also, such potentially disruptive events all happen on a rather small time scale, as power
transmission is fast and effects can take place quickly at different nodes over the whole net.

We also have to keep in mind that we are looking at a linearized model of the power grid.
There are possible sources for errors as investigated and presented in [PMVB05]. The lower
the voltage levels are the more likely it is that Assumption A1 (negligible line resistance)
and Assumption A3 (small voltage angle differences) can cause errors. Assumption A2 (flat
voltage profiles) appears to be the most critical one as the nodal voltages are distributed
around 1.1 p.u. rather than 1 p.u. which causes the most estimation error. A reason for
this higher value is to account for voltage drops along transmission lines.

In conclusion, we do not know if the heuristics on the DC network with all the simplifications
mentioned can be applied to compute switchings just like that or if they would desynchronize
and destroy the represented power grid. We hence need to look at another model which
takes into account a notion of time in order to be able to perform a transient analysis and
to assess the stability.
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With the static DC model at hand and the concerns about the stability of the power grid
we now derive a different modeling approach that incorporates an element of time. The aim
is to study dynamic events and their consequences such as the switching of an edge but also
change in supplied or demanded power at a generator or consumer node. A redistribution
of the power flow consequently leads to a change in the voltage angles at the buses and a
change of the net frequency is the result. How big is the impact of these shifts in the flow
over the edges? What influence does it have on the system’s stability? This can only be
observed over a period of time.

In a power grid the net frequency is determined by the rotations of the generators’ turbines.
It gives very sensitive responses to scenarios such as oversupply or overload. In ideal
conditions every unit is running exactly with the utility frequency which in our case is
50 Hz. In practice, however, the frequency of the grid varies. It reduces when the net is
heavily loaded, i.e., the demand is greater than the supply and increases when there is
more supply than demand, see Section 2.2.1. Roughly speaking, if there is more energy
in the system the frequency increases. An analogy for this is radiation: higher energetic
waves such as gamma radiation have a higher frequency. Hence, the goal is to keep the
machines of the grid overall as close as possible to the desired reference of 50 Hz.

The key condition for proper operation in which we are interested in this chapter is the
synchronization of the frequencies of all the interconnected machines. Although we want to
shed light onto this more detailed aspect, we still want to have a model that is feasible for
a network on the same scale as the linear DC model. This means high voltage nationwide
transmission networks. We do not want to worry about too specific technical details of
every component. The oscillator model grants exactly this compromise between large scale
topological considerations and dynamical behavior.

4.1. The Oscillator Model
The formalization of synchronization behavior was originally introduced by Kuramoto
[Kur75] in 1975. It defines a system of ordinary differnetial equations of first oder. The
idea is that periodical behavior of some entity can affect the behavior of neighboring
ones such as for example neural cells. The entities are modeled as oscillators that are
coupled with each other via some kind of connection that affects the rotations of the
oscillators mutually. When the coupling is strong enough and the differences between
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the oscillators rotations is not too large they will eventually synchronize to operate at
the same frequency. Originally, this model was only defined on complete graphs with
homogeneous coupling values. However, as real world systems are often heterogeneous and
exhibit complex structural properties, it has been extended to complex networks, with also
additional features such as time-delay in the interactions [RPJK16].

This concept of coupled oscillators was first utilized for power grid analysis by Filatrella et
al. [FNP08] in 2008. The connection is clear as AC oscillates periodically in the power grid
and generator turbines and electric motors are rotating machines that have to be operated
at the same frequency. We now derive the model to express these nonlinear dynamics on
small time scales. This is will give us insight into the dynamic behavior that happens as
a response to the switching operations we with to study. The model consists of a set of
ordinary differential equations, one for each bus of the network.
Much like the static DC model it is based on some simplifying assumptions we can make
when we look at the high voltage transmission network. We can then simplify the power
flow equations from Definition 2.14 by the following assumptions:

• The model is lossless, i.e., we ignore ohmic losses among the transmission lines (see
assumption A1).

• The nodes’ voltage amplitudes are constant across all nodes and time, i.e. Ûi(t) = 1
p.u. for all i ∈ V (see assumption A2).

• We only consider active power transmission.

This time however the voltage angle differences are not negligible and we do not linearize
the model. Applying these assumptions leads us to Equation (4.1).

Pi =
N∑
j=1

Bij sin(θj − θi) (4.1)

In comparison to the load flow equation of the DC model, Equation (3.1), we now have a
power flow that is equivalent to the sine of the phase angle differences θj − θi.

Again, as in Section 3.2, we represent a power grid with an undirected graph G = (V,E)
with a set of buses V and branches E, representing the topology of the power grid. Note
that this time we make no distinction between generator and consumer nodes. The oscillator
model thinks of each node in the network as a rotating machine such as a power generating
turbine or power consuming motor. These machines are coupled with each other by the
transmission lines between them. Generators in this net aim to produce power that is close
to the utility frequency. Since we are in a rotating frame we set the network’s reference
angular frequency to

Ω := 2π · 50 Hz

which describes the angular change. Here these are 50 rotations per second.

Every machine i ∈ V has a state that is described by two values. Again, for the sake of
readability after its definition we omit a function’s time parameter if it is not needed for
disambiguation and write f instead of f(t).

1. The mechanical phase angle θi(t) at time t ∈ R≥0 for machine i is given by Equa-
tion (4.2).

θi(t) = Ωt+ φi(t) (4.2)

Function φi(t) denotes the phase shift from the reference phase Ωt.
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4.1. The Oscillator Model

2. The angular velocity represents the angle change of machine i oder time t and is
given by Equation (4.3).

dθi(t)
dt

= θ̇i(t) = Ω + φ̇i(t) (4.3)

This is the first derivative of the angle function and also known as the oscillator’s
frequency. Note that from now on we use Newton‘s notation for derivatives, i.e,
θ̇, θ̈ as it is habit in physics when calculating with time derivatives. As we saw in
Section 2.2.1 only small deviations from the utility frequency are allowed in AC
power grids. An important assumption is therefore that the phase changes are small
compared to the reference angular frequency: |φ̇i| � Ω.
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Figure 4.1.: Illustration of two oscillators i ( ) and j ( ) wrt. the reference oscillation.
On the left the oscillations are represented as rotations on the unit circle in
the complex plane. Angles φi and φj give the phase shift from the reference
(dashed). The phase development over time is given. It shows how oscillator i
is ahead by φi and oscillator j is behind by φj while the frequencies φ̇i, φ̇j is
the same.

In order for power transmission to take place between two nodes i, j ∈ V it is required
that they do not operate in phase. In Equation (4.1) we saw that the transmitted power
is proportional to the sine of the voltage angle difference. Since sin(θj − θi) = 0, if
θj = θi the phase angles have to differ. As all pairs (i, j) of oscillators have the same
reference frequency, their differences in phase angles and phase deviations are the same:
θij = θi − θj = φi − φj = φij .

Figure 4.1 shows how the oscillations can be thought of as rotations as well as waves. Now,
if a node i is connected to j and is ‘ahead’ with its phase angle, i.e. θi(t) > θj(t), power is
transmitted from i to j, as sin(θi(t)− θj(t)) > 0. This means, if i is a generator and starts
to produce more power at time t+ 1, its angular frequency θ̇ increases and with it its phase
angles ‘margin’ towards j increases. This leads to a higher angle difference θij and hence
to more power that can be transmitted, as sin(θi(t+ 1)− θj(t+ 1)) > sin(θi(t)− θj(t)).

Derivation of the Oscillator Equations

Next, we derive the nonlinear equations describing the development of the oscillators’ states
over time. For this we need to be able to calculate the change of the angular velocity of
each oscillator. The derivation is based on the law of conservation of energy. It mostly
follows from Filatrella et al. [FNP08], but tries to be more explanatory.
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We have N = |V | buses. For every bus i ∈ V the total produced power Psource,i at a bus is
equaled out by three other forms of power, given in Equation (4.4).

Psource,i︸ ︷︷ ︸
generated power

=
N∑

j=1,j 6=i
Ptransij︸ ︷︷ ︸

transmitted power

+ Pacc,i︸ ︷︷ ︸
accumulated power

+ Pdiss,i︸ ︷︷ ︸
dissipated power

(4.4)

The generated power Psource,i is negative, if i ∈ V represents a consumer. The power sent
or received by bus i from another bus j is Ptransij . Accumulated power at bus i such as
the kinetic power in a generator’s flywheel is given by Pacc,i. Finally, there is the thermal
power loss Pdiss,i which is the dissipated power at a bus i. The different power terms are
defined as follows:

• Let Pmaxij be the capacity of transmission line {i, j}:

Ptransij = −Pmaxij sin(θj − θi) ∀{i, j} ∈ E

• Let Ekin = Ii ·
θ̇2

i
2 be the kinetic energy stored at bus i and Ii its moment of inertia. The

moment of inertia determines the torque needed for the desired angular acceleration
and is depending on what kind of machine we look at. Using the chain rule for ODEs
this gives:

Pacc,i = d

dt
Ekin = 1

2Ii
d

dt
(θ̇i)2 = Iiθ̇iθ̈i ∀i ∈ V

• Let κi be the friction coefficient of the motor at bus i:

Pdiss,i = κi(θ̇i)2 ∀i ∈ V

Introducing these definitions to Equation (4.4) gives:

Psource,i = κi(θ̇i)2 + Iiθ̇iθ̈i +
N∑

j=1,j 6=i
−Pmaxij sin(θj − θi)

4.2,4.3= κiΩ2 + 2κiΩφ̇i + κiφ̇i
2 + IiΩφ̈i + Iiφ̇iφ̈i +

 N∑
j=1,j 6=i

−Pmaxij sin(φj − φi)


, where we used θi = Ωt+ φi (4.2) and θ̇i = Ω + φ̇i (4.3). We want to solve the equations
for the highest derivative:

IiΩφ̈i = Psource,i − κiΩ2 − 2κiΩφ̇i − κiφ̇i
2 − Iiφ̇iφ̈i +

 N∑
j=1,j 6=i

Pmaxij sin(φj − φi)

 (4.5)

As we mentioned above, the phase changes are assumed to be small in comparison to the
reference frequency |φ̇i| � Ω for all i ∈ V . We therefore neglect all terms with φ̇i

2 and φ̇iφ̈i.
Furthermore, to simplify the model it is usually assumed that the inertia and damping
are the same for all machines and we simply use I and κ in all equations. This simplifies
Equation (4.5) to:

IΩφ̈i = Psource,i − κΩ2 − 2κΩφ̇i +

 N∑
j=1,j 6=i

−Pmaxij sin(φj − φi)

 (4.6)

In a last step we divide by IΩ and define abbreviations in Definition 4.1 in order to get the
second order ODE.
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Definition 4.1. We set the system parameters to:

Pi := Psource,i − κΩ2

IΩ (4.7)

α := 2κ
I

(4.8)

Kij :=
Pmaxij

IΩ (4.9)

As above we have Pi > 0 for generators that produce electrical power and Pi ≤ 0 for loads
that consume it. In order for the system to synchronize and operate properly it is required
that

∑N
i=1 Pi = 0, i.e., the amount of produced power equals the consumed.

The constant α, called the effective damping factor, accounts for the dissipated energy in a
machine.
Parameter Kij is called coupling constant for the transmission line between nodes i and j.
If they are adjacent, its value is proportional to the line capacities, if not then it is zero.
Following Witthaut et al. [WRZ+16b] it can also be retrieved from the grid parameters:

Kij =


−BijÛiÛj

Ii
, if {i, j} ∈ E

0 , if {i, j} /∈ E

, where Ûi is the voltage magnitude at bus i and Bij is the line susceptance of branch {i, j}.
Furthermore, it is Kij = Kji for all i, j ∈ V .

In the end this leaves us with an ODE system for the nonlinear behavior of N coupled
oscillators representing a power grid. It is given by Equation (4.10).

φ̈i = Pi − αφ̇i +
N∑

j=1,j 6=i
Kij sin(φj − φi) i = 1, . . . , N (4.10)

It consists of N ODEs of second order. System 4.10 is actually autonomous (2.16),
since all time-dependent values (φ(t), φ̇i(t) and φ̈(t)) are state variables and no external
time-dependent value is present.

4.2. Synchronization
Formalizing and analyzing synchronization behavior in power grids is the purpose of the
oscillator model. We want to be able to tell what happens after a perturbation took place.
Perturbations can be of different nature: switching of transmission lines but also temporary
load or demand peaks or even losses of generating units. If the disturbance is too heavy the
utility frequency of the net is lost and it decomposes into desynchronized parts. According
to Timme [Tim18], there are two types of synchrony that can be distinguished:

1. Phase synchrony: φi(t) = φj(t) ∀i, j ∈ V

2. Frequency synchrony: φ̇i(t) = φ̇j(t) ∀i, j ∈ V

The first case, also called identical synchrony, demands all oscillators to adopt the same
phase and hence the same phase angle. For power grids such a state is undesirable, as the
power flow on a transmission line {i, j} is proportional to the sine of the phase difference
of the two oscillators connected to it, see Equation (4.1). So in the case of φi = φj we have
sin(φj − φi) = 0 and no power is transmitted.
Therefore, frequency synchrony is of more interest to us. The oscillators’ phases differ
but their frequencies (and hence their relative phase differences) are fixed and we get a
constant amount of power transmitted between them.
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Steady State

In the synchronized state the derivatives become zero: φ̇i(t) = φ̈i(t) = 0 for all i ∈ V . This
means all oscillators rotate at the reference frequency of 50 Hz and they do not change
their rotational speed anymore. Equation (4.10) then becomes

0 = Pi +
N∑

j=1,j 6=i
Kij sin(φj − φi) (4.11)

for all i ∈ V . Following Definition 2.18 this synchronized state is a fixed point of the
oscillator equations. It is also called a steady state. These are the states we look at in the
static model. It is only in the steady state that the phase differences φj − φi are fixed
pairwise and the power flow is well-defined, meaning it satisfies the KCL (Equation (2.4))
and KVL (Equation (2.5)). We know that the power transmitted on the grid’s transmission
lines {i, j} ∈ E is proportional to the sine of the relative phases of two connected oscillators.
Hence, the power flow between bus i and j can be defined as in Equation (4.12) [Tim18].

Fij = Kij sin(θj − θi) (4.12)

By considering the coupling value as line capacity Kij we define the relative load Lij of a
transmission line in Equation (4.13) [Tim18]. It is Lij ∈ [0, 1] which gives the fraction of
how much the line is utilized.

Lij = Fij
Kij

= sin(θj − θi) (4.13)

Mean-Field

A way to measure the level of the system’s synchrony comes from mean-field theory. By
averaging over the phases of the N oscillators we can get some useful insights into the
synchronization behavior. We assume that the oscillators are located around the unit
circle in the complex plane. The synchronization order parameter states whether they
rotate synchronously around that circle or if they rather act on their own. It is given
by Equation (4.14) [Tim18], where we calculate the geometric center of all the phases
by summing up their momentary phases in complex exponential form φj(t) = eiφj and
normalizing by the number of oscillators N .

reiψ = 1
N

N∑
j=1

eiφj (4.14)

The resulting complex number is the geometric center. Its argument ψ ∈ [0, 2π) is the
average phase and the absolute value r ∈ [0, 1] is the phase coherence. In physics, two
waves are coherent if their phase difference is constant. This also means that they have
the same frequency, as the phase difference can only remain the same if the waves develop
with the exact same speed.

For oscillators the intuition behind this equation now is the following: Imagine them as a
swarm of points rotating on the complex unit circle with their position defined by their
current phase as depicted in Figure 4.2. The closer they are clumped together the closer
to the unit circle the geometric center will be. The coherence will become r = 1, if all
points are in the same spot. This corresponds to phase synchrony which is, as mentioned
in Section 4.2, undesirable. If r is very small the points are evenly scattered around the
circle. This corresponds to an unsynchronized network. So what is ideal? As we saw in
Section 3.1 A3 the phase angle differences in a power grid usually are quite small with a
few degrees. So a value close to but not exactly one is what indicates good operation.
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Figure 4.2.: Illustration of phase coherences. The oscillators on the left are grouped together
more tightly than on the right. Consequently, the phase coherence is larger
r1 > r2. Angles ψ1 and ψ2 are the average phases.
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In this chapter we present the methods used for analyzing the quality of switchings based
on DTP-betweenness in terms of system stability and synchronization. Since the linear DC
model of Chapter 3 does not consider any dynamic behavior the question is how good these
switchings are in the real world. We perform a quantitative analysis on sample power grids
in order to establish whether the removed edges would keep our network in an operable
state or if net synchronization will be lost.

In order to do so, we use the oscillator model of Chapter 4 to formulate the ODEs describing
the power grid’s dynamics. Then we calculate the DTP-betweenness 3.9 and successively
switch out each edge depending on its betweenness value. Next, we apply two methods for
analyzing the resulting network. The first one is a small-signal analysis and is based on
Lyapunov’s first method [KBL94]. that assesses system stability at a certain point in time
via linearization. The second one is a numerical integration to simulate the development of
a systems behavior over time.

5.1. Setup

We setup the model by making some assumptions and rephrasing the oscillator equations.
There are three phases we can distinguish during the analysis. The pre-switching phase
during initialization and ‘normal operation’. The on-switching period, during which
the switching takes place. And the post-switching phase, in which the effects of the
switching manifest. In this work we assume the switching duration to be zero, i.e., happens
instantaneous. We therefore only consider pre- and post-switching states.
Additionally, we switch only one edge at a time, in order to be able to directly compare
the betweenness with the stability and post-switching behavior.

When we want to evaluate a test power grid we read its case file. It contains information
about the network topology and the electrical branch and bus properties. The case file
represents the power grid in a pre-switching steady state, where power generation and
demands are equaled out.

Let us take the system equation 4.10, to describe the dynamics of a power grid we want to
study. Before we can proceed, this second order system needs to be reduced to first order
,i.e., a set of ODEs with only first derivatives. To achieve this we introduce a new variable
ωi = φ̇i as a substitute for the first derivative of φi. The system then reads as follows:
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φ̇i = ωi i = 1, 2, . . . , N (5.1)

ω̇i = Pi − αωi +
N∑

j=1,j 6=i
Kij sin(φj − φi)︸ ︷︷ ︸

=fi(φ,ω)

i = 1, 2, . . . , N (5.2)

where N is the number of buses. This leaves us with 2N equations of first order. In vector
notation this is: 

φ̇1
...
φ̇n
ω̇1
...
ω̇n


=



ω1
...
ωn

f1(φ,ω)
...

fn(φ,ω)


(5.3)

a state of the first order system is then given by (φ1, . . . , φn, ω1, . . . , ωn).

When we want to switch an edge {i, j} between two nodes i and j we set the coupling
between them to Kij = 0.

5.2. Small-Signal Analysis
Small-signal analysis is used in electronics engineering to approximate the behavior of
nonlinear AC circuits. This method can also be used on the nonlinear oscillator model of
the power grid we are looking at. The idea is that we do not compute the development of
the system over the whole time. We rather want to assess whether our dynamical system is
in a stable state after switching took place. For this we try to find an equilibrium point for
the altered system. We then look at the linearization of the system equations at this point
which gives us the Jacobian matrix. The idea of small-signal analysis is that when we look
at the system in a close area around an equilibrium point it behaves pretty much like the
linearized version of it. The reason we now can deduce a prediction on the behavior of the
system comes from Lyapunov‘s first method for stability [KBL94, p. 706]. When evaluate
the eigenvalues of the Jacobian they tell us if the system next to our evaluation point is
going to be stable or unstable.

Following the procedure presented in [KCG+19] the small-signal analysis can now be
performed by the following steps:

Step 1 Initialization. Read in the case file of the power grid. Then compute the power flow
for the pre-switching steady state of the network to retrieve the initial network values
before the switching takes place. These values include the generator or load power Pi,
as well as the phase angles φi at the different buses. We calculate the DC power flow
from Equation (3.1), as this is the usual procedure for the oscillator model. Systems
with a well-defined power flow are in an equilibrium state of which we know that
the time derivatives, i.e., the angular frequency φ̇ and the acceleration ω̇ are zero.
Equations (5.1) and (5.2) become Equations (5.4) and (5.5) respectively.

0 = ωi i = 1, 2, . . . , N (5.4)

0 = Pi +
N∑

j=1,j 6=i
Kij sin(φj − φi) (5.5)
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Step 2 As mentioned above, we assume that the switchings takes place instantaneously. We
determine the post-switching equilibrium point (see Definition 2.18) a ∈ R2N with

a = (φe1, . . . , φeN , ωe1, . . . , ωeN )

by solving the system of nonlinear equations 5.5 to get fi(a) = 0 for all i = 1, 2, . . . , N
(Equation (5.4) is satisfied trivially). This can be done for example using the Newton-
Raphson algorithm or Powell’s hybrid method [PTVF07]. The algorithm is initialized
with the phase angles φi from step 1.

Step 3 Linearize the system of Equations (5.1) and (5.2) for the determined values of the
equilibrium point a. This is done using the linearization principle which takes the
first two terms of the Taylor’s series expansion of the system equations.

(
φ̇
ω̇

)
=
(
ωe

f(a)

)
+ J(a) · (

(
φ
ω

)
− a),

where ωe = (ωe1, . . . , ωeN ) and J(a) ∈ R2N×2N is the Jacobian matrix of the system
at point a. This approximates the behavior of the system in a close area around a
reasonably accurate. Abbreviating fi(φ,ω) with fi, the Jacobian reads as follows:

J =



∂φ̇1
∂φ1

. . . ∂φ̇1
∂φn

∂φ̇1
∂ω1

. . . ∂φ̇1
∂ωn

... . . . ...
... . . . ...

∂φ̇1
∂φn

. . . ∂φ̇n

∂φn

∂φ̇n

∂ω1
. . . ∂φ̇n

∂ωn

∂f1
∂φ1

. . . ∂f1
∂φn

∂f1
∂ω1

. . . ∂f1
∂ωn

... . . . ...
... . . . ...

∂fn

∂φ1
. . . ∂fn

∂φn

∂fn

∂ω1
. . . ∂fn

∂ωn


(5.6)

Evaluating these terms leaves us with the following matrix:

J =
(

0 I
F α · I

)
(5.7)

, where 0 ∈ RN×N is the zero matrix, I ∈ RN×N is the identity matrix and F ∈ RN×N
reads:

F(i,j) = ∂fi
∂φj

=
{

(−1) ·
∑N
k=1,k 6=iKik cos(φk − φi) , i = j

Kij cos(φj − φi) , i 6= j
(5.8)

with i, j = 1, 2, . . . , N .

Step 4 Now we test the equilibrium point for stability [LK07]. In order to do so we calculate
the eigenvalues of J . There are 2N linearly independent eigenvectors and hence 2N
eigenvalues λi, corresponding to the Jacobian’s dimensions. If all eigenvalues have
negative real parts we can deduce that the equilibrium point is stable. If one or more
of the eigenvalues has a positive real part the system is in an unstable state. In the
case that one or more eigenvalues have a real part of zero and the rest have negative
real parts we cannot make any conclusions for certain and the system requires further
investigation such as numerical integration [KPA+04, p. 706]. Summarizing:
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1. Re(λi) < 0 ∀i = 1, 2, . . . , 2N ⇒ the equilibrium point is stable

2. ∃i ∈ {1, 2, . . . , N} : Re(λi) > 0⇒ the equilibrium point is not stable

3. Re(λi) ≤ 0 ∀i = 1, 2, . . . , 2N ∧ ∃i : Re(λi) = 0⇒ further investigation necessary

Since the eigenvalue computation of large matrices is based on numerical algorithms
we round off to zero if values are sufficiently small enough, i.e., Re(λi) < 1× 10−13.
Finally, the computations on this matrix will always yield one eigenvalue λ = (0, 0).
According to [SRM+18] this eigenvalue corresponds to the global shift of the oscillators
phase angles. It therefore can be omitted as it has no physical relevance and does
not give information on the system stability.
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Figure 5.1.: Eigenvalues for nesta_case14_ieee_rts after switching edge e13 = {6, 7}.
The x- and y-axis correspond to the real and imaginary axis respectively.

Figure 5.1 shows the computed eigenvalues for J after switching edge e13 in the graph cor-
responding to case file nesta_case14_ieee_rts. We can see their values on the imaginary
and real axis. In this case there is an eigenvalue (0, 0) and therefore we cannot say for sure
whether the system is going to be stable or not. The symmetry comes from the following fact:

Corollary 5.1. Let v ∈ CN be an eigenvector of J with eigenvalue λ ∈ C. Let v be the
complex conjugate of v. Then v is an eigenvector of J as well with eigenvalue λ.

Surprisingly, for a lot of system configurations the majority of the resulting eigenvalues
have a real part of −0.05 and there is one eigenvalue λ = (−0.1, 0). Unfortunately, we
were not yet able to investigate this observation. The values can certainly be linked to
properties of the Jacobian and the symmetries in its submatrices and may provide further
insight into the properties of the system equations.

5.3. Simulation
Beyond the stability analysis we also perform simulations in order to visualize the syn-
chronization behavior of the power grid in regular and critical cases and to give some
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5.3. Simulation

comparison to the eigenvalue computations. We also compute the mean-field mentioned in
Section 4.2. The oscillator system equations of first order 5.1 and 5.2 are solved numerically
over a given time frame by approximating their integral. Numerical integration solves
ODEs iteratively over discrete, yet sufficiently small, time steps. One of the best known
algorithms for this is the classic Runge-Kutta method [PTVF07], the fourth-order version
of this family of integration methods.

As in Section 5.2 we set up the system with a DC-power flow calculation to retrieve the
initial phase angles φi for the oscillators. The initial frequencies ωi are set to zero, as they
describe the deviation from the utility frequency of 50Hz and we assume a stable operating
grid in the beginning.
We now give a first illustration of how the simulations work based on the nesta_case3_pjm
case file of the NESTA data set[CGS14]. Figure 5.2 shows the underlying graph before and
after switching edge e1 = {1, 2}. The arrows are there to imply the direction of the power
flow.
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(a) Graph before switching.
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(b) Graph after switching edge e1.

Figure 5.2.: Underlying graph of nesta_case3_pjm power grid before and after switching
of edge e1 = {1, 2}. The gray arrows imply the load flow direction. Node 2
is the generator and node 0 and 1 are loads. The φi are the phase angles at
nodes i respectively.

Figure 5.3 shows how the phases of the three oscillators corresponding to the nodes develop
over time. Oscillator 1 is a generator, with a power term of P1 = 2.0, i.e., producing 2
units of power. Oscillators 0 and 1 are loads with P0 = P2 = −1.0. We can see their phases
oscillate heavily in the beginning while they converge towards a synchronized state. The
phases of the loads approach the same value while the generator’s phase is higher. As we
saw in Section 4.1, φ1 > φ0 and φ1 > φ2 implies power is flowing from node 1 to nodes 0
and 2 which is exactly what we would expect.
Now, we observe the system after it started to settle down beginning from time step 80.
The switching takes place at t0 = 100 and edge e1 is removed. This causes the load flow to
redirect and alters the phases accordingly. Phase φ1 increases as all power now has to be
routed through node 0 and φ2 drops as it receives its power through node 0 whose phase
stayed the same. With this the system converges to a new state with the phase differences
corresponding to the new load flow.

Figure 5.4 shows how the frequencies develop for the same network and switching operation
of Figure 5.3. We can see that oscillating phases correspond to oscillating frequencies.
When they begin to settle, we see that the nodes eventually synchronize their frequencies
at 0 which means that their oscillations are θ̇ = Ω + 0 = 2π · 50 Hz, i.e., at the desired
utility frequency. In the limit this network state corresponds to a frequency synchronized
grid as defined in Section 4.2 with φ̇0 = φ̇1 = φ̇2.
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5. Transient Network Analysis
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Figure 5.3.: Phase development for nesta_case3_pjm. The y-axis shows phase angles φi
of the three oscillators wrt. the reference frame θi(t) = Ωt+ φi(t). The x-axis
shows the time t. Producer: Oscillator 1 ( ) with P1 = 2.0. Loads: Oscillators
0 ( ) and 2 ( ) with P0 = P2 = −1.0. At t0 = 100 edge {1,2} is switched out.
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Figure 5.4.: Frequency development for nesta_case3_pjm. The y-axis shows the frequency
deviation φ̇i(t) from the reference frame in Hz. The x-Axis shows the time t.
At t = 100 edge {1,2} is switched out.
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6. Evaluation

In this chapter we present our results based on the models developed in Chapters 3 and 4
using the methods of Chapter 5. We start with some information on the used software and
data for the evaluation process followed by some important chosen parameters. Next, we
present the hypotheses with our findings and finally we have some closing remarks where
we discuss general observations some considerations concerning the modeling.

6.1. Implementation
The dataset we performed our analysis on is the Nicta Energy System Test Case Archive
(NESTA) [CGS14]. This dataset provides a comprehensive collection of refined power
system test case files with more realistic data such as better thermal line limits or phase
angles. It brings together case files that were developed over the past decades from several
different research platforms such as MATOPWER [ZMsT+11] or IEEE [UoW14]. The files
represent a power grid in a steady state and are usually used for power flow studies.

The analysis procedure was implemented in C++ using several numerical computation
libraries. Furthermore, we made use of the Energy Grid Optimization and Analysis
(EGOA)1-tool which is designed for graph-based power grid analysis, planning and opti-
mization algorithms. The tool provides case file parsing since all NESTA data is stored in
a matlab format. It also contains power flow calculation, graph-theoretic algorithms and
more. We calculated the initial power flow in step 1 with a DC-power flow method using
the tool. The DTP-edge betweenness was also computed using EGOA. In the small-signal
analysis implementation we used the GNU scientific library (GSL) [G+18], a numerical
library, for nonlinear equation solving when determining the post-switching SEP. We also
made use of the Eigen linear algebra library [GJ+10] for eigenvalue computation. The
numerical integration of the oscillator model was performed using the Boost library [Sch14],
more precisely the odeint-package [AM11] which is designed for solving initial value
problems of ordinary differential equations.

6.1.1. Model Parameters

Next we show the relevant model and simulation parameters. Table 6.1 shows the used
default values that were used if not mentioned otherwise in this chapter. The first three
values are the parameters from Equation (4.10) and are taken from literature, see e.g. the

1https://github.com/franziska-wegner/egoa
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Parameter Default Value Description

α 0.1 Effective damping factor
K 7.0 Global coupling constant
Pi ± 1.0 Power term of generator/load

T 200 Total time frame
∆t 0.05 Integration time steps
t0 100 Time point of switching event

Table 6.1.: Simulation parameters and their default values.

works of Rhoden et al.[RJTK16] or Schäfer et al. [SWTL18]. A common assumption there
is to set the coupling values equal for all edges. This means there is a global coupling
constant K and we set Ki,j = K, if {i, j} ∈ E and Kij = 0 otherwise. We point out that
these values are generalizations and simplifications that may not always resemble the actual
power grid perfectly. For further discussion on this see Section 6.3.
The time parameters were estimated on our own. The time range per event is 100 s which
leads us to a total simulation time of T = 200 for the pre-switching and the post-switching
phase combined. With the transient behavior usually happening instantaneously and then
decaying during the next 30 to 50 seconds rather quickly for synchronization this proves
to be a suitably large time frame. The chosen integration step size is ∆t = 0.05 which is
a compromise between a high enough sampling rate and computational efficiency. The
switching event takes place at time t0 = 100. For the ideal choice of time range and step
size further investigations will be required.

6.2. Results

We now present the hypotheses we studied during this work. The structure is as follows.
We first give some background information and considerations on the suspected behavior
to happen in the power grid. We then formulate a hypothesis regarding this and finally
present our experimental results and discuss them.

Quality of the Switching Heuristic

The intuition behind a Dominating Theta Path (DTP) 3.8 is that it limits the transmitted
power between a source and a target node in a graph due to its susceptance or thermal
capacity values. The more often an edge is situated on a DTP the more limiting paths
can be resolved by removing this edge. Our first question now was whether the suggested
switching based on the highest DTP-betweenness centrality-value cDTPB 3.9 keeps our
power grid in an operable state or if it desynchronizes. Our assumption was that switching
in fact leaves the grid in tact. We base this on the intuition that DTPB can be understood
as a metric for how much at risk a transmission line is to become congested. This would
mean, removing the line that can easiest reach its operational limits should be beneficial
for grid stability. In addition to this we assume that the removal of an edge with a
higher cDTPB-value also increases the chance that the remaining network continues stable
operation.

Hypothesis 1. Switchings based on DTPs using a DC-approximation yield a stable
operating power grid. Moreover, switching an edge with a higher cDTPB-value is more
likely to maintain the network’s stability.
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6.2. Results

Our approach was as follows. We first calculated the DTP-betweenness for all edges. Next
we sorted the edge IDs descending according to their betweenness values. We then iteratively
switched edge by edge and quantified the resulting system stability. We performed the
small-signal analysis of Section 5.2 as well as numerical integration from Section 5.3.
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(a) Switching of edge e1 with cDTPB = 1.0.
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(b) Switching of edge e0 with cDTPB ≈ 0.33.

Figure 6.1.: Comparison of frequency synchronization after switching for two edges with
different cDTPB-values for the nesta_case3_pjm case file. The y-axis shows
the frequency deviation from the reference frame of 50 Hz. The switching takes
place at t = 100.

Figure 6.1 gives a first hint that a higher cDTPB-value in fact can correlate to less disturbance
of the net frequency. We compare the resulting oscillators’ frequencies after switching a
single edge in the nesta_case3_pjm network that we already saw in Section 5.3. Removing
edge e1 = {1, 2} in Figure 6.1a with cDTPB(e1) = 1 - the highest value for this case - gives a
maximal frequency amplitude of φi ≈ 0.4. This is a significantly smaller reaction compared
to the switching of e0 = {0, 1} with cDTPB(e1) ≈ 0.33 which results in a peak of φ0 ≈ 0.6
in Figure 6.1b.

The overall results for all edges of a power grid can be seen in Figure 6.2. In this example
we applied the analysis to the neasta_case39_epri whose topology is shown in Figure 6.3.
The plot shows the stability for the system after switching a certain edge. As before, the
edges are sorted by their cDTPB-value in descending order, indicated by the green line. The
blue marks show what the small-signal analysis revealed when we computed the eigenvalues
of the system’s Jacobian. If there exists an eigenvalue with real part 0 we call the system
state critical. As we can see, eleven switchings left the system in a critical state for which
we cannot guarantee a stable operation afterwards. Interestingly there exists a group of
edge switchings resulting in a critical state that all had the same cDTPB-value, as the
plateau in the plot shows. These edges are marked orange in Figure 6.3. As we can see
these are edges connecting leaf nodes or lie on a path to a leaf. Removing these edges
disconnects the power grid and hence has a more severe effect on system stability.
With the current parameter configuration we do not observe any unstable switchings. This
changes rapidly when reducing the coupling value K. We discuss in Section 6.3 the reason
for the choice of our coupling and acknowledge that it requires further studies incorporating
more finely tuned coupling parameters for a more realistic representation of the real world.

What we saw overall was that the removal of the edges with highest cDTPB-value in fact
resulted in a stable state according to the stability values of the eigenvalue analysis. This
was also verified in most cases by numerical integration. On the other side however, we
could not make any direct link between critical or unstable states and the edges with the
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Figure 6.2.: Stability compared to the DTP-betweenness of an edge for the
nesta_case39_epri case file. The x-axis shows which edge is switched out
where the edges are ranked in decreasing order by their cDTPB-values. The
left y-axis shows the three possible stability states of the small-signal analysis
(blue dots). The y-axis on the right side shows the cDTPB-values (green line).

Figure 6.3.: A graph representation for the nesta_case39_epri network. The highlighted
edges ( ) are critical edges. They are all bridges connecting end nodes. The
image shows also that after the edge between bus 22 and 23 is removed (dashed
line), the edge between bus 21 and bus 34 gets congested ( ).
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lowest cDTPB-value. We can see that in a lot of cases the system is considered to be in a
stable state. Yet, even though the oscillators synchronize eventually the reaction to the
switchings vary, as we saw in Figure 6.1, and may be harmful as well if the frequency
amplitudes exceed a certain threshold.

Additional results on other test cases can be found in the appendix in Section A.

Load Redistribution

Witthaut et al. [WRZ+16a] show that after a transmission line is removed we have to take
into account the load redistribution on alternative paths over which the power is going
to be rerouted. The question is, how big the impact of the redistribution is going to be.
Our assumption is to see a correspondence between the load flow redistribution and the
cDTPB-value of the removed edge.

Hypothesis 2. Switching an edge with higher cDTPB-value causes less load redistri-
bution in the network.

The load of an edge in the oscillator model was defined in Equation (4.13) as Lij(t) =
sin(φj(t)− φi(t)). Let L1

ij = Lij(t0 −∆t) be the load on the edges right before a switching
takes place. Let L2

ij = Lij(T ) be the edge load at the end of the simulation, after the
switching took place and the system had time to settle down.
Figure 6.4 shows the results for switching edge e6 = {2, 17} with the highest and edge
e37 = {22, 23} with the lowest cDTPB-value in the nesta_case39_epri network. The black
marks indicate how heavily an edge was loaded before switching (L1

ij) and the red ones
how much it was afterwards (L2

ij). A value of 1.0 means the edge has reached its capacity
limit. We can see that the load redistribution for switching e6 in Figure 6.4a is significantly
less severe than for e37 in 6.4b. Another observation is that the heavily loaded edges in
6.4b correspond to the ones whose switchings were classified as critical in Figure 6.2. The
edges with heavier load changes are the bridges marked in Figure 6.3. Edge e37 is the
dashed line. With its switching the cycle it was on is interrupted and edge {21, 34} becomes
congested with a load very close to one. The correspondence between overloading and
instable switchings can also be observed for other case files.

However, we have to keep in mind that the edges have varying loads and that the results
are influenced by how heavily a removed edge was loaded. So we want to see whether we
get an overall correspondence between cDTPB-values and the absolute load redistribution
that is taking place over all switchings. Our assumption here is that more load distribution
causes more stress to the network and is potentially more dangerous.
We calculate the absolute switching load difference on edge e = {i, j} by |L1

ij − L2
ij | for all

edges e ∈ E. The accumulated load difference is denoted by ∆Lijacc and is given by:

∆Lijacc
:=

∑
{i,j}∈E

|L1
ij − L2

ij | (6.1)

Figure 6.5 shows the accumulated load difference for two datasets. The expected inverse
proportional behavior of load redistribution to DTP-betweenness can be seen in Figure 6.5a
and was also observed for other case files. There are however some cases for which the
expected behavior could not be shown as we see in Figure 6.5b. The ∆Lijacc-values for
the switchings with highest cDTPB-values are still relatively low, yet, the peak in load
redistribution is certainly not where we would have expected it to be.

Among the studied case files the nesta_case189_edin network takes a special role. It
represents the Iceland power grid and has a more hierarchical structure than the others.
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(a) Load redistribution after Switching of edge e6 with
cDTPB ≈ 0.244.
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(b) Load redistribution after Switching of edge e37 with
cDTPB ≈ 0.003.

Figure 6.4.: Comparison of the edge loads L1
ij before ( ) and L2

ij after switching ( ) for the
edge with the highest cDTPB-value (e6) and the one with the lowest (e37). for
the nesta_case39_epri case file. The y-axis shows the utilization of every
edge. Black marks are before switching, red marks afterwards. The x-axis
shows all edges in the network.

This means there are more tree-like subgraphs present and hence a lot more bridges that
disconnect several buses from the rest of the network at once when switched out. The
consequence is the loss of several generators and/or loads that the remaining sub-networks
have to compensate for. Often the edges with cDTPB-values between 0.08 and 0.17 are such
bridges. These are the edges that show the most load redistribution in Figure 6.5b.
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(a) nesta_case39_epri
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(b) nesta_case189_edin

Figure 6.5.: Accumulated load difference in comparison to cDTPB-values for two case files.
The x-axis shows the switched edges in decreasing order by their cDTPB-values.
The left y-axis shows represents the ∆Lijacc-values (red line). The y-axis on
the right side shows the cDTPB-values (green line).

Additional results on other test cases can be found in the appendix in Section A.

Betweenness and Mean-Fields

In Equation (4.14) we defined the mean-field equation that gives the phase-coherence of
the oscillators at time t. When we now run a simulation for an extended period of time
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and compute the average coherence rmean ∈ [0, 1] we can tell how the system evolves over
time. It is defined as follows [Tim18]:

rmean := Re

(
1
N
〈|

N∑
i=1

eiφj(t)|〉t

)
(6.2)

, where 〈| · |〉t gives the average value of all time points t = (t0, t0 + ∆t, . . . , T ) as we are
interested in the post-switching state after time t0.

Since the average phase coherence value is used to to give an overview of the synchronization
behavior over time, we also would like to link it to the betweenness values as we did before.
The assumption again is that switching an edge with higher cDTPB-value gives a higher
rmean value compared to edges with smaller values.

Hypothesis 3. rmean is correlated to cDTPB.

Figure 6.6 shows our findings for the already discussed case files. As we can see again, the
results differ. In Figure 6.6a the mean-field values mostly correspond to the betweenness
values. Figure 6.6b on the other hand represents a situation where this correspondence
was not achieved. Again, as for Hypothesis 2, the hierarchical structure and thereby
presence of numerous bridges in the nesta_case189_edin leads to a decomposition of the
network when switching. The consequence to the loss of several buses at once is the loss of
synchronization. In general however most of our results showed rather high rmean-values
that diminished with switchings of lower cDTPB-valued edges.
Note, while rmean-values of around 0.6 do not necessarily mean the network is desynchro-
nized, it is usually the case. Only values above 0.8 or 0.9 are the ones representing rather
strong frequency synchronization, see Section 4.2.

Additional results on other test cases can be found in the appendix in Section A.

0 10 20 30 40
Edge Id

0.0

0.2

0.4

0.6

0.8

1.0

r m
ea

n

0.00

0.05

0.10

0.15

0.20

0.25

c D
TP

B

(a) nesta_case39_epri

0 50 100 150 200
Edge Id

0.0

0.2

0.4

0.6

0.8

1.0

r m
ea

n

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

c D
TP

B

(b) nesta_case189_edin

Figure 6.6.: The rmean-values compared to cDTPB of a switched edge for two case files. The
x-axis shows the switched edges in decreasing order by their cDTPB-values. The
left y-axis shows the average mean-field value during the integration (blue line).
The y-axis on the right side shows the cDTPB-betweenness values (green line).

The mean-field study was developed for the Kuramoto model but can be used for higher
order systems. However, Rodrigues et al. [RPJK16, Sec. 2.1] point out that it was
originally defined for fully connected graphs with homogeneous coupling K and could
become inaccurate for certain topologies such as heavily clustered networks. Power grids on

45



6. Evaluation

the other hand are certainly not all-to-all connected. Nevertheless, Timme used the rmean
formulation in [Tim18] to show that the synchronization behavior of the Kuramoto model
and the power grid oscillator model behave similarly when using different coupling strengths
K. When increasing the strength they show a similar transition from an unsynchronized
network towards a synchronized one. In Section 6.3 we have a further look into the
dynamical parameters for the model and discuss how they can affect the results.

6.3. Final Remarks
The NESTA dataset our analyses are based on represents a power grid in a static state.
In this state the system is in an equilibrium, meaning there is no transient behavior and
the phase differences are constant. This steady state is useful for load flow analysis and
optimization problems. However, the case files do not provide parameters that only come
into play in dynamic analysis, namely the damping α and inertia I that play a role in
Equation (4.10). These dynamic parameters can be different for each bus and depend on
what properties the connected machines have. The inertia of a large hydro power turbine
can be a lot higher that of a gas turbine and so on.
Sadly we were not able to find useful open source data on dynamical properties. Nishikawa
et al. [NM15] confirm that these values are not always available but can be computed
due to their correlation to the active power output and present an estimation method.
However, as this would go beyond the scope of this work we relied on established values
from the literature. There are different works available that use differing values. As we
saw in Definition 4.1 the inertia term is modeled implicitly by the other system parameters
Pi, α and K.
A consistent assumption seems to be to set the damping to α = 0.1, see e.g. [FNP08,
RSWT13]. When it comes to coupling things are not so obvious anymore and are a matter
of study on their own. Often the presented results assume homogeneous coupling as we
did, i.e., Kij is the same for all edges {i, j} and hence just K is used. A suggestion of
Rhoden et al. [RJTK16] is K = 10 s−2. Schäfer et al. [SWTL18] use values ranging from
K = 5 s−2 to K = 10 s−2 for different power grids. We eventually settled with a value of
K = 7 s−2 as a compromise but point out that this choice of parameters should be refined
further to capture more realistic line parameters. The choice of the power terms Pi again
depends on what one wishes to model. Schäfer et al. [SWTL18] start out with setting
the power terms uniformly to Pi = ±1.0 for all generators and loads. This is what we did
as well. This can be improved in a next step to model e.g. different kinds sizes of power
generators such as a large power plant producing e.g. Pi = 10.0 [RSWT13].

Other and more refined system parameters will ultimately lead to a different utilization of
the transmission lines and can produce more realistic results. Nevertheless, the produced
results can be understood as a first indicator to the effects of DTP-based switchings on
dynamical power grids.

Finally, an observation of ours was that phase angle differences and frequency amplitudes
sometimes are higher than would be allowed for regular power grid operation (see Table 2.1),
but synchronization still took place. This not only happened in our simulations but can
be seen as well in the literature, e.g., [WRZ+16a, RSTW12]. The situation in reality may
be different since the oscillators’ synchronization is self-organized and no primary control
is implemented to the net for regulation. Yet, we also have to keep in mind that we only
study a simplified model of a very complex system and that the consequences of over-
or under frequency wide-ranging effects that the oscillator model cannot capture. This
consideration however goes beyond the scope of this theoretical work.
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In this work we presented a comparative analysis for the switching in static and dynamic
power grids based on dominating theta paths. We showed the derivation of the linear
DC-model and how it is put to use on graph-theoretic flow networks to find MTSFs. We
explained what the limitations of such a static representation are and then introduced the
oscillator model with a detailed derivation. We then used small-signal analysis as well as
numerical integration on the NESTA dataset in order to get insights into the networks
stability and synchronization behavior after switching out an edge. For the evaluation we
compared the cDTPB centrality measure [GRW+18] on network edges to several dynamical
properties.
Our findings were that the amplitudes of frequency oscillations after removing an edge tend
to be smaller in a lot of cases when the edge’s cDTPB-value was higher. When looking at
small-signal analysis our findings showed that edge switchings with smaller cDTPB-values
were more likely to leave the system in a a critical or unstable state. In general our results
showed that the removal of the edge with the highest centrality measure almost always
leaves the network in an operable state.
Next, we looked at the load redistribution that takes place after an edge has been removed
and the power flow had to find new routes from a generator to a load. We observed that
edges with a higher centrality in many cases lead to less severe changes in the load of
individual edges. Furthermore, we saw that the accumulated load changes over all remaining
edges often grew when edges with lower cDTPB-values were removed. This showed the
expected inverse proportional behavior. Another finding was that edges whose switchings
lead to a critical or unstable state also tend to be affected more by load redistributions.
This can be linked to topological properties such as tree edges. A special case is the
nesta_case189_edin power grid. It contains many tree-like structures with few redundant
edges. This had the network more vulnerable to the removal of edges, as it disconnects in
a lot of cases with more load redistribution and no synchronization as a consequence. Our
results also confirmed this.
Finally, we had a look at the mean-field values of the power grids as another measure for
the transient behavior after switching. Again, we could observe that in most cases a lower
cDTPB-value can be linked to a reduced phase-coherence.

In conclusion, we were able to compare static and dynamic modeling approaches and could
make first connections between the two words. Our findings were that in many cases we can
in fact see a correspondence between the cDTPB-value of a switched transmission line in a
power grid and measures such as stability, load redistribution and mean-field values. There
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are however cases where the absence of redundant edges can cause non-ideal situations and
the centrality measure does not correspond to the stability anymore.

7.1. Future Work
It is a tremendous task to take every aspect into account when modeling such a complex
system as a power grid. Therefore, we only looked at specific properties using a model
based on a range of simplifications. Further work certainly has to contain a refined choice of
system parameters for a more realistic representation. Especially the dynamical parameters
inertia and damping need to be defined in a way so that they represent the physical
machines properly [NM15].
In our approach every node in the network represents either a generator or a load. In real
life networks however there are also intermediate buses that neither produce nor consume
power that need to be taken care of. The Kron reduction [DB13, GDCB17] is a method
applied in network analysis to get rid of such buses while preserving the electrical properties
of the original power grid. For more realistic approaches this step should be included in
the analysis.
Another extension to small signal analysis is an energy function that can be used to
find the stability region of the system [KCG+19]. System states from which convergence
towards an equilibrium point is possible lie within this region. It is depending on the initial
system configuration as well as the chosen parameters and the structural changes we apply.
Knowing it can give further insight on the conditions that have to be met in order for a
system to stay stable after switching out edges.

Looking at the topology of the analyzed networks revealed that edges of certain subgraphs
such as larger trees are not suited for switchings. Further investigation of substructures such
as bridges and clusters promises to give more answers to the question how DTP-betweenness
and stable switchings are connected.

Extending the studies to additional datasets may also be of interest. The PyPSA-dataset
[BHS18] for example models the high voltage power grids of most European countries.
It contains not only static network data but also snapshots of the network operation
recorded over an extended period of time. Such data can be used to asses how the switching
interventions during regular operation influence the power flow. One can then introduce
perturbations in order to simulate load peaks or reduced generation periods in order to
study the network resilience to these events after an edge was removed.

Furthermore, an initial idea was to incorporate dynamic behavior to the static graph-
theoretic model by using so-called time-expanded networks. First introduced by Ford and
Fulkerson [FF58] this is an extension to flow networks that considers flows over several
time steps instead of only one static instance. It allows to model changing properties of
the network such as flow rates, transmission speeds and much more. Although it was
successfully applied in many fields [Aro89], so far no application to power grids was made.
Discretization of the continuous power flow and handling the fast transmission times of
electrical power cause modeling issues. A possible approach to follow would be continuous
time-expanded networks [Nas09] where time is continuous and flow problems are solved by
giving a discrete approximation of the time-continuous flow.
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Appendix

A. Additional Results
In this chapter we present some additional plots to accompany the results and discussion
of Chapter 6. Figure A.1 shows our findings for the comparison of the cDTPB-values with
the stability results of the small-signal analysis. Figure A.2 shows results for additional
case files on the accumulated load differences. Figure A.3 shows additional results for the
comparison of mean-field values and the cDTPB-values.
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Figure A.1.: Stability compared to the DTP-betweenness of an edge. The x-axis shows
which edge is switched out where the edges are ranked in decreasing order by
their cDTPB-values. The left y-axis shows the three possible stability states of
the small-signal analysis (blue dots). The y-axis on the right side shows the
cDTPB-values (green line).

56



A. Additional Results

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Edge Id

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

L a
cc

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

c D
TP

B

(a) nesta_case3_lmbd

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Edge Id

0.0

0.2

0.4

0.6

0.8

1.0

1.2

L a
cc

0.1

0.2

0.3

0.4

c D
TP

B

(b) nesta_case14_ieee

0 5 10 15 20 25 30 35
Edge Id

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

L a
cc

0.00

0.05

0.10

0.15

0.20

0.25

c D
TP

B

(c) nesta_case24_ieee_rts

0 5 10 15 20 25 30 35 40
Edge Id

0.00

0.05

0.10

0.15

0.20
L a

cc

0.00

0.05

0.10

0.15

0.20

0.25

c D
TP

B

(d) nesta_case30_ieee

0 10 20 30 40 50 60 70 80
Edge Id

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

L a
cc

0.00

0.05

0.10

0.15

0.20

0.25

c D
TP

B

(e) nesta_case57_ieee

0 20 40 60 80 100 120
Edge Id

0.0

0.5

1.0

1.5

2.0

2.5

3.0

L a
cc

0.00

0.05

0.10

0.15

0.20

0.25
c D

TP
B

(f) nesta_case73_ieee_rts

Figure A.2.: Load difference in comparison to cDTPB-values. The x-axis shows the switched
edges in decreasing order by their cDTPB-values. The left y-axis shows rep-
resents the ∆Lijacc-values (red line). The y-axis on the right side shows the
cDTPB-values (green line).
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Figure A.3.: The rmean-value compared to cDTPB of a switched edge. The x-axis shows
the switched edges in decreasing order by their cDTPB-values. The left y-axis
shows the average mean-field value during the integration (blue line). The
y-axis on the right side shows the cDTPB-betweenness values (green line).
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