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Abstract

The balanced k-way hypergraph partitioning problem (HGP) has usages in a wide
array of applications where performance is critical. Most partitioners use multilevel
schemes that coarsen the hypergraph, find an initial partitioning and apply refinement
algorithms while iteratively uncoarsening the hypergraph again. FlowCutter is a flow-
based algorithm that uses the max-flow-min-cut theorem to find small cuts between
blocks of the partition by solving a sequence of flow problems. This thesis presents
parallelizations of flow algorithms that can be used in the weighted HyperFlowCutter
framework (WHFC), an adaption of FlowCutter, that works for weighted hypergraphs,
as well as an algorithm to extract smaller hypergraphs around an existing cut that
are used as the input for the flow-based refinement. We also explore two approaches
for parallel partitioning algorithms that use the fast sequential partitioner PaToH
to find initial partitions and apply the flow-based refinement in parallel. One of
them uses recursive bisection to split the hypergraph into increasingly smaller blocks,
the second algorithm uses an initial k-way partition and schedules block pairs for
parallel refinement steps. We conclude with an analysis of the algorithms in an
experimental evaluation of our implementation. We show that our parallelized WHFC
implementation provides good speed-ups and the sequential implementation of our
Push-Relabel flow algorithm outperforms the existing Dinic implementation. The
parallel refinement profits from the utilization of the parallel extraction and flow
algorithms, resulting in a partitioner that scales well.

Deutsche Zusammenfassung

Das balancierte k-wege Hypergraph Partitionierungsproblem (HGP) findet Anwen-
dungen in vielen Bereeichen in denen Performanz essentiell ist. Die meisten Par-
titionierer nutzen Multilevel-Ansätze, die den Hypergraph zuerst vergröbern, eine
initiale Partitionierung berechnen und dann den Hypergraph iterativ zum Origi-
nal zurückbauen während Verfeinerungsalgorithmen nach jedem Schritt angewendet
werden. FlowCutter ist ein flussbasierter Verfeinerungsalgorithmus, der das Max-
Flow-Min-Cut-Theorem benutzt um durch das Lösen einer Serie von Flussproblemen
den Schnitt zwischen Blöcken der Partition zu verbessern. Die Thesis beschäftigt
sich mit der Parallellisierung von Flussalgorithmen die im weighted HyperFlowCutter
framework (WHFC), eine Adaption von FlowCutter für gewichtete Hypergraphen,
eingesetzt werden können. Außerdem wird ein Algorithmus vorgestellt mit dessen
Hilfe kleinere Hypergraphen um einen existierenden Schnitt extrahiert werden kön-
nen um diese als Instanz für den Flussalgorithmus zu verwenden. Weiter werden
zwei Ansätze für parallele Partitionierungsalgorithmen vorgestellt, die den sequen-
tiellen Partitionierer PaToH für die Berechnung von initialen Partitionen verwenden
und danach den flussbasierten Verfeinerungsalgorithmus parallel ausführen. Einer
nutzt rekursive Bisektion um den Hypergraph in immer kleiner werdende Blöcke zu
zerteilen, der zweite Algorithmus verwendet eine initiale k-wege Partition und plant
die Ausführung von Verfeinerungsschritten, welche dann parallel ausgeführt werden
können. Abschließend analysieren wir die vorgestellten Algorithmen in einer exper-
imentellen Evaluation unserer Implementierung. Wir zeigen dass unsere parallele
WHFC-Implementierung gute Speed-Ups aufweist und dass die sequentielle Imple-
mentierung unseres Push-Relabel Flussalgorithmus schneller ist als die existierende
mit Dinic. Das parallele Refinement profitiert vom Einsatz der parallelen Extraktion
und Flussalgorithmen und führt zu einem Partitionierer der gut skaliert.
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1. Introduction

Hypergraphs are generalized graphs where a hyperedge consists of a set of vertices and
can therefore have an arbitrary number of endpoints. An ε-balanced k-way partitioning
of a hypergraph is a partition of its vertex set into disjoint blocks such that no block
has a weight more than 1 + ε times the average block weight. The balanced k-way
hypergraph partitioning problem (HGP) asks for a solution to this problem that minimizes
a certain metric, in our case the connectivity metric, reflecting the number of blocks that
hyperedges are part of. These partitionings find applications in domains like VLSI design,
for example to place components of a circuit [AK95, KAKS99], for the parallelization of
algorithms like parallel sparse-matrix vector multiplication [CA99, CA95], to optimize
the data placement and task assignment in workflows [ÇKU11] or as a preprocessing step
in distributed computing where blocks of the hypergraph are assigned to machines, for
example in machine learning [HZY15]. On the other hand, the problem is known to be
NP-hard [Len90] and different heuristics lead to varying solution quality. Because instances
can become big in these areas, we need efficient and scalable algorithms.

For the multi-objective optimization of runtime and solution quality we focus on algorithmic
approaches that target shorter running times and make compromises in quality. To reach
this goal, we use the fast multi-level partitioner PaToH [CA99] and apply the flow-based
FlowCutter [HS18] algorithm as a refinement step [GHW19] to an initial partitioning. This
refinement method uses the max-flow-min-cut theorem and improves a cut by solving a
sequence of incremental flow problems. The partitioner PaToH lends itself to this task as
it is very fast, but not the best in quality. Here, the flow-based refinement can be applied
as a method that still tends to be fast, even on bigger instances, and compensates the
disadvantages of PaToH by improving the quality. Because we work with hypergraphs, we
do not use the original FlowCutter implementation for graphs, but the adapted version for
weighted hypergraphs, the weighted HyperFlowCutter algorithm (WHFC) [GHSW20]. We
start with this framework and parallelize the steps that are consuming the most running
time. Similar to the algorithm introduced in [GHSW20] and going back to ideas of KaFFPa
[SS11], to apply the flow-based refinement on a pair of blocks whose cut should be refined,
we extract a smaller hypergraph around the cut using breadth first searches into both
blocks and apply the algorithm on this instance.

This has the advantage that the flow-refinement works on a smaller hypergraph and still
delivers results that can improve the cut between the blocks. We call this extracted
hypergraph snapshot and discuss a parallelization of the extraction in Chapter 5. Then,
we look into ways to parallelize WHFC itself by using parallel algorithms to compute the

1



1. Introduction

max-flow. We start with the Dinic algorithm [Din70] that is already implemented in the
sequential code of WHFC and parallelize the computation of the layered network that it
uses to find augmenting paths. The parallelization of the procedure that finds augmenting
paths proved to be more difficult. We proceed with an algorithm that lends itself more
easily to parallelization: The Push-Relabel algorithm by Goldberg and Tarjan [GT88] with
optimizations for the parallel case proposed by [BBS15]. To apply our flow-based refinement
in a fully fledged hypergraph partitioner, we use (parallel) scheduling schemes that apply
the refinement to block pairs of the partition. To test the effectiveness and scalability of
our algorithms, we then compare different versions in an experimental evaluation of our
implementation on a set of instances stemming from different fields. The parallelization of
our code is realized with the TBB library [Phe08].

After going into basic concepts and giving an overview of related work in the field in
Chapter 2 and 3, we discuss implementation details and possibilities for parallelization of
two approaches that we use to partition a hypergraph and apply the refinement in Chapter
4. The first one uses recursive bisection, the second refines an initial k-way partition using
an active block pair scheduling algorithm [SS11]. Then, we parallelize the main ingredients
of the flow-based refinement: the snapshot extraction and the flow algorithm. Chapter 5
covers the parallel snapshot extraction. Afterwards, we discuss parallelization possibilities
and challenges of the Dinic flow algorithm in Chapter 6. In Chapter 7, we first recapitulate
a sequential variant of the Push-Relabel flow algorithm and conclude with a parallel variant.
After we explain implementation details of some of the datastructures in Chapter 8, we
end the thesis with the experimental evaluation of the algorithms.
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2. Preliminaries

Hypergraphs

A hypergraph H is defined as a tuple H = (V,E, ω, ϕ) of a set of vertices V , a set of
hyperedges E, a weight function ω : E → N for hyperedges and a weight function ϕ : V → N
for vertices. A hyperedge e ∈ E is a subset of V and we call its elements pins. We say that
a vertex u ∈ V is incident to a hyperdge e if u ∈ e and call vertices that are incident to
the same hyperedge adjacent. With I(u) we denote the set of all incident hyperedges of a
vertex u. A set V ′ ⊂ V defines the induced hypergraph H[V ′] := (V ′, {e ∩ V ′ | e ∈ E}) of
H. Functions f are extended to sets X by f(X) :=

∑
x∈X f(x). We use different notations

to distinguish between the elements of hypergraphs and graphs: A graph consists of nodes
and edges, whereas a hypergraph consists of vertices and hyperedges.

Lawler network

To represent a hypergraph H as a graph, we use the Lawler construction. For a hyperedge
e ∈ E, we define ein and eout to be nodes of the directed graph HL that we call the Lawler
network. We call nodes ein edge-in nodes and eout edge-out nodes. The sets of all edge-in
and edge-out nodes are represented by Vin := {ein | e ∈ E} and Vout := {eout | e ∈ E}
respectively. The Lawler network HL of a hypergraph H is defined as a directed graph with
nodes VL := V ∪ Vin ∪ Vout, edges EL :=

⋃
e∈E ({(u, ein), (eout, u) | u ∈ e} ∪ {(ein, eout)})

and a capacity function cL : EL → N ∪ {∞} with cL(ein, eout) = ω(e) ∀e ∈ E and
cL(u, v) =∞ for the remaining edges (u, v) ∈ EL.

Hypergraph Partitioning

A k-way partition Π of a hypergraph H = (V,E) is a partition of V into k disjoint and
non-empty sets Π = {V1, V2, . . . Vk}. More formally:

⋃k
i=1 Vi = V , Vi 6= ∅ ∀i ∈ [k] and

Vi ∩ Vj = ∅ ∀i, j ∈ [k], i 6= j. We use [k] := {i | 0 < i ≤ k} to denote the set of natural
numbers smaller or equal to k. We call the sets Vi blocks of the partition and will sometimes
refer to i as the partition id of a block. To ease the notation, Π(u) for a vertex u references
its block id. The cut Ecut(p1, p2) := {e ∈ E | |e ∩ Vp1 | > 0, |e ∩ Vp2 | > 0} between two
blocks with ids p1 and p2 is the set of all hyperedges that have a pin both in p1 and p2.
A k-way partition Π is ε-balanced for an ε ∈ [0, 1), if each block Vi satisfies the balance
constraint ϕ(Vi) ≤ (1 + ε)ϕ(V )

k . For a hyperedge e ∈ E, the connectivity set is denoted
as Λ(e) := {Vi ∈ Π | Vi ∩ e 6= ∅}. The connectivity of the hyperedge e ∈ E is defined as
λ(e) = |Λ(e)|. The connectivity metric of a hypergraph H = (V,E) is

∑
e∈E ω(e)(λ(e)− 1).

3



2. Preliminaries

The k-way hypergraph partitioning problem asks for an ε-balanced k-way partition of a
hypergraph H that minimizes the connectivity metric.

Network flows

We define a flow network N = (V, E , c, s, t) as a symmetric, directed graph with nodes V,
edges E , a capacity function c : E → N0 and two distinguished nodes s, t ∈ V, the source
and the target that are sometimes referred to as the terminals. A flow of N is a function
f : E → Z fulfilling the following constraints:

f(e) ≤ c(e) ∀e ∈ E (capacity constraint)

f(u, v) = −f(v, u) ∀(u, v) ∈ E (skew symmetry)∑
(u,v)∈E

f(u, v) = 0 ∀u ∈ V \ {s, t} (flow conservation)

The value of a flow |f | :=
∑

u∈V f(s, u) is the amount of flow that leaves s and thus has
to arrive at t due to the constraints. The residual capacity rf (u, v) := c(u, v)− f(u, v) is
defined for edges (u, v) ∈ E . The residual network Nf = (V, Ef , rf ) for a flow f of N is a
directed graph with nodes V , edges Ef := {(u, v) ∈ E | rf (u, v) > 0} the residual flow rf of
f . An augmenting path is a path in Nf . A flow f of N is maximum if there exists no flow
f ′ of N with |f ′| > |f |. A cut of a flow network N is a set of edges that disconnects s and
t. The value of a cut is the sum of all edge-weights in the cut.

FlowCutter solves flow-problems with multiple sources and multiple targets. In this case,
we have two terminal sets S and T that are non-empty disjoint subsets of V. The only
adaptions we have to make for the definitions is to exclude nodes S ∪ T from the flow
conservation instead of just s and t. An augmenting path becomes and S-T -path and
the value of the flow is the amount leaving S: |f | =

∑
s∈S,(s,u)∈E f(s, u). The set Sr of

source-reachable nodes contains all nodes u where there exists a path from S to u in Nf .
The set Tr of target-reachable nodes contains all nodes u where there exists a path from u
to T in Nf .

Preflows

We use preflows as a weaker form of network flows for an efficient maximum flow algorithm.
A preflow fp is a flow where the flow conservation constraint is replaced by the weaker
nonnegativity constraint:∑

(u,v)∈E
fp(u, v) ≥ 0 ∀u ∈ V \ {s} (nonnegativity constraint)

We call the difference between ingoing and outgoing flow e(u) :=
∑

(u,v)∈E fp(u, v) the
excess of the node u. A preflow fp is maximum if there is no other preflow f ′p with bigger
excess of t.

4



3. Related work

Hypergraph partitioning

Like the partitioning problem for graphs, the hypergraph partitioning problem is NP-
complete [BJ92]. Therefore, partitioning algorithms employ heuristics to run in polynomial
time. One of the most used is the multilevel heuristic [HL95]. This approach consists of
three main phases: coarsening, initial partitioning and uncoarsening. First, we obtain a
series of progressively smaller hypergraphs by contracting vertices. The contraction is done
in a way that preserves the structure of the input hypergraph. When the hypergraph has
become small enough, an initial partitioner is used to find a partitioning for it. In the last
phase, the hypergraph is iteratively uncontracted and refinement algorithms are applied
after each uncontraction to improve the cut. The contractions can be found using matchings,
while some of the heuristics used for the refinement are: Fiduccia-Mattheyses [FM82],
Kernighan-Lin [KL70], flow-based refinement (such as KaFFPa [SS11] for graphs), tabu
search [Glo86, RPG96], label propagation [RAK07, UB13], the greedy refinement [LK13]
and hill scanning of mt-Metis [LK16] or the usage of the probabilistic fanout as a target
function employed in the social hash partitioner [KKP+17].

The KaFFPa approach was adapted to hypergraphs in [HSS19] and works by extracting
corridors around cuts and solving maximum flow problems using the Lawler network [Law73].
The authors of [SS11] also introduce an active block scheduling scheme to refine a k-way
partition. It considers pairs of blocks for the refinement as long as they contribute
to improvements of the cut. Another algorithm that uses the idea of the flow-based
refinement is FlowCutter [HS18] which is presented in more detail in the next paragraph.
For more work on (hyper)graph partitioning we refer the reader to the following survey
articles: [BMS+16, Tri06, AK95].

FlowCutter

The FlowCutter algorithm as introduced by Hamann and Strasser [HS18] was originally
meant to compute bisections for Customizable Contraction Hierarchies [DSW14], a method
to compute shortest paths in road networks, but can also be used to compute small, balanced
cuts on general graphs. The algorithm was extended to hypergraphs by [GHW19] and is
called HyperFlowCutter (HFC). FlowCutter only workw with unweighted (hyper)graphs,
limiting its usage as a refinement algorithm in multilevel partitioning schemes where
contracted hypergraphs can have weighted vertices as well as weighted hyperedges even
if the input hypergraph is unweighted. This problem was addressed with the weighted

5



3. Related work

HyperFlowCutter algorithm (WHFC) [GHSW20] that can handle weighted hypergraphs
and also introduces a method of computing maximum flows directly on the hypergraph.
The algorithms in this thesis are implemented in the context of the WHFC framework.

The main idea of the FlowCutter bipartitioning algorithm is to use the max-flow-min-cut-
theorem [FF56] to get a minimum cut by computing a maximum flow between two terminal
sets S and T of source and target nodes. Starting with the sets S = {s} and T = {t} for
some nodes s and t, the algorithm solves a sequence of maximum S-T flow problems with
increasing cut size. The cut of a S-T flow induces the two cutsides Sr and Tr, which are
the sets of nodes that are reachable in the residual network by S and T respectively. If
one of the sides fulfills the given balance constraint, then we found a balanced cut and
can terminate. In the other case, we extend the terminal set of the smaller cutside, i.e.
S = Sr or T = Tr. We take the smaller side to grow both sides evenly to guarantee that
we will always be able to find a balanced cut. After the extension of one of the terminal
sets, the flow is still a maximum S-T flow. To get a new cut in the next iteration, we add
an additional node, the piercing node, to one side. With respect to the new sets, we then
augment the existing flow to a maximum flow again.

The authors of [GHW19] propose ReBaHFC, a bipartitioning algorithm that uses HFC to
refine an initial partition obtained by using the multilevel partitioner PaToH. ReBaHFC
does not use the whole hypergraph for the flow network, but extracts a hypergraph by
running two weight-constrained breadth first searches from boundary vertices of the cut
into both blocks.

Flow algorithms

We use maximum flow algorithms to improve the cut of a bipartition. For a good introduc-
tion we refer the reader to [GT14]. Historically, one of the first specialized maximum flow
algorithm was invented by Ford and Fulkerson [FF56]. It uses the notion of augmenting
paths (i.e. a path with positive capacity in the residual network) that the algorithm com-
putes in the network. For general graphs G = (V,E) the runtime can not be bounded and
it might not terminate, for integer capacities, the running time is bounded by O(|E| · |f |)
where f is the maximum flow. The algorithm of Edmonds and Karp [EK72] uses the same
approach, but always augments the shortest augmenting path and thereby improves the
runtime guarantee to O(|V | · |E|2). Dinic’s algorithm [Din70] is also based on this idea and
improves it by not searching for the shortest augmenting path in each step, but computing
layered networks and finding blocking flows in them. The layered network consists of the
set of shortest paths in the residual network from s to t. Therefore every augmenting path
in the layered network is a shortest augmenting path. When there are no augmenting paths
left in the layered network, a blocking flow has been achieved and the layered network is
recomputed. The length of the shortest paths in the residual network increases now has
to be longer than in the previous iteration and we compute the next blocking flow. The
algorithm runs in O(|V |2 · |E|) time. Even and Itai proposed a version of the algorithm that
uses a breadth first search to compute the layered network and searching for augmenting
paths using a depth first search [Din06]. The implementation of Cherkassky [Che94a]
added further optimizations like the non-explicit representation of the layered network,
finding augmenting paths for one phase with a single DFS or skipping edges that were
scanned before. The Dinic algorithm used in the WHFC framework is based on this highly
optimized version from Cherkassky.

Instead of augmenting flow along paths and maintaining a flow during the execution of
the algorithm, Karzanov [Kar74] introduced the concept of the preflow, a relaxation of the
flow, that allows for changes of flow on single edges and not only paths. Goldberg and
Tarjan use preflows in their Push-Relabel algorithm [GT88] to push flow from one node to

6



another. For these preflows, nodes can have more incoming than outgoing flow; we call the
difference between these the excess of a node. Nodes that have positive excess are called
active and a discharge operation is used to push flow from active nodes to their neighbors.
If an active node can not be discharged any more, it is relabeled. Some heuristics can
improve the performance of the Push-Relabel method. For one, the choice of the next
active node to discharge can have an impact on the runtime. For example, nodes can be
considered in a FIFO-order or the node with highest label is chosen. Other useful heuristics
include global relabeling of nodes and gap relabeling. The running time of the general
Push-Relabel algorithm is in O(|V |2 · |E|), like Dinic’s algorithm. The highest label node
selection manages to push it down to O(|V |2 ·

√
|E|) while dynamic trees, also introduced by

Goldberg and Tarjan [GT88] even has a theoretical running time of O(|V | · |E| · log( |V |
2

|E| )).
However they show in the same paper that dynamic trees are slower in practice.

Another max flow algorithm that is closely related to the one from Goldberg and Tarjan is
Hochbaum’s pseudoflow algorithm [Hoc08] that introduced the concept of pseudoflows to be
used in flow algorithms. In addition to the mentioned flow algorithms, there also exist some
algorithms that perform well for several problems in computer vision (for example image
segmentation), due to the special structure of the instances. These algorithms include
the Boykov-Kolmogorov (BK) algorithm [BK04] which has no strongly polynomial time
bound, but is widely used in computer vision. The incremental breadth first search (IBFS)
is bounded by O(|V |2 · |E|) like the Push-Relabel algorithm while still being competitive
with BK [GHK+11] in practice. The more recent Excess IBFS is a generalized IBFS that
uses preflows and has the same time bound [GHK+15].

Parallel flow algorithms

One of the advantages of the Push-Relabel algorithm is that it lends itself better to paral-
lelization as flow can be pushed independently from one node to another without the need
for a complete augmenting path to be found first. Shiloach and Vishkin proposed a parallel
algorithm in 1981 [SV82] that can be seen as a predecessor to Goldberg and Tarjan’s algo-
rithm. They use the same approach as Dinic and compute the layered network, but employ
preflows and push-operations to find maximum flows in the layered network. Goldberg and
Tarjan themselves describe a version of the Push-Relabel algorithm in their 1988 paper
that runs in distributed or parallel systems. The algorithm works with pulse operations
that process all active nodes at once and mark nodes that became or still are active for the
next round. Andersen and Setubal introduced a parallel implementation [AS95] with the
distinguishing feature that the global relabeling heuristic is executed concurrently with
the main algorithm. The algorithm of Hong [Hon08, HH10] works lock-free by adapting
the push and relabel operations and using atomic operations, but is significantly more
complicated. The parallel implementation from Baumstark et al. [BBS15] uses the original
Push-Relabel approach proposed by Goldberg and changes the discharge operation to allow
nodes to be relabeled more than once during one parallel pulse. It also employs a parallel
BFS for the global relabeling. Furthermore, there exists a map-reduce based algorithm
that uses the Ford-Fulkerson method to compute the maximum flow [HYW11].

Flow decomposition

We use flow decomposition to transform a preflow into a flow in the implementation of our
Push-Relabel algorithm. The flow decomposition theorem [AMO93, FJF15] states that
for each preoflow (or flow) fp, we can find a set of flows along simple cycles and flows along
simple paths g1, . . . , gk whose union is fp. If fp is a flow, a decomposition consisting only
of flows along s-t-paths can be found. In our use case, we want to keep the s-t paths for
the maximum flow and remove all flow cycles or paths leading to nodes with excess that
are not t. During the decomposition we will list these elements and act accordingly.
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To decompose the s-t-preflow fp, we can employ a depth first search in the residual network
starting in s. At each step, the DFS can encounter an edge that leads to a node u that
was previously visited. In this case, the recursion stack of the DFS contains a cycle W
with positive flow that starts at the previous occurrence of u. We remove the minimum
amount of flow that any edge on W has from the cycle and backtrack to u on the stack.
The flow cycle we removed is one cycle of the decomposition. While progressing the search,
we can also encounter nodes u with positive excess. We do a similar backtrack as before for
the s-u-path on the stack, but remove at most e(u) flow from the path. This path is also
part of the decomposition. When reaching t we also encountered an s-t-path that we add.
After the DFS finishes and can not reach any nodes from s, there can still remain some
disconnected flow cycles in the network. They have to be treated separately and added to
the decomposition.

8



4. Partitioning approaches

The FlowCutter algorithm can be used to improve bisections between two blocks of a
partition. We discuss two existing approaches for general k-way partitioning that apply
the refinement algorithm to pairs and manage to improve the total partition. They come
with different advantages and disadvantages regarding the size of the instances that have
to be refined and the amount of parallel executions of refinements that are made possible.

Recursive Bisection computes a series of 2-way partitioning (bisections) to split the hyper-
graph into pieces of increasingly smaller size. Directly after each bisection, we apply the
flow-based refinement. Here, not only the refinement steps can be executed in parallel, but
also the bisection algorithm. We use the idea and a scaling scheme from [SHH+16].

The second method computes an initial k-way partition and then schedules block pairs for
the flow-based refinement. The scheduling ensures that no two threads process the same
block to let them work independently and without synchronization. To implement this, we
use an active block scheduling similar to the one introduced by [SS11].

4.1. Recursive Bisection

The first algorithm divides the hypergraph into two blocks using an initial partitioner,
refines the cut between these blocks and recursively calls the algorithm on the refined
blocks. The two blocks contain

⌊
k
2

⌋
and

⌈
k
2

⌉
subpartitions and the recursion stops for k = 1.

If k is even, it is sufficient to bisect the hypergraph into blocks of approximately equal size
(up to some imbalance). If k is odd, the bisection has to be made imbalanced as one of the
two blocks holds more of the final blocks. Furthermore, the imbalance parameter for each
call of the initial partitioner has to be chosen in a way such that the final imbalance is no
bigger than ε. Although this is a well known scheme that has been around for some time,
we want to go into the details of our implementation to lay the basis for its experimental
evaluation and make the results more comprehensible and reproducible.

The advantage of this approach is the inherent parallelism gained by the divide-and-
conquer algorithm. The recursive calls can be parallelized very easily as they are completely
independent: Once the two blocks were found by the initial partitioner and the cut has
been improved by the refinement algorithm, we already know which of the two blocks will
contain which blocks of the final partition. The number of parallel executions that are
possible depends on the parameter k. With each level of the recursion, more blocks can be
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Algorithm 1 Recursive bisection
Input: Hypergraph H = (V,E), number of parts k, imbalance ε
Output: ε-balanced k-way partition P of H

1: function partitionRecursively(H = (V,E), k, k′, ε, wtotal)
2: if k = 1 then return partition P with P (v) = 1 ∀v ∈ V
3: k′1 ←

⌊
k′

2

⌋
, k′2 ←

⌈
k′

2

⌉
4: ε′ ←

(
(1 + ε)k′·wtotal

k·ϕ(V )

) 1
dlog2(k′)e − 1

5: wmax
1 ← (1 + ε′) · k′

1
k′ · ϕ(V ), wmax

2 ← (1 + ε′) · k′
2

k′ · ϕ(V )
6: P ← bisect(H,wmax

1 , wmax
2 )

7: refine(P,H,wmax
1 , wmax

2 )
8: if k > 2 then
9: P sub

1 ← partitionRecursively(H[V1], k, k′1, ε, wtotal)
10: P sub

2 ← partitionRecursively(H[V2], k, k′2, ε, wtotal)
11: for all v ∈ V do . compute new ids
12: if P (v) = 1 then
13: P (v) = P sub

1 (v)
14: else
15: P (v) = P sub

2 (v) + k′1
16: return P
17: end function

processed in parallel. In the last level of the recursion, a total of at most
⌊

k
2

⌋
bisections can

be found in parallel, which is also the maximum amount of parallelization that we get.

An overview of the algorithm is given in 1. The number of blocks for the current instance
we solve recursively is k′ and the first call is using the parameters H, k, k, ε, ϕ(V ). Before
we bisect the hypergraph, we establish some parameters. The variables k′1 and k′2 represent
the number of blocks that V1 and V2 contain in the final partition and thus have to be
split into. We use an adapted imbalance parameter ε′ that restricts the maximum total
weights wmax

1 and wmax
2 of the two blocks that we want to create. They can be deduced

using the restrictions that the sizes of blocks for balanced partitionings have to fulfill. We
use these values for the bisector and the refinement afterwards. They both need to respect
this maximum size of the blocks while trying to improve the connectivity metric of the cut.
Note that wmax

1 = wmax
2 iff k′1 = k′2 and that we target a balanced bisection in this case. If

k′1 6= k′2 the bisection is imbalanced.

To guarantee ε-balance of the final k-way partition, we need to use an adapted imbalance
parameter ε′ for the bipartitioning. This is because using the bisector multiple times in a
row increases the imbalance and simply using ε for each call can result in partitions with
imbalance greater than ε. Instead, we use

ε′ =
(

(1 + ε)k
′ · wtotal
k · ϕ(V )

) 1
dlog2(k′)e

− 1

as proposed by Ahkremtsev et al. [SHH+16]. The value of ε′ is computed for each recursive
call and chosen as the biggest value such that all succeeding bisections of the recursive calls
could all use ε′ and the final partition is still guaranteed to have an imbalance of at most ε.
This works even if all following bisections output blocks of the maximally allowed weight.
The idea is that we want to execute all bisections with roughly the same ε′ and tailor it
to be suitable even in the case that we always reach the maximum imbalance. However,
the partitioner does not always output a maximally imbalanced bisection and as a result
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we can relax ε′ in the following calls, meaning that we do not use the same one as before,
but set it a bit higher such that all following recursive calls from this point can use this
value. Doing so makes it possible that depending on the imbalance of bisections that the
partitioner outputs, ε′ can get bigger in the deeper recursive calls. A less strict ε′ has the
advantage that the partitioner and the refinement have more freedom in choosing which
vertices to assign to which block.

Before we can proceed with call the algorithm recursively, we need to compute the induced
subgraphs H[V1] and H[V2] that the recursive calls work on. While the construction is not
made explicit in the pseudocode, it is straightforward: H[Vi] contains the vertices Vi and
for each hyperedge e ∈ E a new hyperedge e′ is added consisting only of the pins of e that
are in Vi: e′ := e ∩ Vi. Hyperedges e′ with |e′| ≤ 1 are discarded. Therefore, an iteration
over all hyperedges E is sufficient to construct H[V1] and H[V2].

Afterwards, we use the subpartitions P sub
1 and P sub

2 to update the partition ids of the final
partition P . At this point, P maps vertices to ids 1 and 2, representing the two blocks
V1 and V2. P sub

1 maps to ids [1,
⌊

k
2

⌋
] and P sub

2 to [1,
⌈

k
2

⌉
]. For vertices v ∈ V1 we take the

partition id of P sub
1 , for v ∈ V2 we add

⌊
k
2

⌋
to the partition id of P sub

2 to avoid an overlap
with the ids belonging to P sub

1 . To do so, we process each vertex of H and update the
partition accordingly.

4.2. Using an initial k-way partitioning
The second approach to apply the refinement is to use an existing partitioner to find an
initial k-way partition and schedule block pairs for refinement afterwards. We first show a
version that only schedules one refinement step at the same time and is very close to the
idea from [SS11] and then proceed with a scheduling scheme that allows us to do multiple
refinements in parallel.

4.2.1. Sequential k-way scheduling

Algorithm 2 k-way refinement using active block scheduling
1: function KWayRefinement(H, k, ε)
2: active(p)← true ∀p ∈ [k]
3: Q← ∅
4: while there exists at least one active block do
5: Q← {(p1, p2) ∈ k × k : (active(p1) or active(p2)) and |Ecut(p1, p2)| > 0}
6: active(p)← false ∀p ∈ [k]
7: for (p1, p2) ∈ Q do
8: refine(P,H, p1, p2)
9: if Ecut(p1, p2) improved then

10: active(p1)← true
11: active(p2)← true
12: end function

Algorithm 2 shows the active block scheduling algorithm that refines the partition P [SS11].
At its core, the algorithm keeps track of blocks that contributed to a refinement that could
improve the cut in the last round and sets them as active. In the beginning, all blocks
are active. In each iteration, all block-pairs with at least one active block and at least
one hyperedge in the cut are added to Q. These pairs are then refined and blocks that
contributed to an improvement are activated again. This goes on until no blocks are active
any more.
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The advantage of this refinement approach over the recursive bisection is the parallelization
potential that it offers for the execution of refinements, which can all be run in parallel
from the very beginning. Block-pairs can be refined independently from each other without
additional adaptions to the flow-based refinement we use if no two threads work on the
same block at the same time. In the next Section, we propose a parallel implementation of
this scheduling scheme that aims to maximize the number of parallel refinements that can
be executed.

4.2.2. Parallel k-way scheduling

To be keep the individual refinement steps self-contained and without the need to be aware
of other refinements, we want each block to take part in at most one refinement at the
same time. Otherwise, the problem arises that two threads working on the same block can
both reassign vertices of it to other blocks, thus changing the input instance of the other
thread. We avoid this by scheduling the assignment of block pairs to threads such that
at most one thread is working on a given block. Consequently, the scheduling algorithm
can not just assign any block pair {p1, p2} to a thread that is waiting for work as p1 or p2
could currently undergo a refinement procedure. For each iteration of the algorithm, we
use an active block scheduling similar to the sequential scheduling. At the beginning of
each iteration we know which pairs should be considered for a refinement step. We call
pairs that were already processed in the iteration finished and pairs that still have to be
refined open pairs. It is the job of the scheduling algorithm to assign one of the open pairs
to a thread that ran out of work. To reach a maximum level of parallelism, we want to
keep all threads busy all the time. What gets in the way of this are pairs that depend on
the same block. Even if there are open pairs left we might not be able to schedule them as
they all have to refine blocks that are currently being processed. At the beginning of an
iteration, when there are still a lot of open pairs left, this might not be an issue because we
have a lot of pairs to choose from. But especially at the end of an iteration, when only few
open pairs are left, the parallelism can be hindered strongly because all open pairs depend
on a small set of blocks. In this case, we can only schedule a small number of pairs at the
same time.

To make this more clear, consider the following example: We start with all blocks being
active, so the set of open pairs consists of all possible block pairs. Assume that when
scheduling new pairs, there was one block that never gets scheduled. Towards the end of
the iteration, we will have a lot of open pairs that contain this block. Then, we always have
to wait for the block to be processed until we can schedule a new pair that will very likely
work on this block too. This leads to the refinement steps running sequentially towards
the end.

The idea that we want to use for the following scheduling algorithm is that this situation
could have been prevented by letting the block we avoided take part in some refinements
at the beginning. We will try to process blocks evenly, meaning that we actively try to
avoid a small number of blocks to be part of a lot of open pairs. We do this by favoring
blocks that still have to undergo more refinement steps to ones that are part of less open
pairs when scheduling a new pair.

The implementation of this approach is shown in Algorithm 3. To assess the number of
open pairs that a block is part of, we count them as the number of participations of a
block. Their values are updated during the execution to reflect the correct value. The
main datastructure Q always contains a set of conflict free (i.e. no pairs work on the same
block) open pairs that can be processed in parallel. After a thread took a pair of Q and
processed it, we search for new pairs that can be added. Before we can process any pairs,
Q needs to be initialized with a set of block pairs. The function initializeBlockPairs
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4.2. Using an initial k-way partitioning

Algorithm 3 Parallel k-way refinement
1: function KWayRefinement(H, k, ε)
2: active(pi)← true ∀pi ∈ [k]
3: active′(pi)← false ∀pi ∈ [k]

4: scheduled(pi)← false ∀pi ∈ [k]
5: while there exists at least one active block do
6: initializeBlockPairs() . fills Q with pairs
7: parallel for {p1, p2} ∈ Q do
8: refinerlocal.refine({p1, p2})
9: if Ecut(p1, p2) improved then

10: active′(p1)← true
11: active′(p2)← true
12: reportImprovement({p1, p2})
13: scheduled(p1)← false
14: scheduled(p2)← false
15: findBlockPair(p1) . assume participations(p1) > participations(p2)
16: findBlockPair(p2)
17: active(pi)← active′(pi) ∀pi ∈ [k]
18: active′(pi)← false ∀pi ∈ [k]
19: end function

initializes some datastructures and will be explained in the next Section. For now, assume
that it fills Q with conflict free pairs that we can start working on. The parallel processing
itself works by consuming elements from Q in parallel and adding new elements to Q at
the same time. Our C++ implementation uses TBB’s tbb::parallel_do_feeder which
enables these operations.

Once a thread gets an element {p1, p2} from Q, it starts with the refinement of the pair.
As the refiner uses local datastructures, we cannot use the same refiner for multiple pairs
in parallel. Instead, each thread uses its own refiner refinerlocal that is exclusive to it.
The implementation uses the tbb::enumerable_thread_specific class to achieve this. If
the refinement improved the cut, we activate the blocks for the next round and report an
improvement. The information that a certain block pair improved a cut will later be used
to only schedule block pairs that were already refined in a previous iteration and improved
the cut. To find new pairs to schedule, we also need to know whether a block is currently
part of any pair in Q. The flag scheduled provides this information and is true if the block
is currently taking part in an refinement or waiting for it and is contained in Q. After we
finished the refinement, we can set it to false. Now that p1 and p2 are not scheduled any
more, we can search for new block pairs that contain one or the other. We first try to find
pairs that include the block with the higher number of participations, assume that this is
p1. Then we try to find pairs that include p2.

A round finishes if there are no more elements left in Q. The active-flags for the next
iteration active′ are taken and active′ is reset. Next, we will discuss how the functions
responsible for the scheduling are implemented.

Scheduling

As explained earlier, the goal of the scheduling is to try to add blocks as part of a pair that
have more participations in open pairs left. What we hope to achieve by adding blocks with
the most participations is that at the end of an iteration when there are few open pairs left,

13



4. Partitioning approaches

we can still process them in parallel as they do not depend on the same blocks. However,
this remains a heuristic and there is no guarantee that the chosen order is optimal.

Algorithm 4 Initial block pairs
1: function initializeBlockPairs
2: participations(pi)← 0 ∀pi ∈ [k]
3: blockPairScheduled({p1, p2})← false ∀{p1, p2} ∈ [k]× [k]
4: blocks← ∅
5: for {p1, p2} ∈ [k]× [k] do
6: if isEligible({p1, p2}) then
7: participations(p1)← participations(p1) + 1
8: participations(p2)← participations(p2) + 1
9: for pi ∈ [k] with participations(pi) > 0 do

10: blocks.add(pi)
11: sort blocks descending by number of participations
12: for pi ∈ blocks do
13: findBlockPair(pi)
14: end function

15: function isEligible({p1, p2})
16: return |Ecut(p1, p2)| > 0 and (active(p1) or active(p2))
17: and {p1, p2} contributed to improvement or we are in the first iteration
18: end function

We use the following datastructures for the scheduling: participations(p) of a a block p
is the approximate number of refinements that p still has to undergo. When we compute
the initial block pairs, we will calculate this value. blockPairScheduled({p1, p2}) of a pair
{p1, p2} indicates whether the pair was already refined or is scheduled for refinement in
this round. These pairs don’t have to be considered for the scheduling of new pairs. The
array blocks contains a sorted array of block ids. They are sorted in decreasing order of
participations and the list only contains ids that have a positive number of participations
left. The array will help us to scan for new blocks to schedule and has to be kept sorted
when participations decrease.

As Algorithm 4 illustrates, to find the set of initial pairs, we first reset the datastructures
and then look at every possible block pair. We define a pair to be eligible if the conditions
described starting from line 15 hold. The size of the cut between the blocks has to be
positive, at least one of the blocks has to be active (these two are the same conditions
as for the sequential version) and the pair contributed to an improvement before or we
are in the first round. For each eligible block pair, we increase the respective number of
participations by one. Then, we add all ids with a positive number of participations to
the array blocks and sort it descending by the number of participations. Next, we iterate
through the ids, from the one with the most participations to the one with the lowest, and
try to add block pairs containing the id.

Pseudocode for the search of new pairs is shown in Algorithm 5. Our goal is to find
the id p2 such that p2 is the one with the highest number of open participations that is
eligible and was not yet scheduled. The blocks array contains the ids sorted from highest
participations to lowest, so it suffices to scan the list and check for admissibility. Once
we found a pair, we schedule it by both setting the ids as scheduled and the block pair
itself. When decreasing the number of open participations, we possibly break the sorting
of blocks. To fix it, we swap the element that we changed with an element further back in
the array. If participations decrease to 0, we remove the element from the array altogether.
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Algorithm 5 Find block pair
1: function findBlockPair(p1) . synchronized function
2: for p2 ∈ blocks : not scheduled(p2) do
3: if isEligible({p1, p2}) and not blockPairScheduled({p1, p2}) then
4: scheduled(p1)← true , scheduled(p2)← true
5: blockPairScheduled({p1, p2})← true
6: participations(p1)← participations(p1)− 1
7: move p1 back in blocks such that blocks is sorted
8: participations(p2)← participations(p2)− 1
9: move p2 back in blocks such that blocks is sorted

10: Q.add({p1, p2})
11: break
12: end function

Then we can add the pair to Q and stop the scanning process as we scheduled p1 and
there can be now other eligible pair containing it left. It is also possible that we find no
admissible pair. In this case, the function returns without adding an element.

The function is not thread safe as it changes the array that it is iterating over. Furthermore,
we would have to check and set the values for scheduled blocks and pairs atomically at the
same time if other threads would execute the same function. The operation is rather fast
as we only iterate over an array that has size at most k. In our experience it showed that
in comparison to the more costly refinement operations, this is negligible. Therefore, the
access is synchronized and only one thread at a time can execute it to schedule new pairs.
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5. Snapshot extraction

For a block pair that undergoes the refinement procedure we do not use the complete
subgraph induced by the vertices of the two participating blocks. Instead, we use an
excerpt, the snapshot H, that contains vertices close to the already existing cut. The aim
is to reduce the runtime of the algorithm by making the flow instance smaller while trying
to compute a cut that is as close as possible to the best cut between the whole blocks. We
do so by starting a weight constrained breadth first search into each block, starting with
vertices that are incident to cut-hyperedges. Each breadth first search visits vertices in
its block that are later added to the hypergraph H, remaining vertices in the block are
contracted to s for one side and to t for the other. Vertices are therefore visited in order
of increasing hop-distance to the nodes incident to the cut. When the BFS visits a new
vertex, we only add it to H if it does not exceed the maximum weight of the respective
side.

The algorithm can be divided into two phases. First, we identify the vertices that should
be added to H using weight constrained breadth first searches (BFS) into both blocks. The
two searches are independent from one another as they visit vertices in different blocks and
are therefore executed in parallel. The algorithm for one BFS is explained in Section 5.1.
To initialize the BFS in this phase, we scan the cut hyperedges and add vertices to the
initial queues of both searches. After phase 1, we know which vertices have to be added to
H and we build the hypergraph in phase 2. How this is done and some explanations for
the datastructures we use are given in Section 5.2.

5.1. Parallel BFS
A classical and conceptually simple way to parallelize a BFS [QD84, RC78, BM11] for
graphs is to add all nodes that have been visited to a queue Q and process them in parallel
by searching for neighbors that were not yet visited. The newly found nodes are added to a
second queue Q′ using atomic operations. Once all nodes in Q were processed by iterating
over their incidences in parallel, the threads are synchronized, Q and Q′ are swapped so
that Q now contains the nodes that have to be processed next and Q′ is cleared. To start
the BFS, we initialize Q either with a single node or a set of nodes that we want to search
from. Each iteration consisting of processing all nodes in Q represents a layer of the BFS,
meaning the nodes have the same hop-distance to the initial nodes in Q.

For our implementation we use the same general approach and extend it to hypergraphs.
In a graph, we can scan an edge at most twice during one iteration iff both endpoints are
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part of the same layer and no nodes have to be added to the queue as both endpoints are
already in the queue. In a hypergraph this changes and multiple vertices can be incident
to the same hyperedge with pins that still have to be added to the queue in the same
iteration. It is not necessary to process this hyperedge multiple times as all threads will
try to add the same pins. This holds for all iterations, once we scanned a hyperedge, we do
not have to do it again. Therefore we add a datastructure that tells us if a hyperedge has
already been processed and use atomic testAndSet operations so that only one thread
scans it. Other changes are attributed to the fact that we execute a weight constrained
BFS and have to stop visiting new vertices once a certain maximum weight is exceeded.
To be more clear, in our notation, we say that we visit a vertex when it is discovered by
some thread and can be added to Q′ without violating the weight constraint. At the end
of the BFS, all nodes that were visited are part of H. The function tryVisitVertex uses
synchronization primitives and checks if it can visit the vertex and does so while respecting
the maximum weight restriction. We will go into more detail on this function later.

Algorithm 6 Weight-constrained BFS
1: function weightConstrainedBFS
2: while Q 6= ∅ do
3: parallel for u ∈ Q do . process layer in parallel
4: for e ∈ I(u) do
5: if visitedHyperedges(e).testAndSet() then
6: for v ∈ e with P (v) = p do
7: tryVisitVertex(u, p) . adds vertices to Q′

8: Q← Q′, Q′ ← ∅
9: end function

Pseudocode 6 depicts the parallel BFS algorithm. We process every layer Q in parallel and
add vertices we visited to the next layer Q′ that will be processed in the next iteration. To
process a vertex, we scan all incident hyperedges e and try to set visitedHyperedges of e
atomically. If we succeed, we iterate over all pins and for those that are in the block that
we process we try to visit them by calling tryVisitVertex. What this function will do is
to try to visit the vertex and add it to Q′ if it is the first one to do so. Instead of adding the
vertices to one single queue from multiple threads using atomics, we use thread-local queues
that are implemented using TBB’s enumerable_thread_specific object. Every thread
has its own queue that it adds vertices to, thus no synchronization or atomic operations
are necessary. When iterating over Q in parallel, we iterate over all thread-local queues
and the vertices therein in parallel.

5.1.1. Visiting vertices

The tryVisitVertex function encapsulates all synchronization primitives and accesses
to the visitedV ertex datastructure, which is used to keep track of nodes that were visited,
and the current weight wpi of vertices that were visited in block pi. No other function
changes these values. When visiting a vertex u, we have to make sure that we change wpi

and visitedV ertex(u) consistently, meaning that we only add the weight of the node to
wpi if we are able to set visitedV ertex(u).

First, we check if we actually have to try to visit a vertex u or if it was already visited or
the weight limit of the block is already exceeded. Otherwise, we try to visit the vertex by
setting visitedV ertex(u). We lock u on a per vertex basis for the rest of this operation to
avoid conflicts. With the previous checks in place, we avoid to acquire the lock in some
cases where it is not necessary. It is possible that another thread visited u before we were
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Algorithm 7 To to visit a vertex
1: function tryVisitVertex(u, pi)
2: if wpi + ϕ(u) > wmax then
3: return
4: if visitedV ertex(u) then
5: return
6: lock(u)
7: if wpi + ϕ(u) ≤ wmax and not visitedV ertex(u) then
8: wpi ← wpi +a ϕ(u) . atomic add
9: visitedV ertex(u)← true

10: Q′.push(u)
11: unlock(u)
12: end function

able to acquire the lock, so we have to check after locking u if we are still the first thread
that can then visit u. The problem with setting wpi is that even when we add to the value
atomically, we don’t know the value that we add to. We can get the value afterwards using
an atomic fetch and add, but only after we already added to it and possibly exceeded the
maximum weight.
To make the synchronization easier, we allow a small error for the total block weight here:
We use an atomic add in line 8 that possibly exceeds the maximum weight but we still set
u to visited. By doing so, each thread can visit at most one vertex that is exceeding the
limit. If we are the thread that visits u, we not only increase wpi atomically, but also push
u to our local queue so it can be processed by the BFS in the next iteration. We don’t
have to use atomic operations to set visitedNode(u) because we already hold a lock for u.

5.1.2. Scanning cut hyperedges
To initialize the two BFS queues with vertices that are incident to cut hyperedges, we scan
all cut hyperedges and check which pins are part of one of the blocks. We try to visit them
and add them to the first layer of the queue.

Algorithm 8 Scan cut hyperedges
1: function scanCutHyperedges(Ecut, p1, p2)
2: parallel for e ∈ Ecut do
3: for u ∈ e do
4: if P (u) = p1 then . process pin of block p1
5: visitVertex(u, p1)
6: else if P (u) = p2 then . process pin of block p2
7: tryVisitVertex(u, p2)
8: visitedHyperedges(e)← true
9: end function

Algorithm 8 shows pseudocode for this operation. We process each cut hyperedge e in
parallel and try to visit pins u of e using the same tryVisitVertex function we introduced
for the BFS. After we scanned all cut hyperedges, the queues for the two breadth first
searches are initialized with nodes on the respective side that are incident to the cut.

5.2. Building the hypergraph
After we have identified the vertices that should be included in the snapshot H, we proceed
with building the extracted hypergraph. The visited vertices were kept in thread-local
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vectors during phase 1 that are distributed among threads. After the flow computation on
H is finished, we want to move vertices to other blocks in H to improve the cut. Therefore,
we compute a mapping from node-ids in H to ids in H. After the mapping is established, we
use a list of all hyperedges that we visited during the BFS to add them to H. To parallelize
this operation, we calculate a prefix-sum over all hyperedge sizes in H to precompute indices
where we have to write pin-data to. We go into more detail on this after we explained the
mapping and the Compressed Sparse Row (CSR) representation we use for H.

5.2.1. Vertex id mapping

As we explained earlier, the BFS adds one BFS-layer with vertices of the same distance
to the initial vertex set per iteration to the queue. This means that in every thread-local
vector, the vertices are ordered layer by layer, assuming that we don’t delete vertices of
a previous layer and only append new vertices to the vector. Two of these thread-local
vectors, named queues here, are depicted in Figure 5.2.1. Q1 and Q2 are thread-local
queues and contain the vertex-ids (in H) of vertices that they visited during the BFS.
In this example, there are four layers for each queue, indexed by Li

1 for Q1 and Li
2 for

Q2. The first layers are the ones that were added when scanning the cut hyperedges, the
following layers were added during three iterations of the BFS. We did not mention that
we need these layers in the previous iterations, but the only additional information that we
need are the bounds in the local vectors of each thread. These bounds can be stored at the
end of each iteration of the BFS. For the mapping from ids in H to ids in H we create the
vector map that is depicted on the right. The vector is indexed by the new vertex ids in H
and contains the id in H. We know copy vertex ids from the queues to map.

Q1 L1
1 L2

1 L3
1 L4

1

Q2 L1
2 L2

2 L3
2 L4

2

L1
1 L1

2 L2
1 L2

2 L4
1 L4

2
map

Figure 5.1.: On the left: two thread local queues with four layers each, on the right: the
array map used for the id mapping

We could do this in any order, but we add the ids to map in a way that ids of vertices
that were visited in the same layer are close to each other in map. The idea is that when
hyperedges are visited, we try to visit pins and add them to the same layer. If the layers
stay close to each other in map, then the pin ids of all hyperedges should be close together
too. This can improve cache efficiency for the following flow computation that scans pins
of a hyperedge and accesses datastructures that are indexed by their vertex ids. This is
why we chose to take the first layers of all queues, then all the second layers and so on to
fill map. This can be done for any number of queues and not only two like in the example.

To establish the mapping, we first compute the starting and end indices that we want to
write a layer Lj

i to. This is done sequentially by iterating over the layer bounds of the
queues and calculating their positions in map. Then, we process every layer of a queue
Lj

i in parallel and copy its ids to the precomputed range. While we are writing vertex ids
idglobal of H to indices idlocal that are the ids of the snapshot, we also write the snapshot
ids into a second mapping vector globalToLocal to store the snapshot ids. It then holds
that globalToLocal(idglobal) = idlocal. Both mappings are needed, one in the next step to
obtain ids of the snapshot, the other later on when we finished the flow computation and
write the new partition ids to the original graph H. For the special vertices s and t that
are not part of H, we reserve special ids.
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5.2. Building the hypergraph

The whole operation is done for both sets of queues of the two breath first searches
separately. After we established the mapping map for the first BFS, we add the second set
of vertex ids by writing them behind the first ones in the map-vector.

5.2.2. CSR representation of the hypergraph

Before we can continue to actually build the extracted hypergraph, we need to know how
it is represented. We use a compressed sparse row representation (CSR) of hyperedges
and their incident pins. This representation consists of two vectors: hyperedges and pins.
Both are depicted in Figure 5.2.2.

hyperedges

pins

e1 e2 em s

p1 p2 p3 p4

Figure 5.2.: The hyperedge array stores a pointer to the first pin of a hyperedge. s is a
sentinel that points behind the last pin. In this example, e1 has pins p1, p2
and p3

Each hyperedge ei stores an index of the first pin belonging to ei in the pins-vector, which
contains data for pins pi (for example the vertex id). The last hyperedge that we store
is a sentinel that points behind the last pin. Pins of hyperedge ei are therefore stored at
positions hyperedges[i] to hyperedges[i+ 1]− 1 in the pins-vector. Going forward, we
first construct the hyperedges-vector using a prefix sum and then write the pin-data to
pins. The datastructure is slightly simplified but contains everything we need to represent
the hypergraph. Elements that are missing are for example datastructures that store the
flow values. A more complete view of the hypergraph is given in Chapter 8. No meaningful
changes of the algorithm have to be made to adapt it to the more complete datastructure.

5.2.3. Adding hyperedges

From the id mapping, we already got the vertex ids of H that we want to use. To build the
CSR-hypergraph we now process hyperedges of H that contain pins in one of the blocks
and add counterparts in H. A counterpart of a hyperedge e in H has to use the ids of
H. Pins of e that were not visited are contracted to either s or t, depending on the block
that the pin is part of in H. We implement this with a sorted vector of hyperedges and
use a parallel prefix-sum to compute the hyperedges-vector. Then, we iterate over the
hyperedges and add the pins to the pins-vector, using the mapping we presented before.

During the BFS and the scan of cut hyperedges, we can already identify all hyperedges
that have to be added to H as we scan all incidences of pins we visit. We keep a vector E+

of tuples, each representing a hyperedge. Such a tuple (eid, npins) stores the hyperedge-id
eid and the number of pins npins that the hyperedge will have in H. For every scan of
a hyperedge that we execute during the search, we consider adding a tuple to E+. To
compute npins while iterating over the pins of a hyperedge, we need to check for each pin if
it is part of H. This property is fixed after we try to visit a pin: If we failed visiting a pin,
then no other thread can succeed after us. We count the pins that were visited and check
for the other if they have to be contracted to s or t. Hyperedges of the cut can contain
different pins that have to be contracted to s and others that are contracted to t. The
hyperedge in H is therefore connected to s and t and will always be part of the cut. We
skip these hyperedges and don’t add them to E+. The weight of dropped hyperedges is
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added up and we can add it to the value of the cut in H to get the cut-value in H. This
way, we can drop hyperedges that are not necessary for the flow problem. Altogether, we
can calculate npins with few additional operations. To avoid synchronization or atomic
operations that would occur when all threads add to the same vector, we use thread-local
vectors of E+ so that every thread can add to its own versions. After the BFS is finished,
they are concatenated into one vector E+.

We then sort E+ by the hyperedge-ids. This makes the order of hyperedges in H more
consistent between multiple parallel runs. If we would always visit the same vertices during
the BFS, this would lead to a completely deterministic hypergraph H. This is not the case
as the order in which threads try to visit vertices is not necessarily the same and depends
on the order vertices in the queue are processed. At least, this leads to results of H that
are a bit more similar. An advantage that comes with the sorting is that following scans of
the vector that access the hyperedge by its id may become more cache efficient because the
hyperedge ids of successive elements in E+ are closer together. The sorting is executed in
parallel using the build-in TBB-function.

The reason why we store the number of pins for each hyperedge is that we can now
compute the hyperedges-vector by calculation the exclusive prefix sum over the npins
values in E+. Parallel prefix sum is a well studied problem [ST06] and there exists a
parallel implementation in TBB that we can make use of. Now that hyperedges is filled,
we only have to fill pins. Because we already know the range where pins have to be copied
to for every ei, we iterate in parallel over all hyperedges with id ei and translate the id of
pins that were visited from those in H to the ones in H using the mapping we established
before. No additional synchronization or atomic operations are needed for this step as for
the processing of every hyperedge, we work on an exclusive part of the pins-vector.
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6. Dinic’s max-flow algorithm

The algorithm that we discuss here is based on the sequential implementation of the Dinic
algorithm in WHFC [GHSW20]. The two most time consuming steps of the algorithm
are the computation of the layered network and the augmentation of the flow in the
network afterwards. To build the layered network a breadth-first-search starting from
a set of vertices Vs will be done, while the search for augmenting paths is done by a
depth-first-search. Our goal was to parallelize these steps for better running times. We
will start with the parallelization of the routine that builds the layered network. When we
tried to parallelize the finding of augmenting paths, several challenges emerged and we did
not achieve to find an implementation that can improve upon the sequential performance.
We will discuss these issues and proceed with the parallelization of another flow algorithm
in the next Chapter.

6.1. Building the layered network
The layered network is build using a BFS and we use a similar approach as in Section
5.1. We do not store the layered explicitely as a hypergraph, but use three datastructures:
dvertex, din and dout. They are enough to be able to decide whether a vertex can be reached
from another in the layered network when we traverse the hypergraph to find augmenting
paths. The main difference to the BFS mentioned before is the fact that we search in the
residual network and when visiting a vertex, we can not always reach all pins of a hyperedge
but possibly only pins sending flow into the hyperedge. To solve this problem, we use
two datastructures din and dout for hyperedges that are set to the current hop-distance of
the search when we can reach all flow sending pins or all pins respectively. For vertices,
one hop-distance dvertex to reach the pin suffices. Atomic operation are used to set the
hop-distances and the first thread that does so scans either incidences of the vertex if it set
dvertex or pins of a hyperedge if one of the other datastructures was set.

Let us go into some detail on when we have to set the hyperedge hop-distances now. Once
we reach an edge from a pin u, it depends on u whether we are also able to reach pins that
are not sending flow. If u is receiving flow, then this flow can be pushed back to any other
pin of e, making them all reachable in the residual network, even if the residual capacity of
e is zero. If u is not receiving flow and there is no residual capacity left for e, then we can
only push flow to pins that are sending flow into e, as this flow can be pushed back to them.
When we are searching for augmenting paths in the second stage of the Dinic-algorithm,
we will need the hop-distances of hyperedges to decide which neighboring vertices can be
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6. Dinic’s max-flow algorithm

reached by exactly one hop and are thus part of the next layer. So, to keep track of these
values, din(e) of a hyperedge e is set to the distance from s that is needed to reach pins
that send flow into e and dout(e) is the distance with which we can reach all pins of e. It
always holds that din(e) ≤ dout(e).

Algorithm 9 Build layered network
1: function buildLayeredNetwork(H)
2: L← {s}, L′ ← ∅
3: din(e)← 0, dout(e)← 0 ∀e ∈ E
4: dvertex(u)← 0 ∀u ∈ V
5: d← 1
6: while L 6= ∅ do
7: parallel for u ∈ L, e ∈ I(u) do
8: if dout(e) = 0 then
9: scanAll← rf (e) 6= 0 or f(eout, u) > 0

10: if not scanAll and din(e) > 0 then
11: continue
12: scanAll← scanAll and dout(e).compare-and-swap(d) = 0
13: scanSending ← din(e) = 0 and din(e).compare-and-swap(d) = 0

14: if scanSending then
15: for v ∈ e with f(v, ein) > 0 and v 6= t, dvertex(v) = 0 do
16: if dvertex(v).compare-and-swap(d) = 0 then
17: L′local.add(v)
18: if scanAll then
19: for v ∈ e with f(v, ein) = 0 and v 6= t, dvertex(v) = 0 do
20: if dvertex(v).compare-and-swap(d) = 0 then
21: L′local.add(v)
22: d← d+ 1
23: L← L′, L′ ← ∅
24: end function

Algorithm 9 shows the pseudocode for BFS. For the notation of the algorithm we use
the flow values in the corresponding Lawler network, meaning that f(u, ein) is the flow
a vertex u sends into a hyperedge e and f(eout, u) is the amount of flow that u receives.
If f(u, ein) = 0 then u can still possibly receive flow from e. However, the algorithm is
executed directly on the hypergraph and this is purely for notation. The synchronization
of the parallel BFS is mainly done with atomic operations [QD84, RC78]. Additionally,
for the current and next layer L and L′ of the search, we use thread-local vectors that are
implemented using TBB’s tbb::enumerable_thread_specific. To iterate over the whole
set of L consisting of all elements contained in local vectors, we iterate in parallel both
over the vectors and their respective elements.
The algorithm uses the current layer L and the next layer L′ in an alternating manner.
We iterate over the vertices in L in parallel and add new vertices that we encounter to
L′. After one layer of the BFS is processed, we swap L and L′, making the next layer the
current one and we reset L′. For every vertex u ∈ L, we iterate over all incident hyperedges
e in parallel. We have to check whether we can already reach all pins by comparing dout(e)
to 0. If not, we want to reach e. We can reach all pins if e is not saturated or u receives
flow from e.
At this point we know that not all pins of e were reachable in the previous iteration but
there could still be other threads that want to reach e coming from another pin. We resolve
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this issue by letting the thread scan the flow sending pins if it was able to atomically
compare-and-swap the current running distance d with din(e) and gets 0. The thread that
swaps d with dout(e) and gets 0 is allowed to scan all non flow sending pins. Only one thread
can succeed at this operation and proceeds. The variables scanAll and scanSending are
set to true if the thread can scan non flow sending or scan sending pins respectively. When
we do this atomic compare-and-swap for scanSending, we should only try to write d into
the function if was 0 before. Otherwise we could overwrite the previous lower value stored
in din(e). Pins v are processed by checking if the pin could already be reached before and
atomically exchanging the current running distance d with dvertex(v). Then, v is added to
the thread-local vector L′local and will be processed in the next iteration of the BFS.

6.2. Finding augmenting paths
It turned out to be rather difficult to parallelize the depth first search that the Dinic
algorithm employs to find augmenting paths. We found no practicable way to do this and
want to give some reasons and issues that we ran into.

Before we start, let us recapitulate how the sequential algorithm of this part works in
the existing implementation of WHFC [GHSW20]. The algorithm begins with a depth
first search at s and considers the residual network of the hypergraph when searching
for neighboring vertices that are reachable. Instead of using the Lawler expansion, the
algorithm works directly on the hypergraph representation. The DFS is implemented using
an explicit stack that contains the vertices that are on our current path and the ids of
hyperedges that are used to go from one vertex to the next on the stack. When we reach t,
the path that the stack represents is an augmenting path from s to t. At this point we
only know that it is possible to route some flow from s to t, but not how much exactly. To
get this information, we scan the stack once and compute the minimal residual capacity
cmin of any hyperedge on it. Let the hyperedge with minimum capacity be e (if there are
multiple ones with the same minimum capacity then take the one closest to s on the path)
and the vertex that can route flow into the hyperedge u1 and the vertex that receives flow
u2. We know that cmin is the maximum amount of flow that we can route through the
augmenting path and that after the augmentation by cmin, there is still residual capacity
left on the path from s to u1. This is why after augmenting the path by cmin, we can pop
vertices from the top of the stack until u1 is on top and resume the DFS from here. The
procedure is repeated until we cannot find any augmenting path any more and pop s from
the stack. An optimization that proved to be crucial for the implementation of WHFC
is keeping pointers for the next hyperedge that we have to check when visiting a vertex.
Because we search for multiple augmenting paths and change the residual network after we
found one, we can also visit a vertex more than once. To let an example guide us, consider
the case when we found an augmenting path and popped the stack down to u1. We have
to resume the search from here and possibly scanned some hyperedges that lead to no
augmenting path until we found one that did. As we only reduced residual capacities when
augmenting the path, we know that these hyperedges that lead to no augmenting path
cannot lead to one now, even if the network changed. So there is no point in scanning
them again and searching for pins that we can route flow to. Instead, we keep a pointer to
the last hyperedge we scanned and advance it when we scan the next one. This requires
that the incident hyperedges of a vertex are always accessed in the same order. The same
optimization can be done for the pins of each hyperedge.

With this in mind, let us discuss the problems we faced. In theory, we can can parallelize
the DFS by splitting the search when we visit a vertex, for example at s. For all vertices
that we can reach from s, a new thread can be started that continues the search for this
node. As soon as one thread finds a path to t, we run into the first problems because we
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need to change the flow and the residual network that other threads are currently working
on. This means that we cannot simply resume all parallel searches that we started. The
thread that found the path can backtrack to the lowest bottleneck vertex on its stack and
continue from there, but other threads might use hyperedges on their current path that do
not have capacity left any more. It would be viable that every processor gets notified in
the event of an augmentation and checks if any hyperedges on its path became exhausted,
but this results in more synchronization being necessary and additional work. Another
approach to address this problem is to lock hyperedges for threads and continue with the
scan of another hyperedge if we encounter a vertex or hyperedge that is already locked by
another thread. It remains the question when we scan the previously locked hyperedge
after the other thread released it. If we wait on a locked hyperedge, we don’t have to
manage this at a later point but hinder the parallelization by waiting for resources.

In addition to these problems, we also have to handle the datastructures that point to
the next hyperedge or pin that we should check. If multiple threads use the same vertex,
they are working on the same datastructure, leading to race conditions or locking being
necessary. A simple solution is to replicate the datastructures, but that increases the
need for memory and the amount of total work increases as threads can not make use of
the information that another thread could not find an augmenting path when following a
certain hyperedge.

These are only some ideas, why the DFS proved to be hard to handle for parallel computation.
In a way, parallelizing the DFS to find only one augmenting path is possible, but finding a
series of augmenting paths in a changing network is more complicated. Each augmenting
path that we find is dependent on the one we found before, because the network changes
according to the paths. One reason the sequential implementation is fast lies in the
datastructures that enable us to skip the scan of hyperedges and pins that cannot lead to
an augmenting path. These are hard to manage in the parallel case and not using them
would mean sacrificing some of the single thread performance that the parallel algorithm
has to compensate for. To have a parallelized flow algorithm for the WHFC framework, we
tried a well known flow algorithm that is conceptually easier to parallelize. Next, we will
present the Push-Relabel algorithm together with a parallel implementation.
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The reason why we ventured into the parallel implementation of another flow algorithm are
the problems we faced when trying to parallelize Dinic and its routine to find augmenting
paths. We needed a max-flow algorithm that lends itself to parallelization more easily.
One such algorithm is Goldberg and Tarjans Push-Relabel algorithm [GT88, BBS15] that
uses preflows and local push operations to propagate flow in the network. The main
procedure used by the algorithm is the discharge-operation for nodes that pushes excess
flow to neighboring nodes. This local operation can be executed on several nodes in parallel
without too much synchronization. The following Sections will first explain the basics of
the Push-Relabel algorithm for graphs. Then, the sequential version for hypergraphs will
be discussed, followed by the changes made to run it in parallel.

7.1. Push-Relabel for graphs
In this Section, we will explain the existing algorithms and optimizations of the Push-
Relabel algorithm for graphs. The basic notions the algorithm [GT88] uses are those of
excess and labels. In contrast to other maximum flow algorithms like Dinic, every node
can have an excess of flow, which is surplus flow that goes into the node, but does not
leave it. The excess function e can be formalized as

e(u) :=
∑

(v,u)∈E

f(v, u)−
∑

(u,v)∈E

f(u, v).

Because nodes can have excess flow during the execution of the algorithm, the flow function
f does not always represent a flow, but a preflow. The label function d maps nodes to
a label. This label is used to determine if we allow flow to be sent from one node to a
neighbor. In the context of this algorithm the operation of sending flow from one node to
another is also called pushing flow. To be able to push flow from u to a neighbor v, it has
to hold that d(u) = d(v) + 1. The algorithm relabels nodes by increasing the label if excess
flow can not be pushed to any neighbor. To be called valid, the label function has to fulfill
the following invariants: d(s) = n, d(t) = 0 and d(u) ≤ d(v) + 1 for every edge (u, v) with
rf (u, v) > 0. For the Push-Relabel algorithm, the invariant holds that the label function is
valid at any time during the execution.

Pseudocode for the algorithm is given in Algorithm 10. We start by initializing the (valid)
label function d(u) = 0 ∀u ∈ V \ {s} and d(s) = n. Flow on all edges is set to 0 and we
start with the first series of push-operations. Flow is pushed to all neighbors of s such
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Algorithm 10 FIFO-Push-Relabel
Input: Graph G, source s, sink t, flow function f
Output: f that is a maximum flow from s to t

1: function maxFlowPushRelabel(G = (V,E), s, t, f)
2: for all u ∈ V \ {s} do . initialize datastructures
3: d(u)← 0
4: d(s)← n

5: for all (u, v) ∈ E do
6: f(u, v)← 0, f(v, u)← 0

7: for (s, u) ∈ E do . push flow to adjacent nodes
8: f(s, u)← c(s, u), f(u, s)← −c(s, u)
9: Q.push(u)

10: while Q 6= ∅ do
11: u← Q.pop()
12: dmin ← n
13: for (u, v) ∈ E with rf (u, v) > 0 do
14: if d(u) = d(v) + 1 then
15: r ← min{e(u), rf (u, v)}
16: f(u, v)← f(u, v) + r, f(v, u)← f(v, u)− r
17: if Q does not contain v then Q.push(v) end if
18: else
19: dmin ← min{dmin, d(v)}
20: if e(u) > 0 then . relabel
21: d(u)← dmin + 1
22: Q.push(u)
23: end function

that the incident edges are completely exhausted. The main loop repeatedly processes
(discharges) nodes with positive excess. The nodes with flow excess are called active nodes
and have to be kept track of. The general Push-Relabel algorithm does not specify an
order of the discharge-operations. Indeed, there are multiple versions of the algorithm
using different approaches to find the next active node that is discharged. The order of
these operations can have an impact on the performance of the algorithm. We will focus
on an implementation using a FIFO-queue Q to manage active nodes as this version can
be emulated in parallel by processing all nodes of the queue at once and add new nodes for
the next parallel step. The neighbours of s are the first nodes that become active and they
are therefore added to Q.

The main loop of the algorithm then pops nodes u from Q and discharges them, thereby
adding nodes to Q that become active, or add u again if e(u) > 0 after the discharge. The
discharge operation looks at all incident residual edges (u, v) and tries to push excess flow
to v. As mentioned before, a push is only possible if d(u) = d(v) + 1. After we pushed
flow to v, we check if v becomes active and add it to the end of the queue if this is the
case. During the discharge, we keep the lowest label dmin of a neighbor connected by a
residual edge that we were not allowed to push to. If u still has excess flow at the end of
the discharge, we use dmin to relabel u to dmin + 1. The relabeling keeps the label function
valid, an important invariant of the algorithm.
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Instead of only relabeling single nodes, a usual heuristic is the insertion of a global relabeling
step after a certain number of discharges [CG95]. The global relabeling function relabels all
nodes at once by setting the labels to the shortest distance (in hops) to t. This relabeling
is meant to guide the push operations more towards the sink, where we want the excess
flow to go to. The gap relabeling heuristic [Che94b, DM89] is another optimization that
uses the fact that if there is a value g (the gap) such that there are no nodes with label g,
then all nodes u with g < d(u) < n can not reach t and can be relabeled to n. Especially
the global relabeling heuristic has been shown to improve the runtime of the algorithm
considerably [CG95, HSS19].

Another improvement can be achieved by splitting the algorithm into two phases as
proposed by [CG95]. In phase 1 we apply the same discharge operations on nodes in the
queue, but add a stopping criterion that will let the algorithm finish phase 1 before the
complete max-flow was computed. Instead, phase 1 will output a maximum preflow. In
phase 2, we then use a standard flow decomposition [GTT89] to transform this preflow
into the actual maximum flow. In the experience of the authors, the second phase takes
considerably less time than the first.

7.2. Sequential Push-Relabel implementation
In our case, we want to apply the Push-Relabel algorithm to a hypergraph. To do so,
we implicitly work on the Lawler expansion of the hypergraph and introduce additional
labels and excess values for hyperedges. For now, we assume that we have labels and
excess values for all nodes of the Lawler graph and thereby emulate the Lawler network
without explicitly constructing it. This has the advantage that we can continue using
datastructures that are close to the ones of the WHFC implementation which makes it
easier to fit into the framework. The main disadvantage is that we have to handle every
type of node differently in our implementation depending if it is an edge-in, edge-out or
normal node of the Lawler network. Furthermore, the question is justified whether an
explicit representation of the Lawler network may be more efficient. We argue that the
performance penalty of our implementation is not too high because accesses of incidences
are still linear in the number of incident vertices and we just translate them to relations in
the hypergraph. To get the adjacent nodes of an edge-in node for example, we iterate over
the pins of the corresponding hyperedge and add the edge-out node.

7.2.1. Overview of the max-flow algorithm

For the implementation of the sequential algorithm, we split the algorithm into two phases:
the first computes a maximum preflow and the second one uses the principles of the flow
decomposition to transform the preflow into a maximum flow. We use this approach as it
was shown to be faster than computing the maximum flow directly (even in the parallel
case) [HSS19]. In addition, we employ the global relabeling technique.

Algorithm 11 shows an overview of the sequential Push-Relabel max-flow implementation.
The main datastructure we use is the FIFO-queue storing Lawler nodes that have to be
discharged. The implementation uses an extended range of node-ids that make it possible
to easily deduce what kind of Lawler node it is and in the case of an edge-in or edge-out
node, what hyperedge corresponds to it. We use the following mapping for the ids of the
hypergraph H = (V,E):

• For regular nodes: the same id as the one used in the hypergraph

• For edge-in nodes ein: |V |+ edge-id of e

• For edge-out nodes: eout: |V |+ |E|+ edge-id of e
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Algorithm 11 Push-Relabel
Input: Hypergraph H = (V,E), source s, sink t, flow function f
Output: f that is a maximum flow from s to t

1: function maxFlowPushRelabel(H = (V,E), s, t, f)
2: for all u ∈ V do . reset datastructures
3: e(u) = 0

4: for e ∈ I(s) do . push flow to in- and out-nodes
5: for v ∈ {ein, eout} do
6: if rf (u, v) > 0 then
7: Push flow rf (u, v) from u to v

8: globalRelabel(H, s, t, f) . section 7.2.3
9: maxPreflow(H, s, t, f) . section 7.2.2

10: flowDecomposition(H, s, t, f) . section 7.2.4
11: end function

This leads to the three intervals (0, |V |] for regular nodes, (|V |, |V |+ |E|] for edge-in nodes
and (|V |+ |E|, |V |+ 2 · |E|] for edge-out nodes. It is therefore not only easy to determine
the type of a Lawler node given the id, but also computing the accompanying edge id for
edge-in and edge-out nodes or vice versa. All these operations can be implemented using
basic arithmetic calculations.

At the start of the algorithm, node excesses are reset. Then, as usual for Push-Relabel
flow computations, flow from the source is pushed to all adjacent nodes. Because s is
a regular node of the hypergraph and is therefore represented by a regular node in the
Lawler network, we only push flow to edge-in and edge-out nodes of the Lawler network.
Pushing to an edge-out node eout is possible if there is already flow running from eout to s.
In our case this flow from eout to s can exist because we can start the computation on a
hypergraph with preexisting flow. This can happen as we have to solve a sequence of flow
problems for the FlowCutter framework. We summarize the adaptions that are necessary
for the integration in FlowCutter later, this is one of the them.

The labels are initialized by running the global relabeling function. This will also fill the
queue with nodes that are discovered by the BFS and have positive excess. Then, we
compute the max-preflow by discharging active nodes and interleaving global relabeling
steps. After there are no more active nodes left, the flow decomposition transforms the
max-preflow into a max-flow.

7.2.2. Max preflow

Because we are using the optimization that splits the algorithm into two phases, we only
consider nodes u with e(u) > 0 and d(u) < n here. The reason behind this is that flow
that is pushed from a node with label higher or equal to n cannot reach t. This is because
flow is always pushed down exactly one label and we would need to push flow along a path
from u to t in the graph that has length n as d(t) = 0. This only works for u = s but we
never discharge s in the main loop.

In between discharge operations, we insert the global relabeling steps. The frequency
is chosen according to a heuristic used in the implementation of Cherkassky and Gold-
berg [CG95]. It is based on the constant, predefined values α, β and the global update
frequency frequ. Furthermore, the variable workSinceLastGlobalRelabel tracks work that
was done since the last global relabeling step. Each time a node is relabeled, the number
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Algorithm 12 Max preflow
Input: Hypergraph H = (V,E), source s, sink t, flow function f
Output: Extend f to a maximum preflow

1: function Max preflow(H = (V,E), s, t, f)
2: while Q 6= ∅ do
3: u← Q.pop()
4: discharge(u)
5: if e(u) > 0 and d(u) < n then
6: Q.push(u)
7: if workSinceLastGlobalRelabel · frequ > α · n+m then
8: globalRelabel(H, s, t, f)
9: workSinceLastGlobalRelabel← 0

10: end function

of scanned edges plus β is added to it. This causes the value to rise if nodes are relabeled,
while letting it stay the same if discharge-operations can discharge a node completely.
If workSinceLastGlobalRelabel exceeds α · n + m, where n and m are the number of
nodes and edges in the Lawler network, we execute the global relabeling routine and reset
workSinceLastGlobalRelabel.

Algorithm 13 Discharge
1: function discharge(u)
2: dmin ← n
3: if u is regular node then
4: for e ∈ I(u) do
5: if rf (u, ein) > 0 then . Scan Lawler edge (u, ein)
6: if d(u) = d(ein) + 1 then
7: Push flow min{rf (u, eout), e(u)} from u to ein
8: else
9: dmin ← min{dmin, d(ein)}

10: Scan Lawler edge (u, eout) in the same way
11: else if u = ein, e ∈ E then
12: Scan Lawler edge (ein, eout)
13: for v ∈ e do
14: Scan Lawler edge (ein, v)
15: else . u is edge-out node eout
16: for v ∈ e do
17: Scan Lawler edge (eout, v)
18: Scan Lawler edge (eout, ein)
19: if e(u) > 0 then . Relabel
20: d(u)← dmin + 1
21: workSinceLastGlobalRelabel← β + |I(u)|
22: end function

We will now go into detail on the discharge operation as the core component of phase
1. Its task is to scan all incident edges of a node in the Lawler network, push excess
to adjacent nodes and relabel the node if there remains excess that can not be pushed
away. Pseudocode for the discharge is depicted in Algorithm 13. Because we work on the
hypergraph datastructure and emulate the Lawler network, the discharge operations for
regular nodes, edge-in nodes and edge-out nodes look slightly different as their incidences
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represent different kinds of nodes. For regular nodes, we have to scan all incident edges e
and try to push flow to ein and eout. For an edge-in node ein, all pins of the edge scanned
in addition to eout. Again, the order of push operations is chosen based on the intuition
that in most cases, flow is pushed from ein to eout as pushing from ein to a pin means that
already existing flow is pushed back. An edge-out node eout can push flow to pins of e or
to ein.

A more precise description of an edge-scan is given for the case that we try to push flow from
u to ein. It does not differ substantially from the standard implementation for Push-Relabel
algorithms. First, we check if the residual flow is greater than 0. Then, we check for
admissibility of a Lawler edge in the sense that the labels differ by exactly one and the label
of u is bigger. If this is the case, flow can be pushed from u to ein. This push operation
changes the datastructures that represent the flow value of edges and sets the excess values
of the nodes by decreasing the excess of u and increasing the one of ein. For a possible
relabel of u and the end of the discharge operation, we have to keep track of minimum
label of an adjacent Lawler node with positive residual capacity. This is done in the same
way as in the standard algorithm.

7.2.3. Global Relabeling

The global relabeling optimization is essential for the performance of the algorithm as it
can reduce the total number of discharges that are necessary to compute the maximum
preflow. The labels generated by the global relabeling correspond to distances (in terms
of hops) to the target t. This means that directly after the relabeling excess flow from a
node u can be pushed over the shortest path to t without relabeling any nodes. Still, it is
not always optimal to push flow from u over the shortest path and the global relabeling
remains a heuristic. In the case that not all flow can be pushed on the shortest path we
still need to be able to relabel nodes normally. The frequency of the global relabeling
operations is crucial for the performance of the algorithm.

The implementation of the global relabeling function is a simple reverse BFS from t in the
residual network using its own separate search queue. For new nodes that are discovered,
we check whether they have positive excess and a label smaller than n. If so, we add them
to the main Push-Relabel queue Q which we reset at the beginning of the relabeling. Nodes
that were not visited cannot reach t and their label is set to n.

7.2.4. Flow decomposition

In the last step of the Push-Relabel algorithm, the max preflow has to be converted into
a maximum flow. A standard flow decomposition is suited for this task. A proof of its
correctness can be found here: [GTT89]. Usually, a flow decomposition splits a preflow
into paths and cycles routing some flow f . Out of this decomposition, we only want to keep
the paths that route flow from s to t. Other paths will also start in s, but route flow to a
node with excess. We discard these paths as well as the cycles that were created by the
Push-Relabel phase before. To this point, we did not have to pay much attention to the fact
that we are not working on graph without any preexisting flow, but on one flow problem
that is part of a sequence with already existing underlying flow from previous iterations.
The details of how flow is stored during the execution of the whole Push-Relabel algorithm
are given later. Here, we will focus on the operating principle of the flow decomposition.

The decomposition begins by computing the capacities cr := rfpr − rf of the residual
network, where rfpr is the value of the preflow computed by the push and relabel operations
and rf is the previous max flow. Negative values represent residual flow in the opposite
direction. The computation is done by iterating over all hyperedges and their in- and
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Algorithm 14 Flow decomposition
Input: Maximum s-t preflow
Output: Maximum s-t flow

1: function flowDecomposition(H = (V,E), s, t, f)
2: compute residual capacities cr

3: stack ← empty node stack
4: stack.push(s)
5: while stack 6= ∅ do
6: u← stack.top()
7: v ← invalid
8: for (u,w) ∈ EL(H) do
9: if cr(u,w) > 0 then

10: v ← w
11: break
12: if v is not invalid then
13: stack.push(v)
14: P ← s− v path on stack
15: cmin ← min{cr(v1, v2) | (v1, v2) ∈ P}
16: if v = t then
17: push back flow cmin along P and add flow to f
18: pop stack down to lowest bottleneck vb

19: else if e(v) > 0 then
20: push back flow min{cmin, e(v)} along P
21: pop stack down to lowest bottleneck vb

22: else if v is on the stack then
23: remove cycle by pushing back flow
24: else
25: stack.pop()
26: write back flow
27: end function

out-pins. Then we start a depth-first search from s using an explicit node stack. The idea
is very similar to the one used for the sequential implementation of the part of the Dinic
algorithm that finds augmenting paths in Section 6.2. Each time we encounter a node v in
the DFS we push it to the stack. From bottom to top, the stack then contains a series
of nodes from s to v that represents a path P . After we encountered v, we have to check
whether we should progress the DFS or if we can push back flow. There are multiple cases
that can arise:

If v = t, then we reached the target. Consequently, P is an s-t-path with positive flow
value on its edges. This is flow that we want to keep for the final max-flow. The maximum
flow by that we can augment the path is cmin = min{cr(v1, v2) | (v1, v2) ∈ P}. This value
can be found by iterating once over the stack. Additionally, we need to know the lowest
bottleneck node vb on the stack. It is the lowest node on the stack such that the residual
capacity to the next node towards t is cmin. After we augmented cmin on P , vb is the last
node that we can reach from s along P . The augmentation operation itself consists of
augmenting the flow in cr, thereby reducing the residual capacities and we add the flow to
the final max-flow f . Then, we pop all nodes from the stack down to vb.

If e(v) > 0, we reached a node with excess that has to be pushed back. We do exactly the
same as in the case before, except that we do not add the augmented flow to f , but just
reduce the residual capacities and pop the stack down to the bottleneck.
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If v was already pushed to the stack before, then we encountered a cycle C between the
two occurrences of v on the stack. We search for the minimum residual flow on C and
augment the flow on C by this amount. Afterwards, we pop the stack down to the lowest
bottleneck node on C. We do not add this flow to the final flow f .

In the last case, we proceed with the DFS by pushing v to the stack.

7.2.5. Adaptions for the FlowCutter framework
Here, we want to briefly discuss the changes to the standard Push-Relabel algorithm that
were necessary to run the algorithm in the WHFC framework. The first one was already
mentioned before and concerns the underlying flow that the hypergraph may have when
we start executing the max-flow algorithm. This can make a difference at the beginning
of the algorithm when we push flow away from s as it is already possible to push flow
back. FlowCutter solves a sequence of flow problems where the source and target are not
just single nodes as we defined them, but sets of terminals . We do not have to pay too
much attention to this fact as FlowCutter computes piercing nodes that are the only nodes
that can break the maximality of the flow, making them the only ones that have to be
considered in the max-flow algorithm.

7.2.6. Optimizations
To further improve the algorithm, certain optimizations were tested. The following Sections
explain how they work and what advantages and disadvantages arise from them.

7.2.6.1. Current arc datastructure

One common optimization to speed up the computation of the maximum preflow is the
current arc datastructure. Its goal is to prevent scans of edges that were already done
before and where no flow can be pushed. The idea is based on the fact that when an
incident Lawler edge (u, v) was scanned during the discharge operation of a Lawler node u
and we could not push flow to v, then we know that as long as u is not relabeled, we will
not be able to push flow to v. This holds because if we scan (u, v) and we cannot push
flow, then there are two possible reasons for that: either the residual capacity rf (u, v) is
zero or it is not zero but d(u) 6= d(v) + 1. In the first case, the residual capacity on the
edge has to become positive which can only happen if flow is pushed from v to u. This
implies that d(v) > d(u) and as long as u is not relabeled the edge will not meet the label
constraint to let us push flow from u to v. In the second case where the residual capacity
is positive, we know that d(v) > d(u) too, because f is a valid label function. Therefore we
will also not be able to push from u to v without relabeling u before.

This observation can now be used to avoid unnecessary Lawler edge scans. For a node u,
we keep an index to the last incident edge that we scanned. After we finished discharging a
node and we did not have to relabel it, we set the index to the last edge we scanned. The
next time we discharge this node, we will start scanning the incidences at this position
and skip all previous edges. This only works as long as we don’t relabel the node. If we
relabel the node, we still have to scan all previous edges to find the incident node with
the lowest label. We cannot just store the lowest label that we encountered since we last
relabeled the node because in between discharge operations of the same node, the labels of
neighbors can change. The global relabel function resets all indices to incident edges.

For regular Lawler nodes, we keep an index to incident hyperedges. For Lawler nodes that
represent edge-in or edge-out nodes, we keep an index to the pins of the hyperedge. This
approach only works as long as the order of incident hyperedges or pins stays the same. We
will present another optimization that reorders incident pins, so these two optimizations
can not be used at the same time.
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7.2.6.2. Current edge for depth first search

The depth first search of the decomposition algorithm can consider a node u of the Lawler
network more than once, for example when u is the lowest bottleneck of an augmentation
step. Instead of scanning all incident edges every time we consider a node, we can keep
a pointer to the last incident edge we scanned and advance it with the scan. When we
return to v, we start scanning from this incidence. We can do this because we know that
the residual capacity can only get smaller on edges and edges that we already scanned do
not have residual flow any more, otherwise we wouldn’t have advanced to the next edge.
This is especially useful because a lot of the edges that we scan will not have any residual
capacity and skipping them when continuing the scan of a node saves a good amount of
operations.

To implement this for the Lawler network, we need three additional arrays: One array
storing the next hyperedge to scan for regular nodes, and two arrays pointing to the next
pins of a hyperedge for edge-in and edge-out nodes.

7.2.6.3. Sorting pin arrays

The goal of this optimization is to make it possible to only iterate over Lawler incidences
where flow is either sent or no flow is sent. A similar approach lead to considerably better
performance for the depth first search that finds augmenting paths in the Dinic algorithm.
This is the reason why we wanted to try it in this context. The idea is that we can use it
to speed up the discharge operation of edge-in nodes after we exceeded the capacity of a
hyperedge and want to push flow back to pins. For these nodes, we have to iterate over
all pins that are sending flow into a hyperedge as only these can be pushed back. The
pin-array is partitioned into sending and non sending pins such that the sending pins are
stored up front and the non sending pins behind them. An index to the first non sending
pin of an edge-in node enables us to only iterate over the sending or non sending pins
exclusively. However, the edge-in nodes are the only nodes that benefit from sorting the
pin-arrays as edge-out nodes can push to all pins. Nevertheless, we have to keep each pin
interval of a hyperedge sorted by pins that send and do not send flow and we need to
store a pointer to the first pin that does not send flow. The ordering has to be kept intact,
meaning that every push operation that changes the flow of a pin and changes its status
from sending to non sending (or the other way around) has to update the pin array to
reflect this change. In the end, the optimization did not yield any performance gains, so
we dropped it.

7.3. Parallel Push-Relabel
To parallelize the Push-Relabel algorithm, we want to process the discharge operations
in parallel. Only phase 1 will be adapted, while the flow decomposition in phase 2 stays
the same. The reason for this is that phase 2 takes less time [BBS15, CG95] and the DFS
used for the decomposition is harder to parallelize. Phase 1 is replaced by the continuous
application of a pulse operation that goes back to an idea of Goldberg and Tarjan [GT88].

The pulse consists of 3 stages, each processing nodes in parallel. Stage 1 discharges all
active nodes in parallel, but writes new labels to a a copy d′ of d. Changes in excess that
reduce the value are applied directly, a positive change in excess is written to echange. Nodes
that become active are pushed to thread-local vectors so we can access them in the next
pulse. In stage 2, we iterate over all nodes that were active at the beginning of the pulse
again, write d′ to d and update the excess values. Stage 3 then updates the excess of nodes
that were not necessarily active in the beginning, but became active after flow was pushed
to them.
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7.3.1. Pulse operation

During one pulse, all nodes that are active in the beginning of it are discharged in parallel.
To keep the set of active nodes, we use two datastructures Q and Q′ that are used in a
ping-pong like manner. While Q contains the current set of active nodes, we add the nodes
that were activated for the next pulse iteration to Q′. At the end of the pulse, Q and Q′
are swapped and Q′ is cleared. The main challenge for these datastructures is the fact
that as we process nodes from Q in parallel, we add nodes to Q′ in parallel from different
threads. This would usually cause some synchronization overhead if Q was a vector or
queue. To reduce the need for costly synchronization, we chose an implementation using
thread-local vectors. Q and Q′ are made up of a set up vectors, one for each thread. To
iterate over Q in parallel, we iterate over the set of vectors and their respective nodes in
parallel. This is realized by using TBB’s tbb::enumerable_thread_specific class that
provides management of thread local objects. The same class is used to store worklocal, a
thread-local variable that holds the work that the thread has done during the last pulse.
Because we need to know if a node is already part of any of the thread-local vectors before
we can add it to the local one, we use one vector of atomics inQueue that is true if the
node is in Q and false otherwise.

Algorithm 15 Pulses
1: function Max preflow parallel(H = (V,E), s, t, f)
2: while Q 6= ∅ do
3: reset(inQueue)
4: if workSinceLastGlobalRelabel · frequ > α · n+m then
5: globalUpdate(H, s, t, f)
6: workSinceLastGlobalRelabel← 0

7: parallel for u ∈ Q do . stage 1: discharge
8: SafeDischarge(u)

9: parallel for u ∈ Q do . stage 2: update Q
10: d(u)← d′(u)
11: e(u)← e(u) + echange(u)
12: echange(u)← 0

13: parallel for u ∈ Q′ do . stage 3: update Q′
14: e(u)← e(u) + echange(u)
15: echange(u)← 0

16: Q← Q′, Q′ ← ∅
17: workSinceLastGlobalRelabel←

∑
worklocal

worklocal

18: end function

The pseudocode 15 shows the three different stages of the algorithm, each iterating over Q
in parallel. The first one discharges all nodes in parallel. When discharging a node u, we
possibly change d(u) and the excess of u itself or the excess of neighbors of u. Additionaly,
flow on incident edges can be changed. If two adjacent nodes are active, this can lead to
conflicts on these datastructures. To resolve them, we use a second label function d′ that
stores new labels for the next iteration so that we do not need to change d while discharge
operations take place. For the excess, we allow processed nodes to change their own value,
but excess that is pushed to other nodes is added to echange. The access to the network
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flow function is controlled by logically assigning ownership of Lawler edges to nodes. We
go into detail on the new discharge operation in the next Section.

After we finished the first stage and all discharges are done, we copy the new labels d′ to d
and add the positive excess change to their nodes. This only has to be done for the nodes
that were active in the first stage, as only their label had been able to change. However,
the excess was also added to neighboring nodes that were not previously active, but got
activated by pushing excess to them. That’s why in stage 3, the excess is added to the
active nodes of the next iteration. Lastly, we need to collect the thread local work values
and add them up.

The global relabeling step is applied with the same rules as in the sequential version and is
parallelized too. It is a reverse breadth first search starting in t and the same approaches
to parallelizing a BFS we described before can be utilized.

7.3.2. Discharge

We will now explain the thread-safe version of the discharge-operation for nodes. Pseudocode
16 shows it for nodes u of the Lawler graph. Keep in mind that we use an implicit
representation of the Lawler graph. Therefore, it makes a difference whether we are
discharging a regular node or an edge-in/edge-out node in the real implementation. For
edge-in and edge-out nodes we iterate over incident pins of the respective hyperedge. For
regular nodes we iterate over incident hyperedges and their edge-in and edge-out nodes of
the Lawler network.

The main datastructures to avoid data conflicts were introduced before. Only working
with the old labels and not adding excess to other nodes when pushing to them means
that every discharge works as if it was executed on the graph at the beginning of the pulse.
Furthermore, there are no conflicts regarding the access of the flow function of edges as
only the node with higher label is allowed to push to the lower label one. With these small
modifications we already have a working parallel discharge function. This is also the way
that Goldberg and Tarjan presented it in 1988 [GT88].

To take it a bit further, we use an optimization provided in [BBS15]. It addresses the
problem that we can only relabel a node once during each pulse which means we can not
always push all flow to its neighbors. It takes multiple discharge iterations and eventually
more pulses to push away all excess of a node. Another reason is the fact that the workload
per node can be relatively small and it is favorable for the performance of the algorithm to
not parallelize on a level too fine-grained.

The optimization introduces a winning criterion that assigns edges to nodes that are then
allowed to push flow on the edge. It guarantees that for two adjacent nodes, only one node
wins the connecting edge. Line 10 shows the criterion for the edge (u, v). Keep in mind
that we use d and d′ and only the thread that is working on a node u uses d′ as its current
label while other nodes only consider d which will always retain the value it had at the
start of stage 1. The criterion consists of three cases: If d(u) = d(v) + 1 then we look at an
admissible edge that we would be able to push through even without the optimization. If
d(u) < d(v) − 1, we know that v cannot push to u, even if another thread relabels v as
labels can only get higher. The last condition is a tie-breaker for the case that d(u) = d(v)
and we let the node with the lower id win the edge. Because these conditions only take
into consideration the value of d(u) and not the label d′(u) we are currently considering, it
is possible that after we relabeled the node, we encounter an edge that is admissible (in the
sense that d′(u) = d(v) + 1) but we do not win the edge and thus cannot push. We can still
push flow through other incidences, but we cannot relabel u any further in this iteration.
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Algorithm 16 SafeDischarge
1: function Parallel discharge(u)
2: d′(u)← d(u)
3: while e(u) > 0 do
4: skipped← false
5: dmin ← n
6: for (u, v) ∈ E(HL) do
7: if e(u) = 0 then break end if
8: admissible← d′(u) = d(v) + 1
9: if e(v) > 0 then

10: win← d(u) = d(v) + 1 or d(u) < d(v)− 1 or (d(u) = d(v) and u < v)

11: if admissible and not win then
12: skipped← true
13: continue
14: residual← min{e(u), rf (u, v)}
15: if admissible and residual > 0 then
16: f(u, v)← f(u, v) + residual
17: e(u)← e(u)− residual
18: echange(v)← echange(v) +a residual
19: if inQueue.testAndSet(v) then Qlocal.add(v) end if
20: if rf (u, v) > 0 and d(v) ≥ d′(u) then
21: dmin ← min{dmin, d(v)}
22: if e(u) = 0 or skipped then
23: break
24: d′(u)← dmin + 1 . relabel
25: worklocal ← worklocal + β + |{(u, v) ∈ E(HL)}|
26: if d′(u) = n then
27: break
28: if e(u) > 0 and d′(u) < n and inQueue.testAndSet(u) then
29: Qlocal.add(u)
30: end function

The reason is the following: Assume we have nodes u and v with rf (u, v) > 0 and
d(u) = d(v)− 1. If we relabel u without exhausting the residual edge and the label of v
stays the same, then we are left with the residual edge (u, v) that is not admissible and
d(u) > d(v)− 1. This breaks the validity requirements of d and thus a crucial invariant
of the Push-Relabel algorithm. As a consequence, when trying to discharge u again in
the next iteration, we may try to relabel u to d(v) + 1 because v is the neighbor with the
lowest label and positive residual capacity on the connecting edge. u is then relabeled to a
value that is not bigger than d(u) and labels do not necessarily grow strictly monotonically
any more. This is why when this case arises, skipped is set to true and we don’t relabel.

The other changes to the sequential version were already discussed. Excess that is pushed
to other nodes is written to separate value echange(u). This operation has to be atomic as
multiple nodes can push to u at the same time. Other places where atomic operations are
necessary are line 19 and 28 to atomically test and set the value of the inQueue-array to
be able to add a node to the thread-local vector.
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In this chapter we want to give a small overview of the main datastructures that are
performance critical for our application. We want to concentrate on the hypergraph
datastructure that is used for representation of the snapshots and therefore has to store
flow values and the partition implementation that is optimized to give faster access to cut
hyperedges between two blocks. The running time greatly depends on the time it takes to
make accesses to these datastructures, for example to get the incidences of a vertex in the
hypergraph. This is why we did not want to leave this contemplation out of the thesis.

8.1. Lawler-FlowHypergraph-Datastructure
In this Section we briefly want to present the datastructure used for the hypergraph that
stores flow and has to enable fast access on incidences of hyperedge-nodes and incidences of
Lawler-nodes. It is a more complete description of the simplified version that we introduced
in Section 5.2.2 and is therefore based on the compressed sparse row representation. Figure
8.1 depicts the main arrays that represent the hypergraph, including the member variables
for each type. These arrays are:

nodes: Indexed by the hypergraph node id. It stores a node’s weight and the first
hyperedge incidence of the node. A sentinel is inserted at the end of the array. This
makes it possible to efficiently scan incident hyperedges.

hyperedges: Stores the capacity and flow going through a hyperedge. first_out
is an index for the first in- and out-pin of a hyperedge. This array also contains a
sentinel at the end.

pins_in and pins_out: pins_in stores the flow going into a hyperedge and pins_out
the flow from the hyperedge to the pin. he_inc_iter gives access to the hyperedge
incidence data.

incident_hyperedges: The hyperedge incidence data stores the edge-id e which
is also used as an index into the hyperedges array. flow represents flow on the
incidence. pin_iter_in and pin_iter_out point to the correct in- and out-pins for
the hyperedge incidence.

The reason that there are two pin-arrays instead of just one (and consequently two indices
pin_iter_in and pin_iter_out) is the optimization presented in Section 7.2.6.3. However,
it turned out that it did not yield the speedups we hoped for. To have faster access to
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Figure 8.1.: Overview of the datastructure to describe the hypergraph. Colors represent
the array that a value is an index of. first_out of HyperedgeData indexes
both pins_in and pins_out

pins that send or receive flow, we wanted to be able to partition the pins into those that
send, receive or don’t have any flow. Because during the execution of the Push-Relabel
algorithm pins can send and receive flow at the same time, we need two arrays. Although
we move pins that belong to the same hyperedge around, the first pin of a hyperedge will
always remain at the same index, which is why HyperedgeData only needs one value for
the first pin that refers to two arrays.

Flow can be stored in three different places: the HyperedgeData, the Pin and the InHe.
The flow that runs through a hyperedge is always stored in HyperedgeData. For the flow
of pins we use two different representations. The flow stored in InHe is positive for flow
that the pin sends into a hyperedge and negative for flow that is received. The flow values
in the in- and out-Pins store separate values and are used by the Push-Relabel algorithm
to be able to let pins send and receive flow at the same time. These values are always
greater or equal to zero. When transforming the maximum preflow into a maximum flow
in the Push-Relabel algorithm, we make sure that the flow values are consistent. The
maximum preflow phase only updates the values of the Pin and HyperedgeData structure.
The decomposition synchronizes them between the Pin and InHe structures in the sense
that they represent the same values at the end of the decomposition.

Besides the hypergraph datastructure itself, the Push-Relabel algorithm also needs to store
labels and nodes excesses. This is done with two arrays that are indexed by the Lawler
node id. The advantage of using arrays here is that they are easier to reset as a whole,
which is necessary during the execution of the algorithm.

8.2. Partition with cut-edge precomputation
Alongside the hypergraph, the datastructure representing the partition is used for a lot
of operations. A partition can be implemented in an easy manner by using one vector
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that stores the partition id of each vertex. However, looking at our use case, there are
some operations that are frequently used and become costly on this implementation. The
extraction of the flow hypergraph needs to iterate over all cut hyperedges between two
blocks. With the simple implementation, we have to iterate over all hyperedges of the
hypergraph and their pins to determine if it is part of the cut. The implementation that
will be presented next aims to speed up the following computations: Get the number of
pins in one block of a hyperedge, get the total weight of a block and get the cut hyperedges
between two blocks. The precomputation of these values especially makes sense for the
k-way refinement where we keep using the same partition with the same number of blocks.
For the recursive bisection, we compute new partitions at each step and only apply one
FlowCutter iteration to them. Here, we cannot make much use of the precomputation as
the values only have to be used once.

For the parallel k-way refinement, another challenge arises. There are multiple threads
working on different blocks at the same time. We have to be careful to rule out race
conditions that might occur otherwise.

Mirroring the previous computations that should be sped up, we introduce the following
additional datastructures:
pinsInPart(pi, e): The number of pins that e ∈ E has in pi ∈ [k]
weight(pi): The total weight of block pi ∈ [k]
cutEdges(p1, p2): Candidates for cut-edges between p1 and p2

The first two are implemented using vectors and their value can be returned on request.
We will go into detail how the last operation works. Another thing that remains to be
shown is how we handle the movement of a vertex to another block. This happens after the
refinement when we move vertices to other blocks to improve the cut. The precomputed
values have to be adapted to reflect these changes. Lastly, we need an initialization
procedure that precomputes the values.

8.2.1. Obtaining cut hyperedges

For each block pair {p1, p2} we keep two vectors with hyperedges. These hyperedges are
cut-hyperedge candidates and may not be real cut-hyperedges, but we guarantee that
the union of both vectors is a superset of the real cut-hyperedge set. Furthermore, the
vectors may contain duplicate elements. Why we need two vectors and why there may be
hyperedges that are not part of the cut will be clarified when we explain how we change
the block of a vertex.

We differentiate between the two vectors of a block pair by using cutEdges(p1, p2) and
cutEdges(p2, p1) to address them. Upon request, we iterate over both vectors to remove
hyperedges that are not part of the cut and eliminate duplicate hyperedges. Then, we can
return the concatenation (as a range) of both vectors.

8.2.2. Changing the block of a vertex

Because it is to be expected that vertices will be moved between blocks several times, we
want this operation to work without additional synchronization between threads. To realize
this, we make the assumption that the calling thread has just done a refinement between
the old block pold and the new block pnew of u. Now it moves u from one block to the other
to improve the cut. Our parallel k-way scheduling guarantees that no two threads work
on the same block for a refinement, meaning that no other thread can change the block
of a vertex to pnew as it would have to refine this block to do so. We will use this fact to
synchronize accesses to certain vectors.
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Algorithm 17 Change block
1: function changeBlock(u, pnew)
2: if P (u) 6= pnew then
3: pold ← P (u)
4: P (u)← pnew
5: for e ∈ I(u) do
6: if pinsInPart(pnew, e) = 0 then
7: for p′ ∈ [k] \ {pnew} with pinsInPart(p′, e) > 0 do
8: cutEdges(pnew, p

′).add(e)
9: pinsInPart(pold, e)← pinsInPart(pold, e)− 1

10: pinsInPart(pnew, e)← pinsInPart(pnew, e)− 1
11: weight(pold)← weight(pold)− ϕ(u)
12: weight(pnew)← weight(pnew) + ϕ(u)
13: end function

Algorithm 17 iterates over all incident hyperedges e of u to check whether e previously had
no pin in pnew, making u the first one. This is implemented by reading pinsInPart which
provides constant access to the precomputed value. It still contains the old values at this
point and is updated later. If we find a hyperedge e that did not have a pin in pnew before,
we have to add e to all cuts between pnew and other blocks p′ of e. It is possible that e was
already added to the cuts before, which is why we have to eliminate duplicates later.

For each cut, we chose to use two vectors because two threads can try to add a new
hyperedge to the cut at the same time. When adding hyperedges to the cut pnew, p

′ then
we know that pnew is a block that thread t1 just refined and is now moving vertices to.
The block p′ can be any other block. If another thread t2 adds to the same cut, then this
means that t2 was working on the block p′ (the variable of t1) and is moving vertices to it.
Therefore, the variables p′ and pnew have to be switched for the two threads. That’s why we
can use the order of ids p1 and p2 to differentiate the two vectors of a cut cutEdges(p1, p2)
and cutEdges(p2, p1). This way we will always add to a vector that we have exclusive
access to.

One remaining problem is that to remove e from cuts that is not part of any more, we
would possibly have to access these other vectors and need to iterate over all elements to
see if it was already added. Instead, we filter the cut-edges when they are requested as
shown before.

To initialize the partition, we iterate over all hyperedges e and their respective pins u, set
pinsInPart accordingly and add e to all cuts that it is part of. Afterwards, we iterate over
all vertices and increase the weight of their block by their vertex weight.
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9. Experimental evaluation

For the experimental evaluation of the algorithms, we created a C++17 implementation
that extends the WHFC project1 and is available as open source software2. The paral-
lelization was done using TBB3. The code was compiled with g++9.2 and the flags -O3
-mtune=native -march=native. We ran the tests on compute nodes of the bwUniCluster
2.0 with two Intel Xeon Gold 6230 processors clocked at 2.1GHz and 96GB RAM.

We tested the different parallelizations for the extraction and the computation of the layered
network for Dinic, as well as the sequential and parallel implementation of the Push-Relabel
algorithm. In addition, the partitioners employing k-way refining with sequential and
parallel scheduling were evaluated. We wanted to compare the sequential and parallel
versions of the Recursive Bisection algorithm too, but ran into the problem that the
interface for PaToH does not allow for parallel executions as some global allocations are
made. Therefore, we only tested the Recursive Bisection with sequential execution of
multiple partitionings and refinement steps.

9.1. Benchmark set
Our benchmark set is based on the one composed by [GHSS20] and was derived from
several sources that span three application domains. Out of the 94 hypergraphs, there are
42 instances from the SuiteSparse Matrix Collection [DH11], 42 instances from the 2014
SAT Competition [BDHJ14] and all ten instances from the DAC 2012 Routability-Driven
Placement Contest [VAS+12]. From the 94 hypergraphs that we tried to partition with
PaToH, we ran into problems for 26 of them. PaToH failed with either an error message or
a segfault on the cluster machines for them. After finishing the experiments we noticed
that this was due to setting the MemMul_CellNet of PaToH too low which caused it to
allocate not enough memory. The 68 hypergraphs that were tested are listed in Appendix
A.

9.2. Methology
We use a value of ε = 0.03 for all our tests. All runs were made using five different
seeds. To test the performance of the extraction and flow algorithms, we execute one

1https://github.com/larsgottesbueren/WHFC
2https://github.com/floriangroetschla/WHFC
3https://www.threadingbuildingblocks.org
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9. Experimental evaluation

iteration of WHFC on a bipartition of the benchmark set computed by PatoH. For the
tests of the k-way refinement we do not restrict the number of WHFC executions and use
k ∈ {2, 4, 8, 16, 32, 64} for the instances. For algorithms executed in parallel, we always use
1,2,4,8 or 16 threads.

To aggregate running times and solution quality (the connectivity metric), we use the
arithmetic mean over the seeds as a preprocessing step before continuing with the evaluation.

To compare the partitioning quality of different algorithms, we use performance pro-
files [DM02]. We define A to be the set of algorithms that we want to compare and
I the set of instances, in our case a combination of input graph, ε, k and number of
threads. Further, for a ∈ A and i ∈ I, the solution quality qa,i is the arithmetic mean
connectivity value (aggregated over the seeds) that algorithm a computed on instance i.
The performance ratio is defined as

ra,i := qa,i

min{qa′,i | a′ ∈ A}

and represents the ratio of the solution quality for algorithm a on instance i compared to
the best solution any algorithm found for i. The performance profile ρa of an algorithm
a ∈ A is

ρa(τ) := |{i ∈ I | ra,i ≤ τ}|
|I|

,

the ratio of instances for which a is within a factor τ of the best solution. The fractions of
instances that timed out for all seeds are reported as the steps for the special symbol c,
while instances that violate the balance constraint are depicted as steps for 8.

For the comparison of running times, we use a combined scatter and box-and-whiskers plot.
The scatter plot depicts the arithmetic mean time per instance as points, while the box
shows the quartiles of the aggregated running times.

To analyze the scalability of an algorithm, we use speedup plots similar to the ones employed
in [GHSS20]. The plot depicts points for the speedups of an instance and the cumulative
harmonic mean speedup over all instances with a single-threaded running time ≥ x seconds
as a line.

9.3. Parallelization of extraction and flow algorithms
To compare the performance of the extraction and WHFC with different implementations
of extraction and flow algorithms independently from any scheduling scheme, we executed
one iteration of WHFC on a 2-way partition (obtained with PaToH and preset D) of the
hypergraphs in the benchmark set. We denote the different implementations as

{seq, par}Extraction-{seq, par}{Dinic, PR},

indicating which part was executed sequentially or in parallel and what flow algorithm is used.
The combinations we tested were: seqExtraction-seqDinic, seqExtraction-parDinic,
parExtraction-seqDinic, seqExtraction-seqPR and seqExtraction-parPR. The selec-
tion was chosen such that the different extraction and flow algorithms can be tested
independently and sequential and parallel computations can be compared to each other.

9.3.1. Snapshot extraction

Figure 9.1 shows the running times of the different phases of the extraction when executed
with one thread. The adding of hyperedges which is implemented as iterating over the
hyperedges in parallel and the BFS take the most time. Both operations read larger
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Figure 9.1.: Average running times of the extraction phases running with one thread
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45



9. Experimental evaluation

10−1 100 101 102 103 104

Sequential running time for building of layered network [s]

2

4

6

8
H

ar
m

on
ic

m
ea

n
sp

ee
d

u
p

100 101 102 103 104

Total sequential running time [s]

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

H
ar

m
on

ic
m

ea
n

sp
ee

d
u

p

Threads 2 4 8 16

Figure 9.3.: Scalability plots for seqExtraction-parDinic

portions of memory with random accesses, suggesting that these memory operations are
the bottleneck for the algorithm.

To analyze the scaling behavior, we consider Figure 9.2 with the speedup plots for the extrac-
tion and WHFC of parExtraction-seqDinic. While the speedups of the extraction are
promising, we can see that the WHFC-run suffers greatly from different vertex/hyperedge-
orders that the Extraction generates. This has a bad impact of the total running time of
the algorithm, as the median running time for WHFC lies at 6.03 seconds for runs with
one thread while the Extraction only takes 0.48 seconds.

9.3.2. Parallelization of building the layered network

The building of the layered network for the Dinic algorithm shows good speedups in Figure
9.3 which evaluates seqExtraction-parDinic. On the left, the speedups for building the
layered network are depicted and for two threads, the algorithm has a consistently good
speedup close to the theoretical optimum of 2 on all instances. However, in addition to
building the layered network, the Dinic algorithm searches for augmenting paths sequentially,
which is one reason why the speedups for the complete WHFC running times are smaller.
In addition to this effect, the WHFC-speedup suffers for instances that take more than 100
seconds of sequential running time. Especially for very big instances, this effect becomes
more evident. We can postulate that the way the layered network is built has an effect on
the running time of the rest of the algorithm.

9.3.3. Push-Relabel

From preliminary tests on smaller instances, it became apparent that the value of the
global update frequency frequ for the Push-Relabel algorithm can have a big impact on
the running time. The value determines how often the global update steps are executed
and we saw that bigger values than those used by [BBS15] tend to work better for our use
case. To assure that this is still the case for the bigger instances, we tested the values 1 and
5 for frequ with our sequential and parallel implementation. The frequency frequ = 5 lead
to consistently better running times, which is why all following executions are executed
with this value. We chose α = 6 and β = 12 for all runs, similar to [BBS15] and the
implementation from Goldberg and Cherkassky.
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the thread count.
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Figure 9.5.: Running times of the different phases executed with 1,2,4,8 or 16 threads

We compare the WHFC running times of the sequential and parallel Push-Relabel im-
plementations to the running times using Dinic with and without the parallelization for
the layered network. Figure 9.4 shows the running times of sequential and parallel flow
algorithms with different numbers of threads in a box and scatter plot. The suffix behind
the name of the algorithm indicates the thread count used for the execution. What we
can see is that from all algorithms that were executed with one thread, the running
times are relatively comparable, except the sequential implementation of the Push-Relabel
algorithm that sticks out with a slight advantage in running time. One caveat that has
to be considered is the granularity of timing measurements that we did for the different
algorithms. The Dinic versions only measured the time it takes to build the layered network
and the total running time of the flow algorithm. The sequential Push-Relabel algorithm
only measured the time it took for the phase that computes the maximum preflow and
the phase that transforms the preflow into a maximum flow by using the decomposition
principles. The parallel Push-Relabel algorithm also measured the running times of the
three different parallel stages (the stages are: discharging all nodes, updating excess and
label of nodes that were discharged in the iteration and updating the excess of nodes
that were activated) during the maximum preflow computation. Removing these more
fine-grained measurements from the parallel version could improve its running times.
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Figure 9.6.: Scalability plots for seqExtraction-parPR
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Figure 9.7.: Comparison of the phase times between 4 and 16 threads

A more detailed breakdown into the different parts of the parallel Push-Relabel algorithm
is depicted in Figure 9.5. The running time for the Global Update includes the initial
relabeling before any discharges are executed. The three stages represent the ones that
are described in Algorithm 15. The algorithm spends most of the time with the global
update of the labels and the parallel discharges in stage 1. Phase 2 is the only part of the
algorithm that is not parallelized, but also takes considerably less time.

In terms of scalability, the performance gets better for more threads at first, but less so
the more threads we use. Consider Figure 9.6 for a clearer representation in a scalability
plot that shows the speedups of the seqExtraction-parPR algorithm for the WHFC and
total running time. For 16 threads, the algorithm performs worse than for less threads.
The best trade-off seems to be reached for 4 threads, where the algorithm provides the
best speedups.

This is an unexpected result and to find the reason we consult a comparison of running
times of different parts of the algorithm for 4 and 16 threads in Figure 9.7. Interestingly,
all phases get faster or stay the same, except for stage 2 and 3. These stages update excess
and label values and iterate over the thread-local vectors to do so, but don’t execute any
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Figure 9.8.: Scalability plots for parallel parts of seqExtraction-parPR

other costly operations (except accessing the label and excess vectors). The more threads
there are, the more thread-local vectors exist that we have to iterate over. It seems that it
is this specific implementation technique with multiple vectors that shows disadvantages
here. Because in stage 1 we also iterate over the vectors in parallel, but also do some
additional memory accesses on the hypergraph, we can expect this stage to suffer from this
behavior too.

Indeed, if we look at the speedup plots for the parallel phases in Figure 9.8, they seem
to reinforce this hypothesis. To solve this problem, one could investigate better queue
implementations.

9.4. Evaluation of partitioners
In Chapter 4 we introduced partitioning approaches that can use the WHFC refinement to
improve bisections. We compare the derived partitioners, namely the Recursive Bisection,
the k-way refinement with sequential scheduling and the k-way refinement with parallel
scheduling. As an initial partitioner, we always use PaToH with the D preset. Our setup
consists of the following partitioning configurations:

• rb-seqExtraction-seqDinic
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Figure 9.10.: Performance profiles comparing PaToH and sequential recursive bisection

• k-way-seqSched-seqExtraction-seqDinic

• k-way-parSched-seqExtraction-seqDinic

• k-way-parSched-parExtraction-parDinic

• k-way-parSched-parExtraction-parPR

rb-seqExtraction-seqDinic uses Algorithm 1 for the recursive bisection and sequential
refinement with Dinic. Everything is executed sequentially. Although we described how
the initial partitioner can be run in parallel after splitting the hypergraph, the interface
for PaToH did not let us run multiple partitionings in parallel as they use the same
predefined global datastructure. k-way-seqSched-seqExtraction-seqDinic uses the
same sequential refinements with Dinic and schedules them sequentially as in Algorithm 2.
The three k-way-parSched-* algorithms use the parallel scheduling from Algorithm 3 and
employ different algorithms for the refinement.

We compare the quality of the algorithms in comparison to PaToH and evaluate absolute
running times as well as speedups for the algorithms in the next sections.

9.4.1. Partitioning quality

First we compare the quality of the tested algorithms (and PaToH) using performance
profiles. The profiles use the connectivity function as the quality metric and are depicted
in Figure 9.9. Note that not all instances could be solved by every algorithm as some
instances timed out. While it is clear that PaToH offers the worst quality because all other
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Figure 9.11.: Performance profiles comparing PaToH and sequential k-way refinement
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Figure 9.12.: Performance profiles comparing sequential and parallel extraction

algorithms improve the results obtained by it with refinement strategies, the comparison
between Recursive Bisection and k-way refinement is more interesting. The algorithm that
is used for the flow algorithm has no relevant impact on the quality of the partition, but
the k-way refinement consistently dominates the recursive bisection by a fair amount. This
could be due to the fact that after the recursive bisection splits the hypergraph and refines
it, vertices are not moved between these two parts any more and the blocks they can be
moved to is therefore restricted. In the k-way refinement, vertices can be moved freely
between blocks.

Figure 9.10 shows a more detailed comparison between PaToH and recursive bisection,
while Figure 9.11 shows a comparison between PaToH and the sequential k-way refinement.
PaToH can only dominate the algorithms for instances that timed out. Apart from this,
the quality is much better for the algorithms that use refinements.

We already showed that using sequential or parallel extraction can have an effect on the
running time of the succeeding flow algorithm. However, we could not observe a big
difference between the quality of the algorithms. Figure 9.12 shows the performance profiles
for sequential and parallel extraction. The parallel version has only a very slight edge over
the sequential implementation.

9.4.2. Running times of partitioners

Figure 9.13 shows the total running times of the partitioners executed with one thread,
Figure 9.14 shows the same partitioners executed with four threads. When run sequentially,
the running time of the k-way refinement is slightly worse than the recursive bisection, but
four threads suffice to make the k-way refinement using Dinic faster than the Recursive
Bisection. The overhead of the parallel scheduling in comparison to the sequential scheduling
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Figure 9.13.: Running times for partitioners executed with one thread
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Figure 9.14.: Running times for partitioners executed with four threads
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Figure 9.15.: Scalability plot for k-way-parSched-seqExtraction-seqDinic

in the k-way refinement is marginal and the parallel search and scheduling of new block
pairs only accounts for a negligible fraction of the total running time. The performance of
the k-way refinement using the Push-Relabel algorithm stands out and is worse than that
of the Dinic variants. We will give some reasons in the next sections.

9.4.3. Scalability of the k-way partitioners

The scalability plots for the running times of the refinement (=total running time without
the initial partitioning with PaToH) with parallel scheduling split for the different values of
k are shown in Figure 9.15 for sequential extraction and sequential Dinic, Figure 9.16 shows
the plot for parallel extraction and parallel Dinic and Figure 9.17 for parallel extraction
and parallel Push-Relabel.

We start with the evaluation for the sequential extraction and sequential Dinic. For k = 2,
no refinement steps can be executed in parallel, which is why the speedup stays around 1.
For k = 4, at most 2 refinements can be executed in parallel and we can observe a small
speedup for smaller instances. However, some bigger instances show worse performance.
This is also true for the other values of k: Speedups for bigger instances get worse for
sequential running times greater than around 100 seconds. Up to this running time, results
look promising and get better with increasing k as more refinements can be executed in
parallel.

The problem that bigger instances cause problems in terms of speedup is smaller for the
parallel implementations of extraction and Dinic. While the general behavior looks similar,
the speedups are consistently better. This can be attributed to the greater amount of
parallelization and the fact that even towards the end of the partitioning, when there are
not enough block pairs left to assign one to every thread, the threads can still contribute
by running single refinements in parallel.

For the parallel Push-Relabel implementation, the results differ. Speedups are not as good
as for the parallel Dinic implementation, but the Push-Relabel algorithm seems to handle
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Figure 9.16.: Scalability plot for k-way-parSched-parExtraction-parDinic
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Figure 9.17.: Scalability plot for k-way-parSched-parExtraction-parPR
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Figure 9.18.: Scalability summary for k-way-parSched-seqExtraction-seqDinic
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Figure 9.19.: Scalability summary for k-way-parSched-parExtraction-parDinic

bigger instances better. This makes it interesting to consider the algorithm for these graphs,
although the running time with Push-Relabel is still slower than the others as discussed
before.

To have a better overview of how the speedups behave for different values of k and number
of threads, we consider Figure 9.18 for sequential extraction and Dinic. The plot depicts the
harmonic mean speedup of the refinement for values of k. The plotted values correspond
directly to the leftmost harmonic mean values of the subplots in Figure 9.15. We can see
clearly that greater values of k lead to better speedups as more refinements can be executed
in parallel. The same kind of plot for the parallel scheduling with parallel extraction and
Dinic is shown in Figure 9.19. As we have already been able to tell from the scalability
plots before, the speedup values are better while the general behavior stays the same. For
the parallel Push-Relabel implementation in Figure 9.20, the plot shows very clearly that
the algorithm suffers from a greater thread count. We already saw this effect in Section
9.3.3 when evaluating the algorithm on its own and came to the conclusion that the way
we use thread-local vectors causes problems for a bigger thread count. It can be expected
that solving this issue will also improve the speedups that we observe here.
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Figure 9.20.: Scalability summary for k-way-parSched-parExtraction-parPR
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10. Conclusion

The experimental evaluation of the implemented algorithms showed that the parallelization
of extraction and flow algorithms are viable approaches to speed up the refinement procedure
of WHFC. While the extraction only makes up for a small amount of the running time,
we gained bigger speedups by parallelizing the building of the layered network of the
Dinic algorithm. However, we observed that changing the extraction and layered network
procedures can have subtle effects on other parts of the algorithm. We didn’t succeed at
completely parallelizing the Dinic algorithm because the search for augmented paths didn’t
offer much possibilities to us. Instead, we implemented a sequential and parallel version
of a Push-Relabel algorithm. The sequential Push-Relabel algorithm is competitive with
the sequential Dinic implementation and outperforms it on some instances, even having a
better mean running time on the instances we tested. The parallel Push-Relabel algorithm
also stays competitive but does not scale as well as the parallel Dinic. We determined that
the reason to be the usage of thread-local vectors in our implementation which is a good
point to tackle for better performance and may offer promising running times.

Testing the parallelizations of WHFC in the context of complete (parallel) partitioners
showed that even if refinements are scheduled in parallel, we can still improve running
times and speedups by also using the parallel WHFC. This was the case when we compared
sequential and parallel Dinic implementations. The parallel Push-Relabel algorithm suffers
from the same scalability problems as before. In terms of quality, the flow-based refinement
proved to be very effective, by far exceeding the quality of plain PaToH. Recursive bisection
performed worse than the k-way refinement (comparing the quality) and is also not
considerably faster, making it a bad trade-off in our use case. However, we were not able
to test parallel partitioning with recursive bisection due to some limitations of the PaToH
library and due to the independence of the parallel steps in the recursive bisection we can
expect good speed-ups there.

Considering future work and improvements, there are other things that can be tried. For
one, the parallel k-way scheduling of block pairs can be improved. When we schedule
new block pairs, we take the first block from the blocks list with a maximum number
of participations and search for another block that we can schedule it with. We could
use a secondary criterion here to decide which of the blocks with a maximum number of
participations to take. One could also rethink the criteria for how often and which block
pairs to refine and introduce new schemes that use less refinement steps but still result in
a partition with good quality. Another tie-braking criteria can be introduced for deciding
which endpoint of an edge in the Lawler network wins the edge. In our implementation,
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10. Conclusion

the node id is used as the last tie-breaker and the node with the lower one wins the edge.
Because of the way we assigned the ids in the Lawler network (first regular nodes, then
edge-in nodes, then edge-out nodes) an edge-in node always wins over edge-in and edge-out
nodes and edge-in nodes win over edge-out nodes. It is not clear whether this is favorable.
We could for example introduce a hash function that lets us make a deterministic coin
toss [SUV17] which results in the same node winning no matter from which endpoint we
compute it. However, this is a very fine-grained improvement.

A more general improvement could be made by optimizing or using different flow algorithms
for the max-flow computation. Maybe there is a way to nicely parallelize the computation
of augmenting paths for the Dinic algorithm that we did not think of.

Lastly, it would also be possible to combine the two refinement approaches and first use
recursive bisection (together with flow based refinement) to obtain an initial partition and
use the k-way refinement afterwards, thus further improving the quality of the partitioning.
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Appendix

A. Set of hypergraphs used for the experiments
af_shell10.mtx.hgr
af_shell6.mtx.hgr
boneS10.mtx.hgr
Bump_2911.mtx.hgr
circuit5M.mtx.hgr
CurlCurl_4.mtx.hgr
dac2012_superblue11.hgr
dac2012_superblue12.hgr
dac2012_superblue14.hgr
dac2012_superblue16.hgr
dac2012_superblue19.hgr
dac2012_superblue2.hgr
dac2012_superblue3.hgr
dac2012_superblue6.hgr
dac2012_superblue7.hgr
dac2012_superblue9.hgr
dgreen.mtx.hgr
dielFilterV2clx.mtx.hgr
dielFilterV2real.mtx.hgr
dielFilterV3clx.mtx.hgr
dielFilterV3real.mtx.hgr
Emilia_923.mtx.hgr
fem_hifreq_circuit.mtx.hgr
Flan_1565.mtx.hgr
Freescale1.mtx.hgr
FullChip.mtx.hgr
Ga41As41H72.mtx.hgr
Geo_1438.mtx.hgr
gsm_106857.mtx.hgr
inline_1.mtx.hgr
ldoor.mtx.hgr
msdoor.mtx.hgr
nlpkkt80.mtx.hgr
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rajat31.mtx.hgr
RM07R.mtx.hgr
sat14_11pipe_k.cnf.dual.hgr
sat14_11pipe_k.cnf.hgr
sat14_11pipe_k.cnf.primal.hgr
sat14_9vliw_m_9stages_iq3_C1_bug8.cnf.dual.hgr
sat14_9vliw_m_9stages_iq3_C1_bug8.cnf.hgr
sat14_9vliw_m_9stages_iq3_C1_bug8.cnf.primal.hgr
sat14_atco_enc3_opt1_04_50.cnf.dual.hgr
sat14_atco_enc3_opt1_04_50.cnf.hgr
sat14_atco_enc3_opt1_04_50.cnf.primal.hgr
sat14_atco_enc3_opt2_05_21.cnf.dual.hgr
sat14_atco_enc3_opt2_05_21.cnf.hgr
sat14_atco_enc3_opt2_05_21.cnf.primal.hgr
sat14_blocks-blocks-37-1.130-NOTKNOWN.cnf.dual.hgr
sat14_blocks-blocks-37-1.130-NOTKNOWN.cnf.hgr
sat14_blocks-blocks-37-1.130-NOTKNOWN.cnf.primal.hgr
sat14_SAT_dat.k100-24_1_rule_1.cnf.dual.hgr
sat14_SAT_dat.k100-24_1_rule_1.cnf.hgr
sat14_SAT_dat.k100-24_1_rule_1.cnf.primal.hgr
sat14_SAT_dat.k100-24_1_rule_2.cnf.dual.hgr
sat14_SAT_dat.k100-24_1_rule_2.cnf.hgr
sat14_SAT_dat.k100-24_1_rule_2.cnf.primal.hgr
sat14_SAT_dat.k95-24_1_rule_3.cnf.dual.hgr
sat14_SAT_dat.k95-24_1_rule_3.cnf.hgr
sat14_SAT_dat.k95-24_1_rule_3.cnf.primal.hgr
sat14_velev-npe-1.0-9dlx-b71.cnf.dual.hgr
sat14_velev-npe-1.0-9dlx-b71.cnf.hgr
sat14_velev-npe-1.0-9dlx-b71.cnf.primal.hgr
ss.mtx.hgr
StocF-1465.mtx.hgr
vas_stokes_1M.mtx.hgr
vas_stokes_2M.mtx.hgr
vas_stokes_4M.mtx.hgr
wb-edu.mtx.hgr
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