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Abstract

A level graph is a directed graph G = (V,E) with an assignment lvl : V → {1, . . . , k}
of vertices to levels. In a level-planar drawing every vertex v is drawn on its level, the
horizontal line y = lvl(v) and every edge is drawn as a y-monotone curve so that no
two curves intersect in the interior. A pseudoline through a level-planar drawing is a
simple y-monotone curve which intersects every edge at most once or fully covers it.
It intersects every level exactly once, starts below the lowest level and ends above the
topmost level. Let G be a graph with topological level-planar drawing and let A be
an arrangement of pseudolines intersecting G. In this thesis we study (straight-line)
aligned level drawings (Γ, A), where Γ is a level-planar (straight-line) polyline drawing
of G, A is an arrangement of y-monotone straight lines homeomorphic to A, and Γ
and A intersect in the same way as G and A. Mchedlidze et al. [MRR17] consider
aligned drawings in planar graphs, and prove that every stretchable pseudoline
arrangement intersecting a topologically embedded planar graph, where every edge is
either fully covered or intersected at most once by a pseudoline, admit a straight-line
aligned drawing.

Deciding whether (G,A) and given A, admit a straight-line aligned level draw-
ing (Γ, A), is the Straight-Line Aligned Level Drawing problem, for which we
propose a polynomial-time algorithm, based on linear programming. Additionally,
we present an asymptotically optimal algorithm for graphs with two levels, which
solves the problem by reduction to a novel geometric problem. Furthermore, we show
that there always is an aligned level drawing such that every edge is bent only where
it is intersected by a pseudoline.

Moreover, we study a problem called Intersection Sequence Embedding. Its
input is a level graph G without an embedding, a pseudoline arrangement A intersect-
ing the levels of G, and a description of how A and G are supposed to intersect. The
problem then asks whether G has a topological level drawing without edge crossings,
which realizes the desired intersection. To solve it, we propose a linear-time reduction
to testing level planarity, for which linear-time algorithms are known [JLM98].

Deutsche Zusammenfassung

Ein Level-Graph ist ein gerichteter Graph G = (V,E) mit einer Funktion lvl : V →
{1, . . . , k}, die jedem Knoten ein Level zuweist. In einer level-planaren Zeichnung
wird jeder Knoten v auf der horizontalen Geraden y = lvl(v), seinem Level, gezeichnet.
Außerdem wird jede Kante als y-monotone Kurve zwischen ihren Endpunkten geze-
ichnet, sodass sich keine der Kurven in ihrem Inneren kreuzen. Eine Pseudogerade
durch eine level-planare Zeichnung ist eine einfache y-monotone Kurve, sodass jede
Kante höchstens einmal gekreuzt wird oder die Kante ganz auf der Pseudogeraden
liegt. Sie schneidet jedes Level genau einmal und durchquert die Zeichnung von
unten nach oben. Sei G ein Graph mit einer gegebenen topologischen level-planaren
Zeichnung und sei A eine Anordnung von Pseudogeraden, die G schneiden. In dieser
Arbeit betrachten wir (geradlinige) ausgerichtete Level-Zeichnungen (aligned level
drawings) (Γ, A), wobei Γ eine level-planare Zeichnung (geradlinig beziehungsweise
Kantenzug) von G ist; und A ist eine Anordnung von Geraden, homöomorph zu A,
sodass sich Γ und A genauso schneiden wie G und A. Mchedlidze et al. [MRR17]
betrachten ausgerichtete Zeichnungen in allgemeinen planaren Graphen. Sie zeigen
dass es zu jeder stretchbaren Anordnung von Pseudogeraden, die einen topologisch
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eingebetteten planaren Graphen schneidet, eine geradlinige, ausgerichtete Zeichnung
existiert, falls jede Kante entweder auf einer Pseudogeraden liegt oder von maximal
einer Pseudogeraden geschnitten wird.

Straight-Line Aligned Level Drawing ist das Entscheidungsproblem, das,
gegeben (G,A) undA fragt, ob es eine geradlinige, ausgerichtete Level-Zeichnung (Γ, A)
gibt. Basierend auf linearer Programmierung wird ein Polynomialzeit-Algorithmus für
dieses Problem entwickelt. Außerdem wird ein asymptotisch optimaler Algorithmus,
für den Fall dass der Level-Graph zwei Level hat, präsentiert. Zudem wird gezeigt,
dass es immer eine ausgerichtete Zeichnung mit Knicken gibt, sodass jede Kante nur
dort geknickt wird, wo sie von einer Pseudogeraden geschnitten wird.

Schlussendlich betrachten wir ein Problem namens Intersection Sequence Embed-
ding. Es nimmt als Eingabe einen Level-Graph G ohne Einbettung, eine Anordnung
an Pseudogeraden A, die die Levels von G aber noch nicht G selbst schneidet.
Außerdem Teil der Eingabe, ist eine Beschreibung wie A und G sich schneiden
sollen. Das Problem stellt die Frage, ob G eine passende Einbettung hat, sodass
die gewünschten Schnitteigenschaften zwischen A und G realisiert werden. Hierzu
wird eine Linearzeit-Reduktion zum Testen von Level-Planarität gezeigt, wofür es
wiederum Linearzeit-Algorithmen gibt, siehe [JLM98].
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1. Introduction

Graph visualization is a widely used tool in data analysis, network analysis, VLSI design
and software design. According to a study of Purchase [Pur97], an important property
for visual comprehension of graph drawings is planarity or a small number of crossings
for non-planar graphs. A common drawing type for data with an inherent hierarchical
structure (such as branching timelines or management structure of a company) are level
drawings. A level graph is a directed graph in which every vertex v is assigned to an
integer y-coordinate lvl(v) such that lvl(u) < lvl(v) for every directed edge (u, v). In a
level-planar drawing every vertex v is drawn as a point with y-coordinate lvl(v) and edges
are drawn as y-monotone curves between their vertices, such that no two curves cross in
their interior. Level drawings with small crossing numbers have received a lot of attention,
in particular due to the Sugiyama framework [STT81].

Two other properties of graph drawings that are desirable for visual comprehension are
aligning a set S ⊂ V of vertices by drawing them on a straight line or separating the disjoint
parts B∪̇C = V of a bipartition of the graph by a straight line. These were considered
by Da Lozzo et al. [DLDF+16] and Biedl et al. [BKM98], respectively. In the context of
interactive graph drawing, a user may draw a curve through an existing graph drawing
and let the computer decide whether the curve can be stretched into a straight line while
maintaining planarity of the drawing. An important concept for this are pseudolines.

Let G = (V,E) be a plane graph with a topological embedding. A pseudoline with respect
to G is a simple curve such that every edge of G is intersected at most once or is fully
contained in the pseudoline. Additionally, the pseudoline spans from and to infinity, i.e.
starts and ends in the outer face of G. It turns out that a planar drawing of G in which
the vertices of S are collinear exists, if and only if there is a pseudoline drawn through
G which passes through all vertices of S. Similarly, G has a planar drawing in which B
and C are separated by a straight line, if and only if there is a pseudoline through G which
separates B and C. Mchedlidze et al. [MRR17] unify the aforementioned two properties
and generalize the setting to more than one pseudoline. They introduce the notion of
an aligned graph (G,A) which comprises a plane embedded graph G and a stretchable
pseudoline arrangement A with respect to G; see Figure 1.1(a) for an example. A stretchable
pseudoline arrangement is homeomorphic to an arrangement of straight lines. Their subject
of study are aligned drawings (Γ, A) where Γ is a planar polyline drawing of G and A is
an arrangement of straight lines homeomorphic to A such that A and Γ intersect in the
way as G and A. In particular, they consider straight-line aligned drawings, where Γ is
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1. Introduction

(a) An aligned graph
(G, A).

(b) A straight-line
aligned drawing
(Γ, A) of (G, A)
in (a).

(c) An aligned level
graph (G, A).

(d) A straight-line
aligned level
drawing (Γ, A) of
(G, A) in (c).

Figure 1.1: Example of an aligned (level) graph (G,A) and according straight-line aligned
(level) drawing (Γ, A). Pseudolines A are drawn in red and green. The levels of
the level graph G are drawn in blue. The graph G is in black.

a straight-line drawing of G. Figure 1.1(b) shows a straight-line aligned drawing of the
aligned graph in Figure 1.1(a).

Our contribution is the consideration of straight-line aligned drawings in the realm of
level-planar graphs. An aligned level graph is a tuple (G,A) consisting of a level graph G
topologically embedded in the plane and a topological arrangement of y-monotone pseu-
dolines A intersecting G and its levels (from bottom to top). The analogous aligned level
drawing of (G,A) is the tuple (Γ, A), consisting of a planar polyline drawing Γ of G, and
the straight line arrangement A such that A+ lvl(V ), the arrangement combining A and
the levels of V , is homeomorphic to A+ lvl(V ). As before, Γ and A intersect in the same
way as G and A.

Related Work

In the following we mention further related work. Biedl and Pennarun [BP16] study
non-aligned drawings of planar graphs which aim to achieve the exact opposite of what we
consider in this thesis, namely a planar drawing in the grid such that no two vertices lie
in the same row or column. They show such a drawing exists in the n × n-grid with at
most 2n−5

3 bends and such straight-line drawings exist in the n2 × n2-grid.

Dujmović [Duj15] shows that every n-vertex planar graph has a planar drawing with Ω(
√
n)

collinear vertices, i.e. there is a stretchable pseudoline through Ω(
√
n) vertices. In addition

to the characterization of drawings in which S is drawn collinear, Da Lozzo et al. show
that in planar graphs of treewidth 3 and triconnected cubic planar graphs there are
drawings with Θ(n) collinear vertices, which is asymptotically optimal. For planar graphs
of treewidth k they obtain a lower bound of Ω(k2) on the number of possible collinear
vertices.

Mchedlidze et al. [MRR17] study the Pseudoline Existence problem, which extends
the work of Da Lozzo et al. [DLDF+16]. It asks, given a set S ⊂ V of vertices to be drawn
collinearly, is there a pseudoline with respect to G that collects all vertices of S. They show
that it is NP-complete by reduction from Hamiltonian Circuit and fixed-parameter
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tractable by reduction to K-Cycle, which is fixed-parameter tractable by a result of
Wahlström [Wah13]. Additionally, they give a new proof of the characterization result
of [DLDF+16] and strengthen the result by showing that a fixed convex drawing of the outer
face can be prescribed. Furthermore, they prove that every aligned graph (G,A), in which
every edge either fully lies on a pseudoline or is intersected by at most one pseudoline, has
a straight-line aligned drawing. Deciding whether a pseudoline arrangement is stretchable
is NP-hard and even ∃R-complete [Mnë88, Sho91]. Therefore Mchedlidze et al. [MRR17]
assume a straight line arrangement A homeomorphic to A is given.

Additional related work is in the areas of level planarity and constrained drawings. Jünger
et al.[JLM98] present a linear time algorithm to decide whether a given level graph is
level-planar and Jünger and Leipert[JL99] extend this result to computing a combinatorial
embedding, if one exists, in the same running time. Since their algorithm is compli-
cated, Randerath et al. [RSB+01] give a quadratic-time decision algorithm, Harrigan and
Healy [HN08] present a quadratic-time decision and embedding algorithm and Fulek et
al. [FPSŠ13] propose a quadratic-time decision algorithm based on a Hanani-Tutte charac-
terization. Brückner and Rutter [BR17] consider Partial Level Planarity (PLP) and
Constrained Level Planarity (CLP). In CLP for every level a partial ordering of
the vertices on that level are given. The question is whether this partial ordering can be
extended to a level-planar embedding. PLP considers the extension of a partial embedding
to a complete level-planar embedding without modifying the partial embedding. Observe
that PLP is a special case of CLP. The authors give a O(n+ kl) algorithm for CLP in
single-source graphs, where n is the number of vertices, k is the number of levels and l is
the size of the constraints. Additionally, they show that PLP is in general NP-complete.
Klemz and Rote [KR17] study Ordered Level Planarity, a variant of level planarity
with a prescribed total order of the vertices on every level. The problem Ordered Level
Planarity then asks whether a given level graph has a level-planar drawing with the
prescribed order. They prove that Ordered Level Planarity is NP-complete in
general. In proper level graphs (lvl(v)− lvl(u) = 1 for every edge (u, v)) it can be solved in
linear time, by testing whether the completely fixed drawing is crossing-free. The difficulty
in non-proper level graphs lies in deciding where long edges (lvl(v) − lvl(u) > 1) cross
levels.

For the sake of completeness, we point out that in Chapter 3 we consider results on con-
strained drawing in general planar graphs of Patrignani [Pat06] and Angelini et al.[ADF+10],
which we discuss then.

Contribution and Outline

In this thesis we study the problem of deciding whether a given aligned level graph (G,A)
and given straight line arrangement A has a straight-line aligned level drawing (Γ, A). We
call this problem Straight-Line Aligned Level Drawing. Figure 1.1(d) shows a
straight-line aligned level drawing of the aligned level graph in Figure 1.1(c). For the same
reason as Mchedlidze et al. [MRR17], we assume A as part of the input. Chapter 2 formally
introduces the basic concepts and notation. In Chapter 3 we consider drawing constraints
in level graphs using linear programming. We introduce linear constraints to enforce
straight-line drawings of edges and the embedding of a plane level graph. Furthermore
we propose constraints to fix partial drawings of embedded graphs (to be extended to
a drawing of the whole graph), fix turn directions between edges and force a face to be
drawn as a convex polygon. The constraints to enforce the embedding and straight-line
drawings from Chapter 3 are used in Chapter 4 to construct a linear program which
computes straight-line aligned level drawings in polynomial time. Due to the nature of
linear programming this can be combined with the above mentioned drawing constraints,
into one framework, without additional effort. Note that, as opposed to [MRR17], our
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1. Introduction

result works for edges which are intersected by more than one pseudoline. Additionally, we
present a more efficient algorithm for graphs with two levels. The foundations for this are
laid in Chapter 4 and in Chapter 5 we use them to devise the algorithm. In this context we
consider a novel geometric problem, the Monotonic Polygon Hitting Set problem, to
which we reduce Straight-Line Aligned Level Drawing with two-level graphs. We
present two miscellaneous combinatorial results in Chapter 6. One is a characterization
of pseudoline existence, similar to Mchedlidze et al. [MRR17]. In contrast to their result
it is open whether Pseudoline Existence is fixed-parameter tractable in level graphs.
The other result concerns the Intersection Sequence Embedding problem. Given a
level graph G = (V,E, lvl) without combinatorial embedding and a description of how a
pseudoline arrangement shall intersect G, Intersection Sequence Embedding is the
problem of deciding whether there is a combinatorial embedding of G that realizes the
desired intersections. We propose a linear-time reduction to testing level planarity.
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2. Preliminaries

In this chapter we introduce a variety of concepts used throughout this thesis. Section 2.4
formally defines the Straight-Line Aligned Level Drawing problem, the main subject
of this thesis.

2.1 Polygons
Define st as the straight line segment that joins two points s and t in the plane, and
define −→st as the straight line that joins s and t. A polygon is a finite chain of straight line
segments (polygonal chain) that forms a closed circuit. The straight line segments of the
polygonal chain, are called its edges and the endpoints where two edges meet, are called
vertices. A polygon is simple if it is not self-intersecting. An open polygon is a polygonal
chain that is not a closed circuit. When we consider graphs and polygons simultaneously,
we refer to the vertices of a polygon as polygon-vertices, if the text would otherwise be
unclear. Similarly, we refer to edges of a polygon as polygon-edges. A simple polygon P
partitions the plane into two regions, its interior and exterior, according to the Jordan
curve theorem [Jor93]. P bounds the interior from the exterior. Regarding notation, we call
the interior region interior(P ) and the exterior region exterior(P ). Note that the interior
and the exterior are open sets, in the topological sense. P is referred to as the boundary
of interior(P ). Sometimes the term polygon is also used for the interior of a polygon and
the polygon itself is referred to as boundary.

Definition 2.1 (Visibility). Two points p, q in a simple polygon P are visible from another,
if and only if pq ∩ exterior(P ) = ∅.

A simple polygon is convex if every internal angle is less than or equal 180 degrees.
Convexity is equivalently characterized by the property ”every pair of two points in the
interior or on the boundary are visible from another”. Let P be a convex polygon and
let vl be the leftmost vertex of P . If there is more than one, choose the one with lowest y-
coordinate. Similarly, choose vr as the rightmost vertex of P . The lower hull P is the
chain of all edges below the line connecting vl and vr. This definition excludes vertical
edges from the lower hull on purpose. The upper hull is defined similarly as the chain of
all edges above −−→vlvr. The left hull and right hull are defined similarly with the highest and
lowest vertices. The left-lower hull of P is defined as the intersection of its left hull and
lower hull. Similarly, we define the other hull combinations left-upper hull, right-lower hull,
right-upper hull. By |P | we denote the the number of vertices of P , which is equal to the
number of its edges.
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2. Preliminaries

non-apices

apex

lower hull

(a) (b) (c)

Figure 2.1: (a) shows the lower hull (orange) of a convex polygon. Additionally, it shows
the distinction of apices and non-apex vertices.
In (b) the black edges form a proper level graph, the red edge is a long edge
and the white disk is a level-crossing.
Finally (c) shows the infinite track-plane extension of a plane proper level graph.
The level graph is in black, the horizontal red inter-level edges are due to the
track-plane extension and the dotted horizontal lines stretching to infinity are
due to the infinite track-plane extension. In gray we see the dual graph of the
infinite track-plane extension.

Definition 2.2. An apex (plural apices) of a convex polygon P is a vertex of P such that
the inner angle between its two incident edges is strictly less than 180 degrees.

Refer to Figure 2.1(a) for a visual distinction of apices and non-apex vertices. In the
literature, two edges with internal angle equal to 180 degrees are usually seen as one edge.
However, for the straight-line drawing algorithm for plane level graphs by Eades, Feng, Lin
and Nagamochi [EFLN06], coming up in the next section, it is necessary to allow 180 degree
angles at some vertices. We refrain from explaining the reasons behind this and simply
use their result, see Theorem 2.5. In the other parts of this thesis we do not distinguish
between apices and non-apex vertices.

2.2 Level Graphs
A level graph G = (V,E, lvl) is a directed graph (V,E) with a mapping lvl : V → {1, . . . , k}
where each vertex v is assigned to a y-coordinate lvl(v) such that for each edge (u, v) ∈ E we
have lvl(u) < lvl(v). Although the definition is restricted to integer levels, for convenience
we may use non-integer levels in constructions. We also write uv instead of (u, v). Sometimes
we need edges that are not oriented or for which we do not want to fix whether lvl(u) < lvl(v)
or lvl(u) > lvl(v), which we denote as {u, v}. An edge (u, v) is an incoming edge at v
and an outgoing edge at u. By N(v) we denote the set of neighbors of v, by N+(v) the
neighbors through outgoing edges and by N−(v) the neighbors through incoming edges. A
vertex with no incoming edge is called source, a vertex with no outgoing edge is called sink.
The horizontal line y = lvl(v) is called the level of vertex v. The set lvl(V ) is referred to
as the levels in G and k := | lvl(V )| is referred to as the number of levels. The span of an
edge e = uv ∈ E is defined as span(e) := lvl(v)− lvl(u) (recall lvl(v) > lvl(u)). Edges of
span greater than one are called long. Level graphs with no long edges are called proper.

A level graph is called level-planar if it has a planar drawing in which every vertex v is
drawn at its assigned y-coordinate lvl(v) and every edge is drawn as a y-monotone curve.
A combinatorial embedding ≺ of a proper level graph is an ordering ≺i of the vertices on
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2.2. Level Graphs

each level i, sometimes denoted ≺= {≺i| i = 1, . . . , k}. We refer to ≺i as the level-order
on level i. In order to define combinatorial embeddings for level graphs with long edges
we need to introduce an object type that indicates where a long edge uv ∈ E crosses the
intermediate levels lvl(u) + 1, . . . , lvl(v)− 1.

Definition 2.3. Subdivide a long edge uv ∈ E with vertices on the intermediate levels
lvl(u) + 1, . . . , lvl(v)− 1 so that it forms a path of proper edges. The level-crossing of e on
level i is the subdivision vertex on level i. Its purpose is to indicate where in the total order
of vertices and other level-crossings on level i, the edge e is supposed to cross level i.

Figure 2.1(b) shows a level-crossing and the distinction between proper and level graphs
with long edges. Similar to the proper case, a combinatorial embedding ≺ of a level
graph with long edges is an order of the vertices and level-crossings on each level. A level
graph G = (V,E, lvl) with fixed combinatorial embedding ≺ is called a plane level graph.
We also denote it by G = (V,E, lvl,≺). Observe that a combinatorial embedding of a
level graph fixes its outer face, as opposed to general planar graphs. A drawing of a level
graph G is straight-line if each edge is drawn as a straight line segment.

An st-plane level graph is a plane level graph with one source s and one sink t. Observe
that lvl(s) must be the lowest level occupied by a vertex and lvl(t) must be the highest
level occupied by a vertex. A triangulated level graph is a plane level graph where each
face except for the outer face is triangular.

Straight-Line Drawing of Plane Level Graphs

We briefly touch on a result due to Eades et al. [EFLN06] on straight-line drawings of
plane level graphs with long edges. In this thesis it is used in Section 4.3.

Definition 2.4. Let H be a triangulated st-plane level graph H, and let P be a straight-line
drawing of its outer facial cycle C. P is called feasible for H, if P is convex and for every
chord uz of C, both of the two paths joining u and z on C have a vertex drawn as an apex
of P .

Theorem 2.5 (Eades, Feng, Lin, Nagamochi [EFLN06]). Let H be a triangulated st-plane
level graph and let polygon P be a straight-line drawing of its outer facial cycle. If P is
feasible for H there exists a planar straight-line drawing of H with outer face P .

Track Planarity

The following definitions concern the notion of track planarity, which we use in Section 4.2
and Section 6.2. A track graph is a generalization of a level graph, where the condition
lvl(u) < lvl(v) is relaxed to lvl(u) ≤ lvl(v) for the directed edge (u, v). An edge e = (u, v)
is called inter-level if lvl(u) < lvl(v) and intra-level if lvl(u) = lvl(v). A track graph is
track-planar if it has a planar drawing such that the intra-level edges are drawn horizontally,
on their respective levels, vertices are drawn on their respective levels and the inter-level
edges are drawn as strictly y-monotone curves.

Definition 2.6. Let G = (V,E,≺) be a plane proper level graph. Its track-plane extension
is the track-plane graph obtained from G by adding an intra-level edge between any pair of
consecutive vertices in ≺i for i = 1, . . . , k.

Definition 2.7. The infinite track-plane extension of a plane proper level graph G is its
track-plane extension augmented by two additional inter-level edges on each level. One
inter-level edge stretching to a vertex at positive x-infinity and one stretching to negative
x-infinity is added on the right, respectively left end of that level.

7



2. Preliminaries

?

Figure 2.2: On the left: an arrangement of pseudolines, on the right: a stretched version of
the left side. Figure provided by Marcel Radermacher [Rad15].

Some visual aid is in order, for which we refer to Figure 2.1(c). The edges stretching to
x-infinity on both sides of each level allow speaking of the unbounded spaces between levels
as unbounded faces. This in turn allows the definition of a certain type of dual graph we
need, where instead of one dual vertex for the outer face, there are two for the unbounded
spaces (left,right) in the space between two consecutive levels. Additionally, there is a dual
vertex s below the bottom level and a dual vertex t above the top level, making the dual a
st-plane track graph. Note that the infinite track-plane extension is not a graph per se but
its dual graph is still well-defined.

2.3 Pseudolines and Stretchability
Definition 2.8 (Pseudoline). A pseudoline is a simple y-monotone curve in the Euclidean
plane stretching from and to infinity.

A pseudoline arrangement A = {R1, . . . ,Rz} is a set of pseudolines, pairwise meeting
at most once and crossing where they meet. The points where pseudolines meet are
called pseudoline-intersections. The segments of one pseudoline R between consecutive
pseudoline-intersections along the trajectory of R are called the pseudosegments of R.
Pseudoline arrangements generalize line arrangements in the sense that the topological
and combinatorial properties of line arrangements are preserved (intersection properties,
partition into segments between intersections) whereas the straightness aspect is discarded
([TOG04]). Note that in the literature, pseudolines are usually defined as images of straight
lines under homeomorphisms in the projective plane such that pseudolines in an arrangement
pairwise intersect exactly once (be it an intersection at infinity). Throughout this thesis
we do not require two pseudolines in an arrangement to intersect, unless explicitly stated.

One pseudoline partitions the Euclidean plane into two halfplanes and a pseudoline
arrangement A partitions the Euclidean plane into a cell complex, where A bounds the
cells. Denote by cells(A) the cell complex into which A partitions the plane. See the left
side of Figure 2.2 for an arrangement of pseudolines and its cell complex.

Definition 2.9 (Stretchable Pseudoline Arrangement). A pseudoline arrangement A is
stretchable if and only if some homeomorphism ϕ : R2 → R2 maps every R ∈ A to a
straight line. The arrangement {ϕ(R) | R ∈ A} is called a stretching of A.

Figure 2.2 shows a stretchable pseudoline arrangement and a stretching. The Stretch-
ability problem asks, whether a given pseudoline arrangement in which pseudolines
pairwise cross exactly once, is stretchable. The version of stretchability with pseudolines
in the projective plane was proven to be ∃R-complete by Mnëv [Mnë88] and NP-hard by
Shor [Sho91]. Herein ∃R is a complexity class, introduced by Schaefer [Sch09]. Deciding
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2.4. Aligned Level Drawing

truth in the existential theory of the reals to ∃R is the equivalent of satisfiability to NP.
The existential theory of the reals is the set of true statements of the form

∃x1, x2, . . . , xn : ϕ(x1, x2, . . . , xn)

where ϕ is a quantifier-free and negation-free Boolean formula over the signature
(0, 1,+, ∗, <) interpreted over the real numbers (Schaefer [Sch09]).
By a result of Canny [Can88], the complexity class ∃R is decidable in PSPACE. Fur-
thermore NP is contained in ∃R. Schaefer [Sch09] mentions that stretchability is
still ∃R-complete for pseudolines defined as y-monotone curves in the Euclidean plane as
in Definition 2.8.

2.4 Aligned Level Drawing
Let G = (V,E, lvl,≺) be a plane level graph, topologically embedded in the Euclidean
plane. A pseudoline R with respect to G is a simple y-monotone curve through the
topological embedding of G, intersecting some of the vertices, levels and edges of G in a
certain order. It spans from negative to positive infinity, intersects every level exactly once,
in the order 1, . . . , k, and is inherently oriented upwards. As R is y-monotone, it intersects
every level either in one vertex, in one level-crossing or in an interval between pairs of the
former two. Any edge either lies fully on R or is intersected by R in at most one point
(incident vertex or interior). A pseudoline arrangement A with respect to G is a pseudoline
arrangement intersecting the topological embedding of G. A tuple (G,A) of a plane level
graph G = (V,E, lvl,≺) and a pseudoline arrangement with respect to G is called an aligned
level graph. In addition to vertices, levels and edges, a pseudoline also intersects other
pseudolines of the arrangement in a certain order. We call the arrangement combining the
pseudolines of A with the levels lvl(V ) their combined arrangement A+lvl(V ). If A+lvl(V )
is stretchable, A+ lvl(V ) is a stretching of A+ lvl(V ) and Γ is a polyline drawing of G
under ≺, then (Γ, A) is called an aligned level drawing of (G,A), if and only if Γ and A
intersect in the same way as G and A. More formally, let ϕ be the function that maps
every vertex to its point in Γ, maps every edge to its polyline in Γ, maps every pseudoline
of A to its corresponding straight line of A and maps every level to itself. Furthermore, for
every pseudoline R ∈ A, let iseqG(R) be the sequence of pseudolines, vertices, levels and
edges which R intersects in (G,A). Similarly, let iseqΓ(ϕ(R)) be the sequence of lines of A,
vertices, levels and edges which ϕ(R) intersects in Γ. Then (Γ, A) is an aligned level drawing
of (G,A) if and only if for every pseudoline R ∈ A we have ϕ(iseqG(R)) = iseqΓ(ϕ(R)).
If Γ is a straight-line drawing we call (Γ, A) a straight-line aligned level drawing.

We used the notion of homeomorphisms in the definition of stretchable arrangements. A
homeomorphism may exchange the left and right halfplane of all pseudolines at once, or
may reverse the order of levels. This is not problematic as the suitably mirrored straight
line arrangement (around the vertical axis, respectively horizontal axis) complies with the
required orientation of levels and pseudolines.

Definition 2.10. Given (G,A) and A, Straight-Line Aligned Level Drawing is
the problem of deciding whether (G,A) has a straight-line aligned level drawing (Γ, A).

We assume A as part of the input because Stretchability is NP-hard, even ∃R-complete.
It is possible to formulate a similar decision problem for aligned level drawings, which
are not forced to be straight-line. However, in Section 4.3 we will see that every aligned
level graph has an aligned level drawing. The remaining question is how many bends are
required. Since we do not give a bend-minimization algorithm we do not formulate this
optimization problem.
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x

(a) Point visibility polygon.

a

b

(b) Weak edge visibility polygon.

Figure 2.3: Polygon P and exemplary Point Visibility Polygon PV(P, x) in (a) as well as
exemplary Weak Edge Visibility Polygon WEV(P, (a, b)) in (b).

An edge is called i-crossed if it is intersected by i pseudolines and does not lie on a
pseudoline. It is called aligned if it lies fully on a pseudoline and it is called free if it is
intersected by zero pseudolines. Similarly, a vertex on a pseudoline is called aligned and a
vertex not on a pseudoline is called free. We denote the number of pseudolines intersecting
an i-crossed edge e by ζ(e) := i. If e is free, we have ζ(e) = 0. For an aligned edge e we
set ζ(e) = 0, even if there are other pseudolines intersecting e. In Chapter 4 and Chapter 5
we use ζ(e) to denote the number of bends on edge e in an aligned level drawing, as well as
in the running time of algorithms for Straight-Line Aligned Level Drawing. Aligned
edges have a unique drawing in aligned level drawings and it is bend-free. Due to their
unique drawing they furthermore do not contribute to the complexity of Straight-Line
Aligned Level Drawing and thus cost no additional running time. These are the
reasons for setting ζ(e) = 0 for aligned edges.

Level Segments

The intersections of pseudolines in A and a level, partition the level into segments. If there
is no intersection on the level, then it is partitioned into one segment. If there is at least
one intersection then the level has two unbounded segments (leftmost and rightmost) and
the remaining segments are bounded by two intersections. In an aligned level drawing, a
vertex must be drawn in such an interval if it is free. If it is aligned, it must be drawn
on the intersection of its level and the pseudoline that aligns the vertex. For vertex u,
we denote by level-segment(u) the interval or intersection of lvl(u) in A+ lvl(V ) where u
must be placed in an aligned level drawing. We call level-segment(u) the level-segment
of u. Similarly for a level-crossing d, we denote by level-segment(d) its level-segment.

2.5 Visibility in Polygons
Recall Definition 2.1, which defines visibility between two points in a simple polygon P .
The point visibility polygon PV(P, x) consists of those parts of P that are visible from
a point x. Intuitively, we can imagine PV(P, x) as the part of P that is illuminated by
direct light, when placing a point light source at x; ignoring refraction. There are a variety
of algorithms that solve this problem efficiently in O(|P |) time [EA81, Lee83, JS87]. In
Figure 2.3(a) the point visibility polygon of some point x in some polygon P is visualized.

Weak edge visibility extends the notion of point visibility in the intuitive sense that the
light source, formerly a point, is now a light-emitting line segment of P .

10



2.5. Visibility in Polygons

Definition 2.11 (Weak Edge Visibility). Let s = (a, b) be an edge of P . The weak edge
visibility polygon WEV(P, (a, b)) is the maximal subpolygon of P , for which each point
of WEV(P, (a, b)) can see at least one point in (a, b).

Figure 2.3(b) shows the weak edge visibility polygon of some segment s = (a, b). There
are algorithms that compute WEV(P, (a, b)) efficiently in O(|P | log |P |) time [LL86, EG85,
O’R87] and even in O(|P | log log |P |) time by combining the O(|P | log log |P |) triangulation
algorithm from Tarjan and Van Wyk [TVW88] and the linear-time weak edge visibility
algorithm in triangulated polygons by Guibas et al [GHL+87].

We discuss a O(|P | log |P |) horizontal-line sweep algorithm from the book Art Gallery
Theorems and Algorithms by O’Rourke [O’R87]. In Section 4.4.2 we modfify the algorithm
and use its notion of critical lines, which is the reason we describe it in such detail. The
description very closely follows that in the book.

First, P is rotated so that s lies horizontally with the interior of P above s. Then the
vertices are sorted increasingly, by y-coordinate. Edges are oriented upwards and for
simplicity we assume that no edge other than s lies horizontally. This allows the distinction
whether the interior of P lies to the left or right of an edge.

Horizontal Sweepline Datastructures

The main idea is to sweep P with a horizontal sweep-line H that moves upwards through P ,
starting at s. At any stage H intersects a set of edges e1, e2, . . . , ez from left to right,
such that the edges with odd index bound P from the left and the edges with even index
bound P from the right. We call those with odd index left edges and those with even index
right edges. A consecutive pair ei, ei+1 with ei being a left edge, bounds a window on H,
such that the interval on H between the edges lies in the interior of P . Such a window is
called visibility window, if some part of the interval is visible from s. Each window has a
separate left and right boundary.

The edges intersected by H and the visibility windows are stored using a balanced search
tree for O(log |P |) time access, insertions and deletions. Only the order in which edges
intersect H are stored, not the actual intersections. An intersection can be reconstructed
in constant time, when needed. Updating the intersections in every advancement of H
would yield quadratic running time.

Visibility Windows Datastructures

Each point x on H that is visible from s sees an interval of points on s. Denote by L(x) the
line segment connecting x to its leftmost visible point on s and by R(x) the line segment
connecting to the rightmost visible point. Additionally, let c[L(x)],c[R(x)] be the point
of contact between the boundary of P and L(x),R(x) respectively. If there are multiple
points, choose the one closest to x on the right boundary of W for R(x), respectively on
the left boundary for L(x) of W . For example, in Figure 2.4, the critical line R0 has a
point of contact on the left boundary of W but c[R0] is taken on the right boundary.

Each visibility window is partitioned into intervals where c[L(x)] does not change, in
the interval. The points xl, . . . , x0 where c[L(x)] does change, determine the left critical
lines Ll, . . . , L0 with Li = L(xi), crossing H in this left-to-right order. Similarly, the points
where c[R(x)] changes determine the right critical lines R0, . . . , Rr, crossing H in this
left-to-right order. See Figure 2.4 for an illustration.

For each visibility window, the critical lines and their according points of contact are
stored in two separate balanced search trees L and R. This allows the construction of L(x)
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H
L2 L1R0 L3 L0R1 R2

W

c[L3]

c[L2]
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c[R2]

c[R1]

c[R0]

Figure 2.4: Critical lines and their points of contact in a visibility window W .
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Figure 2.5: Output and window updates due to advancing H.

and R(x) in O(log |P |). If x lies between Li and Li+1 on H, then c[L(x)] = c[L(xi)]
and we can construct L(x) from that. As above, only the order in which critical lines
intersect H are stored in the search tree. Again, updating every intersection of critical lines
with H in every advancement of H would yield quadratic running time. Reconstructing
one intersection is in constant time.

Advancing the Sweepline

In the following we describe the updates to the search trees and the output of visible
segments, that occur in one advancement of the sweepline. Let H be the sweepline at the
next vertex x. Locate x as a vertex of an edge e in the edges intersected by H. Recall that
not every window is a visibility window. If x does not lie in the interior or on the boundary
of a visibility window, immediately move the sweepline on to the next vertex.
Otherwise x lies in some window W and three actions are taken, as described in the
following three paragraphs. Note that we describe them only for the left window boundaries
and the right window boundaries are treated analogously. Let ea be the left bounding edge
of W and let H ′ be the sweepline state, the last time that W was updated. First the visible
segments in W between H and H ′ are output, then updates on W due to advancing H are
performed and finally updates to the edges intersected by H and window updates due to x
are performed.

Output of Visible Segments

Let ya be the intersection of ea and H and let xa be the leftmost visible point on H in W .
If ya lies left of R0 then xa is the intersection of H and R0, otherwise xa = ya. Additionally,
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Figure 2.6: Window updates due to x.

let x′a be the leftmost visible point of H ′ in W . Due to the next step (Window Updates
due to Advancing H), we will know that x′a is the intersection of H ′ and R0, as R0 was
constructed thusly.

Distinguish the two cases xa = ya and ya lies to the left of xa. If ya lies to the left of xa,
then no segment of ea between H and H ′ is visible, as xa lies on R0. Therefore output the
segment x′axa, see Figure 2.5(a). If on the other hand ya = xa, then ya lies right of R0 and
thus ea must intersect R0 somewhere between H and H ′, in some point z. Then the two
segments x′az and zxa are output; see Figure 2.5(b).

Window Updates due to Advancing H

If xa is right of L0 or R0 = L0 the window W is closed. If xa 6= ya no updates to L
and R are made, see Figure 2.5(a). If xa = ya and xa lies between Ri and Ri+1 on H, the
lines R0, . . . , Ri are deleted from R and a new R0 that connects xa and c[Ri] is inserted.
Similarly, if xa does not lie left of Ll and thus lies between Li+1 and Li, the critical
lines Ll, . . . , Lj+1 are deleted from L and a new Lj+1 connecting xa and c[Li] (not c[Li+1])
is inserted into L. See Figure 2.5(b).

Window Updates due to x

The last part of the advancement step consists of updates to the edges intersected by H
and the resulting partition in windows. We distinguish two cases.

Case 1. x is the upper endpoint of ea, i.e. the left boundary.

Then W is bounded by a different edge in the next step. Let e′ be the other edge incident
to x. If e′ has the interior of P to its right, then e′ bounds W in the next step, see
Figure 2.6(a). Otherwise the first edge to the left of ea on H, that has interior(P ) to its
right is chosen as the next boundary of W , see Figure 2.6(b).

Case 2. x is the upper endpoint of the right boundary. Analogous to Case 1.

Case 3. x is a lower endpoint of both its incident edges e′ and e′′.

In this case W is split into two windows W ′ and W ′′. Let eb be the edge bounding W
from the right. Then W ′ is bounded by ea from the left and by e′ from the right. W ′′
is bounded by e′′ from the left and eb from the right. The critical lines L,R are split
between W ′ and W ′′. Let x be located between Ri and Ri+1 and between Lj and Lj+1.
Then W ′ gets R0, . . . , Ri and Ll, . . . , Lj+1, whereas W ′′ gets Ri+1, . . . Rr and Lj , . . . , L0.
Finally, L(x) and R(x) are added to W ′ and W ′′. See Figure 2.6(c).
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Initialization

After describing the sweepline advancement steps, we show how to initialize the sweepline
and the search trees. We start with H on the height of s = (a, b). Recall that a and b
are the leftmost, respectively rightmost points on s. Let ea, eb be the edges closest to a, b
respectively, out of the edges intersected by H which are incident to one vertex above H.
It is possible that a is a lower endpoint of ea but this is not necessarily the case. There
is one window W , bounded by ea and eb. Then let xa be the intersection of ea and H,
similarly xb. L is initialized with two critical lines L0 = axb, L1 = axb, similarly R
with R0 = bxa, R1 = bxb. See Figure 2.7 for an illustration.

xa a b xb

ebea

H

Figure 2.7: Initialization of sweepline, windows and critical lines.

Note that we omit a detailed description for parts visible below the edge. A point-visibility
query from each endpoint of the edge suffices. However, in our application for weak edge
visibility (Chapter 4) we have no parts below the edge.

2.6 Linear Programming
Linear programming is a subfield of optimization, where a linear objective function is
optimized under linear inequality constraints. More formally let x ∈ Rn be a vector of
variables, whose value is to be set by the linear program solver, let c ∈ Rn be a vector of
real-valued cost function coefficients, let A ∈ Rm×n be a matrix of real-valued coefficients
and let b ∈ Rm be a vector. Then a linear program can be formalized as:

Maximize cTx such that Ax ≤ b.

Therein cTx is the objective function and Ax ≤ b are the m linear inequality constraints.
An objective function can be minimized by maximizing −c.

Karmarkar’s algorithm [Kar84] solves a linear program in O(m3.5L2) time, where L is the
number of bits in the input and m is the number of constraints.

Theorem 2.12. Linear programs can be solved in O(m3.5L2) time.

In this thesis, we use linear programs without objective functions. We call these linear
constraint programs and write them as LCP = (Var ,Con) where Var is a set of vari-
ables and Con is a set of linear inequalities over Var . The linear inequalities are of the
form ∑

Z∈Var aZ · Z ≤ c with aZ , c ∈ R.
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3. Linear Constraint Programming and
Constrained Drawing Problems

In Chapter 4 we will use linear constraint programming to devise an algorithm for Straight-
Line Aligned Level Drawing. In Section 3.1 of this chapter we lay the foundations for
that. Since aligned level drawings are a form of constrained drawings, we also consider
some constrained drawing problems in this chapter. Combining the discussed constrained
drawing problems with Straight-Line Aligned Level Drawing is immediate, due to
the nature of linear constraint programming. In Section 3.2 we discuss partial drawing
extension problems and in Section 3.3 we discuss constraints on the slopes of straight-line
edge drawings. In particular we show how to constrain a face of a plane level graph to be
drawn as a convex polygon. Since linear constraint programming is inherently simultaneous
in the sense that any sets of linear constraints can be combined, this approach is especially
suited for interactive drawing purposes where multiple constraints on a drawing shall be
combined and a combined algorithm is difficult to envision.

3.1 Straight-Line Plane Level Graph Drawing
We start with a straight-forward linear constraint program for straight-line drawings of a
plane level graph G = (V,E, lvl,≺). A straight-line drawing of G is represented by a set of
variablesXu, one for the x-coordinate of every vertex u ∈ V . The y-coordinate yu = lvl(u) is
fixed by its level. Recall that the embedding is given as a set of level-orders ≺= {≺1, . . . ,≺k}
with ≺i= 〈d1, . . . dni〉 denoting the order of vertices and level-crossings on level i. Introduce
for each level-crossing d a variable Xd for its x-coordinate. The set of constraints to draw
G with embedding ≺ is defined by the following equation:

Embedding(≺) =
k⋃
i=1

ni−1⋃
j=1
{Xdj < Xdj+1} . (3.1)

In a straight-line drawing the level-crossings and endpoints of an edge are collinear.

Definition 3.1 (x-slope). The x-slope of a line −→st = {s+ λ(t− s) | λ ∈ R} is defined as

M−→
st

= 1
yt − ys

· (xt − xs) .
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Usually the slope of the line {s+ λ(t− s) | λ ∈ R} is defined as yt − ys
xt − xs

. This definition is
unsuitable for our purpose, as the slope is not linear in xt and xs. Furthermore, representing
a vertical line would require yt − ys

xt − xs
=∞.

We force collinearity of level-crossings and endpoints of an edge e ∈ E, by requiring every
line segment joining two level-crossings or endpoints on consecutive levels to have the same
x-slope Me.

Definition 3.2. The x-slope Me of the drawing of e = (s, t) ∈ E is defined as

Me = 1
yt − ys

· (Xt −Xs) ,

which is a linear combination of Xt and Xs.

Let de,1, . . . , de,r(e) be the level-crossings of edge e = (s, t) ∈ E, where r(e) = lvl(t) −
lvl(s)− 1. The following equation constitutes the constraints for a straight-line drawing of
e.

StraightEdge(e) =
{
Xde,1 −Xs

yde,1 − ys
= Me

}

∪

r(e)−1⋃
j=1

{
Xde,j+1 −Xde,j

yde,j+1 − yde,j
= Me

}
∪
{
Xt −Xde,r(e)

yt − yde,r(e)

= Me

}
(3.2)

Thus the set of constraints for a straight-line drawing of G are expressed by

StraightLineDrawing(E) =
⋃
e∈E

StraightEdge(e) . (3.3)

If we assume that levels are spaced evenly with distance one, as level graphs were defined
in Section 2.2, the constraints are simplified to

StraightEdge(e) =
{
Xde,1 −Xs = Me

}
∪

r(e)−1⋃
j=1

{
Xde,j+1 −Xde,j = Me

}
∪
{
Xt −Xde,r(e) = Me

}
.

(3.4)

The linear constraint program LCP-FE-SL incorporates both the embedding (FE for fixed
embedding) and straight-line edge drawings (SL) for drawing level graphs G = (V,E) with
fixed embedding ≺.

LCP-FE-SL = (Var-FE-SL,Con-FE-SL)
= ({Xu | u ∈ V }, StraightLineDrawing(E) ∪ Embedding(≺))

(3.5)

It is the foundation for the upcoming constrained drawing problems and a linear constraint
program, described in Section 4.5, for Straight-Line Aligned Level Drawing. As
the running time Kamarkar’s algorithm contains a factor L2, where L is the number of
bits in the input, we analyze here how many bits are required to represent LCP-FE-SL.
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The ”right side” of every linear constraint in LCP-FE-SL is zero, i.e. the vector b from the
matrix formulation Ax ≤ b of linear programs is the zero-vector. Its representation requires
a constant number of bits. Define l as the number of level-crossings. The number of variables
is l+ |V |, so identifying one variable requires O(log(l+ |V |)) bits. The representation of the
constraints Embedding(≺) (Equation 3.1) requires O((l + |E|) log(l + |V |)) bits as every
such constraint uses two variables with coefficients from {1,−1}.

We assume levels are spaced evenly with distance one. The representation of the con-
straints StraightEdge(e) (Equation 3.4) requires O((l + |E|) log |V | log k) bits. In every
constraint from StraightEdge(e) the term Me involves two variables, each with coeffi-
cient 1

yt−ys or −1
yt−ys . There are 2

(k
2
)
such values, i.e. we require O(log k) bits to represent

them. The coefficients of the other two variables are 1 or −1.

Lemma 3.3. LCP-FE-SL can be represented using O((l + |E|) log(l + |V |) log k) bits.

3.2 Partial Drawings
Partial drawings have been of particular interest to graph drawing researchers. These
typically consist of a fixed geometric drawing or combinatorial embedding of a
subgraph H ⊂ G or subset V ′ ⊂ V that shall be extended to a planar drawing of the
supergraph G.

Definition 3.4 (Partially Embedded Planarity). Given a planar graph G, a sub-
graph H of G and a combinatorial embedding H of H, Partially Embedded Planarity
is the problem of deciding if there is a combinatorial embedding G of G such that G restricted
to the vertices and edges of H yields H .

Note that Partially Embedded Planarity does not constrain edges to be straight-line
segments. A linear-time algorithm for Partially Embedded Planarity was proposed
by [ADF+10].

Definition 3.5 (Partial Drawing Extensibility). Given a planar graph G = (V,E),
a subset V ′ ⊂ V and fixed coordinates ψ(v′) ∈ R2 for v′ ∈ V ′, Partial Drawing
Extensibility is the problem of deciding if there are coordinates for the remaining
vertices V \ V ′ so that the resulting straight-line drawing is planar.

It is NP-complete as proven by [Pat06]. Note that in Partial Drawing Extensibility
the combinatorial embedding of G is not fixed, only that of G[V ].

Definition 3.6 (Fixed Embedding Partial Drawing Extensibility). Given a planar
graph G = (V,E) with fixed combinatorial embedding, a subset V ′ ⊂ V , fixed coordinates
ψ(V ′), Fixed Embedding Partial Drawing Extensibility is the problem of deciding
whether there are coordinates for the vertices V \ V ′ so that the resulting straight-line
drawing is planar and is a drawing of the given combinatorial embedding.

The complexity of Fixed Embedding Partial Drawing Extensibility (FEPDE) in
general planar graphs is unknown at this time. For level graphs, it is straight-forward
to modify LCP-FE-SL to solve Fixed Embedding Partial Drawing Extensibility.
Let ψ : V ′ → R be the mapping from vertices of V ′ to their fixed x-coordinates. It can be
achieved by replacing all occurrences of the variable Xv′ by ψ(v′) for all v′ ∈ V ′. For the
sake of consistency, we also note the according linear constraints, which could be added,
instead of replacing the variables by constants.

FEPDE(V, V ′, ψ) = {Xv′ = ψ(v′) | v′ ∈ V ′} (3.6)
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3.3 Constraints on x-Slopes
In this section we discuss problems that admit linear constraints by constraining the x-slopes
of edge drawings.

3.3.1 Turn Directions

Consider two incident edges e1 = (s, t) ∈ E and e2 = {t, u} ∈ E with lvl(s) < lvl(t),
whereas whether lvl(t) < lvl(u) or lvl(t) > lvl(u) is undetermined. Just for this section,
orient e1 from s to t and e2 from t to u. The turn direction at the shared vertex t is left if
the drawing of e2 extends into the left halfplane of the drawing of e1, and the turn direction
is right if the drawing extends into the right half plane and straight if they are collinear.

The constraint for a right turn is constituted by the following equation.

RightTurn(e1 = (s, t), e2 = {t, u}) =
{
Me2 > Me1 , if lvl(u) > lvl(t)
Me1 < Me2 , if lvl(u) < lvl(t)

(3.7)

The case distinction is due to the fact that in the definition of Me2 = Xu −Xt

yu − yt
we

assume lvl(t) < lvl(u), i.e. orient the edge {t, u} as (t, u).

For a left turn we only need to swap the conditions.

LeftTurn(e1 = (s, t), e2 = (t, u)) =
{
Me2 < Me1 , if lvl(u) > lvl(t)
Me1 > Me2 , if lvl(u) < lvl(t)

(3.8)

The constraint for a straight turn is just enforcing collinearity.

StraightTurn(e1, e2) = {Me2 = Me1} (3.9)

Note that if lvl(u) < lvl(t), a straight turn would break the combinatorial embedding ≺.

3.3.2 Convex Faces

In this section we discuss the following problem. Given a cycle C = (v0, . . . , v|C|−1) of G,
is there a drawing of G so that C is drawn as a convex polygon. A polygon is convex,
if and only if, when traversing its boundary in counter-clockwise order, it turns left at
every polygon-vertex. Assume (v0, . . . , v|C|−1) is the counter-clockwise order of the vertices
around the cycle. This is well-defined in level graphs with fixed embedding. The constraints
for a convex drawing of C are defined by the following equation.

ConvexCycle(C) =
|C|−1⋃
i=0

LeftTurn(vi mod |C|, vi+1 mod |C|, vi+2 mod |C|) (3.10)

3.3.3 Fixed Angles Between Edges and Horizontal Lines

In this section we show how to prescribe the angle between a straight-line drawing Γe
of e = (s, t) ∈ E and the horizontal line through s. Let α be the angle to prescribe. From
the unit circle we know that Xt −Xs = cos(α) and yt − ys = sin(α). Thus the constraint
for fixing the angle between Γ(e) and the horizontal line through s is given by the following
equation

FixedAngle(e = (s, t), α) = {Me = cot(α)} . (3.11)

Even though cot(α) is not linear in α, it is a precomputable constant.
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4. Aligned Level Drawing

In this chapter we mostly discuss the Straight-Line Aligned Level Drawing problem.
First we give an example of a plane proper level graph and pseudoline arrangement which
does not admit a straight-line aligned level drawing, see Section 4.1. Then in Section 4.2
we show that for ”small” pseudoline arrangements and any plane proper level graph, a
straight-line aligned level drawing always exists. Here small means up to two pseudolines
or parallel pseudolines. Section 4.3 shows that any aligned level graph has an aligned
level drawing with ζ(e) bends on every edge e, assuming the necessary condition that the
combined arrangement of levels and pseudolines is stretchable. Subsequently we consider
straight-line aligned level drawings from the perspective of single edges in Section 4.4.
In particular we introduce the notion of intersection preservation for single edges, which
encapsulates the following property. A drawing (Γ, A) of (G,A) is a straight-line aligned
level drawing if and only if every edge is straight, drawn intersection-preserving and Γ is a
drawing of the combinatorial embedding ≺ of G. This yields a polynomial time algorithm
to decide whether (G,A) has a straight-line aligned level drawing, see Theorem 4.17.
It is based on linear constraint programming and builds upon results from the previous
chapter. Additionally we describe an efficient representation for all straight-line intersection-
preserving drawings of a single edge. This is used in Chapter 5 to build a faster algorithm
(compared to the linear constraint program) to decide Straight-Line Aligned Level
Drawing for graphs with two levels.

4.1 Pappus Configuration
In this section, we show an example of a proper aligned level graph without a straight-
line aligned level drawing. It is based on the non-Pappus pseudoline arrangement (see
Figure 4.1), which is a non-stretchable arrangement of nine pseudolines. Its name is due
to Pappus of Alexandria as its non-stretchability is due to the non-Pappus arrangement
violating Pappus’ hexagon theorem, as observed by Levi [Lev26].

Theorem 4.1 (Pappus’ Hexagon Theorem). Let A,B,C and a, b, c be two triples of
collinear points. Additionally, let X be the intersection of Ab and Ba, let Y be the
intersection of Ac and Ca and finally let Z be the intersection of Cb and Bc. Then X,Y, Z
are collinear.

If the pseudolines were stretched, the pseudoline connecting X and Z but avoiding Y
violates Pappus’ hexagon theorem and therefore this arrangement is not stretchable.
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4. Aligned Level Drawing

A B C

ZX

a b c

Y

Figure 4.1: Non-Pappus pseudoline arrangement.

A B C

cba
(a)

A B C

cba
(b)

Figure 4.2: Pappus configuration. In the stretched version (right), the single edge (black)
must run through the crossing of Ac and Ca (red) as opposed to the pseudoline
version (left), where the pseudolines Ac and Ca are drawn as non-straight
curves.

Based on the non-Pappus arrangement we construct a proper aligned level graph, called
Pappus configuration, with four levels and six pseudolines which does not have a straight-line
aligned level drawing. Figure 4.2(a) shows that graph and pseudoline arrangement. The
pseudoline arrangement consists of the pseudolines Ab,Ac,Ba,Bc, Ca,Cb with

• A,B,C aligned by level 4

• a, b, c aligned by level 1

• Ab,Ba intersecting on level 3

• Bc,Cb intersecting on level 2

• and Ac,Ca intersecting between levels 2 and 3.

The graph consists of two vertices u, v and a single edge uv with v on the intersection
of Ab,Ba and u on the intersection of Bc,Cb. The edge uv runs below the intersection
of Ac,Ca. By Pappus’ hexagon theorem the edge uv must run through Ac,Ca in a stretching
of the combined arrangement of pseudolines and levels, see Figure 4.2(b). Observe that the
combined arrangement of levels and pseudolines itself is stretchable. Another interesting
observation is that in the Pappus configuration, two levels play the role of pseudolines, by
aligning triples of points.

4.2 Small Pseudoline Arrangements and Proper Level Graphs
In this section we consider straight-line aligned level drawings in proper level graphs (i.e.
edges with span one) and ”small pseudoline arrangements”. By small we mean either
parallel pseudolines or arrangements of two pseudolines. We show that in these cases the
pseudoline arrangements always admit a straight-line aligned level drawing due to the
nature of proper level graphs, independent of the graph.

Definition 4.2. A pseudoline arrangement A with respect to a plane level graph is parallel,
if none of the pseudolines intersect.
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4.2. Small Pseudoline Arrangements and Proper Level Graphs

Lemma 4.3 (Parallel Pseudolines). Let G = (V,E, lvl,≺) be a plane proper level graph and
let A = {R1, . . . ,Rz} be a parallel pseudoline arrangement with respect to G. Then (G,A)
has a straight-line aligned level drawing.

Proof. Order the pseudolines R1, . . . ,Rz from left to right (x-coordinate), i.e. let R1 be the
left-most andRz be the right-most. This is possible since they are parallel and we can use the
smallest x-value of a curve as the sorting criterion. As R1, . . . ,Rz do not overlap on vertices
it is possible to draw each vertex aligned by Ri on the vertical line with x-coordinate i
without conflict, i.e. draw each Ri vertically as the line Ri = {(x, y) ∈ R | x = i}.

Place the free vertices between the vertical grid lines at equidistant x-coordinates with
respect to ≺. In fact any positioning of the free vertices that fulfills ≺ suffices. Thus the
resulting straight-line drawing is level-planar.

The order of vertices traversed by each Ri is preserved trivially due to y-monotonicity.
Edges intersect pseudolines only between their endpoints’ levels. The order in which
edges intersect pseudolines is solely determined by ≺. Therefore the resulting straight-line
drawing is isomorphic to (G,A).

Corollary 4.4 (One Pseudoline). Any one pseudoline with respect to a plane proper level
graph admits a straight-line aligned level drawing.

This corollary follows directly from Lemma 4.3. It is a version of Theorem 4.9 (see the next
section) for plane proper level graphs. In particular, this corollary implies that given a
set S ⊂ V of vertices that are supposed to be collinear, this is possible if and only if there
is a pseudoline through the vertices of S with respect to the plane proper level graph G.

The following theorem shows that any arrangement of two pseudolines with respect to a
plane proper level graph always admits a straight-line aligned level drawing.

Theorem 4.5 (Two Pseudolines). Let G = (V,E, lvl,≺) be a plane proper level graph and
let A = {R1,R2} be a pseudoline arrangement of two pseudolines, with respect to G.

Proof. We distinguish three cases: whether the pseudolines intersect and if they do, whether
the intersection lies on one level or between two consecutive levels.

Case 1. R1,R2 are parallel. See Lemma 4.3.

For the other two cases, partition each pseudoline into two halves, split at their intersection.
Denote the upper ray of R1 by α, the lower ray by γ, the upper ray of R2 by β and the
lower ray by δ (see Figure 4.3(a)). The cell complex of {R1,R2} consists of four cells,
which we call quadrants. They are named North (bounded by β, α), West (β, γ), South
(γ, δ) and East (δ, α) (see Figure 4.3(c)).

Case 2. R1 ∩R2 lies on a level, say level i.

Draw the stretching R1 of R1 as a straight line with slope 1 and R2, the stretching of R2
as a straight line with slope −1, such that their intersection lies on level i. Place every
vertex v aligned by Ri at the intersection of Ri and lvl(v).

It is easy to see that the straight-line drawing, obtained by greedily or equidistantly
placing every free vertex inside its quadrant and with respect to ≺, is an aligned drawing
of (G, {R1,R2}). The order ≺ ensures that R1, R2 intersect edges in the same order
as R1,R2. Since R1 ∩ R2 lies on a level and G is proper, it is already clear from the
levels whether an edge intersects R1/R1 on α or γ and is independent of the pseudolines.
Therefore the resulting drawing is topologically equivalent to (G, {R1,R2}).
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4. Aligned Level Drawing

α
β

γ δ

C1C2

(a) Naming conven-
tion of the rays
of R1, R2.

(b) All configurations of e, R1, R2 in Case 3.1 of
the proof of Theorem 4.5.

North

West

South

East

(c) Quadrants.

Figure 4.3

Case 3. R1 ∩R2 lies between two levels i, i+ 1.

Draw the stretching R1 of R1 as a straight line with slope 1 and R2, the stretching of R2 as
a straight line with slope −1, such that their intersection is half-way between levels i, i+ 1.
Place every vertex v aligned by Ri at the intersection of Ri and lvl(v).

The vertices on levels below i and above i + 1 can be placed as in Case 2, i.e. greedily
with respect to ≺ and in their respective quadrants. This is done only after the vertices of
levels i, i+ 1 are placed. Notice that edges between levels (i− 1, i) and (i+ 1, i+ 2) are
drawn topologically equivalent to (G, {R1,R2}), if and only if their endpoints are in their
respective quadrants and ≺ is respected.

The vertices on levels i, i+ 1 require greater care, since, as opposed to Case 2, an arbitrary
quadrant- and embedding-respecting positioning may let an edge intersect the wrong ray
of a stretched pseudoline. Since we consider two consecutive levels, the edges we consider,
possess a well-defined left-to-right ordering, induced by their endpoint ranks in ≺i,≺i+1.
Denote this ordering by 〈e1 ≺E e2 ≺E . . . 〉. Additionally denote the set of edges between
levels i, i+ 1 by Ei = {e = uv | lvl(u) = i ∧ lvl(v) = i+ 1}.

Let G′ be the infinite track-plane extension of G, recall Definition 2.7. G′ partitions the
space between levels i, i+1 into a sequence of quadrangular and triangular faces, ordered by
adjacency. The pseudolines traverse this sequence, starting and ending somewhere, either
in a strict left-to-right or strict right-to-left fashion. We distinguish two cases: whether the
pseudoline intersection R1 ∩R2 lies on an edge or in a face.

Case 3.1. R1∩R2 lies on an edge e = (u, v). Draw e with u, v in their respective quadrants.
Since e meets both pseudolines at their intersection, e has to intersect both pseudolines.

If u is in the South quadrant then v is in the North quadrant. In this case any edge to the
left of e can only intersect β and γ, any edge to the right only α and δ.

If u is in the West quadrant then v is in the East quadrant. In this case any edge to the
left of e can only intersect α and β, any edge to the right only γ and δ.

If u is in the East quadrant then v is in the West quadrant. In this case any edge to the
left of e can only intersect γ and δ, any edge to the right only α and β. See Figure 4.3(b)
for all three configurations of e,R1,R2.

Let e2 ∈ {e′ ∈ Ei | e′ ≺E e∨ e′ = e} be an edge that is either e or to the left of e and let e1
be the edge directly left of e2, if it exists. By the planarity of the embedding, e1 can only
intersect the same rays as e2 or fewer. If e2 intersects a ray and e1 does not, any edge to
the left of e1 cannot intersect that ray either. There are at most two such transitions. It
suffices to draw the edges to the left of e that intersect the same rays ”close together”.

Drawing the edges to the right of e is analogous.

Case 3.2. R1 ∩R2 lies in a face f of G′.
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4.3. Aligned Level Drawings with Bends

Figure 4.4: All configurations of el,R1,R2 in Case 3.2 of the proof of Theorem 4.5.

If it is unbounded on both sides, there is no edge between levels i and i+ 1 and we are
done.

Then, without loss of generality assume the face is bounded by an edge el = (ul, vl) to the
left and an edge er = (ur, vr) to the right. Figure 4.4 shows all six possible configurations
of el,R1,R2. As in Case 3.1 all edges to the left of el can only intersect the same or fewer
rays as el, as evidenced by Figure 4.4. Again there are at most two transitions and drawing
edges that intersect the same rays close together again suffices. We first draw el and er. If
they are incident, their shared vertex is placed first. On a ”clean canvas” it is obviously
possible to let the drawings of el and er intersect the same rays as el and er do. Then
the edges to the left of el are drawn in decreasing order in ≺E , in such a way that edges
that intersect the same rays are grouped closely together. Subsequently the edges to the
right of er are drawn analogously. Finally the vertices of the other levels and vertices on
levels i, i+ 1 without edges in Ei are drawn.

In Case 2 of the proof it suffices to place vertices in the right quadrant to realize the implied
intersection sequences because the danger of intersecting the wrong ray of a pseudoline is
eliminated. This can in fact be generalized to arbitrary pseudoline arrangements whose
pseudoline intersections lie on levels. Then vertices must only be placed in their cell of the
arrangement.

Theorem 4.6. Let G = (V,E, lvl,≺) be a plane proper level graph and let A be a stretchable
pseudoline arrangement with respect to G, such that each pseudoline intersection lies on a
level of G. Furthermore, let A be a stretching of A. Then there is a straight-line aligned
drawing of (G,A).

The proof is similar to Case 2 in the proof of Theorem 4.5. It boils down to placing each
vertex v in the cell of A that corresponds to the cell of A that contains v with respect to ≺.
The cell assignment ensures each stretching of a pseudoline intersects the same edges as
the pseudoline. The order ≺ ensures that the order in which the edges are intersected is
the same as on the pseudoline. Since G is proper and each pseudoline intersection lies
on a level, it is predetermined which ray or segment between pseudoline intersections is
intersected by an edge.

4.3 Aligned Level Drawings with Bends
Recall that ζ(e) is the number of pseudolines intersecting a non-aligned edge, or zero for
an aligned edge. In this section, we prove the following theorem.

Theorem 4.7. Let G = (V,E, lvl,≺) be a plane level graph, let A be a pseudoline ar-
rangement with respect to G such that A + lvl(V ) is stretchable and let A + lvl(V ) be a
stretching of A+ lvl(V ). There is an aligned drawing of (G,A) such that every edge e is
drawn with ζ(e) bends.

Proof. Augment (G,A) according to the following steps.
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4. Aligned Level Drawing

(a) Input. (b) Step 1. Sub-
dividing crossed edges.

(c) Step 2. Seal-
ing off unbounded cells.

(d) Step 3. Subdividing
lines of A at intersections.

(e) Draw-
ing each cell separately.

(f) Re-
sulting Polyline Drawing.

Figure 4.5: Construction from Theorem 4.7. Note that levels are omitted in the drawing
to reduce visual complexity.

Step 1: Substitute each intersection between a line in A and the interior of an edge with
a dummy vertex

Step 2: Close unbounded cells of A with vertical/horizontal lines that lie beyond G. See
the red vertical/horizontal lines in Figure 4.5(c). In the following, we ignore the new
unbounded cells of A.

Step 3: Place a dummy vertex at every line-intersection in A.

Step 4: Add a dummy level for each of the dummy vertices. If a dummy vertex has a fixed y-
coordinate (due to lying on a line-intersection) and other vertices share this y-coordinate,
use the same level.

Step 5: Add edges on the boundaries of the cells of A such that for every cell the vertices
on its boundary induce a cycle C in the order the vertices appear on the cell boundary.

For each cell, we want to draw the subgraph induced by it (interior and boundary) separately,
using Theorem 2.5 by Eades et al. [EFLN06]. Let c be a cell and let G[c] be the subgraph
induced by c. We must triangulate G[c] and make it st-plane. It already has a closed outer
facial cycle C and a straight-line drawing P of C. First G[c] is extended, using a source
and sink elimination technique from Di Battista and Tamassia(Lemma 4.1 in [DBT88]),
so that all sources and sinks lie on the top and bottom level. The elimination adds one
upward outgoing edge to a sink at any but the top level and one incoming edge to a source
at any but the bottom level. No vertices on C but the ones on the top level can be sinks
and none but the ones on the bottom level can be sources. Therefore the source- and
sink-elimination introduces no chords between vertices of C. This observation is important
for the feasibility of P in the sense of the drawing algorithm (confer Definition 2.4).

If the bottom level contains one source, then no further modification is necessary. If it
contains multiple sources, then the bottom level of G[c] is due to a horizontal line closing
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4.3. Aligned Level Drawings with Bends

the formerly unbounded c in Step 2. This means there are only two sources s1, s2. In this
case we insert a supersource s on a level below the bottom level and connect it to the two
sources. The augmentation modifies the outer facial cycle C and therefore we add another
vertex s to P and connect it to the two sources. Observe that this modification does not
introduce a chord between vertices on C and the modified P is convex if and only if the
original P was convex. This is important for the feasibility of P in the sense of the drawing
algorithm (confer Definition 2.4). Later, when a drawing is obtained, we remove s and
include the straight line between s1 and s2 in the drawing instead. Multiple sinks on the
top level are treated similarly. Therefore we can assume G[c] is st-plane.

To triangulate G[c] we add a vertex into each face and connect it to every vertex incident to
that face, as also done by Eades et al. [EFLN06]. Observe that the triangulation step does
not introduce chords between vertices on C. Again, this is important for the feasibility
of P in the sense of the drawing algorithm (confer Definition 2.4), which brings us to the
next point.

P is convex because its interior is the intersection of halfplanes induced by straight lines.
Due to the observations that neither the source- and sink-eliminations nor the triangulation
introduce chords between vertices of C, we only have the chords that were already present
in G[c]. For any chord uv of C, there is a vertex due to a line-intersection of A between u
and v in either of the two paths connecting u and v on C. That is because the subgraph
induced by the vertices of G that are aligned by a single line in A is a linear forest (set
of independent paths). Every vertex due to a line-intersection is drawn as an apex in P .
Therefore P is feasible in the sense of Definition 2.4.

Using Theorem 2.5 we obtain a drawing Γc of G[c]. Combining the drawings of the cells
yields a polyline drawing of (G,A) with i bends for every i-crossed edge, where each bend
lies on a line of A. Aligned edges are drawn with zero bends.

Corollary 4.8. Let G = (V,E, lvl,≺) be a plane level graph and let R be a pseudoline
with respect to G. There is a polyline drawing of (G,R) where each edge crossed by R is
bent at most once and free, and aligned edges are drawn without bends.

Proof. Draw R as a vertical line R. Then apply Theorem 4.7.

Da Lozzo et al. [DLDF+16] show a stronger result for general graphs and zero bends.

Theorem 4.9 (Da Lozzo et al. [DLDF+16]). A plane graph G = (V,E) has a planar
straight-line drawing with S ⊂ V drawn collinear if and only if there is a pseudoline with
respect to G that passes through S.

The proof of Theorem 4.7 consists of the first part of their proof, adapted to level graphs.
They get rid of the bends, using a result of Pach and Tóth [PT04]. The latter finds an
equivalent straight-line drawing with the same y-coordinates for any plane y-monotone
drawing. Note that Da Lozzo et al. [DLDF+16] draw the pseudoline horizontally as opposed
to vertically in our case. For level graphs the result of Pach and Tóth is not applicable
as in order to keep vertices on vertical pseudolines we would need fixed x-coordinates in
addition to levels’ fixed y-coordinates.

Mchedlidze et al. [MRR17] give another proof for Theorem 4.9 that is based on triangulation,
decomposition along chords and separating triangles as well as contraction of edges with a
special property. Unfortunately, their result cannot be adapted in a straight-forward way
because it is far from obvious how to contract edges in level graphs.
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4. Aligned Level Drawing
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Figure 4.6: If cell ci lies in the right halfplane of Li, then trajectoryA(e) crosses Li to the
right of pi and to the left of qi, as in (a). Conversely for ci in the left halfplane
of Li as in (b)

4.4 Single Edge Intersection Preservation
Let G = (V,E, lvl,≺) be a plane level graph, let A be a pseudoline arrangement with
respect to G such that A + lvl(V ) is stretchable and let A + lvl(V ) be a stretching
of A+ lvl(V ). In this section we want to look at straight-line aligned level drawings from
the perspective of drawing G through the given stretching A, as opposed to drawing A
through G. Let e = uv ∈ E be a non-aligned edge. A straight-line drawing

Γ(e) =
{(

Xu

lvl(u)

)
+ λ

(
Xv −Xu

lvl(v)− lvl(u)

)
: λ ∈ [0, 1]

}

of e is represented by the x-coordinates Xu, Xv for u and v.

The order in which e crosses pseudosegments of A, pseudoline intersections of A and
levels of G induces a y-monotone curve trajectory(e) in the cell complex of A+ lvl(V ), see
the black, dotted curve in Figure 4.7. The curve trajectory(e) starts at level-segment(u),
ends at level-segment(v) and traverses cells of the cell complex of A + lvl(V ). The
crossed pseudosegments, pseudoline intersections and levels are boundaries of the visited
cells. Let trajectoryA(e) be the curve through A+ lvl(V ), corresponding to trajectory(e)
in A+ lvl(V ). We call a drawing Γ(e) through A intersection-preserving if and only if it
intersects or visits exactly the same line segments and line intersections of A as well as
levels as trajectoryA(e) and does so in the same order. From this definition the following
lemma follows immediately.

Lemma 4.10. A straight-line drawing Γ of G is an aligned level drawing (Γ, A) of (G,A)
if and only if the edge drawing of every non-aligned edge is intersection-preserving and
every aligned edge is drawn on the line corresponding to the pseudoline that aligns it.

We now introduce the notion of canal polygons, a tool to formulate intersection preservation
for single non-aligned edges as a visibility problem.

4.4.1 Canal Polygon

We distinguish two cases; whether trajectory(e) visits a pseudoline intersection or whether
it does not. For the first case we refer to the next paragraph Non-Simple Canal Polygons
and assume for this paragraph that trajectory(e) does not visit a pseudoline intersection.

Let c1, . . . , ch be the sequence of cells in cells(A+ lvl(V )) visited by trajectoryA(e). Fur-
thermore let s0, . . . , sh be the sequence of line segments and level-segments of vertices
and level-crossings, traversed by trajectoryA(e). Herein we have so = level-segment(u)
and sh = level-segment(v). The cell ci has si−1 and si on its boundary. Let Li be the
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4.4. Single Edge Intersection Preservation

p′0 = p′1

q′4 = q′5

p′7 q′7

q′1 = q′2
p′2

q′0

p′5 = p′6

p′3 = p′4 q′3

q′6

Figure 4.7: Line arrangement A in green, levels in dark blue. The dotted black curve
represents trajectoryA(e) and the interior of the canal polygon CP(e) is drawn
in light-blue. Its left boundary CPl(e) is drawin in red, its right boundary CPr(e)
in orange.

line or level, from which si stems. Recall that pseudolines (and therefore lines in A) are
by definition oriented upwards and we orient levels from left to right. Let si = (pi, qi),
where pi comes before qi in the orientation of Li. See Figure 4.6 for an illustration of this
scenario. If ci lies in the right halfplane of Li, then trajectoryA(e) crosses si with pi to its
left and qi to its right; conversely if ci lies in the left halfplane. Let p′i be pi if ci lies in the
right halfplane of Li and qi otherwise. Similarly let q′i be qi if ci lies in the right halfplane
and pi otherwise. Therefore trajectoryA(e) crosses si with p′i to its left.

We define the canal polygon CP(e) of e as the polygon with the vertices p′0, . . . , p′h, q′h, . . . q′0, p′0.
It has a left boundary CPl(e) = p′0, . . . p

′
h and a separate right boundary CPr(e) = q′0, . . . , q

′
h.

Furthermore it is horizontally bounded by level-segment(u) and level-segment(v). Fig-
ure 4.7 shows a canal polygon, with the left boundary highlighted in red and the right
boundary in orange. Note that it lies inside the chain of cells induced by the pseudolines
(green). Its left boundary has one edge per cell ci, joining the two ”left” points p′i−1 and p′i
on the entry segment si−1 and exit segment si of trajectoryA(e) in cell ci.

Intuitively, the canal polygon is the canal through which e has to be drawn. It lies in
the geometric figure obtained by chaining c1, . . . , ch together at their shared boundary
segments. Since every cell ci is convex and trajectory(e) does not visit a pseudoline
intersection, the canal polygon CP(e) is non-self-intersecting, i.e. it is a simple polygon.
The x-coordinates Xu, Xv of u, v in an intersection-preserving drawing Γ(e) of e must be
chosen in such a way, that the line segment between (Xu, lvl(u)) and (Xv, lvl(v)) intersects
neither the left nor right boundary of CP(e). We formulate this in the following lemma.

Lemma 4.11. Let e = uv ∈ E with a simple canal polygon CP(e). A straight-line draw-
ing Γ(e) of e is intersection-preserving if and only if its interior does not intersect the left or
right boundary of CP(e) and the endpoints of Γ(e) are on level-segment(u), level-segment(v).

This property is related to visibility in polygons (recall Section 2.5). The endpoints of
every intersection-preserving drawing are visible from another in CP(e). Conversely a
line segment joining a point on level-segment(u) and a point on level-segment(v) that are
visible from another in CP(e) is an intersection-preserving drawing if and only if it does
not intersect CPl(e) or CPr(e) in a vertex of CP(e) \ {level-segment(u), level-segment(v)}.
Let p be a point on level-segment(u) and let qa be the lefmost point, and let qb be the
rightmost point, on level-segment(v), visible from p. Then the closed interval [qa, qb] is
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au

bu bv

av

S

(a) Non-simple canal polygon with one cutvertex.
The straight-line intersection-preserving draw-
ings of e are the line segments through the
cutvertex with endpoints on level-segment(u) =
(au, bu) and level-segment(v) = (av, bv), which
do not intersect CPl(e), CPr(e).

bu

au

av

bv

S1

S2

(b) Non-simple canal polygon with two cutvertices.
The black dashed line segment passes through
S1 and S2. It is the only candidate for a straight-
line intersection-preserving drawing. Since it
does not end on level-segment(u) = (au, bu) and
intersects CPr(e) there is no straight-line inter-
section preserving drawing of e.

Figure 4.8: Non-simple canal polygons. Both rotated by 90 degrees clockwise.

visible from p and the open interval (qa, qb) is the set of endpoints of intersection-preserving
straight-line drawings of e in which vertex u is drawn as p.

Non-Simple Canal Polygons

We now assume that trajectory(e) visits a pseudoline intersection. If we define a canal
polygon analogously to the previous paragraph, its left and right boundary meet at the
corresponding line intersection of A + lvl(V ), making the polygon self-intersecting, i.e.
non-simple. We distinguish whether trajectory(e) visits one pseudoline intersection or two
and more. See Figure 4.8 for the distinction of these two cases.

If trajectoryA(e) visits exactly one line intersection S ofA (see Figure 4.8(a)) the intersection-
preserving straight-line drawings of e are exactly those line segments pupv through S with pu
on level-segment(u), pv on level-segment(v) and the two pieces of pupv \{S} do not intersect
the boundary of the canal polygon. In Figure 4.8(a) we see the straight-line intersection-
preserving drawings. In particular the edge drawing at bu is the one with the leftmost
visible point on level-segment(v) and the edge drawing at bv is the one with the leftmost
visible point on level-segment(u).

If trajectoryA(e) visits two or more line intersections S1, S2, . . . , Sj (see Figure 4.8(b))
there is at most one intersection-preserving straight-line drawing since S1 and S2 must be
aligned by it. If S1, S2, . . . are not collinear, there is no straight-line intersection-preserving
drawing. Otherwise the one remaining candidate pupv with pu on level-segment(u), pv
on level-segment(v), which passes through every Si is a straight-line intersection-preserving
drawing if and only if every piece of pupv \ ({Si|i = 1, . . . , j} ∪ {pu, pv}) does not intersect
the boundary of the canal polygon.

We conclude this section with the following lemma on the size of canal polygons. Recall
that ζ(e) is the number of pseudolines, which intersect edge e or 0 if e is an aligned edge,
and recall that span(e) = lvl(v) − lvl(u), for e = uv. Furthermore recall that k is the
number of levels and z is the number of pseudolines in A.

Lemma 4.12. |CP(e)| ∈ O(span(e) + ζ(e)) ⊂ O(k + z).

Proof. Every pseudosegment and level-segment crossed by trajectory(e) contributes at
most two vertices to CP(e).
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α1− α y0y1

1− ααx0 x1

Figure 4.9: Illustration of the claim in the case l0 and l1 intersect in the proof of
Lemma 4.14. lα in red, l0, l1 in black. For any α ∈ [0, 1], the line segment lα
associated with the convex combination (1 − α)p0 + αp1 runs through the
intersection of l0 and l1.

4.4.2 Edge Drawing Polygon

In this section we describe a polygon-based, explicit representation for all straight-line
intersection-preserving drawings of e = uv ∈ E, namely the edge drawing polygon EDP(e).
We use it in Chapter 5 to efficiently decide Straight-Line Aligned Level Drawing in
graphs with two levels.

Define Q(e) as the geometric figure Q(e) := {(Xu, Xv)} ⊂ R2 such that Xu, Xv are
the x-coordinates of the respective two endpoints on level-segment(u), level-segment(v) of
a straight-line intersection-preserving drawing Γ(e) of e. If CP(e) is simple it follows from
the definition of intersection-preserving drawings that Q(e) is an open set. If CP(e) is
non-simple, Q(e) is either a line segment, single point or empty. As the representation and
computation of intersection-preserving drawings in non-simple canal polygons is easy, we
will focus on simple canal polygons.

So assume for the remainder of this section that CP(e) is simple. We define the edge
drawing polygon EDP(e) as the boundary of Q(e). To justify the name edge drawing
polygon we should argue that it is in fact a polygon; even a convex polygon. We do so
by establishing a connection to weak edge visibility (recall Section 2.5). First we prove
that Q(e) is convex and use the convexity to subsequently argue that EDP(e) is a polygon.

Lemma 4.13. If CP(e) is simple then Q(e) is convex.

Proof. Let p0 = (x0, y0), p1 = (x1, y1) be two points in the interior of Q(e). We show that
any convex combination (1− α)p0 + αp1 of p0 and p1 with α ∈ [0, 1] lies in Q(e).

Let

lα :=
{(

(1− α)x0 + αx1
lvl(u)

)
+ λ

(
(1− α)(y0 − x0) + α(y1 − x1)

lvl(v)− lvl(u)

)
| λ ∈ [0, 1]

}

be the line segment (potential edge drawing) associated with the convex combination (1−
α)p0 + αp1, e.g. l0 is the drawing associated with p0.

Assume x0 < x1 without loss of generality. If y0 < y1 then for α ∈ [0, 1] we have that lα
lies between x0 and x1 on level-segment(u) and between y0 and y1 on level-segment(v).

Therefore
(

(1− α)x0 + αx1
lvl(u)

)
and

(
(1− α)y0 + αy1

lvl(v)

)
are visible from another.

If y1 < y0 the line segments l0 and l1 intersect in a point l0 ∩ l1.

Claim. For any fixed α ∈ [0, 1] the line segment lα intersects l0 and l1 in l0 ∩ l1, see
Figure 4.9. From the claim it follows immediately that the endpoints of any lα are visible
from another. We now prove the claim.
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Let λ0, λ1 be the parameters of l0, l1 at their respective intersection with lα and let λα be the
parameter of lα at the intersection of l0 and lα. For any β ∈ [0, 1], the y-coordinate lvl(u) +
λ(lvl(v)− lvl(u)) of lβ is independent of β and therefore λ0 = λ1 = λα. From

x0 + λ0(y0 − x0) = (1− α)x0 + αx1 + λα[(1− α)(y0 − x0) + α(y1 − x1)]

and λα = λ0 we conclude
λ0 = x0 − x1

y1 − x1 − (y0 − x0) . (4.1)

Substitute λ1 = λ0 by Equation 4.1, in the equation for the x-coordinate of l1:

x1 + λ1(y1 − x1) = x1 + x0 − x1
y1 − x1 − (y0 − x0)(y1 − x1) = x0y1 − x1y0

y1 − x1 − (y0 − x0) .

Similarly substitute λ0 by Equation 4.1 in the equation for the x-coordinate of l0:

x0 + λ0(y0 − x0) = x0 + x0 − x1
y1 − x1 − (y0 − x0)(y0 − x0) = x0y1 − x1y0

y1 − x1 − (y0 − x0) .

From the equality of the previous two equations, we conclude that the x-coordinate of
the intersection of l0 and l1 as well as the x-coordinate of the intersection of l0 and lα are
equal.

Now we argue that EDP(e) is a polygon by explicitly stating its vertices and edges. First
we recall the correspondence between points in Q(e) and line segments joining points
on level-segment(u) and level-segment(v), then we recall weak edge visibility and finally
establish the connection.

Let (Xu, Xv) be a point on the boundary of Q(e). It corresponds to a straight line segment

l(Xu, Xv) :=
{(

Xu

lvl(u)

)
+ λ

(
Xv −Xu

lvl(v)− lvl(u)

)
| λ ∈ [0, 1]

}

through CP(e) with two endpoints (Xu, lvl(u))T and (Xv, lvl(v))T which are visible from
another in CP(e). Since (Xu, Xv) lies on the boundary of Q(e), the line segment l(Xu, Xv)
intersects the left or right boundary of CP(e) in a vertex.

Now we recall the weak edge visibility algorithm of O’Rourke [O’R87] as described in
Section 2.5 for left critical lines. Right critical lines are analogous. Let s be the polygon-edge
from which weak visibility is computed in polygon P , let W be a visibility window and
let H be the sweepline. Denote by L(x) the line segment connecting a point x with its
leftmost visible point on s, where x is a point on H in visibility window W . The point of
contact c[L(x)] is defined as the closest vertex on the left boundary of the visibility window.
W is partitioned into intervals such that the point of contact c[L(x)] does not change as x
varies over the interval. The points of contact on the left boundary form a convex chain. A
point x where c[L(x)] does change induces a left critical line Li = L(x). Observe that any
left critical line either intersects two consecutive vertices on the convex chain of contact
points (such as L3, L2, L1 in Figure 4.10) or x is the rightmost point in W that is visible
from s (such as L0 in Figure 4.10).

EDP(e) can be extracted from the critical lines in the last step of the algorithm, when
we compute weak edge visibility from the edge level-segment(u) in CP(e). In the last
sweepline advancement step of the algorithm, when H is at the y-coordinate lvl(v), the left
critical lines are those line segments that correspond to vertices on the left hull of EDP(e).
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L2 L1L3 L0

c[L3]

c[L2]

c[L1]

c[L0]

L0 L1 L2 L3

H = level-segment(v)

level-segment(u)

Figure 4.10: Left critical lines when computing weak edge visibility from level-segment(u)
in CP(e).

Denote by Xu the x-coordinate of the line segment’s endpoint on level-segment(u) and
by Xv the x-coordinate of the endpoint on level-segment(v). Then (Xu, Xv) is a point on
the boundary of Q(e) because (Xu, lvl(u))T, (Xv, lvl(v))T are visible from another in CP(e)
via the critical line and the critical line intersects the left boundary of CP(e). Since the
critical line intersects the left boundary even in two points or connects to the rightmost
point on level-segment(v) visible from level-segment(u), the point (Xu, Xv) is a vertex
of EDP(e). In particular the latter case yields the topmost vertex of the left hull. The line
segments L(Xv), as Xv varies over an interval in which the point of contact c[L(Xv)] does
not change, correspond to points on the boundary of Q(e) which lie on an edge of EDP(e).
Similarly the right critical lines correspond to vertices on the right hull of EDP(e). This
yields the following lemma.

Lemma 4.14. If CP(e) is simple then EDP(e) is a convex polygon and its size is bounded
by the size of the canal polygon: |EDP(e)| ≤ |CP(e)|.

Computing Edge Drawing Polygons

We could immediately use the weak edge visibility algorithm to compute EDP(e) in
O(|CP(e)| log |CP(e)|) time. However, it turns out that with some modificationsO(|CP(e)|)
running time is possible. There are three parts of the algorithm, which contribute to the
logarithmic factor in the running time. The polygon-vertices are sorted by y-coordinate
and the use of balanced search trees to maintain the edges intersected by H as well as
the critical lines. In the following we discuss how to perform the run-time critical parts in
linear time for canal polygons, particularly for the left boundary. The right boundary is
treated similarly.

Pocket Elimination

The boundary of the canal polygon consists of two separate vertex chains, one left boundary,
one right boundary, connecting the left, respectively right ends of level-segment(u) and
level-segment(v). Let v1, v2, v3, . . . denote the vertex chain of the left boundary and denote
by y(vi) their y-coordinates, where y(v1) = lvl(u). A subchain vi−1, vi, vi+1, . . . , vj is called
an above-pocket if the chain exhibits a left turn at vi, if y(vi) > y(vi+1), y(vi−1) < y(vi)
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v2
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v′

v4

(a) An
above-pocket
v1, v2, v3, . . . , v6

v1

v4

v2

v5

v6

v7

v8

v3

v′

(b) A below-pocket
v2, . . . , v4, . . . , v6

(c) Nested
pockets

Figure 4.11: Pockets (gray) in a canal polygon. The horizontal line segments (red) eliminate
the shown pockets.

and vj is the first vertex after vi with y(vj) ≥ y(vi). See Figure 4.11(a) for an illustration.
For i = 2, there is an above-pocket v1, v2, v3, . . . , v6.

Similarly a below-pocket is a subchain vi, . . . , vj , . . . vo which exhibits a right turn at vj , a left
turn at vo and has y(vi) < y(vi+1), y(vj−1) < y(vj) > y(vj+1), y(vo−1) > y(vo) < y(vo+1)
and finally y(vi) ≤ y(vo) ≤ y(vi+1). See Figure 4.11(b) for a below-pocket with i = 2, j =
4, o = 6.

Pockets are the non-y-monotonic subchains of the left boundary. A below-pocket is not
visible from level-segment(v) and an above-pocket is not visible from level-segment(u).
Hence, we can eliminate pockets from the canal polygon without losing edge drawings.

An above-pocket vi−1, vi, vi+1, . . . , vj is eliminated by placing a dummy vertex v′ (white
square in Figure 4.11) on vj−1vj with y(v′) = y(vi). The new subchain of the left
boundary then consists of vi−1, vi, v

′, vj (red horizontal line), for example v1, v2, v
′, v6 in

Figure 4.11(a). The elimination of above-pockets obviously takes linear time in the subchain
size. A below-pocket vi, . . . , vj , . . . , vo is eliminated by placing a dummy vertex v′ on vivi+1
with y(v′) = y(vo). The new subchain of the left boundary then consists of vi, v′, vo. The
elimination of below-pockets takes linear time in the subchain size. As Figure 4.11(c)
indicates, pockets can be nested. In every nesting there is always an outmost pocket whose
elimination covers its inner pockets.

The newly obtained boundaries are sorted by y-coordinates. By merging the two sorted
boundary vertex lists we obtain a vertex list sorted by y-coordinates in linear time.

Horizontal Polygon Edges

Pocket-elimination introduces horizontal edges to the boundaries. The other source of
horizontal edges are levels as part of the boundary. Whereas the unmodified weak edge
visibility algorithm assumes all edges (but the starting edge) are not horizontal, we need to
incorporate them. Let v1, . . . vn be the vertices of the left boundary of the pocket-eliminated
canal polygon. In a sweepline traversal of the pocket-eliminated canal polygon, let vi be
the next vertex. The treatment of horizontal edges replaces the old Case 3 of window
updates due to vi, which dealt with splitting windows.

Furthermore, the pocket-elimination eliminates all visibility windows but the one, through
which e runs. Thus the distribution of critical lines between windows is unnecessary and
the then inactive windows can be deleted.

Case 3’. The outgoing edge vivi+1 of vi is horizontal and the left boundary has a left turn
at vi.

32



4.5. Linear Constraints for Intersection Preservation

This case corresponds to an eliminated above-pocket or a level on the left boundary.
Let vi be located between Rj and Rj+1 as well as between Lh+1 and Lh. Then R0, . . . , Rj
and . . . , Lh+2, Lh+1 are deleted. Finally L(vi) and R(vi) are inserted into L and R.

Case 3”. The incoming edge vi−1vi of vi is horizontal and the left boundary has a right
turn at vi−1.

This case corresponds to an eliminated below-pocket and is similar to Case 3’. Let vi
be located between Rj and Rj+1 as well as between Lh+1 and Lh. Then Rj+1, Rj+2, . . .
and Lh, . . . , L0 are deleted and L(vi) and R(vi) are inserted into L and R.

Maintaining Windows and Critical Lines

As already mentioned, we only need to maintain the single window W through which e
runs, i.e. no search-tree is necessary. Maintaining critical lines does not require a search
tree either and is instead done with a doubly-linked list each for L and R. The traversal
direction is, as always, for vertices on the left boundary; the right boundary is treated
similarly. Locating vi in Case 3’ is done by traversing L and R in left-to-right order on H.
The linear work to traverse the lists up to vi is mitigated by the fact that all critical lines
left of vi are deleted, i.e. are traversed at most once in a localization step for Case 3’.
Additionally the insertion of L(vi), R(vi) takes constant time, as they are leftmost on H.
Similarly in Case 3”, vi is located by traversing the lists in right-to-left order on H, again
yielding constant time per inserted and deleted critical line. The other cases of window
updates due to vi do not entail updates to L,R. Locating the leftmost visible point xa
on H for window updates due to advancing H is done by traversing L,R from left to right
on H. Again, the critical lines to the left of xa are deleted and thus only constant time is
spent per critical line.

In conclusion, we have shown how to reduce the runtime of all three components of the
weak edge visibility algorithm that introduce a logarithmic runtime factor down to linear
time. With these modifications we can compute EDP(e) in O(|CP(e)|) time.

Lemma 4.15. The edge drawing polygon EDP(e) of e can be computed in O(|CP(e)|)
time.

4.5 Linear Constraints for Intersection Preservation
In this section we present a set of linear constraints to obtain an intersection-preserving
drawing. We build upon LCP-FE-SL from Equation 3.5 in Section 3.1 as the foundation.

Recall for edge e = (s, t) ∈ E, the definition of the x-slope of its drawing Me = Xt −Xs

yt − ys
.

We can evaluate the drawing’s x-value for a fixed y-coordinate y ∈ [ys, yt] as
x = Me · (y − ys) +Xs.

Let e = (s, t) be a non-aligned edge with simple canal polygon. By Lemma 4.11 a drawing
of e induced by (Xs, Xt) is intersection-preserving, if and only if its interior intersects neither
the left nor right boundary of CP(e) and Xs ∈ level-segment(s), Xt ∈ level-segment(t).
Since a straight line can intersect a polygon-edge at most once, it suffices to only check at the
vertices of CP(e), whether XsXt lies in the interior. More precisely, for a vertex p = (xp, yp)
of the left boundary CPl(e), we verify whether XsXt lies to the right of xp at height yp.

The drawing of a non-aligned edge e with non-simple canal polygon must additionally
visit the line intersections of A that are visited by trajectoryA(e). We denote these line
intersections by CPχ(A)(e) and do not view them as part of the left or right bound-
ary CPl(e),CPr(e). For edges with simple canal polygon the set CPχ(A)(e) is empty. The
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(a) (b)

Figure 4.12: Left: linear constraints in a simple canal polygons. Red dashed constraints
are due to the left boundary, orange constraints due to the right boundary.
Right: linear constraints in a non-simple canal polygon (white disk).

following equation constitutes the constraints for an intersection-preserving drawing of a
non-aligned edge e.

IntersectionPreservationOneEdge(e = (s, t)) =⋃
(xp,yp)∈CPl(e)

{Me · (yp − ys) +Xs > xp}

∪
⋃

(xq ,yq)∈CPr(e)
{Me · (yq − ys) +Xs < xq}

∪
⋃

(xo,yo)∈CPχ(A)(e)
{Me · (yo − ys) +Xs = xo}

(4.2)

See Figure 4.12 for an illustration of the constraints. An aligned edge e = uv has a fixed
drawing. We can either replace all occurences of Xu, Xv with constants or introduce
constraints that fix Xu, Xv. By combining the constraints introduced in this section with
the constraints for straight-line drawings (Equation 3.3) and the embedding (Equation 3.1)
in one linear constraint program LCP-AD we can solve Straight-Line Aligned Level
Drawing instances. From the running time of Kamarkar’s algorithm (Theorem 2.12) we
obtain the following lemma.
Lemma 4.16. The running time of the linear constraint program LCP-AD is

O([|V |+
∑
e∈E
|CP(e)|]3.5 + L2)

Here L is the number of bits in the input to the linear program. We now analyze the
factor L. To that end, we assume that the streched line arrangement A is given as the set
of points where lines intersect. Furthermore, we assume that the representation of such a
point requires 2w bits, w bits for every coordinate.
Define l as the number of level-crossings. Every constraint in Equation 4.2 requires O(log(l+
|V |)) bits to identify the two involved variables Xs, Xt. The coefficients require O(w+log k)
bits as the denominator stemming from Me has

(k
2
)
possible values, the terms yq, yp, yo

require w bits each and the rest requires a constant number of bits. The right side of every
constraint in Equation 4.2 requires w bits.
By combining this with Lemma 3.3 we obtain Equation 4.3.

L ∈ O
(

log(l + |V |) ·
[∑
e∈E
|CP(e)|(w + log k) + (l + |E|) log k

])
(4.3)
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From Lemma 4.12 we know that the size of an edge’s canal polygon is linear in the span
of the edge and the number of pseudolines crossing the edge. Therefore we obtain the
following theorem.

Theorem 4.17. There is a polynomial time algorithm to decide Straight-Line Aligned
Level Drawing.
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5. Monotonic Polygon Hitting Set

In this chapter we discuss the Monotonic Polygon Hitting Set problem, a geometric
problem that solves Straight-Line Aligned Level Drawing when the graph has two
levels. We start with basic definitions and the problem statement. Subsequently Section 5.1
outlines the algorithmic approach. In Section 5.2 and Section 5.3 we introduce elementary
operations, which are used in Section 5.4, where we propose an asymptotically optimal
algorithm to solve Monotonic Polygon Hitting Set (Corollary 5.13). The reduction
from Straight-Line Aligned Level Drawing with two-level graphs to Monotonic
Polygon Hitting Set is described in Section 5.5.

Definition 5.1 (Polygon Hitting Set). For a set of m convex polygons {P1, . . . , Pm}, a
hitting set is a set {p1, . . . , pm} of m points s.t. pi lies in the interior of Pi.

Definition 5.2 (Point Ordering). By <xy we denote the relation between two points p1 =
(x1, y1), p2 = (x2, y2) that is fulfilled exactly if x1 < x2 and y1 < y2. By <x we denote the
relation x1 < x2 and y1 = y2 as well as analogously <y for x1 = x2 and y1 < y2.

A sequence of points that is ordered using a combination of these three comparison operators
is totally ordered. In a sequence of convex polygons we can compare two consecutive
polygons Pi, Pi+1 symbolically by a comparison operator Ci ∈ {<xy, <x, <y}. Notationwise,
we write Pi Ci Pi+1 for the symbolic comparison of polygons. Regarding a hitting set of
the ordered polygons, we can ask for a sequence of points (each point in the interior of its
respective polygon) that geometrically sustains the same relations as the polygon sequence
does symbolically.

Definition 5.3. Let P = 〈P1, . . . , Pm〉 be a sequence of convex polygons. Let S =
〈C1, . . . ,Cm−1〉 be a sequence of comparisons with Ci ∈ {<x, <y, <xy}. A hitting set p1, . . . , pm
of P is S-monotonic if and only if pi Ci pi+1.

Definition 5.4. Let P,S be as in Definition 5.3. Monotonic Polygon Hitting Set
is the problem of deciding whether P has a S-monotonic hitting set.

5.1 Outline
Our approach to obtaining a S-monotonic hitting set is based on removing those parts of
the polygons that cannot be in a S-monotonic hitting set, called infeasible regions. We
show that this suffices to obtain a solution by a simple iterative traversal.
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(a) Two convex polygons P in
brown and Q in blue.

(b) <xy-infeasible regions of Q
regarding P .

(c) <xy-infeasible regions of P
regarding Q.

Figure 5.1

First we discuss the infeasible regions of a polygon. We start with infeasibility in a two-
polygon scenario P CQ and a way to compute the infeasible regions. This is discussed in
detail for the P <xy Q comparison operator as there are only small changes necessary for
the <x and <y comparators. Then we proceed to extend this result to an arbitrary-length
sequence P = 〈P1, . . . , Pm〉 by considering infeasibility regarding all prefixes of P, i.e.
the set {〈P1, . . . , Pj〉|1 ≤ j ≤ m}. This immediately yields a linear time algorithm for
computing a S-monotonic hitting set of P as shown in Corollary 5.13 of Theorem 5.12 in
Section 5.4.

5.2 Infeasible Regions for P <xy Q

In this section we assume the scenario of two convex polygons P,Q ordered by P <xy Q
and show how to compute a <xy-monotonic hitting set p <xy q or decide there is none.
Figure 5.1 shows that scenario. By default we assume P and Q to be non-empty.

Definition 5.5 (<xy-infeasibility regarding P ). We call a point q = (xq, yq) in the interior
of Q <xy-infeasible regarding P , if there is no point p = (xp, yp) in the interior of P
with xp < xq and yp < yq.

By definition a <xy-infeasible point of Q regarding P cannot be in a <xy-monotonic hitting
set. Conversely if Q has no <xy-infeasible points regarding P , any point of Q is in at
least one <xy-monotonic hitting set. By Q̂ we denote the maximal subpolygon of Q
(interior(Q̂) ⊂ interior(Q)) with no <xy-infeasible points regarding P .

Lemma 5.6. For every point q ∈ interior(Q̂) there is a point p ∈ interior(P ) such
that p <xy q is a <xy-monotonic hitting set of P <xy Q.

Also, by the definition of Q̂ as the maximal such subpolygon, for all <xy-motononic hitting
sets p <xy q, it holds that q lies in the interior of Q̂.

The aim of this section is to prove the following lemma, which will be used later in
Section 5.4 as a subroutine, when extending the scenario to arbitrary-length sequences.

Lemma 5.7. The maximal subpolygon Q̂ of Q with no <xy-infeasible points can be computed
in O(|P |+ |Q|) time.

This additionally yields the following lemma.
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5.2. Infeasible Regions for P <xy Q

(a) Q′ entirely below the left-
lower hull of P .

(b) Q′ entirely above the left-
lower hull of P .

(c) Q′ and the left-lower hull
of P intersect.

Figure 5.2: The three possible cases how Q′ can interact with the left-lower-hull of P .

Lemma 5.8. Computing a <xy-monotonic hitting set p <xy q for P <xy Q takes O(|P |+
|Q|) time.

We now discuss <xy-infeasible points in greater detail. When obvious from the context,
we will omit the qualifier regarding P for easier reading. Let v = (xv, yv) be the leftmost
vertex on the left-lower hull of P . Any point q = (xq, yq) of Q with xq < xv is trivially <xy-
infeasible as illustrated in Figure 5.1(b) by the brown vertical dashed line. Analogously any
point below the lowest vertex w = (xw, yw) of the left-lower hull of P is <xy-infeasible as
shown by the brown horizontal dashed line in Figure 5.1(b). To cut off these trivially <xy-
infeasible points we intersectQ with the two halfplanes (oriented right and up) corresponding
to the vertical line through v and the horizontal line through w. We call the polygon Q
without these two trivially <xy-infeasible regions Q′.

If Q′ is empty there is no <xy-feasible point and thus no <xy-monotonic hitting set. Any
point q with xq > xw is trivially <xy-feasible as yq > yw for all points of Q′.

Let ϕ : [xv, xw]→ [yw, yv] be the function that maps an x-coordinate to its corresponding y-
coordinate on the left-lower hull of P . The left-lower hull of P is strictly monotonically
decreasing, therefore ϕ is bijective. Points with xq in the interval (xv, xw) are <xy-feasible
if and only if yq > ϕ(xq).

By contraposition the only remaining <xy-infeasible points of Q′ are those below the
left-lower hull of P . If non-empty, there are three possible cases how Q′ can interact with
the left-lower hull of P . They are illustrated in Figure 5.2.

• Q′ lies entirely below the left-lower hull of P . In this case Q′ is completely infeasible
and there is no <xy-monotonic hitting set for P <xy Q.

• Q′ lies entirely above the left-lower hull of P . In this case Q′ is completely feasible.

• Q′ intersects the left-lower hull of P . In this case the regions below the left-lower
hull of P are infeasible and those above are feasible.

As the first two cases are trivial, in the following we focus on the algorithmic details of the
third case. By cutting off the remaining <xy-infeasible regions of Q′, which lie between
the horizontal through w, the vertical through v and the left-lower hull of P , we finally
obtain Q̂. Recall that Q̂ is the maximal subpolygon of Q, where all points in interior(Q̂)
are <xy-feasible. In the following we describe how to compute Q̂ from Q′ using a linear-time
convex polygon intersection algorithm.
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(a) Q′ in blue. W<xy in brown (left-lower hull of P )
and green (top and right side of the rectangular
bounding box of Q′ plus extensions).
Q̂ = Q′ ∩ W<xy .

v

w

r

(b) Q′ in blue. W<x in brown (left hull of P ) and
green (right side of the rectangular bounding
box of Q′ plus extensions). Q̂ = Q′ ∩ W<x .

Figure 5.3

Convex Polygon Intersection

We can obtain Q̂ as an intersection polygon, using a linear-time convex polygon intersection
algorithm such as by Toussaint[Tou85] or O’Rourke et al.[OCON82]. Let r = (xr, yr) be
the rightmost point of the right-upper hull of Q′, s = (xs, ys) be the topmost point of
the right-upper hull of Q′ as illustrated in Figure 5.3(a). It is easy to see that Q̂ is the
intersection polygon of Q′ and the polygon W<xy consisting of the left-lower hull of P as
well as, in counter-clockwise order, 〈w, (xr, yw), (xr, ys), (xv, ys), v〉. The idea is to use the
top and right side of the rectangular bounding box of Q′, illustrated in green. The bottom
and left sides stem from the left-lower hull of P , illustrated in brown. These are extended
towards the top and right sides, with the extension in green again.

Running Time

As the running time of the convex polygon intersection algorithm is linear and the repre-
sentation is explicit, we can compute Q̂ in O(|P |+ |Q|) time. An argument, why Q̂ has
size linear in |Q|, is the fact that any edge of Q can cross at most two edges of P , which
therefore yields |Q̂| ≤ 3|Q|. This concludes the proof of Lemma 5.7.

5.3 Infeasible Regions for P <x Q and P <y Q

Definition 5.9 (<x-infeasibility regarding P ). We call a point q = (xq, yq) in the interior
of Q <x-infeasible regarding P , if there is no point p = (xp, yp) in the interior of P
with xp < xq and yp = yq.

Obtaining the <x-feasible remainder Q̂ of Q regarding P works similarly to <xy. We now
highlight the small differences.

In addition to cutting off to the left of the vertical line through P ’s leftmost vertex and
below the horizontal line through P ’s lowest vertex, we also have to cut off Q above
the horizontal line through P ’s topmost vertex. Figure 5.4(b) illustrates the horizontal
halfplane cuts in dashed brown.

We furthermore need to consider the left-upper hull of P and cut off anything above it, in
addition to the left-lower hull. By combination we cut off anything to the left of the left
hull, visualized as the blue infeasible region in Figure 5.4(b).
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(a) Two polygons P in brown
and Q in blue.

(b) Infeasible regions of Q re-
garding P <x.

(c) Infeasible regions of P re-
garding <x Q.

Figure 5.4

It is possible to perform the cuts in two separate steps, one for left-lower one for left-upper
hull, without affecting the running time. For the sake of completeness, in Figure 5.3(b)
we show the adapted polygon (brown and green) for performing the cuts in one step. We
only take the right side of the rectangular bounding box of Q′. Then we extend the left
hull of P by horizontal lines to the right side of the bounding box of Q′. Denote by v the
topmost vertex of P ’s left hull, by w the lowest vertex and by r the rightmost vertex of Q′.
Analogously to Section 5.2, the polygon W<x to intersect Q′ with, consists of the left hull
of P and in counter-clockwise order 〈w, (xr, yw), (xr, yv), v〉. As in the previous section, we
obtain the following lemma, which is essential for handling arbitrary-length sequences.

Lemma 5.10. For every point q ∈ interior(Q̂) there is a point p ∈ interior(Q) such
that p <x q is a <x-monotonic hitting set of P <x Q.

Using the algorithm modifications described above we obtain.

Lemma 5.11. The maximal subpolygon Q̂ of Q with no <x-infeasible points can be
computed in O(|P |+ |Q|) time.

P <y Q is analogous to <x by rotating the problem.

5.4 Extending to a Sequence
In this section we discuss how to extend the previous result for two polygons P1 C P2 to a
sequence of polygons P = 〈P1, P2, . . . , Pm〉 with comparisons S = 〈C1, . . . ,Cm−1〉.

We compute a sequence of polygons 〈P1, P̂2, . . . , P̂m〉, where each polygon is feasible
regarding the prefix of polygons up to itself. Due to the monotonicity of {<xy, <x, <y}, we
can obtain the polygon P̂m with interior(P̂m) ⊂ interior(Pm) of all feasible points in Pm by
a simple left-to-right traversal. We first cut off the C1-infeasible regions of P2 regarding P1
using the appropriate algorithm from either Section 5.2 or Section 5.3 to obtain P̂2. We
repeat this step with P̂i and Pi+1 for increasing i = 2, . . . ,m − 1 to obtain P̂i+1 and
ultimately P̂m.

Theorem 5.12. P has a S-monotonic hitting set, if and only if 〈P1, P̂2, P̂3, . . . , P̂m〉 does
not contain an empty polygon.

Proof. Assume 〈P1, P̂2, P̂3, . . . , P̂m〉 does not contain an empty polygon. P̂m only con-
tains points that are Cm−1-feasible regarding P̂m−1. Choose some pm in interior(P̂m).
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By Lemma 5.6 or Lemma 5.10 (whether Cm−1 =<xy or Cm−1 ∈ {<x, <y}) there is a
point pm−1 in interior(P̂m−1) such that pm−1 Cm−1 pm. Since P̂m−1 only contains Cm−2-
feasible points regarding P̂m−2, by induction there is a 〈C1, . . . ,Cm−2〉-monotonic hitting
set 〈p1, . . . , pm−1〉 of 〈P1, . . . , Pm−1〉. Due to the monotonicity of<xy, <x, <y, 〈p1, . . . , pm−1, pm〉
is a S-monotonic hitting set of P.

Now assume that P has a S-monotonic hitting set p1, . . . , pm. Then the point pi pre-
vents pi+1 from being removed during the computation of P̂i+1. Therefore P̂i+1 6= ∅.

Corollary 5.13. A S-monotonic hitting set of P can be computed in O(∑m
i=1 |Pi|). In the

same time we can obtain a witness (empty feasible polygon) if no S-monotonic hitting set
exists.

Using Lemma 5.7 and Lemma 5.11 for the running time of the individual removal steps,
Corollary 5.13 follows immediately.

5.5 Use in Straight-Line Aligned Level Drawing with Two
Levels

In this section we reduce Straight-Line Aligned Level Drawing in graphs with two
levels to solving a Monotonic Polygon Hitting Set instance. Let G = (V,E, lvl,≺)
be a plane level graph with k := |lvl(V )| = 2, let A = {R1, . . . ,Rz} be a pseudoline
arrangement with respect to G such that A+ lvl(V ) is stretchable and let A+ lvl(V ) be
a stretching of A+ lvl(V ). For conciseness, we will assume that every edge has a simple
canal polygon (i.e. does not cross pseudoline intersections) but justify beforehand that
incorporating edges with non-simple canal polygons is possible. Recall from Section 4.4.2
that the straight-line intersection-preserving drawings of edges with non-simple canal
polygons are represented by either a line segment (if trajectory(e) crosses one pseudoline
intersection) or at most one single point in R2 (two or more pseudoline intersections). These
are interpreted as extreme cases of polygons with an empty interior and the definition of
infeasibility regarding these extreme polygons must be adapted to include points on their
boundary, i.e. the line segment or point.

Now assume that every edge has a simple canal polygon. The set E of edges is ordered
from left to right by the combinatorial embedding ≺ and let e1, . . . , em be that ordering.
Let e = uv ∈ E be an edge with lvl(u) = 1, lvl(v) = 2. Recall from the definition
of EDP(e), see Section 4.4.2, that each point (xu, xv) in the interior of EDP(e) represents
an intersection-preserving drawing of e with xu as the x-coordinate of u and xv as the x-
coordinate of v. Let P = 〈EDP(e1), . . . ,EDP(em)〉 be the sequence of edge drawing
polygons in left-to-right ordering of the edges induced by ≺. The comparison operator Ci

for two edge drawing polygons EDP(ei) Ci EDP(ei+1) is

• <xy if ei and ei+1 are independent

• <x if ei and ei+1 are incident in a vertex on level 1

• <y if ei and ei+1 are incident in a vertex on level 2

and the comparison operator sequence S = 〈C1, . . . ,Cm−1〉 consists of the comparison
operators between two consecutive polygons. By Lemma 4.14 every edge drawing polygon
is convex. This yields the following lemma.

Lemma 5.14. P has a S-monotonic hitting set, if and only if (G,A) has a straight-line
aligned level drawing.
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With this we obtain the following running time to compute straight-line aligned level
drawings, if k = 2.

Lemma 5.15. There is a O(∑e∈E ζ(e)) ⊂ O(mz) time algorithm to decide Straight-
Line Aligned Level Drawing, if k = 2.

Proof. By Lemma 4.15, computing all edge drawing polygons is done in O(∑e∈E |CP(e)|)
time and by Corollary 5.13 solving the according Monotonic Polygon Hitting Set
instance (Lemma 5.14) takes O(∑e∈E |CP(e)|) time. The reduction takes O(m) time.
From Lemma 4.12 we have |CP(e)| ∈ O(span(e) + ζ(e)) and in two-level graphs we
have span(e) = 1 for every edge. The inequality ∑e∈E ζ(e) ≤ mz is trivial.

This is a significant improvement over the O([|V |+∑
e∈E ζ(e) + span(e)]3.5 + L2) solution

with linear constraint programming, confer Lemma 4.16. The improved algorithm is in fact
asymptotically optimal, since the input must be read. The term Ω(∑e∈E ζ(e) + span(e) is
a lower bound for the input size.
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6. Miscellaneous Combinatorial Results

This chapter contains two miscellaneous results. In Section 6.1 we study the Intersection
Sequence Embedding problem. Given a level-planar graph G without combinatorial
embedding, an unrelated pseudoline arrangement and a description of how the graph is
supposed to intersect the pseudoline arrangement, Intersection Sequence Embedding
asks whether G has a level-planar combinatorial embedding that realizes the desired inter-
sections. We present an efficient algorithm for Intersection Sequence Embedding in
Lemma 6.2. Inspired by Mchedlidze et al. [MRR17], we additionally study the Pseudoline
Existence problem. Given a plane level graph G it asks whether there is a pseudoline
with respect to G through a given set S ⊂ V of vertices (see Section 6.2).

6.1 Intersection Sequence Embedding
The Straight-Line Aligned Level Drawing problem requires a plane level graph and
in particular a pseudoline arrangement with respect to the graph. In this section we spin
the problem around and start with a pseudoline arrangement not with respect to a graph
and a level graph without combinatorial embedding. Given a description of how the level
graph shall intersect the pseudoline arrangement, we ask whether it has a combinatorial
embedding which achieves the desired intersections.

Let G = (V,E, lvl) be a level-planar graph without combinatorial embedding and let
A + lvl(V ) = {R1, . . . ,Rz} ∪ lvl(V ) be the combined arrangement of pseudolines and
the levels of V . Furthermore, let cells(A) be the cells in the cell complex of R2 induced
by A, let pseudoline-intersections(A) be the set of pseudoline-intersections in A and
let pseudosegments(A) be the set of pseudosegments of A between pseudoline-intersections.
Let location : V → (cells(A) ∪ pseudosegments(A) ∪ pseudoline-intersections(A)) be a
mapping of vertices to cells, pseudosegments and pseudoline intersections, indicating
where that vertex is supposed to be drawn. We require that the intersection of lvl(v)
and location(v) is not empty.

For some subset E′ ⊂ E and for each edge e′ = uv ∈ E′ we are given a simple y-
monotone curve α(e′) through A that represents the combinatorial intersection structure
between e′ and A. We require that the two endpoints of α(e′) lie in location(u), location(v).
Additionally, the curves of two distinct edges do not intersect.

For each pseudoline R of A, the curves α(E′), levels and vertices of G as well as other
pseudolines induce a sequence iseq(R) of edges, levels, vertices and other pseudolines
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that R is supposed to intersect along its trajectory. Note that here we do not start with
an intersection sequence of objects that R does intersect. Instead we start with a sequence
that R is supposed to intersect and we ask whether there is a combinatorial embedding
of G which realizes this intersection sequence.
Definition 6.1 (Intersection Sequence Embedding). The Intersection Sequence
Embedding problem asks whether G has a level-planar combinatorial embedding ≺ such that
for each pseudoline R ∈ A the sequence of intersected edges, levels, vertices and pseudolines
is iseq(R). If yes, ≺ is called an intersection sequence embedding of (G,A, iseq(A)).

Although, counterintuitive at first glance, this problem is not trivial as the difficulty lies
in embedding the free edges. Also note that the vertices induced by E′ do not induce a
partial embedding.
Lemma 6.2. Intersection Sequence Embedding can be solved in

O

(
l∑

i=1
| iseq(Ri)|+ |V |

)
time.

For the proof we need some tools. Instead of considering the intersection sequence along
each pseudoline we will consider the intersection sequence around the boundary of each
cell c ∈ cells(A). Define cyclic-iseq(c) as the cyclic, ordered sequence of curves α(E′), levels,
vertices and pseudolines intersected by the pseudolines bounding c. We also call cyclic-iseq(c)
the cyclic-intersection-sequence of c.
Remark 6.3. The boundary of each cell c can be split into a left and a right hull, where
the left hull has the interior of c to the right and the right hull has the interior of c to
the left. In particular, if c is bounded, one pseudoline intersection is distinguished as the
lowest point on the boundary, as well as another as the highest point. Unbounded cells are
artificially closed with curves that intersect no edge and contain no vertex.

The cyclic-intersection-sequence-induced subgraph G[c] is the subgraph of G induced by the
vertices in the interior of c and on the boundary of c. Additionally, the edges in cyclic-iseq(c)
are added. Then they are cut off at their intersection with the boundary of c, where a
dummy vertex is inserted on a dummy level on the appropriate pseudosegment of the
boundary. The dummy levels due to dummy vertices on the left, respectively right hull are
sorted according to the order on the left, respectively right hull and inserted between the
according levels of G. For an ordering of the dummy levels from both hulls we consider
edges between dummy vertices of the two hulls. Let e = uv be an edge in cyclic-iseq(e)
with u and v not in the interior of c, and lvl(u) < lvl(v); see for example the edge u1u10 in
Figure 6.1. Then the dummy vertices u′ and v′ due to u and v have dummy levels, with
the condition lvl(u′) ≤ lvl(v′). Equality only holds for dummy vertices on the highest or
lowest polygon-vertex on the boundary of c, i.e. when u′ = v′.
In Figure 6.1 the dummy vertices are represented as white squares. The figure also shows
an edge between the left and right hull which forces the dummy level due to the left hull
vertex below the dummy level due to the right hull vertex.
Observe that the notion of cyclic-intersection-sequence-induced subgraphs is similar but
not equivalent to cell-induced subgraphs used in Section 4.3 and Theorem 4.7. The
cell-induced subgraph contains vertices for line intersections whereas a cyclic-intersection-
sequence-induced subgraph does not. Furthermore, cell-induced subgraphs assume a
given line-arrangement and embedded graph, whereas cyclic-intersection-sequence-induced
subgraphs only assume an order in which edges intersects its boundary. Due to their
similarity we write both as G[c] but mention their differences to avoid confusion.

46



6.1. Intersection Sequence Embedding
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Figure 6.1: Reduction to level-planarity from the proof of Lemma 6.2 .

Lemma 6.4. There is an intersection sequence embedding of (G,A, iseq(A)) if and only
if for each cell c ∈ cells(A) there is a level-planar embedding ≺c of G[c] such that the
boundary of c intersects and visits vertices, dummy vertices due to edges, levels and other
pseudolines in the order cyclic-iseq(c).

Proof. The pseudolines R1, . . . ,Rz intersect E′ according to iseq(A) if and only if for each
cell c the cell boundary intersects E′ according to cyclic-iseq(c).

Given an intersection sequence embedding ≺ of (G,A, iseq(A)) we obtain an embedding
of G[c] by taking the embedding of the vertices and edges in c as well as vertices on
the boundary of c and edges intersecting the boundary. Each dummy vertex due to an
intersected edge is assigned to a level. It is placed where its intersected edge crosses that
level in ≺.

Conversely given a combinatorial embedding ≺c of G[c] for each cell c ∈ cells(A), we obtain
an embedding of G by deleting dummy vertices and dummy levels as well as reversing the
subdivision of intersected edges, i.e. route intersected edges through their former dummy
vertices.

Definition 6.5 (Flipped Embedding). Let G = (V,E, lvl,≺) be a plane level graph. The
flipped embedding is defined as the embedding obtained by reversing the sequence of level-
crossings and vertices on each level.

Lemma 6.6. Let G = (V,E,≺) be a plane level graph. Then G is also plane with the
flipped embedding of ≺.

The proof of Lemma 6.6 is trivial. With the now obtained toolset, we are ready to prove
Lemma 6.2.

Proof of Lemma 6.2. By Lemma 6.4 it suffices to consider each cell c and cyclic-iseq(c) and
it is equivalent to enforce cyclic-iseq(c) around c. We construct a new graph G′[c] consisting
of the cyclic-intersection-sequence-induced subgraph G[c] and the following augmentations.
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Add two new levels k + 1, k + 2 above c. Let cyclic-iseq(c) be oriented clockwise. Starting
with the first object on the left hull of c, recall Remark 6.3, we traverse the boundary
of c and cyclic-iseq(c) in clockwise order. For each vertex ui (dummy or original) on
the boundary, introduce one vertex vi on level k + 1 and one wi on level k + 2. See the
black squares in Figure 6.1. Then connect viwi by an edge, see the red vertical edges and
connect wivi+1 by an edge, see the red edges with negative slope. Finally connect uivi by
an edge, see the golden curvy edges.

In a level-planar embedding of G′[c] the clockwise order of the ui around the boundary
of c is the same as the order of the vi on level k + 1, otherwise two of the golden edges
would cross.

The subgraph induced by all vi and wi (black squares, red edges) is edge-maximal level-
planar and has a unique combinatorial embedding, up to a flip (recall Definition 6.5),
namely v1, v2, v3, . . . plus w1, w2, w3, . . . and the flipped embedding. By Lemma 6.6 we
can assume it is v1, v2, . . . .

Thereby Intersection Sequence Embedding reduces to testing level planarity of G′[c].

The construction of all G′[c] requires

O

(
z∑
i=1
| iseq(Ri)|+ |V |

)

time, as each pseudosegment induced by pseudoline-intersections and levels bounds two
cells and each edge intersection introduces one dummy vertex.

Using the according linear-time embedding algorithm by Jünger et al. [JL99], we can
obtain a combinatorial embedding for G[c] for each c and patch them together using
Lemma 6.4.

6.2 Pseudoline Existence
Let G = (V,E, lvl,≺) be a plane level graph and let S ⊂ V be a subset of vertices. In
this section we investigate the question whether there is a pseudoline with respect to G
that collects all vertices of S. This is called the Pseudoline Existence Problem. In
the spirit of Mchedlidze et al. [MRR17] we want to find a characterization of when such a
pseudoline exists. For general planar graphs with fixed topological embedding, Theorem 4.9
due to DaLozzo et al. [DLDF+16], states that there is a straight-line drawing in which
the vertice of S are collinear if and only if there is a pseudoline through S. We proved
the equivalent for proper plane level graphs in Chapter 4, see Corollary 4.4. Mchedlidze
et al. [MRR17] give a polynomial time transformation of Pseudoline Existence in
general planar graphs to the K-Cycle problem, which is the decision problem that asks
whether a graph has a simple cycle through a set of given vertices. By a result due to
Wahlström [Wah13], this shows Pseudoline Existence is fixed-parameter tractable in
general planar graphs.

In this section we present a similar result, where we reduce Pseudoline Existence
to the question whether another graph has a simple path with some special properties,
see Theorem 6.10. For plane proper level graphs we then show in Theorem 6.11 that
the necessary condition ”G[S] is a level-ordered linear forest” (confer Definition 6.8 and
Remark 6.9) is also sufficient for pseudoline existence.

Definition 6.7. Let G = (V,E, lvl) be a level graph. A set S ⊂ V of vertices is called y-
monotonic, if each level contains at most one vertex of S.
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Definition 6.8. A level-ordered linear forest on a y-monotonic set S ⊂ V is a level
graph H = (S,EH) consisting of independent paths, such that no triple of vertices v1, v2, v3 ∈
S exists with lvl(v1) < lvl(v2) < lvl(v3) and (v1, v3) ∈ EH .

More colloquially, an upward edge from some vertex v can only connect it to the vertex w
with the next-higher level, i.e. cannot skip a vertex between v and w.

Remark 6.9. Let S ⊂ V be a y-monotonic set of vertices. If G[S] is not a level-ordered
linear forest, there is no pseudoline through S with respect to G.

This states a necessary condition for the vertices of S. Therefore we assume G[S] to be
a level-ordered linear forest for the following construction. In the following we describe
the steps to obtain, what is called the extended dual G∗e of G. The procedure is very
similar to that in [MRR17]. We use it to prove Theorem 6.10. Its goal is to illustrate a
correspondence between pseudolines through S and a level-monotonic st-path from the
lowest to the highest level in the extended dual.

Step 1: Subdivide each edge e with dummy vertices at its level-crossings to make G a
plane proper level graph. Denote by rev-subdivision(e′) the original edge e which has e′ as
one of its subdivided parts.

Let G′ be the infinite track-plane extension of G (confer Definition 2.7). Then its dual G′∗
is a level st-plane track graph with k + 1 levels, see Figure 6.2(a), with source s on the
bottom level and sink t on the top level of G′∗. The inter-level edges of G′∗ are oriented
upward.

Step 2: Place each vertex v of S into its corresponding face in G′∗.

We construct the extended dual G∗e by combining G′∗ and S in one graph. Therefore we
mix the levels and assign half-integer levels to the vertices of G′∗ and the original integer
levels in G to vertices of S. The half-integer levels are also called dual levels, whereas
the integer levels are called primal levels. We assign s to level lvlG∗e(s) := 0.5 and t to
level lvlG∗e(t) := k + 0.5. Let f∗ be a vertex of G′∗ other than s, t, that is dual to face f
of G′ with f enclosed between levels i and i + 1. Then assign level lvlG∗e(f∗) := i + 0.5
to f∗. Vertices v of S are assigned to their original integer levels lvlG∗e (v) := lvl(v).

Step 3: Let (v1, . . . , vr) be a directed path induced by S in G. Connect v1 to those
vertices f∗ of G′∗ with lvlG∗e(f∗) = lvlG∗e(v1)− 0.5, whose primal face f is incident to v1
in G′. Analogously connect vr to vertices f∗ with lvlG∗e (f∗) = lvlG∗e (vr) + 0.5 whose primal
face is incident to vr (red dashed edges in Figure 6.2(b)).

Step 4: For each v ∈ S remove the edges that are dual to some primal edge e′ ∈ E′

where rev-subdivision(e′) is incident to v in G. Illustrated in Figure 6.2(c).

Step 5: In each dual level i − 0.5 that is adjacent to one primal level i (i.e. contains a
vertex of S), the upward oriented inter-level edges to the dual level i+ 0.5 are deleted. See
the gray edges deleted in Figure 6.2(d) between dual levels that enclose a red vertex of S.
Furthermore, every dual level i+ 0.5, that is enclosed between two primal levels i and i+ 1
with an edge of S between the primal levels, is deleted entirely. These two modifications
force a monotonic path, that visits every dual level, to collect all vertices of S, since it is
only possible to connect two consecutive dual levels, that have vertices of S between them,
by visiting the according path induced in G[S] (see Figure 6.2(d)).

Step 6: Let e ∈ E be an edge of G. Let subdivision∗(e) be the edges of G′∗ that are dual
to the subdivision of e. Then subdivision∗(e) is replaced by a star with the dual edges’
vertices as leaves and a single center vertex. This forces a simple path to use at most one
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of the dual edges that stem from the subdivision of e. The center vertex is not assigned to
a level. Note that the expansion only affects intra-level edges of G′∗ as they are dual to
inter-level edges of G′. Denote the center vertex for edge e by cent(e) and the set of all
star-centers by cent(E).

Theorem 6.10. Let G = (V,E, lvl,≺) be a plane level graph, S ⊂ V a y-monotonic
subset of vertices and G[S] a level-ordered linear forest. There exists a pseudoline R with
respect to G, that passes through all vertices of S if and only if G∗e = (V ∗, E∗) has a
simple st-path P that is monotonic in the levels of V ∗ \ cent(E) and visits each odd level
of G∗e.

Proof. Assume there is a pseudoline R with respect to G through exactly the vertices of S.
Without loss of generality assume that R does not visit level-crossings of edges. Then
let R′ be the pseudoline obtained by considering R through G′. We decompose R′ into
pieces of four different categories. For each category, we describe how to translate it into
an edge or short path in G∗e. Chained together, the pieces form the path P .

A piece of type α connecting two adjacent faces f1, f2 of G′ by crossing an intra-level edge e
of G′. Then the piece is substituted by the upward-oriented inter-level edge e∗ = (f∗1 , f∗2 )
of G∗e dual to e. Since the piece does not visit a vertex of S, the edge e∗ is not deleted in
Step 5.

A piece of type β connecting two adjacent faces f1, f2 of G′ by crossing an inter-level
edge e′ of G′. Let e = rev-subdivision(e′). We substitute the piece by the two-edge
path (f∗1 , cent(e), f∗2 ). The edges (f∗1 , cent(e) and (cent(e, f∗2 ) were not removed in Step 4
since e is not incident to some vertex of S since R visits these and only these vertices.
Additionally, we know that β does not cross any of the G′-edges from subdivision(e) other
than e′. Furthermore, no other piece of R′ crosses any of these edges. Therefore the
star-center cent(e) of the subdivided edges (see Step 6) is only used by this and no other
pieces of R′. Together with the upward orientation of the other following edge types, this
yields that P is simple. Also note that lvlG∗e (f∗1 ) = lvlG∗e (f∗2 ).

A piece of type γ connecting a face f of G′ with an incident vertex v ∈ S. We know that v
is the end-vertex of a path induced by S. Substitute the piece by the edge between f∗
and v, that was added in Step 3.

A piece of type δ connecting two adjacent vertices v1, v2 of S. Substitute the piece by the
edge (v1, v2) that was introduced in Step 2.

As mentioned already, P is simple. Due to the upward orientation of all edges of G∗e except
the expanded intra-level edges (Step 6), P is monotonic in the levels of V ∗ \ cent(E). P is
an st-path, since s is visited first and t is visited last by R. Furthermore, since all pieces
of type β are substituted by two edges with endpoints on the same level, the star-centers
are not used to skip levels. Combining this with the fact that each inter-level edge between
odd levels only spans these two levels, yields that each odd level of G∗e is visited by P .

Now assume that P is a directed, simple st-path in G∗e that is monotonically increasing
in the levels of V ∗ \ cent(E) and visits each odd level once. We construct a pseudoline R
with respect to G through S by constructing a pseudoline R′ with respect to G′.

The curve R′ is routed along P \ cent(E), i.e. the star-centers are ignored. Since each odd
level has to be visited once and P is monotonic in V ∗ \ cent(E), each star-center cent(e)
on P is proceeded and succeeded on P by vertices of the same odd level in G∗e. By Step
4, no edges incident to S are crossed and any path induced by S is traversed by R′. By
Steps 2,3 and 5, all vertices of S and all edges of G[S] are collected. By Step 6 each edge
is crossed at most once. By the monotonicity of P , each level in G′ is crossed exactly
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s

t

(a) G′∗ in gray, G′ in black. Subdivision dummy
vertices drawn as crosses. The vertices and
edges of S in red.

s

t

(b) After Step 3.

s

t

(c) After Step 4. The gray inter-level edges dual
to edges that are incident to some vertex in S
are deleted.

s

t

(d) After Step 5.

Figure 6.2: Construction of the extended dual.
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once. Therefore R′ is a pseudoline with respect to G′ through the vertices of S. By
deleting the augmentation that turned G into G′ and the according parts on R′ we obtain
a pseudoline R with respect to G.

Note that a path P as in this theorem, visits the vertices of S, simply due to the construction
of G∗e and not by making it a condition for the path. The proof is obviously similar to
that of Lemma 1 in [MRR17] because it is a similar result for a different graph class. Note
that in opposition to [MRR17] we need not distinguish between disconnected, 1-connected
and 2-connected graphs. Additionally, the subdivision of single-edge paths induced by S is
dropped since P has to be monotonic.

The extended dual G∗e consists of directed inter-level and undirected intra-level edges where
the latter are expanded to stars. The condition ”simple” for P almost suffices but does not
quite. In fact the monotonicity condition and the ”each dual level in G∗e is visited once”
condition are only required to prevent level-hopping via the star-centers. We hope they can
be dropped by further augmentations to enforce monotonicity by only using upward directed
edges and leave such a construction as an open problem. These obstructive properties
prohibit the reduction to some known fixed-parameter tractable path-finding problem
(such as Ordered K-Cycle or Disjoint Paths) to solve Pseudoline Existence, in
opposition to [MRR17], who reduced Pseudoline Existence in general plane embedded
graphs to K-Cycle.

In proper level graphs, the star expansion is not necessary. We can even prove that the
necessary condition from Remark 6.9 is sufficient for pseudoline existence.

Theorem 6.11. Let G = (V,E, lvl,≺) be a plane proper level graph and S ⊂ V a subset
of vertices. There exists a pseudoline R with respect to G that passes through S if and only
if S is y-monotonic and G[S] a level-ordered linear forest. If G[S] is a level-ordered linear
forest, R can be constructed in O(k + |V |) time.

Proof. Assume G[S] is not a level-ordered linear forest. Recall that Remark 6.9 states that
in this case no pseudoline with respect to G through S exists.

Now assume G[S] is a level-ordered linear forest. We construct R iteratively, from level 1
to k, in the track-plane extension G′ of G (confer Definition 2.6). In G′ each face is either
quadrangular, triangular or unbounded. Of the latter kind there are exactly two in each
space between two consecutive levels, the leftmost and rightmost. Denote by space[i] the
space between the two consecutive levels i and i+ 1.

The entry face of space[i] is the first face of G′ that R visits in space[i]. When R
enters space[i] between two vertices or through an unbounded segment, there is a unique
entry face. Conversely, when R enters space[i] through a vertex v of S with upward edges,
we can choose the entry face among the faces of space[i] that are bounded by the upward
edges of v.

We now describe the iterative construction of R by the means of a base case and an
induction step.

Induction Base: If level 1 contains a vertex v1 ∈ S, draw a piece entering v1, otherwise
draw a piece up to level 1 which ends between two vertices or on an unbounded segment of
level 1.

Induction Step i → i + 1: Adding the piece of R that crosses space[i] is done by
distinguishing the possible combinations of whether S has a vertex on levels i and i+ 1.
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(a) Case 1. (b) Case 2. (c) Case 3.

Figure 6.3: Visualization of the three cases in the induction step of Theorem 6.11.

• Case 1. lvl−1({i, i+ 1}) ∩ S = ∅

From the entry face f in space[i] draw a y-monotone curve through all faces to the
right of f , up to the unbounded right face, then end the curve on level i+ 1 on the
right unbounded segment. This ensures that no vertex v /∈ S is visited by R (see
Figure 6.3(a)).

• Case 2. lvl−1(i+ 1) ∩ S = ∅ and lvl−1(i) ∩ S = {vi}

Similar to Case 1 but choose the entry face f as the rightmost face that is bounded
by the rightmost upward edge of vi (see Figure 6.3(b)).

• Case 3. lvl−1(i+ 1) ∩ S = {vi+1} and lvl−1(i) ∩ S = {vi} and vivi+1 /∈ E[S]

If some face f , bounded by the upward edges of vi is incident to vi+1 choose f as the
entry face (and exit face). Otherwise, if vi+1 ≺i+1 N

+(vi) choose the leftmost face
bounded by the leftmost upward edge of vi as the entry face. Choose the rightmost
face bounded by the rightmost upward edge if N+(vi) ≺i vi+1. Then route the
drawing to the nearest face that is incident to vi+1, where nearest is with respect to
the dual path of faces in space[i] (see Figure 6.3(c)).

• Case 4. lvl−1(i+ 1) ∩ S = {vi+1} and lvl−1(i) ∩ S = {vi} and vivi+1 ∈ E[S]

Route the drawing along vivi+1.

• Case 5. lvl−1(i+ 1) ∩ S = {vi+1} and lvl−1(i) ∩ S = ∅

From the unique entry face, route the drawing to the nearest face that is incident
to vi+1.

Remark 6.12. An alternative proof to Theorem 6.11 is to use Theorem 6.10. First we
note that G∗e always contains a st-path and thereby a simple st-path. The difficulty lies in
finding one that is monotonic in the levels of V ∗ \ cent(E) and visits all odd levels. This is
trivial for plane proper level graphs G. We can omit Step 6. Then any path is monotonic
because G∗e consists only of upward and bidirected intra-level edges. Furthermore, no odd
level can be skipped.

Combining Corollary 4.4 and Theorem 6.11 we derive the following proposition.

Proposition 6.13. A set S ⊂ V can be drawn collinear in a plane proper level graph G =
(V,E, lvl,≺) if and only G[S] is a level-ordered linear forest.
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In this thesis we considered straight-line aligned level drawings and some related ques-
tions. We presented a polynomial-time algorithm for Straight-Line Aligned Level
Drawing based on linear programming. It can be combined with other linear constraints
for constrained graph drawing problems such as Fixed Embedding Partial Drawing
Extensibility or constraining faces to be drawn as convex polygons, without additional
effort. The Monotonic Polygon Hitting Set, a novel geometric problem was intro-
duced and alongside, we proposed an asymptotically optimal algorithm to solve it, using
convex polygon intersection. We then showed how to reduce Straight-Line Aligned
Level Drawing for graphs with two levels to Monotonic Polygon Hitting Set and
thus obtain an asymptotically optimal O(∑e∈E ζ(e) + span(e)) ⊂ O(mz) algorithm for
Straight-Line Aligned Level Drawing in graphs with two levels. This reduction
relies on the convexity of edge drawing polygons, a space-efficient and efficiently computable
(both O(ζ(e) + span(e))) representation of the intersection-preserving drawings of a single
edge e. A generalization of Monotonic Polygon Hitting Set to more than two levels,
which admits a more efficient algorithm than linear programming remains an open problem.

We proved that any aligned level graph (G,A) with stretchableA+lvl(V ) has an aligned level
drawing in which every edge is at most bent on the pseudolines it intersects. Furthermore,
we showed that if A is a parallel pseudoline arrangement or an arrangement of up to two
pseudolines then for every plane proper level graph G there is a straight-line aligned level
drawing of (G,A). The Pappus configuration is an example of an aligned level graph (G,A)
(where G is proper, consists of four levels and A consists of six pseudolines) which does not
admit a straight-line aligned level drawing. This raises the question for the smallest number
of pseudolines in a proper aligned level graph which does not admit a straight-line aligned
level drawing. Note that this question is related to the smallest number of pseudolines
in a non-stretchable pseudoline arrangement, which is nine. From our results we obtain
that this number is between two and six and leave narrowing down the answer as an open
problem. Another interesting question is whether this number is smaller for non-proper
graphs.

Similarly to Mchedlidze et al. [MRR17], we provide a characterization of pseudoline
existence through a given set S of vertices. Due to obstructive conditions on the st-path
we do not find a reduction to some path-finding problem. However, we hope that through
further augmentation the obstructive conditions can be eliminated or circumvented and
leave this as an open problem. For plane proper level graphs G we showed the equivalence
of the existence of a pseudoline through S and the existence of a plane level drawing in

55



7. Conclusion and Future Work

which the vertices in S are collinear. Furthermore, we proved that such a pseudoline exists
if and only if G[S] is a level-ordered linear forest, which is an easily verifiable condition.

Finally we considered the Intersection Sequence Embedding problem, which asks
whether a given intersection behavior between a level graph without combinatorial embed-
ding and a pseudoline arrangement can be realized by finding an appropriate combinatorial
embedding. We gave a linear-time reduction from Intersection Sequence Embedding
to testing level planarity, which is feasible in linear time.
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