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Abstract

We consider the Dushnik-Miller and the Boolean dimension of posets whose diagrams
are structurally restricted with regard to their queue or stack number. We determine
explicit upper bounds on the Dushnik-Miller dimension in terms of queue number
and height, and similarly in terms of stack number and height based on the work of
Joret et al.

Showing that every directed acyclic graph admits a 2-queue and a 3-stack-subdivision,
we conclude that there is no polynomial function which bounds Dushnik-Miller
dimension in terms of queue number and height and the same is true for stack
number and height.

Finally, we prove that Boolean dimension is bounded by an exponential function in
queue number and height and determine an upper bound on the Boolean dimension
of subdivisions.

Deutsche Zusammenfassung

Wir setzen die Dushnik-Miller und die Boolsche Dimension von Posets in Bezug zur
Queue Number und Stack Number ihrer Hasse Diagramme. Wir berechnen explizite
obere Schranken für Dushnik-Miller Dimension durch Höhe, Queue Number und
Stack Number mittels der Arbeiten von Joret et al.

Indem wir nachweisen, dass jeder gerichtete, azyklische Graph eine 2-Queue- und eine
3-Stack-Unterteilung besitzt, können wir beweisen, dass Dushnik-Miller Dimension
nicht polynomiell in Queue Number und Höhe beschränkt ist und das Gleiche auch
für Stack Number und Höhe gilt.

Des Weiteren berechnen wir eine exponentielle obere Schranke in Queue Number
und Höhe für Boolsche Dimension und zeigen eine obere Schranke für die Boolsche
Dimension von Unterteilungen von Posets.
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1 Introduction

Partially ordered sets (or posets) are ubiquitous in combinatorics, logic, theoretical
computer science and beyond. It is well-known that every poset has an associated
Hasse diagram (or simply diagram), a certain directed acyclic graph that faithfully
represents all relations of the poset.

This raises the natural question how the “complexity” of a poset and the “complexity”
of its diagram are related. To make this question precise, we consider different
complexity measures for posets and graphs and try to relate them, for example by
bounding them in terms of each other.

The first complexity measure of posets we consider is Dushnik-Miller dimension,
introduced in 1941 [24]. Well-structured posets are believed to have small dimension.
Yet, a construction of Kelly shows that the Dushnik-Miller dimension of planar posets,
posets whose diagrams can be drawn without any edge-crossings, is unbounded [64].
Realizing that the height of the planar posets which had been constructed by Kelly
increases with the Dushnik-Miller dimension, Streib and Trotter were able to bound
the Dushnik-Miller dimension of planar posets in terms of their height [85]. This result
led to numerous publications, each of which bounds the Dushnik-Miller dimension of
posets in terms of their height and some graph parameter of their diagrams [56, 58,
66, 71, 93]. Most notably, Joret, Micek, and Wiechert showed that the Dushnik-Miller
dimension of any family of posets whose diagrams are sparse is bounded in terms of
their height [59].

We are interested in two graph parameters which are defined via a minimization
problem for vertex orderings. If we align the vertices of a graph along a horizontal line
and draw the edges as half-circles above this line, we obtain a drawing of the graph
where some edges cross and others nest. Considering edge partitions based on these
two properties, we can define the stack number and the queue number of undirected
graphs. The stack number is a graph parameter which has first been introduced by
Bernhart and Kainen [8], the queue number later on by Heath and Rosenberg [48].
Since then, the concept has also been applied to directed acyclic graphs [45, 47, 60,
61] and posets in particular [33, 77, 86]. In the directed setting, we only consider
topological vertex orderings. This is why results which hold in the undirected setting
might not hold in the directed setting and vice versa.

Joret, Micek, and Wiechert showed that the Dushnik-Miller dimension of posets is
in particular bounded in terms of their height and queue number, and the same is
true if we replace queue number by stack number. We give explicit bounds which
follow from their observations. Further, we are able to construct posets which show
that the upper bound is exponential both in queue number and height, and the same
holds for stack number.
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1 Introduction

As we are able to prove that every directed acyclic graph admits a 2-queue subdivi-
sion and a 3-stack-subdivision (facts which had already been known for undirected
graphs [2, 23]), it follows easily that Dushnik-Miller dimension is not bounded in
terms of queue or stack number, i.e. the bound established by Joret, Micek, and
Wiechert does not hold independent of height.

For undirected graphs, upper bounds on the queue and stack number of subdivisions
in terms of the queue and stack number of the initial graph have already been known
[23]. We show similar bounds in the directed setting and determine a lower bound
on the queue number of subdivisions where every edge has been subdivided at most
h times in terms of the queue number of the initial directed acyclic graph and h.
The latter result is similar to a bound established by Dujmović and Wood in the
undirected setting [23].

Finally, we relate Boolean dimension, a generalization of Dushnik-Miller dimension
which was introduced by Gambosi, Nešetřil, and Talamo [37], to queue and stack
number. As the Boolean dimension of a poset does not exceed its Dushnik-Miller
dimension, the bounds established by Joret, Micek, and Wiechert also apply to Boolean
dimension. Yet, we are able to improve the upper bound on Boolean dimension in
terms of queue number and height.

A construction given by Spinrad shows that the Dushnik-Miller dimension of
subdivisions is not bounded in terms of the Dushnik-Miller dimension of the initial
poset [83]. The same is true for Boolean dimension. Using a similar approach to the
one given by Spinrad for Dushnik-Miller dimension [83], we determine an upper bound
on the Boolean dimension of subdivisions in terms of the height and the Boolean
dimension of the initial poset.

Outline

We first introduce the terminology of posets and Dushnik-Miller dimension in Sec-
tion 2.1 and define queue and stack number in Section 2.2. In Section 2.3, we show
that the stack number of posets is not bounded in terms of Dushnik-Miller dimension.
Section 2.4 is dedicated to variants of the Erdős-Szekeres Theorem, which gives bounds
on the minimum length of a monotone subsequence of an arbitrary sequence of real
numbers. Using the Erdős-Szekeres Theorem, we show in Section 2.5 that the queue
number of posets is not bounded by Dushnik-Miller dimension. In Section 2.6, we
state results related to Dushnik-Miller dimension, queue and stack number, which
apply to planar posets. Section 2.7 explores bounds on the Dushnik-Miller dimension
for posets of queue or stack number at most 1. Section 2.8 includes linear upper
bounds on the queue and stack number of subdivisions of directed acyclic graphs
in terms of the queue and stack number of the initial graph and a lower bound
on the queue number of subdivisions where every edge has only been subdivided
a constant number of times. In Section 2.9, we restate results given by Spinrad
regarding the Dushnik-Miller dimension of subdivisions. In Section 2.10, we show that
each directed acyclic graph admits a 2-queue and a 3-stack subdivision and conclude
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that Dushnik-Miller dimension is neither bounded in terms of queue number nor in
terms of stack number. Section 2.11 includes explicit bounds on the Dushnik-Miller
dimension in terms of height and queue or stack number which follow from the work
of Joret, Micek, and Wiechert. In Section 2.12, we construct posets which show that
any bound on Dushnik-Miller dimension is exponential in height, queue and stack
number.

In Chapter 3, we consider Boolean dimension instead of Dushnik-Miller dimension.
Section 3.1 gives an introduction to Boolean dimension, with a focus on the relation
between Dushnik-Miller and Boolean dimension. In Section 3.2, we relate Boolean
dimension to queue and stack number. We compute the queue and stack number
of a family of posets of unbounded Boolean dimension, give upper bounds on the
Boolean dimension of height-2 posets in terms of queue number and stack number
and establish an upper bound on Boolean dimension in terms of queue number and
height. In Section 3.3, we introduce separated queue and stack layouts for directed
acyclic graphs based on the work of Pemmaraju. We explain why a similar approach
to the one given in the previous section does not yield a bound on Boolean dimension
in terms of stack number and height. Section 3.4 focuses on upper bounds on the
Boolean dimension of subdivisions in terms of the height and the Boolean dimension
of the initial poset.
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2 Dushnik-Miller Dimension

2.1 Introduction to Dimension
We only consider finite posets and graphs.

Definition 2.1.1. A partially ordered set P , abbreviated by poset, is a finite, non-
empty set X together with a binary relation ≤P on X which is transitive, antisym-
metric and reflexive. For two elements x, y ∈ X, we write x ∥P y if neither x ≤P y
nor y ≤P x. In this case, we say that x and y are incomparable. Otherwise, x and y
are called comparable.

A subposet of P is a non-empty subset of the elements of P with the inherited
relation. A chain is a total order. An antichain is a poset with no comparability
relations. The size of a chain and an antichain corresponds to the number of elements.

The height of a poset is the maximum size of a chain that is a subposet.

We can easily represent posets as directed graphs. Elements are represented by
vertices while edges correspond to pairs of comparable elements. Orienting the edges,
we are able to represent the respective order of the endpoints.

Definition 2.1.2. The comparability digraph of a poset P , denoted by Comp(P ),
is the directed graph on the elements of P where for distinct elements x, y ∈ X,
we have that xy is an edge if and only if x ≤P y. The incomparability graph of P ,
denoted by Inc(P ), is defined as the undirected graph on the elements of P with edges
corresponding to incomparable pairs.

As partial orders are antisymmetric and transitive, we see that comparability
digraphs are acyclic. Thus, they are directed acyclic graphs, which we call dags.

A comparability digraph contains many edges representing relations which follow
by transitivity. For example, the comparability digraph of a chain is an orientation of
a complete graph, even though a chain has a simple structure.

We wish to consider a simpler representation of a poset which is obtained by deleting
some of the edges of the comparability digraph.

Definition 2.1.3. We say that an edge ab of a dag G is transitive if there exists a
vertex c such that ac, cb ∈ E(G).

The graph G is called transitive if whenever ac, cb are edges of G, then G also
contains the edge ab.

Note that the comparability digraph of a poset P is transitive. Relations which
follow from transitivity correspond precisely to transitive edges of Comp(G). Deleting
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2 Dushnik-Miller Dimension

these edges, we obtain a smaller directed graph. This enables us for example to
represent a chain as a directed path instead of an orientation of a complete graph.

Definition 2.1.4. The diagram of a poset P , also called Hasse diagram, is the
directed graph on the elements of P that consists of all non-transitive edges of the
comparability graph. The cover graph Cov(P ) is the underlying undirected graph of
the diagram.

The transitive closure of the relations represented by the diagram of a poset yields
the poset itself.

Diagrams are subgraphs of comparability digraphs. Thus, they are also dags. In
fact, dags with no transitive edges are in a one-to-one correspondence with posets
defined on the same vertex set. The bijection is given by the function which maps
every poset to its diagram.

As posets are partial orders, they can be extended to total orders which are also
called linear orders. Such an extension is referred to as a linear extension. It can be
constructed iteratively by choosing an arbitrary order of the minimal elements. Using
the same approach on the poset we obtain after deleting all minimal elements, we get
a linear extension of the initial poset by induction.

Definition 2.1.5. A poset is called a linear order or chain if all pairs of elements
are comparable. We often represent a linear order L on elements a1, . . . , an as

a1 ≤L a2 ≤L · · · ≤L an.

The reversed linear order of L, denoted by Lrev, corresponds to the poset defined by

an ≤Lrev an−1 ≤Lrev · · · ≤Lrev a1.

If L1 and L2 are linear orders on disjoint sets X and Y , we denote by L1 ≤ L2 the
linear order on X ∪ Y obtained by preserving the comparability relations of L1 and
L2 and defining ℓ1 ≤ ℓ2 for all elements ℓ1 of L1 and all elements ℓ2 of L2.

We call a poset E a linear extension of a poset P , if E is a linear order on the
elements of P and all comparability relations of P are preserved in E.

In fact for every ordered pair of incomparable elements (x, y) of a poset P , there
exists a linear extension L of P such that y ≤L x. Thus, a poset is the intersection of
all its linear extensions [87, p. 9] where we use the definition of intersection for binary
relations on the same set of elements.

Usually, a poset is the intersection of a relatively small number of linear extensions
when compared to the total number of linear extensions; think for example of an
antichain of size n. There are n! linear extensions, but any linear order of the elements
together with the reversed order yields the antichain.

Definition 2.1.6. A non-empty set R of linear extensions is a Dushnik-Miller realizer
of a poset P if for every pair of incomparable elements (x, y), there exists a linear
extension L ∈ R that reverses (x, y), i.e. y ≤L x. When clear from context, we may
refer to a Dushnik-Miller realizer as a realizer of P .
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2.1 Introduction to Dimension

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

Figure 2.1: The diagram of a standard example of size 6

In other words, a realizer of a poset P is a set of linear extensions whose intersection
yields P . As the intersection of all linear extensions is a realizer, we obtain the
following.

Lemma 2.1.7 ([24, Theorem 2.32], [87, p. 9]). Every poset admits a Dushnik-Miller
realizer.

We are interested in the minimum size of a realizer, which is called the dimension
of a poset. The concept is due to Dushnik and Miller [24]. Their work founded a
branch of combinatorics, referred to as Dimension theory, an introduction to which
can be found in [87].

Definition 2.1.8 ([87, p. 9]). The Dushnik-Miller dimension of a poset P is the size
of a smallest realizer of P .

Note that Dushnik-Miller dimension is well-defined by Lemma 2.1.7. The nomencla-
ture might reflect the fact that every n-dimensional poset can be faithfully represented
by a set of points in the n-dimensional real space [96, p. 1]. In Chapter 3, we introduce
a different notion of dimension. Nevertheless, when there is no ambiguity, we refer to
Dushnik-Miller dimension as dimension.

Clearly, the dimension of a linear order is 1. The dimension of an antichain of
size at least 2 is 2; it suffices to consider any linear extension and the corresponding
reversed linear order. In general, the dimension of a poset can be arbitrarily large. A
well-known family of posets of large dimension is the family of standard examples
which was introduced by Dushnik and Miller [24].

Definition 2.1.9 ([24, p. 604], [87, p. 12]). For d ∈ N, let Sd be the poset on the
2d-element set

{a1, . . . , ad, b1, . . . , bd}

where ai ≤ bj for all i, j ∈ [d] with i ̸= j, see Figure 2.1. The poset Sd is called the
standard example of size d.

Indeed, the dimension of standard examples is unbounded.

Lemma 2.1.10 ([24, p. 604], [87, p. 12]). The standard example of size d is a
d-dimensional poset for any d ≥ 2 and 2-dimensional for d = 1.
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2 Dushnik-Miller Dimension

Proof. The standard example of size 1 is an antichain, thus its dimension is 2.
Consider a standard example of size at least 2 and define for i ∈ [d] the linear orders

Li := a1 a2 . . . ai−1 ai+1 . . . ad bi ai b1 . . . bi−1 bi+1 . . . bd.

Note that the linear orders L1, . . . , Ld form a realizer of Sd. Thus, we obtain

dim(Sd) ≤ d.

We claim that every linear extension of Sd reverses at most one incomparable
pair (ai, bi). If L is a linear extension of Sd which reverses a pair (ai, bi), we have
bi ≤L ai. As aj ≤ bi and ai ≤ bj for all j ≠ i. we see that L reverses no other
incomparable pair (aj , bj).

Suppose dim(Sd) < d and consider a realizer of minimum size. By pigeon-hole
principle, at least one of the linear extensions of the realizer reverses at least two of the
incomparable pairs (ai, bi). This yields a contradiction and dim(Sd) ≥ d follows.

Hiraguchi showed that the dimension of any poset on n vertices is at most n
2 [50]

[87, Theorem 10.8]. The standard example shows that this bound is tight.
As the restriction of a linear extension to a subposet is a linear extension of the

latter, we see that dimension is a monotone property.

Lemma 2.1.11 ([87, p. 12]). For every subposet Q of a poset P , we have

dim(Q) ≤ dim(P ).

This property is often used to show that a poset has large dimension. For example,
every poset which contains a standard example of size n has dimension at least n.

In general, it is much more difficult to determine the dimension of a poset. While
there are efficient algorithms that recognize 1- and 2-dimensional posets, it is N P-
complete to determine whether a poset has dimension 3 [96].

Instead of giving an explicit construction of a realizer, a technique introduced
by Rabinovitch and Rival is often used instead [80]. It suffices to identify specific
incomparable pairs of the poset which are called critical pairs. Rabinovitch and Rival
showed that a family R of linear extensions of a poset is a realizer, if and only if it
contains for every critical pair a linear order which reverses its order. For a detailed
explanation, the reader may consult [87, pp. 29–31].

Posets of dimension 2 are well-understood. They are characterized by a result of
Dushnik and Miller, see Lemma 2.1.13, which relies on the following observation. Any
transitive orientation of the incomparability graph defines a poset on the elements
of P . Such orientations of Inc(P ) and the comparability digraph of P are compatible
in the following sense.

Lemma 2.1.12 ([24, Lemma 3.51]). For any transitive orientation I of the incom-
parability graph of P , there exists a linear extension L of P such that for any two
incomparable elements a and b of P , we have a ≤L b if and only if ab ∈ E(I).

8



2.1 Introduction to Dimension

Proof. Consider the complete graph K on the elements of P . For any two distinct
elements a, b of P , we orient the edge {a, b} of K from a to b if a ≤P b. If a ∥ b and
the edge {a, b} is oriented from a to b in the given transitive orientation I, we do the
same. We obtain an orientation −→

K of K and claim that −→
K is transitive.

Suppose there are edges ab, bc ∈ E(−→K). We need to show that ac ∈ E(−→K). If
a ≤P b and b ≤P c, we see by transitivity that a ≤P c, thus ac ∈ E(−→K). Similarly, we
obtain ac ∈ E(−→K) if a ∥ b and b ∥ c as the orientation I is transitive. If one of the
edges ab and bc is in Inc(P ), while the other is an edge of the comparability digraph
of P , we distinguish several cases.

Case 1. a ≤P b, b ∥ c and a ∥ c. Note that bc ∈ E(I). If ac ∈ E(I), we are
done. Otherwise ca ∈ E(I), and ba ∈ E(I) follows by transitivity, which yields a
contradiction.

Case 2. a ≤P b, b ∥ c and a ∦ c. If a ≤P c, we are done. Otherwise c ≤P a, and by
transitivity c ≤P b, which yields a contradiction.

If a ∥ b, we proceed in a similar way. In each case, we obtain that ac ∈ E(−→K).
Thus, −→

K is indeed a transitive orientation of K. We can interpret −→
K as the compara-

bility digraph of another poset L on the elements of P . As K is a complete graph,
the poset L is a linear extension of P .

Dushnik and Miller showed that if there exists a transitive orientation of the
incomparability graph of a poset, it has dimension at most 2 [24, Theorem 3.61].
Lemma 2.1.13 ([24, Theorem 3.61]). Let P be a poset. If its incomparability graph
admits a transitive orientation, then dim(P ) ≤ 2.

Proof. Applying Lemma 2.1.12 to a transitive orientation I of the incomparability
graph of P defines a linear extension L of P . Reversing the orientation of every edge
in I, we obtain another transitive orientation I ′ of Inc(P ). Lemma 2.1.12 applied
to the orientation I ′ yields once again a linear extension L′ of P . For incomparable
elements a, b of P , we see that a ≤L b if and only if b ≤L′ a. Thus, {L, L′} is a realizer
of P and dim(P ) ≤ 2 follows.

Actually, the family of posets of dimension at most 2 can be characterized as posets
whose incomparability graph admits a transitive orientation [24, Theorem 3.61].

If a poset contains a large standard example, its dimension is large. However, it
is not necessary for a poset of large dimension to contain a large standard example.
Universal interval orders provide an example of such a family of posets.
Definition 2.1.14 ([31, p. 675]). An interval [a, b] ⊆ R is called non-degenerate if
a < b. We call a poset P an interval order if there exists an assignment x 7→ [ℓx, rx]
that maps all elements x of P to non-degenerate intervals in R such that for any two
elements u, v of P we have u <P v if and only if ru < ℓv. Such an assignment is called
a (closed) interval representation of P . Sets of intervals in R define posets via the
above correspondence.

For n ∈ N, we define the universal interval order In as the poset corresponding to
the set of all non-degenerate intervals with both endpoints in [n].

9



2 Dushnik-Miller Dimension

There are several slightly different definitions of interval orders. While some authors
require all intervals to be non-degenerate [35, p. 298], others give no further restriction
[31, p. 675]. Instead of considering closed intervals, we can use open intervals. Spinrad
defined interval orders using the following notion [83].

Definition 2.1.15. An open interval representation of a poset P is an assignment
x 7→ (ℓx, rx) that maps all elements x of P to open (non-empty) intervals in R such
that for any two elements u, v of P , we have u <P v if and only if ru ≤ ℓv.

Note that the closed interval representation x 7→ [ℓx, rx] and the open interval
representation x 7→ (ℓx, rx) might correspond to different posets. While the closed
interval representation {[1, 2], [2, 3]} represents an antichain, the open interval repre-
sentation {(1, 2), (2, 3)} yields a chain. Nevertheless, if a poset has a closed interval
representation, it also admits an open one and vice versa.

Lemma 2.1.16. A poset is an interval order if and only if it has an open interval
representation.

Proof. Let P be a poset. We say that an interval representation is spaced if there
are no two elements u, v such that ru = ℓv. The assignment f◦ : x 7→ (ℓx, rx) is the
interior of f : x 7→ [ℓx, rx], and f is the closure of f◦. Note that if P has a spaced,
closed interval representation, its interior is an open interval representation of P .
Similarly, the closure of a spaced, open interval representation of P is a closed interval
representation of P . Thus, it suffices to construct spaced interval representations.

Suppose P is an interval order. Consider a closed interval representation f of P .
If f is not spaced, there are incomparable elements u, v such that ru = ℓv. It suffices
to slightly augment ru by some real number ε > 0 such that ℓv < ru + ε. Choosing ε
sufficiently small, the closed interval representation we obtain still yields P . Proceeding
similarly for each such pair u, v, we obtain a spaced, closed interval representation
of P .

Now suppose that P has an open interval representation. If there are two ele-
ments u, v such that ru = ℓv, we can slightly decrease ru by some real number ε > 0
such that ru − ε < ℓv. For sufficiently small ε, the interval representation we obtain
still represents P . Inductively, we obtain a spaced, open interval representation. As
its closure is a closed interval representation of P , the claim follows.

Interval orders are characterized as posets which do not contain the standard
example of size two as a subposet. We refer to the proof given in [87, p. 86]. The
result was first explicitly shown by Fishburn [34, Theorem 4]. Former results implicitly
yield the same characterization [40, 41], as was observed by Trotter [87, p. 86].

Even though interval orders do not contain large standard examples, their di-
mension can be arbitrarily large. Füredi et al. determined the exact value of the
maximum dimension of the interval orders of bounded height up to a constant factor
[35]. We are mostly interested in the lower bound for universal interval orders, see
[35, Corollary 5.2] for a proof.
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2.1 Introduction to Dimension

(a) The elements of P are represented by
gray disks. The diagram of a poset Qx

corresponding to an element x of P is
drawn within the disk of x.

(b) The diagram of the lexicographic sum
is represented. Black edges belong to
one of the posets Qx. All other edges
are represented as dotted lines.

Figure 2.2: Representations of a lexicographic sum ∑
x∈P Qx.

Lemma 2.1.17 ([35, Corollary 5.2]). For every n ≥ 4, we have dim(In) ≥ log log(n).

The following definition provides an operation which enables us to combine several
posets.

Definition 2.1.18 ([87, p. 24]). Let P be a poset and let F = {Qx | x ∈ P} be a
family of posets indexed by the elements of P . We denote by ∑x∈P Qx the poset
on {(x, y) | x ∈ P, y ∈ Qx} where (x, y) ≤ (x′, y′) if and only if either x <P x′ or
x = x′, y ≤Qx y′. The poset ∑x∈P Qx is called the lexicographic sum of F over P .

An example of a lexicographic sum is given in Figure 2.2. Interestingly, if we
know the dimension of each of the posets involved in the lexicographic sum, we can
determine the dimension of the resulting poset as has been shown by Hiraguchi [50].
We refer to the proof given by Trotter in [87, p. 24].

Lemma 2.1.19 ([87, p. 24]). For any poset P on a set X and any family of posets Qx

with x ∈ X, we have

dim(
∑
x∈X

Qx) = max(dim(P ), max
x∈X

dim(Qx)).

It follows easily that the dimension of a poset is bounded by the maximum dimension
of its components.

Lemma 2.1.20. If P is a poset and we denote by C1, . . . , Ck the posets induced by
the components of the diagram of P , then

dim(P ) ≤ max(2, max
i∈[k]

dim(Ci)).

Proof. We may assume that the diagram of P has at least two components. As P
is the lexicographic sum of {C1, . . . , Ck} over an antichain with k elements labelled
1, . . . , k, the claim follows immediately from Lemma 2.1.19.

11



2 Dushnik-Miller Dimension

Note that if P has at least two components, then the inequality in the previous
lemma is an equality.

2.2 Stack and Queue Layouts

If we draw the vertices of a graph G on a horizontal line of the plane and draw the
edges as half-circles above this line, we obtain a drawing of G. A layout is an ordering
of the vertices together with an edge partition based on this drawing. The most
common layouts are stack and queue layouts. Stack and queue number are two graph
parameters which are based on minimization problems for stack respectively queue
layouts.

Even and Itai, Ollmann as well as Bernhart and Kainen initiated the study of stack
layouts of graphs, the latter using the term book embedding instead [8, 28, 62, 78].
Since then, many results connected to stack number followed [13, 26, 95]. Stack
number is sometimes called book thickness or page number [22, p. 2]. Heath, Leighton,
and Rosenberg developed the notion of queue layouts and explored the relationship
between queue and stack number [44, 48]. Bounds on the stack number of a variety
of graph classes have been established [20, 94]. The notions have also been applied to
dags [45, 47, 60, 61] and posets [33, 77, 86]. An overview of further results connected
to queue and stack number, as well as applications is given in [22].

Definition 2.2.1. Consider a topological vertex ordering σ of a dag. An edge cd lies
inside an edge ab if their endpoints are ordered a <σ c <σ d <σ b with respect to σ. If
one of the edges ab and cd lies inside the other, we say that the edges ab and cd nest.
A set of k pairwise nesting edges is called a k-rainbow; see Figure 2.3a. A topological
vertex ordering of a dag together with a partition of its edges into k parts is called a
k-queue layout if no two edges of the same part nest. If this is the case, the parts
are referred to as queues. The queue number of a dag G, denoted by qn(G), is the
minimum number k such that G admits a k-queue layout.

Given a topological vertex ordering σ of a dag, we say that edges ab and cd cross if
their endpoints are ordered a <σ c <σ b <σ d or c <σ a <σ d <σ b with respect to σ.
A k-twist consists of k pairwise crossing edges, see Figure 2.3b. A topological vertex
ordering of a dag together with a partition of the edges into k parts such that no
two edges of the same part cross, is a k-stack layout. The parts of a such a layout
are called stacks. The stack number of a dag G, denoted by sn(G), is the minimum
number k such that G admits a k-stack layout.

The queue and stack number of a poset is defined as the queue, respectively stack
number of its diagram.

We define queue and stack number of undirected graphs in a similar way. Instead of
considering topological vertex orderings, we consider all vertex orderings. The terms
defined above are used analogously for undirected graphs as for dags.

There is a deep connection between (undirected) stack number and vertex colorings
of circle graphs [28] [48, p. 932] [61, p. 8]. If we consider a circle C with chords, the
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2.2 Stack and Queue Layouts

(a) A 5-rainbow. (b) A 5-twist.

Figure 2.3: On the left, a rainbow is represented, on the right a twist.

corresponding circle graph G is the undirected graph whose vertices correspond to
the chords of C and where two vertices are adjacent if and only if the corresponding
chords intersect. Considering the intersections of the chords with C in the order they
appear on the circle, and interpreting these as vertices of an undirected graph H, we
obtain a vertex ordering σ of H. The chords of C correspond to edges of the graph H.
As any two crossing edges in σ correspond to two adjacent vertices in G, we see that
a stack assignment of σ corresponds to a proper vertex coloring of G and vice versa.

Obviously, a layout which contains a k-rainbow requires at least k queues. Inter-
estingly, this is the only obstruction as has been shown by Heath and Rosenberg
[48, Theorem 2.3]. We follow the proof given by Dujmović and Wood [22, Lemma 1].

Lemma 2.2.2 ([22, Lemma 1]). A topological vertex ordering of a dag admits a
k-queue layout if and only if it contains no (k + 1)-rainbow.

Proof. Clearly, a k-queue layout contains no (k+1)-rainbow as all edges of the rainbow
have to be assigned to different queues. Conversely, if the vertex ordering contains
no (k + 1)-rainbow, we define for an edge uv the value q(uv) as the maximum size of
a rainbow inside uv plus one. Note that if an edge u′v′ is nested inside an edge uv,
we have q(u′v′) < q(uv). Thus, we obtain a valid queue assignment. As q(e) ≤ k for
every edge e, we used at most k queues.

To some extent k-twists behave in the context of stack number as k-rainbows for
queue number. While both provide a lower bound for stack number and queue number
respectively, there is no similar result to Lemma 2.2.2 for k-twists. There are families
of layouts of graphs where the size of a largest twist is k, but which require at least
Ω(k log(k)) stacks [14, Theorem 2]. Surprisingly, if a layout has large stack number,
it also admits a large twist. More precisely, if the largest twist has size k, its stack
number lies in O(k log(k)) [14, Theorem 1]. Although the largest size of a twist in
a given vertex ordering can be determined in polynomial time [53], the problem of
determining the minimum number of stacks for a vertex ordering is N P-complete
[48, Proposition 2.4]. This stands in clear contrast to queue layouts as given a vertex
ordering with no (k + 1)-rainbow, a k-queue layout can be determined in polynomial
time [48, Theorem 2.3]. However, the problems of recognizing 4-queue dags and
6-stack dags are N P-complete [45].

We now give bounds on the queue and stack number of some posets. As we wish to
explore the connection between dimension, queue and stack number, we first consider

13



2 Dushnik-Miller Dimension

the family of standard examples. These posets have high dimension and large queue
and stack number.

Lemma 2.2.3. For d ≥ 2, there is a linear lower bound on the queue number of the
standard example Sd, more precisely qn(Sd) ≥ ⌊d

2⌋. The same is true if we replace
queue by stack number.

Proof. Note that the set {a1, . . . , a⌊ d
2 ⌋, b⌈ d

2 +1⌉, . . . , bd} induces the complete bipartite
graph K := K⌊ d

2 ⌋,⌊ d
2 ⌋ where all edges are directed from one part to the other. Therefore,

it suffices to show that qn(K) ≥ ⌊d
2⌋. Up to symmetry, there is only one topological

ordering of K and this ordering contains a ⌊d
2⌋-rainbow and a ⌊d

2⌋-twist.

Since all edges having the same left endpoint can be assigned to one queue, we see
that the queue number is bounded from above by the number of vertices of the graph.
The same is true for stack number. The lemma above establishes a linear lower bound
on the queue and stack number of the standard example in the number of vertices.
Note however that the given bound is only sharp up to a constant factor.

2.3 Stack Number is not bounded by Dimension

The cover graph of a standard example is an almost complete bipartite graph. Thus,
the number of edges is quadratic in the number of vertices. We wish to construct
posets with large stack number, but where the number of edges is linear.

Definition 2.3.1. Consider the poset on elements a1, . . . , an, b1, . . . , bn whose diagram
consists of paths a1 . . . an and b1 . . . bn and all edges aibi for i ∈ [n], see Figure 2.4a.
We say that the poset is a fin of size n on a1, . . . , an, b1, . . . , bn.

The double fin of size n is the poset consisting of a fin on a1, . . . an, b1 . . . bn and a
fin on c1, . . . , cn, d1, . . . dn where an ≤ d1 and cn ≤ b1, see Figure 2.4b.

Using a similar idea as Jungeblut, Merker, and Ueckerdt [60, p. 1], we see that a
fin of size n forces a large twist in certain topological orderings.

Lemma 2.3.2. If a poset P contains a fin of size n on elements a1, . . . , an, b1, . . . , bn

and σ is a topological ordering of the vertices of P where an ≤ b1, then σ requires at
least n stacks.

Proof. As an ≤σ b1 and σ is a topological ordering, we obtain

a1 ≤σ a2 ≤σ · · · ≤σ an ≤σ b1 ≤σ · · · ≤σ bn.

We see that σ admits an n-twist as aibi is an edge for all i.

The lemma above enables us to prove that double fins have indeed large stack
number.
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2.3 Stack Number is not bounded by Dimension

a6

a2

a1

b6

b2

b1

(a) A fin of size 6 on elements
a1, . . . , a6, b1, . . . , b6.

a6

a2

a1

b6

b2

b1

c6

c2

c1

d6

d2

d1

(b) A double fin of size 6. One fin
is represented by black lines, the
other by dotted lines. Dashed
lines represent edges which do not
belong to any of the two fins.

Figure 2.4: Illustrations of a fin and a double fin.
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2 Dushnik-Miller Dimension

a1 c1 d1 b1a2 c2 d2 b2a3 c3 d3 b3a4 c4 d4 b4

Figure 2.5: A 4-stack layout of the double fin of size 4. Dashed edges belong to one
stack, dotted edges to another. The black edges form a 4-twist. Each of
these needs to be assigned to a different stack.

Lemma 2.3.3. A double fin of size n ≥ 2 has stack number n, a double fin of size 1
has stack number 2.

Proof. Up to symmetry, a double fin of size 1 has only one topological ordering. This
ordering requires two stacks.

Let Dn be the double fin of size n ≥ 2. Consider any topological ordering σ of the
vertices of Dn. We may assume that an ≤σ cn. The case cn ≤σ an is similar.

As an ≤σ cn, we obtain an ≤σ cn ≤σ b1. By Lemma 2.3.2, we see that σ contains
an n-twist. As σ was an arbitrary topological ordering, sn(Dn) ≥ n follows.

Conversely, the stack number is at most n, as there exists an n-stack layout of Dn,
see Figure 2.5. We need n stacks for the edges of the n-twist formed by the edges aibi

for i ∈ [n]. The remaining edges can be assigned to two different stacks. As none of
these edges cross any of the edges of the n-twist, n stacks suffice.

In particular, double fins provide an example of a family of posets with unbounded
stack number, but whose cover graphs have bounded degree. For undirected graphs it
is much harder to construct such examples. Only in 2023 has a family of undirected
graphs with bounded degree and unbounded stack number been constructed [26],
though it was known since 1987 that such families exist [13].

While the stack number of double fins is unbounded, their dimension is constant.
This shows that stack number is not bounded by dimension.

Lemma 2.3.4. A double fin has dimension 2.

Proof. Let Dn be a double fin of size n. Consider the following two linear extensions

L1 = a1 a2 . . . an c1 d1 c2 d2 . . . cn dn b1 . . . bn

L2 = c1 c2 . . . cn a1 b1 a2 b2 . . . an bn d1 . . . dn.

Note that ai ≤L1 cj and cj ≤L2 ai for all i and j. Similarly, we see that all pairs (bi, dj)
and (dj , bi) are reversed by L1 and L2 respectively. Further, we have ai ≤L1 bj
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2.4 Erdős-Szekeres

and bj ≤L2 ai for i > j. By symmetry, we also obtain ci ≤L2 dj and dj ≤L1 ci for
i > j. Therefore, {L1, L2} is a Dushnik-Miller realizer of Dn and dim(Dn) ≤ 2 follows.
As Dn is not a chain for any n, we see that its dimension is 2.

Corollary 2.3.5. There are posets with arbitrarily large stack number and dimension
at most 2.

Proof. By Lemma 2.3.4 and Lemma 2.3.3, the double fins form a family of 2-dimen-
sional posets whose queue number is unbounded.

Similarly, queue number is not bounded by dimension as we will see in Section 2.5.

2.4 Erdős-Szekeres
To some extent structure cannot be avoided in large configurations as has been shown
by Ramsey [81], see [18, p. 284]. This result led to the development of a branch of
mathematics, referred to as Ramsey Theory, with applications in the study of stack
number [12, 25], dimension of posets [5, 56, 85, 87, 91] and graph theory [18]. Usually,
the numbers involved are very large and often no explicit value is known. However,
Erdős and Szekeres were able to show that long monotone subsequences cannot be
avoided in any sequence of distinct numbers, thereby giving explicit bounds for a
Ramsey-type argument [27]. There are several different proofs of the result [84], one
of which is based on the pigeonhole principle and attributed to Seidenberg [82].

Theorem 2.4.1 ([82]). Any sequence of at least ab + 1 distinct real numbers where a
and b are any two positive, real numbers contains an increasing subsequence of length
at least ⌊a + 1⌋ or a decreasing subsequence of length at least ⌊b + 1⌋.

Proof. For every i ∈ [n], we assign a label (ai, bi) to the i-th element si of the sequence
where ai denotes the length of a longest increasing and bi the length of a longest
decreasing subsequence ending with si. Note in particular that for any two elements si

and sj of the sequence where i < j, we have ai < aj or bi < bj .
Suppose the sequence contains no increasing subsequence of length at least ⌊a + 1⌋

and no decreasing subsequence of length at least ⌊b + 1⌋. There are only ⌊a⌋ · ⌊b⌋
possible labels, each of which appears at most once. However, the sequence contains
ab + 1 elements. This yields a contradiction by the pigeonhole principle.

The same proof also yields another variant of the theorem, a formulation which is
found in [13, Lemma 2.4].

Theorem 2.4.2 ([27]). Let n be a natural number and let r be a positive, real number
with r ≤ n. Any sequence of n distinct real numbers contains an increasing subsequence
of length at least ⌈r⌉ or a decreasing subsequence of length at least ⌈n

r ⌉.

These two results are in particular of great use in the study of layouts [13, 23, 33,
46, 60, 61, 79] and dimension theory [5, 24, 32, 55, 85, 92], most commonly in the
construction of graphs or posets which meet given bounds.
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4 3 2 1 8 7 6 5

C1 C2

Figure 2.6: The ordering σ we obtain in Proposition 2.4.4 for a = 2 and b = 4. Every
element v of [ab] is represented by a point in R2 whose x-coordinate is
equal to the position of v in σ and whose height corresponds to the value v.

In Theorem 2.4.2, we often set r =
√

n, see [46, Lemma 4.1] for instance. This
special case is known as the symmetric variant of the Erdős-Szekeres Theorem.

Theorem 2.4.3. Any sequence of n distinct real numbers contains a monotone
subsequence of length at least ⌈

√
n ⌉.

Well-known constructions show that the bounds given in Theorem 2.4.2 are tight.

Proposition 2.4.4. For any two positive, real numbers a and b and any set S of
ab distinct real numbers, there exists a sequence of the elements of S such that any
increasing subsequence has length at most ⌈a⌉ and every decreasing subsequence has
length at most ⌈b⌉.

Proof. Let n := ab. Without loss of generality, we may assume that S = [n]. We
partition S into sets Ci := {j ∈ [n] | (i − 1)⌈b⌉ < j ≤ i⌈b⌉} for i ∈ [⌈a⌉]. For every i,
we define the ordering σi as the decreasing sequence on Ci. Define σ as the ordering
of the elements of S such that

σ = σ1 ≤ σ2 ≤ · · · ≤ σ⌈a⌉.

The ordering is exemplified in Figure 2.6. The ordering σ defines a sequence (ik) of the
elements of S. Note that any decreasing subsequence of (ik) consists only of elements
of one Ci. Thus, its length is at most ⌈b⌉. Further, any increasing subsequence of (ik)
contains at most one element of each Ci. Therefore, its length is bounded by ⌈a⌉.

The construction has for example been used by Heath and Pemmaraju [46, Theo-
rem 4.2].
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2.5 Queue Number is not bounded by Dimension

We will apply the next result in the following setting. Suppose we have n distinct
real numbers and four numbers a, b, a′, b′ such that n = ab = a′b′. We arrange
the n numbers according to the sequence (ik) resulting from Proposition 2.4.4 with
parameters a and b, followed by copies of the n numbers arranged according to the
sequence (jk) resulting from the same construction with parameters a′ and b′. If
we join all numbers of the same value, we obtain a layout of a matching. We are
interested in the size ℓ of a largest rainbow of this layout. Note that such a rainbow
corresponds to a longest subsequence of (ik) which is reversed in (jk). The following
observation gives an upper bound on the size ℓ. It will be of use in the proof of
Proposition 2.8.6 when we attempt to construct a ⪯h-subdivision of a poset which
has relatively small queue number compared to the original poset.

Observation 2.4.5. Let S be a set of n elements and let a, b, a′, b′ be positive, real
numbers such that ab = n, a′b′ = n and a ≥ a′. Let (ik) and (jk) be the sequences of
the elements of S constructed in Proposition 2.4.4 for a, b and a′, b′ respectively. If
(rm) is a subsequence of (ik) that is reversed in (jk), then its length is at most b′

b + 2.

Proof. Let C1, . . . , C⌈a⌉ and C ′
1, . . . , C ′

⌈a′⌉ be the partitions of S in the construction
of (ik) and (jk) respectively. Note that the order of two elements in (ik) is reversed
in (jk) if and only if they belong to different classes Ci, but the same class C ′

j or
vice versa. Let (rm) be a subsequence of (ik) of length ℓ that is reversed in (jk).
For s ∈ [ℓ], we denote by C(rs) the class Ci such that rs ∈ Ci. Similarly, we use the
notation C ′(rs) for classes C ′

i.
We may assume that ℓ ≥ 3, otherwise the claim follows immediately. As a ≥ a′,

the number of classes C ′
i is at most equal to the number of classes Ci. Since (rm) is

reversed in (jk), it follows that all classes C(rs) for s ∈ [ℓ] are distinct and all C ′(rs)
coincide as ℓ ≥ 3. In particular, all elements in C(r2), . . . , C(rℓ−1) lie in C ′(rℓ). Thus,

b′ ≥
∣∣C ′(rℓ)

∣∣ ≥ (ℓ − 2)b

and we obtain ℓ ≤ b′

b + 2.

2.5 Queue Number is not bounded by Dimension
In Section 2.3, we constructed a family of 2-dimensional posets with arbitrarily large
stack number. The aim of this section is to provide a similar construction for queue
number which is due to Heath and Pemmaraju [46].

Definition 2.5.1 ([46, p. 606]). The wing of size n is the poset on elements

a1, . . . , an, b1, . . . , bn, c1, . . . , cn

whose diagram consists of paths a1 . . . an and bn . . . b1 and all edges aici, cibi for i ∈ [n],
see Figure 2.7.

The family of wings does indeed constitute a family of low dimensional posets.
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a1

a2

a5

b5

b2

b1

c5c2c1

Figure 2.7: A wing of size 5.

Lemma 2.5.2. All wings of size at least 2 have dimension 2. The wing of size 1 is a
1-dimensional poset.

Proof. Note that the wing of size 1 is a chain. Thus, its dimension is 1.
Now consider a wing of size n at least 2. As it contains incomparable elements, its

dimension is at least 2. The two linear extensions

L1 = a1 c1 a2 c2 . . . an cn bn . . . b1

L2 = a1 . . . an cn bn cn−1 bn−1 . . . c1 b1

form a realizer of the wing of size n. Thus, its dimension is at most 2.

In fact, the result follows immediately from an observation of Trotter [87, p. 69],
see Theorem 2.6.8.

Heath and Pemmaraju established bounds on the queue number of wings using
the two different variants of the Erdős-Szekeres Theorem [46, Theorem 4.2] [79,
Theorem 5.8], see Theorem 2.4.1 and Theorem 2.4.2. Combining the two results, we
obtain the exact value up to one.

Lemma 2.5.3. For the wing Wn+1 of size n + 1, we have

⌊
√

n + 1⌋ ≤ qn(Wn+1) ≤ ⌈
√

n + 1⌉.

Proof. We first show that Wn+1 has queue number at least ⌊
√

n + 1⌋. Let σ be
an arbitrary topological ordering of the vertices. Considering the ordering of the
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a1 c1 b1a2 c2 b2a3 c3 b3a4 c4 b4

Figure 2.8: A 2-stack layout of a wing of size 4. Edges of the same color are assigned
to the same stack.

vertices ci induced by σ, we see by a well-known result of Erdős and Szekeres, see
Theorem 2.4.1, that there is a monotone sequence (jk) of length ℓ ≥ ⌊

√
n + 1⌋ such

that cj1 ≤σ · · · ≤σ cjℓ
. If (jk) is increasing, the edges cjk

bjk
form an ℓ-rainbow, if it is

decreasing we obtain an ℓ-rainbow consisting of the edges ajk
cjk

as σ is a topological
ordering. Thus, qn(Wn+1) ≥ ⌊

√
n + 1⌋.

As the bound established by Erdős and Szekeres is tight, see Proposition 2.4.4, there
exists a sequence (ik) of the integers [n] such that a longest monotone subsequence
has length at most ⌈

√
n ⌉. Consider the topological ordering

σ = a1 ≤ · · · ≤ an+1 ≤ ci1 ≤ · · · ≤ cin ≤ cn+1 ≤ bn+1 ≤ · · · ≤ b1

and a largest rainbow in σ. It suffices to show that its size is at most ⌈
√

n + 1⌉.
We call an edge of the rainbow with an endpoint ci for i ∈ [n] a c-edge. Define (jm)

as the sequence of integers such that cj1 < · · · < cjs in σ and these vertices correspond
to endpoints of the c-edges. As the c-edges form a rainbow, they are either all of the
form aici or they are all of the form cibi. In particular, we see that (jm) is a monotone
subsequence of (ik). Its length is therefore at most ⌈

√
n ⌉.

We may assume that (jm) is increasing; we can argue similarly if it is decreasing.
As (jm) is increasing, the rainbow contains the edges cjsbjs , but none of the edges aici.
Further, either at most one of the edges bibi+1 or the edge cn+1bn+1 belongs to the
rainbow. Thus, its size is at most ⌈

√
n + 1⌉.

While wings have large queue number, their stack number is at most 2, see Figure 2.8.
It follows that the queue number of dags is not bounded by stack number. For
undirected graphs, the problem is still open [19, p. 4], even though Dujmović et al.
showed that the (undirected) stack number is not bounded by queue number. They
constructed a family of graphs with queue number at most 4 and unbounded stack
number [19]. For dags, the question is far easier to answer as the family of double
fins has unbounded stack number, but queue number at most 2. Indeed, the layout of
a double fin represented in Figure 2.5 requires only two queues.

Even if the queue number of a poset is large, its dimension can be small. The proof
is similar to Corollary 2.3.5, which provides the analog result for stack number.
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Corollary 2.5.4. There are posets with arbitrarily large queue number and dimension
at most 2.

Proof. Wings form a family of posets whose dimension is at most 2 by Lemma 2.5.2.
Further, their queue number is unbounded by Lemma 2.5.3.

Similarly, there are posets with queue number at most 1 and arbitrarily large
dimension, as we will see in Corollary 2.7.7. Thus, neither is dimension bounded by
queue number, nor is queue number bounded by dimension. However, in Section 2.11
we will see that the dimension of a poset is bounded in terms of its queue number
and height.

2.6 Planar Posets

Intuitively, a planar graph is a graph that can be drawn in the plane without
any crossings. A rigorous definition of planar graphs and drawings is given in [18,
Chapter 4].

Definition 2.6.1 ([60, p. 1]). A planar drawing of a dag is called upward planar
if every edge ab is a strictly y-monotone curve with lower endpoint a and upper
endpoint b. A planar poset is a poset whose diagram admits an upward planar
drawing.

We may assume that the edges in an upward planar drawing are represented by
straight line segments [17, Theorem 4.3]. While planar graphs can be recognized in
linear time [52], the problem is N P-complete for upward planar graphs [39]. For a fixed
combinatorial embedding of a dag, it can be determined in polynomial time whether
there exists an upward planar drawing which respects the embedding [9, Theorem 4].

As the standard example Sn is non-planar for n ≥ 5, it was supposed for a short
time that the dimension of planar posets might be bounded by a constant. However,
in 1981, Kelly constructed planar posets which contain large standard examples as
subposets [64, Section 2].

Definition 2.6.2 ([64, Section 2]). The poset Kellyn is the poset on elements

a1, . . . , an, b1, . . . , bn, ℓ1, . . . , ℓn−1, r1, . . . , rn−1

where for all i, j we have

• ri ≤ rj if i ≤ j

• ℓi ≤ ℓj if j ≤ i.

• ai ≤ rj if i ≤ j

• ai ≤ ℓj if i < j

• ℓi ≤ bj if i ≤ j

• ri ≤ bj if i < j,

and all other relations follow by transitivity. It is represented in Figure 2.9.
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a4

a3

a2

a1

b1

b2

b3

b4

Figure 2.9: An illustration of the planar poset constructed by Kelly for n = 4.

The vertices a1, . . . , an, b1, . . . , bn induce a standard example of size n. In particular,
we see that a subposet of a planar poset might not be planar. As any poset which
contains an n-dimensional standard example has dimension at least n, it follows that
dim(Kellyn) ≥ n. Establishing a connection between the construction above and a
poset called the (n + 1)-dimensional Boolean lattice, Kelly was able to determine the
dimension of Kellyn, see [64, Section 2] for a proof.

Lemma 2.6.3 ([64, Section 2], [58, p. 2754]). The poset Kellyn is (n+1)-dimensional
for every positive integer n.

As the posets constructed by Kelly are planar and have arbitrarily large dimension,
we see that the dimension of planar posets is unbounded.

Corollary 2.6.4 ([64, Section 2]). The dimension of planar posets is unbounded.

If a poset contains the standard example Sn for large n, its dimension is at least n.
For posets with planar cover graphs, it has been conjectured that this is the only
obstruction for small dimension [70, Conjecture B]; a proof for posets with planar
cover graphs and a zero is known [70, Theorem 2]. Hodor et al. announced a proof
for planar posets [51].

However, there are non-planar posets of large dimension which do not admit a large
standard example as a subposet, for instance the incidence posets of complete graphs
[92, p. 2].

While the queue number of undirected planar graphs is bounded by a constant [20],
it is unbounded for planar posets.
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Corollary 2.6.5 ([46, Theorem 4.2]). The queue number of planar posets is unbounded.

Proof. The family of wings is a family of planar posets with unbounded queue number
by Lemma 2.5.3.

As every stack of a stack layout induces a set of non-crossing edges, it is natural
to wonder whether planar graphs have small stack number. Indeed, the undirected
stack number of planar graphs is at most 4 [6, 95]. Actually, it is bounded for every
proper minor-closed class of graphs [11, Theorem 1.2]. The directed case is somewhat
different. It was first studied by Nowakowski and Parker who conjectured that the
stack number of planar posets is bounded by a constant providing an example with
stack number 3 [77, p. 217]. The lower bound was subsequently improved to 4 by
Hung [54] and to 5 by Merker [68]. However, no planar poset with stack number 6
is known. In fact, whether the stack number of upward planar graphs is bounded
by a constant is still open [61, Open Problem 3]. Interestingly, posets with planar
cover graphs, but which are not necessarily planar posets, can have arbitrarily large
stack number as has been shown by Heath and Pemmaraju [46, Theorem 5.1]. Since
the question for planar posets has been asked by Nowakowski and Parker, significant
progress has been made. Alzohairi and Rival investigated series-parallel planar posets
and showed that their stack number is at most 2 [1, Theorem 8]. Heath, Pemmaraju,
and Trenk proved upper bounds for oriented trees and unicyclic, directed graphs [47].
Algorithmic aspects have been investigated by Heath and Pemmaraju [45]. Most
recently, the case of outerplanar, directed graphs has been settled. Jungeblut, Merker,
and Ueckerdt showed that the stack number is indeed bounded for this graph class
[61, Theorem 2].

Definition 2.6.6 ([87, p. 6]). Let P be a poset on elements X. An element a ∈ X is
a lower bound of a subset S ⊆ X if a ≤ s for all s ∈ S. It is a greatest lower bound if
for every lower bound a′ of S, we have a′ ≤ a. Upper bounds and least upper bounds
are defined similarly. If a is a (greatest) lower bound of X, we say that a is a zero of
the poset. Similarly, we refer to a (least) upper bound of X as a one.

If every non-empty subset S ⊆ X has a least upper and a greatest lower bound,
the poset P is called a lattice; see Figure 2.10 for examples.

It is believed that Joseph A. Zilber, still a student at that time, communicated
a result on planar lattices to Birkhoff who included it as Exercise 7 (c) in [10,
Section II.4], see [4, 87]. Baker, Fishburn, and Roberts observed that the following
theorem is a consequence [3, p. 18] [87, p. 69]. We refer to the proof given by Trotter
[87, p. 69].

Theorem 2.6.7 ([87, p. 69]). A lattice is a planar poset if and only if its dimension
is at most 2.

In fact, the proof given by Trotter even shows the following.

Theorem 2.6.8 ([87, p. 69]). Every planar poset with a zero and a one has dimension
at most 2.

24



2.6 Planar Posets

Figure 2.10: Three posets are represented. The poset on the left has a zero and a one,
but is not a lattice. The one depicted in the center is a lattice, thus has
in particular a zero and a one. The poset on the right has a zero, but
does not have a one.

Actually, planar posets with a zero and a one correspond to the family of 2-dimen-
sional lattices [87, p. 114]. Trotter and Moore showed in [89, Theorem 2] the following
result for planar posets with a zero, but which do not necessarily have a one.

Theorem 2.6.9 ([89, Theorem 2], [87, p. 114]). Every planar poset with a zero has
dimension at most 3.

An application of Theorem 2.6.9 shows that the dimension of any poset whose cover
graph is a tree is at most 3 [89, Corollary 6] [87, p. 117]. It suffices to prove that
the poset obtained by adding a minimal element is planar. Lemma 2.1.20 yields the
following result.

Corollary 2.6.10 ([89, Corollary 6]). Every poset whose cover graph is a forest has
dimension at most 3.

In 2010, Felsner, Li, and Trotter showed that the dimension of a poset of height 2
whose cover graph is planar is at most 4 [30, Corollary 5.1]. This result was extended
by Streib and Trotter who proved that the dimension of any poset with a planar
cover graph is bounded in terms of its height [85, Theorem 3.2]. The upper bound
was later reduced to a polynomial in the height of the poset by Kozik, Micek, and
Trotter [66, Theorem 1]. Further, it was shown that if the cover graph of a poset is
outerplanar, its dimension is at most 4 [32, Theorem 1.8].

Clearly, planar posets have planar cover graphs. Therefore all previous results also
apply to planar posets. The bounds for planar posets can be improved even further.
Joret, Micek, and Wiechert showed that the dimension of planar posets is bounded
by a linear function in the height [58, Theorem 1].

Theorem 2.6.11 ([58, Theorem 1]). If P is a planar poset then

dim(P ) ≤ 192h(P ) + 96.
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2.7 1-queue and 1-stack Dags
Undirected 1-queue graphs have been characterized by Heath and Rosenberg as
arched leveled-planar graphs [48]. Similarly, dags with queue number 1 correspond to
the class of arched leveled-planar dags [47]. While recognizing undirected 1-queue
graphs is N P-complete, dags with queue number 1 can be recognized in linear time
[45, Section 2]. As we are interested in the connection between queue and stack
number and dimension, we consider 1-queue and 1-stack posets and ask whether their
dimension is bounded.

Bernhart and Kainen showed that undirected graphs with stack number at most 1
correspond to the class of outerplanar graphs [8, Theorem 2.5]. Considering 1-stack
posets restricts the class even further.

Lemma 2.7.1 ([77, p. 211], [86, p. 190]). Every stack in the stack layout of a poset P
induces a forest in the cover graph of P .

Proof. Consider a stack layout σ of the diagram of P and its corresponding partition
of the edges into stacks Ei. By definition of a stack, we see that each Ei is crossing-free.
Suppose some Ei contains a cycle C on vertices a0, . . . , an which appear in the given
order in σ. We show that the edges of the cycle correspond to edges ajaj+1 where
indices are taken modulo n + 1.

Suppose there is some s < n such that both neighbors of as on C are to the left
of as in σ. Consider the edge e which connects as to its left-most neighbor aℓ of C.
As Ei is crossing-free, none of the vertices of C below the edge e in σ is connected to
any of the vertices to the left of aℓ or to the right of as in σ. This is a contradiction
as C is a cycle. Similarly, we see that there is no s > 0 such that both neighbors of as

on C are right of as in σ. Thus, the edges of C correspond to edges ajaj+1.
As a0a1, . . . , an−1an are edges of the diagram of P , the edge a0an is transitive. This

is a contradiction as the diagram of P contains no transitive edges. Therefore, no Ei

contains an (undirected) cycle which finally shows that each Ei induces a forest in
the cover graph of P .

As the cover graphs of 1-stack posets are forests, their dimension is at most 3.

Corollary 2.7.2. If a poset has stack number 1, its dimension is at most 3.

Proof. The diagram of P is a forest by Lemma 2.7.1. Therefore, its dimension is at
most 3 by Theorem 2.6.10.

If a graph is dense, i.e. the number of edges is relatively large compared to the
number of vertices, it has large stack number [8, Theorem 3.3]. For posets, we obtain
the following.

Lemma 2.7.3. If P is a poset on n ≥ 2 elements whose cover graph contains m
edges, then

sn(P ) ≥ m

n − 1 .
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2.7 1-queue and 1-stack Dags

Proof. Consider a k-stack layout of P where k denotes the stack number of P . Each
stack contains at most n − 1 edges as it forms a forest by Lemma 2.7.1. Thus, the
cover graph of P has at most k · (n − 1) edges in total.

Similarly, a dense graph has large queue number as has been shown by Heath
and Rosenberg. They proved that a 1-queue graph on n vertices contains at
most 2n − 3 edges, thus a graph on n vertices and m edges has queue number
at least m

2n−3 [48, Theorem 3.6]. Pemmaraju showed that the queue number of a
graph is bounded from above and from below in terms of the number of edges and
vertices [79, Theorem 2.15], thereby improving the lower bound established by Heath
and Rosenberg to m

2n−1 [79, Corollary 2.17].
If we wish to reduce the queue number of a graph, it is necessary to reduce its

density. The following operation provides a means of such an undertaking.

Definition 2.7.4. Let G be a dag. We say that we subdivided an edge ab ∈ E(G)
k times if we replaced it by a directed path a x

(ab)
1 . . . x

(ab)
k b. A directed graph obtained

from G by subdividing edges is called a subdivision of G. Note that such a subdivision
is also a dag. The vertices x

(ab)
1 , . . . , x

(ab)
k are called division vertices; vertices that

correspond to the vertices of G are called original vertices.
We refer to the dag we obtain from G by subdividing each edge exactly k times

for some k ∈ N as the k-subdivision of G. A subdivision of a dag where every edge
has been subdivded at most k times is a ⪯k-subdivision. All terms defined for dags
are used in a similar way for undirected graphs and posets. A subdivision of a poset
corresponds to a subdivision of its diagram.

Heath and Rosenberg showed that 1-queue graphs are in particular planar [48].
Conversely, Dujmović and Wood were able to prove that a graph has a 1-queue
subdivision if and only if it is planar [23, Theorem 20]. One direction does also hold
for dags if we consider upward planarity instead of planarity.

Proposition 2.7.5. Every upward planar dag admits a 1-queue subdivision.

Proof. Consider an upward planar drawing of an upward planar dag G. Let ℓ1, . . . , ℓk

be horizontal lines ordered by increasing y-coordinate such that at least one vertex lies
on each of the horizontal lines and every vertex of G lies on some line. Subdividing
the edges of G at the intersections with the horizontal lines, we obtain a subdivision S
of G.

We denote by vx the x- and by vy the y-coordinate of any vertex v of S. For i ∈ [k],
let Li denote the vertices of S which lie on the horizontal line ℓi. We define σ
as the topological ordering where vertices of S are primarily ordered by increasing
y-coordinate and secondly by increasing x-coordinate.

It suffices to show that σ is a 1-queue layout. Suppose two edges ab, a′b′ nest
in σ. We may assume a ≤σ a′ ≤σ b′ ≤σ b. By definition of S, there exists an
integer i ∈ [k − 1] such that a, a′ ∈ Li and b, b′ ∈ Li+1. Thus, ay = a′

y and by = b′
y

follows. Further, by the ordering of the vertices a, b, a′, b′ in σ, we see that ax < a′
x
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Figure 2.11: The poset represented on the left is non-planar. Subdividing the edge
be, we obtain a poset which admits a 1-queue layout. The layout is
represented on the right. The vertex x is a division vertex, dashed edges
arose from subdivision.

and b′
x < bx which shows that the edges ab and a′b′ cross in the drawing of S. This

yields a contradiction as the drawing of S is planar.

Yet, a similar result does not hold for stack number. Indeed, there are planar posets
which do not admit a 1-stack subdivision, think of the poset P whose diagram is a
4-cycle of height 3. Any subdivision of P has stack number 2.

Not only does every planar dag admit a 1-queue subdivision, in fact, every dag
has a 2-queue subdivision as we will see in Corollary 2.10.6. However, there are also
non-planar posets with 1-queue subdivisions.

Observation 2.7.6. There exists a non-planar poset with a 1-queue subdivision.

Proof. It is well-known that the poset represented on the left of Figure 2.11 is non-
planar, see [16, Figure 9] for instance. Subdividing the edge be, we obtain a 1-queue
subdivision witnessed by the queue layout represented on the right of Figure 2.11.

Thus, the result of Dujmović and Wood [23, Theorem 20] does not hold in the
directed setting.

While the dimension of 1-stack posets is at most 3, the dimension of 1-queue posets
is unbounded.

Corollary 2.7.7. There exists a family of posets with queue number 1 and unbounded
dimension.

Proof. By Proposition 2.7.5 there exists a 1-queue subdivision Dn of Kellyn for every n.
As Kellyn is a subposet of Dn, we obtain dim(Dn) ≥ n by Lemma 2.6.3.

2.8 Queue and Stack Number of Subdivisions
The following definition is an adaptation of a definition given by Spinrad [83, p. 144]. It
is of use when extending topological vertex orderings of a dag to a subdivision. If x is
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a division vertex of an edge ab, it has to be placed between the original vertices a and b
in any topological ordering. Spinrad considered extensions of topological orderings
where division vertices are placed directly after the left endpoint, or before the right
endpoint of the edge they subdivided.

Definition 2.8.1. Let S be a subdivision of a dag G and let x
(ab)
1 , . . . , x

(ab)
k denote

the division vertices of some edge ab in the order they are encountered along ab.
Consider a linear order σ′ of the vertices of S. We say that the division vertices
x

(ab)
1 , . . . , x

(ab)
k are placed low with respect to the restriction of σ′ to G if

a ≤σ′ x
(ab)
1 ≤σ′ · · · ≤σ′ x

(ab)
k

and no original vertex appears between a and x
(ab)
k . We say that they are placed high

if
x

(ab)
1 ≤σ′ · · · ≤σ′ x

(ab)
k ≤σ′ b

and no original vertex appears between x
(ab)
1 and b.

Extending a linear extension of a poset to a subdivision by deciding whether to place
the division vertices of every edge high or low, we obtain indeed a linear extension of
the subdivision.

Lemma 2.8.2. Let L be a linear extension of a poset P and let Eℓ ∪Eh be a partition
of the edges of the diagram of P . Any linear order L′ of S that is an extension of L
where all division vertices of edges that lie in Eℓ are placed low and those of edges
in Eh are placed high is a linear extension of S.

Proof. The claim follows from the observation that division vertices of an edge ab are
placed between the original vertices a and b in L′.

Note that the linear extension L′ in Lemma 2.8.2 is not unique as we did not specify
for instance the ordering of division vertices of distinct edges with the same right
endpoint that have been placed high. Further, not every linear extension can be
constructed in such a way.

Dujmović and Wood showed that the queue number of a 1-subdivision of a q-queue
graph is at most q + 1 [23, Lemma 9] using a result of Dujmović, Pór, and Wood [21].
Further, they proved that the queue number of a 2-subdivision of a q-queue graph
is at most ⌈2√

q ⌉ [23, Lemma 26]. In the directed setting, the queue number of any
subdivision is bounded in terms of the queue number of the original graph. The proof
is based on [23, Lemma 13].

Proposition 2.8.3. Any subdivision S of a dag G satisfies

qn(S) ≤ 2 qn(G) + 2.
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a

Figure 2.12: The vertex ordering σ′ constructed in Proposition 2.8.3. Original vertices
are represented in black, division vertices in white. The division vertices
derived from edges whose left endpoint is a are placed immediately after
a. The original vertices on the right are neighbors of a in the dag G.
Dashed lines correspond to new, black lines to original, and dotted lines
to old edges.

Proof. Let q := qn(G) and consider a q-queue layout σ of G. We define a topological
ordering σ′ be the vertex ordering of S such that its restriction to the vertices of G
is σ, division vertices of the same edge ab are placed consecutively according to their
order on ab and all division vertices are placed low. Further, we require for two
division vertices x and y of distinct edges ab and ab′ having the same left endpoint
that x <σ y if and only if b <σ b′.

We call edges of S original edges if both endpoints correspond to original vertices.
Edges where the right endpoint is a division vertex are new edges. The remaining
edges are referred to as old edges. The layout σ is represented in Figure 2.12.

It is easy to see that the largest rainbow formed by new edges has size at most 2.
Thus, we can assign all new edges to two queues. Further, as the restriction of σ′

to G is σ, we see that q queues suffice for all original edges.
It remains to show that the old edges can be assigned to q more queues. Consider

the queue assignment where every old edge inherits the queue of the edge it has been
derived from. Suppose two old edges xa and yb are assigned to the same queue and
nest. We may assume that x ≤σ′ y ≤σ′ b ≤σ′ a. Let a′a and b′b denote the edges from
which xa and yb have been derived respectively.

Case 1. a′ = b′. By definition of σ′, we obtain y ≤σ′ x ≤σ′ b ≤σ′ a as b ≤σ a. This
is a contradiction.

Case 2. a′ ̸= b′. As x and y have been placed low, we see that

a′ ≤σ′ x ≤σ′ b′ ≤σ′ y ≤σ′ b ≤σ′ a.

Thus, a′a and b′b nest in σ, which yields a contradiction.
Thus, q queues suffice for the old edges and we constructed a valid queue assignment

using 2q + 2 queues in total.

Observe that this result is best-possible if we extend a queue layout σ of a dag to a
queue layout σ′ of a subdivision as in the proof of Proposition 2.8.3, see Figure 2.13.
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2.8 Queue and Stack Number of Subdivisions

(a) A q-queue layout of a dag G. The
black edges contain a q-rainbow.

(b) A (2q + 2)-queue layout of the subdivision
of G we obtain by subdividing every second
black edge exactly once and subdividing the
dashed edges once or twice respectively.

Figure 2.13: On the left, a q-queue layout σ of a dag G for q = 3 is represented.
On the right we extended σ as in the proof of Proposition 2.8.3 to a
(2q + 2)-queue layout of a subdivision of G.

Indeed, the largest rainbow in the layout represented on the left of Figure 2.13 has
size q, while the largest rainbow in the layout σ′, represented on the right, has
size 2q + 2.

Using Proposition 2.8.3, we may assume when considering a subdivision that every
edge has been subdivided the same number of times at the cost of increasing the
queue number slightly. This is of use in the proof of Lemma 2.8.5 for instance.

Similarly to queue number, the stack number of a subdivision of a dag G can be
bounded by a function of the stack number of G. Our approach is based on a proof
of Dujmović and Wood, who showed that the stack number of a 1-subdivision of an
s-stack graph is at most s + 1 [23, Lemma 13]. The proof is similar to the proof of
Proposition 2.8.3.

Proposition 2.8.4. Any subdivision S of a dag G satisfies sn(S) ≤ 2 sn(G).

Proof. Let s be the stack number of G and let σ be an s-stack layout. We define a
topological ordering σ′ of the vertices of S such that its restriction to the vertices of G
is σ, division vertices of the same edge ab are placed consecutively according to their
order on ab and all division vertices are placed low. Further, if x and y are division
vertices of distinct edges ab and ac, we require that x ≤σ′ y if and only if c ≤σ b.

We call edges of S original edges if both endpoints correspond to original vertices.
Edges where the right endpoint is a division vertex are new edges. The remaining
edges are called old edges. The layout σ is represented in Figure 2.14.

Note that s stacks suffice for all original edges as the induced layout of the original
vertices corresponds to σ. We may assign the new edges to any of these s stacks as
no new edge crosses any other new edge and original edges and new edges do not
intersect either.

It remains to show that s more stacks suffice for the old edges. Consider the stack
assignment where every old edge inherits the stack of the edge it has been derived
from. Suppose two old edges xa and yb which lie in the same stack cross. We may
assume that x ≤σ′ y ≤σ′ a ≤σ′ b. Recall that the vertices x and y are division vertices
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a

Figure 2.14: The vertex ordering σ′ constructed in Proposition 2.8.4. Original vertices
are represented in black, division vertices in white. The division vertices
derived from edges whose left endpoint is a are placed immediately after
a. The original vertices on the right are neighbors of a in the dag G.
Dashed lines correspond to new, black lines to original, and dotted lines
to old edges.

and the vertices a and b are original vertices. Let a′a and b′b be the edges xa and yb
have been derived from respectively.

Case 1. a′ = b′. By definition of σ′, we obtain y ≤σ′ x ≤σ′ a ≤σ′ b as a ≤σ b. This
is a contradiction.

Case 2. a′ ̸= b′. As x and y are placed low, we obtain

a′ ≤σ′ x ≤σ′ b′ ≤σ′ y ≤σ′ a ≤σ′ b.

Thus, the edges a′a and b′b cross in σ contradicting our assumption that xa and yb
are assigned to the same stack.

Thus, s more stacks suffice for the old edges. In total, we needed 2s stacks, thereby
showing that σ′ is indeed a 2s-stack layout.

If we extend the vertex ordering σ of an s-stack layout of a dag to a vertex ordering σ′

of a subdivision as in the proof of Proposition 2.8.4, the smallest number of stacks
required for σ′ might indeed be 2s; see Figure 2.15. The layout represented on the left
requires only s stacks, while the layout of the subdivision contains a 2s-twist, thus
requires at least 2s stacks.

Dujmović and Wood bounded the (undirected) queue number of graphs in terms
of the queue number of subdivisions were every edge has been subdivided at most h
times. Explicitly, they showed that qn(G) ≤ 1

2(2 qn(S) + 2)2h − 1 in the undirected
setting for every ⪯h-subdivision S of a graph G [23, Lemma 27].

We show a similar result which yields a slightly better bound for dags. Note however
that the following result does not provide an improvement of the result of Dujmović
and Wood as we only consider topological orderings of the vertices. Our approach is
similar to the proof of the lower bound in Lemma 2.5.3.

Lemma 2.8.5. If S is a ⪯h-subdivision of a dag G, then qn(G) ≤ (2 qn(S) + 2)h+1.
If S is an h-subdivision, then qn(G) ≤ qn(S)h+1.
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2.8 Queue and Stack Number of Subdivisions

(a) An s-stack layout of a dag G. The
layout contains an s-twist.

(b) A 2s-stack layout of the subdi-
vision of G we obtain by subdi-
viding every dashed edge exactly
once.

Figure 2.15: On the left, an s-stack layout of a dag G for s = 3 is represented. On
the right we extended σ as in the proof of Proposition 2.8.4 to a 2s-stack
layout of a subdivision of G.

Proof. Let d be the queue number of G. We assume that every edge of S has been
subdivided exactly h times. The general claim follows from Proposition 2.8.3 once we
established the bound in the special case.

Consider any topological ordering σ of the vertices of S. We show that the ordering σ
admits a rainbow of size at least d1/(h+1).

As G has queue number d, we see that the topological ordering of the original
vertices induced by σ contains a d-rainbow, i.e. there are original vertices

a1 ≤σ · · · ≤σ ad ≤σ bd · · · ≤σ b1

and aibi is an edge in G for all i ∈ [d].
For i ∈ [d] and s ∈ [h] let cs

i be the s-th division vertex of the edge aibi. Further,
we define b := d1/(h+1) and as := d

bs for s ∈ [h]. It suffices to prove that σ contains a
rainbow of size at least b.

We prove by induction on s that the ordering σ contains a ⌈b⌉-rainbow or there
exists an increasing sequence (ik) of length ℓ ≥ as such that cs

i1 ≤σ · · · ≤σ cs
iℓ

for
all s ∈ [h].

If s = 1, consider the ordering of the vertices c1
1, . . . , c1

d induced by the ordering σ.
By Theorem 2.4.2, there exists a monotone sequence (ik) of length ℓ such that

c1
i1 ≤σ · · · ≤σ c1

iℓ

where ℓ ≥ a1 if (ik) is increasing, and ℓ ≥ b otherwise. If (ik) is increasing, the claim
follows immediately. Otherwise, the sequence is decreasing and we obtain

aiℓ
≤σ · · · ≤σ ai1 ≤σ c1

i1 ≤σ · · · ≤σ c1
iℓ

as ai1c1
i1 is an edge in S and σ is a topological ordering. As aik

c1
ik

∈ E(S) for all k ∈ [ℓ],
these edges form a ℓ-rainbow and the claim follows since ℓ ≥ b.

Suppose the claim holds for some s ∈ [h − 1]. If σ contains a ⌈b⌉-rainbow then we
are already done. Otherwise, there exists an increasing sequence (ik) of length ℓ ≥ as

such that cs
i1 ≤σ · · · ≤σ cs

iℓ
. Now we proceed as in the base case. The role of the

vertices ai for i ∈ [d] is now played by the vertices cs
ik

for k ∈ [ℓ].
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We consider the ordering of the vertices cs+1
i1

, . . . , cs+1
iℓ

induced by σ. By Theo-
rem 2.4.2, there exists a monotone subsequence (jk) of (ik) of length ℓ̂ such that

cs+1
j1

≤σ · · · ≤σ cs+1
jℓ̂

where ℓ̂ ≥ as+1 if (jk) is increasing and ℓ̂ ≥ b otherwise. If (jk) is increasing, the claim
follows immediately. Otherwise (jk) is decreasing and we see that the edges cs

jk
cs+1

jk

form a rainbow of size at least b.
Suppose σ contains no ⌈b⌉-rainbow. Setting s = h it follows from the claim above

that there is an increasing sequence (ik) of length ℓ ≥ ah such that ch
i1 ≤σ · · · ≤σ ch

iℓ
.

As the division vertex ch
ik

is adjacent to the original vertex bik
for all k ∈ [ℓ], we obtain

ch
i1 ≤σ · · · ≤σ ch

iℓ
≤σ biℓ

≤σ · · · ≤σ bi1 .

The edges ch
ik

bik
form an ℓ-rainbow. This yields a contradiction to our assumption

as ℓ ≥ ah and ah = b.
Therefore, σ contains a ⌈b⌉-rainbow. As σ was an arbitrary topological ordering,

we obtain qn(S) ≥ d1/(h+1). This finally yields qn(G) ≤ qn(S)h+1.

The result of Dujmović and Wood [23, Lemma 27] which provides a similar result
to Lemma 2.8.5 in the undirected setting has been extended to shallow minors by
Hickingbotham and Wood [49, Lemma 13].

The lemma above essentially shows that subdivisions of a dag with large queue
number still have large queue number as long as every edge has been subdivided a
small number of times. However, if we subdivide edges often, we might obtain a dag
with small queue number as we will see in Corollary 2.10.6.

In Lemma 2.8.5, we showed that the queue number of ⪯h-subdivisions cannot be
arbitrarily small for constant h. Yet, there are posets for which the queue number of
⪯h-subdivisions is relatively small when compared to the queue number of the initial
poset. The family of wings provides an example.

Proposition 2.8.6. For every n ∈ N, there exists an (n + 1)-queue poset P and a
⪯h-subdivision S of P such that qn(P ) ≥ (qn(S) − 2)(h+2)/2.

Proof. Let n ∈ N and consider the wing W of size d := n2 + 1. By Lemma 2.5.3, we
have qn(W ) = n + 1. Consider the subdivision S of W where each edge cibi has been
subdivided h times. Let q := d1/(h+2).

We construct a (q + 2)-queue layout of S. For i ∈ [d], we denote by c1
i , c2

i , . . . , ch
i

the division vertices of the edge cibi in the order they appear along the former
edge. Let c0

i := ci for i ∈ [d]. We partition the vertices of S into h + 3 classes
M−1 := {a1, . . . , ad}, Ms := {cs

1, . . . , cs
d} for 0 ≤ s ≤ h and Mh+1 := {b1, . . . , bd}.

For s ∈ {0, . . . , h}, we define

b′
s := qs+1, a′

s := d

qs+1 .
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By Proposition 2.4.4, there exists for every s ∈ {0, . . . , h} a sequence (i(s)
k ) of the

integers [d] such that a longest increasing subsequence has length at most ⌈a′
s⌉ and a

longest decreasing subsequence has length at most ⌈b′
s⌉. Let σs be the ordering

cs

i
(s)
1

≤ cs

i
(s)
2

≤ . . . cs

i
(s)
d

on the vertices of Ms for s ∈ {0, . . . , h}. We define σ as the topological ordering

a1 ≤ a2 ≤ · · · ≤ ad ≤ σ0 ≤ σ1 ≤ · · · ≤ σh ≤ bd ≤ · · · ≤ b1.

Note that a rainbow in σ of largest size is formed by edges between vertices of
classes Mi and Mi+1 for some i and at most one edge within one of the two classes.
We show that such a rainbow has size at most q + 2.

Consider a largest rainbow between M−1 and M0. Such a rainbow contains at
most one of the edges aiai+1. As the vertices ai are in increasing order in σ, the
endpoints ci of the edges forming a largest rainbow have to be in decreasing order. A
longest decreasing sequence in (i(0)

k ) has length ⌈b′
0⌉ = ⌈q⌉. Thus, the rainbow has size

at most ⌈q⌉ + 1 and the claim follows. Similarly, we see that a rainbow between Mh

and Mh+1 has size at most ⌈a′
h⌉ + 1 = ⌈q⌉ + 1 as it requires an increasing sequence in

(i(h)
k ) and contains at most one edge bi+1bi.
Now consider a largest rainbow between classes Ms and Ms+1 for some s where

0 ≤ s ≤ h − 1. If ℓ is its size, there exists a subsequence (rm) of (i(s)
k ) such that

cs
r1 ≤ cs

r2 ≤ . . . cs
rℓ

≤ cs+1
rℓ

≤ · · · ≤ cs+1
r1

in σ. The sequence (rm) might not be a monotone. Yet, it is a subsequence of (i(s)
k )

that is reversed in (i(s+1)
k ). As a′

s ≥ a′
s+1, we see by Observation 2.4.5 that

ℓ ≤
b′

s+1
b′

s

+ 2 = q + 2.

Therefore, a largest rainbow in σ has size at most

q + 2 = d1/(h+2) + 2 ≤ (n + 1)2/(h+2) + 2,

and we finally obtain qn(S) ≤ qn(W )2/(h+2) + 2.

In fact, using the same argument, we can also show that Lemma 2.8.5 is relatively
tight for dags. If we consider a d-rainbow and add all spine edges, i.e. edges between
successive vertices in a topological order, the dag G we obtain has queue number d
and admits only one topological ordering. If we subdivide each edge of the rainbow
exactly h + 1 times, we are in the situation of the proof above. Using the same
construction, we obtain the following.

Proposition 2.8.7. For every n ∈ N, there exists an n-queue dag G and a ⪯h-sub-
division S of G such that qn(G) ≥ (qn(S) − 2)h+1.
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a1 c1 d1 b1a′
1a2 c2 d2 b2a′

2a3 c3 d3 b3a′
3a4 c4 d4 b4a′

4

Figure 2.16: A 3-stack layout of a ⪯1-subdivision of the double fin of size 4. Edges
of the same color are assigned to the same stack. The vertices a′

i are
division vertices of the edges aibi of the double fin.

Blankenship and Oporowski conjectured that a similar result to Lemma 2.8.5
holds in the undirected setting for stack number, providing a proof for complete and
complete bipartite graphs [12, Conjecture 1.4]. However, in 2022, Dujmović et al.
showed that the conjecture does not hold [19, p. 4].

In the directed setting, the conjecture does not hold either. We construct posets
with arbitrarily large stack number that have ⪯1-subdivisions with stack number at
most 3. Thus the (directed) stack number of a graph cannot be bounded from above
in terms of the stack number of a subdivision and the number of times edges have
been subdivided.

Examples of dags can be easily constructed. Adding all spine edges to an n-twist
results in a dag which has only one topological ordering. As this ordering contains an
n-twist, its stack number is at least n. Yet, if we subdivide each edge of the twist
once, we obtain a dag with stack number at most 2. Note though that the given
example is not the diagram of a poset as it contains transitive edges. An example for
posets is the family of double fins.

Observation 2.8.8. For every integer n ≥ 2 there exists a poset with stack number n
which admits a ⪯1-subdivision that has stack number at most 3.

Proof. Consider a double fin D of size n ≥ 2. By Lemma 2.3.3, we have sn(D) = n. Let
S be the subdivision of D where all edges aibi have been subdivided once. For i ∈ [n],
we denote by a′

i the division vertex of the edge aibi. The subdivision S admits a
3-stack layout, see Figure 2.16. Thus, sn(S) ≤ 3 follows.

2.9 Dimension of Subdivisions

Clearly, the Dushnik-Miller dimension of a subdivision S of a poset P is lower bounded
by dim(P ) as the restriction of any realizer of S to P yields a realizer of P . One might
suspect that if we consider a realizer of P , we could get a realizer of S by defining
for every linear order of the realizer two linear orders, one where all division vertices
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2.9 Dimension of Subdivisions

have been placed low and another one where all division vertices have been placed
high, thus bounding dim(S) by 2 dim(P ). However, in the situation represented in
Figure 2.17 we see that the division vertex x appears before the division vertex y in
all linear orders we constructed in such a way even though x and y are incomparable
[83, p. 144]. In fact, the dimension of a subdivision is not bounded by the dimension
of the initial poset as has been shown by Spinrad, see Proposition 2.9.3. In order to
reverse a pair (x, y) as represented in Figure 2.17, it is useful to consider the virtual
height of the two division vertices.

Definition 2.9.1. Let G be a dag. We define the height of a vertex v of G as the
maximum number of vertices on a directed path ending in v and denote it by h(v).
The height of G, denoted by h(G), is the maximum height of its elements.

For a subdivision S of G and a division vertex x of an edge ab, we define the virtual
height of x with respect to G as the height of b in G. It is denoted by hv(x). Note
that the virtual height of division vertices of the same edge of G is identical while
their heights in S differ. Further, the virtual height is bounded by h(G).

If P is a poset, the height of an element x of P corresponds to its height in the
diagram of P , i.e. the size of a longest chain ending in x.

Note that the height of a poset, as defined in Definition 2.1.1, corresponds to the
height of its diagram.

Based on the bit representation of the virtual height of division vertices, Spinrad
constructed linear extensions which reverse all pairs of incomparable division vertices,
thereby showing that the dimension of a subdivision is bounded in terms of the
dimension of the initial poset and its height.

Proposition 2.9.2 ([83, p. 145]). For any subdivision S of a poset P , we have

dim(S) ≤ ⌊log(h(P )) + 3⌋ dim(P ) + 1.

Proof. Let d be the dimension of P and R a minimum realizer. For every linear
extension L ∈ R, we define two linear extensions Llow and Lhigh of S where all division
vertices have been placed low or high respectively. Note that the set

R′ := {Llow, Lhigh | L ∈ R}

realizes all non-relations between original vertices, and between original vertices and
division vertices.

Suppose R′ is not a realizer of S, then there are division vertices x, y in S with x ∥ y
such that x ≤L′ y for all L′ ∈ R′. In particular x and y have to originate from distinct
edges ab and cd. If a ≠ c, we have a ≤L c for all L ∈ R as a ≤Llow x ≤Llow c ≤Llow y
showing that a ≤ c in P . If a = c, this clearly holds. Similarly, we obtain b ≤ d in
P if we consider Lhigh for L ∈ R. We say that the division vertices x and y form an
x-y-rhombus; see Figure 2.17. Therefore, it suffices to find a set of linear extensions
of S that contains for every x-y-rhombus a linear extension L′ such that y ≤L′ x.
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c

d

b

a

y

x

Figure 2.17: An x-y-rhombus. Original vertices are represented in black. The division
vertices x and y of the edges ab and cd are represented in white. The
directed paths corresponding to the relations a ≤ b and c ≤ d are
represented by dashed lines.

Fix a linear extension L1 ∈ R and let L̃high
1 denote the linear extension obtained by

placing all division vertices high with respect to L1 and reversing the order of division
vertices with respect to Lhigh

1 for which the order is not specified by L1. Let

Rh := {Lk | L ∈ R, k ∈ [⌊log(h(P ))⌋ + 1]} ∪ {Lhigh
1 , L̃high

1 }

where Lk denotes the linear extension of S where all division vertices x with a 0 in
the k-th bit of the virtual height hv(x) are placed high and division vertices with a 1
in the k-th bit are placed low with respect to L. Further, we require that Lk has the
following property. Whenever the order of division vertices x and y is not specified by
the preceding property and x is placed high while y is placed low, we have y ≤Lk x.

Consider an x-y-rhombus in S. We show that there exists a linear extension Lk ∈ Rh

such that y ≤Lk x. Let ab and cd be the edges that have been subdivided by x and y
respectively. If b ≤ c in P , then x ≤ b ≤ c ≤ y in S which is a contradiction
to x ∥ y. Therefore, there exists a linear extension L ∈ R such that c ≤L b. If there is
a k ∈ [⌊log(h(P )) + 1⌋] such that the k-th bit of hv(x) is 0 and the k-th bit of hv(y)
is 1, then we obtain

c ≤Lk y ≤Lk x ≤Lk b

showing that the pair (x, y) is reversed by Rh. Recall that b ≤ d in an x-y-rhombus.
Thus, any chain in P ending in b can be extended to a chain ending in d. This observa-
tion shows that hv(x) ≤ hv(y); equality holds if b and d coincide. If hv(x) < hv(y) the
requested value of k exists. Otherwise, we have b = d and the pair (x, y) is reversed
by Lhigh

1 or L̃high
1 . Hence, R′ ∪ Rh is a realizer of S and as∣∣∣R′ ∪ Rh

∣∣∣ ≤ 2d + (⌊log(h(P )) + 1⌋)d + 1

the claim follows.

To some extent the dimension of a subdivision does not exceed the dimension of the
initial poset. In order to formulate the actual statement, we need the notion of the
completion of a poset. Intuitively, it is the smallest lattice which contains the poset.
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Figure 2.18: [83, Figure 4] A representation of the poset given in the proof of Propo-
sition 2.9.3 for n = 6 based on the figure in [83, p. 146].

Lee et al. were able to prove that the dimension of any subdivision of the completion
of a poset P equals the dimension of P [67, Theorem 1], thereby establishing another
relationship between subdivisions and dimension.

Spinrad showed that every interval order is a subdivision of a 2-dimensional poset.
As interval orders have arbitrarily large dimension, it follows that the dimension of a
subdivision is not bounded in terms of the dimension of the initial poset.

Proposition 2.9.3 ([83, p. 146]). For every n ≥ 2, there exists a 2-dimensional
poset P such that any interval order with an open interval representation with n distinct
endpoints is a subdivision of P .

In particular, for every k ≥ 4, there exists a subdivision S of a 2-dimensional
poset P such that dim(S) ≥ log log(k).

Proof. Consider the poset P on elements {vi,j | i ∈ [n], j ∈ [i]} where for two distinct
elements vi,j , vk,ℓ we have vi,j ≤P vk,ℓ if and only if i ≤ k, j < ℓ; see Figure 2.18.

We first show that P is 2-dimensional. Clearly, the poset P is not a chain as it
contains incomparable elements. Therefore, it suffices to show the upper bound on
the dimension of P . We define two linear extensions

L1 := v1,1 ≤ v2,1 ≤ v2,2 ≤ v3,1 ≤ · · · ≤ v3,3 ≤ · · · ≤ vn,n

L2 := vn,1 ≤ vn−1,1 ≤ · · · ≤ v1,1 ≤ vn,2 ≤ · · · ≤ v2,2 ≤ vn,3 ≤ · · · ≤ v3,3 ≤ · · · ≤ vn,n.

Let (vi,j , vk,ℓ) be a pair of incomparable elements of P . Note that we have k < i
or ℓ < j, thus the incomparable pair is reversed by L1 or L2 respectively. Therefore,
the set {L1, L2} is indeed a realizer of P .

Let S be an interval order with an open interval representation with n distinct
endpoints. We may assume that the n endpoints correspond to [n]. It remains to
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show that S is a subdivision of P . Consider a vertex u of S that is represented by an
interval (i, j) in the interval representation of S. Note that i + 1 ≤ j ≤ n. We assign u
to the division vertex obtained by subdividing the edge vi,ivj,i+1 in the diagram of P .

We need to show that the given embedding of S in P respects the structure of S.
Let u and w be elements of S corresponding to intervals (i, j) and (k, ℓ) respectively.
We consider several cases.

Case 1. j < k. As we have i + 1 ≤ j < k, we obtain vj,i+1 ≤P vk,k.
Case 2. j = k. If i + 1 = j, we obtain vj,i+1 ≤P vk,k as the two elements coincide.

Otherwise we have i + 1 < j = k and vj,i+1 ≤P vk,k follows by definition of P .
Case 3. j > k. We obtain vj,i+1 ≰P vk,k.
As vj,i+1 ≤P vk,k if and only if j ≤ k, we see that u ≤ w in the embedding of S

in P if and only if the interval (i, j) precedes (k, ℓ). This observation shows that S is
a subdivision of P .

As the universal interval order Ik with k ≥ 4 has an open interval representation
with n distinct endpoints for sufficiently large n and we have dim(Ik) ≥ log log(k)
by Lemma 2.1.17, the claim follows.

If we subdivide each edge sufficiently often, the queue and stack number are constant,
see Corollary 2.10.6. Yet, the dimension might increase. The following corollary shows
how these two parameters interact for subdivisions of the standard example.

Corollary 2.9.4. For d ≥ 2, the dimension of a subdivision S of the standard example
Sd is bounded by a function of the queue number and height of S, more precisely

dim(S) ≤ 8 · (2 qn(S) + 2)h(S)−1 + 5.

Proof. Let h be the maximum number of times an edge of Sd has been subdivided in S.
As qn(Sd) ≥ ⌊d

2⌋ by Lemma 2.2.3, we obtain by Lemma 2.8.5 ⌊d
2⌋ ≤ (2 qn(S) + 2)h+1

which yields the upper bound

d ≤ 2(2 qn(S) + 2)h+1 + 1.

for the dimension of Sd. Further, as h(Sd) = 2, we obtain by Proposition 2.9.2

dim(S) ≤ ⌊log(2) + 3⌋ · d + 1 ≤ ⌊log(2) + 3⌋ · (2(2 qn(S) + 2)h+1 + 1) + 1

which yields the claim as h(S) = h + 2 and ⌊log(2) + 3⌋ = 4.

In fact, the dimension of any subdivision of Sn is equal to n [67, Theorem 2]. The
approach above merely exemplifies how we can bound the dimension of a subdivision
in terms of its queue number and height if we already know that there exists such a
bound for the initial poset.

Actually, the dimension of any poset is bounded in terms of its queue number and
height, as we will see in Section 2.11. However, the general bound is astronomical.
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2.10 Subdivisions with small Queue or Stack Number
The aim of this section is to show that every dag admits a subdivision with small
queue and stack number. In order to prove the result, we consider upward drawings
of dags together with horizontal lines fulfilling certain properties.

Definition 2.10.1. We call crossings and vertices of an upward drawing of a dag G
events and say that they occur at the corresponding y-coordinate of the drawing.

An upward drawing of G together with horizontal lines ℓ1, ℓ′
1, ℓ2, ℓ′

2, . . . , ℓt, ℓ′
t of

increasing y-coordinate is called a horizontal k-division for k ≥ 1 if

(i) no event lies on one of the horizontal lines

(ii) no event occurs between ℓ′
i and ℓi+1 for any i

(iii) for all i, exactly one of the two following properties holds:
a) only vertex-events occur between ℓi and ℓ′

i and they form an antichain of
length at least one

b) only edge-crossing-events occur between ℓi and ℓ′
i, and at most k edges

drawn between ℓi and ℓ′
i pairwise intersect.

The subdivision we are interested in is obtained by subdividing each edge at its
intersections with horizontal lines of a k-division. When constructing queue and
stack layouts of such a subdivision, it will be useful to bound the number of colors
needed for an edge-coloring of the edges drawn between horizontal lines ℓi and ℓ′

i in a
horizontal k-division where no two edges of the same color intersect. If k such edges
pairwise intersect, we clearly need at least k colors. Actually, k colors suffice as we
will see in Lemma 2.10.4. The problem is closely related to the chromatic number.

In general, it is difficult to determine the chromatic number of an (undirected)
graph [63, p. 94]. While the largest size of a clique provides a trivial lower bound on
the chromatic number, these two numbers might differ largely as has been shown by
Mycielski [72]. In 1961, Berge proposed the definition of perfect graphs, a class of
graphs for which clique number and chromatic number coincide [7]. An example of
such graphs are permutation graphs [42, Chapter 7].

Definition 2.10.2 ([42, Chapter 7]). Let π be a permutation of the numbers from 1
to n. Writing the numbers from 1 to n horizontally from left to right, and below the
numbers π(1), . . . , π(n) and connecting numbers of the same value with a straight line
segment, we obtain a graph that is called the matching graph of π, see Figure 2.19a.

The straight line segments of the matching graph correspond to vertices of the
permutation graph of π. The permutation graph is the graph on vertices 1, . . . , n
where two vertices are adjacent if and only if their corresponding segments intersect
in the matching graph, see Figure 2.19b.

Indeed, the maximum size of a clique provides an upper bound for the chromatic
number of a permutation graph as has been shown by Even, Pnueli, and Lempel
[29, p. 409].
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1 2 3 4 5

3 2 4 1 5
(a) The matching graph of π.

53

2

1

4

(b) The permutation graph of π.

Figure 2.19: The matching graph and the permutation graph of the permutation
π = 3 2 4 1 5.

Lemma 2.10.3 ([29, p. 409]). The chromatic number of a permutation graph is equal
to the maximum size of a clique.

As proper vertex-colorings of a permutation graph induce edge-colorings of the
corresponding matching graph where no two edges of the same color cross, we obtain
the following.

Lemma 2.10.4. If H is a matching graph and at most k edges intersect pairwise,
there exists a k-coloring of the edges such that no two edges of the same color intersect.

Proof. Note that the largest clique in the corresponding permutation graph G has
size at most k. By Lemma 2.10.3, there exists a proper k-vertex coloring of G.
Coloring the edges of H with the color of the corresponding vertices in G, we obtain
an edge-coloring of H where no two edges of the same color intersect.

Observing that the segments drawn between horizontal lines ℓi and ℓ′
i of a horizontal

division form a matching graph, we obtain the following.

Lemma 2.10.5. If a dag G admits a horizontal k-division for k ≥ 2, then the
subdivision S of G we obtain by subdividing each edge at its intersection points with
the horizontal lines admits a k-queue layout.

Proof. Consider a horizontal k-division of G and let ℓ1, ℓ′
1, . . . , ℓt, ℓ′

t be the correspond-
ing horizontal lines of increasing y-coordinate. Define σ as the topological ordering
where vertices of S are primarily ordered by increasing y- and secondly by increasing
x-coordinate.

We show that σ admits a k-queue assignment. Let Hi be the graph induced by the
vertices which lie between the lines ℓi and ℓ′

i.
Case 1. Only crossing events occur between ℓi and ℓ′

i. Possibly, no crossing occurs.
Note that the graph Hi is a matching graph. By Lemma 2.10.4, we can color the
edges of Hi with k colors such that no two crossing edges share the same color, see
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ℓ′
i

ℓi

(a) An edge-coloring of the matching
graph Hi where no two edges of
the same color intersect.

ℓi ℓ′
i

(b) A queue assignment of the edges between
the horizontal lines ℓi and ℓ′

i induced by
the edge-coloring of Hi. Edges of the same
color are assigned to the same queue.

Figure 2.20: An illustration of the correspondence between edge-colorings of the match-
ing graph Hi and a valid queue assignment illustrated for a horizontal
2-division and the case where only crossing events occur between the
horizontal lines ℓi and ℓ′

i.

Figure 2.20. By definition of σ, no edges of the same color nest. Therefore, the
edge-coloring induces a valid queue assignment.

Case 2. Only vertex events occur between ℓi and ℓ′
i. As the corresponding vertices

form an antichain, we may assume that all these events occur at the same height. We
color edges of Hi incident to an original vertex in green and all other edges in red, see
Figure 2.21. Recall that no two edges between ℓi and ℓ′

i cross. Thus, the red edges
form a twist in σ. Similarly, all edges which end in an original vertex intersect all
edges ending in a different original vertex in σ as we assumed that all original vertices
have the same height. In particular, they do not nest. The same is true for edges
which start in an original vertex by definition of the vertex ordering. Note that any
edge which ends in an original vertex cannot nest with any edge starting in another
original vertex, as the original vertices are placed after all vertices lying on ℓi and
before all vertices lying on ℓ′

i. Therefore, we may assign all edges of the same color to
one queue.

Note that the edges of Hi lie completely to the left of the edges of Hj in σ for i < j.
It follows that we only needed k queues so far as k ≥ 2. As no event occurs between ℓ′

i

and ℓi+1 for any i, we see that the edges between these two horizontal lines form a
twist in σ. They cannot nest with any edge that ends on ℓ′

i or starts on ℓi+1. Thus,
we may assign these edges to any of the defined queues.

As we used k queues in total, σ is indeed a k-queue layout.

The proof of the lemma above is somewhat similar to Proposition 2.7.5. In both
proofs, we obtain a subdivision of the initial poset by subdividing all edges at their
intersections with horizontal lines such that the subdivision has constant queue
number. However, while we defined in Proposition 2.7.5 horizontal lines such that
each vertex lies on such a line, we now require that no vertex does. This enables us
to handle crossing events at the cost of needing possibly two queues instead of one
for edges between two horizontal lines ℓi and ℓ′

i enclosing vertex events. If we also
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ℓ′
i

ℓi

(a) The edge-coloring of the matching
graph Hi. Green edges are repre-
sented by black lines, red edges by
dashed lines.

ℓi ℓ′
i

(b) A queue assignment of the edges between
the horizontal lines ℓi and ℓ′

i induced by
the edge-coloring of Hi. Edges of the same
color are assigned to the same queue.

Figure 2.21: An illustration of the correspondence between edge-colorings of the match-
ing graph Hi and a valid queue assignment illustrated for a horizontal
k-division where only vertex events occur between the horizontal lines ℓi

and ℓ′
i. Original vertices are represented in blue.

subdivide all edges between such lines ℓi and ℓ′
i which are not adjacent to an original

vertex, we would only need one queue for all edges between ℓi and ℓ′
i. Thus, we

could extend Lemma 2.10.5 to horizontal k-divisions for k ≥ 1 if we consider different
subdivisions.

Dujmović and Wood showed that every undirected graph admits a q-queue subdivi-
sion [23, Theorem 4 and 5] for any q ≥ 2, in particular giving logarithmic lower and
upper bounds in the queue number of the initial graph on the number of subdivisions
per edge. We consider dags instead.

Corollary 2.10.6. Every dag has a 2-queue subdivision.

Proof. Consider any upward drawing of a dag G. Without loss of generality, we may
assume that at most two edges intersect in a single point, and that no two events occur
at the same height. We can easily construct a horizontal 2-division. By Lemma 2.10.5,
there exists a subdivision of G that has queue number at most 2.

As Heath and Rosenberg showed that all 1-queue graphs are planar, we see that no
non-planar graph admits a 1-queue subdivision [48]. This shows that the result above
is tight.

Every undirected graph has a 3-stack subdivision as has been shown by Atneosen
[2, 12, 23].

Observation 2.10.7 ([2] [12, Theorem 1.2] [23, Theorem 1]). Every undirected graph
admits a 3-stack subdivision.

Proof. Consider an arbitrary vertex ordering σ of an undirected graph G. Let G′′ be
the subdivision of G where every edge is subdivided twice. Note that every division
vertex is adjacent to exactly one original vertex which we call its original neighbor.
We obtain a vertex ordering σ′′ of G′′ by extending σ such that every division vertex
is placed directly after its original neighbor, i.e. these two vertices may only be
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separated in σ′′ by other division vertices having the same original neighbor. As no
edges between original vertices and division vertices cross in σ′′, we can assign all
these edges to the same stack. The remaining edges form a matching. Clearly, we
can draw the remaining edges as non-intersecting curves in the plane. Whenever a
curve crosses the x-axis, we subdivide the corresponding edge. Assigning the resulting
edges above the x-axis to one stack and the edges below to another yields a 3-stack
subdivision.

The proof relies on the fact that there is no restriction on the placement of division
vertices in the extension of a linear order of the original graph to a linear order of
the subdivision. In particular, we are allowed to place division vertices of an edge ab
before a or after b. Thus, it is not clear whether the approach of Atneosen can be
adapted to directed graphs.

Nevertheless, a similar result to Observation 2.10.7 holds for directed graphs as we
will see in Corollary 2.10.9. The result is an immediate consequence of the following
technical lemma. The proof of Lemma 2.10.8 is similar to Lemma 2.10.5.

Lemma 2.10.8. If a dag G admits a horizontal k-division for k ≥ 1, then the
subdivision S of G we obtain by subdividing each edge at its intersection points with
the horizontal lines admits a (k + 1)-stack layout.

Proof. We proceed as in Lemma 2.10.5. Consider a horizontal k-division of G and
let ℓ1, ℓ′

1, . . . , ℓt, ℓ′
t be the corresponding horizontal lines of increasing y-coordinate.

We may assume that every original vertex is adjacent to some division vertex on a
horizontal line ℓi and to some division vertex on ℓ′

i. Otherwise, we add such edges
with new endpoints on the horizontal lines in a planar way and observe that S is a
subgraph of the obtained graph. We call these new vertices also division vertices.

Consider the topological ordering σ of the vertices of S where division vertices are
primarily ordered by their y-coordinate in the drawing. Those lying on a horizontal
line ℓi are placed in increasing order with respect to their x-coordinate, while those
on a horizontal line ℓ′

i are placed in decreasing order. Original vertices are placed
in σ just after their rightmost neighbor lying on a line ℓi with respect to σ. As the
original vertices between horizontal lines ℓi and ℓ′

i form an antichain, σ is indeed a
topological vertex ordering.

We show that σ admits a (k + 1)-stack assignment. Let Hi be the graph induced
by the vertices which lie between ℓi and ℓ′

i.
Case 1. Only crossing events occur between ℓi and ℓ′

i. Possibly, no crossing occurs.
Note that Hi is a matching graph. Thus, we can color the edges of Hi with k colors
such that no two edges of the same color intersect, see Figure 2.22. We see that no
two edges of the same color cross in the layout σ. Therefore, we may assign all edges
of the same color to one stack.

Case 2. Only vertex events occur between ℓi and ℓ′
i. We claim that one stack suffices

for the edges of Hi. We color edges of Hi which are incident to an original vertex in
green, and all other edges in red. Observe that if we were to replace all green stars by
single edges, we would be in the situation of Case 1 with no edge crossings. We see
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2 Dushnik-Miller Dimension

ℓ′
i

ℓi

(a) An edge-coloring of the matching
graph Hi where no two edges of
the same color intersect.

ℓi ℓ′
i

(b) A stack assignment of the edges between
the horizontal lines ℓi and ℓ′

i induced by
the edge-coloring of Hi. Edges of the same
color are assigned to the same stack.

Figure 2.22: An illustration of the correspondence between edge-colorings of the match-
ing graph Hi and a valid stack assignment illustrated for a horizontal
2-division and the case where only crossing events occur between the
horizontal lines ℓi and ℓ′

i.

that due to the definition of σ, none of the edges of Hi cross in σ, see Figure 2.23.
Therefore, we may assign all these edges to one stack.

Note that all the edges of Hi lie completely to the left of the edges of Hj for i ̸= j
in the topological ordering σ. Therefore, we needed k stacks so far.

As the edges between horizontal lines ℓ′
i and ℓi+1 form a rainbow in σ, a total of

k + 1 stacks suffices.

Dujmović and Wood showed that every undirected graph admits an s-stack subdivi-
sion for every s ≥ 3. In particular, they determined logarithmic upper bounds in the
queue respectively stack number of the initial graph on the number of subdivisions
per edge [23, Theorem 7 and 9]. The lemma above enables us to prove the following
for dags.

Corollary 2.10.9. Every dag has a 3-stack subdivision.

Proof. Consider any upward drawing of a dag G. We may assume that no two events
occur at the same height. Thus, we can easily define a horizontal 2-division. As at
most two edges cross between two successive horizontal lines, there exists a 3-stack
subdivision S of G by Lemma 2.10.8.

Note that the subdivisions we consider in Corollary 2.10.9 and 2.10.6 are the
same, i.e. every dag G has a subdivision S with queue number at most 2 and stack
number at most 3. If we subdivide each edge of G often enough, the subdivision we
obtain is in particular a subdivision of S. It follows from Proposition 2.8.3 and 2.8.4
that for each dag there exists a number h such that every subdivision where every
edge has been subdivided at least h times has queue and stack number at most 6.
Thus, large enough subdivisions have bounded queue and stack number. However,
Lemma 2.8.5 shows that the constant h does indeed depend on the dag in question.
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2.10 Subdivisions with small Queue or Stack Number

ℓ′
i

ℓi

(a) The edge-coloring of the matching
graph Hi.

ℓi ℓ′
i

(b) A stack layout of the edges between the
horizontal lines ℓi and ℓ′

i. None of the edges
cross.

Figure 2.23: An illustration of the correspondence between edge-colorings of the match-
ing graph Hi and a valid stack assignment illustrated for a horizontal
k-division where only vertex events occur between the horizontal lines
ℓi and ℓ′

i. Original vertices are represented in blue. Green edges are
represented by black lines, red edges by dashed lines.

The result of Corollary 2.10.9 is tight in the sense that there are dags which do not
admit a 2-stack subdivision. Posets with non-planar cover graphs provide an example.

Observation 2.10.10. No poset with a non-planar cover graph admits a 2-stack
subdivision.

Proof. Consider a poset P with a non-planar cover graph. Suppose it admits a 2-stack
subdivision S. If we consider a 2-stack layout of S and draw all edges assigned to
the first stack above the x-axis, and all edges assigned to the second stack below,
we obtain a planar drawing of S. Thus P has a planar cover graph which yields a
contradiction.

A similar result holds for undirected graphs. In fact, the class of undirected
graphs with stack number at most 2 corresponds to the class of planar graphs
[23, Theorem 18].

In Corollary 2.7.7, we have seen that the dimension of a poset is not bounded in
terms of its queue number. The following result provides the analog for stack number.
Thus, dimension is neither bounded by queue, nor by stack number.

Corollary 2.10.11. There exists a family of posets with stack number at most 3 and
unbounded dimension.

Proof. Consider the standard example Sd for d ≥ 2. By Corollary 2.10.9, there exists
a subdivision S′

d of S such that sn(S′
d) ≤ 3. Further, as Sd is a subposet of S′

d, we
have dim(S′

d) ≥ dim(Sd) = d. Therefore, the family of subdivisions S′
d has unbounded

dimension and queue number at most 3.
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2.11 Sparsity

Connections between the Dushnik-Miller dimension and graph parameters of the cor-
responding cover graphs have been studied since the 1980s. Füredi and Kahn bounded
the dimension of posets whose cover graphs have bounded degree [36], improving a
result which they attribute to Rödl and Trotter. In 2014, Streib and Trotter showed
that the dimension of posets with planar cover graphs is bounded in terms of their
height [85]. A polynomial bound was established by Kozik, Micek, and Trotter [66].
For planar posets, the upper bound is linear in the height [58], see Theorem 2.6.11.
After Joret et al. established a bound on the Dushnik-Miller dimension in terms of
height and the treewidth of the cover graph [56], a result by Walczak followed which
bounded the dimension of posets whose cover graphs do not contain a fixed graph as
a topological minor [93]. The proof relies on structure theorems; an elementary proof
has been given by Micek and Wiechert [71].

Generalizing Walczak’s result, Joret, Micek, and Wiechert showed that the di-
mension of posets with sparse diagrams is bounded in terms of their height. In
particular, they proved that the dimension of every poset is bounded in terms of its
queue number and height. The same is true if we replace queue by stack number
[59, p. 1135]. They studied families of posets with bounded expansion which gives
a restriction on minors of the cover graphs. It is one way to formalize sparsity of
graphs. There are several equivalent definitions of bounded expansion [75]. The most
common relies on a parameter referred to as the greatest reduced average density
[73, pp. 766–767] [59, p. 1138]. We use the following definition which is equivalent
to the definition given by Joret, Micek, and Wiechert in [59] by a result of Nešetřil,
Ossona de Mendez, and Wood [75, Corollary 3.2].

Definition 2.11.1 ([75, pp. 354–355]). A graph H is a shallow topological minor
of a graph G at depth d if a ⪯2d-subdivision of H is a subgraph of G. We denote
by G ∇̃ d the class of graphs that are shallow topological minors of G at depth d.

Let G be an undirected graph. The topological greatest reduced average density
of G of rank d, denoted by ∇̃d(G), is defined as

sup
H∈G∇̃d

|E(H)|
|V (H)| .

A class C of undirected graphs has bounded expansion if there exists a func-
tion f : N0 → R such that ∇̃d(G) ≤ f(d) for every G ∈ C and every d ∈ N0.

In the remainder of this section, we give explicit bounds on the Dushnik-Miller
dimension in terms of height, queue and stack number which follow from the arguments
of Joret, Micek, and Wiechert in [59] and Nešetřil and Ossona de Mendez in [73].

Nešetřil, Ossona de Mendez, and Wood showed for several classes of graphs that
they have bounded expansion, in particular for undirected graphs with bounded queue
number [75, Theorem 7.4].
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2.11 Sparsity

Theorem 2.11.2 ([75, Theorem 7.4]). Undirected graphs of bounded queue number
have bounded expansion. More precisely,

∇̃d(G) ≤ (2 qn(G) + 2)4d

for every undirected graph G.

Similarly, they bounded the topological greatest reduced average density of undi-
rected graphs with bounded stack number, showing that these graphs also have
bounded expansion.

Theorem 2.11.3 ([75, Theorem 8.4]). Undirected graphs of bounded stack number
have bounded expansion. More precisely,

∇̃d(G) ≤ 4 sn(G)(5 sn(G) − 5)2d+1

5 sn(G) − 6

for every undirected graph G.

The proof of Joret, Micek, and Wiechert [59] relies on a characterization of graph
classes with bounded expansion via specific vertex colorings which are called p-centered
colorings.

Definition 2.11.4 ([73, p. 763]). A p-centered coloring of an undirected graph G is
a vertex coloring of G with the property that the induced coloring of every connected
subgraph H of G either uses some color exactly once or at least p distinct colors on H.

Nešetřil and Ossona de Mendez gave several characterizations of families of graphs
of bounded expansion [73], one of which is based on p-centered colorings and appears
in the proof of Joret, Micek, and Wiechert in [59]. We state it in Theorem 2.11.17. In
order to a give an upper bound on the number of colors of p-centered colorings of a
family of graphs, Nešetřil and Ossona de Mendez defined the following polynomials.

Definition 2.11.5 ([73, Notation 4.1 and 5.2]). Let P0(x, y) = x + y and define the
polynomial Pi(x, y) as

Pi(x, y) = Pi−1(x, y) +
(
(2Pi−1(x, y) + 1)(x + y)

)2i+1
y

for i ≥ 1.
Further we define the polynomials Ri(x, y) and R′

i(x, y) recursively by setting

R0(x, y) = x, R′
0(x, y) = y

and defining

Ri(x, y) = Q
(
Ri−1(x, y), R′

i−1(x, y)
)

R′
i(x, y) = P2i+1

(
Ri−1(x, y) + 1, R′

i−1(x, y)
)

for i ≥ 1 where Q(x, y) := x(x + 1) + P1(x + 1, y).
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Instead of solving the recurrence relations of the polynomials defined above, we
establish bounds on the total degrees.

Definition 2.11.6. The total degree of a multivariate monomial is defined as the sum
of the exponents of all variables which appear in it. The total degree of a multivariate
polynomial P , denoted by deg(P ), is the maximum degree of its monomials.

Lemma 2.11.7. For every i ∈ N0, we have

(i) deg(Q) = 7

(ii) 2i · i! ≤ deg(Pi) ≤ 8i · i!

(iii)
∏i

k=1 22k+1 · (2k + 1)! ≤ deg(R′
i) ≤

∏i
k=1 82k+1 · (2k + 1)!

(iv) 7 ·
∏i−1

k=1 22k+1 · (2k + 1)! ≤ deg(Ri) ≤ 7 ·
∏i−1

k=1 82k+1 · (2k + 1)!.

Proof. Note that for i ≥ 1, we have deg(Pi) =
(
deg(Pi−1) + 1

)
(2i + 1) + 1 and

deg(P0) = 1. In particular, we obtain deg(Q) = deg(P1) = 7 and see that (deg(Pj)j)
is an increasing sequence.

We show Lemma 2.11.7(ii) by induction in i. Clearly, the claim holds for i = 0.
Assuming it holds for some i − 1 ≥ 0, we obtain

2i−1(i − 1)! · 2i ≤ deg(Pi−1) · 2i ≤
(
deg(Pi−1) + 1

)
(2i + 1) + 1 = deg(Pi)

and

deg(Pi) =
(
deg(Pi−1)+1

)
(2i+1)+1 ≤

(
deg(Pi−1)+1

)
(2i+2) ≤ 2 deg(Pi−1)·4i ≤ 8i ·i!

where we used in the second inequality that i ≥ 1 and deg(Pi−1) ≥ 1. Therefore, the
bounds on deg(Pi) hold for all i.

We now prove that Pi contains a monomial in the second variable y of degree deg(Pi).
For i = 0, we see that y is a monomial of P0 as P0(x, y) = x + y. Assuming the claim
holds for some i − 1 ≥ 0, we see by definition of Pi that (2αydeg(Pi−1) · y)2i+1 · y is a
monomial of Pi(x, y) for some α ̸= 0. Hence, Pi contains a monomial in the second
variable of degree deg(Pi).

As deg(P1) = 7, the polynomial Q has degree 7 and contains a monomial αy7 for
some α > 0. Inductively, we see that deg(R′

i) ≥ deg(Ri) as (deg(Pj))j is an increasing
sequence. This yields deg(Ri) = 7 · deg(R′

i−1) and deg(R′
i) = deg(P2i+1) · deg(R′

i−1)
for i ≥ 1.

We show by induction on i that
i∏

k=1
22k+1 · (2k + 1)! ≤ deg(R′

i) ≤
i∏

k=1
82k+1 · (2k + 1)!.

As we take the products of an empty set on both sides for i = 0, the claim holds for
R′

0. Suppose the claim holds for some i − 1 ≥ 0. We obtain

deg(R′
i) = deg(P2i+1) deg(R′

i−1) ≥ 22i+1 · (2i + 1)! deg(R′
i−1)
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2.11 Sparsity

and the lower bound follows from the induction hypothesis. The upper bound can be
shown in a similar way.

Using deg(Ri) = 7 · deg(R′
i−1), we obtain the bounds on deg(Ri).

The following bounds on the factorial are well-known and derived from the Stirling
formula.

Lemma 2.11.8 ([65, 1.2.5 Permutations and Factorials Exercise 24]). For every
n ∈ N, we have

nn

en−1 ≤ n! ≤ nn+1

en−1 .

Combining the bounds on the n-th factorial with our results of Lemma 2.11.7, we
obtain more tangible bounds on the total degree of the polynomial Ri.

Lemma 2.11.9. For every i ≥ 1, we have

(2i − 1)
1

24 (2i−1)2 ≤ deg(Ri) ≤ (2i + 1)3(i+1)2
.

The upper bound holds for every i ≥ 0.

Proof. We only show the upper bound. The lower bound can be obtained in a similar
way. We first consider the case i = 0 and i = 1 separately. As R0(x, y) = x, we have
deg(R0) = 1 and by Lemma 2.11.7 we obtain deg(R1) = 7. Thus, the claim holds for
i ≤ 1.

We may now assume that i ≥ 2. By Lemma 2.11.7, we have

deg(Ri) ≤ 7 ·
i−1∏
k=1

82k+1 · (2k + 1)! ≤ 7 · 8i−1+i(i−1) ·
i−1∏
k=1

(2k + 1)2k+2

e2k

= 7 · 23i2−3 · exp
(

−
i−1∑
k=1

2k

)
· exp

(
i−1∑
k=1

log(2k + 1)(2k + 2)
)

≤ 23i2 · e−i(i−1) · exp
(

i−1∑
k=1

log(2k + 1)(2k + 2)
)

where we used basic properties of arithmetic progressions and Lemma 2.11.8 in the
second inequality. Define

f : (0, ∞) → R,

x 7→ log(2x + 1)(2x + 2)

and

F : (0, ∞) → R

x 7→ 1
4
(
(4x2 + 8x + 3) log(2x + 1) − 2x2 − 6x

)
.
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2 Dushnik-Miller Dimension

Note that d
dxF (x) = f(x). As f is increasing for x ≥ 1, we obtain

i−1∑
k=1

log(2k + 1)(2k + 2) ≤
∫ i

1
f(x) dx = F (i) − F (1) ≤ (i2 + 2i + 1) log(2i + 1) + 2.

Further, observe that

3i2 log(2) − i(i − 1) + 2 ≤ 2(i + 1)2

as (3 log(2) − 3)i2 − 3i ≤ 0 for all i ≥ 0. This shows for i ≥ 1 that

deg(Ri) ≤ 23i2 · e−i(i−1) · exp
(

i−1∑
k=1

log(2k + 1)(2k + 2)
)

≤ 23i2 · e−i(i−1) · exp(F (i) − F (1))

≤ exp
(
3i2 log(2) − i(i − 1) + (i2 + 2i + 1) log(2i + 1) + 2

)
≤ exp

(
2(i + 1)2 + (i + 1)2 log(2i + 1)

)
≤ exp

(
3(i + 1)2 log(2i + 1)

)

where we used in the fifth step that log(2i + 1) ≥ 1 for i ≥ 1.

In fact, the proof above shows in particular the following.

Lemma 2.11.10. For every i ≥ 0, we have

7 ·
i−1∏
k=1

82k+1 · (2k + 1)! ≤ (2i + 1)3(i+1)2
.

Our aim is to bound the polynomial Ri in terms of its total degree and the largest
coefficient which appears in its expanded form in front of a monomial.

Definition 2.11.11. The largest among all coefficients in front of the monomials of
a polynomial g is called the largest coefficient of g and denoted by c(g).

If we know the largest coefficient of a polynomial g, we can easily construct an
upper bound on g.

Lemma 2.11.12. If g is a polynomial in two variables of total degree d with d ≥ 1,
then

g(x, y) ≤ c(g) · 4d2 · xd

for all x and y with 1 ≤ y ≤ x. The same is true if the roles of x and y are reversed.
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Proof. Let x and y be non-negative integers such that 1 ≤ y ≤ x. Clearly, the value
of g(x, y) is bounded from above by the polynomial we obtain by replacing every
monomial of g with c(g) · xd. Therefore, it suffices to show that g has at most 4d2

monomials.
We use the twelvefold way to compute the number of monomials of g. Every

monomial of g is of the form xiyj for some integers i and j with 0 ≤ i + j ≤ d. A
monomial xiyj can be represented by a string of length d + 2 which consists of d
letters a and two letters b. The number of a’s in front of the first b corresponds to i
and the number of a’s between the two b’s corresponds to j. As there are

(d+2
2
)

such
strings, there are at most

(d+2
2
)

monomials in g.
Note that (

d + 2
2

)
= (d + 2)(d + 1)

2 ≤ 4d2

as 3t + 2 ≤ 7t2 for all t ≥ 1. This observation yields the claim.

Thus, in order to bound the polynomial Ri, it suffices to compute its largest
coefficient as we already determined upper bounds on the total degree.

Lemma 2.11.13. For every i ∈ N0, we have

(i) for the coefficient q of the polynomial Q

q = 1116

(ii) for the coefficient pi of the polynomial Pi

pi ≤
(
212i2−3 · 32i+1 · ((i − 1)!)4i+2

)(2i+1)!·i

with the convention (−1)! = 1.

(iii) and for the coefficient ri of the polynomial Ri

ri ≤ 1116 ·
(
248i2 · 34i · ((2i)!)8i

)(4i)!·i·(2i+1)3(i+1)2

.

Proof. Considering the expanded form of

Q(x, y) = x(x + 1) + x + 1 + y + ((2(x + 1 + y) + 1)(x + 1 + y))3y,

we see that q = 1116.
We show the upper bound on the coefficients pi inductively. As P0(x, y) = x + y,

we have p0 = 1 and the claim holds. Suppose the claim holds for some i − 1 ≥ 0.
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We denote the degree of Pi−1 by d and define w = pi−1 · 4d2. By definition of Pi, we
obtain

pi = c(Pi(x, y)) ≤ c(Pi(x, x))

≤ pi−1 + c
((

(2w · xd + 1) · 2x
)2i+1

x

)
≤ pi−1 + c

((
6w · xd+1

)2i+1
x

)
≤ pi−1 + c

(
(6w)2i+1 · x(2i+1)(d+1)+1

)
= pi−1 + (6w)2i+1

≤ 2 · p2i+1
i−1 ·

(
6 · 4 · d2

)2i+1

where the first inequality follows from the fact that all coefficients of the polynomial Pi

are non-negative, the second from Lemma 2.11.12 and the third inequality as w ≥ 1.
Applying Lemma 2.11.7, we obtain d ≤ 8i−1 · (i − 1)!. Thus

pi ≤ 2 · p2i+1
i−1 · (6 · 4 · d2)2i+1

≤ p2i+1
i−1 · 26i+4 · 32i+1 · d4i+2

≤ p2i+1
i−1 · 26i+3 · 32i+1 · 23(i−1)(4i+2) · ((i − 1)!)4i+2

≤ p2i+1
i−1 · 212i2−3 · 32i+1 · ((i − 1)!)4i+2.

By induction, this yields

pi ≤
((

212i2−3 · 32i+1 · ((i − 1)!)4i+2
)(2(i−1)+1)!·(i−1)

)2i+1

· 212i2−3 · 32i+1 · ((i − 1)!)4i+2

≤
(
212i2−3 · 32i+1 · ((i − 1)!)4i+2

)(2i+1)!·(i−1)

· 212i2−3 · 32i+1 · ((i − 1)!)4i+2

and the claim follows.
It remains to prove the upper bound on the coefficients ri. Let r′

i denote the largest
coefficient of R′

i. We proceed by induction on i. Clearly, the claim holds for r0 and r′
0

as r0 = r′
0 = 1. For i ≥ 1, we have

ri ≤ q · max(ri−1, r′
i−1)7

r′
i ≤ p2i+1 · max(ri−1 + 1, r′

i−1)deg(P2i+1).

as Q has degree 7 by Lemma 2.11.7
Define dk := 8k ·k! and let tk be the upper bound on pk we established for all k ∈ N0.

Set s0 := r0 and let s′
0 := r′

0. For i ∈ N, we define

si := q · max(si−1, s′
i−1)7

s′
i := t2i+1 · max(si−1 + 1, s′

i−1)d2i+1 .
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As d2i+1 is an upper bound on the degree of the polynomial P2i+1 by Lemma 2.11.7,
we obtain ri ≤ si and r′

i ≤ s′
i. Thus, it suffices to determine bounds on si and s′

i for
all i.

As d2i+1 ≥ 7 and t2i+1 > q = 1116 for all i ≥ 1, we obtain s′
i > si for all i ≥ 1.

Since both si and s′
i are integers, this yields s′

i ≥ si + 1. Thus, for all i ≥ 2

si = q · (s′
i−1)7

s′
i = t2i+1 · (s′

i−1)d2i+1 .

We show by induction on i that

s′
i ≤

(2i+1∏
k=1

tk

)∏i

j=1 82j+1·(2j+1)!

.

for all i ∈ N0. The claim clearly holds for i ≤ 1 as s′
0 = 1 and s′

1 = t3. Assume the
claim holds for some i − 1 ≥ 1. We obtain by induction and by definition of d2i+1

s′
i = t2i+1 · (s′

i−1)d2i+1

≤ t2i+1 ·


2(i−1)+1∏

k=1
tk


∏i−1

j=1 82j+1·(2j+1)!


d2i+1

.

which shows the upper bound on s′
i.

Thus, we obtain

si ≤ q · (s′
i−1)7 ≤ q ·

(2i−1∏
k=1

tk

)7·
∏i−1

j=1 82j+1·(2j+1)!

for all i ≥ 1.
Note that

2i−1∏
k=1

tk =
2i−1∏
k=1

(
212k2−3 · 32k+1 · ((k − 1)!)4i+2

)(2k+1)!·k

≤
(
212(2i−1)2−3 · 32(2i−1)+1 · ((2i − 2)!)4(2i−1)+2

)(2(2i−1)+1)!·(2i−1)2

≤
(
248i2 · 34i · ((2i)!)8i

)(4i)!·i

for i ≥ 1. Further, we have by Lemma 2.11.10

7 ·
i−1∏
j=1

82j+1 · (2j + 1)! ≤ (2i + 1)3(i+1)2
.

This finally yields for all i ≥ 1

ri ≤ si ≤ q ·
(
248i2 · 34i · ((2i)!)8i

)(4i)!·i·(2i+1)3(i+1)2

.

As r0 = 1 the inequality above holds for all i ∈ N0. The claim follows as q = 1116.
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Definition 2.11.14. We define the function

r : N0 → R

i 7→ 1116 ·
(
248i2 · 34i · ((2i)!)8i

)(4i)!·i·(2i+1)3(i+1)2

· 4 · (2i + 1)6(i+1)2
.

An application of Lemma 2.11.12 yields an upper bound on the polynomial Ri.

Lemma 2.11.15. For all i ≥ 0 and all x and y with 1 ≤ y ≤ x we have

Ri(x, y) ≤ r(i) · xdeg(Ri).

The same is true if the roles of x and y are reversed.

Proof. Let i ∈ N0 and let di denote the bound on the total degree of the polynomial Ri

we determined in Lemma 2.11.9. It suffices to observe that r(i) is the product of the
upper bound on the largest coefficient of Ri we established in Lemma 2.11.13 and 4d2

i .
The claim now follows from Lemma 2.11.12.

This bound will be useful when we determine an upper bound on the number of
colors of p-centered colorings of any class of graphs with bounded expansion.

Definition 2.11.16 ([73, Corollary 6.3]). We define the function

S : N → R
p 7→ 1 + (p − 1)(2 + ⌈log2(p)⌉).

Nešetřil and Ossona de Mendez showed that if C is a class of graphs of bounded
expansion, then there exists for every p ∈ N a number X(p) such that every graph in C
admits a p-centered coloring using at most X(p) colors [73, Theorem 7.1]. In particular,
their proof yields an upper bound on X(p). Later on, Dȩbski et al. improved the
bounds on X(p) for certain classes of graphs, such as graphs avoiding a fixed graph
as a topological minor [15].

Theorem 2.11.17 ([73, Theorem 7.1]). A family C of undirected graphs has bounded
expansion if and only if for every p ∈ N0, there exists an integer X(p) such that every
graph in C has a p-centered coloring using at most X(p) distinct colors.

In particular, if there exists an increasing function f : N0 → R≥1 such that for
every graph G ∈ C we have ∇̃d(G) ≤ f(d), then there exists a p-centered coloring of
every G ∈ C with at most

C(p) · (p + pp)(
C(p)

p )

colors where C(p) ≤ 2r(S(p)) ·
(
8f
(
2S(p)+1 − 1

))22S(p)+2·deg(RS(p))
+ 1.

Proof. We only outline the argument given by Nešetřil and Ossona de Mendez [73,
Theorem 7.1]. Let f be an increasing function such that ∇̃d(G) ≤ f(d) and f(d) ≥ 1
for all G ∈ C and d ∈ N0. Following the argument given by Nešetřil and Ossona
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2.11 Sparsity

de Mendez in combination with [75, Corollary 3.2] and [74, Lemma 4.6], we obtain
that every graph in C admits a p-centered coloring using at most

C(p) · N(p, p)(
C(p)

p ) (2.1)

colors where N(p, p) is the constant defined in [74] and

C(p) ≤ 2RS(p)

(
2f(0), 4

(
4f
(
2S(p)+1 − 1

))(2S(p)+1)2)
+ 1.

The bound on the number of colors of a p-centered coloring given in (2.1) results from
[73, Lemma 2.5].

As f is increasing and f(d) ≥ 1 for all d ∈ N0, we obtain by Lemma 2.11.15

C(p) ≤ 2r(S(p)) ·
(

4
(
4f
(
2S(p)+1 − 1

))(2S(p)+1)2)deg(RS(p))
+ 1

≤ 2r(S(p)) ·
(
8f
(
2S(p)+1 − 1

))22S(p)+2·deg(RS(p))
+ 1

≤ 2r(S(p)) ·
(
8f
(
2S(p)+1 − 1

))22S(p)+2·deg(RS(p))
+ 1

and as Nešetřil and Ossona de Mendez showed that N(p, p) ≤ p + pp using a greedy
coloring [74, Lemma 4.6] the claim follows.

Intuitively, we might expect that posets with sparse cover graphs have small
dimension. Planar posets are sparse; yet, Kelly’s construction shows that they have
arbitrarily large dimension, see Lemma 2.6.3. It was observed that these posets have
large height and conjectured that the dimension of planar posets is bounded in terms
of their height based on results of Felsner, Li, and Trotter [30, Corollary 5.1]. This
was shown to be true by Streib and Trotter [85].

Similar results for different classes of posets with sparse cover graphs followed. An
overview is given in [59, Figure 2]. Using the model of bounded expansion, Joret,
Micek, and Wiechert were able to generalize previous results concerning such posets
in the following theorem.

Theorem 2.11.18 ([59, Theorem 3]). If P is a poset of height h whose cover graph
admits a 2h-centered coloring using c colors, then

dim(P ) ≤ 22(c+1)h(P )
.

The property of forming a nowhere dense class is a relaxation of bounded expansion.
As Joret, Micek, and Wiechert were able to construct posets of height two with
arbitrarily large dimension whose cover graphs form a class of nowhere dense graphs,
the result above cannot be extended to nowhere dense cover graphs [59, p. 1139].

Based on the work of Nešetřil, Ossona de Mendez, and Wood who showed that
graphs with bounded queue number have bounded expansion, see Theorem 2.11.2,
Joret, Micek, and Wiechert conclude that the dimension of posets is bounded in terms
of their height and queue number [59, p. 1135].
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2 Dushnik-Miller Dimension

Theorem 2.11.19 ([59, p. 1135]). The dimension of posets is bounded in terms of
their height and (undirected) queue number. More precisely, we have for every poset P

dim(P ) ≤ 2
2
(

λ·
(

2h+(2h)2h
)( λ

2h)
+1
)h

where we write h for h(P ) and where

λ ≤ 2r(T ) ·
(
8(2q + 2)2T +3)22T +2·(2T +1)3(T +1)2

+ 1

with T = S(2h) ≤ 8h log2(2h), q = qn(Cov(P )) and where r is the function defined
in Definition 2.11.14.

Proof. Let q ∈ N and define C as the family of undirected graphs with (undirected)
queue number at most q. The function f in Theorem 2.11.17 is given by

f(d) := (2q + 2)4d

for d ∈ N0. Indeed, Theorem 2.11.2 shows that ∇̃d(G) ≤ f(d) for every G ∈ C.
Further, f is increasing and f(d) ≥ 1 for all d ∈ N0. To improve readability, we may
write h instead of h(P ) for the height of a poset P when P is clear from context. By
Theorem 2.11.17, every poset P with undirected queue number at most q admits a
2h-centered coloring using at most λ · (2h + (2h)2h)(

λ
2h) colors where

λ ≤ 2r(T ) ·
(
8f
(
2T +1 − 1

))22T +2·deg(RT )
+ 1

≤ 2r(T ) ·
(
8(2q + 2)4·(2T +1−1)

)22T +2·deg(RT )
+ 1

≤ 2r(T ) ·
(
8(2q + 2)2T +3)22T +2·deg(RT )

+ 1

and we write T for S(2h). Further, we have deg(RT ) ≤ (2T +1)3(T +1)2 by Lemma 2.11.9.
Thus,

λ ≤ 2r(T ) ·
(
8(2q + 2)2T +3)22T +2·(2T +1)3(T +1)2

+ 1

By Theorem 2.11.18, we obtain

dim(P ) ≤ 2
2
(

λ·(2h+(2h)2h)( λ
2h)+1

)h

.
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As the directed queue number of a poset is an upper bound on the undirected
queue number of its cover graph, the result above also applies in our setting.

A similar result to Theorem 2.11.19 holds for stack number as graphs with bounded
stack number have bounded expansion, see Theorem 2.11.3.

Theorem 2.11.20 ([59, p. 1135]). The dimension of posets is bounded in terms of
their height and (undirected) stack number. More precisely, we have for every poset P

dim(P ) ≤ 2
2
(

λ·(2h+(2h)2h)( λ
2h)+1

)h

where we write h for h(P ) and where

λ ≤ 2r(T ) ·
(

8
(

4s(5s − 5)2T +2−1

5s − 6 + 1
))22T +2·(2T +1)3(T +1)2

+ 1

with T = S(2h) ≤ 8h log2(2h), s = sn(Cov(P )) and where r is the function defined in
Definition 2.11.14.

Proof. The proof is similar to Theorem 2.11.19 and is therefore omitted. Using
Theorem 2.11.3 instead of Theorem 2.11.2 in order to bound the number of colors of
a 2h(P )-centered coloring, we obtain the claim.

Note that the result above remains true if we replace the stack number of the cover
graph by the directed stack number of the poset P as the function dependent on
s = sn(Cov(P )) is increasing in s and s is bounded from above by sn(P ).

2.12 Lower Bounds
In Theorem 2.11.19 we determined an upper bound on the dimension in terms of
queue number and height. The aim of this section is to show that any such upper
bound has to be exponential in both parameters. The same is true for any upper
bound on dimension in terms of stack number and height.

Similarly to queue and stack number, the dimension of a poset is bounded in terms
of its height and the treewidth of its cover graph [56]. Joret et al. improved the
previous upper bound [57, Corollary 13]. Constructing a family of posets whose
dimension is exponential in height and treewidth, they conclude that the bound is
essentially best-possible [57, Theorem 15]. Considering a restriction of this family
of posets, we prove that there are posets whose dimension is exponential in height,
queue or stack number. We first show the following technical lemma.

Lemma 2.12.1. For every k ≥ 1, there exists a poset Pk of height 2k that admits a
horizontal 2-division consisting of 10(k − 1) + 4 horizontal lines and has dimension at
least 2k.

Proof. We show the proof by induction on k. We claim that for every k ≥ 1, there
exists a poset Pk such that the following holds.
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2 Dushnik-Miller Dimension

yi y′
i

bi

ai

xi x′
i

Pk

(a) Construction of the poset Pk+1.
The elements ai and bi are incom-
parable in the poset Pk which is
represented by a gray rectangle.

yiy′
i

xix′
i

Pk

(b) Extension of a 2-division of Pk to a 2-
division of Pk+1. Areas where new vertex
or crossing events occur are represented in
blue and green respectively.

Figure 2.24: Illustrations of the proof of Lemma 2.12.1. Dashed lines join incomparable
pairs ai, bi.

(i) h(Pk) = 2k

(ii) the minimal and maximal elements of Pk induce a standard example of size 2k

(iii) there exists a horizontal 2-division of Pk consisting of 10(k − 1) + 4 horizontal
lines.

Clearly, the standard example S2 fulfills (i) and (ii) for k = 1. As it can be represented
by two non-intersecting edges, we see that S2 has a horizontal 2-division consisting of
four lines.

Suppose there exists such a poset Pk for some k ≥ 1. Let a1, . . . , an, b1, . . . , bn

denote the elements of the standard example of size n = 2k formed by the minimal and
maximal elements such that ai ∥ bi for all i. For each i, we add four vertices xi, x′

i, yi, y′
i

such that xi, x′
i ≤ ai, bi ≤ yi, y′

i and xi, x′
i, yi, y′

i form a standard example of size 2,
see Figure 2.24a.

Let Pk+1 denote the poset we obtain. We see that the vertices x1, x′
1, . . . , xn, x′

n

are the minimal, and the vertices y1, y′
1, . . . , yn, y′

n are the maximal elements of Pk+1
which form a standard example of size 2 · n = 2k+1. Further, the poset Pk+1 has
indeed height 2 + h(Pk) = 2(k + 1).

We now prove that Pk admits a horizontal 2-division consisting of 10(k − 1) + 4
horizontal lines. Suppose the claim holds for some k ≥ 1. By definition of Pk+1, we
can extend the horizontal 2-division of Pk to a 2-division of Pk+1 using three more
pairs of horizontal lines ℓi, ℓ′

i for crossing events and two more for vertex events, i.e.
ten more horizontal lines in total, see Figure 2.24b. Thus, Pk+1 admits a horizontal
2-division using 10k + 4 horizontal lines.

As Pk contains a standard example of size 2k, we obtain dim(Pk) ≥ 2k by
Lemma 2.1.10 and the claim follows.
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2.12 Lower Bounds

Subdividing edges at their intersections with the horizontal lines of the 2-division, we
obtain a poset with constant queue and stack number whose dimension is exponential
in the height.

Corollary 2.12.2. For every k ≥ 1, there exists a poset of height at most 20k2 − 12k
and dimension at least 2k that has stack number at most 3 and queue number at
most 2.

Proof. Consider the poset Pk given in Lemma 2.12.1. The poset Pk has height 2k and
admits a 2-division consisting of at most 10(k − 1) + 4 horizontal lines. Subdividing
the edges of Pk at the intersections with the horizontal lines of the 2-division, we
obtain a poset P ′

k of height at most

h(Pk) · (10(k − 1) + 4) = 20k2 − 12k.

As P ′
k contains Pk as a subposet, dim(P ′

k) ≥ 2k follows. By Lemma 2.10.5 and
Lemma 2.10.8, we see that P ′

k has queue number at most 2 and and stack number at
most 3.

Considering another construction of posets given in [57, Theorem 15], we find posets
of constant height whose dimension is exponential in their queue and stack number.

Proposition 2.12.3. For every k ≥ 1, there exists a poset of height at most 4,
dimension at least 2k and stack and queue number at most 2k − 1.

Proof. We proceed by induction on k. We claim that for each k ≥ 1 there exists a
poset Tk such that

(i) h(Tk) ≤ 4

(ii) the minimal and maximal elements of Tk induce a standard example S of size 2k

(iii) Tk admits a (2k − 1)-stack layout and a (2k − 1)-queue layout such that all
minimal elements appear before the maximal elements.

Note that the standard example S2 fulfills all properties for k = 1.
Suppose the claim holds for some k ≥ 1. Consider two copies T

(1)
k and T

(2)
k of Tk

and a standard example S2. Let x1, x2 be the minimal elements of S2 and y1, y2 its
maximal elements such that xi ∥ yi for i ∈ [2]. Adding directed edges from all minimal
elements of T

(i)
k to xi and from yi to all maximal elements of T

(i)
k for each i ∈ [2], we

obtain a poset Tk+1, see Figure 2.25.
As Tk has height at most 4, the same holds for Tk+1. Further, we see that the

minimal and maximal elements of Tk+1 form a standard example of size 2 · 2k. By
induction, there exists for each copy T

(i)
k a (2k − 1)-stack layout σi such that the

minimal elements precede the maximal elements. We may split the ordering σi into
two orderings L(i) and H(i) such that L(i) contains all minimal elements and H(i)

61



2 Dushnik-Miller Dimension

y1 y2

x1 x2

Figure 2.25: Construction of the poset Tk+1 using two copies of Tk, represented in gray.
Only edges which do not belong to any of the two copies are represented.

y1 y2x1x2
L(1) L(2) H(2) H(1)

Figure 2.26: Given a stack layout of Tk where the minimal elements appear before
the maximal elements, we obtain a stack layout of Tk+1 with the same
property using only two more stacks. Only edges which do not belong
to any of the copies of Tk are represented. Edges of the same color are
assigned to the same stack.

contains all maximal elements of T
(i)
k . We have σi = L(i) ≤ H(i). Consider the

layout σ of Tk+1 given by

L(1) ≤ L(2) ≤ x2 ≤ x1 ≤ y1 ≤ y2 ≤ H(2) ≤ H(1),

see Figure 2.26. Note that none of the edges in T
(1)
k intersects any of the edges of T

(2)
k

in σ. Thus, we only require 2k−1 stacks for all these edges. Further, we can assign the
edges between minimal elements of T

(1)
k and x1, the edge x1y2 and edges connecting

y2 to maximal elements of T
(2)
k to one stack. Similarly, all edges between T

(2)
k and x2,

the edge x2y1 and edges between y1 and T
(1)
k can be assigned to one stack. We used

a total of 2k + 1 stacks, showing that σ is indeed a (2k + 1)-stack layout where the
minimal elements precede the maximal elements.

We can argue similarly to obtain a (2k + 1)-queue layout of Tk+1 if we consider the
layout of Tk+1 given by

L(1) ≤ L(2) ≤ x1 ≤ x2 ≤ y1 ≤ y2 ≤ H(1) ≤ H(2)

where L(i) ≤ H(i) is a (2(k − 1) + 1)-queue layout of T
(i)
k where L(i) contains the

minimal and H(i) the maximal elements, see Figure 2.27.
As Tk contains a standard example of size 2k, we obtain dim(Tk) ≥ 2k and the

claim follows.
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y1 y2x1 x2
L(1) L(2) H(1) H(2)

Figure 2.27: Given a queue layout of Tk where the minimal elements appear before
the maximal elements, we obtain a queue layout of Tk+1 with the same
property using only two more queues. Only edges which do not belong
to any of the copies of Tk are represented. Edges of the same color are
assigned to the same queue.

Corollary 2.12.2 shows that there is no function that is polynomial in height and
exponential in queue or stack number which bounds dimension. The same is true if
we exchange the roles of height and queue or stack number by Proposition 2.12.3.
However, the lower bounds we established are far from meeting the upper bounds on
dimension determined in Theorem 2.11.19 and 2.11.20.
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3 Boolean Dimension

In the remainder of this work, we study a variation of Dushnik-Miller dimension
known as Boolean dimension. It was introduced by Gambosi, Nešetřil, and Talamo
in 1987 [38], see [37] for the full version, and provides another means of studying a
poset’s complexity.

3.1 Introduction to Boolean Dimension

Boolean dimension is a parameter which is also based on linear orders; however, in
contrast to Dushnik-Miller dimension, these do not need to be linear extensions of
the poset in question.

Definition 3.1.1 (based on [5][p.2]). For a positive integer d, we denote by 2d the set
of all binary vectors of length d. Consider a poset P and a family B = {L1, . . . , Ld}
of d linear orders of the elements of P . We define for elements x, y of P the binary
string q(x, y, B) as the string of length d where the i-th element is 1 if x ≤Li y and
0 otherwise. Let τ : 2d → {0, 1} be a function. The pair (B, τ) is called a Boolean
realizer if for all elements x, y of P , we have

x ≤P y ⇐⇒ τ(q(x, y, B)) = 1.

The Boolean dimension of P , denoted by bdim(P ), is the smallest positive integer d
such that there exists a Boolean realizer (B, τ) where |B| = d.

Similar to Dushnik-Miller realizers, we can decide for two elements x and y of a
poset P whether x ≤P y by considering their order in the linear orders of a Boolean
realizer.

Note that the definition above requires that the function τ of a Boolean realizer (B, τ)
maps the binary string 1 . . . 1 to 1 by reflexivity of a partial order. If we only require
for distinct elements x, y of a poset P that x ≤P y if and only if τ(q(x, y, B)) = 1, we
get a slightly different notion; see [5]. With our definition, the Boolean dimension of
an antichain of size at least 2 is 2, with the definition of Barrera-Cruz et al. in [5] it
is 1. For all other posets, the two definitions yield the same value [5, p. 2] due to the
following observation. There is some pair of distinct elements x, y such that x ≤ y, i.e.
the pair (x, y) is associated with a binary string that is mapped to 1. Reversing some
of the linear orders of the Boolean realizer and modifying the map accordingly, we can
ensure that (x, y) is associated with the binary string 1 . . . 1. As every pair of equal
elements is mapped to the same binary string as the pair (x, y), we constructed a
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Boolean realizer which satisfies our definition and requires the same number of linear
orders as the initial one.

Similarly to Dushnik-Miller dimension, Boolean dimension is monotone with respect
to subposets. This follows from the fact that the restriction of a Boolean realizer to a
subposet is still a Boolean realizer.

Lemma 3.1.2 ([5][p.2]). For every subposet Q of a poset P , we have

bdim(Q) ≤ bdim(P ).

As any Dushnik-Miller realizer together with the map which assigns 1 to the binary
string consisting only of ones and 0 to all other strings is a Boolean realizer, we see
that Dushnik-Miller dimension provides an upper bound on Boolean dimension.

Lemma 3.1.3 ([5][p.2]). For every poset P , we have bdim(P ) ≤ dim(P ).

Even though Boolean dimension provides a lower bound on Dushnik-Miller di-
mension and these two notions are not equivalent in general, they coincide for small
dimension as has been shown by Gambosi, Nešetřil, and Talamo for a slightly different
definition of Boolean dimension [37, Theorem 2.7]. The proof has been simplified and
adapted to the definition of Boolean dimension we consider by Trotter and Walczak
[90, p. 3]. While the proof of the 2-dimensional case is straight forward, it cannot be
easily adapted to the 3-dimensional case. However, the observations of Trotter and
Walczak do not only simplify the 2-dimensional case, but also yield an easy proof of
the 3-dimensional case.

Lemma 3.1.4 ([90, p. 3]). For a poset P and an integer d ≤ 3, we have bdim(P ) = d
if and only if dim(P ) = d.

Proof. By Lemma 3.1.3, it suffices to show that dim(P ) ≤ bdim(P ) for every poset
of Boolean dimension at most 3.

If we consider a poset P with a Boolean realizer (B, τ) such that |B| = 1, we see
that τ maps the binary string 1 to 1 by reflexivity of a partial order. As for any two
elements x, y the corresponding binary string of (x, y) or (y, x) is 1, we see that any
two elements are comparable, i.e. P is a chain. We obtain dim P = 1.

Now let P be a poset of Boolean dimension d ∈ {2, 3} and let (B, τ) be a Boolean
realizer. For any α ∈ 2d, we denote by α the bitwise flipped binary vector.

If there exists at most one pair α, α ∈ 2d such that τ(α) = τ(α) = 0, we observe that
for every incomparable pair (x, y) of P either the binary string associated with (x, y)
or (y, x) is α. Thus, orienting edges xy of the incomparability graph from x to y if
and only if q(x, y, B) = α defines an orientation of Inc(P ). Note that the orientation
is transitive. Thus, dim(P ) ≤ 2 follows by Lemma 2.1.13.

This concludes in particular the proof for d = 2. Indeed, as
∣∣22∣∣ = 4 and τ maps

the binary string 11 to 1, we see that there is at most one such α. We may therefore
assume that d = 3.
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If there exist at least two such α, at least four binary strings are mapped to 0 by τ .
By antisymmetry of a partial order, at most two of the remaining four strings are
mapped to 1. Let B = {L1, L2, L3}. We distinguish (up to symmetry) several cases.

Case 1. If τ(α) = 1 if and only if α ∈ {111}, then B is a Dushnik-Miller realizer.
Case 2. If τ(α) = 1 if and only if α ∈ {110, 111}, then {L1, L2} is a Dushnik-Miller

realizer. This yields a contradiction as 3 = bdim(P ) ≤ dim(P ).
Case 3. If τ(α) = 1 if and only if α ∈ {001, 111}, we see that for every two

incomparable elements x, y either q(x, y, B) or q(y, x, B) lies in the set {101, 100}.
Therefore, we obtain a transitive orientation of the incomparability graph of P by
orienting edges from x to y if and only if x <L1 y and x >L2 y. An application of
Lemma 2.1.13 shows that the poset P has Dushnik-Miller dimension at most 2 which
contradicts the assumption bdim(P ) = 3.

Thus, only the first case may occur and dim(P ) ≤ bdim(P ) follows.

While Dushnik-Miller dimension and Boolean dimension coincide for posets of small
dimension they may differ dramatically. The standard examples provide a family of
posets of unbounded Dushnik-Miller dimension, but bounded Boolean dimension.

Lemma 3.1.5 ([5, p. 3][90, p. 3][37, Theorem 2.9]). The Boolean dimension of any
standard example of size at least 4 is 4.

Proof. Consider the standard example Sn of size n ≥ 4. Suppose its Boolean dimension
is at most 3. By Lemma 3.1.4, we obtain dim(Sn) ≤ 3. This is a contradiction as the
Dushnik-Miller dimension of Sn is n for n ≥ 2, see Lemma 2.1.10. Thus, it suffices to
show that the Boolean dimension of Sn is at most 4.

We construct a Boolean realizer of Sn. We define the following four linear orders of
the vertices of Sn

L1 = a1 . . . an b1 . . . bn

L2 = an . . . a1 bn . . . b1

L3 = b1 a1 b2 a2 . . . bn an

L4 = bn an bn−1 an−1 . . . b1 a1.

Further, we define a function

τ : V (Sn) × V (Sn) → {0, 1}
(x, y) 7→ (x ≤L1 y) ∧ (x ≤L2 y) ∧

(
(x ≤L3 y) ∨ (x ≤L4 y)

)
where x ≤Li y is true if and only if x precedes y in the linear order Li. It is
easy to check that ({L1, . . . , L4}, τ) is indeed a Boolean realizer of Sn. We obtain
bdim(Sn) ≤ 4.

Nešetřil and Pudlák showed in 1989 that the Boolean dimension of posets on n
elements is in O(log(n)) [76, Proposition 1]. This is very different from Dushnik-Miller
dimension as the Dushnik-Miller dimension of a poset on n elements can be linear
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in n, see Lemma 2.1.10. Further, Nešetřil and Pudlák proved the existence of a poset
on n elements that meets the upper bound [76, Proposition 2]. However, their proof
is non-constructive.

Later on, explicit constructions of posets with large Boolean dimension were found.
For instance, universal interval orders do not only have large Dushnik-Miller dimension,
as we have seen in Lemma 2.1.17, but also large Boolean dimension. The following
lemma is a modification of an argument in [35] and is due to Felsner, Mészáros, and
Micek, see [31, p. 676] for a proof.

Lemma 3.1.6 ([31, p. 676]). For every n ≥ 2, we have bdim(In) ≥ log log log n.

In Proposition 3.2.5 we will encounter yet another family of posets of unbounded
Boolean dimension.

While the Dushnik-Miller dimension of planar posets is unbounded as we have
seen in Corollary 2.6.4, it is still unknown whether the Boolean dimension of planar
posets is bounded [70, Problem A]. The question was initially raised by Nešetřil and
Pudlák who suggested a Ramsey-Type-argument in order to show that it is unbounded
[76, Problem 3.1]. No progress has been made towards proving the negative result, but
recent results suggest that the Boolean dimension of planar posets might be bounded.
Felsner, Mészáros, and Micek showed that the Boolean dimension of a poset is bounded
in terms of the treewidth of its cover graph [31]. While a construction of Trotter, called
the wheel construction, shows that there are posets with planar cover graphs, a zero
and a one with arbitrary large Dushnik-Miller dimension [88, Theorem 1] [70, p. 2],
the same does not hold for Boolean dimension. Micek, Blake, and Trotter proved that
the Boolean dimension of a poset with a planar cover graph and a zero is at most
13 [70, Theorem 1], thereby extending a result of Gambosi, Nešetřil, and Talamo
who showed that the Boolean dimension of planar posets of height 2 is bounded
[37, Theorem 3.4]. The result on posets with planar cover graphs and a zero seems
somewhat similar to Theorem 2.6.9, which states that planar posets with a zero have
Dushnik-Miller dimension at most 3.

Often, we relate the dimension of a poset to graph parameters of its cover graph,
see [59, Figure 2] for an overview of such results. As graph partitions and coverings
provide useful tools in graph theory, we might wonder whether it suffices to study the
dimension of the components of a partition or covering of the diagram in order to
determine the dimension of the poset.

Indeed, partitions are of help in some situations. For example, the Dushnik-Miller
dimension of a poset is bounded by the maximum Dushnik-Miller dimension of
its connected components plus one, see Lemma 2.1.20. No similar linear bound
exists for Boolean dimension. In fact, there are posets whose Boolean dimension
is exponential in the maximum Boolean dimension of its connected components
[69, pp. 5–6]. Determining an upper bound in the maximum Boolean dimension of the
connected components is much more complicated then for Dushnik-Miller dimension.
An exponential upper bound has been established by Mészáros, Micek, and Trotter
[69, Theorem 2.1].
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However, neither graph partition nor coverings respect Dushnik-Miller dimension
in general.

Observation 3.1.7. The standard example Sn admits a partition of its edges into
two posets, each of which has Dushnik-Miller dimension at most 2.

Proof. Consider the partition of the standard example of size n into two posets P ′

and P ′′ on the elements a1, . . . , an, b1, . . . , bn where ai <P ′ bj if and only if i < j and
ai <P ′′ bj if and only if i > j for all i and j.

As the two linear orders

L1 = b1 a1 b2 a2 . . . bn an

L2 = an . . . a1 bn . . . b1

form a Dushnik-Miller realizer of P ′, we obtain dim(P ) ≤ 2. The proof for P ′′ is
similar.

For Boolean dimension, the situation is somewhat different as is exemplified in the
following lemma.

Lemma 3.1.8. If P is a poset of height 2 and we partition the edges of its diagram
into k sets E1, . . . , Ek, then we have bdim(P ) ≤

∑k
i=1 bdim(Pi) where Pi denotes the

poset on the elements of P induced by the edges Ei.

Proof. Let di := bdim Pi and let (Bi, τi) denote a Boolean realizer of Pi for each i. It
suffices to show that for any two elements x, y of P we have x ≤P y if and only if

k∨
i=1

τi(q(x, y, Bi)) = 1.

Let x, y be distinct elements of P . If x ≤P y, then xy is an edge in the diagram and
therefore there is an i such that xy ∈ Ei. In particular, x ≤Pi y and τi(q(x, y, Bi)) = 1
follows.

Suppose now that for distinct elements x, y of P , we have ∨k
i=1 τi(q(x, y, Bi)) = 1.

Thus, there exists an index i ∈ [k] such that τi(q(x, y, Bi)) = 1. We see that xy is
an edge in Ei, therefore in particular an edge of the diagram of P . This observation
yields x ≤P y.

In particular, the lemma above together with Observation 3.1.7 yields another proof
of the fact that standard examples have Boolean dimension at most 4.

Any two elements which are incomparable in a subposet P ′ of a poset P are also
incomparable in P as P ′ is the induced relation on a subset of elements of P . We
wish to loosen this restriction.

Definition 3.1.9. A weak subposet P ′ of a poset P is a poset on a subset of the
elements of P such that for all elements x and y of P ′ with x ≤P ′ y we have x ≤P y.
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3 Boolean Dimension

Subposets are in particular weak subposets, yet the converse is not true. An
antichain is for example a weak subposet of a chain of the same size, but not a
subposet. In general, any poset whose diagram is a subgraph of the diagram of a
poset P is a weak subposet of P . Yet, not every weak subposet has this property,
think of the standard example which is a subposet of Kelly’s construction.

Using the same idea as in the proof above, we can easily generalize Lemma 3.1.8 to
posets of arbitrary height.

Lemma 3.1.10. Let P be a poset. If P is a family of weak subposets of P such that

(i) each P ′ ∈ P contains all elements of P

(ii) for every two distinct elements x and y of P with x ≤P y there exists a poset
P ′ ∈ P whose diagram contains a directed x-y-path,

then
bdim(P ) ≤

∑
P ′∈P

bdim(P ′).

This observation will be useful in the proof of Proposition 3.2.15.

3.2 Boolean Dimension, Queue and Stack Number
Recall that Dushnik-Miller dimension is bounded from above in terms of queue
number and height, see Theorem 2.11.19, and the same is true for stack number and
height by Theorem 2.11.20. As the Boolean dimension of a poset does not exceed its
Dushnik-Miller dimension, the same bounds also apply to Boolean dimension. The
aim of this section is to study the relationship between queue and stack number and
Boolean dimension.

We have already seen that the Dushnik-Miller dimension of a poset is neither
bounded in terms of its queue number, nor in terms of its stack number, see Corol-
lary 2.7.7 and 2.10.11. Yet, it is bounded in terms of stack number and height, and
similarly in terms of queue number and height.

We may wonder whether if we substitute Dushnik-Miller dimension by Boolean
dimension, a similar result holds independent of the height of the poset. Joret et al.
showed that the Dushnik-Miller dimension of a poset can be bounded in terms of the
treewidth of its cover graph and its height [56, Theorem 1.1]. While there are posets
of arbitrarily large Dushnik-Miller dimension whose cover graphs have treewidth at
most 3 [31, p. 656], the Boolean dimension of a poset is bounded in terms of the
treewidth of its cover graph [31, Theorem 2]. Nevertheless, no similar result holds for
stack or queue number of posets. Using the same approach as in Corollary 2.10.11,
we show that Boolean dimension is not bounded in terms of stack or queue number.

Proposition 3.2.1. There exists a family of poset with stack number at most 3 and
unbounded Boolean dimension and a family of posets with queue number at most 2
and unbounded Boolean dimension.
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Proof. By Lemma 3.1.6, there exists for every n ∈ N a poset P such that

bdim(P ) ≥ n.

Corollary 2.10.9 yields the existence of a subdivision S of P with stack number at
most 3. As P is a subposet of P , we obtain bdim(S) ≥ n.

To obtain the analog result for queue number, we may apply Corollary 2.10.6 to
the poset P .

In Section 2.12, we showed that any upper bound on Dushnik-Miller dimension
in terms of queue number and height has to be exponential in both parameters
and the same is true for stack number and height. The posets we constructed in
Proposition 2.12.3 and Proposition 2.12.2 have large Dushnik-Miller dimension as
they contain large standard examples. However, standard examples have Boolean
dimension at most 4. Thus, the lower bounds we established do not necessarily apply
to Boolean dimension.

We are therefore interested in finding other constructions which determine lower
bounds for Boolean dimension, i.e. we aim to construct posets with small height and
queue number, but large Boolean dimension. In particular, we will study posets of
height 2.

Barrera-Cruz et al. showed that the Boolean dimension of a poset P of height 2
is bounded by a function in the maximum degree of the maximal elements in the
diagram of P [5, Theorem 2.5]. They attribute the proof to Gambosi, Nešetřil, and
Talamo [37, Theorem 3.6].

Proposition 3.2.2 ([5, Theorem 2.5]). If P is a height-2 poset and d is the maximum
degree of the maximal elements of P in its cover graph, then bdim(P ) ≤ 2d.

Proof. Let A denote the minimal and let B denote the maximal elements of P . We
color the edges of the diagram such that any two edges incident to the same vertex
in B have distinct colors using at most d colors. Let E1, . . . , Ed denote the color
classes and let Pi denote the poset on the elements of P induced by the edges Ei.

By Lemma 3.1.8, it suffices to show that bdim(Pi) ≤ 2 for all i. As every vertex
in B has degree at most 1 in the diagram Gi of Pi, we see that Gi is a union of stars
and independent vertices. Thus, Pi can be easily extended to a planar poset with a
zero and a one. By Theorem 2.6.8, we obtain bdim(Pi) ≤ dim(Pi) ≤ 2.

There are posets of height 2 and arbitrarily large Dushnik-Miller dimension where
every maximal element has degree at most 2 in the cover graph. The class of posets
called incidence posets of complete graphs provides such an example as has often
been noted, see [92, p. 2] for instance. As Proposition 3.2.2 shows that the Boolean
dimension of these posets is at most 4, they provide yet another example of posets
with constant Boolean dimension but unbounded Dushnik-Miller dimension.

The upper bound given in Proposition 3.2.2 is tight as has been shown by Barrera-
Cruz et al. [5, Theorem 2.6] using the following observation.
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Observation 3.2.3 ([5, p. 6]). Replacing some of the linear orders of a Boolean
realizer (B, τ) of a poset P with the corresponding reversed linear orders, we obtain a
Boolean realizer (B′, τ ′) of P where τ ′ arises from τ through the obvious modification.

The bound given in Proposition 3.2.2 is established by the following family of
posets.

Definition 3.2.4. For d ≤ n, let S(n, d) be the height-2 poset on all 1- and d-element
subsets of [n] ordered by inclusion.

Indeed, the Boolean dimension of S(n, d) is 2d for large enough n as has been shown
by Barrera-Cruz et al. [5, Theorem 2.6].

Proposition 3.2.5 ([5, Theorem 2.6]). For every d ∈ N, there exists a poset P
of height 2 such that bdim(P ) = 2d where d denotes the maximum degree of the
maximal elements of P in the cover graph. In particular, for large enough n, we have
bdim(S(n, d)) = 2d.

Proof. The claim obviously holds for d = 1. Now let d ≥ 2. For every n ≥ d, consider
the poset S(n, d). By Proposition 3.2.2, it suffices to show that bdim(S(n, d)) ≥ 2d
for sufficiently large n.

Suppose bdim(S(n, d)) < 2d for every n ≥ d. Let (B, τ) be a Boolean realizer
of S(n, d) and write B = {L1, . . . , Ls}. Applying Theorem 2.4.3 s times, we find
a set A ⊆ [n] of size 2d + 1 that appears in every linear order Li in increasing or
decreasing order if n is sufficiently large. By Observation 3.2.3, we may assume that

1 ≤Li 2 ≤Li≤ · · · ≤Li 2d + 1

for every i after relabeling the elements of A.
There are 2d gaps between consecutive elements of A which we denote by (j, j + 1)

for j ∈ [2d]. Consider the element S := {2, 4, . . . , 2d} of S(n, d). As there are at most
2d − 1 linear orders Li and 2d gaps, there exists some gap (j, j + 1) such that there is
no linear order Li with j ≤Li S ≤Li j + 1. Therefore, q(j, S, B) = q(j + 1, S, B). This
shows that j ∈ S if and only if j + 1 ∈ S. However, exactly one of the two numbers j
and j + 1 lies in S yielding a contradiction.

In particular, we see that there exists a family of posets of height 2 and unbounded
Boolean dimension.

One might hope that the posets S(n, d) have large Boolean dimension, small queue
number and constant height. If this were true, they might provide a family of posets
which shows that any upper bound on Boolean dimension in terms of queue number and
height has to be exponential in queue number. However, no poset of height 2 provides
such an exponential lower bound as we will see in Proposition 3.2.10. The same is
true if we consider stack number instead of queue number, see Proposition 3.2.11. For
the posets S(n, d), we establish explicit upper bounds on the queue and stack number
which directly yield polynomial upper bounds on the Boolean dimension.
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3.2 Boolean Dimension, Queue and Stack Number

Observation 3.2.6. The queue number of S(n, d) is at least
√

n−1
2 for 3 ≤ d < n

and n ≥ 15. In particular, we have bdim(S(n, d)) ≤ 4 qn(S(n, d))2 + 2. The same is
true if we replace queue by stack number.

Proof. Let n′ := ⌊n
2 ⌋. First suppose that d < n

2 . We construct distinct d-element
subsets A1, . . . , An′ of [n] such that

i, n′ − (i − 1) ∈ Ai

for all i ∈ [n′] as follows. As d ≥ 3 and 2n′ ≤ n, we can define Ai as the union of any
set

Ci ⊆ [n] \
(
{n′ + 1, . . . , 2n′} ∪ {i, n′ − (i − 1)}

)
of size d − 3 and the set {i, n′ − (i − 1), n′ + i} for every i. Note that such sets Ci of
size d − 3 exist as d < n

2 .
Let σ be any topological ordering of the elements of S(n, d). Without loss of

generality, we may assume that the elements 1, . . . , n′ appear in increasing order in σ.
Consider the sequence of the indices of the sets Ai induced by σ. By Theorem 2.4.3,
there exists a monotone subsequence (ik) of length ℓ ≥

√
n′ such that

Ai1 ≤σ Ai2 ≤σ · · · ≤σ Aiℓ
.

As σ is a topological ordering, the elements i1 and n′ − (i1 − 1) precede Ai1 in σ.
If (ik) is increasing, we see that the edges between elements n′ − (ik − 1) and Aik

form an ℓ-rainbow and the edges between elements ik and Aik
form an ℓ-twist. If (ik)

is decreasing we obtain an ℓ-rainbow between the elements ik and Aik
, and an ℓ-twist

between the elements n′ − (ik − 1) and Aik
. As this holds for any topological ordering,

the queue and stack number of S(n, d) is at least
√

n′ ≥
√

n−1
2 .

Now suppose that d ≥ n
2 . We construct n′ distinct d-element subsets A1, . . . , An′

of [n] such that each Ai contains [n′]\{i} as a subset and does not contain the element i.
Define Ai as the union of any set Ci ⊆ [n]\ [n′] of size d− (n′ −1) and the set [n′]\{i}.
Note that such sets Ci exist as d < n. As Ai does not contain i, but each Aj for i ̸= j
does, we see that the induced poset on the elements [n′] and A1, . . . , An′ forms the
standard example. Thus, we obtain that the queue and stack number of S(n, d) is at
least ⌊n′

2 ⌋ ≥ ⌊n−1
4 ⌋ ≥ n−4

4 by Lemma 2.2.3. As n−4
4 ≥

√
n−1

2 for n ≥ 15, the claim
follows.

Therefore, the queue and the stack number of S(n, d) are at least
√

n−1
2 . As d ≤ n

by definition of S(n, d), we obtain by Proposition 3.2.2

bdim(S(n, d)) ≤ 2d ≤ 2n ≤ 4 qn(S(n, d))2 + 2

and a similar bound for stack number.

Observation 3.2.6 does not give a lower bound on the queue or stack number of
S(n, 2). Yet, using a similar argument, we see that these posets also have relatively
large queue and stack number.
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Observation 3.2.7. The queue and stack number of S(n, 2) is at least
√

n−1
2 for

all n ≥ 2.

Proof. We proceed as in the proof of Observation 3.2.6. Let n′ := ⌊n
2 ⌋. Define

Ai := {i, n − (i − 1)}

for all i ∈ [n′]. Note that all these sets are distinct and have size two. Consider
any topological ordering σ of the elements of S(n, 2). We may assume that the
elements 1, . . . , n appear in increasing order in σ. By Theorem 2.4.3, we obtain a
monotone sequence (ik) of length ℓ ≥

√
n′ such that

Ai1 ≤σ Ai2 ≤σ · · · ≤σ Aiℓ
.

As σ is a topological ordering, the elements i1 and n − (i1 − 1) precede Ai1 in σ for
all k ∈ [ℓ]. If (ik) is increasing, the edges between n − (ik − 1) and Aik

for k ∈ [ℓ]
form an ℓ-rainbow and the edges between ik and Aik

form an ℓ-twist. Similarly, we
obtain a rainbow and a twist of size ℓ if (ik) is decreasing.

As σ is an arbitrary ordering, we see that the stack and queue number of S(n, 2) is
at least

√
n′ ≥

√
n−1

2 .

The posets S(n, 2) correspond to the incidence posets of complete graphs, which
have arbitrarily large Dushnik-Miller dimension [92, p. 2], but Boolean dimension at
most 4.

In Corollary 2.3.5 and 2.5.4, we constructed posets with constant Dushnik-Miller
dimension and arbitrarily large stack or queue number. As Boolean dimension is
bounded from above by Dushnik-Miller dimension, these posets also have constant
Boolean dimension. The posets S(n, 2) and the standard examples provide two more
families of posets which show that neither queue nor stack number is bounded in
terms of the Boolean dimension. However, they do not provide examples for the fact
that the same is true for Dushnik-Miller dimension.

In the remainder of this section, we improve the upper bounds for Boolean dimension
in terms of queue or stack number for posets of height 2. Further, we will be able
to improve the upper bound for Boolean dimension in terms of queue number and
height in general.

In the proof of Lemma 2.10.5, we partitioned an upward drawing of a dag S into
smaller dags along horizontal lines. Some of the dags we obtained corresponded
to matching graphs. Using a correspondence between the non-crossing edges in a
matching graph and queues of a specific queue layout of its edges, we were able to
bound the queue number of S.

Our aim is to construct planar weak subposets of a poset P which contain all
directed paths of the diagram of P using the same correspondence. If we partition
the diagram of P into matching graphs along horizontal lines and choose for each
matching graph a set of non-crossing edges, we clearly obtain a planar weak subposet
of P . Upward drawings for which such a partition into k − 1 matching graphs exists
are called k-leveled.
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Figure 3.1: A poset that is not k-leveled for any k. The numbers associated to the
elements correspond to their height in the poset.

Definition 3.2.8. A dag G is called k-leveled if its vertices can be partitioned into
k sets L1, . . . , Lk such that for every edge ab ∈ E(G) there exists an integer i ∈ [k − 1]
such that a ∈ Li and b ∈ Li+1. For i ∈ [k] the set Li is referred to as the i-th level.
For a given partition of the vertex set of G into k levels, we call an embedding of G
in R2 a k-leveled drawing if all vertices of the same level have the same y-coordinate
and the y-coordinate of a vertex of the i-th level is smaller than the y-coordinate of a
vertex of the j-th level for all i and j with i < j.

A poset is called k-leveled if its diagram is a k-leveled graph.

Note that the drawing induced by levels Li and Li+1 is indeed a matching graph.
Clearly every directed, k-leveled graph admits a k-leveled drawing. Yet, the

assignment of vertices to levels is not unique. An isolated vertex for instance can be
part of any level.

It is tempting to suppose that every poset P is h(P )-leveled as we could try to
define levels as vertices of the same height. However, such an assignment does not
necessarily yield an h(P )-leveled drawing of the diagram; see Figure 3.1. In fact, the
poset given in Figure 3.1 provides an example of a poset which is not k-leveled for
any k.

For height-2 posets, 2-leveled drawings can be easily constructed.

Lemma 3.2.9. For every k-queue poset P of height 2 there exists a 2-leveled drawing
E of its diagram G and a decomposition of the edges of G into k sets E1, . . . , Ek such
that each Ei induces a planar drawing in E.

Proof. Let k be the queue number of P . We consider a k-queue layout σ of the vertices
of the diagram G of P . Let E1, . . . , Ek be the corresponding queue assignment. We
define levels Li := {x ∈ P | h(x) = i} for i ∈ [2] where h is the function that assigns
to each element x of P its height, i.e. the size of a longest chain ending in x. Indeed,
the given assignment of vertices to levels shows that G is 2-leveled as there cannot be
edges between vertices of the same height.

We obtain a 2-leveled drawing E of G in R2 by assigning a vertex of the j-th level
the y-coordinate j and ordering vertices within a level according to σ. It remains to
show that each Ei induces a planar drawing in E . Suppose there is some i ∈ [k] and
edges a′b′, a′′b′′ ∈ Ei that cross in E . Note that a′, a′′ ∈ L1 and b′, b′′ ∈ L2. Without
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loss of generality, we may assume a′ ≤σ a′′. By construction, we obtain b′′ ≤σ b′. As
σ is a topological ordering,

a′ ≤σ a′′ ≤σ b′′ ≤σ b′

follows. This is a contradiction, as no two edges in Ei nest.

The lemma above shows that we can partition the edges of a height-2 poset P into
qn(P ) planar posets. By Lemma 3.1.8, we obtain the following upper bound on the
Boolean dimension.

Proposition 3.2.10. For every height-2 poset P , we have bdim(P ) ≤ 2 qn(P ).

Proof. Let k := qn(P ). By Lemma 3.2.9, there exists a decomposition of the edges
of the diagram of P into k sets E1, . . . , Ek such that each Ei induces a planar poset.
Let Pi be the planar poset on the elements of P induced by the edges Ei for i ∈ [k].
We see that for all i the poset Pi can be easily extended to a planar poset P ′

i with a
zero and a one such that Pi ⊆ P ′

i . Thus for all i, we obtain

bdim(Pi) ≤ bdim(P ′
i ) ≤ dim(P ′

i ) ≤ 2

where the second inequality follows from Lemma 3.1.3 and the last from Theorem 2.6.8.
An application of Lemma 3.1.8 yields the claim.

Not only is the Boolean dimension of height-2 posets bounded from above by a
linear function in the queue number, but also in terms of the stack number.

Proposition 3.2.11. For every height-2 poset P , we have bdim(P ) ≤ 3 sn(P ).

Proof. Let k := sn(P ). As P admits a k-stack layout, we can partition the edges
of the diagram of P into k stacks E1, . . . , Ek. Each Ei induces a forest in Cov(P )
by Lemma 2.7.1. Let Pi be the poset on the elements of P induced by the edges of
Ei. By Corollary 2.6.10, we have dim(Pi) ≤ 3. As Boolean dimension is bounded by
Dushnik-Miller dimension, we see that bdim(Pi) ≤ 3 for each i. An application of
Lemma 3.1.8 yields the claim.

Proposition 3.2.10 and Proposition 3.2.11 provide linear upper bounds on Boolean
dimension in the queue respectively stack number of posets of height 2. This shows
in particular that there is no family of height-2 posets whose Boolean dimension is
exponential in their queue or stack number.

Lemma 3.2.9 enables us to cover a poset P of height 2 with relatively few planar
posets depending on the queue number of P . We will now generalize this approach to
posets of arbitrary height.

Definition 3.2.12. Let P be a poset that is not an antichain and let h be its height.
We denote by E the edges of the diagram of P . For a q-queue layout σ of P , we
define an edge-coloring c : E → [q] where we assign edges of the i-th queue the color i.

Let k ∈ [h]. Consider a strictly increasing sequence (ωi) of heights in [h] and a
sequence (πi) of colors in [q] where (ωi) and (πi) are of length k and k − 1 respectively.
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We define a weak subposet P ′ of P whose diagram contains all elements of P and all
edges in ⋃

i∈[k−1]
{e ∈ E | h(L(e)) = ωi, h(R(e)) = ωi+1, c(e) = πi}

where L(e) denotes the left and R(e) the right endpoint of an edge e. The poset P ′

is called a weak k-subposet of P relative to σ which is induced by the sequences (ωi)
and (πi).

The queue number of antichains is 0 as their diagrams do not contain any edges.
This is why we do not consider antichains in the definition above.

If we fix a queue layout σ of a poset P , we note that every directed path of the
diagram of P is contained in a weak k-subposet relative σ for some k. Thus, it
suffices to bound the Boolean dimension of all weak k-subposets in order to bound
the Boolean dimension of P by Lemma 3.1.10.

In fact, weak k-subposets are planar posets as we will show in the following lemma.
Thus, their Boolean dimension is bounded by Theorem 2.6.11 in terms of their height.

Lemma 3.2.13. If P be a poset that is not an antichain, then the weak k-subposets
relative to any queue layout of P are planar for every k ∈ [h(P )].

Proof. Let σ be a q-queue layout of the poset P and let h = h(P ). Consider a weak
k-subposet P ′ of P relative σ which is induced by a strictly increasing sequence (ωi)
of heights in [h] and a sequence (πi) of colors in [q].

Using a similar argument as in Lemma 3.2.9, we show that P ′ is a planar poset.
We may assume that P ′ contains no independent vertices as these pose no obstruction
to planarity.

Note that the poset P ′ is k-leveled. This can be seen as follows. Defining the i-th
level Li as the set of vertices of height ωi in P , we can embed P ′ in R2 by assigning a
vertex v ∈ Li the coordinate (ℓ, i) where ℓ denotes the position of v in the ordering σ.

As the given drawing of P ′ is k-leveled, it suffices to prove that no two edges
between two consecutive levels Li and Li+1 cross. Observe that edges between
levels Li and Li+1 of P ′ belong to the same queue of σ. Suppose there are two
crossing edges a′b′, a′′b′′ between levels Li and Li+1. Without loss of generality, we
may assume a′ ≤σ a′′. By definition of the drawing, we see that b′′ ≤σ b′. Further,
as σ is a topological ordering, we have a′′ ≤σ b′′ and

a′ ≤σ a′′ ≤σ b′′ ≤σ b′

follows. This is a contradiction, as the edges a′b′ and a′′b′′ nest even though they lie
in the same queue of σ. Thus, P ′ is a planar poset.

As the Boolean dimension of all weak k-subposets of a poset P is bounded in terms
of their height, it suffices to count the number of weak k-subposets in order to bound
the Boolean dimension of P .

We first determine some identities for binomial sums which follow easily from the
binomial theorem, see [43, p. 162] for further reference.
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Lemma 3.2.14. For positive integers n and a, we have

(i)
∑n

k=1
(n

k

)
ak−1 · k = n(a + 1)n−1

(ii)
∑n

k=1
(n

k

)
ak−1 = 1

a ((a + 1)n − 1)

Proof. Let n and a be positive integers. We have

n∑
k=1

(
n

k

)
ak−1 · k =

n∑
k=1

n ·
(

n − 1
k − 1

)
ak−1 = n ·

n−1∑
k=0

(
n − 1

k

)
ak = n(a + 1)n−1

where we used the well-known identity k ·
(n

k

)
= n ·

(n−1
k−1
)

[43, p. 157] in the first and
the binomial theorem [43, p. 162] in the third equality. This shows the first part of
the lemma.

For the second part, observe that

n∑
k=1

(
n

k

)
ak−1 = 1

a

n∑
k=1

(
n

k

)
ak = 1

a

(
n∑

k=0

(
n

k

)
ak − 1

)
= 1

a
((a + 1)n − 1) .

As Boolean dimension is bounded by Dushnik-Miller dimension, the Boolean
dimension of a poset is in particular bounded in terms of its height and queue or stack
number. The bounds on Dushnik-Miller dimension we established in Theorem 2.11.19
and Theorem 2.11.20 are astronomical. For queue number, we are able to improve the
bound for Boolean dimension. However, the bound is still exponential in the height.

Proposition 3.2.15. The Boolean dimension of every poset is bounded in terms of
its queue number and height. More precisely, for a poset P of queue number q and
height h we have

bdim(P ) ≤ 192(h + 1)
(
q + 1

)h−1
.

Proof. Let P be a poset, let q denote its queue number and let h be its height. First
assume that P is an antichain. We obtain

bdim(P ) ≤ dim(P ) ≤ 2 ≤ 384

as its height is 1 and its queue number is 0. Thus, the claim holds for antichains.
We may now assume that P is not an antichain. Therefore, its diagram contains at

least one edge and q ≥ 1 and h ≥ 2 follow.
For every height k ∈ [h], we can construct

(h
k

)
strictly increasing sequences (ωi) of

length k in [h] and qk−1 sequences (πi) of length k − 1 in [q]. Let Pk denote the set
of weak k-subposets of P relative σ. Note that all posets in Pk are of height k. By
Theorem 2.6.11, we have for all P ′ ∈ Pk

dim(P ′) ≤ 192k + 96.
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3.3 Separated Layouts

As every directed path in the diagram of P lies in the diagram of some weak k-subposet
relative σ we obtain by Lemma 3.1.10

bdim(P ) ≤
h∑

k=1

∑
P ′∈Pk

bdim(P ′) ≤
h∑

k=1

(
h

k

)
qk−1 · (192k + 96)

where the last inequality follows from Lemma 3.1.3. Recall that q ≥ 1 as we assumed
that P is not an antichain. By Lemma 3.2.14, we get

bdim(P ) ≤ 192
h∑

k=1

(
h

k

)
qk−1k + 96

h∑
k=1

(
h

k

)
qk−1 = 192h(q + 1)h−1 + 96

q

(
(q + 1)h − 1

)
.

As q + 1 ≤ 2q for q ≥ 1, this finally yields

bdim(P ) ≤ 192h
(
q + 1

)h−1 + 96
q

(
q + 1

)h ≤ 192h
(
q + 1

)h−1 + 192
(
q + 1

)h−1
.

While we were able to establish exponential lower bounds on functions which bound
Dushnik-Miller dimension, the same approach does not work for Boolean dimension
as the argument in Corollary 2.12.2 and Proposition 2.12.3 resides on the fact that the
standard example has high Dushnik-Miller dimension. Whether there are exponential
lower bounds on functions which bound Boolean dimension in terms of height and
queue, or height and stack number is not known.

3.3 Separated Layouts
In the previous section, we improved the upper bound on Boolean dimension in terms
of queue number and height. The aim of this section is to show that a similar approach
does not work for stack number.

In the proof of Lemma 3.2.13, we showed that every weak k-subposet P ′ relative to
a given queue layout is planar. Defining weak k-subposets relative to a given stack
layout analogously, we could attempt to prove that these posets are also planar using
a similar approach. However, this might not be the case. In order to succeed, we
need separated layouts which have been introduced by Pemmaraju for undirected
graphs [79, Chapter 3]. While he was interested in general partitions of the vertices,
we consider a restricted version for directed graphs where vertices are partitioned
according to their height.

Definition 3.3.1. Let G be a dag. We partition the vertex set of G into classes Vi

corresponding to vertices of height i. Note that the classes Vi are independent sets
in G as if ab is an edge any chain ending in a can be extended to a chain ending in b.

A queue layout σ of G is called separated if V1 ≤σ · · · ≤σ Vh. The minimum number
of queues necessary among all separated queue layouts is called the separated queue
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3 Boolean Dimension

number of G and is denoted by sqn(G). We define the separated stack number ssn(G)
analogously.

If P is a poset, its separated queue and stack number, denoted by sqn(P ) and ssn(P )
respectively, correspond to the separated queue and stack number of its diagram.

The separated queue number of a dag is equal to the separated queue number of
the underlying undirected graph if we consider the same partition, i.e. vertices are
partitioned according to their height in the dag. Therefore, results that hold in the
undirected setting also hold in the directed setting.

The weak k-subposets relative a separated stack layout are indeed planar.

Observation 3.3.2. If P is a poset that is not an antichain, then the weak k-subposets
relative to any separated stack layout of P are planar for every k ∈ h(P ).

Proof. Let σ be an s-stack layout of P . Let P ′ be a weak k-subposet relative σ
induced by an increasing sequence (wi) of heights in [h(P )] and a sequence (πi) of
colors in [s]. We may assume that P ′ contains no independent vertices as these pose
no obstruction to planarity.

We define the i-th level Li of P ′ as the elements of height wi in P . Consider the
k-leveled drawing of P ′ where all elements of a level Li have y-coordinate i, elements
within a level L2i+1 are ordered with respect to σ, and elements within a level L2i+2
are ordered with respect to σrev.

As the drawing is k-leveled, it suffices to prove that no two edges between levels Li

and Li+1 cross. Note that edges between levels Li and Li+1 belong to the same
stack. Suppose there are two crossing edges a′b′, a′′b′′ between levels Li and Li+1.
Without loss of generality, we may assume a′ ≤σ a′′. By definition of the drawing,
we obtain b′ ≤σ b′′. Observe that a′ and a′′ have smaller height than b′ and b′′ in P .
Thus, as σ is a separated layout of P , we obtain in particular a′′ ≤σ b′ and

a′ ≤σ a′′ ≤σ b′ ≤σ b′′

follows. This is a contradiction, as the edges a′b′ and a′′b′′ cross in σ even though
they belong to the same stack. Thus, P ′ is a planar poset.

As the weak k-subposets of a poset relative a separated stack layout are planar, it
would suffice to bound the separated stack number of a poset in terms of its stack
number and height in order to show a similar result to Proposition 3.2.15 for stack
number. However, we will see in Observation 3.3.7 that such a bound does not exist.

The separated queue number of a dag cannot be bounded in terms of its queue
number.

Observation 3.3.3. For all n ∈ N, there exists a poset of queue number at most 2
whose separated queue number is at least n.
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3.3 Separated Layouts

Proof. Consider the poset P on elements A ∪ B ∪ C where

A = {a1, . . . , an}
B = {b1, . . . , bn}

C = {b
(i)
1 , . . . , b

(i)
2n−i | i ∈ [n]}

whose diagram consists of the directed path a1 a2 . . . an, the directed paths b
(i)
1 . . . b

(i)
2n−i bi

and the edges aibi for all i ∈ [n].
Define the ordering σi := b

(i)
1 ≤ · · · ≤ b

(i)
2n−i ≤ bi for all i ∈ [n] and note that the

topological ordering
σ = a1 ≤ · · · ≤ an ≤ σ1 ≤ · · · ≤ σn

requires at most two queues. Thus, we obtain qn(P ) ≤ 2.
It remains to show that the separated queue number of P is at least n. Consider

an arbitrary separated queue layout σ′ of P . By definition of P , we have h(ai) = i for
all i ∈ [n] and h(bi) = max(i + 1, 2n − i + 1) = 2n − i + 1 for all i ∈ [n]. In particular,
we obtain h(a1) < h(a2) < · · · < h(an) < h(bn) < · · · < h(b1) and

a1 <σ′ · · · <σ′ an <σ′ bn <σ′ · · · <σ′ b1

follows as σ′ is a separated queue layout. Thus, the edges aibi form an n-rainbow and
the separated queue number of P is at least n as σ′ was an arbitrary separated queue
layout.

Note that the separated queue number increases with the height of the posets in the
construction above. In fact, the separated queue number of every dag can be bounded
in terms of its queue number and height. This observation is due to Pemmaraju who
showed that the queue number of undirected graphs is bounded in the queue number
and the number of partition classes, which corresponds in our setting to the height of
the dag in question. The following lemma is an easy adaptation of the proof given by
Pemmaraju [79, Theorem 3.19].

Lemma 3.3.4. For every dag G, we have sqn(G) ≤ qn(G) · (h(G) − 1).

Proof. Let q be the queue number of G and h its height. Consider a q-queue layout σ
of G and let E1, . . . , Eq be the corresponding queues. Let σ′ be the ordering of the
vertices of G where for distinct vertices x, y we have x ≤σ′ y if and only if h(x) < h(y)
or x and y are of same height and x ≤σ y. The ordering σ′ is by definition a separated
queue layout of G.

We partition each queue Ei into h − 1 sets Eℓ
i := {ab ∈ Ei | h(b) − h(a) = ℓ}

where ℓ ∈ [h − 1]. Note that no two edges ab, cd ∈ Ei where h(b) − h(a) = h(d) − h(c)
nest in σ′. Thus, we constructed a q(h − 1)-queue assignment of σ′.
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3 Boolean Dimension

In Observation 3.3.3, we have constructed posets of height 2n, queue number at
most 2 and separated queue number at least n. Yet, these posets do not meet the
upper bound established in the lemma above. Pemmaraju showed that the bound of
[79, Theorem 3.19], from which the lemma is derived, is tight for bipartite graphs [79,
Theorem 3.9]. Whether the theorem is tight in general in the undirected setting is
unknown [79, p. 106].

In fact, the proof of the lemma above shows that the queue number of a poset is
bounded in terms of its height and the undirected queue number of its cover graph.
Using the same argument as in Proposition 3.2.15, we obtain a bound on the Boolean
dimension of posets in terms of their height and the undirected queue number of their
cover graphs.

Proposition 3.3.5. The Boolean dimension of every poset P is bounded in terms of
its height h and the undirected queue number q of its cover graph. More precisely,

bdim(P ) ≤ 288 · qh−1 · hh

with the convention 00 = 1.

While the separated queue number of dags is bounded in terms of height and queue
number, this does not hold for the separated stack number.

Observation 3.3.6 ([13, Theorem 2.3]). For n ∈ N, let T (n) be the dag on vertices
{ai, bi, ci | i ∈ [n]} with edges {aibi, bici, aici | i ∈ [n]}. The dag T (n) has height 3 and
stack number 1, while its separated stack number is at least n1/3.

Proof. As T (n) is the union of n triangles, its stack number is 1.
It remains to show that its separated stack number is at least n1/3.
Consider a separated stack layout σ of T (n). Without loss of generality, we may

assume that
a1 ≤σ · · · ≤σ an.

By a well-known result of Erdős and Szekeres, see Theorem 2.4.2, there exists a
monotone sequence (ik) of length ℓ such that

bi1 ≤σ · · · ≤σ biℓ

and ℓ ≥ n1/3 if (ik) is increasing and ℓ ≥ n2/3 otherwise.
If (ik) is increasing, the edges aik

bik
form an ℓ-twist as σ is a separated stack layout.

Otherwise (ik) is a decreasing sequence of length ℓ ≥ n2/3. Applying Theorem 2.4.2 to
the sequence of vertices ci with indices in (ik), we obtain a monotone subsequence (jk)
of length ℓ′ ≥ n1/3 such that

cj1 ≤σ · · · ≤σ cjℓ′ .

If (jk) is decreasing, the edges bjk
cjk

form an ℓ′-twist, otherwise (jk) is increasing and
the edges ajk

cjk
form an ℓ′-twist.

Therefore, the separated stack layout σ contains a twist of size at least n1/3 and
the claim follows.
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3.3 Separated Layouts

As the graphs T (n) contain transitive edges, they do not provide an example of
posets with stack number 1 and unbounded separated stack number. Note that if we
delete all transitive edges in T (n), we obtain the diagram of a poset with separated
stack number at most 2. Yet, using a similar construction as Chung, Leighton, and
Rosenberg in the observation above, we obtain families of posets with unbounded
separated stack number, but bounded stack number.

Observation 3.3.7. There exists a family of 2-stack posets {R(n) | n ∈ N} of height 4
and unbounded separated stack number. More precisely, we have ssn(R(n)) ≥ (n−1)1/5

for all n ∈ N.

Proof. Consider the height 4 poset R whose cover graph is a 5-cycle. For n ∈ N, we
define R(n) as the union of n posets which are isomorphic to R, i.e. R(n) is the poset
on vertices {ai, bi, ci, di, ei | i ∈ [n]} with relations

ai ≤ bi ≤ ci ≤ ei

ai ≤ di ≤ ei

for i ∈ [n]. As R has stack number 2, we see that sn(R(n)) = 2.
We define partition classes A, B, C, D and E consisting of all ai, bi, ci, di and ei

respectively.
Consider a separated stack layout σ of R(n). Without loss of generality, we may

assume that
a1 ≤σ · · · ≤σ an.

By Theorem 2.4.2, there exists a monotone sequence (ik) of length ℓB such that

bi1 ≤σ · · · ≤σ biℓB

and ℓB ≥ n1/5 if (ik) is increasing and ℓB ≥ n4/5 otherwise. If (ik) is increasing, the
edges aik

bik
form an ℓB-twist. Otherwise, (ik) is a decreasing sequence of length at

least n4/5. By Theorem 2.4.2, there exists a monotone subsequence (jk) of (ik) of
length ℓC such that

cj1 ≤σ · · · ≤σ cjℓC
.

and ℓC ≥ n1/5 if (jk) is decreasing and ℓC ≥ n3/5 otherwise. If (jk) is decreasing,
the edges bjk

cjk
form an ℓC-twist. Otherwise (jk) is an increasing sequence of

length ℓC ≥ n3/5.
Using the same argument as before, we obtain a twist of size at least n1/5 between

the partition classes of C and E or a decreasing sequence (zk) of length ℓE ≥ n2/5

such that
ez1 ≤σ · · · ≤σ ezℓE

.

In the latter case, we consider the vertices of D with indices in (zk). An application
of Theorem 2.4.2 yields a twist of size at least n1/5 between the partition classes A
and D, or between D and E.

Therefore, σ contains a twist of size at least n1/5 and ssn(R(n)) ≥ n1/5 follows as σ
is an arbitrary separated stack layout.
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3 Boolean Dimension

Even though weak k-subposets relative to a given separated stack layout are planar,
a similar approach to the proof of Proposition 3.2.15 does not work for stack number
as the separated stack number of a poset is not bounded in terms of height and stack
number.

3.4 Boolean Dimension of Subdivisions

In Section 2.9, we investigated the relationship between the Dushnik-Miller dimension
of posets and their subdivisions. The aim of this section is to obtain similar results
for Boolean dimension.

If S is a subdivision of a poset P , it is easy to see that P is a subposet of S. Thus,
the Boolean dimension of the initial poset provides a lower bound on the Boolean
dimension of any subdivision. Following closely the proof of Spinrad of the analog
result for Dushnik-Miller dimension, see Proposition 2.9.2, we determine an upper
bound.

Proposition 3.4.1. For any subdivision S of a poset P , we have

bdim(S) ≤ 4 + ⌊log(h(P )) + 1⌋ · (bdim(P ) + 2) + 2 bdim(P ).

Proof. Let G be the diagram of a poset P and let S be a subdivision of P . We write
e1, . . . , em for the edges of G. Using the same notation as in Proposition 2.9.2, we
denote by x

(ab)
1 , . . . , x

(ab)
k the division vertices of an edge ab of G where

x
(ab)
1 ≤S · · · ≤S x

(ab)
k .

We fix an ordering πorig of the original vertices of P and define an ordering πdiv
of the division vertices as follows. For every i ∈ [m], let π̃i be the topological vertex
ordering of the division vertices of the edge ei. We define πdiv as the linear order of
the division vertices given by

πdiv := π̃1 ≤ π̃2 ≤ · · · ≤ π̃m.

Consider the linear orders

π1 := πorig ≤ πdiv, π2 := πorig ≤ πrev
div , π3 := πrev

orig ≤ πdiv.

Note that using {π1, π2, π3} we are able to decide for distinct elements x and y of S
which of them (if any) is a division vertex and which (if any) is an original vertex
solely based on the binary vector q(x, y, {π1, π2, π3}).

We still need yet another linear order which enables us to determine for two division
vertices x, y whether they subdivided the same edge of the diagram G, and if so,
whether x ≤S y. Let π′

div be the linear order of the division vertices of S defined via

π′
div := π̃rev

1 ≤ π̃rev
2 ≤ · · · ≤ π̃rev

m
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3.4 Boolean Dimension of Subdivisions

and let π4 := πorig ≤ π′
div. We observe that π4 is very similar to π1, but that the

ordering of division vertices of the same edge is reversed. By construction, we obtain
for two distinct division vertices x and y that q(x, y, {π1, π4}) = (1, 0) if and only if x
and y are division vertices of the same edge and x ≤S y. We set B′ := {π1, . . . , π4}.

Consider a linear order L of the vertices of S. We use the terms high and low for
the placement of division vertices of an edge ab in L with respect to its restriction
to P as in Definition 2.8.1. The linear order we obtain by placing all division vertices
of S high with respect to a given linear order L of P is denoted by Lhigh. Similarly,
we define Llow as the linear order obtained by placing all division vertices low.

Let d := bdim(P ) be the Boolean dimension of P and let (B, τ) be a minimum
Boolean realizer. Let Blow = {Llow | L ∈ B} and Bhigh = {Lhigh | L ∈ B}.

Consider distinct elements x, y of S such that at least one of these two elements is
an original vertex. We show that we are able to decide whether x ≤S y based on the
binary vector q(x, y, B′ ∪ Blow ∪ Bhigh).

Case 1. x and y are original vertices. Note that q(x, y, Blow) = q(x, y, B). Thus

x ≤S y ⇐⇒ x ≤P y

⇐⇒ τ(q(x, y, B)) = 1
⇐⇒ τ(q(x, y, Blow)) = 1.

Case 2. x is an original vertex and y is a division vertex of an edge ab. Note
that x ≤S y if and only if x ≤P a. Further, as y is placed low in every linear
order Llow ∈ Blow, we see that q(x, y, Blow) = q(x, a, B). Thus

x ≤S y ⇐⇒ x ≤P a

⇐⇒ τ(q(x, a, B)) = 1
⇐⇒ τ(q(x, y, Blow)) = 1.

Case 3. x is a division vertex of an edge ab and y is an original vertex. A similar
argument as in Case 2 yields

x ≤S y ⇐⇒ τ(q(x, y, Bhigh)).

We are able to distinguish these cases based on the binary vector q(x, y, B′) for
elements x, y of S. Therefore, it suffices to show how to determine for two distinct
division vertices x, y whether x ≤S y.

Recall that for a division vertex x of an edge ab, the virtual height hv(x) is
the height of b in P , see Definition 2.9.1. Let ℓ := ⌊log(h(P )) + 1⌋. For i ∈ [ℓ]
define Bi := {Li | L ∈ B} where Li is the linear order obtained from L where all
division vertices x with a 0 in the i-th bit of hv(x) are placed high, and low otherwise.
In addition, we require for division vertices x and y for which the order in Li has
not been specified by the preceding property that y ≤Li x if y is placed low and x is
placed high.
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3 Boolean Dimension

For s ∈ {0, 1}, we denote by σs
i a fixed linear order of all vertices of S with a s in

the i-th bit of their (possibly virtual) height in P . We define for i ∈ [ℓ] two linear
orders

σi := σ0
i ≤ σ1

i , σ′
i := (σ0

i )rev ≤ (σ1
i )rev.

Let B′′ := {σi, σ′
i | i ∈ [ℓ]}. Note that using q(x, y, B′′) we are able to determine a

value i for distinct division vertices x, y of S such that the i-th bit of hv(x) is 0 while
the i-th bit of hv(y) is 1, or conclude that no such i exists.

Let x, y be distinct division vertices. Recall that using the linear orders π1 and π4,
we can determine whether x and y subdivide the same edge of the diagram of P and
if so whether x ≤S y. Therefore, we only need to consider the case where x and y are
division vertices of distinct edges ab and cd.

Note that x ≤S y if and only if b ≤P c. Suppose there exists an integer i ∈ [ℓ]
such that x is placed high, and y is placed low in all linear orders of Bi. We
claim that q(x, y, Bi) = q(b, c, B). Consider a linear order L ∈ B. If b ≤L c, we
obtain x ≤Li b ≤Li c ≤Li y. If c ≤L b, we have c ≤Li y ≤Li x ≤Li b by definition
of Li. Thus, we see that q(x, y, Bi) = q(b, c, B) which finally yields

x ≤S y ⇐⇒ τ(q(x, y, Bi)) = 1.

As we are able to determine whether such a value i exists using B′′, it suffices to
show that if x ≤S y there exists an i such that the i-th bit of hv(x) is 0 while the i-th
bit of hv(y) is 1. Note that if x ≤S y then every chain ending at b can be extended to
a chain ending at d and as b ̸= d, we obtain hv(x) < hv(y). Therefore, there exists an
integer i ∈ [ℓ] with the required property.

Let BS := B′ ∪ Blow ∪ Bhigh ∪ B′′ ∪
⋃

i∈[ℓ] Bi and let

dS := |BS | = 4 + d + d + 2 · ⌊log(h(P )) + 1⌋ + ⌊log(h(P )) + 1⌋ · d.

Using the argumentation above, we can construct a function τS : 2dS → {0, 1} such
that (BS , τS) is a Boolean realizer of S.

One might hope that the Boolean dimension of a subdivision of a poset P is
bounded from above in terms of the Boolean dimension of P , independent of the
height. However, this is not the case. Using the construction of Spinrad given in [83]
and a result of Felsner, Mészáros, and Micek we obtain the following:

Observation 3.4.2. For every n ≥ 2, there exists a poset P with bdim(P ) = 2 and
a poset S that is a subdivision of P such that bdim(S) ≥ log log log(n).

Proof. Let n ≥ 2. Consider the 2-dimensional poset P given in Proposition 2.9.3.
As every interval order with an open interval representation with at most k distinct
endpoints is a subdivision of P , this holds in particular for the universal interval
order In if k is sufficiently large. By Lemma 3.1.6, we have bdim(In) ≥ log log log n.
The claim follows as Boolean dimension and Dushnik-Miller dimension coincide for
low dimensional posets by Lemma 3.1.4.
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4 Conclusion

In this thesis, we related different notions of the dimension of posets to the queue
and stack number of their diagrams, with a separate consideration of subdivisions. In
particular, we investigated how subdivision affects dimension, queue number and stack
number. We determined upper bounds on the queue and stack number of subdivisions.
The bounds we established are best-possible for the specific layouts we constructed.
Yet, it remains open whether these bounds are tight in general.

Question 4.1. Is there for every q ∈ N a dag G of queue number q and a subdivision S
of G such that qn(S) = 2q + 2?

Question 4.2. Is there for every s ∈ N a dag G of stack number s and a subdivision S
of G such that sn(S) = 2s?

If every edge of a dag is only subdivided a constant number of times, the queue num-
ber remains relatively large. More precisely, we showed that every ⪯h-subdivision S of
a dag G has queue number at least 1

2(qn(G)1/(h+1) − 2). For dags, this bound is tight
up to a constant factor as there are dags G which admit ⪯h-subdivisions of queue
number at most qn(G)1/(h+1) + 2. Yet, for posets, we were only able to construct
⪯h-subdivisions of posets P whose queue number is at most qn(P )2/(h+2) + 2.

Question 4.3. Is there for every h ∈ N and every q ∈ N a poset P of queue number q
and a ⪯h-subdivisions of P whose queue number is at most q1/(h+1) + 2?

In Section 2.11, we determined a function which bounds the Dushnik-Miller di-
mension in terms of height and queue number, based on the work of Joret, Micek,
and Wiechert [59]. Further, we showed in Section 2.12 that any such function is
exponential both in height and queue number. However, there is still a large gap
between these two bounds. The same holds for the bounds we developed in terms of
stack number and height.

Question 4.4. Is Dushnik-Miller dimension bounded by an exponential function in
queue number and height?

Question 4.5. Is Dushnik-Miller dimension bounded by an exponential function in
stack number and height?

While Dushnik-Miller dimension has been studied intensively over the last decades,
interest in Boolean dimension has only recently rekindled. In Section 3.2, we de-
termined an exponential upper bound on the Boolean dimension in terms of queue
number and height. Yet, we are unaware of posets which meet this bound.
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4 Conclusion

Question 4.6. Are there posets whose Boolean dimension is exponential in their
queue number and height?

While we were able to establish an exponential upper bound on the Boolean
dimension in terms of queue number and height, a similar attempt for stack number
failed.

Question 4.7. Is Boolean dimension bounded by an exponential function in stack
number and height?

We considered the Boolean dimension of structurally restricted classes of posets,
posets with bounded queue or stack number. Other parameters such as treewidth have
also been considered in the literature [31]. Yet, the most intriguing question related
to Boolean dimension remains a problem originally posed by Nešetřil and Pudlák
[76, Problem 3.1]. They asked whether the Boolean dimension of planar posets is
unbounded. While some progress has been made [69, 70], the question remains open
to this date.
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