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Abstract

Graphs representing social settings often contain structures where vertices in commu-
nities are closely linked. Algorithms analyzing these networks need to be evaluated
on graphs whose structure is known. We present several models with generators to
produce graphs with specific community structures. The generators developed in this
thesis work in a distributed communication-free way. This allows generating graphs
without being restricted by the rate of communication between used processing units.
The scaling of the simpler models is near perfect, and those models can generate 108

edges per processor and second. This results in graphs with 231 vertices and more
than 242 edges being generated in less than ten minutes on 128 cores. The more
complex models featuring power law distributed community sizes and membership
counts scale reasonably well. Even with sub-optimal load balancing during the tests,
CKB graphs with 225 vertices can be generated on 128 cores with an average of 106

edges per processor and second.

Deutsche Zusammenfassung

Graphen, die soziale Strukturen widerspiegeln, beinhalten oft sogenannte Communi-
ties von Knoten, deren Mitglieder untereinander häufig verbunden sind. Algorithmen,
die derartige Netzwerke analysieren, sind zur Qualitätskontrolle auf Graphen mit
bekannter Communitystruktur angewiesen. Hier werden einige Modelle mit zugehöri-
gen Generatoren vorgestellt, die Graphen mit spezieller Communitystruktur erzeugen.
Die Generatoren arbeiten in verteilten Systemen ohne Kommunikation. Dadurch
können Graphen generiert werden, ohne von Beschränkungen der Kommunikation
zwischen Prozessoren beeinträchtigt zu werden.
Die einfacheren Modelle skalieren nahezu perfekt. Mit 128 Kernen können dort
Graphen mit 231 Knoten und über 242 Kanten in weniger als zehn Minuten erzeugt
werden. Das entspricht ca. 108 Kanten pro Sekunde und Prozessor. Komplexere
Modelle mit nach Potenzgesetz verteilten Communitygrößen und Knotenmitglied-
schaften skalieren einigermaßen gut. Obwohl die Verteilung der Last zwischen den
verwendeten 128 Kernen suboptimal war, konnten für Graphen mit 225 Knoten
durchschnittlich 106 Kanten pro Sekunde und Prozessor generiert werden.
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1. Introduction

This thesis covers algorithms to generate graphs with a community structure in a distributed
and communication-free way. In this context a community is a set of vertices that are more
closely connected to each other than to vertices outside of the community. Generating
graphs with communities allows verifying community detection algorithms and analysis
of how communities affect a graphs properties. The framework is based on the KaGen
library [FLS+18] and this work expands the library by adding five community based models.
They are build on each other, gradually increasing the complexity up to the CKB model
[CKB+14]. The intermediate models also aim at representing useful settings.

1.1 State of the Art
The KaGen [FLS+18] library provides algorithms to generate community free graphs of
several models using parallel computation without communication between processing
entities (PEs). The models featured there are Erdős Rényi graphs, Delaunay graphs,
geometric graphs and hyperbolic graphs. Erdős Rényi graphs can be generated both with
directed or undirected edges and in G(n, p) or G(n,m) modality.
For the parallelization of the Erdős Rényi model, the adjacency matrix gets split into
chunks that are distributed among the PEs. In the case of directed graphs successive
rows form a chunk and each PE generates edges for the same number of rows. Undirected
graphs only get edges generated in the lower triangle of the adjacency matrix. The rows are
formed as in the directed case, but the segmentation process is also done for columns. This
results in rectangular chunks below the main diagonal and triangular chunks on the main
diagonal. A PE generates edges for all rectangle chunks in its rows and the triangle chunk
at the end of those rows. It also generates the edges for all rectangle chunks in the same
column of chunks as its triangle chunk. Both chunk structures are visualised in Figure 1.1.
This ensures that each PE generates all edges incident to the vertices corresponding to the
rows assigned to it. Seeding ensures that rectangle chunks whose edges are generated by
two different PEs contain the same edges on both PEs.

Lancichinetti et al. introduced the LFR model [LF09] featuring overlapping communities.
Community sizes are power law distributed in the LFR model. The distribution of
membership counts can be specified. Vertices are assigned to communities at random using
a configuration model. For edge generation, vertices have a degree that is drawn from
a power law distribution. A mixing parameter indicates to how large the percentage of
edges to vertices with shared communities is. The remaining edges to reach the intended
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1. Introduction

Figure 1.1: Possible chunk structures in KaGen.[FLS+18]

vertex degree are edges to vertices without shared communities. If the generating of inter-
community edges has accidentally created an edge between vertices sharing a community,
a rewiring process is employed to move the edges enforcing their inter-community nature.

The variation of the stochastic block model used in [Pei15] is another generative model for
graphs with overlapping communities. Edges here are generated based on an edge-count
matrix specifying how many edges between any pair of edges should be generated. Intra-
community edges are edges between a community and itself and have to be passed with
twice the intended edge count because the edge-count matrix stores vertex degrees for
edges of the specified type. This edge generation allows multi-edges, but their occurrence
is negligible for large graphs.

The BTER model [KPPS14] generates graphs with dense Erdős Rényi blocks as communities.
But the generator can match an arbitrary degree distribution passed as a parameter for
the vertices. The vertices are grouped into affinity blocks ideally filled with vertices of
the same degree that could form a clique. This results in many small communities and
few large communities. The density of each community is based on clustering coefficients
passed as parameters for the generator. The inter-community edges are generated using
a Chung-Lu model with the remaining degree sequence. A visualization over the process
to generate a BTER graph is given in Figure 1.2. Because the community structure of
BTER graphs is hard to influence, BTER graphs are not usually used as benchmarks for
community detection.

Figure 1.2: Visualization of the phases used to generate BTER graphs.[KPPS14]

Community sizes and vertices’ membership counts are both power law distributed in graphs
generated by the CKB model [CKB+14]. Communities are Erdős Rényi blocks but there
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1.2. Contribution

are no predefined degree sequences for its members. Instead, edges are generated uniformly
at random based on a probability pi depending on the community’s size |ci|. Since pi = α

|ci|γ
for parameters α > 0 and γ ∈ (0, 1), the edge count in communities increases superlinearly
with community size, but the density decreases with increasing community size. Edges
between different communities are generated by considering an ε-community that contains
all vertices and generates edges with a probability po passed as a parameter.

1.2 Contribution
This thesis expands the KaGen library [FLS+18] by adding generators for graphs with
Erdős Rényi communities. For this, the approach for the G(n, p) model to generate graphs
in a communication-free setting is generalized. The generalization covers overlapping and
not overlapping communities. Community sizes and membership counts are taken from
different distributions. All generators can create directed and undirected graphs. The first
generators start by introducing communities and more and more features are added up to
a communication-free generator for CKB graphs [CKB+14].
For generating basic models the generalization consists of splitting the chunks of the
adjacency matrix in homogeneous blocks containing only edges within a community or
only edges between different communities. For these blocks the edge generation used in
the G(n, p) model [FLS+18] can be used.
To be able to distribute a fixed number n of vertices among the communities, the samples
drawn from the power law distribution have to add up to n. To achieve this, we consider
two different sampling routines. Linear sampling can be done in-place, but scales poorly.
Sqrt-based sampling stores results in a compressed way resulting in its space and time
demands scaling in O(

√
n).

To realize overlapping communities the assignment of vertices to communities has to be
addressed. We discuss the problems and challenges of doing this assignment in a distributed
communication-free manner and present two possible solutions. Group based assignment
guarantees exact membership counts and community sizes as sampled with acceptable
runtime scaling. But the overlap between communities is not sufficiently random and there
are unwanted artifacts in the overlap structure.
These issues do not exist for the probabilistic assignment since it assigns vertices to com-
munities completely at random, producing perfectly random overlap between communities.
The tradeoff is that probabilistic assignment only produces the intended membership count
as expectation with a non-zero variance. So membership counts in the generated graph
will vary even if the specified membership counts are identical for all vertices. Community
sizes are guaranteed to be exactly as sampled and runtime scaling is acceptable.
For the communication-free generating of CKB graphs we develop a generalised version
of group based assignment, but it still suffers from the issue of incorrect community
overlap. To mitigate some distortion to the distribution of membership counts caused by
the probabilistic assignment, we introduce pre-assignment as an optional routine. If used,
it guarantees that each vertex is a member of at least one community and the number of
vertices with exactly one community has the expectation as sampled from the power law
distribution.
We test the generators by evaluating several metrics on the generated graphs, and the
produced graphs show the intended properties. Scaling for the basic models is practically
perfect. For models with power law distributed community sizes the workload scales very
good, but the PEs handle uneven amounts of the work. This can in theory be remedied. The
CKB generator’s work is dominated by the process of assigning members to communities for
settings with small communities. As such the weak scaling is imperfect and the workload
per PE increases roughly by O(

√
n).
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1. Introduction

1.3 Outline
The basic models covered in Chapter 2 introduce communities. For the equal-communities
model in Section 2.1 all communities have the same size. In graphs generated using the
unique-communities model from Section 2.2 vertices pick their community uniformly at
random.
Both models guarantee that every vertex is member of exactly one community and can
generate directed or undirected graphs.

To come closer to the CKB model while producing useful graphs, the next logical step is
to use power law distributed community sizes. The PL-communities model discussed in
Chapter 3 still has each vertex being part of exactly one community, but the sizes of the
communities are drawn from a power law distribution. For drawing random community
sizes linear sampling is considered in Subsection 3.1.2 and discarded due to bad scaling.
Instead, sqrt-based sampling described in Subsection 3.1.3 is used to sample community
sizes. Like in the CKB model the probability pi = α

|ci|γ for edges within a community ci
depends on the communities size.

Having incorporated power law distributions into the models, what is missing are overlapping
communities. The PL-multicommunity model discussed in Chapter 4 has similarities to the
LFR model [LF09] where all vertices have the same membership count and community sizes
are power law distributed. However, here vertex degrees within one community are not
drawn from a power law distribution, but are based on a fixed probability for all members
of the community to keep the communities Erdős Rényi blocks. To determine the members
of communities, group based assignment in Subsection 4.1.2 and probabilistic assignment
in Subsection 4.1.3 are discussed.

The final generalization to be able to generate CKB graphs is to use power law distributed
membership counts. The group based assignment is generalised for this use case in
Subsection 5.1.1. Pre-assignment to improve the distribution created by probabilistic
assignment is explained in Subsection 5.1.2. Combining all techniques developed in the
earlier models allows generating CKB graphs in Chapter 5. These graphs have overlapping
Erdős Rényi communities whose sizes are power law distributed and whose density depends
on the community size. The vertices’ membership counts are also power law distributed.

Results from testing metrics of the generated graphs and scaling of an implementation of
these generators are presented in Chapter 6.

1.4 Preliminaries
In this work, a graph G is defined as a pair (V,E). V is the set of vertices and E ⊂ V × V
the set of edges. A graph is said to be undirected if (u, v) ∈ E =⇒ (v, u) ∈ E, otherwise
it is called directed. An edge (v, v) ∈ E is called a loop. If the edge (u, v) is contained in
the graph, it is said that u and are v adjacent and (u, v) is incident to u and v.
A community is a set of vertices that are – for usual parametrizations – more likely to be con-
nected by edges than vertices not sharing a community. For community ci = {v1, v2, v3, v4}
the vertices contained are called its members. The community size |ci| = 4 is the number of
members the community ci contains. The internal degree of vertex v1 in ci is the number
members of ci adjacent to v1.
For sampling random elements mainly the binomial and the hypergeometric distribution will
be used. Let Bin(n, p) be the binomial distribution, drawing n times with the probability
of a success in each step being p. Let Hyp(n,K,N) be the hypergeometric distribution,
drawing n times from a set initially containing N elements of which K are considered
successes.
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2. Basic Models

This chapter describes generators for two basic models. Both models have similarly sized
communities and fixed edge probabilities.

2.1 Equal Communities Model
The equal communities model features communities that are all of the same size.

2.1.1 Description and Parameterization

The first model considered here is very basic. All communities have nearly the same size.
Sizes may differ by up to one to fit all vertices. Communities do not overlap and every
vertex is member of one community. The number of communities is set as a parameter.
Edges can appear either within a community or linking two different communities. Each
pair of vertices gets connected by an edge with a specified probability depending on whether
the vertices are in the same community or not. So there is a chance pi for a possible
intra-community edge to be created and a different, usually notably smaller, chance po for
a possible inter-community edge to be created.
The parameters for the equal communities model are listed in Table 2.1. An example graph
generated by this model can be seen in Figure 2.1.

Parameter Description Usual Value
n number of vertices -
c number of communities n/2000
pi probability for each edge within a community to exist 0.1
po probability for each edge between communities to exist 2/n

self_loops should loops be possible edges false

Table 2.1: List of parameters for the equal communities model.

2.1.2 Algorithm

The simplicity of the community structure allows using a similar approach to the G(n, p)
model of KaGen [FLS+18]. So the adjacency matrix is split into chunks, whose borders are
only depended on their id. For each chunk the edges can be generated without knowledge
about other chunks.
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Figure 2.1: An undirected graph generated with the equal-communities model (n = 32,
c = 6, pi = 0.7, po = 0.08). Colours indicate community membership.

To allow large homogeneous blocks in the adjacency matrix, vertices are assigned to
communities block-wise. So if the first community has size |c1|, then the first |c1| vertices
are its members. This results in intra-community edges being in square blocks on the main
diagonal of the adjacency matrix. All graphs generated by this model will be isomorphic
to a graph where the communities form this kind of block structure on the main diagonal.
To scramble this structural information and prevent community detection algorithms from
simply searching for the boundaries of these blocks, the order of vertices could be randomly
permuted before writing edges to the result file.

With the structure of the adjacency matrix set, it has to be split into chunks and those
chunks have to be split into homogeneous blocks where edge generation will occur. Chunks
are formed exactly as in the G(n, p) model of the KaGen library [FLS+18], so for directed
graphs consecutive rows of the adjacency matrix form a chunk. For undirected graphs
chunks to the left of the main diagonal are rectangles while chunks on the main diagonal
are triangular. A PE processes a line of such chunks that is reflected down at the main
diagonal. This allows chunks to generate all edges for each source vertex it handles while
maintaining consistency across all PEs without requiring communication.
Within each chunk blocks are split along community boundaries, so that a block either
generates edges between communities, or within one community. This is visualized in
Figure 2.2 and described in further detail in Subsection 2.1.3.

The number of edges to be generated in one such block is sampled from a binomial
distribution. Hence for an inter-community edge block with n possible edges, Bin(n, pi)
determines how many edges are generated. A block with n possible inter-community edges
determines its number of edges by drawing from Bin(n, po). These edges are then sampled
uniformly at random from the set of possible edges.

6



2.1. Equal Communities Model
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Figure 2.2: Example of how chunks are split into homogeneous blocks. The communities
are blocks on the main diagonal of the adjacency matrix. The coulored areas
are the chunks. The left graphic depicts the directed case and the right graphic
visualizes the undirected case where only the lower triangle matrix is generated.

2.1.3 Implementation Details

The splitting of chunks into homogeneous blocks works differently for the directed and
the undirected case due to their different chunk structure. In the directed case chunks
are consecutive lines. The communities lie on the main diagonal of the adjacency matrix.
Therefore there can be a block of inter-community edges left and right of the block handling
the inner columns that also contain intra-community edges. The first and last chunk
only contain a right outer respectively left outer block because the central mixed block is
extending up to one side of the matrix. These left and right outer blocks are split of and
passed to edge generation using po as edge probability. Figure 2.2 visualizes this process
on the left for Chunk 2.
The central mixed block is successively split into homogeneous blocks by creating one block
containing the topmost community part handled by the remaining central block. This
block is part of a community, so its edge generation is called with edge probability pi.
The cells below this split off community block are inter-community edges, so they are a
homogeneous block of outer edges to be created using probability po. The same holds for
the part of the adjacency matrix that is to the right of the split off community. So it too is
an outer block whose edges are created using po as edge probability. In Figure 2.2 on the
left these are called ci bot-left block and ci top-right block. Thus, the topmost community
part with all of its lines and columns of the mixed inner block has been dealt with and the
remaining part has the same structure. Hence, it is processed in the same way until the
last community part of the chunk has had edges generated.

The undirected model differentiates two different sub-chunks. There are triangle chunks
on the main diagonal and rectangle chunks to the left of it. Handling of rectangle chunks
is straight forward. Most rectangle chunks only contain outer edges and therefore are
already homogeneous blocks ready for edge generation. But rectangle chunks near the
main diagonal may still contain parts of up to one community in their upper right because
chunk and community structure do not necessarily line up. However, they can not contain
parts of multiple communities, because new communities always begin with their leftmost
column on the main diagonal of the adjacency matrix. But chunks on the main diagonal
are triangle chunks not rectangle chunks, so a rectangle chunk only needs to split off parts
of at most one community.

7



2. Basic Models

This splitting off is done similarly to the directed case. First the left block of outer edges
is split off and then the remaining mixed block is sliced horizontally, separating the upper
block with intra-community edges from the lower block containing inter-community edges.
In the example in Figure 2.2 on the right this is shown for Chunk 2,1, which contains a
small part of c3.
Triangle chunks on the main diagonal are similar to the mixed block in the directed case,
but they are triangular, so the right upper part does not get generated. Thus, during
successive splitting only the left lower outer block and the inner block have to be created.
In Figure 2.2 on the right this is shown for Chunk 2,2. The right upper outer block does
not have to be dealt with. The left lower outer block is rectangular, so it is processed the
same as any outer block from a rectangle chunk. The edges of the intra-community block
are arranged in a triangle and are generated like the triangle chunks in [FLS+18]. Whether
the edges directly on the main diagonal are part of the chunk depends on whether loops
are permitted as edges.

While it would be easily possible to reorder vertex ids to break the pattern that all members
of a community have consecutive ids, this is forgone in the implementation. As a result,
community membership is trivially organised in this model, which may aid in visualisation
or debugging scenarios.

2.2 Unique Communities Model
The unique communities model has a fixed number of communities. Vertices pick their
community uniformly at random.

2.2.1 Description and Parametrization

This model is fairly similar to the equal communities model. However, in this model,
vertices pick a community uniformly at random. So while the communities in themselves
have the same structure, their size can differ based on how many vertices ended up picking
them. The number of communities is set as a parameter. Edges are generated using an
inter-community edge probability po and an intra-community edge probability pi as in the
equal communities model.
The parameters for the unique-communities model are listed in 2.2. A graph generated
with this model is shown in Figure 2.3. It features communities both smaller and larger
than those generated by the equal communities model.

Parameter Description Usual Value
n number of vertices -
c number of communities n/2000
pi probability for each edge within a community to exist 0.1
po probability for each edge between communities to exist 2/n

self_loops should loops be possible edges false

Table 2.2: List of parameters for the unique communities model.

2.2.2 Algorithm

Similar to the approach employed in the equal communities model, the adjacency matrix is
split into homogeneous blocks. These blocks either only contain intra-community edges or
exclusively handle inter-community edges. The overlaying chunk structure used to assign
parts of the adjacency matrix to different PEs is slightly more complex, because the id of a
chunk no longer directly specifies the size and count of all communities within the chunk.
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Figure 2.3: An undirected graph generated with the unique communities model (n = 32,
c = 6, pi = 0.7, po = 0.08). Colours indicate community membership.

To keep homogeneous blocks as large as possible within each chunk, vertices are still assigned
to chunks based on which community they belong to. So apart from those communities
that lie at the borders between chunks, all members of a community are handled by the
same chunk. Hence, the picking of the community by each vertex has to be simulated
based on the communities. This assignment of members to communities and therefore also
the determining of the community sizes is done with a recursive process.
It starts with all communities and all vertices being available. In each step of the recursion,
the number of available communities is split into two halves. A binomial random variable
determines how many of the available vertices pick communities in each of the halves.
Assume there are |cleft| communities in the left split, |ctotal| communities still available at
this recursion step, and they have a combined size of n. Then the combined size of all
communities of the left split is drawn from Bin(n, |cleft|/|ctotal|).

Upon this structure, the edge generation works as it did for equal communities. For the
undirected case, chunks are successive rows that get split into inter- and intra-community
edge blocks for generating edges with probabilities po and pi. In the directed case there
are triangular chunks on the main diagonal and rectangular chunks left of it. A PE deals
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2. Basic Models

with all chunks in its row up to the main diagonal and then with the chunks of the column
where its row reached the main diagonal of the adjacency matrix. This allows each PE to
generate all edges of each vertex it is handling.
These rectangle and triangle chunks are again split into homogeneous blocks. Blocks
containing only intra-community edges generate edges with probability pi while those
containing inter-community edges use po. This model does randomly reorder the vertices’
ids before edge generation, thus scrambling structural information about vertex community
pairings.

2.2.3 Implementation Details

The recursion simulating the assignment of vertices to communities can be cropped whenever
only communities handled by other chunks are left. The full sizes of all communities to be
processed by the calling chunk are returned, as well as information about how many vertices
of the first incomplete community of the chunk were already processed by a previous chunk
and the id of the first community of the chunk.
For the splitting of chunks into homogeneous blocks, the same technique used for equal
communities is utilised. To find borders between communities the information about
already processed vertices along with the full size of all partially contained communities
and the number of vertices of the first community left to process in this chunk is used. The
size of previous chunks is given by the current chunk’s id and the fact that all chunks have
the same size, except for the initial chunks that may process one more vertex if the vertices
could not be distributed evenly among all chunks. This covers the different communities’
sizes and allows the splitting off of homogeneous blocks to be done exactly as described for
equal communities in Section 2.1.

The implementation of this model uses a hash function h(x) – a linear congruential generator
to be exact – to change the order of the vertices before pushing the generated edges to the
IO. If an edge from vertex vi to vj is internally generated, the edge (vh(i), vh(j)) is pushed
to the generated graph. As such the entire algorithm works on an adjacency matrix where
the communities are blocks on the main diagonal, which allows it to profit from larger
homogeneous blocks for edge generation. At the same time the generated graph does no
longer have this artificial blocklike structure.
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3. Power Law Communities

Power Laws are observed in many contexts. Many papers have discussed real world graphs
and models where vertex degrees are power law distributed e.g. [ALPH01][XYLZ14]. There
are also some models that contain communities whose sizes are power law distributed
[LF09][CKB+14]. The CKB model in particular reports that it achieves power law dis-
tributed degrees with community sizes and the number of memberships per vertex also
following a power law[CKB+14].

3.1 Sampling from a Power Law Distribution
Definition 3.1 (Power Law Distribution). Power law describes a situation, where relative
changes to one variable x result in proportional relative changes to another variable y,
independent of absolute values. The exact change is governed by two parameters, a constant
factor a and an exponent −k, resulting in the relation y = a · x−k.
In this context a power law distribution PLvmin,vmax,k is defined by the smallest and largest
values vmin and vmax that may be sampled, replacing the factor a, as well as the exponent
−k, denoting how much more likely small samples are than large ones.

To allow easy aggregation of probabilities and access to an efficiently calculated expected
value, sampling will be based on a continuous power law function, even though only discrete
values are sampled. The probability with which a given value v is sampled is the integral
over the continuous distribution from v − 0.5 to v + 0.5.
To obtain samples, inverse transform sampling will be used. This requires the inverse of
the cumulative density function, which is then used to map randomly drawn numbers in
[0, 1] to the value of the CDF.
For convenience the following constants will be used:
smin := vmin − 0.5
smax := vmax + 0.5

a :=
∫ smax
smin

x−kdx =


log smax − log smin, if k = 1

s1−k
max

1−k −
s1−k

min
1−k , if k 6= 1

With that the probability density of PLvmin,vmax,k is:

fPL(x) =


x−k

a , if x ∈ [smin, smax]

0, if x 6∈ [smin, smax]
(3.1)

11



3. Power Law Communities

Lemma 3.2. The inverse CDF of fPL(x) is:

F−1
PL(x) =

 smin · ea·x, if k = 1

(s · a · (1− k) + s1−k
min )

1
1−k , if k 6= 1

(3.2)

Proof. The CDF is the integral of fPL. Since fPL(x) = 0 for x 6∈ [smin, smax], it is clear that
the CDF has to be 0 for x < smin and 1 for x > smax. In the relevant interval [smin, smax]
this integral evaluates to:

FPL(x) =
∫ x
smin

x−kdx

a

FPL(smin) = 0 and FPL(smax) = 1, validating the choice of the normalizing divisor a.
Inverting this function is done by solving the following equation:

FPL(F−1
PL(x)) = x ⇐⇒

∫ F−1
PL(x)

smin
x−kdx

a
= x

Due to the different integral of x−1 this has to be done separately for k = 1 and k 6= 1.
For k = 1:

⇐⇒ log(F−1
PL(x))− log smin

a
= x ⇐⇒ F−1

PL = ea·x+log smin = smin · ea·x

For k 6= 1:

⇐⇒
F−1
PL(x)1−k

1−k − s1−k
min

1−k
a

= x ⇐⇒ F−1
PL(x) = (s · a · (1− k) + s1−k

min )
1

1−k

Lemma 3.3. The expectation of PLvmin,vmax,k is:

E(PLvmin,vmax,k) =


smax−smin

a , if k = 1
log smax−log smin

a , if k = 2
s2−k

max−s2−k
min

a·(2−k) , otherwise

(3.3)

Proof. To calculate the expectation, there are two options. Either looking at the sampling
process

E(PLvmin,vmax,k) =
∫ 1

0
F−1
PL(x)dx

or looking at the probability density

E(PLvmin,vmax,k) =
∫ smax

smin
x · fPL(x)dx

The first case to be considered is k = 1:

E(PLvmin,vmax,k) =
∫ 1

0
smin · ea·xdx = smin

a

∫ a

0
exdx = smin

a
(ea − 1) = smax − smin

a

This result can be confirmed with the alternative approach:

E(PLvmin,vmax,k) =
∫ smax

smin
x · x

−1

a
dx = smax − smin

a
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3.1. Sampling from a Power Law Distribution

For k 6= 1 the expectation is:

E(PLvmin,vmax,k) =
∫ 1

0
(x · a · (1− k) + s1−k

min )
1

1−k dx = 1
a · (1− k)

∫ a·(1−k)+s1−k
min

s1−k
min

x
1

1−k dx

Which for k = 2 evaluates to E(PLvmin,vmax,k) =

1
−a

(log(a · (1− k) + s−1
min)− log(s−1

min)) = −1
a

(log(s−1
max)− log(s−1

min)) = log smax − log smin
a

And for k 6∈ {1, 2}:

E(PLvmin,vmax,k) = 1
a · (2− k)((a · (1− k) + s1−k

min )
2−k
1−k − (s1−k

min )
2−k
1−k )

= 1
a · (2− k)((s1−k

max)
2−k
1−k − s2−k

min ) = s2−k
max − s2−k

min
a · (2− k)

These cases can also be confirmed by the alternative approach, so for k 6= 1:

E(PLvmin,vmax,k) =
∫ smax

smin
x · x

−k

a
dx

Which for k = 2 evaluates to:

E(PLvmin,vmax,k) = log smax − log smin
a

And for k 6∈ {1, 2}:

E(PLvmin,vmax,k) = s2−k
max − s2−k

min
a · (2− k)

Lemma 3.4. The variance of PLvmin,vmax,k is:

V(PLvmin,vmax,k) =


smax−smin

a − E(PLvmin,vmax,k)2, if k = 2
log smax−log smin

a − E(PLvmin,vmax,k)2, if k = 3
s3−k

max−s3−k
min

a·(3−k) − E(PLvmin,vmax,k)2, otherwise

(3.4)

Proof.

V(PLvmin,vmax,k) =
∫ smax

smin
x2fPL(x)dx− E(PLvmin,vmax,k)2

=
∫ smax

smin

x2−k

a
dx−E(PLvmin,vmax,k)2 =


smax−smin

a − E(PLvmin,vmax,k)2, if k = 2
log smax−log smin

a − E(PLvmin,vmax,k)2, if k = 3
s3−k

max−s3−k
min

a·(3−k) − E(PLvmin,vmax,k)2, otherwise
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3. Power Law Communities

3.1.1 Problems when Sampling from Power Law

Because edge generation works based on the communities, each PE needs to know the
size of all communities that affect edges generated by it. Also edge probabilities for
power law based models will depend on community sizes. However, there cannot be any
communication between different PEs and the generated sizes as well as the assignment of
vertices to communities have to be identical for all PEs to allow a cohesive result.

Unlike with previous models, the distributed sampling technique of Sanders [SLHS+18]
cannot be used here. It requires having a distribution that describes how much of the mass
to distribute lands on each half of the value range. It also requires a way to distribute
any mass in any interval of values that may result from the successive splitting of the
value space. To our knowledge this does not exist for the power law distribution. Creating
such a recursive sampling method would also have to overcome the issue that it is unclear
how many communities have to be sampled to cover all vertices. The fact that values
sampled from the power law distribution may vary massively in size makes it hard to split
the sampling of community sizes between PEs. Each PE would still have to evaluate all
samples to find out by how much the distributed mass differs from the intended total mass
to enable any sort of correction mechanism.
Since it is possible to distribute too much mass (sampling communities that are in total
larger than the number of vertices), correction would have to include the option of dropping
already sampled communities, so all community sizes would have to be stored. Not allowing
dropping of single communities in the case of over-sampling but instead re-sampling
everything in such a case would result in large communities being less likely than they
should be in a power law distribution.

With this in mind it seems that every PE has to create all samples, exactly distributing all
mass. This has to be achieved without the costs of this sampling process dominating the
total work of the PE, even when a lot of PEs are used to generate massive graphs.

3.1.2 Linear Sampling

Since creating all communities seems necessary, investigating linearly sampling until all
mass has been distributed is the straight forward approach. This approach draws a sample
from the given power law distribution and adds it to the results, if the sample is smaller or
equal in size than the remaining mass to be distributed. When a sample that is larger than
the remaining mass is drawn, a sample of the size covering the remaining mass is added to
the results. If this added sample is smaller than permitted, it and the previously drawn
sample are removed from the results. Then a sample of the smallest permitted size and a
sample covering the rest of the distributable mass are added to the results instead. This
assumes that vmin ≤ 2 · vmax, or the last added sample may still not be in the permitted
range.

An implementation of the linear sampling approach is given in Algorithm 3.1. Most of the
code there describes special handling of the final communities to ensure that the intended
cumulative size of all communities is reached exactly without violating the size constraints
for individual communities.
This is achieved by checking whether the latest sample would induce a situation where
fulfilling the constraints is impossible. If that is the case, that community is ignored and
replaced by a community using up all remaining mass, or – if all remaining mass is too
large for a single community – by one community of minimal size and one community
taking the remaining mass. In this case the mass could theoretically also be distributed
differently between two samples, but this way creates the largest possible community to
replace the discarded community. Since the original community was discarded on account
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3.1. Sampling from a Power Law Distribution

of being too large for completing the sampling process, replacing it by a community of
maximum size, considering the situation, seems like the approach most true to the power
law distribution.
The used function SampleLP returns a single sample drawn from the specified power law
distribution.

Algorithm 3.1: Linear PL-Sampling
Input: Parameters for PL distribution vmin, vmax, k, intended cumulative size of

all samples total_mass
Data: List of samples S
Output: Samples S drawn from the specified PL distribution with total

cumulative size total_mass
1 distributed_mass = 0
2 while distributed_mass < total_mass do
3 sample = SamplePL (vmin,vmax,k)
4 distributed_mass += sample
5 S.PushBack (sample)
6 if total_mass- distributed_mass < vmin then
7 S.PopBack ()
8 if distributed_mass ≥ total_mass then
9 distributed_mass-= sample

10 sample = total_mass- distributed_mass
11 S.PushBack (sample)
12 distributed_mass = total_mass
13 if sample > vmax then
14 S.PopBack ()
15 sample = distributed_mass- vmin
16 S.PushBack (sample)
17 sample = vmin
18 S.PushBack (sample)

Note that while Algorithm 3.1 saves all sampled communities in a list, a real implementation
only has to keep those that are relevant for the PE executing it. Storing which cases of the
special case handling at the end were used and what the last two added samples are, allows
fast calculation of the size of any community without storing all results. It is possible to
get the size of any sampled community in constant time by providing its index to offset the
seed for sampling a single value and potentially considering the special cases. So assuming
that the relevant communities’ indices can be determined at runtime, e.g. they lie in an
interval where the index can be incremented until the last relevant community is reached,
this approach works with constant space.

However, the initial runtime of Algorithm 3.1 is linear in the number of communities created.
The expected number of communities is n/E(PLvmin,vmax,k) for n being the number of
vertices. Even with vmax scaling with n and vmin remaining constant, this may become too
large for massive graphs, since it has to be executed by every PE, while the workload for
generating edges can be evenly distributed among all PEs.

3.1.3 Square Root Based Sampling

As the linear approach is not fast enough for large settings and sampling only those
communities that are relevant for each PE is impractical, it is necessary to look for a
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3. Power Law Communities

different sampling technique. Following the sampling approach based on [SLHS+18] is not
possible directly, but it can still be used here. For a fixed number nc of communities to
be sampled, the number of communities whose sample s = FPL(community_size) is in a
part [slow_sep, sup_sep] of the sample space [0, 1] can be determined using Bin(nc, p) where
p = sup_sep − slow_sep. For values vlow_sep and vup_sep bounding the size of permitted
community sizes in this part the sample space is bounded by slow_sep = FPL(vlow_sep− 0.5)
and sup_sep = FPL(vup_sep + 0.5). With this, a number of communities that is expected
to roughly reach the desired mass can be sampled by recursively splitting the space of
potential samples in each step and determining how many samples fall into each of the
splits.

For an arbitrary distribution this would not offer a notable advantage over the linear
approach, since the recursive splitting still has to be followed through until everything has
been sampled. Also, this result will have to be modified to account for the difference in
distributed mass sampled compared to the desired total mass. But the nature of the power
law distribution means that many small communities of the same size will be sampled.
The recursion can stop when all possible samples in the sampled interval will result in the
same value for the community’s size. So one of these recursive sampling runs requires time
and space proportional to the number of differently sized communities sampled. To allow
easier handling of the over- or under-sampling, only communities smaller than

√
n – where

n is the intended combined size of all communities – will be sampled this way. For them,
the accumulated number of communities of sizes smaller or equal to each size is stored in
a vector. Larger communities are sampled linearly. But since there can be at most

√
n

communities of size larger than
√
n, asymptotically this does not increase the required

runtime or space.
If this recursion has distributed too few vertices, it can be repeated for fewer communities.
If the recursion has over-sampled, some sampled communities have to be discarded. Dis-
carding works in the same way, first deciding how many communities should be discarded
to probably achieve the desired total mass. But when breaking the intervals in half, the
hypergeometric distribution is used instead of the binomial distribution to discard each
community with the same probability. So assume there are n communities to be discarded,
the left split contains |cleft| communities and there are |ctotal| communities in both splits.
Then drawing from Hyp(n, |cleft|, |ctotal|) determines how many communities of the lower
split are discarded. Discarding a fixed number of communities also costs

√
n time.

The process of repeatedly adding or removing communities ends when the deviation from
the intended mass is less than

√
n. Removing a single community has cost log

√
n because

the logarithmic descent has to be completed to find a random community, while adding a
single community is possible in constant time. So when the process would stop adapting the
communities block-wise at a point where the distributed mass is larger than the intended
mass, instead another discard step is issued, where twice the usual number of communities
is discarded. This should usually lead to a mass of less than

√
n missing. If that is not

the case, the process of adding or removing communities to get closer to the intended
distributed mass is continued.

The final mass is added by sampling communities in an iterative manner until either the
remaining mass to be distributed is too small to fit another community, or the distributed
mass becomes larger than the desired total mass. These cases are then handled as described
in Algorithm 3.1. If the last sampled community exactly claims the remaining space the
sampling stops without having to handle special cases.

The coarse structure of this approach is given by Algorithm 3.2.
The used function ExpectedSampleSize returns E(PLvmin,vmax,k) as given in Equation 3.3.
RecSampleSmallPL recursively draws a number of samples specified by its first parameter
of size at most

√
total_mass from the power law distribution specified by the three other
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3.1. Sampling from a Power Law Distribution

parameters. LinSampleLargePL does the same, but for samples larger than
√
total_mass

and the technique used to draw the samples is linear, not recursive. DrawBinomial and
DrawHypergeometric draw a random value of the corresponding distribution, where
the size of the universe is given by the first parameter and the probability is specified
by the second parameter (for the hypergeometric distribution it is not a probability, but
the number of success instances in the universe). AccSize returns the accumulated
size of all samples passed and AccCount gives the number of samples passed. The
functions RecRemoveSmallSpl and LinRemoveLargeSpl randomly remove a number
of samples specified by the second parameter from the sample set passed as the first
parameter. LinAddFinalSamples linearly samples the remaining samples to cover mass
specified by the first parameter in basically the same way as Algorithm 3.1, but respecting
the two different result sets for samples.

Algorithm 3.2: Sqrt PL-Sampling
Input: Parameters for PL distribution vmin, vmax, k, intended cumulative size of

all samples total_mass
Data: List of samples small_samples and large_samples
Output: Samples small_samples and large_samples drawn from the specified PL

distribution with total cumulative size total_mass
1 small_sample_perc = FPL(

√
total_mass)

2 distributed_mass = 0
3 remaining_mass = total_mass
4 while total_mass − distributed_mass >

√
total_mass do

5 remaining_mass = total_mass − distributed_mass
6 exp_sample_count = remaining_mass/ ExpectedSampleSize (vmin, vmax, k)
7 needed_ss = DrawBinomial (exp_sample_count, small_sample_perc)
8 needed_ls = exp_sample_count − needed_ss
9 small_samples.PushBack (RecSampleSmallPL (needed_ss, vmin, vmax, k))

10 large_samples.PushBack (LinSampleLargePL (needed_ls, vmin, vmax, k))
11 distributed_mass = AccSize (small_samples) + AccSize (large_samples)
12 while total_mass < distributed_mass do
13 mass_excess = distributed_mass − total_mass
14 if mass_excess <

√
total_mass then

15 mass_excess *= 2
16 small_excess = DrawHypergeometric (AccCount (small_samples) +

AccCount (small_samples), AccCount (small_samples))
17 large_excess = mass_excess − small_excess
18 RecRemoveSmallSpl (small_samples, small_excess)
19 LinRemoveLargeSpl (large_samples, large_excess)

20 LinAddFinalSamples (remaining_mass, small_samples, large_samples)

The runtime of this algorithm is in part governed by how often a batch of samples has to be
added or removed. Due to the very high variance for low exponents k shown in Equation
3.4, it is hard to get a definitive bound on how likely oversampling is. For X being the
random variable describing the accumulated mass of all samples drawn during on batch
and µx and σ2

X being the expectation and variance of X, Chebyshev’s inequality yields:

P (|X − µX | ≥ αµX) ≤ σ2
X

α2µ2
X

Since the samples drawn during one batch are independent and identically distributed,
µX and σ2

X can be expressed in terms of the expectation and variance of a single
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3. Power Law Communities

draw. For drawing c samples in the batch this means µX = c · E(PLvmin,vmax,k) and
σ2
X = c · V (PLvmin,vmax,k). So

P (|X − µX | ≥ αµX) ≤ 1
cα2 ·

σ2
X

µ2
X

However, for large values of smax and reasonably small exponents k, this does not guarantee
small chances for over-sampling by notable margins. For exponents k > 3, where the
unbounded power law distribution starts to have finite variance [New05] and smax is notably
larger than smin the right side of this inequality is dominated by

1
cα2 ·

(
−a(2− k)2sk−1

min
(3− k) − 1

)
This dominating factor becomes small even for later batches, where only as few as
c =

√
n

E(PLvmin,vmax,k) samples are drawn.
For lower exponents k, the central limit theorem still provides some use. It states that
when drawing many samples, the total distributed mass across all drawn samples tends
towards a normal distribution, which would also be sufficient for fast termination of the
recursion, since large deviations from the expected mean are sufficiently unlikely. However,
the central limit theorem does require a finite variance, which is technically given due to
capping potential samples at smax, but if smax scales with the size of the graph, this also
increases the variance. Also, the central limit theorem does not provide how many samples
have to be drawn to be sufficiently close to a normal distribution. Especially for settings
where few small and many large samples are needed and only comparably few samples are
drawn, this may be problematic.
Practical testing in Subsection 6.2.4 shows that the implementation of this algorithm takes
very few sampling batches to be close enough to the intended mass to allow linear sampling
to get the remaining samples.

3.2 PL-Communities Model
The community sizes for the PL-communities model are power law distributed. Each vertex
is a member of exactly one community, so communities do not overlap.

3.2.1 Description and Parameterization
The PL-communities model has the communities’ sizes drawn from a power law distribution.
There is no overlap between different communities and each vertex is a member of exactly
one community. Unlike with the previously discussed models, the number of communities
is not a parameter. Instead, the parameters of the power law distribution are specified.
Drawing samples from that power law distribution until the combined size of all communities
equals the number of vertices determines both the community sizes and the number of
communities. So for this model the number of communities is a random variable.
Edges are still generated based on whether they are within a community or connect vertices
of different communities. For inter-community edges the probability of an edge existing is
specified by the parameter po. Since community sizes can vary drastically using a single
probability for edges within a community is not constructive. Therefore, the probability of
an edge existing within a community depends on the size of the community in the same way
as it does in the CKB model [CKB+14]. So the chance for an edge (vi, vj) in community cl
with size |cl| is given by pi = α

|cl|γ , where α > 0 and γ ∈ (0, 1) are parameters. This ensures
that the probability of each individual edge is smaller in a larger community, but members
of larger communities have a larger expected degree.
The parameters are listed in Table 3.1. A graph generated with the PL-communities model
can be seen in Figure 3.1. The distribution of community sizes produces mostly small
communities with few very large communities.
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Parameter Description Usual Value
n number of vertices -
cmin smallest permitted community size 6
cmax largest permitted community size n/10
kcomm exponent of the PL-distribution for community sizes 2.5
α numerator for calculation of pi 4
γ exponent for community size for pi calculation 0.5
po probability for each edge between communities to exist 2/n

self_loops should loops be possible edges false

Table 3.1: List of parameters for the PL-communities model.

3.2.2 Algorithm

Since this model has only one community per vertex, most of the methods used in the
previous models are applicable here as well. Initially the sizes of the communities have to be
sampled with the sqrt-based approach described in Subsection 3.1.3. These communities are
again thought of as containing subsequent vertices, so the edges within communities lie in
blocks around the main diagonal of the adjacency matrix. As with the unique communities
model in Section 2.2 this block structure is scrambled by reordering the vertices before
pushing generated edges to the graph.

Each PE is assigned an equal number of consecutive vertices to generated edges for. A
logarithmic descent into the data structure storing the sampled community sizes can
determine how many communities of which size are assigned to the current chunk and
how many were already processed by previous chunks. Chunks are consecutive rows in
the directed case and rectangles and triangles as described in Section 2.1 for generating
undirected graphs. So this model has every PE generate all edges incident to each of its
handled vertices.

For edge generation a chunk splits up its part of the adjacency matrix into homogeneous
blocks using the same technique as the previous models. Generating edges in blocks
containing only inter-community edges works by determining how many of the epos possible
edges in this block are generated. The probability of an inter-community edge is po, so
Bin(epos, po) edges are generated. These edges are then randomly distributed among the
potential edges of the chunk. For intra-community edges the process is the same, but the
probability pi = α

|cl|γ for the binomial draw first has to be calculated considering the size of
the community that the current block is a part of.
Note that communities form blocks on the main diagonal of the adjacency matrix as
discussed in Subsection 2.1.3. Blocks are rectangular sections of the adjacency matrix
containing only intra- or only inter-community edges, so no block can contain intra-
community edges from different communities. Thus, only one probability pi has to be used
for each block of intra-community edges.

3.2.3 Implementation Details

The sampling of community sizes has to be done for each PE. Even though only a limited
range of communities contains the vertices whose edges are generated by any PE, the nature
of the sampling algorithm in Section 3.1.3 does not allow selectively calculating the size of
these communities. It is necessary to complete the whole process of adding and removing
community sizes until the desired combined size is reached. Any early cropping could not
detect whether a sampled community would be discarded in a later step. Sampling the
community sizes of each chunk individually without considering other chunks with this
algorithm would not allow communities split into multiple chunks, which would distort the

19



3. Power Law Communities

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1819

20

21

22

23

24

25

26

27

28

29

30

31

32

Figure 3.1: An undirected graph generated with the PL-communities model (n = 32,
cmin = 4, cmax = 20, α = 2, γ = 0.5, po = 0.08). Colours indicate community
membership.

distribution. It would also prevent very large communities that due to their size have to
be handled by multiple PEs.
However, the sqrt based approach is reasonably fast and its result can be stored in
accumulated form. This means that instead of storing how many communities of a certain
small size exist, or how large a given large community is, it is stored how many vertices
are in communities of the given size or smaller for small communities, respectively how
many vertices are in communities of the same or smaller id for large communities. For
getting the communities relevant to the current chunk, a logarithmic search over this data
structure allows returning the full size of all partially contained communities of the chunk
as well as id and contained size of the first community of the chunk.

Note that this search potentially has to consider both the small communities, which are
stored by how often their size was sampled and large communities for which the actual
size is stored. This differentiation between small and large communities can be masked
by the function calculating which communities are part of the current chunk. Thus, the
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3.2. PL-Communities Model

rest of the algorithm does not need to deal with the split data structure. With this
information, borders between communities can be determined and the chunks can be cut
into homogeneous blocks the same way as in Section 2.1.
Reordering of vertices to break up the block structure in the adjacency matrix is done with
a hash function as described in Section 2.2.
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In this chapter overlapping communities are introduced. Vertices can be a member
of multiple communities, causing those communities to overlap in the shared vertices.
Techniques for assigning vertices to communities in a communication-free manner are
discussed. For the first model utilizing overlapping communities all vertices have the same
intended membership count.

4.1 Membership Assignment for Overlapping Communities
In many settings vertices can be members of multiple communities [WCL+16][RG12]. So
providing models that allow generating graphs with overlapping communities like the
LFR-model [LF09] and the CKB-model [CKB+14] is useful to explore these kinds of
environments and allow comparing community detection algorithms with a base truth.
Initially all vertices should be in the same number of communities, while for the CKB
model vertices’ membership counts should also be power law distributed.

4.1.1 Problems when Working with Overlapping Communities

Creating a random bigraph from vertices to communities with specified degrees in a
communication-free setup is hard. Models like the one developed by Chojnacki et al.
[CK10] work by sequentially expanding the graph and are inherently not suited for use in
distributed calculations.
Other ways of generating random bigraphs like the curveball algorithm [Car15] work by
starting with a nonrandom assignment and then repeatedly swapping random edges. In a
communication free setting the result of these swaps cannot be broadcasted to other PEs,
so this kind of technique can not utilize parallelization here.

The LFR model generates its vertex community pairings by connecting communities and
vertices randomly while respecting their degree with the configuration model [LF09]. This
process is also sequential, but could be modified to run in parallel by assigning each PE
random subsets of vertices and communities to connect. But the configuration model can
lead to a vertex being assigned to the same community multiple times. While these double
assignments could be detected, fixing them by swapping a duplicate edge with another edge
would have to be done by every PE to ensure consistency. This is not possible without
communication unless every PE generates and checks all assignments, in which case there
would no longer be any benefit to the parallelization.
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The community assignment of the CKB model is done in a probabilistic manner [CKB+14].
They have each PE draw a set number of random vertex community pairs and draw more
pairs than needed for the model to be able to remove duplicate draws without reducing the
expected number of members and communities in the generated graph. For the elimination
of duplicates a merge of the results of all PEs is required, which is not possible in a
communication free environment.

So for the communication free approach, an algorithm has to be employed that can not
produce the same pairing multiple times. Correcting these collisions where a vertex is
assigned membership to one community multiple times consistently seems impossible
while utilizing parallelization. Also, the algorithm has to be able to generate consistent
assignments across all PEs, while each PE should only have to calculate assignments
relevant for the edges it has to generate. A PE processes edges for members of consecutive
communities. Running assignments on each PE independently of other PEs would alter
the distribution of community sizes by preventing the option of splitting communities
and making communities with more members than are processed by each PE impossible.
Furthermore, an approach focusing on isolating PEs this way would require complicated
splitting of the available vertices to ensure that no PE gets assigned vertices in a way that
can not be distributed among its communities without double assignments.
This means that a PE has to assign members to a certain set of communities, keeping the
content of split communities consistent across the different PEs processing it. Also, the
vertices should be assigned to the correct number of communities each and as mentioned
above, any double assignments can not be corrected without communication.

4.1.2 Group Based Assignment

The assignment of vertices to communities in the PL-communities model of Section 3.2
without overlapping communities works based on a random permutation of the vertices. The
position of an element in a community – its position in that community plus the combined
size of previous communities – is hashed with a randomly chosen bijective function to get
the vertex’s id. When increasing the size of the domain of such a hash function to include
all positions in communities, multiple positions correspond to the same vertex. So the hash
function can no longer be bijective and may map two positions in one community to the
same vertex. As the communication free setup has no easy way of fixing these collisions,
this is not a viable option.

When all vertices should have the same membership count, a way to keep being able to
use bijective hash functions is by grouping communities into groups that in total have
fewer members than there are vertices. Hashing from each of the group spaces into the
vertex space using a function h(x) for all groups does guarantee that all members of each
community are unique. Since vertex sizes are used to create groupings each community
also has the correct number of members. The interaction between the hash function and
different groups has to ensure that each vertex is in the same number of communities.
To keep track of what vertices were assigned how often, each group uses the same hash
function to assign vertices. So the first group g1 containing communities of combined size
|g1| hashes values from 0 to |g1| − 1 to get the corresponding vertices. This leaves n− |g1|
values, that were not hashed and whose corresponding vertices were not assigned to any
community. They can be assigned to communities of the second group g2. To get the
members of the communities in g2 the remaining values from |g1| to n−1 and values from 0
to |g1|+ |g2|−n−1 are hashed. In this manner each group takes values left by the previous
group in the upper range of the hash functions domain and – if necessary – the beginning
of a next range of numbers and hashes them to receive the members of its communities.
The vertices obtained in this way can not be assigned to communities in this order, because
this would result in values whose preimages are successive to share communities way more
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4.1. Membership Assignment for Overlapping Communities

Figure 4.1: Example of the assignments of members (in green) to community c1 with group
based assignment.

often than they should. So the order within each group is scrambled by applying another
bijective hash function g(x). This function g(x) reorders only the values within that group,
so it is unique for every group.
Figure 4.1 visualizes this process with five communities and a membership count of 2 for
all vertices. The members of community c1 are highlighted in green and their position after
each hashing is visualized. Black spaces are positions that represent vertices outside the
current group and white spaces belong to other communities. Community c3 in the second
group fills both the remaining three slots not used by group one and the first two slots of
the next iteration of vertices.

This approach is reasonably fast and can easily run on multiple PEs. Getting the members
of a given community requires only knowing its group and the position of that group in
the domain of h(x). These pieces of information can be obtained by iterating over the
sampled community sizes once in O(

√
n) because of the structure in which power law

sampled communities are stored. For community sizes given by different means, iterating
over all communities would take linear time. So each PE only has to assign members to
the communities for which it generates edges, which is efficient.

Unfortunately the assignments created by this approach do not work independently for
different communities. Communities that are in the same group can not overlap at all.
For small communities where chances of shared overlap are not very high this may be
an acceptable flaw. But two large communities that contain ten percent of all vertices
would be expected to share one percent of all vertices or ten percent of their members.
Preventing these overlaps and in return forcing more shared vertices with communities of
other groups, which is especially relevant when few groups exist, is a major distortion of
the intended distribution. Even though this approach may be viable in some settings where
guaranteeing exact community sizes and membership counts is important and implicitly
adding a second layer of structure to the graph is not considered too harmful, it will not
be considered further in this thesis.

4.1.3 Probabilistic Assignment

Because of the shortcomings of the group based approach and the general difficulty of cal-
culating a consistent assignment of vertices to communities in a distributed communication
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free setting, a probabilistic approach will be used. As the name implies, this approach does
not provide exact assignments from a given vertex set to given communities. Instead, the
idea is to have each community pick its members randomly, probabilities of the pick being
proportional to the membership count of the vertex.

This keeps the distribution of community sizes as specified, so for power law distributed
community sizes the sizes of the communities in the generated graph are the exact sizes
returned by the internal power law sampling algorithm used to draw community sizes.
However, the membership counts of the vertices are not achieved precisely. The expectation
of each vertex’s membership count is the intended membership count, but there can be
deviation from that expectation. So if each vertex should be in the same number of
communities, this approach does produce vertices of both larger and smaller membership
count around that specified membership count. The exact distribution of membership counts
is hard to specify, because it is a result of independent draws with different probabilities
depending on the size distribution of the communities and respecting that communities
sample vertices without duplicates.
Because of the independence of the member drawing routines of different communities,
overlap between communities is completely random, as it should be.

4.2 PL-Multicommunity Model

Vertices in the PL-multicommunity model have a fixed intended membership count that is
the same for ever vertex. This causes overlap between the communities whose sizes are
power law distributed.

4.2.1 Description and Parameterization

For this model the communities’ sizes are drawn from a power law distribution. Each
vertex is on average in a set number of communities. Since probabilistic assignment from
Subsection 4.1.3 is used the membership count is not the same for every vertex, but they all
have the same expected membership count. Having vertices being in multiple communities
is equivalent to having overlapping communities.

Since this model is similar to the CKB model in that it has overlapping communities
whose sizes are power law distributed, inter-community edge generation is done with an
ε-community [CKB+14]. So for this model po does specify the probability of an edge
occurring between any two vertices, regardless of whether they share a community. This
does not change the inter-community edge probability compared to previously discussed
models, but it increases the probability of an edge between two vertices sharing at least one
community by po. Additional to edges from this ε-community, intra-community edges are
generated similar to the not overlapping PL-communities model in Section 3.2. This means
that each community ci calculates its own probability pi = α

|ci|γ for intra-community edges.
Different communities generate their intra-community edges independent of each other.
Because communities can overlap in this model and all communities overlap with the ε-
community, it is possible, that an edge is generated multiple times by different communities.
In this case the duplicate edges are removed in post-processing if the graph is returned in
a single file. If each PE returns its own result file and the graph is used in its distributed
form, any application working with it has to deal with potential duplicate edges.
All parameters of this model are listed in Table 4.1. A graph generated by the PL-
multicommunity model is shown in Figure 4.2. Because of overlapping communities, large
parts of the graph are a connected a lot stronger than in the previous models. Communities
are connected to other communities with inter-community edges.
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4.2. PL-Multicommunity Model

Parameter Description Usual Value
n number of vertices -
cmin smallest permitted community size 6
cmax largest permitted community size n/10

vertex_mc expected membership count for each vertex 4
kcomm exponent of the PL-distribution for community sizes 2.5
α numerator for calculation of pi 4
γ exponent for community size for pi calculation 0.5
po probability for each edge in the ε-community to exist 2/n

self_loops should loops be possible edges false

Table 4.1: List of parameters for the PL-multicommunity model.

4.2.2 Algorithm

As this model features overlapping communities, splitting a permuted adjacency matrix
between the different PEs is no longer efficient. There is no permutation for which all
communities form blocks, so the blocklike structure that allows efficient processing can not
be achieved this way. What is still possible is to divide continuous parts of communities
among the PEs. This means that one PE no longer necessarily generates all edges for all
the vertices for which it generates some edges.

Each PE is assigned an equal number of instances of vertex community pairs from continuous
communities. So the PE handles all intra-community edges for a community except when it
is the first or last community of this PE in which case that community may also be partially
handled by the previous or next PE. To get the communities’ sizes before distributing the
instances between PEs, the community sizes are sampled from a power law distribution
with sqrt-based sampling as described in Subsection 3.1.3.
The communities get assigned members using probabilistic assignment from Subsection 4.1.3.
For each of the communities partially handled, the PE randomly uniformly distributed draws
members of the community, seeded with the community’s id to ensure that communities
split between different PEs have the same members on each PE.

Intra community edges for those communities are generated similarly to the not overlapping
power law community model from Section 3.2. The probability pi = α

|ci|γ for any edge within
ci to occur is calculated considering its size |ci|. For the directed case, each community
part can be processed as a rectangle chunk. For the generating of undirected graphs it is
sometimes necessary to split the community part. If the community was already started
by a previous chunk, the part of the community of which both source and target vertex are
handled by the current PE is split off as a triangle block. The remaining possible edges are
processed as a rectangle block. For a permutation that keeps the current community as a
block in the adjacency matrix, this process is similar to that of the previously discussed
models with the difference that no outer chunks are considered here.
Also since PEs work based on assigned communities, it is no longer guaranteed that a PE
can generate all edges for a handled vertex. So in the undirected case this model does not
generate something corresponding to the vertical column of rectangle chunks to generate
all intra-community edges of a handled instance.
The ε-community is divided between all PEs. Each PE gets the same number of rows of
the ε-community and processes them the same way it would process parts of a regular
community assigned to it but the edge generation uses the probability po rather than a
probability calculated based on the community’s size.
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Figure 4.2: An undirected graph generated with the PL-multicommunity model (n = 32,
cmin = 4, cmax = 20, vertex_mc = 2, kcomm = 2.5, α = 2, γ = 0.5, po = 0.08).
Colours indicate community membership, red squares are vertices with no
community.

4.2.3 Implementation Details
For the reasons explained in Subsection 3.2.3, the sampling of community sizes has to
be done by every PE. The communities relevant to each PE can be determined by a
logarithmic search over the sampled community sizes. This will also return the id and the
number of source vertices of that community handled by the current PE. The number of
source vertices handled also provides information, whether the community has to be split
into a rectangle and a triangle chunk in the undirected case.

The splitting of communities into multiple PEs works by letting each PE generate edges
based on the source vertices assigned to it as instances. In the undirected case this does
not mean that all intra-community edges of those vertices are generated by the current
PE. The triangle chunk structure means, that only edges to vertices of equal or lower id –
in the hypothetical permutation of vertices in which the community forms a block in the
adjacency matrix – are generated by the PE, but those edges are added to the graph in
both directions.

Due to the way in which vertices are assigned to communities, it is not necessary to reorder
the vertices to break up any block structure. The block structure in this model is only
ever local in a hypothetical permutation of the vertices, which allows working within
communities in the same chunk structures that were utilised in previously discussed models.
This allows profiting from large homogeneous blocks for which only a single binomial
sampling has to be calculated to get the edge count, but has no practical impact on the
graph structure. Instead of thinking about reordering the vertices to achieve a block for
the edges in the community, it is also possible to imagine deleting all rows and columns
of the adjacency matrix not belonging to members of the currently processed community.
This produces the same block of possible edges in an adjacency matrix upon which the
splitting between PEs and the edge generation are executed.
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This chapter describes a communication-free generator for CKB graphs. For this, vertex
assignment to communities is generalized to be able to process vertices with power law
distributed membership counts.

5.1 Membership Assignment for the CKB Model
The CKB model features overlapping communities like the PL-multicommunity model.
The general challenges of assigning members to overlapping communities have already
been described in Section 4.1. But unlike the PL multi-communities model of Section 4.2,
the CKB model has the membership counts of vertices also sampled from a power law
distribution.
From a theoretical standpoint this does not affect the probabilistic assignment from
Subsection 4.1.3. It is still possible to have each community randomly pick its members with
probabilities proportional to the membership counts of the vertices. The implementation
of such a picking process becomes slightly more complex than the uniformly distributed
sampling utilised for the PL multi-communities model.

5.1.1 Generalizing Group Based Assignment

The group based assignment has to be expanded to work with vertices whose membership
counts are power law distributed. The structure in which both power law sampled
membership counts and community sizes are stored is a result of the sampling algorithm
in Subsection 3.1.3. For samples smaller than a threshold of

√
n the number of how

many samples of that size were drawn is stored. For larger samples the sizes are stored
individually.
So for assigned members with a small membership count below the threshold of the data
structure the group based assignment routine of Subsection 4.1.2 can be used to assign
exact members to the community. But to decide how many members of each membership
count are assigned to the community another process has to be used.
The number of available vertices has to be recursively split up into splits of communities.
This starts with all vertices being available as often as their membership count indicates
for all communities together. Then the communities are divided into different splits and
each split is randomly hypergeometrically distributed assigned a subset of the available
vertices. This is done recursively for the membership counts as well. Assume that there
are n positions to be filled in the left split of communities. Also assume there are |mlow|
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vertices in the lower split of membership counts still available at this recursion step and
|mtotal| vertices left for assignment in the current recursion step. Then drawing from
Hyp(n, |mlow|, |mtotal|) describes how many vertices of the lower membership-count-split
are assigned to the left community-split. For each recursion step of the community splitting,
all not cropped steps of the vertices’ splits have to be done. Continuing down this process
of recursive splits, the membership counts of members assigned to a community will be
returned.

Note that this recursive process of hypergeometrically picking members for splits of
communities can produce situations where a community will be forced to contain a vertex
multiple times, which is not intended. These collisions can not be corrected after they
occurred by swapping the over-sampled member with another community due to the
communication free setting. So they must be prevented at the moment where a split would
cause such an unsatisfiable situation.
To detect an unsatisfiable situation the Gale-Ryser Theorem [Kra96] can be used. For
vertices stored by how often their membership count was sampled, it can be assumed that
each individual vertex of that membership count was sampled as few times as possible or
as often as possible. Later steps of the recursion can produce both of these extremes and if
other assignments would force an unsatisfiable situation, vertices of the same membership
count will be divided up among the available communities in any way that prevents the
unsatisfiable situation. When checking for unsatisfiable situations with the Gale-Ryser
Theorem, picks of vertices stored by membership count will always be considered to be
distributed as evenly as possible between as many vertices as possible. This is the easiest
way to assign them to communities. So if an assignment will be possible, it will be possible
with this pick of vertices of the same membership count. Due to the compressed data
structure of the power law sampled membership counts and community sizes this check
can be done in O(

√
n) time per split.

If an unsatisfiable situation would be caused by the split, vertices causing it can be swapped
with vertices assigned to the other split until both splits can be realized as bipartite
graphs. No communication is required for this correction because every PE will follow the
same recursion tree to assign its communities’ members and is therefore able to make this
correction at the split where it is necessary.

To get the actual members of that community for members, which are stored by how often
their membership count was sampled, the group based assignment has to be used. The
elements grouped together are now not the complete communities, but only the members
of the currently processed membership count assigned to communities. Offsets within the
group space as well as the id of the group space the current community is grouped into
can be calculated and carried down through the recursion. Members stored by their large
membership count are already uniquely identified.
This generalization works for any algorithm that accurately assigns vertices of the same
membership count to differently sized communities. So if an algorithm solving this issue
in this communication free setting without the drawback of majorly distorted overlap
structure between the communities exists, it could be used for generating CKB graphs.

5.1.2 Pre-Assignment

Because of the restrictions of the group based assignment, generating CKB graphs will
use the probabilistic assignment from Subsection 4.1.3. It does not need to be adapted
notably. Community sizes are kept as sampled and each community draws random vertices
as members with probabilities proportional to the membership counts of each vertex.
This can lead to vertices without a community. While this is also possible for the PL-
multicommunity model with fixed expected membership count from Section 4.2, it can
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be more impactful for the CKB model. Here membership counts are also power law dis-
tributed and a usual value for the smallest permitted membership count is 1. So intended
membership counts of 1 can be very frequent and missing that intended frequency of being
sampled by 1 already results in a vertex without a community.
To prevent the unintended existence of vertices that are member of no community, pre-
assignment can be used. This means assigning one community to each vertex before the
probabilistic assignment. During the probabilistic assignment communities then only the
remaining number of members to reach their intended size is drawn. Probabilities for each
vertex being picked are then proportional to their intended membership count reduced
by one, so vertices with intended membership count of 1 are no valid targets for the
probabilistic assignment step when pre-assignment is used.
The probabilistic assignment step and the pre-assignment need to work together in a way
that guarantees that a pre-assigned vertex is not assigned to the community again during
the probabilistic assignment.

Initially it has to be decided how often each community is selected by vertices for pre-
assignment. This is done using recursive hypergeometric picks. Initially all vertices have
to be pre-assigned and all communities are available. Then the first community draws
how many vertices are pre-assigned to it. Let there be n vertices left to be pre-assigned,
the remaining communities – including the community ci handled in this step – have a
combined size of |ĉi| and the currently handled community has size |ci|. Then the number of
vertices pre-assigned to ci is determined by drawing from Hyp(n, |ci|, |ĉi|). This is repeated
for different communities, until all communities have been given a number of pre-assigned
vertices.
For the implementation in combination with sqrt based power law sampling described in
Subsection 3.1.3, communities stored by how often they were sampled, only draw once how
many vertices are pre-assigned to all communities of that size. Specific assignments are
only decided upon when the members of the communities of that size are needed for edge
generation. Since the membership counts of the vertices are also power law distributed,
they are also stored in this compressed format. For easier access to the relevant data, there
are four arrays of pre-assignment counts calculated and stored. The first two arrays store
how often communities of each small community size get vertices pre-assigned and the last
pair of arrays stores how often communities of large size get vertices pre-assigned. Each
pair of arrays consists of one array indicating how many vertices of small membership
count were pre-assigned to the corresponding communities and another array storing that
information for vertices of large membership count. To get how many vertices with small
membership count are pre-assigned to all the small communities combined, a draw from
Hyp(nsmall, N, | ˆcsmall|) is made, where nsmall is the total number of vertices with small
membership count, N is the combined size of all communities and | ˆcsmall| is the combined
size of all small communities. The remaining vertices with small membership count are
pre-assigned to large communities. For vertices with large membership count the process is
analogue. The successive hypergeometric picking of how many vertices were pre-assigned
to a specific community size or community is then done for these two arrays separately.
During edge generation it is necessary to get the actual vertices pre-assigned to a given
community. If the community in question is small, the previous steps only fixed how many
vertices were pre-assigned to all communities of this size together. So for a small community
ci it is first calculated how many vertices of each membership count are pre-assigned to
all communities of size |ci|. Then the pre-assigned vertices are divided up among all the
communities of size |ci| to get the members. For large communities only the first step of this
is necessary. Calculating how many vertices of each size are pre-assigned to communities of
the correct id are already the members pre-assigned to the large community.
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To find out how many vertices of each membership count are pre-assigned to communities
of a given size, the space of available communities is recursively split until only one
community size remains. For each split there is a total of available space sall in all
available communities and the available space ssmall in the split of communities of smaller
size. For each membership count it is determined how many vertices end up in which
split. So for membership count j with mj vertices available for this split, drawing from
Hyp(mj , sall, ssmall) determines how many vertices are in the split of communities of smaller
size. There does not need to be a check whether vertices may have been pre-assigned twice
to the same community causing a collision, because each vertex is only pre-assigned once.
With each distribution step of vertices of a given membership count, the available space
has to be adapted to respect the just pre-assigned vertices.
For small communities it is necessary to determine, which vertices were pre-assigned to the
specific community, not just to all communities of its size. The process of this is similar to
the distribution of pre-assigned vertices among communities of different sizes. Recursively
the amount of communities looked at is split in half. In each split the vertices pre-assigned
to each half of the split are calculated using a hypergeometric pick. Here sall is the space
available in all communities currently considered and ssmall is the space in all communities
of the split with smaller ids. Again for membership count j with mj vertices available
for this split, drawing from Hyp(mj , sall, ssmall) returns how many vertices are in the split
of communities with smaller ids. The available space also has to be updated after each
distribution step for vertices of a given membership count.

These steps have returned how many vertices of what membership count are pre-assigned
to any community. For vertices with small membership count l it is still necessary to
determine the ids of vertices that were pre-assigned. To keep track of which vertices were
already pre-assigned, vertices of the same membership count are pre-assigned in order and
then their order is scrambled with a hash function gl(x) unique to the membership count l.
This hashing removes the correlation between small communities being pre-assigned the
lower id vertices of the same membership count. The relative position of the pre-assigned
vertices compared to other vertices of the same membership count can be tracked during
the recursion determining how many vertices of each membership count were pre-assigned
to each community.
It needs to be ensured that the probabilistic assignment that fills up the remaining space of
each community does not assign an already pre-assigned vertex. For this, the probabilistic
assignment works with the information about which vertices were pre-assigned to the
currently processed community ci. Before the hashing, the pre-assigned vertices of the
membership count l are consecutive. Let there be ml vertices of membership count l and let
mpre
ci,l

vertices of membership count l be pre-assigned to the currently handled community ci.
Then the probabilistic assignment has ml−mpre

ci,l
possible vertices of membership count l to

assign. Assume there are mprob
ci,l

vertices of membership count l probabilistically assigned
to ci. Those members are picked by hashing the values 0 to mprob

ci,l
− 1 with a hash function

fci,l(x) specific to this community and membership count. If such a picked number x is in
or after the interval containing the already pre-assigned vertices, it is increased to x+mpre

ci,l
.

Using fci,l(x) for these specific assignments rather than a hypergeometric distribution
allows keeping the members stored in a compressed format, where the specific member can
be determined with fci,l(x) when needed, but keeping taps on all specific members of ci
is never necessary. This assignment is occurring before the hashing with gl(x). So both
pre-assigned vertices and members obtained by the probabilistic assignment are hashed
with gl(x) to get sufficiently random members assigned to the community.
This process is visualized with an example in Figure 5.1. There are 15 vertices of membership
count l, two were already pre-assigned to c1. So the three vertices of membership count
l pre-assigned to community c2 occupy cells 2 to 4 before any hashes were applied. The
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vertices with mc vertices with mc 

...
pre-assigned to pre-assigned to 

local ids of members of

Figure 5.1: Visualization of the different hash functions to determine exact members after
membership counts of members are known during pre-assignment. Cells marked
in black were pre-assigned. Cells marked in green were probabilistically assigned.

probabilistic assignment now assigns four vertices of membership count l to c2. The
two larger elements are increased by 3 because they lie in or after the space reserved
for pre-assigned members. For the space excluding the pre-assigned vertices the vertices
positions are scrambled with fci,l(x) to have the probabilistically assigned members be
random within vertices of the same membership count. To break up correlation between
local member ids of pre-assigned vertices and the community’s id, all ids are hashed with
gl(x).
Vertices of large membership count do not need to determine specific vertices, because the
pre-assignment recursion already returns their id. So for those vertices there is no hash
function like gl(x). If the vertex was pre-assigned, it can not be assigned again during
probabilistic assignment.

This way of pre-assigning each vertex exactly once to a random community does not reduce
the distortion to the membership counts caused by the probabilistic assignment. In a
way it makes it less natural, because vertices of sampled membership count 1 always have
membership count 1 in the graph, but there are vertices of higher sampled membership
count that do not get assigned during probabilistic assignment and therefore also have
membership count 1 in the graph.
To counteract this increased number of vertices with membership count 1, the initial sam-
pling of membership counts from the power law distribution should return fewer vertices of
membership count 1. For this it is calculated how many vertices of membership count one
are expected to be created beyond the intended number.
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Lemma 5.1. When approximating membership count probabilities by assuming that com-
munities pick vertices with permitted duplicates, the expected number of unwanted vertices
of membership count 1 is

E(U1) =
∑

m̃i,i>1
m̃i ·

(
N − n− i+ 1

N − n

)N−n
Here m̃i is the expected number of vertices with a membership count of i if no correction to
the power law sampling is done.

m̃i =


n · log(i−0.5)−log(i+0.5)

log(smax)−log(smin) , if k = 1

n · (i−0.5)1−k−(i+0.5)1−k

(smax)1−k−(smin)1−k , if k 6= 1

The correction reducing the amount of sampled vertices of membership count 1 has to reduce
that count by

Ē(U1) = E(U1) · n
n− E(U1)

Proof. An unwanted vertex of membership count 1 is equivalent to a vertex with higher
sampled membership count not getting assigned to any communities during probabilistic
assignment. During probabilistic assignment the chances of a vertex vi with membership
count |vi| to get assigned to x communities is

f̃vi(x) =
(
N − n
x

)
·
( |vi| − 1
N − n

)x
·
(
N − n− |vi|+ 1

N − n

)N−n−x
So the chance to get an unwanted membership count of 1 from vi is

f̃vi(0) = 1 · 1 ·
(
N − n− |vi|+ 1

N − n

)N−n
Since expectation is linear, the expected number of unwanted vertices with membership
count 1 is

E(U1) =
∑

m̃i,i>1
m̃i ·

(
N − n− i+ 1

N − n

)N−n
The value of m̃i is calculated easily by integrating over the probability density of the power
law distribution introduced in Equation 3.1:

m̃i

n
=
∫ i+0.5

i−0.5
fLP (x)dx ⇐⇒ m̃i =


n · log(i−0.5)−log(i+0.5)

log(smax)−log(smin) , if k = 1

n · (i−0.5)1−k−(i+0.5)1−k

(smax)1−k−(smin)1−k , if k 6= 1

This is not the number by which the sampling of membership count 1 vertices should
be reduced, because the vertices whose membership count is sampled as a result of this
correction can also produce unwanted vertices of membership count 1. After the initial
correction step the probability density of the membership counts is

f1,PL(x) =

 fPL(1)− E(U1)
n + E(U1)

n · fPL(1), if i = 1

fPL(i) + E(U1)
n · fPL(i), if i 6= 1

Let m̃i,1 be the expected number of vertices with a sampled membership count of i created
by the re-sampling of the initial correction step. Because the re-sampling of the vertices
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that used to have unwanted membership count 1 before the correction is the same routine
as the initial power law sampling, m̃i,1 can be expressed based on m̃i:

m̃i,1 = E(U1)
n
· m̃i

Let E1(U1) be the number of unwanted vertices of membership count created by the
correction based on E(U1):

E1(U1) =
∑

m̃i,1,i>1
m̃i,1 ·

(
N − n− i+ 1

N − n

)N−n
Let m̃i,k be defined recursively as the expected number of vertices with a sampled member-
ship count of i created by the re-sampling of the k-th correction step. Similarly, let Ek(U1)
be the number of unwanted vertices of membership count created by the correction based
on Ek−1(U1).
The total correction should consider all membership counts created by the corrections and
correct them as well. So the total correction necessary is:

Ē(U1) = E(U1) +
∞∑
k=1

Ek(U1)

The way that m̃i,1 can be expressed based on m̃i, Ek(U1) can be generalised for the recursive
definitions:

m̃i,k = Ek−1(U1)
n

· m̃i

Applying this to Ek(U1) provides this recursive formula:

Ek(U1) = Ek−1(U1)
n

· E(U1) =
(E(U1)

n

)k
· E(U1)

This is sufficient to rewrite Ē(U1):

Ē(U1) = E(U1) +
∞∑
k=1

Ek(U1) = E(U1) ·
∞∑
k=0

(E(U1)
n

)k
= E(U1) · 1

1− E(U1)
n

= E(U1) · n
n− E(U1)

In practice the calculation of E(U1) can be simplified. The larger i gets, the smaller m̃i and
the other factor becomes. So at some point all larger summands are negligible. If the value
of the last added summand is smaller than a user specified value, all further summands are
ignored.
The percentage of samples picked corresponding to these unintended vertices of Ē(U1)
during power law sampling of membership counts is passed to the sampling of membership
counts. For the calculation of how many membership counts are in the larger or smaller
split during the recursion, the probability is adjusted by this percentage. This ensures that
the expected number of vertices with membership count 1 is the same as the expectation
from the unaltered power law distribution. This only guarantees correct expectation for
membership count 1. Expectations of other membership counts are still distorted by the
probabilistic assignment.

Using pre-assignment for the CKB model is optional. While we believe that there are
situations where guaranteeing that each vertex is in at least one community is useful, it
may also be desired that the distortion of the probabilistic assignment is not altered. In
cases where the correction of the distribution provided by pre-assignment is not necessary
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it is preferable to deactivate it. Tests in Subsection 6.2.6 show that while scaling with
pre-assignment is comparable to scaling without it, the absolute runtimes without pre-
assignment tend to be notably faster. In particular Figure 6.23 contains a plot with absolute
runtimes, where parameter-set 1 with pre-assignment takes about ten times longer than
the corresponding parameter-set 2 without pre-assignment.

5.2 Communication-free generation of CKB Graphs
The CKB model has overlapping communities. The vertices’ membership counts and the
communities’ sizes are power law distributed. This section describes a communication-free
generator for CKB graphs.

5.2.1 Description and Parameterization

The CKB model was introduced by Chykhradze et al. [CKB+14]. It features overlapping
communities whose sizes are drawn from a power law distribution. The membership counts
of the vertices are also power law distributed.
Intra community edges for community ci are generated with probability pi = α

|ci|γ like
for the power law model described in Section 3.2. Edges between vertices that do not
necessarily have to share a community are generated with the ε-community. So any edge
can be generated with probability po. If an edge is generated in multiple communities, it
will only be added to the final graph once. If the output of the generated edges is not
gathered into a single file, but done separately for each PE, it is possible that multiple PEs’
files contain the same edge.
A list of all parameters for the CKB model can be found in Table 5.1. An example of a graph
generated by this generator is shown in Figure 5.2. It has a dense core of vertices with high
membership count and high degree. The periphery consists of vertices with a membership
count of 1 that are predominantly connected to members of the same community.

Parameter Description Usual Value
n number of vertices -
cmin smallest permitted community size 6
cmax largest permitted community size n/10
vmin smallest permitted membership count 1
vmax largest permitted membership count n/10
kcomm exponent of the PL-distribution for community sizes 2.5
kvertex exponent of the PL-distribution for membership counts 2.5
α numerator for calculation of pi 4
γ exponent for community size for pi calculation 0.5
po probability for each edge in the ε-community to exist 2/n

pre_assign should pre-assignment be used false
self_loops should loops be possible edges false

Table 5.1: List of the parameters for the CKB model.

5.2.2 Algorithm

The workload distribution works similar to the PL-multicommunity model from Section
4.2. So communities or continuous part of communities are assigned to a PE that then
generates all edges for that part of the community. The ε-community is also split up among
the PEs.
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Figure 5.2: An undirected graph generated with the CKB model (n = 32, cmin = 4,
cmax = 20, vmin = 1, vmax = 20, kcomm = 2.5, kvertex = 2, α = 2, γ = 0.5,
po = 0.08). Colours indicate community membership.

Initially the membership counts are sampled from the power law distribution. Since this
sampling does not need to reach a specified combined mass, the process is simpler than
for community sizes. The structure of storing the samples is the same as for sqrt-based
sampling in Subsection 3.1.3. So small sampled membership counts are stored by how often
they were sampled and large membership counts are stored by what their membership
count is.This results in space demands and generation time only scaling with the square
root of the vertex count.
Filling these structures is done with a single recursive run. If the largest small membership
count is vmid, the number of vertices with small membership count is drawn from

Bin(n, FPL(vmid + 0.5)− FPL(vmin − 0.5)
FPL(vmax + 0.5)− FPL(vmin − 0.5))

For small membership counts the space of possible membership counts is successively split.
Assume the split starts with membership counts between i and j being possible and n
membership counts to draw. The split occurs at l = b i+j2 c, so the lower split samples
membership counts between i and l. The number of membership counts to be drawn by
the lower split is determined by drawing from

Bin(n, FPL(l + 0.5)− FPL(i− 0.5)
FPL(j + 0.5)− FPL(i− 0.5))
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For large membership counts samples are drawn one after another until enough samples
were generated.
If pre-assignment is used, the correction for vertices of membership count 1 is utilized as
described in Subsection 5.1.2. For a split as described above, where the lower split contains
the vertices of membership count 1, the number of membership counts in the lower split is
drawn from

Bin(n, FPL(l + 0.5)− FPL(i− 0.5)
FPL(j + 0.5)− FPL(i− 0.5)− PU1

)

instead. Here n is the number of vertices and PU1 = Ē(U1)
n is the percentage of expected

unwanted vertices of membership count 1 also considering the samples that are drawn as a
result of this correction. The calculation of Ē(U1) is described in Lemma 5.1.
After the sampling of membership counts, the combined size of all communities, which
is the combined size of all membership counts, is fixed. So the community sizes can be
sampled using sqrt-based sampling as described in Subsection 3.1.3.
Members are assigned to each community by probabilistic assignment as described in
Subsection 4.1.3. Because vertices have different membership counts, members are not
picked uniformly at random, but with probabilities proportional to their membership
count. If pre-assignment is used, vertices are probabilistically assigned with probabilities
proportional to one less than their membership count, so vertices with a membership count
of 1 can not be assigned to a second community.
Edge generation works as it did in the overlapping power law community model in Section
4.2. For intra-community edges the probability pi = α

|ci|γ for each edge to be generated is
calculated based on the size |ci| of the community. For edges belonging to the ε-community,
po describes the chance of each edge to be created.

5.2.3 Implementation Details

The initial sampling of membership counts and community sizes has to be done by every
PE as explained in Subsection 3.2.3. The communities relevant to the active PE as well
as the number of vertices from which the PE has to generate edges in those communities
can be determined by a logarithmic search over the community size data structures. The
splitting of community parts among the PEs is described in Subsection 4.2.3.

While the different ways of storing small and large communities can be masked by the
function returning which communities are relevant to the current PE and what parts of
these communities should be handled, this is not easily possible for vertices. Members are
assigned to communities by being picked by them. Each community can have small, large
and pre-assigned members. The structure of how these vertices are assigned to communities
without collisions is described in Subsection 5.1.2.
It is important to note that the probabilistic assignment has to sequentially assign vertices
based on membership count. Assume that all vertices of membership count larger than
mi were already considered. Also assume there are n vertices still to be assigned to the
current community and there are m̂i vertices of membership count mi or smaller that could
be probabilistically assigned. Then the number of vertices of membership count mi is
determined by drawing from Hyp(n, |mi|, |m̂i|), where |mi| is the number of vertices with
membership count mi.
Especially for small communities it is tempting to use a recursive splitting process for
probabilistic assignment, cutting the membership counts of potential members in half
each step. This would allow cropping whenever no more assignments are left to do for
vertices in a split of membership counts. But this distorts the distribution with which the
assignment is done. Vertices sharing splits with vertices of very large membership count
will get assigned more often than they should. This is because in a recursive splitting
process the probability of being picked depends on the combined mass of all objects in
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that split. So very large membership counts will contribute probability mass at a level that
would cause that vertex to be assigned multiple times. Every splitting step can prevent
any created split from having to assign more vertices than there are in that split. But it
can not detect easily how unevenly the probability mass is distributed within that split.
So especially for larger communities in later recursion steps there will be cases where all
vertices in a split have to be assigned to the community, even those vertices who would –
when individually considered – have a notably lower chance of being assigned.
For small members and small pre-assigned members, the vertices are hashed with a
membership count specific hash function gl(x). In the case of small members assigned by
the probabilistic assignment, the hash function fci,l(x) and a potential shift out of the
part of the domain of gl(x) reserved for pre-assigned vertices is used to obtain the specific
members before applying gl(x). To avoid having to store all specific members, these hash
functions are set up once for each community and stored in a map, ensuring that only those
hash functions belonging to membership counts of members of the current community are
created. Seeding ensures, that the hash function for a given membership count is the same
across all PEs. Because pre-assigned small members are in a specifically offset interval in
the domain of gl(x) and their assignment process is different to that of not pre-assigned
small members, small pre-assigned members are stored in a separate data structure during
edge generation.
For large members and large pre-assigned members there is no need for membership count
specific hashing. So the large members can be used directly for edge generation. This also
means that there is no need for distinction between pre-assigned members and members
assigned with probabilistic assignment. All members with large membership count are
stored in a single data structure.
All members are hashed with a universal hash function h(x) to break up the correlation
between small vertex ids and small membership counts. So in this setting it would be
possible to remove the secondary hashing step with fci,l(x) during membership internal
assignment, because all structures removed by that hash would also be removed when only
applying h(x).

The theory of the intra-community edge generation is the same as in the previously discussed
models. But there are three different data structures storing the members, that all have
subtle differences in how the actual vertices are determined. So there are nine functions
dealing with intra-community edge generation, one for each pair of source and target
vertices. So e.g. there is a function generating edges from small members obtained from
probabilistic assignment to small pre-assigned vertices. Small membership count based
functions also dedicate the edge generation to functions only working with one membership
count. This ensures, that within each of these functions all edges have incident vertices in
a specific data structure. So in a block with m possible edges, a initial binomial pick of
how many edges are to be generated from Bin(m, pi). Those edges can then be uniformly
random distributed among the homogeneous available space.
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This chapter covers the experimental evaluation of the generators described in previous
chapters. Several metrics are analysed for the generated graphs to check their properties.
To evaluate weak and strong scaling, test with different parameter-sets are conducted.

6.1 Model Evaluation
Here the properties of the graphs produced by the generators are analysed. This both
verifies the functionality of the generators and gives insight in how the probabilistic routines
affect properties of the generated graphs.

6.1.1 Basic Models

To evaluate the graphs produced by the basic models, parameters creating a normal setting
were used. They are listed in Table 6.1. The graphs were generated using 4 PEs and the
seeds were set to 1.

Model n c pi po

equal communities 220 500 0.1 2 · 10−6

unique communities 220 500 0.1 2 · 10−6

Table 6.1: Parameters used to produce the plots of graph metrics of basic models.

The communities in the equal-communities model have only two different sizes. The density
of those communities seems normally distributed around the specified pi of 0.1. The degrees
of vertices are also normally distributed around the expected value. The plots can be seen
in Figure 6.1.
Community size and density are both normally distributed around the expected values
for the unique-communities model. This is shown in Figure 6.2. The vertex degrees are
distributed almost exactly the same as in the equal-communities model.

6.1.2 PL Models

The PL-communities model and the similar PL-multicommunity model with overlapping
communities have many similarities, so their evaluation is handled together here. The
parameters used to generate the graphs can be seen in Table 6.2. The graphs were generated
using 4 PEs and the seeds were set to 1.
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Figure 6.1: Community size vs density of the equal-communities model are plotted on the
left and a histogram of the vertex degrees produced by that run is on the right.

Figure 6.2: Plot showing the community sizes and densities produced by the equal-
communities model.

Model n cmin cmax vertex_mc kcomm α γ po

PL-communities 220 6 1 · 105 − 2.5 4 0.5 2 · 10−6

PL-multicommunity 220 6 1 · 105 4 2.5 4 0.5 2 · 10−6

Table 6.2: Parameters used to produce the plots of graph metrics of the PL-community
models.

The community sizes and their density of the PL-multicommunity model are shown in
Figure 6.3. As intended, the density decreases gradually with increasing community
size. Even though the power law distribution allows community sizes up to 100000, the
largest community in this run contains just above 40000 members. The test run of the
PL-communities model without overlapping communities has a combined community size
that is four times lower because each vertex is only in a single community. There the
largest community has only just above 6000 members. Apart from the reduced number of
members, communities behave the same for the PL-communities model.
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Figure 6.3: Plot showing the community sizes and densities produced by the PL-
multicommunity model.

Figure 6.4: Histograms of vertex degrees (left) and plot of internal degrees against commu-
nity sizes (right) of the PL-communities model.

The vertex degrees produced by those runs can be seen in Figure 6.4. On the left is the
plot for the model without overlapping communities, which produces lower degrees overall.
The degrees seem to be roughly power law distributed when very small degrees are ignored.
Because every vertex is in at least one community, there are no vertices with extremely
low degree. For this run communities up to size 16 are complete and each vertex is in a
community of size at least 6. So unless a vertex is in a larger community and in spite of
higher expected degree gets assigned very few vertices, each vertex is guaranteed to be
incident to at least 5 edges.
The right plot of Figure 6.4 shows the internal degree of each community member plotted
against the community’s size. The guaranteed completeness of small communities can be
seen in the lower left, where communities of small sizes all have the members of the same
internal degree. For larger communities the range of values the internal degree takes grows
slower than the number of members in that community, producing the intended sub-linear
scaling. Members of larger communities have a wider range of internal degrees than those
of smaller communities. The plot only becomes narrower due to the logarithmic scaling of
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Figure 6.5: Histograms of membership counts (left) and vertex degrees (right) of the
PL-multicommunity-model.

the axes. For overlapping communities in the PL-multicommunity model this behaviour
can be observed as well.

The overlapping communities of the PL-multicommunity model do not guarantee member-
ship in a community for each vertex. In Figure 6.5 the distribution of actual membership
counts for an intended membership count of 4 can be seen. There are vertices without any
communities, these vertices tend to have very low degree. In the right histogram of Figure
6.5 these low degree vertices can be seen. There are 2347 vertices without any incident
edges in this graph.
The power law like distribution of degrees is broken by a increased number of degrees
around 900. These degrees correspond to members of the largest community with roughly
42000 members. The expected internal degree in a community of that size with the
given parameters is around 820. The edges missing to a degree of 900 come from the
intra-community edges of other communities those vertices are a member of.

6.1.3 CKB Model

To evaluate the CKB model a graph was generated with the parameters in Table 6.3. Those
parameters create a normal setting where vertices are pre-assigned to one community each.
The seed used was 1 and the generator was run with 4 PEs.

n cmin cmax vmin vmax kcomm kvertex α γ po pre-assign

220 6 1 · 105 1 1 · 105 2.5 2.5 4 0.5 2 · 10−6 true

Table 6.3: Parameters used to produce the plots of graph metrics of the CKB model.

The community sizes and their density is distributed similar to the PL-community models.
They are plotted in Figure 6.6. The largest sampled community size is less than half the
maximum permitted size and most communities are small and dense.
Because of the use of pre-assignment, there are no vertices with membership count 0. The
low minimum membership count of 1 combined with the relatively high power law exponent
of 2.5 result in a membership count of 1 for most vertices. Also, the maximum reached
membership count is notably lower than the size of the largest community that was sampled
with the same maximum permitted sample.
The degrees of the vertices are roughly power law distributed when very small degrees are
ignored. The degree distribution of the generated graph is visualised in Figure 6.8. Because
all vertices are in at least one community, there are no isolated vertices. The smallest
degree of any vertex is 5, which corresponds to belonging to exactly one community of
the smallest size and having no inter-community edges. Since both community sizes and
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Figure 6.6: Plot showing the community sizes and densities produced by the CKB model.

Figure 6.7: Histograms of membership counts of vertices in the CKB graph. The plot is
split into values at most 100 and values larger than 100 for better visibility.

membership counts are power law distributed, there are very few vertices with very large
degree. They have a large membership count and are members in large communities. With
this the most connected vertex of the graph achieves a degree that is a lot larger than the
size of the largest community.
The internal vertex degrees are plotted in Figure 6.9 on the left. They behave similar to
the internal degrees in the PL-community models. Small communities up to a size of 16 are
guaranteed to be fully connected. Members of larger communities can have lower internal
degree, but by design the expected degree increases at a sub-linear rate with increasing
community size.
Note that the range of different inner degrees for large communities is larger than for the
PL-community models in Figure 6.4. This range is not distributed symmetrically around
the expected inner degree, but there are vertices whose internal degree is much larger than
that of most members. These vertices have a large membership count and are also members
of communities overlapping the large community. As such edges of different overlapping
communities are counted towards the internal degree, causing higher internal degrees than
would correspond to the intra-community edge probability of the considered community.
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Figure 6.8: Histograms of vertex degrees in the CKB graph. The plot is split into values
smaller than 2000 and values at least 2000 for better visibility.

Figure 6.9: Plot of internal degrees against community size (left) and membership count
against community size (right) of the CKB graph.

This does not happen at a noticeable scale for models where communities do not overlap
or vertices are only in a very limited number of communities.
The right plot of Figure 6.9 shows that the assignment of vertices to communities does
not produce any notable bias toward assigning vertices of a given membership count to
communities of a certain size. Vertices located in only a single community are found
in communities of all sizes. Similarly, vertices with a large membership count show no
tendency towards being located in larger or smaller communities.
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6.2 Scaling Tests
For a parallelized implementation scaling is important. This section explores how the
runtime of the generators scales with increased problem size and increased usage of PEs.

6.2.1 Test Environment and Setup

All scaling tests were run on a remote machine with two 64-Core AMD EPYCtm Zen2 7742
CPUs. It has 1024GB of DDR4 EEC RAM organised as 16×64GB.

Times for the scaling tests are excluding IO and MPI overhead. Measurements begin from
the moment that the generator is started and end when it has finished generating its edges.
For each model multiple parameter sets are tested and each of these parameter sets is run
with three different seeds. For those situations where edge count is used to put runtimes
into perspective, the sum of generated edges across all PEs will be given. This is not
necessarily the number of edges of the final graph, since some models will under some
circumstances generate the same edge multiple times on different PEs. All scaling tests
were run using the undirected version of the models and did not allow loops.
For strong scaling, the parameters of the graph to be generated stay unaltered. The number
of PEs used gets increased gradually. Tests are run for all PE counts that are powers of 2
up to 128 and there is a run with 6 PEs, showcasing that the PE count is not restricted to
powers of 2. The main metric showing the quality of the parallelization is the speedup. It
divides the runtime of the sequential approach, which is the run with a single PE, by the
runtime of the current run. Perfect scaling would result in the speedup being equal to the
number of PEs used.
Weak scaling explores how the runtime of the generators develops when the workload for
each PE remains more or less the same, but the number of PEs used is increased. The
edge count of the graph is hard to control, especially as the interface expanded from the
original KaGen library only specifies vertex count by powers of 2. Therefore, the vertex
count of the graph will be scaled with the number of PEs used. Since the edge count grows
superlinearly for some models and parameter sets, some models will have an increased
average workload per PE. To take this into consideration, the accumulated runtime of all
PEs will be plotted against the number of generated edges. Perfect scaling would result in
the same runtime for all runs, or at least in constant workload per edge generated.

6.2.2 Scaling Results Overview

The basic models scale nearly perfectly, both when generating the same graph with more
PEs and when increasing the size of the generated graph while keeping the workload per
PE fixed.

For all models with power law distributed community sizes the workload is not balanced
perfectly among the PEs used. Each PE generates edges for a fixed number of vertices.
But vertices in larger communities have higher expected degree, so PEs generating edges
for members of larger communities have to do more work.
This is not a fundamental issue of these generators. The expected numbers of communities
of any size is known. With experimentally obtained knowledge about how much work is
related to edge generation and how much work is inherent to each PE or has to be done
per community handled, an improved re-balancing of the workload among the PEs should
be possible.

With probabilistic assignment overlapping communities can be generated in comparable
time to not overlapping communities. This means that graphs with the same combined
size of all communities can be generated with similar effort.
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The CKB model tends to spend a notable amount of work on the membership assignment
routine when there are many small communities. Hence, settings with small communities
tend to scale with the size of the structures storing power law sampled values, which
roughly scales in O(

√
n). Even with a re-balancing of the workload distribution, this would

always negatively impact the weak scaling of this generator.

6.2.3 Basic Models

Both the equal communities model and the unique communities model have the same
parameters and were tested with the same parameter sets.

Strong Scaling

The first parameter set tested here covers a normal scenario. It has communities with
slightly more than 2000 members each. A vertex is expected to have roughly 200 edges to
members of the same community and 0.4 edges to vertices in different communities.
The second parameter set has a much lower number of communities, which are therefore
much larger. The probability for edges within a community was set to get a comparable,
but slightly higher vertex degree than with the first parameter set.
The third and last parameter set is similar to the first, but generates graphs with a
significantly higher density.
The exact parameters used can be seen in Table 6.4.

Parameter Set n c pi po

1 228 130000 0.1 1.4 · 10−9

2 228 1000 0.001 1.4 · 10−9

3 228 130000 0.75 2.8 · 10−9

Table 6.4: Parameter sets used to test strong scaling for the equal communities model.

Plots visualizing the scaling behavior of the equal-communities model can be seen in Figure
6.10. The absolute runtime in seconds plotted in the upper diagram is the average of the
three differently seeded runs. Both parameter-set 1 and 2 have similar density and run in
comparable time. The higher density graph generated with parameter-set 3 takes more
time to account for the additional edges generated. Scaling is practically perfect for all
parameter sets. The dip in speedup seen for 128 PEs can be observed for all models tested
and is probably a negative effect related to using all available PEs.

Scaling of the unique communities model is also nearly perfect. Absolute runtimes are
slightly higher than those of the equal communities model which does not permute the
vertex ids before pushing generated edges to the graph. The plots of the strong scaling for
unique communities are displayed in Figure 6.11.

Weak Scaling

The parameter sets to test weak scaling are similar to the ones used for strong scaling.
The first parameter set tests a setting with slightly more than 2000 vertices per community
and a fixed intra-community edge probability. The intra-community edge probability scales
with the vertex count to maintain the expected number of intra-community edges per
vertex.
The second parameter set keeps the number of communities constant at 1000. To maintain
a comparable vertex degree, the probability of edges within and between communities scale
with the vertex count.
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Figure 6.10: Plots visualizing the near perfect strong scaling of the equal communities
model. The top graphic plots total runtime in seconds against PE count. The
lower one shows the speedup.
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Figure 6.11: Plots visualizing the near perfect strong scaling of the unique communities
model. The top graphic plots total runtime in seconds against PE count. The
lower one shows the speedup.
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The third parameter set scales parameters like the first. The intra-community edge
probability is increased to produce graphs with a higher density.
The parameters used are shown in Table 6.5. For the scaling parameters the parameter
for sequential and maximally parallel computation are given, po decreases with increased
vertex count. They all scale linearly with vertex count and are specified with two significant
digits.

Parameter Set n c pi po

1 224 − 231 8200− 1000000 0.1 1.2 · 10−7 − 9.3 · 10−10

2 224 − 231 1000 0.16− 0.0013 1.2 · 10−7 − 9.3 · 10−10

3 224 − 231 8200− 1000000 0.75 1.2 · 10−7 − 9.3 · 10−10

Table 6.5: Parameter sets used to test weak scaling for the equal communities model.

Weak scaling for the equal communities model is also nearly perfect. The average runtime
over all seeded runs of each parameter set is plotted the upper graphic of Figure 6.12. The
increased runtime for 128 PEs is experienced by all models and unlikely to hint towards
bad scaling of the algorithms used. Here the second parameter set takes time comparable
to the third, because its intra-community edge probabilities are one order of magnitude
larger than they were for the strong scaling tests.

As with strong scaling, there is no notable difference in scaling behaviour between the
basic models. Again, the absolute runtime of the unique communities model is a bit higher
than that of the equal communities model. The plots visualizing runtimes for the unique
communities model are shown in the lower plot of Figure 6.12.

6.2.4 PL-Communities Model

Scaling of Sqrt-Based Sampling

The sampling of community sizes from a power law with the sqrt-based approach of
Subsection 3.1.3 works by sampling and discarding batches of samples. A batch is a
recursive sampling run for adding or removing a fixed number of communities. This allows
efficient sampling to reach an intended combined size of all samples. The runtime of each
batch is in O(

√
n) as discussed in the description of the approach. But due to the extreme

variance of the power law distribution, no sufficiently good bound for the number of batches
needed to be sampled or discarded could be given.
So here some experimental evaluation is conducted to check the hypothesis, that only
few batches have to be computed. For this two sets of tests were run with different
exponents and the comparably large maximum community size of a tenth of the vertex
count. Smaller maximum community sizes only make the power law distribution more
predictable. Therefore, sampling runs are less likely to over- or under-sample drastically
and the necessity to run more batches is reduced.
The tests were run for vertex counts between 220 and 250 for all powers of 2. Each
parameter-set was tested in three runs with seeds from 1 to 3. The parameters used can
be seen in Table 6.6.

n cmin cmax kcomm

220 − 250 6 n/10 2.5
220 − 250 6 n/10 1

Table 6.6: Parameters used to test the scaling of the sqrt-based sampling routine.
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Figure 6.12: Plots visualizing the near perfect weak scaling of the basic model. They plot
total runtime in seconds against PE count. The upper graphic belongs to
the equal-communities model and the lower plot visualizes the scaling of the
unique communities model.

52



6.2. Scaling Tests

Figure 6.13: Plots of how many batches needed to be sampled during sqrt-based sampling.
The left plot visualize the tests done with exponent 2.5, the tests of the right
plot were done with exponent 1.

The results of these tests can be seen in Figure 6.13. As expected only very few batches
have to be sampled. For the tests with exponent 2.5 at most 4 runs to sample or discard
community sizes were needed. For the runs with exponent 1 and higher variance 15 batches
were always sufficient. There is a tendency for larger sampling runs to require more batches,
but there are still large sampling runs completed with a single batch.

Strong Scaling

The first parameter set for strong scaling tests is a normal setting. Community sizes can be
between 6 and one tenth of the vertex count. The exponent of the power law distribution
for community sizes and the parameters to calculate intra-community edge probability are
the default settings of the CKB model. po is set to have the expectation of inter-community
edges at roughly 2 per vertex.
The second parameter set tests performance for larger communities. The exponent of the
power law distribution to draw communities is set to 1, resulting in a more even spread of
samples across the permitted sample range. Also, the minimum community size is set to
2000 to get only community sizes beginning at that larger size.
The third parameter set produces graphs with a lower density. For this the maximum
community size is set lower than for the other tests preventing large communities with
higher internal vertex degrees. The parameters to calculate the intra-community edge
probability were also adapted to reduce both the base probability and to slow the rate at
which internal degrees grow with increased community size.
A list of all parameters used for these strong scaling tests is given in Table 6.7.

Parameter Set 1 Set 2 Set 3

n 224 224 224

cmin 6 2000 6
cmax 1.6 · 106 1.6 · 106 20000
kcomm 2.5 1 2.5
α 4 4 3
γ 0.5 0.5 0.666
po 1.2 · 10−7 1.2 · 10−7 1.2 · 10−7

Table 6.7: Parameter sets used to test strong scaling for the PL-communities model.

The strong scaling behaviour of the PL-communities model is plotted in Figure 6.14. The
speedup is no longer nearly perfect. To a small degree this is due to the power-law sampling
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process, that has to be done on every PE. But looking at the accumulated runtime of
all PEs normalized by the sum of edges generated across all PEs in Figure 6.15 paints
a different picture. The normalized scaling looks near perfect, the time taken per edge
generated stays almost the same. The peak at full PE usage is an artefact seen for all
models and not related to this model.
So there are two factors negatively impacting the speedup here. The PL-communities
model still has every PE generate all edges for the vertices assigned to it. This results in
rectangle chunks being processed twice by different PEs. For chunks containing almost
exclusively inter-community edges there are hardly any edges generated twice, which is
why this effect is not noticeable for the basic models. But communities sampled from a
power law distribution can become a lot larger, so substantial parts of communities will
end up in rectangle chunks and their edges are generated twice. This is why parameter set
3 suffers least from this effect. Its community sizes are capped at a much lower value.
The other issue negatively impacting speedup for all models using power law distributions
is imperfect load balancing across the PEs. Each PE processes the same number of vertices,
but vertices in smaller communities have less incident edges. So all work related to edge
generation – and not sampling community sizes or assigning members – is balanced unevenly.
PEs handling vertices in larger communities have to generate more edges, which takes more
time. The resulting effects can be seen best for parameter set 1, where the edge count
imbalance is greatest. Figure 6.16 shows a box plot of the runtimes of each PE from the
run of parameter set 1 with seed 1. For runs with at least eight PEs there is always at
least one PE taking notably more time, because it generates notably more edges than the
PEs only handling members of small communities.
Note that imperfect load balancing is not an inherent issue of this approach. The current
implementation takes a very simple way of dividing up the workload. With data that
indicates how much of the work of each PE falls to edge generation and how much is
sampling and assignment, it should be possible to find a better workload distribution. The
runtime of edge generation depends on how many communities and vertices are processed.
The runtime of community assignment and sampling depends on how many communities
and vertices are processed or is fixed per PE. So knowing the parameters of the generator
configuration, allows estimating how much work has to be done overall and then distributing
vertices among the PEs in a way that considers the different workload necessary to process
them.

Weak Scaling

The parameters used for weak scaling tests fulfil a similar role as the parameters used for
strong scaling. Maximum community size is not set to 10% of the vertex count, but to
1.2% and po is set to produce an expected 16 edges per vertex. So these parameters would
be default for a setting 8 times smaller.
The first parameter set is still the regular setting with high power law exponent for
community sizes and scaling maximum community size. Intra community edge probability
is parametrised in the usual way as well.
The second parameter set is testing performance with large communities. So the power
law exponent for sampling community sizes is set to 1 and the minimum community size is
set to 2000. The maximum community size scales with the vertex count.
The third parameter set generates lower density graphs. The maximum community size is
fixed and does not scale with vertex count. Parameters to control intra-community edge
probability are manipulated in the same way as in the strong scaling tests.
A list of the parameters used can be seen in Table 6.8. Scaling parameters scale linearly
with vertex count, values are given explicitly for the smallest and largest setting, values for
po decrease with increasing vertex count.
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Figure 6.14: Plots visualizing the strong scaling of the PL-communities model. The top
graphic plots total runtime in seconds against PE count. The lower one shows
the speedup.
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Figure 6.15: Plots visualizing the combined runtime of all PEs divided by the total number
of edges generated by all PEs for the strong scaling tests of the PL-communities
model.

Parameter Set 1 Set 2 Set 3

n 223 − 230 223 − 230 223 − 230

cmin 6 2000 6
cmax 1.0 · 105 − 1.3 · 107 1.0 · 105 − 1.3 · 107 20000
kcomm 2.5 1 2.5
α 4 4 3
γ 0.5 0.5 0.666
po 1.9 · 10−6 − 1.5 · 10−8 1.9 · 10−6 − 1.5 · 10−8 1.9 · 10−6 − 1.5 · 10−8

Table 6.8: Parameter sets used to test weak scaling for the PL-communities model.

The weak scaling behaviour is similar to the strong scaling behaviour. Except for parameter
set 3, the runtimes visualised in Figure 6.17 seem to scale poorly. The issues of load
balancing and calculating edges twice were already discussed for the strong scaling tests.
The parameter sets with scaling maximum community size also naturally produce higher
density graphs, additionally increasing the total workload. The accumulated runtimes of
all PEs normalized by the total number of edges generated are shown in Figure 6.18. These
plots suggest that the scaling of work per edge is still very good, but generating more edges
twice and having few PEs work notably longer than most PEs, significantly worsens the
actual runtimes.
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Figure 6.16: Box plot showing the load imbalance between different PEs in the PL-
communities model. The data for this plot is from parameter-set 1 of the
strong scaling tests with seed 1.

Figure 6.17: Plots visualizing the weak scaling of the PL-communities model. It plots total
runtime in seconds against PE count. The right plot is a zoom in on the result
of parameter-set 3.
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Figure 6.18: Plots visualizing the combined runtime of all PEs divided by the total number
of edges generated by all PEs for the weak scaling tests of the PL-communities
model.

6.2.5 PL-Multicommunity Model

Strong Scaling

The first parameter set for strong scaling tests of the PL-multicommunity model is a normal
setting. Community sizes are at least 6 and at most one tenth of the vertex count. The
communities’ power law distribution has exponent 2.5 as per default in the CKB model.
The parameters setting the intra-community edge probability are also set to default values.
The inter-community edge probability is set to produce 2 inter-community edges per vertex
in expectation. Each vertex is set to be in three communities on average.
The second parameter set produces graphs with large communities. Minimum community
size is set to 2000 and the power-law distribution to sample community sizes has exponent
1. Other parameters are similar to the first parameter set.
The third parameter set tests performance for lower density. The maximum community
size is set relatively low at 20000. Intra community degree of vertices is set lower and scales
slower with community size than in the other parameter sets. The expected membership
count for each vertex is higher than for the other tests.
The parameters used are listed in Table 6.9.

The speedup for the PL-multicommunity model is visualised in Figure 6.19. Absolute
runtimes and combined runtimes per total number of edges generated is shown in Figure
6.20. Similar to the PL-communities model without overlapping communities, the speedup
is not optimal. The best scaling parameter sets have already lost factor two when working
with 64 PEs. The runtimes per edge generated are basically constant. The increase in
runtime when using all PEs can be observed in all models and is unlikely to indicate bad
scaling of any model.
Models without overlapping communities do not generate blocks of edges twice. But the
distribution of the work among the PEs is the same as for the PL-communities model.
So the issue that PEs processing members of large communities have to generate more
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Parameter Set 1 Set 2 Set 3

n 224 224 224

cmin 6 2000 6
cmax 1.6 · 106 1.6 · 106 20000

vertex_mc 3 3 5
kcomm 2.5 1 2.5
α 4 4 3
γ 0.5 0.5 0.666
po 1.2 · 10−7 1.2 · 10−7 1.2 · 10−7

Table 6.9: Parameter sets used to test strong scaling for the PL-multicommunity model.

Figure 6.19: Plot visualizing the strong scaling speedup of the PL-multicommunity model.

edges also occurs here and slows down the runtime as those PEs take notably more time
than PEs generating edges for members of smaller communities. The parameter sets with
reduced range of permitted community sizes are affected less by this, thus parameter set 1
scales the worst of the tested ones.
Compared to the not overlapping PL-communities, scaling is very similar. Absolute
runtimes per edge are also comparable. The main reason why the PL-multicommunity
tests took longer is that vertices are located in multiple communities and are having
intra-community edges generated for all those communities. So for a fair comparison in
runtime, the membership count of the vertices should be handled as a multiplier to the
vertex count. Then absolute runtimes are also similar for the overlapping and the not
overlapping model.

Weak Scaling

Weak scaling is tested with similar parameter-sets as strong scaling.
The first parameter set is a normal setting. Maximum community size scales to always be
roughly one tenth of the vertex count. The inter-community edge probability also scales
with the vertex count to produce an expected inter-community degree around 2 for each
vertex.
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Figure 6.20: Runtime plots for the strong scaling tests of the PL-multicommunity model.
The left plot shows the absolute runtime, the right plot shows the combined
runtime of all PEs divided by the total number of edges generated by all PEs.

The second parameter set has large communities. The minimum community size is set to
2000 and the power law samples community sizes with a less extreme exponent. Maximum
community size and inter-edge probability scale just as in parameter-set 1.
The third parameter set produces graphs of a lower density. Maximum community size is
fixed at 20000. The intra-community edge probability is lower and parametrized to grow
more slowly with increased community size. Inter-edge probability scales the same as in
the other parameter sets. There are 5 communities per vertex for this parameter set rather
than the 3 of the previous parameter sets.
The parameters are listed in Table 6.10. For scaling parameters, the values for the sequential
run and the run with 128 PEs are given, the values of po decrease with increasing vertex
count. They scale linearly with the vertex count of the generated graph.

Parameter Set 1 Set 2 Set 3

n 221 − 228 221 − 228 221 − 228

cmin 6 2000 6
cmax 1.0 · 105 − 1.3 · 107 1.0 · 105 − 1.3 · 107 20000

vertex_mc 3 3 5
kcomm 2.5 1 2.5
α 4 4 3
γ 0.5 0.5 0.666
po 1.9 · 10−6 − 1.5 · 10−8 1.9 · 10−6 − 1.5 · 10−8 1.9 · 10−6 − 1.5 · 10−8

Table 6.10: Parameter sets used to test weak scaling for the PL-multicommunity model.

As with strong scaling, the weak scaling of the PL-multicommunity model is not perfect.
Plots of the runtimes can be seen in Figure 6.21. The accumulated runtime of all PEs per
generated edge is basically constant. The increase in runtime for using 128 PEs has been
observed for all models and parameter sets and does not seem to hint at bad scaling.
Similar to strong scaling, the reason for suboptimal scaling of absolute runtimes is the
poor balancing of the workload across the PEs used. PEs generating edges for vertices in
small communities have to generate less edges than those working with vertices in larger
communities.
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Figure 6.21: Plots visualizing the weak scaling of the PL-multicommunity model. The top
plot shows absolute runtimes. Below that, the accumulated runtime across all
PEs is plotted, divided by the number of edges generated.

61



6. Experimental Evaluation

6.2.6 CKB Graphs

Strong Scaling

The first parameter set testing the strong scaling of the communication-free implementation
of the CKB model is a normal setting. Community sizes go from 6 to one tenth of the
vertex count. Membership counts can be between 1 and one tenth of the vertex count.
The exponent of the power law distributions to sample community sizes and membership
counts are both set to 2.5, which is the default value given in the original CKB model
[CKB+14]. The parameters to calculate intra-community edge probabilities are also set to
their default values. The inter-community edge probability is set to produce an expected
inter-community degree of 2 for each vertex. Pre-assignment is used to guarantee that each
vertex is in at least one community.
The second parameter set is almost exactly the same. It is the normal setting, but without
using pre-assignment.
The third parameter set produces graphs with large communities. The communities’ power
law has a lower exponent and the minimum community size is set to 2000.
The fourth parameter set test performance for lower density. The maximum community size
is set slightly lower than in the normal setting. The parameters governing intra-community
edge probability are set to decrease the initial probability and to slow the rate at which
it scales with community size. The exponent of the power law distribution sampling
membership counts is set to 2. To account for the increase in average membership count
caused by this, the vertex count of this parameter set is lowered.
The fifth parameter set uses the original CKB parameters. Notable differences to the
normal setting are that the maximum community size and membership count are set
comparably low at 10000. Also, the smallest permitted community size is 2, which means
that many communities will just consist of a single edge.
Table 6.11 lists all parameters used for the strong scaling tests.

Parameter Set 1 Set 2 Set 3 Set 4 Set 5

n 222 222 222 220 222

cmin 6 6 2000 6 2
cmax 4.0 · 105 4.0 · 105 4.0 · 105 1.0 · 105 10000
vmin 1 1 1 1 1
vmax 4.0 · 105 4.0 · 105 100 1.0 · 105 10000
kcomm 2.5 2.5 1 2.5 2.5
kvertex 2.5 2.5 2.5 2 2.5
α 4 4 4 3 4
γ 0.5 0.5 0.5 0.666 0.5
po 4.8 · 10−7 4.8 · 10−7 4.8 · 10−7 1.9 · 10−6 4.8 · 10−7

pre_assign true false true true true

Table 6.11: Parameter sets used to test strong scaling for the CKB model.

The speedup for strong scaling of the CKB model is plotted in Table 6.22. Similar to
the other models with power law distributed community sizes, the scaling is not perfect.
Looking at the accumulated runtimes across all PEs normalized by the number of edges
generated in Figure 6.23 on the right, it can be seen that the workload does not increase.
Instead, the imperfect scaling is caused by suboptimal load balancing across the PEs.
As described when analysing the scaling of the PL-communities model, PEs handle edge
generation for a fixed number of vertices, or – in models with overlapping communities
– members in communities. Members of smaller communities have a lower degree than
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Figure 6.22: Plot visualizing the strong scaling speedup of the CKB model.

Figure 6.23: Runtime plots for the strong scaling tests of the CKB model. The left plot
shows the absolute runtime, the right plot shows the combined runtime of all
PEs divided by the total number of edges generated by all PEs.

members of large communities. So PEs handling members of large communities have to
generate more edges. In addition, the assignment process has to be done per community
partially handled by the PE. While there is some cropping during the assignment process
that makes assignment for smaller communities less work intensive, some parts of assignment
and especially pre-assignment have to be done per community. So PEs only processing
very small communities have to do more work for the assignment process.
Depending on the parametrization, either PEs handling predominantly small or large
communities will be slowest. For settings with a comparably low minimum community size,
the runtime is dominated by the assignment process. So PEs processing members of small
communities that have to do the assignment process for more communities tend to take
the longest.
Figure 6.24 plots the runtimes of all PEs for the run of parameter sets 1 and 3 with seed 1
and 128 PEs. PEs with small index tend to process smaller communities. For communities
larger than

√
n this is not necessarily true, because communities are only sorted by size if

they are stored by how often communities of that size were sampled.
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Figure 6.24: Plot visualizing runtime of each PE for parameter-set 1 with seed 1 and 128
PEs on the left and for parameter-set 3 with seed 1 and 128 PEs on the right.

For the normal setting of parameter set 1 it can be seen that the PEs processing the
smallest communities take longest. The PEs generating edges for the largest communities
also take longer than those working on a moderate number of medium-sized communities,
but for this parametrization they are still a lot faster than the PEs handling many small
communities.
The large community setting with parameter set 3 has too few medium-sized communities
to produce a large imbalance in community densities for communities smaller than

√
n.

While the balancing is obviously not perfect, there is no more clear tendency that could be
fixed by simply assigning lower index PEs fewer members. So without knowing the exact
sizes of the sampled communities, the balancing of parameter set 3 can not be improved.
As such its scaling gives an idea of how all models with power law distributed community
sizes should scale if load balancing would consider different densities and assignment costs
of the communities.

Looking at the absolute runtimes plotted in Figure 6.23 the effect of certain parameters
on the runtime can be estimated. The default CKB setting of parameter set 5 is slowest,
because it generates by far the most communities due to the very small minimum community
size. The large community setting of parameter set 3 runs the fastest of all settings with
pre-assignment. The lower density graphs generated with parameter set 4 do not run faster
than the default setting. Due to the decreased exponent for the power law distribution of
membership counts, the number of member community pairs is larger than in the default
setting. Both these observations signal that for the normal settings with pre-assignment
the assignment of members to communities dominates the workload.
The run without pre-assignment was fastest. Most notably it was roughly ten times faster
than the run with the same parameters with pre-assignment. At least for settings with many
small communities, pre-assignment requires a lot of additional work to lessen the distortion
of the intended membership count distribution caused by the probabilistic assignment.

Weak Scaling

The parameter sets for weak scaling tests are similar to the ones used for strong scaling
tests.
The first parameter set is a normal setting. The maximum community size scales with
the vertex count to allow communities containing one tenth of all vertices. The maximum
membership count scales the same way. The inter-community edge probability also scales
with the vertex count to get an expected 2 inter-community edges per vertex.
The second parameter set tests performance in the normal setting without using pre-
assignment.
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Parameter Set 1 Set 2 Set 3

n 218 − 225 218 − 225 218 − 225

cmin 6 6 2000
cmax 25000− 3.2 · 106 25000− 3.2 · 106 25000− 3.2 · 106

vmin 1 1 1
vmax 25000− 3.2 · 106 25000− 3.2 · 106 25000− 3.2 · 106

kcomm 2.5 2.5 1
kvertex 2.5 2.5 2.5
α 4 4 4
γ 0.5 0.5 0.5
po 7.6 · 10−6 − 6.0 · 10−8 7.6 · 10−6 − 6.0 · 10−8 7.6 · 10−6 − 6.0 · 10−8

pre_assign true false true

Parameter Set 4 Set 5

n 216 − 223 215 − 222

cmin 6 2
cmax 1.0 · 105 10000
vmin 1 1
vmax 1.0 · 105 10000
kcomm 2.5 2.5
kvertex 2 2.5
α 3 4
γ 0.666 0.5
po 7.6 · 10−6 − 6.0 · 10−8 7.6 · 10−6 − 6.0 · 10−8

pre_assign true true

Table 6.12: Parameter sets used to test weak scaling for the CKB model.

The third parameter set generates graphs with large communities. Maximum membership
count and community size as well as inter-community edge probability scale with the vertex
count. The minimum community size is set to 2000 and community sizes are sampled from
a power law distribution with exponent 1.
The fourth parameter set is the lower density setting. Only the inter-community edge
probability scales with the vertex count. Maximum membership count and community size
are set to 100000. The parameters controlling the intra-community edge probabilities are
set to start at a lower probability and decrease the rate at which the probabilities grow
with increasing community size compared to the normal setting.
The fifth parameter set is the setting given in the original CKB paper [CKB+14]. Only
the inter-community edge probability scales to produce around 2 inter-community edges
per vertex. The other parameters are fixed with a very low minimum community size of 2
and relatively small maximum community size and membership count.
A list of the exact parameters used is shown in Table 6.12. All scaling parameters scale
linearly with the vertex count. For scaling parameters the values for the sequential run
and the run with all 128 PEs is given, values for po decrease with increasing vertex count.

The runtimes of the weak scaling tests are plotted in Figure 6.25. Scaling is not perfect, as
the runtime increases significantly with the use of more PEs. The accumulated workload
of all PEs divided by the number of generated edges is shown in figure 6.26. Unlike with
the other models, these plots do not show that scaling would be nearly perfect with better
balancing of the workload. Except for parameter set 3 the average workload per generated
edge increases with the number of PEs used. While the effects of bad workload balancing
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Figure 6.25: Plots visualizing the weak scaling of the CKB model. The right plot is a
zoomed-in version of the left plot.

are still present in the CKB model as shown during the strong scaling tests, there are
additional factors negatively impacting scaling here.
During the strong scaling tests it was discussed, that parameter sets with small minimum
community size spend most time assigning vertices to communities and not generating
edges. Since the assignment encompasses working through the compact data structure
storing membership counts, it is expected that the runtime of the assignment scales with
the size of that data structure. The size of the data structure storing membership counts
is in O(

√
n). So for settings where most of the work done is related to the assignment

process, the runtime should also scale in O(
√
n). This is around the rate at which the

workload per edge grows. So the implementation does achieve the expected scaling, but
that scaling is not optimal.
For parameter set 3 the workload is not dominated by the assignment process. The graphs
generated there are made up of large communities, which drastically reduces the number
of communities and the number of times that the assignment has to be run. The workload
per edge slightly decreases with increased PE count as seen in Figure 6.26. So for graphs
where the generating process is not dominated by the vertex assignment, good scaling
could be achieved with better load balancing.
There is a very notable anomaly in the lower plot of Figure 6.26. When using 16 PEs
the workload per edge more than triples compared to using 8 PEs. Parameter-set 3 has
set its minimum community size to 2000. The data structure storing power law sampled
data differentiates between samples smaller and larger than √n · exp_mc. For the graphs
generated with 8 or less PEs, no community sizes smaller than that threshold exist. Using
16 or more PEs places most community sizes below that threshold. So the additional
complexity of handling cases for both halves of the community size storing data structure
causes this jump in total workload.
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Figure 6.26: Plots visualizing the weak scaling of the CKB model plotting the accumulated
runtime of all PEs divided by the number of generated edges. The lower plot
is a zoomed-in version of the upper plot. It shows an increase in workload
from the point where PL-samples both smaller and larger than

√
n exist.
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7. Conclusion

This chapter summarizes the achieved results and mentions potential improvements hinted
at but not implemented or tested in this thesis.

7.1 Summary

In this thesis five communication-free generators for graphs with community structure were
developed, implemented and tested. The generators cover models from a fixed number of
equally sized communities over power law sampled communities to a communication free
generator for CKB graphs. The complexity of the models was increased gradually, allowing
the usage of techniques developed for previous generators.
The generators expand the KaGen library [FLS+18]. The generator for G(n, p) graphs
introduced there was used as a foundation to build the basic models. The added structure
of communities resulted in a need for routines to split the adjacency matrix of the graph
into homogeneous blocks. With that, the techniques of the G(n, p) generator could be used
to generate graphs with communities.
For sampling from a power law distribution two different approaches were considered. With
sqrt-based sampling, an algorithm was developed to sample from a power law distribution
to reach a fixed combined size of all samples. It stores results in a compressed format which
reduces space and time demands of the sampling process and of processes working on the
sampled data. This allowed sampling community sizes from a power law distribution and
creating the PL-communities model.
To move to models with overlapping communities, two different ways of assigning vertices
to communities were looked at. While group based assignment promises fast runtimes
while guaranteeing exact membership counts and community sizes, it creates unwanted
structure in the way that communities can overlap. So the probabilistic assignment was
used to assign members to communities in models with overlapping communities. The
first of these models features power law distributed community sizes and a fixed number of
intended communities per vertex.
For the communication-free CKB generator, the group based assignment process was
generalised. Negative effects of the probabilistic assignment routine were reduced by the
optional tool of pre-assignment. It allows ensuring that each vertex is a member of at
least one community. This makes isolated vertices a lot less likely and therefore allows
generating graphs with better connectivity. Combining the techniques introduced resulted
in a communication-free generator for CKB graphs.
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The generated graphs were tested. For the metrics checked, all models produced graphs
whose properties were as anticipated. This verifies the generators and their implementation
to a certain extent.
Testing the performance of the implemented generators consisted of weak and strong scaling
tests for all models with different parameter-sets. The basic models were found to scale
basically perfectly.
For models with power law distributed community sizes, imperfect load balancing between
PEs caused a decrease in speedup for increased degrees of parallelization. However, the
workload per PE stayed mostly constant, suggesting that working with an improved
workload distribution could allow very good scaling for those generators.
The runtimes of most runs of the CKB generator were dominated by the membership
assignment process. So in addition to imperfect workload balancing the workload per
PE was found to increase roughly with the size of the data structures storing sampled
community sizes and membership counts. So even with better workload balancing the
workload for the CKB generator using probabilistic assignment with pre-assignment grows
with about O(

√
n).

7.2 Outlook
Since the scaling of the more complex models is negatively impacted by uneven workload
distribution, a good next step would be to look into better ways to assign tasks to the
PEs. The scaling test conducted here should provide a basis for which parameters impact
the runtime of each PE, thus allowing a better balancing of runtimes depending on the
parameters of the run. Such a re-distribution of workloads would have to be done for each
affected model individually or at least separately for the PL-communities models and the
CKB model, since tests suggest that different PEs are responsible for the slowdown in
these models.
The group based assignment process was not implemented and therefore not tested. Future
research may want to look into this, especially since it may provide better scaling for the
CKB model than the probabilistic assignment with pre-assignment which was used for the
tested implementation. Apart from implementing a version of the generators with group
based assignment and evaluating their scaling, the community structure created should
be analysed. It seems like the effects to the overlap of different communities caused by
group based assignment should be notable and especially for large communities create
unwanted structures in community overlap. But testing would provide more knowledge on
the actual effects and may find scenarios in which these effects are more acceptable than
the slight distortion to the membership counts’ power law distribution produced by using
probabilistic assignment with pre-assignment.
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