
Route Planning with
Temporary Road Closures

Master Thesis of

Christian Bräuer

At the Department of Informatics
Institute of Theoretical Computer Science

Reviewers: Prof. Dr. Dorothea Wagner
Prof. Dr. Peter Sanders

Advisors: Valentin Buchhold
Alexander Kleff
Dr. Frank Schulz
Tim Zeitz

Time Period: 1st June 2018 – 30th November 2018

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, November 30, 2018

iii

Abstract

We study the problem of route planning with temporary road-closures. In practice,
road segments, e.g. in residential or downtown areas, are closed at certain times. In
addition, in many countries general weekend and night driving bans apply. Mainly
trucks are affected by these driving bans. The road-closures may inflict waiting time
along a route for which parking lots are needed. Routes with mathematical earliest
arrival at the destination may contain loops and other detours. In this thesis we
define a model which yields reasonable routes in practice, where the road-closures
are taken into account. We distinguish between the travel time and the driving
time of a route. The travel time is the time span between the start and the end of
the route. The driving time is the duration in which the driver moves his vehicle.
The distinction between travel time and driving time may yield multiple routes per
route planning query. Thus, we use the concept of Pareto-optimality. We present an
algorithm which calculates Pareto-optimal routes according to the model and adapt
known speed up techniques to the algorithm. Using heuristic algorithms, we achieve
a running time per query of a few seconds.

Deutsche Zusammenfassung

Wir untersuchen das Problem der Routenplanung mit temporären Straßensperrungen.
In der Praxis sind Straßensegmente, zum Beispiel in Wohn- oder Innenstadtgebieten,
zu gewissen Uhrzeiten gesperrt. Zusätzlich gelten in vielen Ländern generelle Woch-
enend- oder Nachtfahrverbote, die vor allem Lkw betreffen. Diese Sperrungen führen
dazu, dass auf manchen Routen eine Wartezeit eingelegt werden muss, für die allerd-
ings Parkplätze benötigt werden. Routen mit mathematisch frühester Ankunftszeit
am Ziel führen unter Umständen zu Routen, die Kreise und andere Umwege enthalten.
In dieser Arbeit definieren wir ein Modell, das in der Praxis sinnvolle Routen zulässt,
die diese Einschränkungen berücksichtigen. Wir unterscheiden zwischen der Reisezeit
und der Fahrzeit einer Route. Die Reisezeit beschreibt die Zeit zwischen dem Beginn
und dem Ende der Route. Die Fahrzeit beschreibt die Dauer, zu der sich der Fahrer
in seinem Fahrzeug fortbewegt. Aufgrund des Unterschiedes zwischen Reisezeit und
Fahrzeit kommen mehrere Routen als Antwort auf eine Routenplanungsanfrage in Be-
tracht. Dazu nutzen wir das Konzept der Pareto-Optimalität. Wir präsentieren einen
Algorithmus, der die Pareto-optimalen Routen passend zum Modell berechnet und
passen bekannte Beschleunigungstechniken an den Algorithmus an. Zusammen mit
heuristischen Algorithmen erreichen wir so eine Laufzeit pro Routenplanungsanfrage
von wenigen Sekunden.

v

Contents

1 Introduction 1
1.1 Related Work . 1
1.2 Contribution . 2
1.3 Outline . 3

2 Preliminaries 5
2.1 Notation and basic definitions . 5
2.2 Pareto-optimality and Pareto-sets . 7
2.3 Shortest path algorithms . 7

3 Models and Algorithms 11
3.1 Exact model . 11

3.1.1 Cardinality of the Pareto-set . 12
3.1.2 Complexity . 15
3.1.3 Algorithm description . 17

3.2 Allowing waiting at every vertex . 18
3.2.1 Algorithm description . 18
3.2.2 Implementation details . 19
3.2.3 Complexity . 19

3.3 Detour-free route model . 20
3.3.1 Algorithm description . 21
3.3.2 Implementation details . 22

4 Speeding up shortest detour-free route calculation 23
4.1 Contraction Hierarchy . 23

4.1.1 CH-Preprocessing for shortest detour-free routes 24
4.2 Upper bounds . 25

4.2.1 Upper bound on travel time . 26
4.2.2 Upper bound on driving time . 26

4.3 Heuristics . 26
4.3.1 Heuristic 1 . 27
4.3.2 Heuristic 2 . 27

5 Experiments 29
5.1 Road network . 29
5.2 Test sets . 29
5.3 Contraction Hierarchy Preprocessing . 32
5.4 Bounds . 32

5.4.1 Running time . 32
5.4.2 Quality . 33

5.5 Detour-free route algorithms . 34
5.5.1 Running time . 36

vii

Contents

5.5.2 Solution quality . 36
5.5.3 Example queries . 42

5.5.3.1 Example 1 . 42
5.5.3.2 Example 2 . 42

6 Conclusion 47
6.1 Summary . 47
6.2 Future work . 47

Bibliography 49

Appendix 51

viii

1. Introduction

A standard route planning algorithm uses road graphs with edges, which are always
traversable. In practice, it is preferable to take additional information into account. This
thesis focuses on route planning with temporary road-closures. In road networks, certain
roads are closed regularly. Mostly trucks are affected by these closures, but some closures
also apply to cars. Temporary road-closures can affect areas of different size: In some cities,
the downtown areas are closed for trucks at night. Sometimes only certain streets or street
segments are restricted. In Hamburg, Germany, there is another special example: Driving
into the city with any kind of vehicle on the Sierichstraße is only allowed from 04.00 until
12.00 every day, and leaving the city in the other direction is only allowed from 12.00 to
04.00.

In many European countries, there are driving bans for trucks on weekends, e.g. in Germany
from 00.00 until 22.00 on Sundays. In Switzerland and Austria, driving a truck is even
forbidden from 22.00 until 05.00 every day. For an overview of the driving bans of some
European countries, see Chapter 5.1.

A temporary closed road may inflict waiting time on a route or may delay the departure at
the start location of the route. In general, it is not possible for a driver to wait anywhere
on the road, but suitable locations are needed. Especially for trucks, large parking lots are
required. Waiting times on a route delay the arrival at the destination and a detour around
a restricted road segment or even around a whole country where a driving ban applies
might be of advantage. However, avoiding a restricted segment or a country increases the
driving time along the route. Also, if there is no parking lot nearby where the driver could
wait, driving in a cycle until a closed road on the route opens can avoid another greater
detour. While this may enable an earlier arrival time at the destination, a driver might not
expect this result.

This thesis deals with route planning with temporary road-closures in practice. A driver
may only wait at parking lots or at the start location of the route. We define properties of
routes, which avoid the unexpected results from above. A route planning query may yield
multiple routes, where the arrival times and driving times of each two routes differ.

1.1 Related Work
The standard routing problem is a well-researched topic. After Dijkstra’s algorithm [Dij59]
was published in 1959, many speed up techniques were developed. Many of these are in

1

1. Introduction

turn based on Dijkstra’s algorithm. In this section we focus on speed up techniques relevant
for this work. For a broad overview of other speed up techniques, we refer to [BDG+15a].

An important approach for speeding up route planning queries are Contraction Hierar-
chies [GSSD08]. In the following, we provide a brief overview: For a given road-network,
multiple queries are issued. For a Contraction Hierarchy, we invest time in a preprocessing
step, to speed up the queries. The preprocessing step and the querying is based on the
main idea that a road network is hierarchically ordered. A highway is much more important
for long-distance-queries than city streets. Therefore, in the preprocessing step, each vertex
is mapped to an “importance”-value and the vertices are removed in increasing order of
their importance. To ensure correct results of a route planning query, additional shortcut
edges are inserted which preserve the minimum distances between all remaining vertices.
After the preprocessing finished, a query is answered by searching from the start vertex
and the destination vertex simultaneously to vertices of higher importance.

For routing in graphs with time-dependent edge weights, an extension for Dijkstra’s algo-
rithm was presented by Dreyfus et al. [Dre69]. Again, speed up techniques were developed,
such as time-dependent Contraction Hierarchies [BGSV13] which use a sophisticated pre-
processing and querying phase. For many route planning algorithms, it is assumed that
entering an edge later never yields an earlier arrival at the other vertex of the edge. This
is called first-in-first-out (fifo)-property. In our case, a detour must be taken, if a driver
arrives at a road-closure which is closed and opens up later. Therefore, and as the driver is
not allowed to wait at every vertex, the edges of our graphs do not fulfill the fifo-property.
There was very little research done for route planning on non-fifo networks, but for other
networks, e.g. computer networks, this problem is more common. In general, finding the
shortest path in non-fifo networks is known to be NP-hard [OR89]. Orda et al. [OR91]
presented an algorithm, which finds shortest paths in non-fifo networks.

A different routing problem with special requirements is electric vehicle routing with
charging stations. This problem is partly related to our problem. It depends on the
state of charge of the electric vehicle battery whether an edge is traversable. By spending
time at a charging station, a previously non-traversable edge may become traversable.
Baum et al. [BDG+15b] presented an algorithm which solves this problem. During the
work for the thesis, some of their ideas were adapted for our algorithms.

Another related problem is minimal on-road time route scheduling on time-dependent
graphs [LHDZ17]. The authors study the problem of route scheduling, where the driving
time is minimized on a network with time-dependent edge weights. Taking waiting time
is only allowed at parking lots. Their algorithms do not require edge weights fulfilling
the fifo-property. They also claim that their algorithms have polynomial running time.
However, the authors only evaluated their algorithms on small graphs with random edge
weights and random parking lot locations.

1.2 Contribution
In this thesis we address the problem of road networks with constant edge-weights, time-
dependent road-closures and parking lots as sole locations for waiting times apart from the
start location. The temporary road-closures with a restricted waiting policy, where waiting
is only allowed at parking lots, yield the non-fifo property in the edges of the road-graph. We
show that finding a valid solution, which takes the road-closures into account, is NP-hard.
Even if we find a solution with minimum travel time, a user may not be satisfied with it, as
e.g. loops may occur. Therefore, we define a model and a corresponding algorithm, which
yields reasonable routes in practice. We adapt speed up techniques to our algorithm and
additionally, we propose heuristic approaches. The heuristic approaches enable solving the

2

1.3. Outline

problem on large road networks. Finally, we evaluate the performance of our algorithms
and compare the quality of the results of the heuristics to the optimal results.

1.3 Outline
Chapter 2 establishes notation used in the thesis and recapitulates Pareto-optimality. We
introduce Dijkstra’s algorithm and a multicriteria variant, which is used as basis for our
algorithms. In Chapter 3, we define three models, which state slightly different problems.
For each model we examine important properties and present algorithms, which can be used
to obtain the results of a route planning query. In Chapter 4 we show how to use Contraction
Hierarchies for our algorithms and present additional performance optimizations. The
previously presented algorithms are evaluated in Chapter 5. We describe the test setup
and the road data, and analyze the running time of the algorithms and heuristics. The
quality of the results are compared to each other. In Chapter 6 we summarize our results
and provide an outlook for future work on the topic of non-fifo route planning in practice.

3

2. Preliminaries

In this chapter we introduce our notation and basic definitions for the thesis. In Section 2.1
we define graphs with edge-guards and routes in graphs with edge-guards. In Section 2.2 we
recapitulate basic information about Pareto-sets and Pareto-optimality and in Section 2.3
we show Dijkstra’s algorithm and a multicriteria variant on which our algorithms build
upon.

2.1 Notation and basic definitions

In this thesis, we call G = (V,E, c, I, P) a graph with edge-guards, where V are the graph’s
vertices and E ⊆ V × V are the directed edges of the graph G. The function c : E → N+
is the cost function. For example, in the context of road networks it yields the driving
time. The function I is the traversal function. It maps each edge in E either to the
set containing all non-negative numbers [0,∞) or to a finite disjoint union of half-open
intervals [α1, ω1)∪̇ . . . ∪̇[αk, ωk) with αi < ωi < αi+1 < ωi+1, αi, ωi, αi+1, ωi+1 ∈ N0. Each
edge (u, v) has a guard. These guards let drivers enter an edge (u, v) only at integer
points in time, which are element of I(u, v). A driver, which is traversing an edge may
always continue driving, even if the guard closes the edge. For all points in time which are
contained in I(u, v), an edge e is called traversable. An edge e which is always traversable,
i.e. I(u, v) = [0,∞), is called unguarded. All other edges are called guarded. The set P ⊆ V
is a set of parking vertices. In the road network, the parking vertices represent parking
lots where the driver can wait. We also assume, that the driver can also wait at the start
vertex of the route.

Figure 2.1 depicts a graph with edge-guards. For example, edge (v, w) is only traversable
at points in time in [10, 15) or in [20, 25). At all other points in time, it is not possible to
traverse edge (v, w). Note that no parking lots are displayed in the figure.

Given two finite disjoint unions of half-open intervals I1 = [α1
1, ω

1
1)∪̇ . . . ∪̇[α1

k, ω
1
k) and

I2 = [α2
1, ω

2
1)∪̇ . . . ∪̇[α2

l , ω
2
l), we define:

• the shifting of I1 by c ∈ N+: I1 − c := [α1
1 − c, ω1

1 − c)∪̇ . . . ∪̇[α1
n − c, ω1

n − c),
• I∗1 := {[α1

1, ω
1
1), . . . , [α1

k, ω
1
k)} the finite set of half-open intervals of I.

• I3 = I1 ∪ I2 such that I3 is a finite disjoint union of half-open intervals I3 =
[α3

1, ω
3
1)∪̇ . . . ∪̇[α3

k, ω
3
k), αi < ωi < αi+1 < ωi+1 and αi, ωi, αi+1, ωi+1 ∈ N0.

• I3 = I1 ∩ I2 accordingly.

5

2. Preliminaries

s v w dy

z

1 11 1

1
[10, 15)∪̇[20, 25)

1 1

[0, 1) [5, 10)

Figure 2.1: Example graph G with edge-guards. The edges weights are the numbers next to
the edges. Guarded edges are traversable at points in time which are contained
in the intervals in the sets near the edges. Note that no parking lots are
displayed in the figure.

In this thesis, the algorithms calculate routes in graphs G with edge-guards. A route r is a
pair (tstart, S) of the start time tstart at the first vertex and a sequence S. The sequence
S = [(u1, t

1
waiting), . . . , (un, t

n
waiting)] contains vertex/waiting time-pairs (u, twaiting). For two

consecutive pairs in S, the vertices in the pairs must be adjacent in G. The driver departs
at vertex s at time tstart + t1waiting. A non-zero waiting time tnwaiting at the last vertex un is
never useful. To avoid special case treatment, we assume that the waiting time tnwaiting at
the last vertex un is always zero.

As an example consider r1 = (5, [(s, 0), (v, 5), (w, 0)]) in the graph with edge-guards in
Figure 2.1, where a driver starts at time 5 at vertex u and waits there for 0 time units.
Then he moves to v, waits there for 5 time units and then moves to vertex w, where he
waits for 0 time units. To faciliate readability, we sometimes drop the waiting time in a
sequence if the waiting time is zero. Hence, r1 = (0, [s, (v, 5), w]).

Given a route r, we use E(r) for the multiset of edges of r, that is E(r) := {(ui, ui+1) | i ∈
{1, . . . , n− 1})}. We also define

• tstart(r) := tstart the start time of the route r,
• twaiting(r) :=

∑n
i=1 t

i
waiting for the accumulated waiting time of the route,

• tdriving(r) :=
∑

e∈E(r) c(e) for the accumulated driving time of the route,
• ttravel(r) := tdriving(r) + twaiting(r) for the travel time of the route and
• tarrival(r) := tstart(r) + ttravel(r) for the arrival time at the end of the route at vertex d.

If each edge (ui, ui+1) is traversable when vertex ui is departed, then the route is valid. In
other words, for all (ui, ui+1), i ∈ {1, . . . , n− 1} we require

tstart(r) +
i−1∑
j=1

(tjwaiting + c(uj , uj+1)) + tiwaiting ∈ I(ui, ui+1).

A route which is not valid, is invalid. For a graph G = (V,E, c, I, P) with edge-guards,
we define the graph G′ = (V,E, c, I ′, P) with I ′(e) = [0,∞) for each e ∈ E. In G′ each
edge is unguarded. If r is a shortest s-d-route in G′, then r is a shortest guard-independent
s-d-route in G. A guard-independent route may be invalid.

Again consider route r1. Route r1 is valid, as the only guarded edge along r1 is (v, w) and
we traverse (v, w) at time 11, which is when (v, w) is traversable as 11 ∈ [10, 15)∪̇[20, 25) =
I(v, w). Also, r1 is a shortest guard-independent route. However, route r2 = (9, [s, (v, 5), w])
which starts at time 9 is not valid as edge (v, w) is traversed at time 15 and 15 /∈ I(v, w).
Although r2 is invalid, it is a shortest guard-independent route.

6

2.2. Pareto-optimality and Pareto-sets

In the thesis, we use the terms travel time and driving time. The driving time is used
only for the accumulated on-road time of the route, i.e. the time the driver needs to steer
his vehicle. The travel time is the time from the start until the end of the route, i.e. the
waiting time in addition to the driving time.

During the thesis, we define models, where only valid routes with certain additional
properties are allowed. A route with these properties is called feasible. As mentioned, the
feasibility-definition is model-dependent and changes during the thesis.

In addition, to avoid special case treatment, we define min ∅ =∞.

2.2 Pareto-optimality and Pareto-sets
In this section, we recapitulate Pareto-optimality and Pareto-sets. Given two k-tuples
x = (x1, . . . , xk) ∈ Nk

0 and x′ = (x′1, . . . , x′k) ∈ Nk
0, then x dominates x′ if

1. ∀i ∈ {1, . . . , k} : xi ≤ x′i and
2. ∃i ∈ {1, . . . , k} : xi < x′i.

Given a set of k-tuples X, a tuple x ∈ X is Pareto-optimal, if there is no other tuple x′ ∈ X
which dominates x. A subset X ′ ⊆ X is a Pareto-set if all Pareto-optimal tuples of X are
contained in X ′.

As already mentioned, we define feasibility of routes for each model we discuss. Given a
s-d-query, there may be multiple valid and feasible s-d-routes in a graph and we minimize
the two criteria travel time ttravel and driving time tdriving. Our algorithms calculate all
Pareto-optimal pairs of all (ttravel, tdriving)-pairs which have a corresponding valid and
feasible route.

2.3 Shortest path algorithms
In this section, we show Dijkstra’s algorithm [Dij59] and a multi-criteria version of Dijkstra’s
algorithm. In Algorithm 2.1, Dijkstra’s algorithm is depicted. Given a start vertex s the
algorithm calculates the guard-independent driving time tudriving from s to each vertex
u ∈ V . The algorithm uses a priority queue which saves all discovered vertices in order of
their tentative driving time. The next minimum vertex u is removed from the queue and
all outgoing edges (u, v) are relaxed, i.e. the tentative distance is reduced if the driving
time of tutravel + c(u, v) is less than the tentative distance. If the vertex is not already an
element of the queue, then it is inserted. The algorithm stops if the queue is empty.

If each edge of the graph not only has scalar cost like the driving time, but a vectorial cost
function c : E → Nk

+, then we need a multicriteria version of Dijkstra’s algorithm (MCD) so
that we can calculate the Pareto-set Lv containing all Pareto-optimal labels (xv

1, . . . , x
v
k) for

each vertex v ∈ V . The pseudocode of MCD is depicted in Algorithm 2.2. For each vertex
v, the MCD saves a set of labels Lv instead of a tentative distance. The relax()-function
then creates a set of new labels for each adjacent vertex.

For example, consider k = 2 and x1 is the travel time and x2 is the distance. The priority
queue Q sorts a label (x1, x2) by lexicographically by travel time first and distance second.
The relax()-function always returns exactly one new label, which is the component-wise
sum of the old labels travel time and distance and the cost of the edge (u, v). Then MCD
calculates all Pareto-optimal travel time/distance-pairs for each vertex.

In this example, the algorithm has the label-setting property: If a label l was taken from
the queue, other labels at the same vertex can never dominate l. The running time of this
algorithm is dependent on the running time of the relax()-function and the maximum

7

2. Preliminaries

Algorithm 2.1: Dijkstra’s Algorithm
Input: Graph G = (V,E, c), start vertex s
Data: Priority queue Q
Output: Guard-independent travel time tvtravel for all v ∈ V

1 foreach v ∈ V do
2 tvdriving ←∞
3 Q.insert(s, 0)
4 tsdriving ← 0

5 while Q is not empty do
6 u← Q.deleteMin()
7 foreach (u, v) ∈ E do
8 if tudriving + c(u, v) < tvdriving then
9 tvdriving ← tudriving + c(u, v)

10 if Q.contains(v) then
11 Q.decreaseKey(v, tvdriving)
12 else
13 Q.insert(v, tvdriving)

number of labels. In our example, the relax()-function has polynomial running time,
but the number of labels at a vertex can grow exponentially. Hence, the algorithm has an
exponential running time [Han80].

In our use-case, the MCD uses a scalar cost function, but in addition, it uses the traversal
function I. We specify

• the components of the labels (x1, . . . , xk)
• the priority of the labels in the queue
• the relax()-functions
• a custom domination function used in lines 10 and 12

for each model we present. Then the MCD calculates all Pareto-optimal (ttravel, tdriving)-
labels which have a corresponding valid and feasible route in the model we presented. As
a label may contain more information than travel time and driving time, we drop the
additional information and remove all non-Pareto-optimal labels. The resulting labels at
vertex d are the return value of a s-d-query. If the running time of the relax()-function
and the domination function is polynomial in terms of the input size and if the maximum
number of labels is polynomial, then the algorithm has a polynomial running time.

8

2.3. Shortest path algorithms

Algorithm 2.2: Multi-Criteria Dijkstra (MCD)
Input: Graph G = (V,E, c, I, P), start vertex s, initial label (xs

1, . . . , x
s
k)

Data: Priority queue Q
Output: Labels (x1, . . . , xk) for all v ∈ V

1 foreach v ∈ V do
2 Lv ← ∅
3 Q.insert(s, (xs

1, . . . , x
s
k))

4 Ls ← (xs
1, . . . , x

s
k)

5 while Q is not empty do
6 (u, (x1, . . . , xk))← Q.deleteMin()
7 foreach (u, v) ∈ E do
8 L← relax((x1, . . . , xk), (u, v), G)
9 foreach l ∈ L do

10 if no l′ ∈ Lv dominates l then
11 Insert l into Lv

12 Remove labels from Lv which are dominated by l′
13 Q.insert(v, l)

9

3. Models and Algorithms

In this chapter we present models and corresponding algorithms. For each model, we present
a definition of feasible routes. The corresponding problem is to find all Pareto-optimal
labels of travel time and driving time. In Section 3.1 we begin with the exact model, where
valid routes are feasible if the waiting time is only taken at parking lots or at the start
vertex. We show that the corresponding problem is NP-hard and we give an algorithm
which solves it. We also show that the solutions may not satisfy the expectation of a
user. In Section 3.2, we present a model where a feasible solution may contain waiting
time at every vertex of the route and give the corresponding algorithm. In this model,
feasible routes also may not satisfy the expectation of a user, as the waiting time cannot be
taken anywhere on the road. Compared to the exact model, we present an algorithm with
polynomial runtime. Also, feasible routes in this model give lower bounds for the solutions
in the exact model. As our main result, we present the model of detour-free routes in
Section 3.3, where we give a formal definition of routes that are feasible in practice by
waiting only at parking lots and at the start vertex. We give a corresponding algorithm
which has polynomial runtime.

3.1 Exact model
In this section, we define feasible routes for the exact model, where the routes are the
mathematically shortest ones and where waiting is only allowed at the parking lots or at
the start vertex. We give examples and prove an upper bound for the cardinality of a
resulting Pareto-set size and prove the NP-hardness of the problem. Also, we give an
algorithm that calculates the results according to the exact model. Due to the running
time and the memory requirements of the algorithm, we did not evaluate this algorithm in
the experiment Chapter 5.

Definition 3.1 (Exact feasibility). Let G be a graph with edge-guards, s the start vertex,
d the destination vertex and t the start time. A route is feasible, if it is valid and for all
vertices u with a waiting time greater zero, u is a parking lot or the start vertex.

Consider the example graph in Figure 3.1, the start vertex s and the destination vertex d.
Assume that there is no parking lot (and hence waiting is only allowed at vertex s). The
driver’s start time is at time 0. There are two Pareto-optimal labels:

1. Label (ttravel = 12, tdriving = 3) with a corresponding route (0, [(s, 9), v, w, d]): The
driver waits at s for 9. Then he drives to v and arrives there at 10, hence the next

11

3. Models and Algorithms

s v w dy

z

1 11 1

1
[10, 15)

1 1

[0, 1) [5, 10)

Figure 3.1: Example graph. Each edge has weight 1. Intervals at the edges denote the
open intervals.

edge (v, w) is traversable. The driver can continue his route to w and then to d. He
arrives at d at time 12, and he has a driving time of 3.

2. Label (ttravel = 8, tdriving = 8) with a corresponding route (0, (s, v, y, z, y, z, y, w, d)).
Note that we have omitted the waiting time for better readability, as it is always zero
at each vertex. The driver immediately departs at s. Then he drives to v at time 1,
hence the next edge (v, y) is traversable. The driver can continue his route to y and
arrives there at 2, but the edge (y, w) is not traversable at time 2. The driver now
has to drive the cycle y-z-y two times. After the second cycle he arrives at y at time
6, so edge (y, w) is traversable now. The driver now can continue his route to w and
then to d. He arrives at d at time 8, which is earlier than when using the route given
above. But he needs a driving time of 8 instead of 3.

The second result is not what a user might expect. As a user, we would not want to be
routed on a loop. In practice this could for example be a roundabout, where the navigation
system suggests to drive around multiple times. Therefore we propose another problem
definition in Section 3.3.

Now we assume y is a parking lot. This does not change the first solution, but the second
solution can be improved to (ttravel = 7, tdriving = 4): In the corresponding route, instead of
driving the y-z-y-cycle two times, the driver waits for 3 time units after arriving at y at
time 2. Then the driver can continue his route and finally arrives at d at time 7 with a
driving time of 4.

3.1.1 Cardinality of the Pareto-set

A query yields all Pareto-optimal (ttravel, tdriving)-labels. In general a routing query on a
graph, where each edge has two unrelated weights like driving time and distance, may yield
O(2|V |) Pareto-optimal labels [Han80]. However, in this case both criteria are related, as
traversing an edge always increases the travel time just like it increases the driving time.
Only when waiting at a vertex, driving time and travel time of a route can deviate. In this
case the travel time is increased, but the driving time is not. Therefore, we ask for the
cardinality of the resulting Pareto-set. In the remainder of this section, we assume that R is
a Pareto-set of labels of a s-d-query with a start time at tstart in a graph G = (V,E, c, I, P)
with edge-guards. The following theorem gives an upper bound for the cardinality of R:

Theorem 3.2 (Pareto-set cardinality). Let Er be the set of guarded edges of E and
W =

∑
e∈Er

|I∗(e)| the total number of intervals of guarded edges. Then |R| ≤W + 1.

Before we prove this theorem, we prove the following statements.

Lemma 3.3. There is at most one label (ttravel, tdriving) ∈ R with ttravel = tdriving and the
corresponding route of (ttravel, tdriving) has no waiting time.

12

3.1. Exact model

Proof (by contradiction). Assume there are two labels (t1travel, t
1
driving), (t2travel, t

2
driving) ∈ R

such that their travel time and driving time is equal. Hence we have t1travel = t1driving and
t2travel = t2driving. Without loss of generality let t1travel ≤ t2travel. Then either t1travel = t2travel
and t1driving = t2driving, but then both labels are equal which is a contradiction. Or t1travel <

t2travel and t1driving < t2driving, but then (t1travel, t
1
driving) dominates (t2travel, t

2
driving) and hence

(t2travel, t
2
driving) /∈ R, which is a contradiction too. In both cases the waiting time of a route

corresponding to (t1travel, t
1
driving) is zero as t1waiting = t1travel − t1driving = 0.

Definition 3.4 (Closure-∆ and restrictive edges). Given a route r. For a guarded
edge e = (u, v) ∈ E(r) consider the departure time tedeparture ∈ I(e) at u. Consider the
corresponding interval [α, ω) ∈ I∗(e), such that tedeparture ∈ [α, ω). Let ∆e = tedeparture − α
be the difference of the actual traversal of edge e and the opening of edge e. If ∆e = 0
edge e is called restrictive edge. For an unguarded edge e ∈ E(r), let ∆e = ∞. Let
∆ := mine∈E(r) ∆e be the closure-∆ of r.

The closure-∆ of a route is the shortest duration between opening of a guarded edge and
its traversal. A restrictive edge is an edge, that is traversed just at the time when it opens
up and hence we cannot traverse the edge a time unit earlier. Note that if a route has a
restrictive edge, then the closure-∆ is equal to zero. In the following we show that given a
route with non-zero waiting time and a closure-∆ > 0, there is always another valid route
with reduced waiting time.

Lemma 3.5. Let r be s-d-route with start time tstart in G with a vertex u with waiting
time tuwaiting > 0 and closure-∆ > 0. Then there exists a valid and feasible s-d-route r′ with
start time tstart in G with the driving time of r and a travel time which is smaller than the
travel time of r.

Proof. Let r = (tstart, [(s, tswaiting), . . . , (u, tuwaiting), . . . , (d, 0)]) and δ = min{∆, tuwaiting}.
Consider route r′ = (tstart, [(s, tswaiting), . . . , (u, tuwaiting − δ), . . . , (d, 0)]) where the waiting
time at u was reduced by δ.

We show that r′ is valid and feasible in the exact model: Now consider the edges E(r′). We
show that they are traversable at the time they are traversed in r′. We only need to check
the guarded edges e ∈ E(r′), after u was departed as the departure time of the vertices
before u were unchanged. Let the departure time at v in r be tvdeparture, which is in a
time-window [α, ω) ∈ I∗(e). In r′ we depart from v at time tvdeparture− δ, and we know that
tvdeparture − δ < tedeparture < ω, hence in r′ we traverse e before the time-window [α, ω] closes.
Since δ ≤ ∆ = minf∈E(r) ∆f ≤ ∆e = tvdeparture − α, we know that the duration by which
we reduced the waiting time at u is less than the amount of time between the opening of
e at α and the traversal of e in r. Therefore, tvdeparture − δ ≥ tvdeparture − tvdeparture + α = α
and in r′ we traverse e after the time-window [α, ω] opens and hence, r′ is valid. Since we
did not add waiting time in r′, every vertex with a non-zero waiting time is a parking lot,
otherwise r was not feasible. Hence, r′ is feasible.

The driving time of r′ is equal to the driving time of r as no edges where changed. Since
we reduced the waiting time in r′ by δ compared to the waiting time of r, the travel time of
r′ is ttravel(r′) = ttravel(r)− δ. Hence, r′ has a travel time less than the travel time of r.

With this lemma, we can show that a Pareto-optimal route always has zero waiting time
or a restrictive edge (Corollary 3.6) and if there is a restrictive edge in a Pareto-optimal
route, then after the last restrictive edge in the route, there is no further waiting time
(Corollary 3.7).

13

3. Models and Algorithms

Corollary 3.6. For all labels L in R: If a route r corresponding to the label L has zero
waiting time then r has a restrictive edge, i.e. there is an edge that prevents r from having
a reduced waiting time.

Proof (by contradiction). Assume there is a label (ttravel, tdriving) ∈ R and a corresponding
route r such that twaiting(r) > 0 and there is no restrictive edge. Hence, r has a non-
zero closure-∆. By Lemma 3.5, there exists a s-d-route r′ which has equal travel time
and reduced driving time. Therefore, there exists a label L′ which dominates L, hence
(ttravel, tdriving) /∈ R, which contradicts our assumption.

Corollary 3.7. For each label in R: If a route r corresponding to the label has a restrictive
edge, then after the last restrictive edge of r there is no vertex u with non-zero waiting time.

Proof (by contradiction). Assume there is a label in R with a corresponding route r =
(tstart, [(s, tswaiting), (u, tuwaiting), . . . , (d, 0)]) ∈ R such that for each restrictive edge e, there
is a vertex u after e in r with waiting time tuwaiting > 0. Consider the last vertex u with
non-zero waiting time and let the arrival time at u be t′start. Then consider subroute r∗
of r starting at u and ending at d: r∗ = (t′start, [(u, tuwaiting), . . . , (d, 0)]) and its closure-∆
which is non-zero since there is no restrictive edge in r∗. By Lemma 3.5, we know that
there exists a u-d-route r′ = (t′start, [(u, t′uwaiting), . . . , (d, 0)]), with less travel time than r∗
and a driving time equal to the driving time of r∗.

Now consider route r′′ = (tstart, [(s, tswaiting), . . . , (u, t′uwaiting), . . . , (d, 0)]), where we replaced
the u-d-subroute in r by r′. The route r′′ is valid and feasible as r′ is valid and feasible and
the arrival at u is as in r and r′. Since the driving time of r′′ is equal to the driving time of r
and the travel time of r′′ is less than the travel time of r, (ttravel(r′′), tdriving(r′′)) dominates
(ttravel, tdriving) and hence (ttravel, tdriving) /∈ R, which contradicts our assumption.

Now we prove Theorem 3.2:

Proof of Theorem 3.2 (by contradiction). Assume |R| > W + 1. By Lemma 3.3 there is
at most one tuple in R such that its corresponding routes have no waiting time. Hence,
by Corollary 3.6 there are at least W + 1 tuples in R such that their corresponding
routes have a non-zero waiting time and a restrictive edge. For each of these routes,
consider the last restrictive edge. By pigeonhole principle, there are at least two tuples
(t1travel, t

1
driving) 6= (t2travel, t

2
driving) with their corresponding routes r1 and r2 in R, such and r1

and r2 share the same interval [α, ω] of the same last restrictive edge e = (u, v). Since e is
a restrictive edge, in both routes we depart from u at α and arrive at v at α+ c(e) =: t′start.
Consider the v-d-subroutes r′1 = (t′start, [(v, 0), . . . , (d, 0)]) and r′2 = (t′start, [(v, 0), . . . , (d, 0)])
of r. By Corollary 3.7 we know that the waiting time at each vertex of each route is zero.
Without loss of generality, let r′1 have a shorter driving time than r′2.

Now consider s-v-routes r′′1 and r′′2 where r′1 and r′2 were removed from r1 and r2 respectively.
Both routes arrive at v at the same time t′start. Now select r′′1 or r′′2 whichever has a lower
driving time and call it r. Consider route r∗, where we took route r and added r′1. This
route is valid and feasible since r and r′1 are valid and feasible. We have constructed route
r∗ such that it is a valid s-d-route via u. For the driving time of r∗ we have tdriving(r∗) =
tdriving(r)+tdriving(r′1) ≤ tdriving(r′′i)+tdriving(r′i) = tdriving(ri) for i = 1, 2. For the travel time
we have ttravel(r∗) = t′start + ttravel(r′1) = t′start + tdriving(r′1) ≤ t′start + tdriving(r′i) = ttravel(ri)
for i = 1, 2. Hence either

1. (ttravel(r∗), tdriving(r∗)) dominates (t1travel, t
1
driving) and hence (t1travel, t

1
driving) /∈ R which

contradicts our assumption (t1travel, t
1
driving) ∈ R or

14

3.1. Exact model

s d

1
[2(k − 1), 2(k − 1) + 1)

2
[2(k − 2), 2(k − 2) + 1)

...

k − 1

[2, 3)

k

Figure 3.2: Example graph with edge-guards (with parallel edges). There are k−1 intervals
and k Pareto-optimal routes of a s-d-query with a departure at time 0 (each
edge is part of exactly one Pareto-optimal route).

2. (ttravel(r∗), tdriving(r∗)) dominates (t2travel, t
2
driving) and hence (t2travel, t

2
driving) /∈ R which

contradicts our assumption (t2travel, t
2
driving) ∈ R or

3. (t1travel, t
1
driving) = (ttravel(r∗), tdriving(r∗)) = (t2travel, t

2
driving) which contradicts our

assumption (t1travel, t
1
driving) 6= (t2travel, t

2
driving).

Given e is the number of guarded edges, there might exist a better bound |R| ≤ e+ 1. In
Figure 3.2, the graph has W = k − 1 intervals and k − 1 = e guarded edges. A s-d-query
with a departure at time 0 yields the Pareto-set R = {(k, k), (k + 1, k − 1), . . . , (2k, 1)}
with |R| = W + 1.

3.1.2 Complexity

For the general time-dependent shortest-path problem with non-fifo weights, Orda et al.
have proven, that it is NP-hard to decide whether or not there is a s-d-path shorter than
a given value [OR89]. We now show, that our problem is also NP-hard. For a proof, we
first define the corresponding decision problem:

Definition 3.8 (Time-dependent road-closure routing decision problem (TDRCRDP)).
Given a graph G with edge-guards, vertices s and d and a start time tstart. Decide whether
or not there exists a valid and feasible s-d-route with start time tstart.

Note that we do not ask for a route shorter than a given value but only for a valid route nor
do we ask about all Pareto-optimal routes in terms of travel time and driving time. Instead
of using open-intervals I, we could also think of time-dependent non-fifo edge weights

c(e, t) :=
{
c(e), t ∈ I(e)
∞, otherwise.

Then a route is only valid if it has finite weight. We could also define the TDRCRDP using
a parameter k for the maximum allowed route length, but as we will see in the following,
we do not need that. For our proof, we use the TDRCRDP as in Definition 3.8 by reducing
an instance of TDRCRDP to an instance of Partition which is weak NP-hard [Kar72].

Definition 3.9 (Partition). Given a set of natural numbers P = {p1, . . . , pn}. Decide
whether or not there is a partition (P1, P2) of P such that P1∪̇P2 = P , and

∑
p∈P1 p =∑

p∈P2 p.

15

3. Models and Algorithms

v1 v2 vn vn+1s d

p1 pn

0 0
0

[0, 1)
0

[S, S + 1)

Figure 3.3: Graph G corresponding to an instance of Partition as described in the proof.

Theorem 3.10 (Complexity of the TDRCRDP with exact feasibility). Deciding the
time-dependent road-closure route problem with exact feasibility is NP-hard.

Proof. We reduce an instance of Partition to an instance of the TDRCRDP, such that
the instance of TDRCRDP is a yes-instance if and only if the instance of Partition is
a yes-instance: Given an instance I of Partition, i.e. numbers P = {p1, . . . , pn} and∑

p∈P p = 2S. We construct an instance J of the TDRCRDP. Let G = (V,E) be a graph
on n+ 3 vertices where none of which is a parking lot. Without loss of generality graph G
may contain parallel edges. The vertex set V contains vertices v1, . . . , vn+1 and vertices s
and d. We have edges es = (s, v1) and et = (vn+1, t) with c(es) = c(et) = 0, I(es) = [0, 1)
and I(et) = [S, S + 1). Per (vi, vi+1)-pair (i ∈ {1, . . . , n}), we have two unguarded parallel
(vi, vi+1)-edges e0

i and ep
i . We set c(e0

i) = 0 and c(ep
i) = pi. See Figure 3.3 for a visualization

of G. Let the start vertex of J be s and the destination vertex be d. Let the departure
time be 0.

We now show that if I is a yes-instance of Partition, then J is a yes-instance of
TDRCRDP: Assume I is a yes-partition, hence there is a partition (P1, P2) of P such that∑

p∈P1 = S. A valid s-d-route Q consists of vertices (s, v1, . . . , vn+1, d). For each (vi, vi+1)
we have to choose an edge (either e0

i or ep
i). For each pi we choose edge e0

i if pi /∈ P1 and
edge ep

i if pi ∈ P1. This yields a valid route when waiting nowhere: All edges except es

and ed are unguarded. Edge es is traversable since we start at s at 0 and 0 ∈ [0, 1) = I(es).
We arrive at vn+1 at

∑
e∈E(Q)\{ed}

c(e) = c(es) +
∑
i≤n

{
pi, if ep

i ∈ E(Q)
0, otherwise

=
∑
p∈P

{
p, if p ∈ P1

0, otherwise
=

∑
p∈P1

p = S

and since et is traversable at S as I(et) = [S, S + 1), Q is valid. Hence instance J is a
yes-instance of the TDRCRDP.

We now show that if J is a yes-instance of TDRCRDP, then I is a yes-instance of
Partition: There is a valid s-d-route Q starting at 0 in G. Set P1 = {c(e) | e ∈
E(Q) \ {es, ed, e

0
1, . . . , e

0
n}}. P1 ⊆ P since E(Q) \ {es, ed, e

0
1, . . . , e

0
n} ⊆ {e

p
1, . . . , e

p
n} and

c(ep
i) ∈ P . Also, we have S =

∑
e∈E(Q) c(e), otherwise ed was not traversable. Hence we

have ∑
p∈P1

p =
∑

e∈E(Q)\{es,ed,e0
1,...,e0

n}
c(e) =

∑
e∈E(Q)

c(e) = S.

Then for P2 = P \ P1 we have∑
p∈P2

p =
∑
p∈P

p−
∑

p∈P1

p = S =
∑

p∈P1

p,

hence (P1, P2) is a partition of P and hence I is a yes-instance of Partition.

16

3.1. Exact model

3.1.3 Algorithm description

In this section, we describe an algorithm, which finds all valid and feasible Pareto-optimal
solutions in terms of travel time and driving time. This algorithm is used as basis for the
algorithms in the next sections.

We use MCD from Algorithm 2.2, where each label is a tuple consisting of

1. tarrival: earliest arrival at the vertex
2. tslack: the slack, which is the period of time that we can wait at a previous vertex

without invalidating the route
3. tdriving: driving time from s to d

Given a label (tarrival, tslack, tdriving) at vertex v, the driver can depart from v at time tarrival
with a driving time of tdriving. Due to the slack, the driver also can depart from v for any
amount of time in the interval [0, tslack) later. Hence, the driver can depart from v at any
time in [tarrival, tarrival + tslack).

When starting a query at vertex s with a start time tstart, the tuple is initialized as follows:

(tstart,∞, 0)

The priority of the labels is lexicographically ordered by arrival time tarrival first and driving
time tdriving second. When calling the relax()-function with an unguarded edge e = (u, v)
at vertex u with label (tarrival, tslack, tdriving) to vertex v, then we calculate a new label
(t′arrival, t

′
slack, t

′
driving) at vertex v as follows:

(t′arrival, t
′
slack, t

′
driving) = (tarrival + c(e), tslack, tdriving + c(e))

If edge e is guarded, we create at most |I∗(e)| new labels at vertex v. For each interval
[α, ω] ∈ I(e) we try to create a new label at vertex v. If traversing the edge is allowed at
tarrival ∈ [α, ω] then we calculate a new label at vertex v as follows:

(t′arrival, t
′
slack, t

′
driving) = (tarrival + c(e),min{tslack, ω − tarrival}, tdriving + c(e))

If tarrival < α, i. e. when arriving at vertex u at time tarrival, the driver has to wait until the
road opens for this interval, then we have a waiting time of b = α − tarrival. If b ≤ tslack,
waiting for an additional duration of b at u does not invalidate the current label’s route,
and we calculate a new label at vertex v as follows:

(t′arrival, t
′
slack, t

′
driving) = (α+ c(e),min{tslack − b, ω − α}, tdriving + c(e))

Otherwise we have b > tslack, but then we cannot wait for a duration of b without invalidating
the current label’s route. Or tarrival > ω and we are too late to traverse this edge. In both
cases traversing the edge with the current label and interval is not possible and we do not
calculate a new label.

For each label we created, we check whether vertex u represents a parking lot. Then we
set the slack to ∞ as we can wait at u as long as we want to:

(t′arrival, t
′
slack, t

′
driving) = (tarrival,∞, tdriving)

When creating a label, we check whether or not it dominates another label at the same
vertex. If it does, we can delete the dominated label. A label (tarrival, tslack, tdriving) at
vertex u dominates another label (t′arrival, t

′
slack, t

′
driving) at vertex u, if

17

3. Models and Algorithms

1. [t′arrival, t
′
arrival + t′slack) ⊆ [tarrival, tarrival + tslack) and

2. t′driving ≥ tdriving

After the multicriteria dijkstra has finished, there is a number of labels at the destination
vertex d. The algorithm then needs to filter all non-Pareto-optimal labels. This is necessary
as the slack is part of the domination criteria of dijkstra, but the slack is not part of the
solution labels.

Each solution label is correct, as the corresponding routes only traverse edges when they
are traversable. Each waiting time needed can be taken on a parking lot along the route
or at the start vertex s. Hence for each solution label, there exists a feasible route in the
exact model.

3.2 Allowing waiting at every vertex
Instead of waiting only at parking lots and the start vertex, we could allow waiting at every
vertex. This may yield routes which are not feasible in practice, especially for drivers of
large trucks.

Definition 3.11 (Waiting allowed everywhere-feasibility). Let G be a graph with edge-
guards, s the start vertex, d the destination vertex and t the start time. A s-d-route with
the start time t is feasible if it is valid.

Note that this definition is equivalent to the definition of the exact feasibility when assuming
P = V . However, we present this algorithm as the complexity of this problem is in P,
as we will see later in this section. Also, the algorithm gives lower bounds on the travel
time and driving time for the exact algorithm in the section above. We use this bound for
quality comparison in the experiment Chapter 5.

For example routes see Figure 3.1 again. As before, we get two solutions for a s-d-query
with departure time 0:

1. The route (0, [s, (v, 9), w, d]): The driver waits at v for 9 (or alternatively at s). Then
he can proceed to the destination vertex d. He arrives at d at time 12, and has a
driving time of 3.

2. The route (0, [s, v, (y, 3), w, d]): Compared to the exact model where y is not a parking
lot, the driver can wait at y and does not need to drive the y-z-y-cycle multiple times,
but instead he can wait at y. This gives an arrival time of 7 and a driving time of 4,
which is better than the solution in the exact model. However, it may not be possible
to wait at y in practice.

As this algorithm is only a special case of the exact algorithm where we assume that
every vertex is a parking lot, we can use the exact algorithm presented above. Hence, the
cardinality of the resulting Pareto-set of a query is also bounded by W + 1 and the example
in Figure 3.2 again yields W + 1 Pareto-optimal labels. Before we prove this, we present a
simplification of the algorithm where we inherently assume that P = V .

3.2.1 Algorithm description

Although we can use the exact algorithm presented in the section above, we can simplify
the algorithm slightly: We do not need to save the slack information, as every vertex is a
parking lot and hence the slack would be set to infinity at every vertex. Therefore, the
labels contain the following information:

• tarrival: earliest arrival at the current vertex
• tdriving: driving time to the current vertex

18

3.2. Allowing waiting at every vertex

The algorithm settles the labels in lexicographical order of arrival time tarrival first and
driving time tdriving second. When relaxing an unguarded edge e = (u, v) or a guarded edge
which is traversable at tarrival (i.e. tarrival ∈ I(e)) at vertex u with label (tarrival, tdriving),
then we calculate a new label (t′arrival, t

′
driving) at vertex v as follows:

(t′arrival, t
′
driving) = (tarrival + c(e), tdriving + c(e))

If the edge e is guarded and e is not traversable at tarrival (i.e. tarrival /∈ I(e)), then let
[α, ω) ∈ I∗(e) be the earliest interval after tarrival. We have to wait until e opens at α:

(t′arrival, t
′
driving) = (α, tdriving + c(e))

Note that for each guarded edge, we only create at most one label. We do not need to
create labels for multiple intervals. By taking the earliest possible interval, we arrive at
the next vertex v as early as possible, and we can still wait anywhere later if needed.

As mentioned before, this is just a simplified version of the exact algorithm in the previous
section, where we assume a slack of ∞ and where every vertex is a parking lot. Therefore,
a label (tarrival, tdriving) at vertex u dominates another label (t′arrival, t

′
driving) at u, if

1. t′arrival ≥ tarrival and
2. t′driving ≥ tdriving.

In this case, the filtering step is not required, as for each vertex there are only the Pareto-
optimal labels saved. The correctness of the algorithm follows from the correctness of the
algorithm for the exact model.

3.2.2 Implementation details
Instead of one queue that contains all unsettled labels, each vertex has a queue containing
all the labels associated with this vertex. A main queue contains each vertex’ highest
priority label.

In contrast to the results of the exact algorithm, loops and u-turns are never part of a
Pareto-optimal solution, because we could wait at each vertex instead. Hence, we do not
need to relax edge (v, u) (if it exists) if the current label was created using edge (u, v) as
this would only yield a u-turn.

3.2.3 Complexity
As we already mentioned above, the problem is in P. We prove this in the following
theorem:

Theorem 3.12 (Complexity of the TDRCRDP with waiting-allowed-everywhere feasibility).
Consider the TDRCRDP with waiting-allowed-everywhere feasibility. Then TDRCRDP ∈
P.

Proof. For all guarded edges e, let W =
∑

e |I(e)|. By the statement in Chapter 2, the
running time of MCD for a s-d-query with a departure at time t has polynomial running
time, if

• the relax()-function has polynomial running time: The function has a running time
of O(W).
• the maximum number of labels during the execution of the algorithm is bounded by
a polynomial in the input size: The cardinality of the label set Lv is bounded by
W + 1. The maximum number of labels is then bounded by |V | · (W + 1), which is a
polynomial in the input size.

Hence, we see that TDRCRDP ∈ P, if waiting is allowed everywhere.

19

3. Models and Algorithms

3.3 Detour-free route model
Calculating a solution in the exact model is NP-hard and can yield solution we do not
want in practice (e.g. driving in a roundabout multiple times to arrive later at a guarded
edge). On the other hand, calculating a solution in the model, where waiting is allowed
everywhere, is too simplified. Therefore, we try to find another formal description of the
problem, which is solvable in practice and yields reasonable results in practice.

We model this, so that waiting time is never taken by driving a detour, but only on parking
lots. We first define detour-free t-routes, which do not have waiting time and then based
on this definition, we define detour-free feasibility.

Definition 3.13 (detour-free t-route). Let G be a graph with edge-guards, s the start
vertex, d the destination vertex and t the start time. For each vertex v in G, we define the
detour-free earliest arrival dfEA(v). For the start vertex s, we set dfEA(s) = t. For all other
vertices v ∈ V \ {s}, let dfEA(v) = min{dfEA(u) + c(u, v) | (u, v) ∈ E ∧dfEA(u) ∈ I(u, v)}.

The route r is a detour-free t-route if the arrival time at each vertex v in r is equal to
dfEA(v).

For example detour-free t routes, consider Figure 3.4.

• For t ∈ [4, 9), the route (t, [u, v, w]) is valid and a detour-free t-route.
• For t ∈ [0,∞), the route (t, [u, v, y, w]) is valid and for t ∈ [0, 4) ∪ [9,∞), it is a

detour-free t-route.
• For t ∈ [3, 8), the route (t, [u, x, v, w]) is valid, but it is never a detour-free t-route.

Now we extend the definition of detour-free t-routes, which may have non-zero waiting
time.

Definition 3.14 (Detour-free feasibility). Let G be a graph with edge-guards, s the start
vertex, d the destination vertex and t the start time. Let p1, . . . , pk ⊆ P the parking lot
vertices of r in order of their occurence in r. The number of parking lot vertices may be 0.
Let p0 := s and pk+1 := d.

The route r is a detour-free route, if

1. the waiting time is only taken at vertex s or pi, i = 1, . . . , k, and
2. all pi-pi+1-subroutes of r with a departure from pi at time t are detour-free t-routes.

By the definition of detour-free t-routes, a detour-free route between two consecutive
parking lots does never contain a loop. Also, a Pareto-optimal detour-free r route never
leads to the same parking lot twice. If the route r led to the same parking lot p twice, then
there was a detour-free route r′, which dominates r: The route r′ is equal to the route
r, except that the subroute in r between the first departure at the parking lot p and the
second arrival at p is cut out and replaced by a longer waiting time at p. However, two
distinct subroutes between two consecutive parking lots may contain the same vertex twice.

For examples of Pareto-optimal detour-free routes, consider Figure 3.4, which does not
contain parking lots.

• The route (t, [u, v, w]) is a Pareto-optimal detour-free feasible route for t ∈ [4, 9). The
route (t, [(u, 4− t), v, w]) is a Pareto-optimal detour-free feasible route for t ∈ [0, 4)
• The route (t, [u, v, y, w]) is a detour-free feasible route for t ∈ [0,∞). However, it is
only Pareto-optimal for t ∈ [0, 3) ∪ [9,∞), as for t ∈ [3, 9) the route above has an
lower travel time and a lower driving time.

20

3.3. Detour-free route model

u v w

x y

1 1

1 1 1 1

[5, 10)

tstart = 0
0 1 3

1 2

tstart = 4
4 5 6

5 6

Figure 3.4: Example graph G with edge-guards. The graphs at the bottom have the
detour-free earliest arrival for a u-w-query as vertex labels. The graph in
the bottom left-hand corner is for a start time of 0, the graph in the bottom
right-hand corner is for a start time of 4. The solid lines depict the edges of
the corresponding detour-free t-route.

u v w

x

4 1

4 1

[7, 10)[0, 3)

tstart = 2
2 4

6

∞

tstart = 3
3 8

7

9

Figure 3.5: Example graph G with edge-guards for comparison of the detour-free routes and
the routes in the exact-model. The graphs at the bottom have the detour-free
earliest arrival for a u-w-query as vertex labels. The graph in the bottom
left-hand corner is for a start time of 2, where there is no detour-free 2-route.
The graph in the bottom right-hand corner is for a start time of 3. The solid
lines depict the edges of the corresponding detour-free t-route.

For detour-free routes, more restrictions apply than for the routes in the exact model. In
Figure 3.5, there is a graph with edge-guards. We note that the edge (u, v) is never part of
a valid u-w-route regardless of the underlying model, as the arrival at v using edge (u, v) is
always before time 7. In the exact model, route (0, [(u, 2), x, v, w]) is a valid and feasible
u-w-route with the start time 0. However, this route is not a detour-free route, as the
detour-free earliest arrival at v for a departure from u at t ∈ [0, 3) is always determined by
edge (u, v). Then edge (v, w) is not traversable. For t = 3, the detour-free earliest arrival
at v is determined by edge (x, v), which yields an arrival at u at time 8. Hence, route
(0, [(u, 3), x, v, w]) is a detour-free route.

3.3.1 Algorithm description

Again, we use the algorithm of Section 3.1 and adapt it so that it meets our requirements.
In addition to the arrival time, the slack and the driving time, we also save the following
information at each label:

• last parking lot seen p or start vertex s and

21

3. Models and Algorithms

• driving time tdp since departing from the last parking lot seen p.

The last parking lot seen gets initialized with vertex s. The driving time since departing
from the last parking lot (i.e. the start vertex) is initialized to zero.

When relaxing edge e = (u, v), we calculate the new values p′ and t′dp as follows:

(p′, t′dp) =
{

(v, 0), if v ∈ P
(p, tdp + c(e)), otherwise

If v is a parking lot, we set v to the new parking lot and reset the driving time since
departure from p to zero.

Let L = (tarrival, tslack, tdriving, p, tdp) be a label calculated by the detour-free route algorithm
at vertex u. When the driver departs at t ∈ [tarrival − tdp, tarrival + tslack − tdp) from the
parking lot p and drives to u along the route corresponding to L, then he arrives at vertex
u at time t+ tdp ∈ [tarrival, tarrival + tslack). From parking lot p to vertex u he drove for a
duration of tdp. Hence, the detour-free earliest arrival for a departure from p at time t is
less than or equal to tdp.

When inserting the label L into the queue of the multicriteria dijkstra, the labels in
the queue at the same vertex u and with the same parking lot p have to be modified,
such that the detour-free earliest arrivals at u are correctly represented by the intervals
[tarrival − tdp, tarrival + tslack − tdp) and the driving times tdp. Therefore, the labels in the
queue at vertex u which have the same parking lot p are processed in increasing order of
their driving time tdp: The arrival time tarrival and the slack tslack is altered, such that
the new interval [tarrival − tdp, tarrival + tslack − tdp) is a subset of the old one and does not
overlap with the corresponding intervals of the labels that were processed before. If needed,
a label has to be splitted into several new labels.

Instead of the domination criteria from Section 3.1, we use the following criteria. A label
L = (tarrival, tslack, tdriving, p, tdp) at vertex u dominates a label (t′arrival, t

′
slack, t

′
driving, p

′, t′dp)
at the same vertex if

1. p′ = p and
2. [t′arrival − t′dp, t

′
arrival + t′slack − t′dp) ⊆ [tarrival − tdp, tarrival + tslack − tdp) and

3. t′dp ≥ tdp.

After the multicriteria dijkstra has finished, there is a number of labels at the destination
vertex d. As in the algorithms presented above, the algorithm needs to filter all non-Pareto-
optimal labels. Each solution label which was not filtered corresponds to a detour-free
route.

3.3.2 Implementation details

Instead of one queue that contains all unsettled labels, each vertex has a queue containing
all the labels associated with this vertex. A main queue contains each vertex’ highest
priority label.

As in the section before, there are no loops an u-turns in a route corresponding to a solution
label, except at parking lots where u-turns may occur. Hence, if the current vertex v is
not a parking lot, we do not need to relax edge (v, u) (if it exists) if the current label was
created using edge (u, v) as this would yield a u-turn at v.

For more advanced speedup techniques, see Chapter 4.

22

4. Speeding up shortest detour-free route
calculation

In this chapter, we present speedup techniques for the detour-free model. We begin with
a Contraction Hierarchy in Section 4.1. Then we show how to efficiently calculate upper
bounds for the travel time and for the driving time of the resulting labels. We show
how these bounds can be used for pruning labels. In addition, we present two heuristic
algorithms. These calculate detour-free labels, but Pareto-optimal results may be missed.

4.1 Contraction Hierarchy
As described in Section 1.1, a Contraction Hierarchy (CH) uses a hierarchical vertex
ordering. Vertices are contracted in ascending order of their importance and, if necessary,
shortcuts are inserted to preserve shortest distances among the remaining vertex. A
s-d-query is answered via a forward-search from start vertex s and a backward-search
from destination vertex d. The forward-search and the backward-search only relax edges
which lead to vertices of higher importance. See [GSSD08] for a thorough description of
Contraction Hierarchies. We adapt this approach for our needs, so that we are able to
efficiently calculate the results of a query in the detour-free model.

Each suitable parking lot has to be considered for waiting time, when searching upwards in
the hierarchy. Therefore, we enforce that no parking lot is contracted by assigning each
parking lot vertex to a high importance and by running the contraction process until only
a certain amount of vertices determined by the core size parameter remains. The core is
the set of remaining uncontracted vertices. Each parking lot is then part of the core. We
say that an edge is a core edge, if both of its endpoint vertices are elements of the core.
See Section 4.1.1 for a more detailed description of the contraction process.

A Contraction Hierarchy query by default uses a forward search and a backward search
which run in an interleaved manner. Our algorithm from Section 3.3.1 uses multiple label
components and hence, a backward search beginning at the destination vertex is rather
complex. Therefore, we modify the querying phase: The idea is to use a forward search
in the search space of the CH for a s-d-query consisting of the forward search space, the
backward search space, and the core. We first mark the backward search space, and then,
we start the forward search, which searches in the forward search space, the core and the
previously marked backward search space. The backward search space marking is based on
a breadth-first search beginning at the destination vertex d. When processing vertex u, a

23

4. Speeding up shortest detour-free route calculation

u

v

w

1 2

3

[0, 20)∪̇[40, 45) [10, 15)

[9, 14)

Figure 4.1: Shortcut from u to w which is created when contracting vertex v.

vertex v gets inserted into the queue of the breadth-first search if v has a higher importance
than u and if there is a non-core edge (v, u). Edge (v, u) is then marked. By construction
of the backward search, only non-core edges get marked.

After the backward search has finished, we start the forward search. When processing a
label, we decide which edge we have to relax: We relax the edge (u, v) if the current label
at a vertex u was created via

• an upward non-core edge, and edge (u, v) is an upward edge, a core edge or a
downward edge that was marked during the backward search.
• a core edge, and edge (u, v) is a core edge or is a downward edge that was marked
during the backward search.
• a downward edge that was marked in the backward search, and edge (u, v) is a
downward edge that was marked during the backward search.

Each edge is relaxed as we described in Section 3.3.1.

4.1.1 CH-Preprocessing for shortest detour-free routes

When contracting a vertex v, we calculate a shortcut from all adjacent vertices to each
other. No contracted vertex is a parking lot, as the parking lots are element of the core
and no vertex in the core is contracted. Given two edges (u, v) and (v, w) we calculate the
function value of the cost function c(u,w) and the traversal function I(u,w) of a shortcut
edge (u,w) as follows:

c(u,w) = c(u, v) + c(v, w)
I(u,w) = I(u, v) ∩ (I(v, w)− c(u, v))

See Figure 4.1 for an example. In the following, we prove, that the number of intervals in
I∗(u,w) is bounded by |I∗(u, v)|+ |I∗(v, w)| − 1.

Theorem 4.1 (Size of shortcut-interval sets). Given two edges (u, v) and (v, w), then
for the corresponding shortcut (u,w) after contracting v we have: |I∗(u,w)| ≤ |I∗(u, v)|+
|I∗(v, w)| − 1.

Proof (by induction). Let A := I(u, v), n = |A∗|, B := I(v, w) − c(u, v), k = |B∗| and
C := I(u,w). We show that |C∗| ≤ n+ k − 1 by induction over n:

Induction base: n = 1. There is exactly one interval in A∗ = {[αa, ωa)} and there are k
intervals in B∗. We show, that |C∗| ≤ n+ k − 1 = k.

If there were more than k intervals in C∗, then an interval of B∗ was split, i.e. there are
elements t1 < t2 < t3 ∈ B such that t1, t3 ∈ A and t2 /∈ A. Then we had αa ≤ t1 < t2 <
t3 < ωa, and hence, t2 ∈ A which is a contradiction.

24

4.2. Upper bounds

Induction step: n → n + 1. Assume that |C∗| ≤ n + k − 1 holds for some value of n
(induction hypothesis). Let |A∗| = n+ 1. We show that |C∗| ≤ (n+ 1) + k − 1. We select
the earliest interval I ∈ A∗ and split A into A1 = I and A2 = A \ I. Then we split B into
B1 = B ∩ (−∞, sup I) and B2 = B ∩ [sup I,∞). At most one interval in B∗ is split into
one interval in B∗1 and into another interval in B∗2 , hence we have |B∗1 |+ |B∗2 | − 1 ≤ |B∗|.
Let (A1 ∩B1) = C1 and (A2 ∩B2) = C2.

We now show that |C∗| ≤ |C∗1 |+ |C∗2 |: If there is an interval J ∈ C, then either J ∈ C∗1 or
J ∈ C∗2 . Assume there is an interval J = [α, ω) ∈ C. Then there exists a corresponding
interval Ja = [αa, ωa) in A and a corresponding interval Jb = [αb, ωb) in B, such that
Ja ∩ Jb = J . We either have ω ≤ sup I or α > sup I. Otherwise we had ω > sup I and
α ≤ sup I, but then sup I ∈ A, which is a contradiction.

If ω ≤ sup I, then Ja = I ∈ A1 and Jb ∈ B1. Then J ∈ C1. If α > sup I, then Ja ∈ A2 and
Jb ∈ B2. Hence J either exists in C∗1 or in C∗2 .

We now have:

1. |C∗1 | ≤ |A∗1|+ |B∗1 | − 1 = |B∗1 | (by the argument in induction base as |A1 ∗ | = 1) and
2. |C∗2 | ≤ |A∗2|+ |B∗2 | − 1 (by the induction hypothesis) and
3. |B∗2 | ≤ |B∗| − |B∗1 |+ 1.

By 1. and 2. we have |C∗2 | ≤ |A∗2| + |B∗| − |B∗1 |. Hence, we have |C∗| ≤ |C∗1 | + |C∗2 | ≤
|B∗1 |+ |A∗2|+ |B∗| − |B∗1 | = |A∗2|+ |B∗| = |A∗| − 1 + |B∗| = (n+ 1) + k − 1.

Inserting a shortcut into the Contraction Hierarchy is not always necessary. For each
shortcut (u,w), we search for a witness that proves, that the shortcut (u,w) is superfluous.
A shortcut is superfluous, if all shortest detour-free routes with start and destination
vertices of higher importance than the contracted vertex v do not contain vertex v. The
process of searching for such witnesses is called witness search. If we do not find an
existing witness and insert a superfluous shortcut, this does not corrupt correctness of the
contraction hierarchy. Hence, we abort the witness search after a certain number of labels
were settled to speed up the preprocessing phase. Also, we simplify the witness search by
ignoring the possibility of breaks at parking lots.

When inserting a shortcut (u,w), parallel (u,w)-edges may emerge. Assume there are two
parallel edges e and e′. We can modify I(e′), if

• c(e) < c(e′): Set I(e′)← I(e′) \ I(e). Note that if I(e′) = ∅, the witness search did
not find the existing witness e and we can delete edge e′.
• c(e) = c(e′): Delete both edges and create a new edge e∗ with c(e∗) = c(e) and
I(e∗) = I(e) ∪ I(e′). However, extra care must be taken when constructing the
corresponding route, as the original edges for this shortcut change over time.

4.2 Upper bounds

Given a s-d-query with a departure at time t, we are interested in the set R of Pareto-
optimal pairs of travel time and driving time. Let rtravel = (tmax

travel, t
min
driving) ∈ R be a

resulting label such that there is no label r′ ∈ R with longer travel time and less driving
time and let rdriving = (tmin

travel, t
max
driving) accordingly. In this section, we present ways to

calculate rtravel and rdriving fast. If both labels are equal, we do not run the base detour-free
algorithm, as rtravel = rdriving is the only resulting label in R. If both labels are not equal,
we can speed up the base algorithm, as we will see in the following subsections.

25

4. Speeding up shortest detour-free route calculation

4.2.1 Upper bound on travel time

We calculate the label rtravel as follows:

1. Calculate the shortest guard-independent s-d-route (using a standard Contraction
Hierarchy).

2. If necessary, add waiting time at the start vertex s until the route gets valid.

The second step may fail, if the shortest guard-independent s-d-route is invalid for all
waiting times at the start vertex. If the route is valid, then it is also a feasible route in the
detour-free model and the corresponding label is equal to rtravel , as no label may have less
driving time and hence, there is no Pareto-optimal label of longer travel time. However,
this approach may fail. See Chapter 5 about how often this approach fails.

If we found the label rtravel = (tmax
travel, t

min
driving), and if we run the base algorithm, we can

prune a label (tarrival, tslack, tdriving, p, tdp) at vertex v before relaxing v’s incident edges, if:

tarrival − tstart + (tmin
driving − tdriving) > tmax

travel

where tmin
driving− tdriving is the minimum time the driver still has to drive before he can reach

the destination vertex d. In addition, we can stop the algorithm, if ttravel > tmax
travel, as every

label in the queue is pruned by the criteria above.

4.2.2 Upper bound on driving time

We calculate the label rdriving using the algorithm where waiting was allowed everywhere
from Section 3.2. However, we do not calculate the set of Pareto-optimal labels, but stop
the algorithm after the first result was calculated. As the waiting times in the corresponding
route in general are not at parking lots, we try to move all waiting times to the start vertex.
As for the upper bound on the travel time, this may fail. Again see Chapter 5 about how
often this approach fails.

This procedure finds an upper bound on the driving time: Given a detour-free route, there
is always a route where waiting is allowed everywhere, which has equal or less travel time
and driving time, as the waiting-allowed-everywhere model is the least restrictive one.
Hence, if we found the label rdriving, the travel time of this result is not longer than any
of the travel times of all shortest detour-free s-d-routes. Accordingly, the driving time of
rdriving is the maximum of the driving time of all Pareto-optimal labels. Assume there was
another Pareto-optimal label with longer driving time. Then it had a shorter travel time
than rdriving, which is a contradiction.

Note that calculating this bound using a CH for shortest detour-free routes may not give
the shortest travel time in the original graph using the waiting-allowed-everywhere model.
However, there is no route in the CH with less travel time, and as the CH contains all
shortest detour-free routes, there is no shortest detour-free route with less travel time.
Hence, again the route’s driving time is maximal.

4.3 Heuristics
For further speed up we present two heuristics. Both heuristics are based on the algorithm
for shortest detour-free routes, but their domination criteria are modified. The heuristics
yield shortest detour-free routes, but not necessarily all Pareto-optimal solutions. The
second heuristic is a simplification of the first heuristic and hence, the solution quality of
the first heuristic is better than the solution quality of the second heuristic. However, the
second heuristic has better performance. For an evaluation of the solution quality and the
running time of the heuristics see Chapter 5.

26

4.3. Heuristics

4.3.1 Heuristic 1

In contrast to the shortest detour-free routes algorithm, we added the dominance criteria
from the exact algorithm.

The complete domination criteria is shown hereinafter. A label (t′arrival, t
′
slack, t

′
driving, p

′, t′dp)
is dominated by a label (tarrival, tslack, tdriving, p, tdp) at the same vertex, if

1. p′ = p and
2. [t′arrival − t′dp, t

′
arrival + t′slack − t′dp) ⊆ [tarrival − tdp, tarrival + tslack − tdp) and

3. t′dp ≥ tdp

or

4. [t′arrival, tarrival + t′slack) ⊆ [t′arrival, tarrival + tslack) and
5. t′driving ≥ tdriving.

The domination criteria in 4. and 5. only dominate labels L′ which yield non-Pareto-optimal
solutions in the exact model. That means, there is a label L, which yields a solution in
the exact model which dominates the solution of L′. However, label L might not yield a
detour-free route and hence, label L is also dominated later. Thus, label L′ was dominated
erroneously and the solution yielded by L′ is not found by Heuristic 1.

4.3.2 Heuristic 2

This heuristic further simplifies the first heuristic. This heuristic yields results corresponding
to shortest detour-free routes. The quality decreases compared to the heuristic above, but
the performance increases.

The complete domination criteria is shown hereinafter. A label (t′arrival, t
′
slack, t

′
driving, p

′, t′dp)
is dominated by a label (tarrival, tslack, tdriving, p, tdp) at the same vertex, if

1. p′ = p and
2. t′arrival ≥ tarrival and
3. t′dp ≥ tdp

or

4. [t′arrival, tarrival + t′slack) ⊆ [t′arrival, tarrival + tslack) and
5. t′driving ≥ tdriving.

As we ignore the slack in criterium 2., a label L′ might be dominated by another label L
at a vertex u, because the arrival time tarrival of L at u is earlier and the driving time tdp
is lower. However, assume that the slack of L′ is much longer than the slack of L. When
arriving at a guarded edge (u, v), the slack of L may not be sufficiently long, and hence,
no labels are created at vertex v. Then Heuristic 2 misses a solution which Heuristic 1
and the optimal detour-free algorithm found. We point out that for each resulting label
(ttravel, tdriving) of Heuristic 2, there is an equal or even a Pareto-optimal result found by
Heuristic 1.

27

5. Experiments

In this chapter, we evaluate the algorithms described in the chapters above. We first
present the road network and the test set we used for our experiments. Then we evaluate
the algorithms for calculating the bounds from Section 4.2, the performance and quality of
the shortest detour-free algorithm and the heuristics.

The implementation of the algorithms is based on RoutingKit [Str17] by Strasser and was
compiled with GCC 5.4.1 (64 bit) with optimization level 3. All performance measurements
were executed on a VMware ESXi machine with 4 cores of an Intel Xeon E5-2680 v3,
2.5GHz and 64GiB RAM. The operating system was Ubuntu 16.04.01 LTS. The algorithms
make no use of parallelism.

5.1 Road network
The road network was provided by PTV AG and contains Austria, France, Germany, Italy,
Liechtenstein, Luxembourg and Switzerland. All time specifications in this chapter refer to
UTC+1, which is the standard time zone for all the countries mentioned. The travel times
and road closures were adapted to a truck with a trailer with a gross combined weight of
40 tons. The map has 21,903,924 vertices and 47,635,384 edges and contains 4429 parking
lots, which are mainly near highways or country borders. As mentioned, road closures are
dependent on the weekday and holidays. See Table 5.1 for an overview of the weekend and
night driving bans of the countries above. We refer to [Arm18] for a thorough overview
of night, weekend, holiday and other special driving bans. In addition, the road closures
concern certain downtown areas and roads which are not mentioned here.

5.2 Test sets
For performance and quality tests we used four different test sets. For each test set we
classify the queries by the distance of the start vertex and the destination vertex. The
settling order of the vertices in Dijkstra’s algorithm in a guard-independent route query is
used to rank the vertices. The rank of a query is the rank of its destination vertex.

The first three test sets only differ in the start time. For each of the test sets 1 – 3, we
use 100 randomly generated start vertices. For each start vertex, 13 destination vertices of
rank 2i, i = 12, . . . , 24 were selected. For the start time of the queries in the test sets, see
Table 5.2.

29

5. Experiments

Table 5.1: Overview of weekend and night driving bans for 40-ton trucks with a trailer
in 2018.

country saturday driving ban sunday driving ban night driving ban

Austria1 15.00 – 24.00 00.00 – 22.00 22.00 – 05.00
France2 22.00 – 24.00 00.00 – 22.00 –
Germany3 – 00.00 – 22.00 –

Italy4 – 07.00 – 22.00 (Jun. – Sep.) –09.00 – 22.00 (Oct. – May)
Liechtenstein5 – 00.00 – 24.00 22.00 – 05.00

Luxembourg6 21.30 – 24.00 or7
00.00 – 21.45 –23.30 – 24.00

Switzerland8 – 00.00 – 24.00 22.00 – 05.00
1 Austrian road traffic regulations: StVO §42(1)+(6), 12th July 2018
2 French government gazette: Journal officiel de la République française: n◦0302 du 28 décembre 2017,
texte n◦120

3 German road traffic regulations: StVO §30(3), 6th October 2017
4 Italian Ministry of Infrastructure and Transport: Decreto Ministeriale numero 571 del 19-12-2017, Art.
1, 1a)+b)

5 Liechtenstein road traffic regulations: VRV Art. 89 1)+2), 1st July 2018
6 Luxembourg road traffic regulations: Réglement grand-ducal modifié du 19 juillet 1997 relatif aux
limitations de la circulation des poids lourds pendant les dimanches et jours fériés Art. 1

7 21.30 – 24.00 when heading towards France or 23.30 – 24.00 when heading towards Germany
8 Swiss road traffic regulations: SVG Art. 2(2), 1st January 2018

Table 5.2: Earliest departure time for each test set.
test set start time

Test set 1 Mo, 2nd July 2018, 05.00
Test set 2 Fr, 6nd July 2018, 05.00
Test set 3 Fr, 6nd July 2018, 17.00
Test set 4 Mo, 2nd July 2018, 17.00

For test set 4, we chose two areas. Area A is the area southeast of 49◦N 4◦ E and northwest
of 47◦N 18◦ E. Area B is the area southeast of 46◦N 4◦ E and northwest of 42◦N 18◦ E.
Figure 5.1 depicts both areas.

For the queries of test set 4, we randomly selected 100 pairs of geographic coordinates, one
coordinate from area A and one coordinate from area B. For both coordinates, the nearest
vertices v and u in the graph were searched. For each pair (u, v), we insert the u-v-query
and the v-u-query into the test set. Hence, in total we have 200 queries. From 200 queries,
2 have rank 20, 9 have rank 21, 65 have rank 22, 97 have rank 23 and the 27 remaining
queries have a rank of 24. Again see Table 5.2 for the start time of the queries in this
test set. The test set is made such that for many queries, the shortest guard-independent
route goes through Switzerland or Austria, where the night driving ban applies. Hence, we
expect multiple resulting labels per query, where some corresponding routes lead around
Switzerland or Austria.

In the following evaluation, we use box plots. The abscissa of the plot indicates the rank.
The lower end of each box denotes the lower quartile, the upper end denotes the upper
quartile of the measurements of the queries in the current rank. The median is shown
as thick line. The whiskers extend to up to 1.5 times the interquartile range from the
top/bottom of the box to the furthest datum within the range. Points above or below the

30

5.2. Test sets

A

B

Figure 5.1: Area A and B, where start and destination vertices of each query in test set 4
lie in. The left upper corner of area A is at 49◦N 4◦ E, the left lower corner is
at 47◦N 18◦ E. The left upper corner of area B is at 46◦N 4◦ E, the left lower
corner is at 42◦N 18◦ E.

31

5. Experiments

Table 5.3: CH preprocessing
horizon begin horizon duration preprocessing time

Mo, 2nd July 2018, 05.00 48 hours 1 h 20min
Mo, 2nd July 2018, 05.00 24 hours 1 h 03min
Mo, 2nd July 2018, 17.00 48 hours 1 h 24min
Mo, 2nd July 2018, 17.00 24 hours 1 h 07min
Fr, 6nd July 2018, 05.00 48 hours 7 h 25min
Fr, 6nd July 2018, 05.00 24 hours 1 h 03min
Fr, 6nd July 2018, 17.00 48 hours 7 h 35min
Fr, 6nd July 2018, 17.00 24 hours 5 h 53min

whiskers are outliers and are depicted as circles. If there is only one measurement per rank,
then only its value is shown with a thick line.

5.3 Contraction Hierarchy Preprocessing
We start with the evaluation of the CH preprocessing for shortest detour-free routes. As
the preprocessing depends on the road-closures, we evaluate the preprocessing with varying
(planning) horizons. The traversal function I maps each edge to a subset of the horizon.
A CH is suitable for answering queries, which corresponding routes start and end during
the planning horizon. For each graph, we ran the preprocessing until only 0.5% of the
vertices remained uncontracted. These uncontracted vertices are the elements of the core.
Table 5.3 contains the times needed for the preprocessing.

We see that the calculation times are highly dependent on the weekdays in the planning
horizon contains. While a computation with a horizon ending at or before Saturday 05.00
only has a preprocessing time of 1 to 1.5 hours, it increases to up to about 7.5 hours if the
planning horizon contains Saturday night or Sunday. The reason is that witness search gets
much more costly. Before Saturday, there are only smaller areas, where driving is prohibited
for trucks and at night, there are only driving bans in Switzerland and Austria. However, in
each country a weekend driving ban applies, which slows down the preprocessing drastically.

5.4 Bounds
In this section, we evaluate the running time of the algorithms calculating the upper
bounds on travel time (tmax

travel, t
min
driving) and the upper bound on driving time (tmin

travel, t
max
driving).

For the sake of clarity, we reference tmax
travel as the maximum travel time and tmin

travel as the
minimum travel time. Correspondingly, we reference tmax

driving as the maximum driving time
and tmin

driving the minimum driving time. We evaluate how often the minimum and maximum
travel times are found, are (un-)equal, and we quantify their deviation. Then we proceed
analogously for the minimum and maximum driving times.

5.4.1 Running time

The running time of the bound calculation was evaluated using a Contraction Hierarchy,
as described in the previous chapter. The planning horizon begins at the departure of the
queries and ends 24 hours later. Figure 5.2 shows the running time for the algorithms
calculating the upper bound on the travel time and the upper bound on the driving time
for test set 1. As the results of the other test sets are very similar, the running time of
the algorithms for the other test sets can be found in Figure A.1 in the Appendix. For

32

5.4. Bounds

10
0

50
0

20
00

10
00

0

212 214 216 218 220 222 224

µ
s

Rank
(a) Running time for the upper bound on the travel
time.

50
50

0
50

00
10

00
00

212 214 216 218 220 222 224

µ
s

Rank
(b) Running time for the upper bound on the driving
time.

Figure 5.2: Running time for the upper bounds for test set 1.

the upper bound on travel time, we only need a plain CH without any further adaptions.
Hence, the upper bound on the travel time is calculated in at most 10ms for queries with
a rank of 224. For the upper bound on the driving time, we need the adaptions explained
in Section 4.1. These slow down the calculation for higher ranks compared to the plain CH
and hence, 100ms are needed for queries with rank of 224.

In Figure 5.2(b), there is a rank 215-query where the algorithm runs for about 100ms for
the upper bound on the driving time. The algorithm could not find a feasible route when
waiting was allowed everywhere. Hence, the algorithm searched the whole graph, which
results in a long running time, comparable to the running time of a rank 224-query. For
this query, an upper bound on travel time could not be calculated either, and none of the
algorithms we evaluate in the following found any solution.

5.4.2 Quality

We now evaluate how often the bounds were found and how often they are equal to each
other. We begin with the upper bound on the travel time. Table 5.4 shows the percentage
of the queries, where the upper bound on the travel time was found. For all queries of rank
221 and less, independent of the test set, 99% of the queries yielded an upper bound. For
test sets 1 – 3, the percentage of upper bounds found decreases with increasing rank. In
test set 1, the horizon contains Monday to Tuesday morning, whereas in test sets 2 and 3
the weekend is included. Hence, driving bans of all countries in the road network apply for
test sets 2 and 3 and the bound calculation fails more often.

Test set 4 contains only Monday to Tuesday. Although most routes in test set 4 lead
through Switzerland or Austria, where a night driving ban applies, the upper bound on
travel time is always calculated successfully.

For the upper bound on driving time, there is exactly one query in test sets 1 – 3, where
no upper bound on driving time could be calculated (see the outlier in the section above).
In test set 4, the upper bound on driving time was always successfully calculated.

Table 5.5 shows the percentage of the queries, where the upper bound on the travel time is
equal to the upper bound on the driving time. In these cases, there is exactly one solution
to output. For short queries, this bound-checking is often successful and thus saves a lot of

33

5. Experiments

Table 5.4: Percentage of queries, where the upper bound on travel time was calculated
successfully.

Test set Rank
212 213 214 215 216 217 218 219 220 221 222 223 224

Test set 1 100 100 100 99 100 100 99 99 99 100 98 99 99
Test set 2 100 100 100 99 100 100 99 99 99 100 98 95 87
Test set 3 100 100 100 98 100 100 98 99 98 99 93 78 64
Test set 4 100 100 100 100 100

Table 5.5: Percentage of the queries, where both upper bunds exist and where the upper
bound on the travel time is equal to the upper bound on the driving time.

Test set Rank
212 213 214 215 216 217 218 219 220 221 222 223 224

Test set 1 99 100 100 97 99 99 96 97 96 96 92 85 87
Test set 2 99 100 100 97 98 98 94 93 84 78 76 67 51
Test set 3 98 98 98 96 98 98 92 92 82 70 63 46 32
Test set 4 100 55 52 48 26

calculation time, as we will see in the following sections. However, for queries from test set
3 and 4 with a rank greater than or equal to 221, in over 30% the bounds are unequal or
could not be calculated. For ranks of 223 and greater, even over 50% are unequal or could
not be calculated. Clearly, the complexity of the queries increases with the rank. Also, the
complexity of the queries seems to increase with the test set number.

We now evaluate the margin between the upper bound on the travel time (tmax
travel, t

min
driving)

and the upper bound on the driving time (tmin
travel, t

max
driving). In the following, we only consider

queries, where both bounds were found and deviate from each other. In Figures 5.3(a)–
5.3(d), for each query and its corresponding upper bounds, a point at (tmax

travel−tmin
travel, t

max
driving−

tmin
driving) was inserted into the plot. We call tmax

driving − tmin
driving the driving time difference.

For test set 1 and 2, the Figures 5.3(a) – 5.3(b) show that in most cases, only a detour
of half an hour pays off. When accepting half an hour additional driving time, the travel
time can be reduced by up to 20 hours. In these cases, road-closures have a much greater
influence on the travel time, than on the driving time. Often, the reason for short detours
are only local road-closures, which can be avoided with minor additional driving time, in
contrast to country-wide driving bans.

Also for test set 3, a rather small detour yields a shorter travel time. However, the majority
of queries in test set 3 have a driving time difference of under one hour. There is also a query,
where a detour of over 6 hours reduces the travel time. The query corresponding to this
data point is quite similar to the queries in test set 4, where a detour around Switzerland
through France reduces the travel time. In test set 4, longer detours of several hours are
more common. As many of the guard-independent routes lead through Switzerland or
Austria, a detour avoiding both countries can reduce the travel time, although the driving
time rises drastically. See Section 5.5.3 for examples queries, where this effect occurs.

5.5 Detour-free route algorithms
In this section, we evaluate the running time of the shortest detour-free route algorithms
using the speed up techniques presented in Chapter 4. We also evaluate the cardinality

34

5.5. Detour-free route algorithms

0 5 10 15 20

0.
0

1.
0

2.
0

3.
0

∆
dr
iv
in
g
tim

e
[h
]

∆ travel time [h]
(a) Test set 1.

0 5 10 15 20

0.
0

1.
0

2.
0

3.
0

∆
dr
iv
in
g
tim

e
[h
]

∆ travel time [h]
(b) Test set 2.

0 5 10 15 20

0
1

2
3

4
5

6
∆

dr
iv
in
g
tim

e
[h
]

∆ travel time [h]
(c) Test set 3.

0 5 10 15 20

0
1

2
3

4
5

6
∆

dr
iv
in
g
tim

e
[h
]

∆ travel time [h]
(d) Test set 4.

Figure 5.3: Each point in the figures correspond to exactly one query. Given upper bounds
(tmax

travel, t
min
driving) and (tmin

travel, t
max
driving), a point at (tmax

travel − tmin
travel, t

max
driving − tmin

driving)
was inserted into the plot.

35

5. Experiments

Table 5.6: Percentage of the queries without successfully calculated upper bounds or unequal
bounds, where the calculation finished without a timeout after half an hour
calculation time. Empty cells indicate, that there was no query where both
upper bounds were not found or unequal.

Test set Rank
212 213 214 215 216 217 218 219 220 221 222 223 224

Test set 1 100 66 100 100 100 100 100 100 100 69 0
Test set 2 100 66 100 100 100 100 100 100 100 59 0
Test set 3 100 100 100 80 100 100 100 100 100 82 71 46 29
Test set 4 0 16 17 0

and the distribution of the resulting labels per query. Then we present the results and the
corresponding routes of two example queries in greater detail.

5.5.1 Running time

In this section, we evaluate the running time of the detour-free route algorithm. For the
measurements, we made use of all the speed up techniques presented in Chapter 4. The
planning horizon of the CH begins at the departure of the queries and ends 24 hours later.
We stopped the calculation after half an hour per query, if it was not already finished. For
the running time of the algorithm for shortest detour-free routes, we only evaluate the
running time of the queries, where the upper bounds were not successfully calculated or
where the upper bounds are unequal. If for a query the upper bounds were successfully
calculated and are equal, then the resulting label set contains only one label and the
detour-free algorithm is not started.

Table 5.6 shows the percentage of the queries without successfully calculated upper bounds
or unequal bounds, where the calculation finished without a timeout. The algorithm timed
out for all rank 224-queries, except for queries of test set 3. In test set 4, the algorithm
timed out in over 80% of the queries. Hence, the queries of test set 4 seem to be more
difficult than the queries of the same rank from the other test sets.

For the calculation times for queries with equal bounds, see the section above. Figure 5.4
depicts the running time of the detour-free route algorithm for queries in test sets 1 – 4,
where an upper bound was not successfully calculated or where the bounds were unequal.
The running time of the queries which timed out are not included. The measurements
include the time needed for the calculation of the upper bounds. Apart from the outliers in
the test set 3, the computation time is less than one second for queries of rank 220 and less.
The computation slows down drastically for greater ranks. In test set 4, the calculation
time is slightly higher than for the other test sets.

The heuristic algorithms never timed out for any of the queries. The running time of
Heuristic 1 and 2 is shown in Figure 5.5 and in Figure 5.6 respectively. With a maximum
running time over all queries from all test sets of 10.4 seconds, Heuristic 1 is clearly faster
than the shortest detour-free route algorithm. Heuristic 2 (see Figure 5.6) improves the
maximum calculation time to 2.8 seconds. The running time of both heuristics increase
drastically for a rank of 221 and higher. For queries of small rank, the algorithms spend
little time searching in the core, while for queries of higher rank, this time increases.

5.5.2 Solution quality

The detour-free route algorithm calculates a set of labels for each query. We only evaluate
the subset of the queries in the test sets, where more than one label is returned by the

36

5.5. Detour-free route algorithms

1
10

0
10

00
0

212 214 216 218 220 222 224

m
s

Rank
(a) Test set 1.

1
10

0
10

00
0

212 214 216 218 220 222 224

m
s

Rank
(b) Test set 2.

1
10

0
10

00
0

212 214 216 218 220 222 224

m
s

Rank
(c) Test set 3.

1
10

0
10

00
0

212 214 216 218 220 222 224

m
s

Rank
(d) Test set 4.

Figure 5.4: Running time of the detour-free route algorithm for queries, where an upper
bound was not successfully calculated or where the bounds were unequal.
Running times of the algorithm for queries which timed out are not included.

37

5. Experiments

0.
5

5.
0

50
.0

50
0.
0

212 214 216 218 220 222 224

m
s

Rank
(a) Test set 1.

0.
5

5.
0

50
.0

50
0.
0

212 214 216 218 220 222 224

m
s

Rank
(b) Test set 2.

1
10

10
0

10
00

212 214 216 218 220 222 224

m
s

Rank
(c) Test set 3.

20
0

50
0

10
00

20
00

212 214 216 218 220 222 224

m
s

Rank
(d) Test set 4.

Figure 5.5: Running time of Heuristic 1 for queries, where an upper bound was not suc-
cessfully calculated or where the bounds were unequal.

38

5.5. Detour-free route algorithms

0.
5

5.
0

50
.0

50
0.
0

212 214 216 218 220 222 224

m
s

Rank
(a) Test set 1.

0.
5

5.
0

50
.0

50
0.
0

212 214 216 218 220 222 224

m
s

Rank
(b) Test set 2.

0.
5

5.
0

50
.0

50
0.
0

212 214 216 218 220 222 224

m
s

Rank
(c) Test set 3.

20
0

40
0

80
0

14
00

212 214 216 218 220 222 224

m
s

Rank
(d) Test set 4.

Figure 5.6: Running time of Heuristic 2 for queries, where an upper bound was not suc-
cessfully calculated or where the bounds were unequal.

39

5. Experiments

algorithm. The detour-free route algorithm always calculated less than 5 labels for each
query. Indeed, most queries only yielded 2 labels. For each test set and rank, there is
only at most one query, which yielded more than 2 labels. For a rank of 212, there was
a query in each test set, were 5 labels were returned by the detour-free route algorithm.
The destination vertex of the query was behind a downtown area, which is temporarily
closed for trucks. Driving around the temporarily closed area yields the earliest arrival
with a longer driving time. In addition, there were routes which led only partly around the
temporarily closed area and hence saved driving time, but increased travel time compared
to the route, which led completely around the temporarily closed area.

Heuristic 1 performed well compared to the exact detour-free routes: There was not a
single difference in any of the test cases. However, the detour-free route algorithm timed
out often. Hence, the data basis on which we can compare the detour-free route algorithm
and Heuristic 1 is rather small.

For a detailed evaluation of the margins between the resulting labels of the queries, we
use plots similar to the ones used for the evaluation of the upper bounds. Given a s-d-
query, the algorithms return a set of labels R. Two labels (t1travel, t

1
driving), (t2travel, t

2
driving) ∈

R, t1travel < t2travel are consecutive in R, if there are is no label in between, i.e. there is no
label (t3travel, t

3
driving) in R such that

1. t3travel ∈ [t1travel, t
2
travel] and

2. t3driving ∈ [t2driving, t
1
driving].

For each query, Figures 5.7(a) – 5.7(d) show a data point (t∆travel, t
∆
driving) for each two

consecutive labels (t1travel, t
1
driving), (t2travel, t

2
driving) of a query, where

1. t1travel < t2travel,
2. t∆travel := t1travel − t2travel and
3. t∆driving := t2driving − t1driving.

In the following, the values t∆travel and t∆driving are called travel time differences and driving
time differences.

The plots for test set 1 and 2 contain 32 and 31 data points, respectively. The data points
originate from 18 queries which yielded more than only 1 label. In the plot for test set 3,
there are 93 points of 49 queries, and in the plot for test set 4, there are 74 points of 44
queries.

For test sets 1 and 2, there was no query, where a detour of over 20minutes reduced the
travel time. The reason, why only a short duration of driving time can reduce the travel
time significantly, was already described in the Section 5.4.2.

In contrast, for test set 3, there are queries, where a detour of multiple hours can decrease
the arrival time by only minutes. In test set 3, 33 data points in the plot have an abscissa
of more than 1 hours or an ordinate of more than 1 hour. Hence, there are 33 pairs of
consecutive labels, which have at least a 1-hour difference in driving time and in travel
time. The same applies for 48 data points of test set 4.

We now compare the results of Heuristic 1 to the results of Heuristic 2. The results of
Heurstic 2 are very similar to the results of Heuristic 1: In test set 1, 2 and 4, Heuristic 2
did always find exactly the results, Heuristic 1 found. In test set 3, there are five queries,
where the resulting label sets differ. The queries have a rank of 221 and higher. In two of
the five queries, the number of resulting labels was identical. In both cases, a single label
calculated by Heuristic 2 deviates by approximately 1 – 2% in travel time and driving time
from its counterpart calculated by Heuristic 1.

40

5.5. Detour-free route algorithms

0 2 4 6 8 10 12 14

0.
00

0.
10

0.
20

∆
dr
iv
in
g
tim

e
[h
]

∆ travel time [h]
(a) Test set 1.

0 2 4 6 8 10 12 14

0.
00

0.
10

0.
20

∆
dr
iv
in
g
tim

e
[h
]

∆ travel time [h]
(b) Test set 2.

0 2 4 6 8 10 12 14

0
1

2
3

4
5

6
∆

dr
iv
in
g
tim

e
[h
]

∆ travel time [h]
(c) Test set 3.

0 2 4 6 8 10 12 14

0
1

2
3

4
5

6
∆

dr
iv
in
g
tim

e
[h
]

∆ travel time [h]
(d) Test set 4.

Figure 5.7: Results of Heuristic 1. For two consecutive labels (t1travel, t
1
driving), (t2travel, t

2
driving)

in the resulting set of a query with t1travel < t2travel, there is a point (t2travel −
t1travel, t

1
driving − t2driving) in the plot with the corresponding test set.

41

5. Experiments

In the other three queries, Heuristic 2 found exactly one label less than Heuristic 1. All
three labels missing are the labels with maximum travel time and minimum driving time.
The missing labels all have a travel time which is several hours longer than the travel time
of their consecutive labels. The driving time differs by 2 – 4 hours. Figure B.1 shows the
travel time and driving time differences for the labels calculated by Heuristic 2. As is it
does not contain new information compared to Figure 5.7, it can be found in the Appendix.

5.5.3 Example queries

In the following, we discuss two example queries in detail. We show their resulting label set
and present the routes on a map. Using the detour-free route algorithm, the first example
query yields two labels, whereas the second example query yields six labels.

5.5.3.1 Example 1

We evaluate a rank 223-query from Pettenasco, Italy to Erlangen, Germany, with a start
time at Friday, 6th July 2018 at 18.00. The detour-free route algorithm returns two labels,
whose corresponding routes are shown in Figure 5.8 in red and blue. Parking lots where
the driver waits are represented as markers in the route’s color.

Using the red route, the driver arrives in Erlangen after 11 hours and 28minutes of driving
and a waiting time of 7 hours and 26minutes. The driver waits at a parking lot, where he
arrives at 21.34 in Switzerland. The waiting time is needed because of the night driving
ban in Switzerland starting at 22.00. The driver departs from the parking lot at exactly
05:00 on Saturday, which is when the night driving ban is over again. Then he drives to
Erlangen without further waiting time.

Using the blue route, the driver arrives in Erlangen after 14 hours and 9minutes of driving
and a waiting time of 4 hours and 20minutes. The driver waits at a parking lot, where he
arrives at 00.38 on Saturday, 7th July, in Italy at the border to Austria. The waiting time
is needed because of the night driving ban in Austria which starts at 22.00. The driver
departs from the parking lot such that he arrives at the Austrian border at exactly 05.00,
which is when the night driving ban is over again. Then he drives to Erlangen without
further waiting time.

The red route has a lower driving time, but a total travel time of 18 hours and 54 minutes
compared to 18 hours and 29 minutes, hence there is a 25minutes difference. Using the
blue route, the driver is able to drive in Italy until 00.38. Using the red route, the driver
can only drive until 21.34. When the night driving bans in Switzerland and Austria are
over at 05.00, the driver on the blue route is already nearer to his destination compared
to the driver on the red route and hence, the driver on the blue route arrives earlier in
Erlangen, although he has a longer driving time.

5.5.3.2 Example 2

We evaluate a rank 222-query from Milano, Italy to Freiburg im Breisgau, Germany, with a
start time at Monday, 2nd July 2018 at 21.00. The detour-free route algorithm returns six
labels as shown in Table 5.7, whose corresponding routes are shown in Figures 5.9(a)–5.9(e).

Consider route number 1 in Figure 5.9(a): The map shows that the driver is routed from
Italy via France to Germany to avoid the night driving ban in Switzerland and in Austria.
Hence we get the earliest arrival compared to the other routes, but the driving time is the
highest of all routes.

As we can see in the other figures, it is possible to drive through Switzerland, but then
the driver has to wait near the Swiss border until the night driving ban in Switzerland

42

5.5. Detour-free route algorithms

Figure 5.8: The two routes of a rank 223-query from Pettenasco, Italy to Erlangen, Germany.
The start is at the grey marker, the destination is at the black marker. The red
and blue markers indicate the location of parking lots, where the driver waits.

Table 5.7: Travel times and driving times for the resulting labels of the rank 222-query in
Figure 5.9.

route figure color travel time (hh:mm:ss) driving time (hh:mm:ss)

1 5.9(a) red 11:26:14 11:26:14
2 5.9(b) red 12:00:42 10:38:16
3 5.9(b) blue 13:11:34 10:32:36
4 5.9(c) red 13:16:00 06:33:53
5 5.9(c) blue 15:26:09 06:24:38
6 5.9(c) magenta 15:26:49 06:21:35

43

5. Experiments

is over at 05.00. This increases the travel time, but yields a route with a lower driving
time. However, there are multiple routes through Switzerland. With increasing route
number as in Table 5.7, the driver gets nearer to his destination before he waits at the
Swiss border, but he has to drive a greater detour. This effect can be seen on a large-scale
in Figures 5.9(a) – 5.9(c), but also on a much smaller scale:

Consider Figure 5.9(d). The driver arrives from the south with either the red, blue or
magenta route. The driver can now drive along on the highway where there is a temporary
road-closure because of which he had to wait at the start location (magenta route). In
contrast, the driver can also leave the highway to avoid the guarded segment completely
(red route).

Another possibility is the blue route: The driver leaves the highway just before the first
highway segment begins where the road-closure applies. Then he waits at a nearby parking
lot (blue marker) until the following highway segment opens at 07.00 and the driver enters
the highway again. The driver then has a higher driving time due to the detour to the
parking lot, but when the segment opens, he already has skipped a short closed highway
segment. In comparison to the magenta route where the driver does not leave the highway,
the driver is about one minute nearer to his destination.

Apart from the deviations described here, the example routes sometimes have other minor
deviations, as we can see in Figure 5.9(e). We do not discuss these here as they only have a
minor impact on the travel time and driving time compared to the deviations shown above.

44

5.5. Detour-free route algorithms

(a) Route 1 without waiting times. (b) Route 2 and 3.

(c) Route 4, 5 and 6. (d) Closeup of a difference of route 4, 5 and 6.

(e) Closeup of a difference of route 4, 5 and
6. The magenta route is completely concealed
by the blue route.

Figure 5.9: The six routes of a rank 222-query from Milano, Italy to Freiburg im Breisgau,
Germany. The start is at the grey marker, the destination is at the black
marker. The colored markers indicate the location of parking lots, where the
driver waits.

45

6. Conclusion

We summarize the results obtained in the thesis and give a recommendation for practical
usage. Thereafter, we give an outlook for future work in this topic.

6.1 Summary
In this thesis, we considered route planning with temporary road closures, where a graph
has guarded edges and where waiting is only allowed at parking lot vertices or at the start
vertex of a query. We showed that calculating mathematically shortest routes is NP-hard
and does not satisfy the demand of route planning in practice.

We introduced the detour-free route model, which defines the properties of routes that yield
reasonable results. Based on this definition, we developed an algorithm that calculates all
Pareto-optimal detour-free routes in terms of travel time and driving time.

Next we focused on speed up techniques for the detour-free route algorithm. We adapted
the Contraction Hierarchy preprocessing, and presented a way to calculate upper bounds
for the results of a query. These can be used for further speeding up the running time of
the algorithm, or even completely avoiding a costly computation. We specified heuristics,
which answer queries in several seconds with good quality.

From a practical point of view, it may suffice to calculate the upper bounds on travel time
and on driving time and return these as the answer to a query. The bounds-calculation
has acceptable performance and in the majority of the queries, the bounds are successfully
calculated. Often, there is only one Pareto-optimal result. In the other case of multiple
resulting labels, the upper bounds correspond to at least two results: The result with the
earliest arrival time, and with the lowest driving time.

6.2 Future work
First of all, improving the running time of the detour-free route algorithm and the heuristics
could be possible. In particular, speeding up the search in the core is a topic, where
additional time should be invested in. Adapting known speed up techniques might be
sufficient for this.

Furthermore, a method could be developed, where periodical road-closures are taken into
account, without computing a whole new Contraction Hierarchy for each new planning

47

6. Conclusion

horizon. This method can be used for weekend and night driving bans. However, not all
driving bans are perfectly regular. There are driving bans on holiday like easter, which
follow complex rules.

A possibility is to develop a customizable version of the Contraction Hierarchy presented in
this thesis. Then real-time information about road-closures due to accidents could be used.
Also the entrances to overcrowded parking lots at the highway could be closed depending
on real-time data.

As many road-closures affect only trucks, it also seems to be rational to integrate a truck
driver scheduling algorithm. Then the legal driving and rest periods of truck drivers could
be taken into account.

48

Bibliography

[Arm18] Donald Armour, editor. European Road Freight Guide. Freight Transport
Association Limited, 23rd edition, April 2018.

[BDG+15a] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann,
Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck.
Route planning in transportation networks. Technical report, ArXiv e-prints,
2015.

[BDG+15b] Moritz Baum, Julian Dibbelt, Andreas Gemsa, Dorothea Wagner, and Tobias
Zündorf. Shortest feasible paths with charging stops for battery electric
vehicles. In Proceedings of the 23rd SIGSPATIAL International Conference
on Advances in Geographic Information Systems, SIGSPATIAL ’15, pages
44:1–44:10, New York, NY, USA, 2015. ACM.

[BGSV13] Gernot Veit Batz, Robert Geisberger, Peter Sanders, and Christian Vetter.
Minimum Time-Dependent Travel Times with Contraction Hierarchies. ACM
Journal of Experimental Algorithmics, 18(1.4):1–43, April 2013.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, Dec 1959.

[Dre69] Stuart E. Dreyfus. An Appraisal of Some Shortest-Path Algorithms. Operations
Research, 17(3):395–412, 1969.

[GSSD08] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling.
Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road
Networks. In Proceedings of the 7th Workshop on Experimental Algorithms
(WEA’08), volume 5038 of Lecture Notes in Computer Science, pages 319–333.
Springer, June 2008.

[Han80] Pierre Hansen. Bicriterion path problems. In Günter Fandel and Tomas Gal,
editors, Multiple Criteria Decision Making Theory and Application, pages
109–127, Berlin, Heidelberg, 1980. Springer Berlin Heidelberg.

[Kar72] Richard M Karp. Reducibility among combinatorial problems. In Complexity
of computer computations, pages 85–103. Springer, 1972.

[LHDZ17] Lei Li, Wen Hua, Xingzhong Du, and Xiaofang Zhou. Minimal on-road time
route scheduling on time-dependent graphs. Proc. VLDB Endow., 10(11):1274–
1285, August 2017.

[OR89] Ariel Orda and Raphael Rom. Traveling without Waiting in Time-Dependent
Networks Is NP-hard. March 1989.

[OR91] Ariel Orda and Raphael Rom. Minimum Weight Paths in Time-Dependent
Networks. Networks, 21:295–319, 1991.

[Str17] Ben Strasser. RoutingKit. GitHub https://github.com/RoutingKit/
RoutingKit/, November 2017. Commit 4342bfd.

49

https://github.com/RoutingKit/RoutingKit/
https://github.com/RoutingKit/RoutingKit/

Appendix

51

6. Appendix

10
0

50
0

20
00

10
00

0

212 214 216 218 220 222 224

µ
s

Rank
(a) Running time for the upper bound on travel time
for test set 2.

50
50

0
50

00
10

00
00

212 214 216 218 220 222 224

µ
s

Rank
(b) Running time for the upper bound on driving
time for test set 2.

10
0

50
0

20
00

10
00

0

212 214 216 218 220 222 224

µ
s

Rank
(c) Running time for the upper bound on travel time
for test set 3.

50
50

0
50

00
10

00
00

212 214 216 218 220 222 224

µ
s

Rank
(d) Running time for the upper bound on driving
time for test set 3.

10
0

50
0

20
00

10
00

0

212 214 216 218 220 222 224

µ
s

Rank
(e) Running time for the upper bound on travel time
for test set 4.

50
50

0
50

00
10

00
00

212 214 216 218 220 222 224

µ
s

Rank
(f) Running time for the upper bound on driving time
for test set 4.

Figure A.1: Running time for the upper bounds for the test sets 2 – 4. The measurements
for test set 1 are shown in Figure 5.2.

52

0 2 4 6 8 10 12 14

0.
00

0.
10

0.
20

∆
dr
iv
in
g
tim

e
[h
]

∆ travel time [h]
(a) Test set 1.

0 2 4 6 8 10 12 14

0.
00

0.
10

0.
20

∆
dr
iv
in
g
tim

e
[h
]

∆ travel time [h]
(b) Test set 2.

0 2 4 6 8 10 12

0
1

2
3

4
5

6
∆

dr
iv
in
g
tim

e
[h
]

∆ travel time [h]
(c) Test set 3.

0 2 4 6

0
1

2
3

4
5

∆
dr
iv
in
g
tim

e
[h
]

∆ travel time [h]
(d) Test set 4.

Figure B.1: Results of Heuristic 2. For two consecutive labels (t1travel, t
1
driving), (t2travel, t

2
driving)

in the resulting set of a query with t1travel < t2travel, there is a point (t2travel −
t1travel, t

1
driving − t2driving) in the plot with the corresponding test set.

53

	Contents
	1 Introduction
	1.1 Related Work
	1.2 Contribution
	1.3 Outline

	2 Preliminaries
	2.1 Notation and basic definitions
	2.2 Pareto-optimality and Pareto-sets
	2.3 Shortest path algorithms

	3 Models and Algorithms
	3.1 Exact model
	3.1.1 Cardinality of the Pareto-set
	3.1.2 Complexity
	3.1.3 Algorithm description

	3.2 Allowing waiting at every vertex
	3.2.1 Algorithm description
	3.2.2 Implementation details
	3.2.3 Complexity

	3.3 Detour-free route model
	3.3.1 Algorithm description
	3.3.2 Implementation details

	4 Speeding up shortest detour-free route calculation
	4.1 Contraction Hierarchy
	4.1.1 CH-Preprocessing for shortest detour-free routes

	4.2 Upper bounds
	4.2.1 Upper bound on travel time
	4.2.2 Upper bound on driving time

	4.3 Heuristics
	4.3.1 Heuristic 1
	4.3.2 Heuristic 2

	5 Experiments
	5.1 Road network
	5.2 Test sets
	5.3 Contraction Hierarchy Preprocessing
	5.4 Bounds
	5.4.1 Running time
	5.4.2 Quality

	5.5 Detour-free route algorithms
	5.5.1 Running time
	5.5.2 Solution quality
	5.5.3 Example queries
	5.5.3.1 Example 1
	5.5.3.2 Example 2

	6 Conclusion
	6.1 Summary
	6.2 Future work

	Bibliography
	Appendix

