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Abstract

There are many problems of geometric nature that are complete in the complexity
class ∃R. Their hardness is often shown by reduction from one of the first problems
shown to be complete in ∃R, SimpleStretchability. Until now, the underlying
geometry was almost always assumed to be Euclidean. The purpose of this thesis
is to examine what happens to the complexity of these problems when considering
hyperbolic geometry instead. For that, we start with SimpleStretchability, define
the hyperbolic problem version HyperbolicSimpleStretchability and show that
the hyperbolic and Euclidean versions are equivalent.

One problem where this change of geometry was already considered is the problem of
recognizing unit disk graphs. In the Euclidean plane, the problem is well-researched
and proven to be ∃R-complete. In the hyperbolic plane, the problem was established
to be in ∃R as well as NP-hard. In this thesis, we add that recognizing hyperbolic
unit disk graphs is ∃R-hard as well.

Additionally, we consider other Euclidean geometric problems that are proven to be
∃R-complete via reduction from SimpleStretchability. We want to encourage
further research about their hyperbolic variants motivated by the results shown for
hyperbolic unit disk graphs. For that, we provide a proof framework for showing
∃R-hardness for their hyperbolic problem versions and apply that framework for the
recognition problem of segment graphs. We also present additional problems that
could have interesting hyperbolic counterparts.

Deutsche Zusammenfassung

In dieser Arbeit betrachten wir geometrische Probleme, die für die Komplexitätsklasse
∃R vollständig sind. Die beiden Probleme, mit denen wir uns dabei am meisten
befassen, sind SimpleStretchability und die Erkennung von Unit-Disk-Graphen.
Für diese Probleme ist bereits bekannt, dass sie ∃R-vollständig sind, wenn man
Einbettungen in die euklidische Ebene betrachtet. Wir ändern diese Einbettungen
so, dass wir die hyperbolische Ebene statt der Euklidischen dafür nutzen.

Wir zeigen, dass die so entstehenden Problemvarianten HyperbolicSimpleStretch-
ability und Recog(HUDG) ebenfalls ∃R-vollständig sind. Für SimpleStretcha-
bility erlangen wir ein noch stärkeres Ergebnis: Die euklidischen und hyperbolischen
Problemversionen sind nicht nur gleich schwer, sondern sogar äquivalent.

Dieses Resultat nutzen wir, um die ∃R-Schwere von Recog(HUDG) zu zeigen,
wobei vorher bereits bekannt war, dass es NP-schwer und in ∃R ist. Darüber hinaus
bauen wir eine Beweisidee, die nicht nur für Unit-Disk-Graphen, sondern auch für
andere geometrische ∃R-vollständige Probleme nutzbar ist. Mit dieser Beweisidee
kann für viele andere hyperbolische Problemvarianten ebenfalls ∃R-Schwere gezeigt
werden, was wir am Beispiel von Segmentgraphen durchführen. Damit und mit der
Einführung von weiteren Kandidaten für das Framework wollen wir die Forschung
an weiteren hyperbolischen Problemvarianten ermutigen.
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1. Introduction

In recent years, many problems in different contexts were found to be complete for the
complexity class ∃R. The class was introduced by Schaefer [Sch09] and is defined via
the decision problem ETR. For a given formula of the Existential Theory of the Reals,
consisting of real variables in equations and inequalities that are connected with logical
operators, a set of real variables fulfilling this formula has to be found. In a way, ETR can
be seen as a real number variant of SAT and ∃R as a real number extension of NP. An
overview of the class and some of its complete problems is given in [Bie20].

One of the contexts that includes many ∃R-complete problems is geometry, in particular
recognition problems of intersection graphs. Here, the vertices of a graph G = (V,E) are
represented by geometric objects that intersect if and only if the corresponding vertices
are adjacent. Two of the first problems of this type that were considered in the context of
∃R are the recognition problems of unit disk and segment graphs. For unit disk graphs,
Kang and Müller [KM12] give a NP-hardness proof that also shows ∃R-hardness. For
segment graphs, Schaefer himself [Sch09] and Matoušek [Mat14] show ∃R-hardness via
reduction from the same problem Kang and Müller used, SimpleStretchability where
we are given a pseudoline arrangement and have to decide if there is a homeomorphic
arrangement of lines.

Until now, in the context of ∃R, the underlying geometry of those problems was almost
always considered to be Euclidean. We ask the question what happens to the problems and
their complexity when we consider hyperbolic geometry instead. This is the purpose of this
thesis: To examine ∃R and its problems of geometric nature in hyperbolic geometry instead
of Euclidean geometry. One of the properties of hyperbolic geometry is that in small areas,
its behaviour is similar to Euclidean geometry. This indicates that the hyperbolic versions
are at least as hard as the Euclidean ones, as Euclidean structures are easily scalable
to small areas where they can be transformed to hyperbolic geometry. We exploit this
observation at multiple points in the thesis.

We start by defining a hyperbolic variant of the SimpleStretchability problem whose
Euclidean version not only serves as the starting point for the hardness proofs of recognizing
unit disk and segment graphs, but for many more geometric problems in ∃R. We present
an operation that manages to scale down simple hyperbolic line arrangements to arbitrarily
small areas as well. Using that operation, we conclude one of the main results of our thesis:
The hyperbolic and Euclidean SimpleStretchability problems are equivalent, meaning
that a combinatorial description of a pseudoline arrangement is realizable in the Euclidean
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1. Introduction

plane if and only if it is realizable in the hyperbolic plane. This is rather surprising as in
general, the hyperbolic plane allows far more possibilities than the Euclidean one.

As a natural next step, we consider the problem of recognizing hyperbolic unit disk graphs.
Hyperbolic unit disk graphs were first established by Papadopoulos et al. [PKBV10] in a
probabilistic setting. Random hyperbolic unit disk graphs, also known as hyperbolic random
graphs, have a hierarchical structure that is very convenient for testing algorithms. In recent
years, there have been results for the graph class of intersection graphs of hyperbolic unit
as well, by Dohse [Doh22], Bläsius et. al [BFKS21] and Kisfaldu-Bak [KB20]. Additionally,
Dohse also considers the complexity of the problem of recognizing hyperbolic unit disk
graphs and shows that they are in ∃R as well as NP-hard, but leaves the question open if
they are also ∃R-hard. We give an answer by showing ∃R-hardness, using the equivalence
of simple hyperbolic and Euclidean line arrangements as well as the ∃R-hardness proof for
recognizing Euclidean unit disk graphs.

Motivated by the results for hyperbolic unit disk graphs, we then generalize our hardness
proof to be applicable for more geometric ∃R-complete problems. As an example, we define
the hyperbolic version of recognizing segment graphs and show its ∃R-hardness with our
proof framework. This hopefully encourages a discussion about considering hyperbolic
variants for more geometric problems. We present a few additional candidates that could
also be considered in a hyperbolic context.

The thesis is structured in the following way: In Chapter 2, we explain the basics of
hyperbolic geometry, complexity and graph theory that are used throughout this thesis.
Chapter 3 then deals with line arrangements and the Stretchability problem. Here we
introduce the hyperbolic scaling operation and use it to show that the hyperbolic version
of SimpleStretchability is equivalent to its Euclidean variant and thus ∃R-complete.
We use that in Chapter 4 to show that, while not being equivalent to its Euclidean variant,
the problem of recognizing hyperbolic unit disk graphs is also ∃R-complete. Finally, we
formalize the ideas of that proof in Chapter 5 to introduce a proof framework for showing
∃R-hardness for hyperbolic variants of other geometric ∃R-complete problems and apply
it on the problem of recognizing segment graphs. Additionally, we present a few other
problems that are likely to have hard hyperbolic variants as well.

2



2. Preliminaries

This thesis mainly touches three different areas of theoretical computer science and math-
ematics. The first one is complexity theory and the complexity class ∃R. We also need
geometry and the differences between Euclidean and hyperbolic geometry, and graph theory
and certain graph problems like recognizing unit disk graphs. In this chapter, we introduce
these areas and the basic concepts needed throughout this thesis.

2.1. Complexity Theory
In complexity theory, the goal is to unite different problems into classes based on a defining
property, mostly time or space complexity. A complexity class thus is a set of problems
that have the same defining quality. The most commonly known complexity classes are
P and NP. Both classes contain problems based on their time complexity: P consists
of problems that are deterministically solvable in polynomial time, while NP allows non-
deterministic approaches. In this thesis, we work with a different class: The complexity
class ∃R, introduced by Schaefer [Sch09].

Complexity Class ∃R

In order to define ∃R, we first need to introduce the Existential Theory of the Reals. As
the name suggests, we consider first order sentences that are existentially quantified. The
variables represent real numbers that we combine into formulas via equations, inequalities
and logical connectors. Each equation and inequality has to be a polynomial over the
existentially qualified real variables. These equations and inequalities are then used in
logical formulas and connected with ∧, ∨ and ¬ to be evaluted. The Existential Theory
of the Reals is the set of all true sentences of type ∃x1, . . . , xn : p(x1, . . . , xn) where p is a
quantifier-free sentence over the signature {0, 1,+, ·, <,≤,=}. The corresponding decision
problem ETR is defined in the following way:

ETR:
Input: Formula ∃x1, . . . , xn : p(x1, . . . , xn) where p is a quantifier-free sentence over the
signature {0, 1,+, ·, <,≤,=} with connectives {∨,∧,¬}.
Problem: Are there real numbers x1, . . . , xn for which the sentence p is true?

An example of a sentence that belongs in the Existential Theory of the Reals is the following:

φ ≡ ∃x1, x2, x3 : (x1 + x2)x3 = 1 ∧ x1 < 0

3



2. Preliminaries

As (x1 + x2)x3 = 1∧ x1 < 0 is true for x1 = −1, x2 = 2, x3 = 1, among other solutions, the
sentence indeed is an ETR yes-instance. We can now define ∃R using ETR:

Definition 2.1 (∃R). ∃R is the set of all problems that are polynomially reducable to ETR.

In the context of the different complexity classes, ∃R lies between NP [Sch09] and
PSPACE[Tar98] where both subset relations are believed to be proper. ∃R consists of
many different problems from multiple contexts, including graph recognition problems like
recognizing unit disk graphs [KM12] or segment graphs [Mat14], [Sch09]. These problems
and many others use underlying geometric concepts that are mostly assumed to be of
Euclidean nature. In this thesis, we consider hyperbolic geometry instead, which we
introduce now.

2.2. Hyperbolic Geometry
When we think of geometry and the plane without further distinctions, we usually think
about Euclidean geometry. This is the intuitive model of geometry for humans and lines
up with our natural observations. However, it is not the only way to define consistent
geometric models. Another model, hyperbolic geometry, plays a large part in this thesis.

Euclidean geometry is formally defined using axioms to correctly describe human observa-
tions. One of these axioms, the parallel axiom, is the notion that for each line l and point
p with p /∈ l, there is exactly one line l′ parallel to l with p ∈ l′. Hyperbolic geometry is
defined in the same way using identical axioms, with the exception of the parallel axiom.
In hyperbolic geometry, it is negated: There are infinitely many lines l′ through p that are
parallel to l.

This results in a different kind of space where, for example, the area of a circle grows
exponentially in its radius, as opposed to quadratic growth in Euclidean space. Intuitively,
the hyperbolic plane includes exponentially more space than the Euclidean one. However,
when we only consider areas where points have small distances to each other, the differences
between the hyperbolic and the Euclidean plane become negligible. This observation plays
a key part in this thesis.

As we cannot accurately represent hyperbolic space, we rely on models that express the
hyperbolic plane in Euclidean space to observe the effects of hyperbolic geometry. Two of
the most commonly used models are the Poincaré Disk and the hyperboloid model.

Poincaré Disk Model

In this model, we first need to choose any point O of the hyperbolic plane, called the origin.
The hyperbolic plane is represented in Euclidean space as the interior of a unit disk D
around the point (0, 0) which represents the origin O. The boundary of the circle is not
part of the model and represents infinity. Points on the boundary are called ideal points.
Hyperbolic lines are either lines through the origin or the segment inside of D of a circle c.
This circle c has to be orthogonal to the bounding unit disk, meaning that the tangents
of c and D in their intersection points build a right angle. Hyperbolic circles always look
like Euclidean circles, although the center of the circle is not the same as the center of the
Euclidean circle if it is not the origin. In order to compute the distance of two points P,Q,
we define ideal points A,B that are the intersection points of the hyperbolic line with D
through P and Q The distance of P and Q now is given by the following formula:

dh(P,Q) = ln( de(A,Q), de(P,B))
de(A,P ), de(Q,B))
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2.2. Hyperbolic Geometry

O

Figure 2.1.: An exemplary arrangement of lines (green and black) and circles (red) in a
Poincaré disk (blue).

An arrangement of hyperbolic lines and circles in the Poincaré disk is given in Figure 2.1.

This is the model we mainly use in this thesis. It is intuitive for higher-level ideas as
the concepts of lines and circles are simple Euclidean structures that are easily usable.
However, we need an additional model for distance calculations as we need to represent
hyperbolic distances in ETR-formulas. This distance formula is too complex for that as
ETR formulas only allow polynomials. The additional model is the hyperboloid model:

Hyperboloid Model

In order to understand the hyperboloid model, we first introduce the concept of hyperboloids.
A hyperboloid h is a surface in 3-dimensional Euclidean space. It can either be one-
sheeted with characteristic formula x2/a2 + y2/b2 − z2/c2 = 1 describing the points (x, y, z)
that are on h for constants a, b and c. Or it can be two-sheeted with characterization
z2/c2 − x2/a2 − y2/b2 = 1. Geometrically, one-sheeted hyperboloids are the result of
rotating a hyperbola around one of its main axes while two-sheeted hyperboloids emerge
when rotating around the third axis. One-sheeted hyperboloids are a continouos surface
while two-sheeted hyperboloids consist of two separate surfaces.

In the hyperboloid model, the hyperbolic plane is represented by the surface of a hyperboloid
embedded in 3-dimensional Euclidean space (shown in Figure 2.2). A point (x, y, z) is
on the hyperboloid if z2 − x2 − y2 = 1 (also known as the Minkowski quadratic form).
This forms a two-sheeted hyperboloid, but we only use one sheet for our model. Thus, we
restrict the points to be on the upper sheet by having z > 0 as an additional restriction.
In this model, hyperbolic lines are obtained by intersecting planes that contain the origin
of the 3-dimensional space with the hyperboloid. As two points on the hyperboloid,
together with the origin, fully define such a plane and thus a line in our model, we can
describe the distance of these two points along the line. The distance formula is given by
dh(u, v) = arcosh(B(u, v)) where B is the Minkowski bilinear form:

((ux, uy, uz), (vx, vy, vz)) = uzvz − uxvx − uyvy

5



2. Preliminaries

hyperboloid h

Poincaré disk D

Figure 2.2.: Visualization of the hyperboloid model in relation to a Poincaré disk (Source:
[CYRL19]).

.

As described above, we use this model whenever we need to describe distance in the
hyperbolic plane by polynomials, as the distance formula is mostly a polynomial with an
additional arcosh as a last step. With a trick we describe later, this can be used in ETR
formulas to describe the hyperbolic distance between points.

2.3. Graph Theory
As ∃R includes many graph-related problems that are interesting for us, we also introduce
basics of graph theory. For us, a graph G = (V,E) is a pair of the vertex set V and the
edge set E ⊆ V × V , consisting of undirected edges. We denote the number of vertices
with n := |V | and the number of edges with m := |E|. As we work with geometric graph
recognition problems, we often need to embed graphs into either the Euclidean or the
hyperbolic plane. Formally, an embedding is a function f : V → P that maps each vertex
onto a point of the plane P where P can either be the Euclidean plane R2 or the hyperbolic
plane H2.

The main graph problem we consider in this thesis is the problem of recognizing unit disk
graphs:

Unit Disk Graphs

The problem of recognizing unit disk graphs, or more formally, intersection graphs of unit
disks, asks if a given graph G = (V,E) can be represented by unit disks in a given plane.
The disks each represent a vertex, and the arrangement of disks is a valid representation of
G if two hyperbolic lines intersect if and only if the corresponding vertices are adjacent. This
is equivalent to another characterization of the problem using the concept of embeddings
we introduced earlier: A graph G = (V,E) is a unit disk graph if there is an embedding
f : V → P into a plane P that fulfills {u, v} ∈ E ⇔ d(f(u), f(v)) ≤ 1. Depending on
which plane we choose for P, we get different versions of the problem:

6



2.3. Graph Theory

Figure 2.3.: Left: Euclidean embedding. Right: Hyperbolic embedding of the same graph
for some threshold distance R in the Poincaré disk model.

For P = R2, we get the problem of recognizing Euclidean unit disk graphs, RECOG(EUDG).
A Euclidean unit disk graph (EUDG) is a graph G = (V,E) that can be embedded into
the euclidean plane in a way that the distance between adjacent vertices is at most one
and the distance between non-adjacent vertices is more than one. The problem of deciding
whether a given graph is an EUDG is defined in the following way:

RECOG(EUDG):
Input: Graph G = (V,E)
Problem: Is there an embedding fe : V → R2 into the euclidean plane that fulfills
{u, v} ∈ E ⇔ de(fe(u), fe(v)) ≤ 1?

For P = H2, we similarly obtain the problem of recognizing hyperbolic unit disk graphs,
RECOG(HUDG). However, there is a difference: In the Euclidean case, it does not matter
how we choose the threshold distance as we can simply scale the embedding to any value.
In the hyperbolic case, choosing different threshold distances can result in different results
for a given graph, as there is no scaling operation that preserves the characteristics of
the embedding. Because of that, we do not fix a threshold distance R, but rather allow
different ones. It is sufficient for G to be considered a HUDG if there is one R for which G
can be embedded into H2. A hyperbolic unit disk graph, or HUDG, thus is a graph G that
has an embedding into the hyperbolic plane such that a threshold distance R exists where
exactly the adjacent vertices have hyperbolic distances smaller than R. The problem of
recognition hyperbolic unit disk graphs then is defined in the following way:

RECOG(HUDG):
Input: Graph G = (V,E)
Problem: Is there a radius R and an embedding into the hyperbolic plane fh : V → H2

that fulfills {u, v} ∈ E ⇔ dh(fh(u), fh(v)) ≤ R?

An embedding of a unit disk graph into Euclidean and hyperbolic space is given in Figure 2.3.

7



2. Preliminaries

The graph classes of Euclidean and hyperbolic unit disk graphs are well-researched. Relevant
results for us include that every EUDG is also a HUDG as shown by Dohse [Doh22], and
that there are HUDGs that have no representation via Euclidean unit disks. Dohse also
considers the decision problem of recognizing hyperbolic unit disk graphs and shows that it
is NP-hard and in ∃R. For the Euclidean counterpart, Kang and Müller show ∃R-hardness
[KM12] while ∃R-membership is stated multiple times, but as far as we know not yet
explicitly shown. Additionally, Bläsius et al. [BFKS21] introduce a subclass of HUDGs,
strongly hyperbolic unit disk graphs, that we consider in Chapter 4.

8



3. Hyperbolic SimpleStretchability

The goal of this thesis is to consider ∃R-complete problems of geometric nature in the context
of hyperbolic geometry and explore their complexity. As a starting point, we take a closer
look at one of the most fundamental problems contained in ∃R, SimpleStretchability.
Specifically, we discuss what happens to the realizability of pseudoline arrangements if we
change the underlying geometry from Euclidean to hyperbolic. SimpleStretchability is
special among the ∃R-complete problems because it was proven to be ∃R-complete before
∃R was established. Mnëv showed that the underlying mathematical concepts of ∃R and
SimpleStretchability are equivalent in his Universality Theorem [Mnë88]. Because
of that, there are many geometrical reductions from SimpleStretchability to other
problems such as recognizing unit disk graphs [KM12] and segment graphs [Mat14]. For
that reason, SimpleStretchability is the obvious problem to start with when shifting the
geometry from Euclidean to hyperbolic. We now define the problem in both the Euclidean
and hyperbolic version.

3.1. The SimpleStretchability Problem
In order to define the problem, we need the concept of pseudoline arrangements. A
pseudoline is a curve in Euclidean space that is x-monotone (intersects every vertical line
exactly once). An arrangement of lines or pseudolines is a concrete drawing of the lines in
the according plane. We call a pseudoline arrangement P stretchable or realizable if a line
arrangement L exists that is homeomorphic to P and say that L realizes P . A (pseudo)line
arrangement is called simple if the lines/pseudolines intersect pair-wise exactly once and in
each intersection point, only two lines meet. An example of a simple pseudoline arrangement
and a corresponding line arrangement is given in Figure 3.1. The corresponding decision
problem can be described in the following way:

SimpleStretchability:
Input: Simple arrangement P of pseudolines.
Problem: Does a line arrangement L exist that is homeomorphic to P?

3.1.1. Complexity of EuclideanSimpleStretchability

As mentioned above, Mnëv’s Universality Theorem shows ∃R-completeness of
SimpleStretchability in an indirect way: Mnëv connects an underlying concept of
pseudoline arrangements, rank-3 oriented matroids, with the underlying concept of ETR,

9



3. Hyperbolic SimpleStretchability

Figure 3.1.: A pseudoline and corresponding line arrangement of four lines.

semialgebraic sets. We do not go into detail here and do not define these concepts as there
is an alternative, more intuitive proof and it is not important for the rest of this thesis.
The Universality Theorem can be formulated in the following way:

Theorem 3.1 (Universality Theorem ([Mnë88])). Every semialgebraic set is stably equiva-
lent to the realization space of a rank-3 oriented matroid.

As the Universality Theorem has been proven before the complexity class ∃R was established,
the reduction from ETR to SimpleStretchability is not easy to grasp. The proof is highly
mathematical and uses advanced concepts. In order to establish a more straightforward
proof, Matoušek [Mat14] gives a more direct reduction from ETR via an intermediate
problem called OrderTypeRealizability which is basically the dual equivalent of
SimpleStretchability (lines correspond to points and vice versa). Both the mathematical
proof of Mnëv and the geometrical proof of Matoušek show the following theorem:

Theorem 3.2 ([Mat14]). EuclideanSimpleStretchability is ∃R-complete.

3.1.2. Combinatorial Description of Pseudoline Arrangements

There are several equivalent ways to encode the pseudoline arrangement, we use two of
those in this thesis: We can either specify the intersections of the lines or the regions that
the plane is divided into by the lines. Both versions are equivalent to each other as they
both uniquely define pseudoline arrangements and can be translated both ways.

We start with presenting the combinatorial description of a pseudoline arrangement L =
{l1, . . . , ln} via intersections, which follows an explanation from Matoušek [Mat14]. This
is the model we mainly use in Chapter 3. In the pseudoline arrangement, each of the
lines li are x-monotone. That means that we can add an additional vertical line l0 to
the left of all intersection points. We call l0 the border line of the arrangement and
demand, in contrast to Matoušek, that l0 is a line of the arrangement. L thus is an
arrangement of n+ 1 lines l0, . . . , ln. Matoušek only used l0 implicitly, but it is obvious
that we do not change the problem by adding l0 as we can always add and delete it
from a pseudoline arrangement without changing the rest of the arrangement without
turning yes-instances into no-instances and vice-versa. For each of the other pseudolines,
we then follow them starting at the intersection with l0 and write down a sequence of
the order of intersections with the other lines. The set of these sequences, with the lines
being numbered in order of their intersection with l0 (starting from the top) and the
sequences being ordered similarly, forms the combinatorial description of the pseudoline
arrangement. An example of this process is visualized in Figure 3.2. The problem definition
of EuclideanSimpleStretchability via combinatorial definition then is the following:

10



3.1. The SimpleStretchability Problem

l0

l1

l2

l3

l4

l0

l1

l2

l3

l4

- +

-

+
σ = (+,+,+,−,+)

Figure 3.2.: Top: pseudoline arrangement with combinatorial description
(4, 2, 3), (4, 1, 3), (4, 1, 2), (3, 2, 1). Below: Orientated line arrangement
with one sign vector.

EuclideanSimpleStretchability:
Input: Combinatorial description D of a simple pseudoline arrangement with border line
l0.
Problem: Does a line arrangement Le in Euclidean space exist that realizes D?

For later proofs in Chapter 4, we need another way of describing a line arrangement
combinatorially which follows Kang and Müller [KM12]. This time, we do not specify the
order of the intersection points, but we characterize the regions into which the plane is
divided. For that, we orientate the line arrangement in the following way (we still keep
the requirement of the border line l0): Each line divides the plane into two half planes,
which we denote by either − or +. For the line l0, the half plane without intersection
points is denoted by −, the other one by +. For each of the other lines, we can go along
them starting at the intersection with l0 and going towards the other intersection points.
The half plane that is to the left in this characterization is denoted by −, the other one
by +. Note that every step we did is applicable in both Euclidean and hyperbolic space.
Now, every point p in the plane can be described by a sign vector σ(p) ∈ {−, 0,+}n+1

where σi(p) describes if p is on the line li (0) or in the left (−) or right (+) half plane.

11



3. Hyperbolic SimpleStretchability

The orientated combinatorial description of the line arrangement now is the set of all sign
vectors. This process is also shown in Figure 3.2.

3.1.3. Hyperbolic SimpleStretchability
We now define SimpleStretchability in the hyperbolic setting. We obviously can
consider line arrangements in the hyperbolic plane similarly to the Euclidean case. This
has been done by Dress et al. [DKM02], but not in the context of the decision problem
SimpleStretchability. The requirements for simplicity of line arrangements, that
every pair of lines must intersect and no more than two lines intersect in a point, can
be formulated for hyperbolic geometry as well. However, we cannot simply transfer the
concept of pseudolines to the hyperbolic space as it is not clear how to transfer the concept
of x-monotonocity into the different models of the hyperbolic plane. Because of that, we
use the same input as in the Euclidean case: combinatorial descriprions of pseudoline
arrangements that can be represented by x-monotone Euclidean curves. For the description
of the intersections, we need to again include the border line l0. This poses the question
if we exclude possible simple hyperbolic line arrangements if we force the border line to
be included. We answer that question negatively in Lemma 3.26, but find that this does
not hold for general hyperbolic line arrangements in Section 3.4. The problem can now be
defined in the same way as in the Euclidean case:

HyperbolicSimpleStretchability:
Input: (Orientated) Combinatorial description D of a simple pseudoline arrangement with
border line l0.
Problem: Does a line arrangment Lh in hyperbolic space exist that realizes D?

As already done in the problem definition, we clarify if a line arrangement, or any structure
that has to be defined, is Euclidean or hyperbolic by adding e or h to the notation, Le for
Euclidean line arrangements and Lh for hyperbolic line arrangements.

In this chapter, we use the Poincaré disk model as our model for hyperbolic geometry. As
a short reminder, in this model the hyperbolic plane is embedded in the interior of a unit
circle in the Euclidean plane, which we call D. Lines are either represented by circles c that
are orthogonal to D, or lines through the origin. Technically, the lines representation is
only the segment of c inside of D, but for simplicity we often identify those segments with
the whole circle. Additionally, we always choose the origin O in a way that the border line
is the vertical line through O and every intersection point is to the right of l0. Additionally,
we want every line other than l0 to be represented by a circle, not by other origin lines.
An example of such a hyperbolic line arrangement is given in Figure 3.3.

Now that we have defined HyperbolicSimpleStretchability, we can investigate its
complexity. The Euclidean version is ∃R-complete as mentioned above. The question now
is if the hyperbolic version is equally complex. In Section 3.2, we answer that question
affirmatively and obtain the even stronger result that the problem does not really change
as a combinatorial description is realizable in Euclidean space if and only if it is realizable
in hyperbolic space. This intuitively seems right as the difference between the geometrys
is that hyperbolic geometry allows for additional parallel lines, but we do not have any
parallel lines in our line arrangement as one requirement is that each pair of lines must
intersect. Accordingly, the main result of this chapter is the following:

Theorem 3.3. Let D be a combinatorial description of a SimpleStretchability instance.
Then D is realizable by a line arrangement Le in the Euclidean plane if and only if D is
realizable by a line arrangement Lh in the hyperbolic plane.

The key observation for the proof of the chapter is the following (on an intuitive basis): If
we only look locally at sufficiently small parts of the hyperbolic plane, lines and distances
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3.2. Hyperbolic Scaling of Simple Pseudoline Arrangements

Figure 3.3.: A hyperbolic line arrangement of three lines.

are almost similar to their Euclidean counterparts, and become even more similar the more
we "zoom in". This property is what the proof of Theorem 3.3 relies on. We need scaling
operations, for hyperbolic and Euclidean line arrangements, that manage to force any line
arrangement, more precise its intersection points as lines are infinite, into an arbitrarily
small area to use the similarity there. For the Euclidean case, normal Euclidean scaling
does the trick. In the hyperbolic case, it is not obvious how such a way of scaling can be
obtained.

The plan for the rest of chapter is the following: We first introduce a scaling method
for hyperbolic line arrangements and prove its correctness. Then we prove Theorem 3.3.
As the instances are realizable in Euclidean space if and only if they are realizable in
hyperbolic space and EuclideanSimpleStretchability is ∃R-complete, it follows that
HyperbolicSimpleStretchability is also ∃R-complete. This will be the base of the
reductions for the rest of the thesis.

3.2. Hyperbolic Scaling of Simple Pseudoline Arrangements
Now that we have motivated why we need a way of scaling down hyperbolic line arrange-
ments, we define the key characteristics such a scaling operation needs to have to be
useful for us. For the rest of this chapter, we always use the version of combinatorial
descriptions that characterizes pseudoline arrangements by their order of intersections. The
first property that the scaling operation obviously needs to preserve is the combinatorial
description of the line arrangement. Additionally, as mentioned above, we need to reduce
the space in which the intersection points lie by an arbitrary amount. This suffices as the
order intersection points uniquely defines the description of the line arrangement. In order
to adress this space easily, we use the immediate surrounding of the origin. The other goal
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3. Hyperbolic SimpleStretchability

for the operation thus is to move every intersection point of lines arbitrarily close to the
origin.

At this point, we need to clarify how we use the Poincaré disk model in this chapter. The
model displays the hyperbolic plane as part of the Euclidean plane, specifically as the
interior of a unit disk. However, we are using the disk as part of the Euclidean plane around
it and do not constrain our observations to only the interior of the disk. Subsequently,
our argumentations and observations are of Euclidean nature. As lines in the Poincaré
disk are represented by circle segments for us (apart from l0), we are also interested in the
centers of those circles which is outside of D. We therefore use Euclidean terminology and
distances for our proofs in this chapter.

Before we start to think about candidates of scaling operations, we present the notation we
use in this proof and the rest of the thesis if we talk about hyperbolic line arrangements.
In this section, we only consider hyperbolic line arrangements and thus drop the additional
annotations to distinguish Euclidean and hyperbolic geometry. For any hyperbolic line l
that is not an origin line, we need the following characteristics.

• c: the circle that represents line l in the arrangement

• r: the radius of c

• M : the center of c

• q: the ray starting at O and going through M

• α: the angle between q and l0 in O

• P : the intersection point of c and q inside of D

We often use c directly as the name of a hyperbolic line lh in a line arrangement Lh and
sometimes call α the "angle of c" for simplicity. Doing so also implies that the line is not
an origin line, as those are not represented by circles. If we need to differentiate between
lines, we add the corresponding indices to our notations. The notations are visualized in
Figure 3.4. We are also interested in the Euclidean distance of these points to the origin O
as that is what our scaling operation is supposed to minimize. For that reason, we denote
the distance of any point A to the origin as dA := d(O,A).

3.2.1. First Try: Euclidean Scaling

In order to find a scaling method that fulfills those requirements, we first start with a
naive approach: We could try to just scale down each of the intersection points S in a
Euclidean sense: multiply their distance dS to the origin with a scaling factor while keeping
their angles constant. This way, the hyperbolic lines remain circles c and their order of
intersections remains identical while the intersection points move arbitrarily close to the
origin, seemingly fulfilling the requirements we have for the scaling operation. However, as
the Poincaré disk D remains a unit circle and invariant to the scaling, the circles are not
orthogonal to D anymore, which means that scaling does not result in a valid hyperbolic
line arrangement.

As a way to use a similar idea of Euclidean scaling, but define valid hyperbolic line
arrangements for each scaling factor, we could also try to move each of the points P closer
to the origin. Again, we define a scaling factor µ ∈ (0, 1) and linearly scale down each P
by setting dP (µ) = µ · d(P ). We then use P (µ) to define a new circle cµ that intersects the
ray q of angle α in P (µ), but is also orthogonal to D. We know that this would not pose
any problems when scaling down Euclidean lines, however, it is not immediately clear that
this produces unique circles for every µ. We show that this operation is indeed well-defined
in the following lemma:
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3.2. Hyperbolic Scaling of Simple Pseudoline Arrangements

Figure 3.4.: Left: The notations for each line c. Right: The notations for the intersection
point of c1 and c2.

Lemma 3.4. For each angle α and distance d ∈ (0, 1), there is one and only one hyperbolic
line c with dP = d and angle α.

Proof. Let d ∈ (0, 1) and α be a fixed angle. We have to prove two statements: There is a
circle c with angle α and dP = d, and these requirements uniquely defines the radius of
the circle. For that, we think about what defines c: In order to represent a hyperbolic
line in the Poincaré disk, c has to be orthogonal to D. This means that there has to
be a right triangle ∆ with sides of length dM , r and 1, depicted in Figure 3.5, where
dM = r + dP . If we now fix d = dP , there is only one radius r that fulfills the equation
(r+d)2 = d2

M = r2 + 1⇔ 2rd+d2 = 1⇔ r = (1−d2)/2d. M thus is unambigously defined
by angle α and dM = r + dP = (1− d2)/2d+ d = (1 + d2)/2d and there is one and only
one circle c with center M and radius r.

Note that this proof also gave us formulas for the radius and distance to the center of c:

Corollary 3.5. For each angle α and distance d = dP , the unique radius of c is given by
r = (1− d2)/(2d) and the distance to the center is given by dM = (1 + d2)/(2d).

This shows us that the scaling is indeed well-defined. It also fulfills the second requirement
we had for the scaling operation as it clearly brings the hyperbolic lines and thus the
intersection points arbitrarily close to the origin. However, it is not consistent and in
many cases changes the combinatorial description of Lh. One of those cases is depicted
in Figure 3.6. Nevertheless, we use Euclidean scaling later in Section 3.3 in a different
context.
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3. Hyperbolic SimpleStretchability

Figure 3.5.: The triangle ∆ that uniquely defines the circle c.

Figure 3.6.: Left: Hyperbolic line arrangement with three lines. Right: Line arrangement
for µ = 0.2, the order of intersections on l0 has changed.
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3.2.2. Geometric Observations

The last subsection shows that we need to dive deeper into hyperbolic line arrangements in
the Poincaré disk in order to find a scaling method that fits both the requirements. For
that, we now study characteristics of the hyperbolic lines and their intersection points. We
then use the results to define a scaling method that does not change the combinatorial
description of Lh while shrinking the area in which the intersection points are situated.

Our first observation clarifies the relation between dM and r, which we need for the following
proofs:

Lemma 3.6. For any hyperbolic line c with center M in the Poincaré disk, the radius of c
is given by r =

√
d2
M − 1.

Proof. Let c be a hyperbolic line. As in the proof of Lemma 3.4, we again use the right
triangle ∆. This time, we simply apply Pythagoras’ theorem to obtain: d2

M = r2 + 1⇔
r =

√
d2
M − 1.

We now consider in what cases two hyperbolic lines c1 and c2 intersect. For that, we first
need to define the point H for two hyperbolic lines c1 6= c2, not necessarily intersecting:
If O,M1 and M2 are not collinear, we define H as the intersection point of the altitude
of the triangle ∆OM1M2 (the line through O that is orthogonal to M1M2) and the line
defined by M1 and M2. If the points are collinear, this triangle is not defined and we set
H := O. As we see in the following lemmas, H is closely related to the intersection point
of hyperbolic lines c1 and c2.

Lemma 3.7. Two hyperbolic lines c1 6= c2 intersect if and only if dH > 1.

Proof. Let c1 and c2 be hyperbolic lines and H defined above. Note that c1 and c2 intersect
if and only if r1 + r2 > d(M1,M2) as M1 and M2 and thus c1 and c2 are closest to each
other on the line connecting M1 and M2.

Case 1: H = O: This case occurs only if O, M1 and M2 are collinear. In that case, M1
and M2 can either be on the same side or on different sides of O. If they are on different
sides, c1 and c2 cannot intersect because r1 + r2 < dM1 + dM2 = d(M1,M2) as M1 and
M2 are situated on the same origin line. If they are on the same side of O, then α1 = α2.
Assume that c1 and c2 intersect. Due to symmetry, for any intersection point S of c1 and
c2 on the inside of D that is not on q = q1 = q2, we find a second intersection point, S′ also
inside of D by mirroring S on q. This contradicts the fact that two hyperbolic lines can at
most intersect in one point. Thus, c1 and c2 have to intersect in P = P1 = P2 as it is the
only point of c1 and c2 on q. However, in that case Lemma 3.4 states that there is only
one circle c with angle α1 = α2 and distance dP . We conclude that c1 = c2, contradicting
the starting assumptions.

Case 2: H 6= O: We consider the right triangles ∆OHM1 and ∆OHM2 as depicted in
Figure 3.7 and compute d(Mi, H) for i = 1, 2 via Pythagoras’ theorem:

d(Mi, H)2 + d2
H = d2

Mi
⇔ d(Mi, H) =

√
d2
Mi
− d2

H

Note that d(M1,M2) = d(M1, H) + d(H,M2) =
√
d2
M1
− d2

H +
√
d2
M2
− d2

H and that c1

and c2 intersect if and only if r1 + r2 > d(M1,M2). In Lemma 3.6, we have shown that
ri =

√
d2
Mi
− 1. Together, this yields that c1 and c2 intersect if and only if√

d2
M1
− 1 +

√
d2
M2
− 1 >

√
d2
M1
− d2

H +
√
d2
M2
− d2

H .
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We conclude that c1 and c2 intersect if and only if d2
H > 1⇔ dH > 1 which completes the

proof.

We see that, if lines c1 and c2 intersect, O,M1 and M2 cannot be collinear. We need
H again later, so we fix the following notations for intersecting hyperbolic lines c1 6= c2
(depicted in Figure 3.7):

• S: the intersection point of c1 and c2

• γ: the angle of S

• H: the point where the altitude of ∆OM1M2 intersects the line defined by M1 and
M2

With that in mind, we now look at characteristics of the intersection points in the Poincaré
disk, as we need to keep them in the same order while scaling:

Lemma 3.8. Let c1, c2 be two hyperbolic lines that intersect in point S. Then S lies on
the origin line defined by H and dS = dH −

√
d2
H − 1.

Proof. Let c1, c2 be two intersecting hyperbolic lines. In order to prove that S is on the
same origin line as H, we consider the triangle ∆OM1M2. The points A that are on the
same origin line as H have fulfill the equation d(A,M1)2 − d(A,M2)2 = d(M1)2 − d(M2)2

as in that case, the line through A that is orthogonal to M1M2 includes H as well. That is
the case for S as d(S,Mi)2 = r2

i = d(Mi)2 − 1 for i ∈ {1, 2} where the last part is derived
from Lemma 3.6. This delivers d(S,M1)2 − d(S,M2)2 = d2

M1
− 1− d2

M2
+ 1 = d2

M1
− d2

M2
.

Thus, S is indeed on the altitude of the triangle ∆OM1M2. The situation is depicted in
Figure 3.7.

For the distance dS , we consider the triangle ∆SHM1. This is obviously a right triangle
with right angle in H. We compute the distance d(S,H) between S and H, dS is then dH
minus that distance. For that, we can use Pythagoras’ theorem:

r2
1 = d(S,H)2 + d(M1, H)2 = d(S,H)2 + d2

M1 − d
2
H

⇔ d(S,H)2 = r2
1 − d2

M1 + d2
H =

√
d2
M1
− 1

2
− d2

M1 + d2
H = d2

H − 1

Here, we computed d(M1, H) via applying Pythagoras’ Theorem again on the right triangle
∆OHM1. Thus, the distance between S and H is

√
d2
H − 1 and dS = dH −

√
d2
H − 1.

This clarifies the situation for the intersection points between two hyperbolic lines rep-
resented by circles. In the case of intersection points C0 between lines c and l0, the
intersection points trivially lie on origin line l0. We define a right triangle ∆OMH0 with
right angle in H0, the point on l0 with dH0 = cos(α)dM (shown in Figure 3.7). Inserting
dH0 = cos(α)dM into the second part of the last proof, we obtain the corresponding result
to Lemma 3.8 for dS0 :

Corollary 3.9. Let c be a hyperbolic line intersecting l0. The intersection point S0 has
distance dS0 = cos(α)dM −

√
cos(α)2d2

M − 1 to the origin.

Note that if we keep the lines defined by M1 and M2 parallel throughout the scaling, the
intersection point stays on the same origin line. We later uphold that when defining the
scaling operation and the observation is important for proving its correctness. Additionally,
if we increase the dH , the distance of S and O decreases, which is the desired result. So
our scaling operation should, in some way, scale back the centers of the circles on the same
ray q starting at the origin. Our last observation clarifies that this is indeed a well-defined
process:
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Figure 3.7.: Left: Definition of point H in triangle OM1M2. Right: The triangle used to
compute dS0 .

Lemma 3.10. For each angle α and distance d ≥ 1, there is one and only one hyperbolic
line c with center M , dM = d and α as the angle of c.

Proof. Let d ≥ 1 and α be fixed. M is unambigously defined by the requirements. We now
need to show that there is only one circle with center M that is orthogonal to D. This
translates to there having to be two right triangles with points O, M and a third point on
D that completes the right triangle. Now Thales’ theorem tells us that the points that
complete O and M to a right triangle lie on the circle cT with diameter OM . There are
exactly two of those points with identical distances to O and M . Due to symmetry, we
pick one of them and call it A. Now we have a center M and an additional point on the
circle A, which defines the circle c unambiguously. We depict the proof in Figure 3.8.

3.2.3. Hyperbolic Scaling

These observations now allow us to define our hyperbolic scaling operation. As observed,
we need to linearly scale back the centers of the circles to bring the intersection points
closer to the origin while leaving them on straight lines. In order to do that, we use a
scaling factor λ ≥ 1, where λ = 1 describes the initial line arrangement (Note that we
use different names of scaling factors in order to differentiate between Euclidean (µ) and
hyperbolic (λ) scaling). We scale back the centers M on ray q by multiplying dM with
λ to achieve that. We denote points, structures and distances, for example a hyperbolic
line c, that are scaled with factor λ by c(λ). If we do not give a specific scaling factor,
the initial line arrangement is described. The geometric observations we made in the last
section ensure the correctness of this approach.

Formally, we start with a hyperbolic line arrangement Lh, consisting of n + 1 lines in
the Poincaré disk. The border line l0 includes the origin and is not changed by our

19



3. Hyperbolic SimpleStretchability

Figure 3.8.: The circle cT whose intersection point A with the Poincaré disk uniquely
defines the circle c.

λ = 1 : λ = 2 :

Figure 3.9.: Left: A hyperbolic line with center M1. Right: The scaled line for λ = 2.

scaling operation. For the other lines l represented by circles c, we consider their center
M = (α, dM ) where x and y are the Euclidean coordinates of M . For each scaling factor
λ ∈ R, λ ≥ 1, we define a new line arrangement L(λ) by placing each center M(λ) at
(α, λ · dM ). The lines c(λ) of the new arrangement are defined by the unique circle from
Lemma 3.10 with center M(λ) that is orthogonal to the Poincaré disk. This process is
shown in Figure 3.9.

Before we prove that this operation indeed produces a valid simple line arrangement with
identical combinatorial description for each scaling factor λ, we first show the effects of
the scaling. The result we need to generate is that the intersection points of the lines get
closer to the origin with increasing scaling factor and converge towards the origin. As the
distances between the intersection points get smaller, the line arrangement becomes more
and more similar to a Euclidean line arrangement, which is the goal of the operation. In
Figure 3.10, we depict the line arrangement from Figure 3.3 for scaling factors λ = 1, 2
and 4. Indeed, the intersection points are moved to the center on a straight line and the
combinatorial description is not changed, which we now formally prove.

20



3.2. Hyperbolic Scaling of Simple Pseudoline Arrangements

λ = 1 : λ = 2 : λ = 4 :

Figure 3.10.: The line arrangement for scaling factor 1, 2 and 4.

We use the geometric observations to prove the correctness of the scaling operation. In this
context, correctness means that, for any given hyperbolic line arrangement L, the scaling
operation indeed produces a valid line arrangement L(λ) for every scaling factor λ ≥ 1.
Additionally, the combinatorial description of each of the L(λ) has to be identical.

In order to prove those statements, we first use another lemma to formally state the impacts
of the scaling on the lines c and intersection points S:

Lemma 3.11. Let L be a simple hyperbolic line arrangement, c1 and c2 two hyperbolic
lines in L intersecting in S and λ ≥ 1 a scaling factor. Then:

1. c1(λ) and c2(λ) intersect in S(λ).

2. S(λ) is part of the origin line defined by S.

3. dS(λ) = λ · dH −
√

(λ2 · d2
H − 1).

Proof. Let L be a hyperbolic line arrangement and λ ≥ 1. We show the statements for two
lines c1, c2 represented by circles, the statements for intersections with l0 can be shown
similarly. Our main tool in this proof is an application of the intersect theorem: We
compute the relative distances of M1(λ) and M2(λ):

M1(λ)
M2(λ) = λ ·M1

λ ·M2
= M1
M2

.

From that, we can conclude multiple results. First, the line through M1(λ) and M2(λ) is
parallel to the one throughM1 andM2 due to the intercept theorem and thus dH(λ) = λ·dH .
We know that dH > 1 from Lemma 3.7 as c1 and c2 intersect. As λ ≥ 1 is also true, dH(λ)
is strictly greater than 1 and thus c1(λ) and c2(λ) intersect due to Lemma 3.7.

In order to prove the second statement, we again use that the line through M1(λ) and
M2(λ) is parallel to the one through M1 and M2. Because of that, the altitudes in the
triangles ∆OM1M2 and ∆OM1(λ)M2(λ) are identical. Due to Lemma 3.8, both S and
S(λ) are on that altitude and thus on the same origin line.

The third statement follows from inserting dH(λ) = λ · dH into Lemma 3.8.

Using that, we now prove the correctness of the hyperbolic scaling operation:

Theorem 3.12. For every scaling factor λ ≥ 1 and given hyperbolic line arrangement L,
L(λ) is a valid simple hyperbolic line arrangement and the combinatorial description of L
and L(λ) is identical.
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We have already proven the geometrical backgrounds of the observations we need for this
proof. We need to show three statements: The scaling operation produces a valid and
unique hyperbolic line arrangement for each λ ≥ 1, the line arrangement L(λ) is simple
and the combinatorial description of L(λ) is identical to the one of L1.

The proof of the first statement follows directly from Lemma 3.10. For the second and
third statement, our main tool is Lemma 3.11.

Lemma 3.13. If L is a simple line arrangement, then the line arrangement L(λ) also is a
simple line arrangement for every λ ≥ 1.

Proof. Simple line arrangements have two defining characteristics: Each pair of lines
intersect, and no more than two lines intersect in the same point. Let L be such a simple
hyperbolic line arrangement. The first property directly follows from the first statement of
Lemma 3.11. For the second characteristic, we use the third statement of Lemma 3.11:
Assume that there is an intersection point S where at least three lines and corresponding
circles intersect. The distance formula dS(λ) = λ ·dH −

√
(λ2 · d2

H − 1) is injective for λ ≥ 1
and only depends on the initial dH . It follows that three or more lines can only intersect in
the same point if they have the same initial dH , so they have intersected in L already, but
L is simple per definition. This concludes the proof.

Now that we have shown that our line arrangement L(λ) stays a simple line arrangement
for every λ ≥ 1, all that is left to show is that the combinatorial description also remains
identical:

Lemma 3.14. Let L be a hyperbolic line arrangement. For each scaling factor λ ≥ 1, the
line arrangement L(λ) has the same combinatorial description as the line arrangement L.

Proof. Let L be a hyperbolic line arrangement and λ ≥ 1. In order to prove the statement,
we need to show the two defininf properties of the line arrangement: The order of the
intersection points on the border line l0 stays the same, and for each line c, the order
of the intersecting lines on c(λ) is the same as on c. As those two properties define a
combinatorial description, if both are met we have the same combinatorial description.

Both properties can be shown in the same way: Assume that the combinatorial description
is not identical. We consider the line c where the combinatorial description has first
changed, meaning that two intersection points S, S′ changed their order. As our operation
is continuous, this means that there is a λ∗ for that S(λ∗) and S′(λ∗) fall on the same
point. For that λ∗, at least three lines intersect in a point, thus the line arrangement L(λ∗)
is not simple, contradicting Lemma 3.13. This concludes the proof.

Now that we have proven the necessary components, we can conclude Theorem 3.12:

Proof of Theorem 3.12. Let L be a hyperbolic line arrangement and λ ≥ 1 a fixed scaling
factor. As described previously, we need to prove the three components of the statement:
L(λ) is a valid hyperbolic line arrangement, L(λ) is simple and has the same combinatorial
descriprion as L.

For the first part, note that l0 is not changed by the scaling operation. For every other line
c, Lemma 3.10 states that there is exactly one circle with center M(λ) that is orthogonal
to D, which means that c(λ) is unambigous and a valid hyperbolic line in the Poincaré
disk model.
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Afer clarifying the validity of the line arrangement L(λ), the next step is to show that the
arrangement stays a simple arrangement. This is the result of Lemma 3.13.

Finally, the main property of our scaling operation is left. The combinatorial description of L
has to remain identical throughout the scaling operation. For that, in Lemma 3.14, we show
that this is the case for every scaling factor. This concludes the proof of Theorem 3.12.

With that, we now have achieved a valid definition of HyperbolicSimpleStretchabil-
ity and a method to force hyperbolic line arrangements into arbitrarily small areas where
they resemble Euclidean line arrangements closely. This indicates that the problems are
equivalent. Indeed, we show the equivalence in the next section.

3.3. HyperbolicSimpleStretchability is ∃R-Complete
In this section, we use our scaling operation to show the main result of this chapter that
directly implies the ∃R-completeness of HyperbolicSimpleStretchability:

Theorem 3.3. Let D be a combinatorial description of a SimpleStretchability instance.
Then D is realizable by a line arrangement Le in the Euclidean plane if and only if D is
realizable by a line arrangement Lh in the hyperbolic plane.

We need to show the following two directions: Given a Euclidean line arrangement Le, we
need to transform that into a hyperbolic line arrangement Lh with the same combinatorial
description and vice versa. The idea for both directions is identical: We use that, for small
areas, the hyperbolic and Euclidean plane are similar. In order to do that, we scale down
the original line arrangement via the Euclidean or hyperbolic scaling operation, respectively,
until the line arrangement is similar enough to the other geometry. One challenge is that
we need to translate hyperbolic lines, which correspond to circles in the Poincaré disk, into
Euclidean lines. For that, we use certain tangents that the circle converges towards. As
the resulting structures are identical for both directions, we introduce them now.

As a reminder, we represent hyperbolic lines by circles c with center M and radius r. We
also use the ray q from O through M and the corresponding angle α to l0 and intersection
point P of q and c, as depicted in Figure 3.4.

In both cases, we use the same structure of Euclidean and hyperbolic lines that we now
define: P will be the common point of the hyperbolic line c and the Euclidean line le = l (as
we only use circles for hyperbolic lines, we drop the additional annotation e for Euclidean
lines). We define l as the orthogonal line to q through P , which is the tangent of c in P ,
and define the corresponding Euclidean line arrangement by the collection of those lines,
together with the extension of l0. This definition is depicted in Figure 3.11.

In order to proceed, we also need notation for intersection points of Euclidean lines. For
that, let l1 6= l2 be two intersecting lines. We need the following definitions:

• T : the intersection point of l1 and l2

• β: the angle of T and l0 in O

Again, if we need to clarify which lines T and β belong to, we add indices but try to avoid
that as much as possible.

Before we start with proving the theorem, we again need geometrical observations to
express the intersection points S of hyperbolic lines c1 and c2 and T of Euclidean lines l1
and l2 using the information we have about c1, c2, l1 and l2. We do that in the following
two lemmas, starting with the intersection point of Euclidean lines. Note that, as both S
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Figure 3.11.: Left: Corresponding lines l andc. Right: Definition of point T .

and T are to the right of l0, their angles are between 0 and π and thus there is a bijective
between the angles and their cosines. We thus work with cos(β) and cos(γ) rather than β
and γ.

Lemma 3.15. For any two Euclidean lines l1, l2, the intersection point T can be described
in polar coordinates T = (β, dT ) with

cos(β) = sin(α1)dP2 − sin(α2)dP1

d(P1, P2) , dT = d(P1, P2)
sin(α1 − α2) .

Proof. Let l1, l2 be Euclidean lines intersecting in T . The argument is based on the following
observation: The points O, P1 P2 and T build two rectangular triangles, both with OT as
its hypotenuse. From that, we conclude that the four points lie on a circle cT with center
MT on OT due to Thales’ theorem. The origin as well as P1 = (α1, dP1) and P2 = (α2, dP2)
are known and fully define cT . For readability, we write dPi = di in the scope of this proof.
We compute MT = (xM , yM ), and consequently the point T = (xT , yT ). As MT is the
center point of the segment OT , xT and yT are given by xT = 2xM and yT = 2yM . The
situation is depicted in Figure 3.12.

In order to compute xM and yM , we use a system of equalities that describe the center of
a circle when given three points P = (x, y) that are situated on the circle. This process
gives us cartesian coordinates for T , from which we compute the polar coordinates we
need in the following sections. As the process is long and technical, we give the detailed
computation in Lemma 6.1 in the appendix. Here, we resume with its result: T can be
described by cartesian coordinates (xT , yT ) with

xT = cos(α1)d2 − cos(α2)d1
sin(α1 − α2) , yT = sin(α1)d2 − sin(α2)d1

sin(α1 − α2) .

From that, we now compute the polar coordinates, angle β and distance dT , starting with
dT : Due to Pythagoras’ theorem, dT can be obtained from xT and yT in the following way:
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Figure 3.12.: Definition of circle cT via O, P1 and P2.

d2
T = x2

T + y2
T

= (cos(α1)d2 − cos(α2)d1)2

sin(α1 − α2)2 + (sin(α1)d2 − sin(α2)d1)2

sin(α1 − α2)2

=
∑2
i=1 d

2
i (cos(αi)2 + sin(αi)2)− 2d1d2(cos(α1) cos(α2) + sin(α1) sin(α2))

sin(α1 − α2)2

= d2
1 + d2

2 − 2d1d2 cos(α1 − α2)
sin(α1 − α2)2

⇔ dT =

√
d2

1 + d2
2 − 2d1d2 cos(α1 − α2)
sin(α1 − α2) = d(P1, P2)

sin(α1 − α2)

We have used the identities sin(α)2 + cos(α)2 = 1 and cos(α1 − α2) = cos(α1) cos(α2) +
sin(α1) sin(α2). To conclude the proof, we consider the point A on l0 with dA = yT . Using
this point, we obtain a right triangle ∆OTA with which we can compute cos(β) from dT
and yT as yT and dT are sides of ∆OTA:

cos(β) = yT
dT

= (sin(α1)d2 − sin(α2)d1) sin(α1 − α2)
sin(α1 − α2)d(P1, P2) = sin(α1)d2 − sin(α2)d1

d(P1, P2)

We need a similar result for the intersection point S of two hyperbolic lines c1 and c2. Here,
we know that dS = dH −

√
d2
H − 1 due to Lemma 3.8. Because of that, we need to find a

formula for dH :
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Lemma 3.16. For any two hyperbolic lines c1, c2, their intersection point S can be described
in polar coordinates S = (γ, dS) with

cos(γ) = sin(α1)dM1 − sin(α2)dM2

d(M1,M2) , dH = dM1dM2 sin(α1 − α2)
d(M1,M2)

and dS = dH −
√
d2
H − 1.

Proof. Let c1, c2 be two hyperbolic lines intersecting in S. The proof to compute the angle
γ is based on the triangle that is defined by the points M1,M2 and the intersection point
of the vertical line through c2 and the horizontal line through c1, which we call A. As
S lies on the altitude of the triangle ∆OM1M2, we need to compute the angle γ of this
altitude. This is identical to computing the angle in M2 of the triangle ∆AM1M2 as the
two triangles are similar. This triangle has hypotenuse M1M2 and the length of the edge
AM2 is given by cos(α1)dM1 − cos(α2)dM2 as we chose S in a way that this edge represents
the differences in y-coordinates of M1 and M2. We obtain:

cos(γ) = cos(α1)dM1 − cos(α2)dM2

d(M1,M2) .

In order to obtain the distance dS , we need to compute dH and dS follows from Lemma 3.8.
For that, we compute the area A of ∆OM1M2 in two different ways: On the one hand,
we can use A = (1/2) · dH · d(M1,M2). On the other hand, A can be computed by using
the vectors v1 = OC1 and v2 = OC2 and computing their cross product, which yields the
following formula:

A = 1
2(v1×v2) = 1

2 sin(α1)dM1 cos(α2)dM2−sin(α2)dM2−cos(α1)dM1 = 1
2dM1dM2 sin(α1−α2).

Combining the formulas, we obtain

dH = dM1dM2 sin(α1 − α2)
d(M1,M2) .

Before we start to show the two directions, we need a few more observation: The last
term, dH −

√
d2
H − 1, is not pleasant to work with. However, as we look at the distances

asymptotically, we can use the Taylor expansion of the function f(x) = x−
√

(x2 − 1) and
limit higher orders of summands. This results in:

f(x) = x−
√

(x2 − 1) = 1
2x +O( 1

x3 ) = 1
2x(1 +O( 1

x2 ))

where we use both formulas in different contexts.

Additionally, we oftentimes have the situation that we compute the distance between two
points A1, A2 with the law of cosines using O as the third point of the triangle. For points
A1 = (α1, dA1), A2 = (α2, dA2), this is done in the following way:

d(A1, A2) =
√
d2
A1

+ d2
A2
− 2dA1dA2 cos(α1 − α2).

If we now scale dA1 and dA2 with a scaling factor x without changing α1 and α2, we see
that the distance between A1(x) and A2(x) changes linearly in x:

d(A1(x), A2(x)) =
√
d2
A1
x2 + d2

A2
x2 − 2dA1xdA2x cos(α1 − α2)

= x
√
d2
A1

+ d2
A2
− 2dA1dA2 cos(α1 − α2) = x · d(A1, A2)
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At other times, we have a dependence between A1, A2 and two other points B1 =
(α1, dB1), B2 = (α1, dB2) for some scaling factor x and term t(x) of the following kind:
dAi(x) = (t(x))/(2dBix) where the term t(x) is identical for both pairs of points. If we
insert that into the distance formula of d(A1, A2), we obtain:

d(A1(x), A2(x)) =
√
dA1(x)2 + dA2(x)2 − 2dA1(x)dA2(x) cos(α1 − α2)

=
√

( t(x)
2dB1x

)2 + ( t(x)
2dB2x

)2 − 2 t(x)
2dB1x

t(x)
2dB2x

cos(α1 − α2)

=

√√√√(
d2
B2

4d2
B1
d2
B2
x2 +

d2
B1

4d2
B1
d2
B2
x2 −

2dB1dB2 cos(α1 − α2)
4d2

B1
d2
B2
x2 )t(x)2

= 1
2dB1dB2x

·
√
d2
B1

+ d2
B2
− 2dB1dB2 cos(α1 − α2) · |t(x)|

= 1
2dB1dB2x

· d(B1, B2) · |t(x)|

We denote this characterization of d(A1(x), A2(x)) with d(A1, A2)[x,B1, B2, t(x)]:

d(A1(x), A2(x)) := d(A1, A2)[x,B1, B2, t(x)] = 1
2dB1dB2x

· d(B1, B2) · |t(x)|.

3.3.1. Transforming Simple Euclidean Line Arrangements

The direction we start with is to show that for each Euclidean line arrangement Le, there
is a corresponding hyperbolic line arrangement Lh:

Theorem 3.17. Given an Euclidean line arrangement Le, there is a hyperbolic line
arrangement Lh that has the same combinatorial description.

Before we start, we need a few assumptions about the Euclidean line arrangement Le.
Similar to our proofs in the previous section, we place the border line l0 vertically and all
intersection points on the right of l0. We choose an origin O on l0 that is not part of any
additional line. We assume that for all Euclidean lines l, the point P fulfills dP < 1 in
order to define corresponding hyperbolic lines in the Poincaré disk model. For that, we can
find a translation and rotation to get a line arrangement Le with those properties without
changing the combinatorial description.

Now, we need to transform Euclidean lines l into hyperbolic lines c. For that, we use the
transformation we defined at the start of the section: P is the common point of l and c,
and c is uniquely defined by α and dP due to Lemma 3.4.

The main idea of the proof is to use the similarity between hyperbolic and Euclidean
space for sufficiently small distances. For that, we need to scale down our Euclidean line
arrangement. We describe that scaling process by introducing a scaling factor µ between 0
and 1, and multiply the distances of each Euclidean point to the origin with that distance.
This way, the Euclidean line arrangement stays topologically identical. Note that D remains
a unit circle and is thus not scaled down. The corresponding hyperbolic lines thus are
not scaled down by simply multiplying the distance of each point as well. Instead, our
Euclidean scaling operation of Section 3.2.1 resurfaces here. For each µ, the hyperbolic
line c(µ) corresponding to a Euclidean line l(µ) is defined by dP (µ) and α set by l(µ).

Now that we have clarified the corresponding hyperbolic line arrangement and our way
of scaling, we need to show that, if we make the arrangement small enough, Lh has the
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same combinatorial description as Le. For that, we first show two convergence results
for angle and distance to the origin which we then use to show that the points S(µ) and
T (µ) converge faster towards each other than any pair of T1(µ), T2(µ) on the same line
l(µ). From that, we conclude that at some point the hyperbolic arrangement has the same
combinatorial descriprion as the Euclidean one.

As a starting point, we think about how T (µ) = (β(µ), dT (µ)) behaves when changing the
scaling factor. As we use Euclidean scaling, it is not hard to see that β(µ) = β remains
unchanged and dT (µ) = µ · dT . We can also confirm that by inserting dP (µ) = µ · dP into
Lemma 3.15. Another thing we need to recall is the result of Corollary 3.5: For a Euclidean
line l and point P , the distance of the center M of the corresponding hyperbolic line c is
given by dM = (1 + d2

P )/2dP .

Using that, we now consider how the distance between S and T is influenced by the scaling
factor µ. We do that by considering the distances dS and dT and the angle (in O) between
S and T , starting with the angle β − γ(µ):

Lemma 3.18. Let l1, l2 be Euclidean lines, T = (β, dT ) their intersection point and
S = (γ, dS) the intersection point of the corresponding hyperbolic lines. Then, for every
ε > 0, there is a minimal scaling factor µε such that:

∀µ ≥ µε : cos(β − γ(µ)) ≥ 1− ε.

Proof. Let l1, l2 be a fixed pair of Euclidean lines and ε > 0. We prove this lemma by
showing that, with decreasing µ, the angle γ(µ) gets arbitrarily close to β. This means
that the angle between them, β − γ(µ) becomes smaller and smaller and thus its cosine
can be bounded by 1− ε. For that, we already know that

cos(β) = sin(α1)dP2 − sin(α2)dP1

d(P1, P2)

remains constant and have computed

cos(γ(µ)) = sin(α1)dM1(µ)− sin(α2)dM2(µ)
d(M1(µ),M2(µ))

in Lemma 3.16. Now, we insert the concrete values for dMi(µ): dMi(µ) = 1
2dPi

µ(1 + Θ(µ2)).
Note that the pairs Mi(µ) and Pi(µ) fulfill the requirements to use d(M1(µ),M2(µ)) =
d(M1,M2)[µ, P1, P2, 1 + Θ(µ2)].

cos(γ(µ)) = sin(α1)dM1(µ)− sin(α2)dM2(µ)
d(M1(µ),M2(µ))

=
sin(α1) 1

2dP1µ
(1 + Θ(µ2))− sin(α2) 1

2dP2µ
(1 + Θ(µ2))

d(M1,M2)[µ, P1, P2, 1 + Θ(µ2)]

=
(sin(α1) dP2

2dP2dP1µ
− sin(α2) dP1

2dP1dP2µ
)(1 + Θ(µ2))

1
2dP1dP2µ

d(P1, P2)|1 + Θ(µ2)|

=
1

2dP1dP2µ
(sin(α1)dP2 − sin(α2)dP1)(1 + Θ(µ2))

1
2dP1dP2µ

d(P1, P2)|1 + Θ(µ2)|

= sin(α1)dP2 − sin(α2)dP1

d(P1, P2) · 1 + Θ(µ2)
|1 + Θ(µ2)|

= cos(β) · 1 + Θ(µ2)
|1 + Θ(µ2)|

28



3.3. HyperbolicSimpleStretchability is ∃R-Complete

As (1 + Θ(µ2))/(|1 + Θ(µ2)|)→ 1 for µ→ 0, the difference between the two angles indeed
becomes arbitrarily small. That means that the cosine of the difference cos(α − γ(µ))
becomes arbitrarily close to one, therefore also greater than 1− ε for some µε. For every µ
that is smaller than µε, we can conclude that cos(β − γ(µ)) ≥ 1− ε.

Similarly to the angle, we need a convergence result for the respective distances to the origin.
Note that dT (µ) ≤ dS(µ) holds for sufficiently small µ as the Euclidean lines are closer to
the origin than the hyperbolic ones. We thus need to bound the quotient dS(µ)/dT (µ):

Lemma 3.19. Let l1, l2 be Euclidean lines, T = (β, dT ) their intersection point and
S = (γ, dS) the intersection point of the corresponding hyperbolic lines c1 and c2. For every
ε > 0 there is a maximal scaling factor µε such that:

∀µ ≤ µε : dS(µ)
dT (µ) ≤ 1 + ε

Proof. Let l1, l2 be a fixed pair of lines and ε > 0. Again, we start with the target distance
dT (µ). We insert dP (µ) = µ · dP into the formula from Lemma 3.15 to obtain:

dT (µ) = d(P1(µ), P2(µ))
sin(α1 − α2) = µ · d(P1, P2)

sin(α1 − α2) = µ · dT

We see that dT (µ) is linear in µ. Now, we again asymptotically compute the hyperbolic
counterpart with dM (µ) = 1

2dPµ
(1 + Θ(µ2)). In order to do that, we start with computing

dH(µ) and then use dS(µ) = 1
2dH(µ) + O( 1

µ3 ). Again, we can use d(M1(µ),M2(µ)) =
d(M1,M2)[µ, P1, P2, 1 + Θ(µ2)].

dH(µ) = dM1(µ)dM2(µ) sin(α1 − α2)
d(M1(µ),M2(µ))

=
1

2dP1µ
(1 + Θ(µ2)) 1

2dP2µ
(1 + Θ(µ2)) sin(α1 − α2)

d(M1,M2)[µ, P1, P2, 1 + Θ(µ2)]

=
1

2dP1dP2µ
1

2µ sin(α1 − α2)(1 + Θ(µ2))2

1
2dP1dP2µ

d(P1, P2)|1 + Θ(µ2)|

= sin(α1 − α2)
2µ · d(P1, P2) ·

(1 + Θ(µ2))2

|1 + Θ(µ2)|
When inserting this into the formula for dS(µ), we get the following result:

dS(µ) = 1
2h(µ) +O( 1

h(µ)3 )

= 2µ · d(P1, P2)
2 sin(α1 − α2) ·

|1 + Θ(µ2)|
(1 + Θ(µ2))2 +O(µ3)

= µ
d(P1, P2)

sin(α1 − α2) ·
|1 + Θ(µ2)|

(1 + Θ(µ2))2 +O(µ3)

= dT (µ) · |1 + Θ(µ2)|
(1 + Θ(µ2))2 +O(µ3)

We use this to compute the quotient dS(µ)/dT (µ):

dS(µ)
dT (µ) =

dT (µ) · |1+Θ(µ2)|
(1+Θ(µ2))2 +O(µ3)
dT (µ) = |1 + Θ(µ2)|

(1 + Θ(µ2))2 +O(µ2)

This clearly converges towards 1 for µ → 0, thus again resulting in a maximal µε with
dS(µ)/dT (µ) ≤ 1 + ε for every µ ≤ µε, which concludes the proof of the lemma.
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With these convergence results for distance and angle between S and T , we now can prove
that they converge faster towards each other than any pair of intersection points T1, T2.
This is our main tool to show that the combinatorial descriptions of Le(µ) and Lh(µ) are
identical for small enough µ.

Lemma 3.20. Let l be a Euclidean line, T be an intersection point on l with corresponding
intersection point S in the hyperbolic line arrangement, and T ′ 6= T another intersection
point on l. For every positive constant k, there is an µk such that:

∀µ ≤ µk : d(T (µ), T ′(µ)) ≥ k · d(T (µ), S(µ))

Proof. Let k > 0, l a fixed line and T 6= T ′ two intersection points on l. The inequality we
need to show is the following (for some µ):

d(T (µ), T ′(µ))
d(T (µ), S(µ)) ≥ k

We calculate these distances with the law of cosines (and square the distances):

dT (µ)2 + dT ′(µ)2 − 2dT (µ)dT ′(µ) cos(β(µ)− β′(µ))
dT (µ)2 + dS(µ)2 − 2dT (µ)dS(µ) cos(β(µ)− γ(µ)) ≥ k

2

In order to show that inequality, we use a geometric observation for the numerator and the
convergence lemmas for the denominator to obtain a term whose numerator is constant
and whose denominator is proportional to ε. We can then choose ε low enough that the
inequality is fulfilled.

For the numerator, first note that β(µ) and β′(µ) remain constant. We can use the for the
following observation: For every µ, there is a point A with angle β′ that is the closest point
to T on the ray with angle β′. This point A is either described by dA(µ) = cos(β−β′)dT (µ)
if |β − β′| ≤ π/2, or the origin O. Either way, we can use d(T (µ), T ′(µ)) ≥ d(T (µ), A) to
replace T ′ in the inequality. In the first case,

d(T (µ), A(µ)) = dT (µ)2+cos(β−β′)2dT (µ)2−2dT (µ)2 cos(β−β′)2 = dT (µ)2(1−cos(β−β′)2).

In the second case, A is the origin, so d(T (µ), A(µ)) = dT (µ).

For the denominator, we first fix a ε > 0, but not assign a value yet. We use the convergence
lemmas to obtain a µε for that both dS(µ)/dT (µ) ≤ 1 + ε and cos(β − γ(µ)) ≥ 1− ε are
true. Additionally, note that dS(µ) ≥ dT (µ) is true for sufficiently small µ as the Euclidean
lines are defined to be closer to the origin than their hyperbolic counterparts. Now, we
replace the first dS(µ) with dS(µ) ≤ (1 + ε)dT (µ), the second dS(µ) directly by dT (µ) and
cos(β − γ(µ)) by 1− ε to obtain:

dT (µ)2 + dS(µ)2 − 2dT (µ)dS(µ) cos(β − γ(µ)) ≤
dT (µ)2 + (1 + ε)2dT (µ)2 − 2dT (µ)2(1− ε) =
dT (µ)2(1 + (1 + ε)2 − 2(1− ε)) =
dT (µ)2(ε2 + 4ε)

Together, we obtain the following inequality (We only show A 6= O, the other case can be
shown similarly):

d(T (µ), T ′(µ))2

d(T (µ), S(µ)2 ≥
dT (µ)2(1− cos(β − β′)2)

dT (µ)2(ε2 + 4ε) = 1− cos(β − β′)2

ε2 + 4ε
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We can now choose ε sufficiently small such that this is larger than k2 as the numerator is
constant and the denominator converges towards 0 for ε→ 0. This gives us a µk such that
for every µ ≤ µk:

d(T (µ), T ′(µ))2

d(T (µ), S(µ)2 ≥
1− cos(β − β′)2

ε2 + 4ε ≥ k2 ⇔ d(T (µ), T ′(µ))
d(T (µ), S(µ) ≥ k.

This allows us to characterize intersection points between lines that are not l0. For the
border line, we could repeat the argumentation in a slightly adjusted way to account for
l0 being an origin line. However, that would be repetitive and there is an easier way to
deal with the intersection points on l0. As an origin line can be interpreted as a circle with
infinite radius, we can change that radius to a finite one in a way that the properties of
the line arrangement remain identical. This way, Lemma 3.20 is also applicable for the
intersection points with l0.

Using that, we can prove Theorem 3.17:

Proof of Theorem 3.17. Let Le be a Euclidean line arrangment. We have described how
the corresponding hyperbolic line arrangement Lh is built and how we scale down Le using
Euclidean scaling. We know that scaling the Euclidean line arrangement does not change
its combinatorial description. What we need to prove here is that there is a scaling factor
µ such that the resulting hyperbolic line arrangement Lh(µ) has the same combinatorial
description as Le. For that, we need to show that for each Euclidean line l, the order of
intersections on l is identical to the one on c.

Our main idea is to show that, if we fix a line l and two intersection points T, T ′ and where
T is closer to l0 than T ′, that there is a µ(T,T ′) such that for every µ ≤ µ(T,T ′) the same
holds true for the corresponding points on c(µ), S(µ) and S′(µ). This gives us an upper
bound for µ for every pair of intersection points on every line. If we choose a scaling factor
that stays under all those upper bounds, every property is fulfilled and thus the hyperbolic
arrangement has the correct combinatorial description.

All that is left now is to argue that for every line l and pair of intersection points T and T ′
where T is closer to l0, such an µ(T,T ′) exists. Our tool for that is Lemma 3.20. There, we
have shown that T (µ) and S(µ) converge faster towards each other than T (µ) and T ′(µ).
This means that there is a scaling factor µ for which S(µ) has to be closer to l0 than
S′(µ) on c(µ), dictated by the same being true for T (µ) and T ′(µ). This is the case as the
distance between S(µ) and T (µ) as well as between S′(µ) and T ′(µ), respectively, is small
enough in comparison to d(T (µ), T ′(µ)) that S′(µ) cannot be closer to l0 than S(µ).

3.3.2. Transforming Simple Hyperbolic Line Arrangements

We now consider the other direction of Theorem 3.3: Starting with a hyperbolic line
arrangement Lh. we transform that into an equivalent Euclidean line arrangement Le.

Theorem 3.21. Given a hyperbolic line arrangement Lh, there is a Euclidean line ar-
rangement Le that has the same combinatorial description.

This time, we start with a hyperbolic line arrangement in our usual setting: l0 as the
vertical origin line in the Poincaré disk and all intersection points to its right. Our task
here is to transform the circles c that represent the hyperbolic lines into Euclidean lines l
in a way that the combinatorial description is identical. For that, we again use P as the
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common point of c and l and define l as the orthogonal line to q through P . This is the
transformation we described at the start of this section. However, the speed at which the
points P and intersection points S and T converge towards the origin differs from the other
direction as we use the hyperbolic scaling operation from Section 3.2 this time.

At this point, ideally we would use Theorem 3.17 to show the other direction as well: If we
could prove that, for every given hyperbolic line arrangement Lh, there is a scaling factor
λ such that the corresponding Euclidean arrangement Le(λ) could have also been created
by Euclidean scaling, we would prove Theorem 3.21. However, this is not trivial to prove
as the Euclidean scaling could need a smaller scaling factor than given by the hyperbolic
scaling at every point. Instead, we execute a similar plan as in the last section with minor
differences at a few key points.

We again start by confirming what happens to α, dP and dM for a given hyperbolic line c.
From the definition of the hyperbolic scaling operation, we know that α(λ) = α remains
untouched and M is scaled back in linear fashion, thus dM (λ) = λ · dM . For dP , we use
Lemma 3.6 and the property dP = dM − r:

dP (λ) = dM (λ)−
√
dM (λ)2 − 1 = λ · dM −

√
(λ · dM )2 − 1

As we described previously, we can alter that to obtain the following representation:
dP (λ) = 1

2λdP
(1 +O( 1

λ2 )). Note that the second part again convergence to 1 for λ→∞.

Now we can start by introducing the adjusted convergence lemmas for β(λ), γ, dS(λ) and
dT (λ):

Lemma 3.22. Let c1, c2 be hyperbolic lines intersecting in S and T the intersection point
of the corresponding Euclidean lines. Then for every ε > 0 there is a minimal scaling factor
λε such that:

∀λ ≥ λε : cos(β(λ)− γ(λ)) ≥ 1− ε.

Proof. We again know from Lemma 3.8 that cos(γ)(λ) = cos(γ), and in Lemma 3.16 we
computed its value:

cos(γ) = sin(α1)dM1 − sin(α2)dM2

d(M1,M2) .

For cos(β(λ)), we insert dP (λ) = 1
2λdM

(1 +O( 1
λ2 )) into the formula of Lemma 3.15:

cos(β(λ)) = sin(α1(λ))dP2(λ)− sin(α2(λ))dP1(λ)
d(P1(λ), P2(λ))

=
sin(α1) 1

2λdM2
(1 +O( 1

λ2 ))− sin(α2) 1
2λdM1

(1 +O( 1
λ2 ))

d(P1, P2)[λ,M1,M2, 1 +O( 1
λ2 )]

=
1

2dM1dM2λ
(sin(α1)dM1 − sin(α2)dM2)(1 +O( 1

λ2 ))
1

2dM1dM2λ
d(M1,M2)|1 +O( 1

λ2 )|

= cos(γ) ·
1 +O( 1

λ2 )
|1 +O( 1

λ2 )|

Again, this means that β(λ) and γ become arbitrarily close to each other. This allows us to
conclude that for rising scaling factor λ, cos(β(λ)− γ) converges towards 1, which in turn
yields that for every ε > 0, there is a λε such that for every λ ≥ λε : cos(β(λ)− γ) ≥ 1− ε
is true.
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3.3. HyperbolicSimpleStretchability is ∃R-Complete

Again, we need a similar convergence result for the distance to the origin. In contrast to
the last section, we slightly adjust the statement:

Lemma 3.23. Let c1, c2 be hyperbolic lines intersecting in S and T the intersection point
of the corresponding Euclidean lines l1 and l2. For every ε > 0 there is a minimal scaling
factor λε such that:

∀λ ≥ λε : dT (λ)
dS(λ) ≥ 1− ε.

Proof. We again start with calculating dS(λ): From Lemma 3.16 we know that this is given
by dS(λ) = dH(λ)−

√
dH(λ)2 − 1 with

dH(λ) = dM1(λ)dM2(λ) sin(α1 − α2)
d(M1(λ),M2(λ)) = λ · dM1dM2 sin(α1 − α2)

d(M1,M2) .

We use the characterization dH −
√
d2
H − 1 = 1

2dH
+O( 1

d3
H

) to achieve the following term
for dS(λ):

dS(λ) = d(M1,M2)
2λdM1dM2 sin(α1 − α2) +O( 1

λ3 )

Now we compute dT (λ) by inserting dP (λ) = 1
2λdM

(1 + O( 1
λ2 )) into the formula of

Lemma 3.15.

dT (λ) = d(P1(λ), P2(λ))
sin(α1 − α2)

=
d(P1, P2)[M1,M2, (1 +O( 1

λ2 )]
sin(α1 − α2)

=
d(M1,M2)|1 +O( 1

λ2 )|
2λdM1dM2 sin(α1 − α2)

Notice that, for t = d(M1,M2)
2dM1dM2 sin(α1−α2) , t/λ is part of both dS(λ) and dT (λ). This term is

cut when computing the quotient, leaving

dS(λ)
dT (λ) = 1

|1 +O( 1
λ2 )|

+ λO(1/λ3)
t|1 +O( 1

λ2 )|
= 1
|1 +O( 1

λ2 )|
+ O(1/λ2)
|1 +O( 1

λ2 )|

as t is constant, converging towards 1 for λ→∞. As dS(λ)/dT (λ) converges towards 1, so
does dT (λ)/dS(λ). This allows us to conclude that, for every ε > 0, there is an initial λε
such that

∀λ ≥ λε : dT (λ)
dS(λ) ≥ (1− ε).

Again, these convergence lemmas now help us in the following way:

Lemma 3.24. Let c be a hyperbolic line and S 6= S′ two different intersection points on c
with lines, and T the intersection point on the corresponding Euclidean line l. For every
positive constant k, there is a λk such that:

∀λ ≥ λk : d(S(λ), S′(λ)) ≥ k · d(S(λ), T (λ))
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3. Hyperbolic SimpleStretchability

Proof. Let k > 0 be fixed, pick a hyperbolic line c and fix an intersection point S on c with
T being the respective intersection point on the corresponding Euclidean line l. Let S′ be
another intersection point on c. This time, we need to show the following inequality:

d(S, S′)
d(S, T ) ≥ k

We again do that by representing the distances with the law of cosines and replacing terms
until we have a constant numerator and a demoninator dependant on ε so that we can
choose ε sufficiently small that the inequality is true. Let ε thus be fixed, but we do not
choose its value yet. For the numerator, we can again use the argumentation of Lemma 3.20
to obtain a point A and

d(S(λ), S′(λ))2 ≥ d(S(λ), A(λ))2 = d2
S(1− cos(γ − γ′)2).

For the demoninator, we again use the convergence lemmas. Again, note that dT (λ) ≤ dS(λ)
for sufficiently small λ:

d(S(λ), T (λ))2 = d2
S + d2

T − 2dSdT cos(γ − β(λ)) ≤ d2
S + d2

S − 2d2
S(1− ε)2 = d2

S(4ε− 2ε2)

Using this, we obtain:

d(S, S′)
d(S, T ) ≥

d2
S(1− cos(γ − γ′)2)
d2
S(4ε− 2ε2)

= 1− cos(γ − γ′)2

4ε− 2ε2

Now, we can find a value for ε such that the inequality is true. The convergence lemmas
then give us the required constraints for λ.

Again, we consider l0 in the hyperbolic line arrangement to be represented by a circle c0
with sufficiently large radius in order to apply Lemma 3.24 to intersection points on l0 as
well. As we have identical results as in the other direction, the proof for Theorem 3.21 is
similar to the one of Theorem 3.17:

Proof of Theorem 3.21. This time, we start with a simple hyperbolic line arrangement
Lh that we scale down using hyperbolic scaling. For pairs of intersection points S, S′,
we again conclude from Lemma 3.24 that there is a scaling factor λ(S,S′) such that for
every λ ≥ λ(S,S′), S(λ) being closer to l0 than S′(λ) implies the same for their Euclidean
counterparts T (λ) and T ′(λ). Thus, for a λ∗ that fulfills all the requirements imposed by
pairs (S, S′), Le(λ∗) is equivalent to Lh.

With this, the proof of Theorem 3.3 is done: Theorem 3.17 directly proves one of the
implications while Theorem 3.21 proves the other one. As exactly the same instances of
SimpleStretchability are realizable in Euclidean and in hyperbolic space, we obtain
two simple reductions from EuclideanSimpleStretchability to HyperbolicSim-
pleStretchability and the other way around, achieving ∃R-hardness and member-
ship: We do not transform the instances represented as combinatorial descriptions at
all. Theorem 3.3 now ensures the correctness of the reduction. Thus, HyperbolicSim-
pleStretchability is also ∃R-complete and our starting point for the reductions in the
next chapters.

Corollary 3.25. HyperbolicSimpleStretchability is ∃R-complete.
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3.4. More on Stretchability

3.4. More on Stretchability
In this last section of this chapter, we offer a few further thoughts on the Stretchability
problem. First, we still need to proof a claim from earlier in the chapter: For each simple
hyperbolic line arrangement, there is a hyperbolic line arrangement with similar description
where the border line l0 can be added. After that, we examine hyperbolic line arrangements
that are not simple. Specifically, we investigate how they behave when they are scaled via
the hyperbolic scaling operation and draw conclusions for the general Stretchability
problem.

As stated, we start with including the border line in a simple hyperbolic line arrangement:

Lemma 3.26. Let L be a simple hyperbolic line arrangement without border line l0. There
is a hyperbolic line arrangement L′ that is homeomorphic to L and includes a border line
l0 that divides the hyperbolic plane in a way that all intersection points between lines other
than l0 are in the same half plane of l0.

Proof. Let L be a simple hyperbolic line arrangement without border line. The main
idea is to use our scaling method to move all intersection points towards the origin, then
add a line l0 that is further apart from the origin than every intersection point. Then all
intersection points are in the same half plane, the one that includes the origin.

In order to define l0, we define the concept of a convergence line g for a hyperbolic line c
that is the line through O that is orthogonal to q (visualized in Figure 3.13). Note that,
with hyperbolic scaling, g is invariant to the scaling and we have shown in the last section
that c converges towards g for λ → ∞. We take this collection of convergence lines as
the base of our argumentation. It is not hard to see that we can add a hyperbolic line l0
fulfilling the requirements for the border line to this collection: We assume that none of
the convergence lines is vertical as we could choose the location of the Poincaré disk in a
different way to prevent that. We need to choose two ideal endpoints on the outer disk to
define l0. For that, we choose two points that are to the left of the vertical line through O,
but to the right of any endpoint of a convergence line in the left half of D, one on the top
and one on the bottom (depicted in Figure 3.13). We claim that, for a large enough λ, the
line l0 defined by those points (which we do not scale) intersects all other lines and divides
the plane in a way that every other intersection point is in the same half plane.

For the first claim, that l0 intersects every c(λ) in L(λ) for some λ ≥ 1, we argue that
l0 intersects every convergence line. As the lines of the arrangement get more and more
indistinguishable from their convergence lines for increasing λ, there is an λ1 such that
for every λ′ ≥ λ1, l0 intersects c(λ). Now take the convergence line for any c. We know
that it cannot be vertical, thus it has one endpoint to the left of the vertical line through
the origin and one endpoint to the right. That means that l0 splits those endpoints into
different half planes as we chose l0 to split the endpoints in the left half of the Poincaré
disk from those in the right half. Thus l0 intersects the convergence line.

The second claim, that for some λ every intersection point S(λ) is on the same side of
l0, is not hard to see. For increasing λ, the intersection points have a maximum possible
distance from O of λ −

√
λ2 − 1 (follows from Lemma 3.8) while l0 has a fixed distance

from O, thus there is a λ2 so that for every λ′ ≥ λ2 all intersection points are in the same
half plane as the origin.

If we now choose any λ∗ with λ∗ ≥ λ1 and λ∗ ≥ λ2, the line arrangement L(λ∗) is
homeomorphic to L and allows the inclusion of the border line l0.

This concludes our research on SimpleStretchability, we now shift our focus to general
line arrangements. The two requirements that simple line arrangements have to fulfill are
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3. Hyperbolic SimpleStretchability

Figure 3.13.: Left: Definition of the convergence line g1. Right: Adding l0 into an arrange-
ment of convergence lines.

that there are no parallel lines and that no more than two lines intersect in each point. We
examine what happens when we lift those requirements in two steps: First, we define the
intermediate version of non-parallel line arrangements where we still require every pair of
lines to intersect, but allow three or more lines to intersect in the same point. Then, we look
at how general line arrangements with no requirements behave when being sujected to the
hyperbolic scaling operation, and think about the general problem of Stretchability in
its Euclidean and hyperbolic variants. As we see in the following theorems, non-parallelity
is the foundation for the correctness of the hyperbolic scaling operation: For non-parallel
line arrangements, the scaling operation still works while for general line arrangements the
combinatorial description may change when scaling the arrangement.

Theorem 3.27. Let L be a non-parallel hyperbolic line arrangement. Then for every
scaling factor λ ≥ 1, the line arrangement L(λ) has the same combinatorial description as
L.

Proof. We have already seen what happens if multiple lines intersect in the same point
in the proof of Lemma 3.13, so we shortly recall the argument: The distance function for
intersection points we computed in Lemma 3.8 is injective and only depends on the intial
height h. Thus, if three or more points intersect in L, their initial height is identical, so
they intersect in the same point in L(λ) for every λ ≥ 1.

Now we also drop the requirement of non-parallelity and examine general hyperbolic line
arrangements. Similar to simple line arrangements, the decision problem Stretchability
is defined in the following way:

Stretchability:
Input: Combinatorial description D of a pseudoline arrangement with border line l0.
Problem: Does a line arrangement L exist that realizes D?
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3.4. More on Stretchability

Figure 3.14.: A hyperbolic line arrangement into which no border line can be placed.

By defining what kind of line arrangements we use, we get the problem variants Hyper-
bolicStretchability and EuclideanStretchability. Note that we still require the
existance of a border line l0 that intersects all other lines, although the other lines do not
have to pairwise intersect anymore. With that, we cannot represent every hyperbolic line
arrangement anymore, as the example depicted in Figure 3.14 shows: For a representation
via pseudoline arrangement, we need to be able to place a border line l0 into a homeomor-
phic line arrangement that intersects every other line. In this case, with three lines c1, c2
and c3 who each divide the plane in a way that the other two lines are in the same half
plane, this is not possible. A border line l0 cannot cross the lines ci twice, but has only two
ideal points on the boundary of the Poincaré disk D. It thus can only intersect at most
two of the three lines. This opens the question if there is a better way to define a decision
problem about hyperbolic line arrangements that includes all hyperbolic line arrangements.
However, in this thesis, we focus on the problem defined by pseudoline arrangements.

In its Euclidean case, the problem is known to be ∃R-complete [Mat14]. The questions
we answer now are the following: Is the problem ∃R-complete in hyperbolic space as well?
And do we find a similar equivalence result to SimpleStretchability?

We start with the question of equivalence of the Euclidean and hyperbolic variants. As
there are infinitely more parallel lines than in Euclidean geometry, it intuitively seems
likely that the same argumentation as for simple line arrangements cannot suffice here.
Indeed, we find that only lines that have a Euclidean sense of parallelity stay parallel for
every scaling factor while other parallel lines intersect at some point:

Theorem 3.28. For two hyperbolic lines c1 and c2, c1(λ) and c2(λ) are parallel for every
λ ≥ 1 if and only if their corresponding Euclidean lines l1 and l2 are parallel.

Proof. Let c1 and c2 be two hyperbolic lines and l1, l2 their corresponding Euclidean lines.
On the one hand, if l1 and l2 are parallel, thenM1, M2 and O are collinear. This is also true
for M1(λ) and M2(λ) for every λ ≥ 1 as we do not change their angles. This means that
H(λ) = O for every λ ≥ 1, and thus c1(λ) and c2(λ) do not intersect due to Lemma 3.7.
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3. Hyperbolic SimpleStretchability

Figure 3.15.: A hyperbolic line arrangement with no Euclidean counterpart.

On the other hand, if the lines c1 and c2 do not intersect for every λ ≥ 1, M1, M2 and O
have to be collinear. If not, then dH would be linearly scaled with λ due to Lemma 3.11.
For some λ∗, dH(λ∗) > 1 would be true and thus c1(λ∗) and c2(λ∗) would intersect due to
Lemma 3.7. The collinearity of M1, M2 and O induces that l1 and l2 are parallel.

This result indicates that, unlike the specialized SimpleStretchability version, the
general Stretchability problem is not equivalent in hyperbolic and Euclidean geometry.
Indeed, this is not hard to see: When we take three lines in Euclidean space, two of which
are parallel (l1||l3), the line l2 is either parallel to both l1 and l3 or to none of the lines. In
hyperbolic space however, c2 can be parallel to c3 while intersecting c1 as parallelity is not
transitive here. This is depicted in Figure 3.15 and yields a combinatorial description that
is realizable in hyperbolic space but not in the Euclidean plane.

While the problem is not equivalent to its Euclidean counterpart, it still is ∃R-hard as well.
This is the case as there is an easy reduction from HyperbolicSimpleStretchability:
We get a simple pseudoline arrangement P as input which obviously is a general pseudoline
arrangement. If there is a line arrangement that stretches P , that line arrangement has to
be simple because P is simple. Thus, if we can solve the general hyperbolic stretchability
problem, we can solve HyperbolicSimpleStretchability which we have shown to be
∃R-complete in Corollary 3.25.

This concludes our research of hyperbolic line arrangements and offers a new insight for
the main result of this chapter, Theorem 3.3. In a way, it is surprising that a problem
is equivalent in hyperbolic and Euclidean space when hyperbolic space is much larger
and offers many more possibilities for line arrangements. However, constraining the line
arrangements to be non-parallel negates those differences, which do exist for general line
arrangements. Parallelity thus indeed is what differentiates hyperbolic and Euclidean line
arrangements, when restricting this aspect, hyperbolic line arrangements cannot use the
additional space and become equivalent to their Euclidean counterparts.
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Now that we have proven the equivalence of simple hyperbolic and Euclidean line arrange-
ments, we consider the consequences on geometric ∃R-complete problems that are proven
to be ∃R-hard by reduction from EuclideanSimpleStretchability. In this chapter,
we start with the most fitting candidate: Recognizing unit disk graphs. We choose this
problem because its hyperbolic variant is already the focus of research: Introduced by
Papadopoulos et al. [PKBV10] in a probabilistic setting, hyperbolic unit disk graphs
were found to have many interesting properties. As random graphs, they have a highly
hierarchical structure and serve as a well-fitting testing ground for algorithms defined
for large networks. Additionally, Dohse [Doh22] shows that the recognition problem for
hyperbolic unit disk graphs is NP-hard and in ∃R, leaving the question of ∃R-hardness
open.

The main goal of this chapter is to answer that question affirmatively. For that, we first
recall the existing proof ideas for recognizing Euclidean and hyperbolic unit disk graphs.
The membership proofs use a reduction to ETR to show ∃R-membership. Introduced by
Erickson et al. in "Smoothing the gap between NP and ER" [EVDHM22], there is a new
technique to proof ∃R-membership. We need to show that a verification algorithm on a
real RAM model exists. As this was not established when the existing membership proofs
were made, we outline the existing proofs ∃R-membership for both EUDGs and HUDGs
and add the new versions as our own contribution. We further present the ∃R-hardness
proof for recognizing EUDGs by Schaefer [Sch09] and Matoušek [Mat14] as we use it for
our main contribution: Using that and the equivalence of Theorem 3.3, we show that
recognizing HUDGs is also ∃R-hard.

We now start with presenting the existing results and the new membership proof for the
recognition problem of Euclidean unit disk graphs before we do the same for hyperbolic unit
disk graphs. Finally, we also consider the complexity of a special case of hyperbolic unit
disk graphs: Strongly hyperbolic unit disk graphs, introduced by Bläsius et al. [BFKS21].

4.1. Euclidean Unit Disk Graphs

As mentioned previously, Euclidean unit disk graphs are one of the geometric problems
that are complete for ∃R:

Theorem 4.1. Recognizing EUDGs is ∃R-complete.
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The proof consists of two parts. The first part is showing that recognizing EUDGs is part
of ∃R, which we do in two different ways as described above. The second part is a reduction
from EuclideanSimpleStretchability to Recog(EUDG) to show that it is ∃R-hard.

Lemma 4.2. Recognizing EUDGs is in ∃R

This result is implied in multiple papers but, as far as we know, was never actually proven
formally. We do that now using both ETR formulas and a verification algorithm on a real
RAM model. For both variants, the first steps are identical: Each vertex is represented
by a pair of variables denoting the coordinates of the center of the unit disk. Then all
we need are checks for each edge and non-edge of the graph that ensure that the distance
between adjacent vertices is at most 1 and the distance between non-adjacent vertices is
greater than 1. In Euclidean space, the distance between points A and B can be expressed
by

√
(Bx −Ax)2 + (By −Ay)2.

Proof by ETR formula. The first kind of membership proof now constructs an ETR formula
that is solvable if and only if we find an embedding of unit disks that represents the input
graph. For an input graph G = (V,E), we use n pairs of variables (xi, yi) that represent
the embedding of vertex vi. Now, each of the distance checks for is represented by an
inequality in the form we described previously. One additional hurdle is that square roots
are not allowed in ETR formulas. We can solve this by squaring the inqualities. The
resulting checks are, for pairs of vertices vi, vj : (xi − xj)2 + (yi − yj)2 ≤ 1 for edges and
(xi − xj)2 + (yi − yj)2 > 1 for non-edges. Combining those checks with logical ands yields
the complete formula.

Formulating the verification algorithm is a bit easier than that:

Proof by verification algorithm. We interpret the input of n pairs of real variables (xi, yi)
again as the coordinates of the vertices vi. The algorithm now computes all the distance
checks: For edges vivj , (xi−xj)2 +(yi−yj)2 ≤ 1 and for non-edges (xi−xj)2 +(yi−yj)2 > 1
have to hold, respectively. If one of them fails, the solution is denied, else accepted.

That concludes the first part of the proof. For the ∃R-completeness, we follow the
argumentation of Kang and Müller [KM12]. Their proof generalizes the problem to higher
dimensions, we only consider the proof for dimension 2 which is the problem of recognizing
EUDGs. Note that we use orientated combinatorial descriptions that characterize the
regions of a pseudoline arrangement in this chapter.

Lemma 4.3. [[KM12]] Recognizing EUDGs is ∃R-hard.

As mentioned previously, Kang and Müller reduce EuclideanSimpleStretchability to
recognizing EUDGs and use the oriented combinatorial description as input. As a first step,
they adjust the problem in order to simplify talking about the input: They only include
sign vectors without 0s in it, meaning only the sign vectors from the inside of the regions.
Kang and Müller show that this is still as complex as the general version.

The transformation is the following: Let D be a SimpleStretchability-instance (sim-
plified combinatorial description of sign vectors). For each sign vector σ in D, which
corresponds to a region in a pseudoline arrangement, we have a vertex cσ. For each line
li we have two vertices ai and bi. They idea is that ai and bi are embedded in a way
that the perpendicular bisector between the two points can be used as the line li in a line
arrangement that corresponds to D. To ensure that the line li splits the plane into the
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Figure 4.1.: A line arrangement of three lines with its region vertices cσ (red) and a pair of
vertices ai, bi (blue).

correct regions, we need the following adjacencies: We have three cliques A,B,C and no
edges between A and B, while for each i, the neighbourhoods of ai and bi partition C into
two parts. This last requirement ensures the required property. The transformation thus
transforms a combinatorial description D into a graph GD = (V,E). This is shown in
Figure (not yet). The definition of graph GD is the following:

Definition 4.4 (Graph GD). GD = (VD, ED) with

VD = {ai, bi | 0 ≤ i ≤ n} ∪ {cσ | σ ∈ D}
ED = {aiaj | i 6= j} ∪ {bibj | i 6= j}
∪ {aicσ | σi = −} ∪ {bicσ | σi = +}
∪ {cσcσ′ | σ 6= σ′}

GD is visualized in Figure 4.1.

Kang and Müller now show ∃R-hardness of recognizing EUDGs with the following equiva-
lence: D is realizable in Euclidean space if and only if GD is an EUDG. We motivate both
directions in the following lemmas:

Lemma 4.5. [[KM12]] For any given combinatorial description D: If D is realizable, then
GD is an EUDG.

Proof Sketch. The proof is very technical, so we only provide a short overview. We start
with a line arrangement L that is a realization of a combinatorial description D. Kang and
Müller first transform this line arrangement into a more suitable form: They show that
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4. Unit Disk Graphs

Figure 4.2.: Left: Placement of the vertices ai and bi. Right: Motivation that a radius
exists such that the circle includes all region vertices.

there is a point O and an ε-disk Cε with center O such that every region of L intersects Cε
and every line li has a slope, defined by vector vi, that is close to e1 = (1, 0) (||e1− vi|| ≤ ε).
With that, they find locations for the region points cσ inside of Cε so that cσ is situated
in the region with sign vector σ. Additionally, every line li has a segment on the inside
of Cε where a point Pi is fixed. The vertices ai and bi now are placed in a way that the
segment between them is orthogonal to li (shown in Figure 4.2) and they are centers of
circles that include exactly the cσ with σi = − for ai and σi = + for bi. There is a radius r
such that this condidition is fulfilled for every i (also visualized in Figure 4.2). The cσ all
form a clique as they are situated inside of Cε, and the ai and bi respectively form cliques
as well as every li has a slope that is close to e1 and thus the vertices are near each other.
The embedding of GD is the described placement with the coordinates scaled down by r to
achieve unit disks.

Now we only need the other direction to show that recognizing EUDGs is ∃R-complete:

Lemma 4.6. [[KM12]] For a combinatorial description D, if there is an embedding of GD
into Euclidean space, then D is realizable.

Proof. The main idea of the proof is to use the perpendicular bisector between the vertices
ai and bi as the line li. We show that, for the resulting collection of lines L, its combinatorial
description, consisting of the sign vectors of the regions, is D.

We start with an embedding fe for GD. We need to show that every region defined by D is
a region in L. As n+ 1 lines can only divide the plane into a fixed amount of regions and
D consists of the maximum amount of sign vectors (if not, the arrangement not simple), it
is sufficient to prove that L implements every region defined by D. We start with a region
from D, which we identify with its sign vector σ. There is a corresponding vertex cσ in
GD, which is placed into the plane at the point fe(cσ). We argue that fe(cσ) is not a part
of any line li and has sign vector σ in the line arrangement L.

For the first point, if fe(cσ) would be part of a line li, then the distance from fe(cσ) to
fe(ai) and fe(bi) would be identical as li is the perpendicular bisector between them, thus
cσ would need to be adjacent to either both ai and bi or none of them. However, it is
adjacent to exactly one of them, which is a contradiction.

For the second point, we construct the sign vector σ′ of fe(cσ) in L. For coordinate i,
σ′i = − exactly when cσai ∈ E and σ′i = + otherwise. However, cσai ∈ E is only the
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case if σi = − which means that σ′i = σi. This concludes the proof that L realizes the
combinatorial description D and thus, if GD is an EUDG, then D is realizable.

With these lemmas completing the reduction, we now can prove Lemma 4.3:

Proof of Lemma 4.3. We already know that EuclideanSimpleStretchability, even in
the simplified version of the input, is ∃R-complete. We use a reduction to Recog(EUDG)
to show ∃R-hardness of the latter problem. The transformation is defined in Definition 4.4.
To ensure that this transformation does not change the validity of the instances, we show
equivalence of input D and transformed graph GD in Lemma 4.5 and Lemma 4.6.

4.2. Hyperbolic Unit Disk Graphs

As we have seen in the previous chapter, the problem SimpleStretchability is equivalent
when changing the underlying geometry from Euclidean to hyperbolic. In this chapter,
we achieve a similar result for the problem of recognizing unit disk graphs. Although
the graph classes of EUDGs and HUDGs are different, we can find a reduction from
HyperbolicSimpleStretchability to recognizing HUDGs that is very similar to
the reduction of the Euclidean variants we showed in the last section. This means that
recognizing HUDGs is also ∃R-complete:

Theorem 4.7. Recognizing HUDGs is ∃R-complete.

Again, we start with membership which was first shown by Dohse [Doh22] via building an
ETR formula. We recall that proof shortly and add the verification algorithm.

Lemma 4.8 ([Doh22]). Recognizing HUDGs is in ∃R.

In this proof, we need to use hyperbolic distance formulas in an ETR formula. For that,
we introduced the hyperboloid model of hyperbolic geometry in Chapter 2. As a reminder,
here the points of the hyperbolic plane are represented in R3 as points on the surface of a
hyperboloid with z2 − x2 − y2 = 1 defining the hyperboloid, and z > 0 as we only use the
upper sheet. The distance between two points u, v now is given by dh(u, v) = arcosh(B(u, v))
where B is the Minkowski bilinear form B((ux, uy, uz), (vx, vy, vz)) = uzvz − uxvx − uyvy.

Proof by ETR formula [Doh22]. We again start with an input graphG = (V,E). We have a
few differences to the Euclidean case: As the radius R is not fixed, it needs to be encoded in a
variable xR. We now need three variables (xi, yi, zi) for each vertex vi and additional checks
to ensure that the vertices are placed onto the hyperboloid. We cannot express the distance
formula directly in an ETR formula as arcosh is not allowed. However, it is monotone and
thus can be left out of the checks because arcosh(B(u, v)) ≤ R⇔ B(u, v) ≤ cosh(R) (thus
we do not have the actual radius R used for the embedding in xR, but it can be recovered by
computing arcosh(xR)). To recap, we need a variable xR for the radius, variables xv, yv, zv
and checks z2

v − x2
v − y2

v = 1 and zv > 0 for each vertex v. For each pair of vertices u 6= v,
we need distance checks zuzv − xuxv − yuyv ≤ xR if uv ∈ E and zuzv − xuxv − yuyv > xR
if uv /∈ E. Combining all these checks with logical ands again yields the complete formula.
As each of those components has fixed length, the formula has polynomial size.

The verification algorithm can be described in the following way:
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Proof by verification algorithm. We start with an input graph G = (V,E) and use three
variables (xi, yi, zi) for each vertex vi. We again need an additional variable for our radius
R. As the real-RAM model also cannot compute arcosh, we use the same idea as in the
last proof to encode arcos(R) in the variable xR. The verification algorithm now needs
to check if each of the vertices is correctly placed on the hyperboloid, and if the distance
checks hold true for each pair of vertices.

Our main contribution in this chapter is the proof that recognizing HUDGs is not only in
∃R, but − similar to recognizing EUDGs − also ∃R-hard:

Theorem 4.9. Recognizing HUDGs is ∃R-hard.

The main idea is that due to SimpleStretchability being equivalent in Euclidean and
hyperbolic space, the Euclidean reduction can be used to achieve a hyperbolic reduction as
well. We first state the necessary results we need for the reduction. The first one is our
main result from the last chapter:

Theorem 3.3. Let D be a combinatorial description of a SimpleStretchability instance.
Then D is realizable by a line arrangement Le in the Euclidean plane if and only if D is
realizable by a line arrangement Lh in the hyperbolic plane.

This ensures that we can start the same way as in the Euclidean case: With a combinatorial
description we want to realize in Euclidean space. For the next step, we need the Euclidean
reduction from EuclideanSimpleStretchability to recognizing EUDGs we presented
in the last section. From that, we conclude that there is a poly-time transformation from
EuclideanSimpleStretchability to Recog(EUDG) that transforms a combinatorial
description D into an graph GD such that D is realizable in the Euclidean plane if and
only if GD as an EUDG.

This gives us a Euclidean unit disk graph, but our reduction needs to end with a hyperbolic
unit disk graph. The following result from Dohse [Doh22] and Bläsius et al. [BFKS21]
bridges that gap:

Theorem 4.10 ([Doh22], [BFKS21]). Every Euclidean unit disk graph G is also a hyperbolic
unit disk graph.

With this, we now reduce HyperbolicSimpleStretchability to Recog(HUDG). We
start with a combinatorial description of an orientated hyperbolic line arrangement D.
This description also fits with an Euclidean line arrangement, so we perform the same
transformation as in the Euclidean proof to obtain a graph GD as defined in Definition 4.4.
This will be our HUDG.

The last thing we need to show now is that a drawing of GD in the hyperbolic plane emits
a hyperbolic line arrangement of D the same way that it does in Euclidean space, which
we prove in the following lemma:

Lemma 4.11. Let D be a combinatorial description and GD the corresponding graph
defined in Definition 4.4. If GD is a HUDG, we can extract a hyperbolic line arrangement
Lh that realizes D in hyperbolic space.

Proof. Let D be a combinatorial description, GD the corresponding graph and fh an unit
disk embedding of GD. We begin with extracting a hyperbolic line arrangement Lh from
the graph and then show that the line arrangement indeed realizes the same combinatorial
description D that was used to define GD. The extraction part is easy, we perform the
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same process as in the Euclidean case: For every pair of vertices ai and bi, we consider the
perpendicular bisector of the segment between fh(ai) and fh(bi) and use it as line li. Lh
is now defined as the set of all those lines li. We know that this process gives us a line
arrangement with combinatorial description D in the Euclidean case. For the hyperbolic
case, we show the correctness step by step.

The first thing to show is that we indeed get a simple hyperbolic line arrangement. The
main tool to show that are the adjacencies of the vertices cσ with either ai or bi. Assume
that either there are lines that do not intersect or three or more lines intersect in the same
point. In both cases, the lines of Lh do not divide the hyperbolic plane in the maximum
amount of regions. This means that there have to be two vertices cσ, cσ′ with σ 6= σ′ that
are placed in the same region. Note that no vertex cσ can be placed onto one of the l′i as it
would have the same distance to both fh(ai) and fh(bi) and thus would need to be either
adjacent to both or neither vertices, but is adjacent to exactly one of them. As σ 6= σ′,
there is at least one coordinate k with σk 6= σ′k. But then cσ and cσ′ are placed on the
same side of the perpendicular bisector lk. The two vertices thus have to be both adjacent
to either ak or bk, which corresponds to σk = σ′k which is not the case. This shows that Lh
indeed is a simple hyperbolic line arrangement.

Now that we know that Lh indeed is a hyperbolic line arrangement, we consider its
combinatorial description. Here, the same argumentation as in the Euclidean case works:
The region vertices cσ ensure that each of the sign vectors σ are correctly represented by
unique regions. We conclude that Lh indeed realizes the combinatorial description D.

Now we have all the tools to prove Theorem 4.9, stating that the problem of recognizing
hyperbolic unit disk graphs is ∃R-hard:

Proof of Theorem 4.9. In this proof, we reduce HyperbolicSimpleStretchability in
poly-time to Recog(HUDG). In the previous chapter, we showed that Hyperbolic-
SimpleStretchability is ∃R-complete, thus such a reduction shows that recognizing
hyperbolic unit disk graphs is indeed ∃R-hard. Our idea here is to show that the Euclidean
transformation also works for the hyperbolic variant.

The Euclidean proof of Kang and Müller, which we outlined in the previous section, starts
with a EuclideanSimpleStretchability instance D. This is also a valid instance of
HyperbolicSimpleStretchability, as we argued in the last chapter. As the problems
are equivalent, interpreting a combinatorial description as a Euclidean instance as opposed
to a hyperbolic one does not change its outcome, thus we can indeed start in the same way
as the Euclidean proof. From that, we obtain a graph GD that is a Euclidean unit disk
graph if and only if D was indeed realizable in Euclidean space. We now show that the
same holds true for hyperbolic space: GD also is a hyperbolic unit disk graph if and only if
D is realizable in hyperbolic space.

For the one direction, we start with a yes-instance D of HyperbolicSimpleStretchabil-
ity. This is also a yes-instance of EuclideanSimpleStretchability due to Theorem 3.3,
which means that the corresponding graph GD is a Euclidean unit disk graph. As a result
of Theorem 4.10, every Euclidean unit disk graph, which includes GD, is also a hyperbolic
unit disk graph. This concludes the first implication: If D is a yes-instance, then GD is a
HUDG.

For the other direction, we start with the case that, for a HyperbolicSimpleStretcha-
bility instance D, GD is a hyperbolic unit disk graph. In Lemma 4.11 we have shown
that a hyperbolic line arrangement then can be extracted, which means that D is also a
yes-instance. This proves the second implication.
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With these two implications, we have shown that the same transformation as in the
Euclidean proof also works in hyperbolic space, thus recognizing HUDGs also is ∃R-
complete.

If we take a closer look at the proof, we showed that we do not transform onto any HUDGs,
but onto a subclass that encapsulates line arrangements. This subclass is hard to recognize
because it implicitly stretches the line arrangement and is identical in Euclidean and
hyperbolic space as we formulate in the following corollary:

Corollary 4.12. For any combinatorial description D of a pseudoline arrangement, GD
is a Euclidean unit disk graph if and only if GD is a hyperbolic unit disk graph.

The proof here is not hard: On the one hand, every EUDG is also an HUDG. On the other
hand, if GD is a HUDG, it implicitly realizes a hyperbolic line arrangement. This means
that there is a Euclidean line arrangement with combinatorial description D which in turn
results in every GD also being an EUDG.

4.3. Strongly Hyperbolic Unit Disk Graphs
In the last section, we have shown that ∃R-hardness of HUDGs can be shown similar to its
Euclidean variant. However, there is a special subset of HUDGs that typically have highly
non-Euclidean structure: strongly hyperbolic unit disk graphs, first regarded by Bläsius
et al. [BFKS21]. This special class of unit disk graphs has an additional constraint for
the hyperbolic embedding: The ground space radius can only be as large as the threshold
distance. An example of such a graph is visualized in Figure 4.3.

Definition 4.13 (Strongly Hyperbolic Unit Disk Graphs). A graph G = (V,E) that can
be embedded into the hyperbolic plane with an embedding fh such that there is a threshold
distance R that fulfills: For each i 6= j ∈ V × V : dh(fh(i), fh(j)) ≤ R⇔ ij ∈ E and there
is a point P with ∀v ∈ V : dh(fh(v), P ) ≤ R.

We now discuss if this specialization of HUDGs also is ∃R-complete. As a start, we give a
reduction from the problem of recognizing SHUDGs to recognizing HUDGs by adding an
additional vertex to the input graph that is adjacent to every other vertex. This vertex
can be interpreted as the center of the ground space disk in the strongly hyperbolic case
and any embedding with such a vertex is automatically a strongly hyperbolic embedding.

Lemma 4.14. A graph G = (V,E) is a strongly hyperbolic unit disk graph if and only if
G′ = (V ′, E′) with V ′ = V + {x | x /∈ V } and E′ = E + {xv | v ∈ V } is a hyperbolic unit
disk graph.

Now we can focus on the ∃R-completeness of recognizing strongly hyperbolic unit disk
graphs. The last lemma already shows that the problem is in ∃R as we have a reduction
to recognizing HUDGs and thus to ∃R. For the hardness, we consider the same proof
idea as earlier: If we can show that for any SimpleStretchabilityinstance D and
the corresponding graph GD defined in Definition 4.4, GD is a strongly hyperbolic unit
disk graph if and only if the line arrangement is stretchable, then we have shown that
recognizing SHUDGs is ∃R-hard. We use Lemma 4.14 to simplify the process: Instead of
asking whether GD is a SHUDG, we can ask if G′D with the added vertex is an HUDG.
It could be the case that this further simplifies to the question if G′D is an EUDG as in
Corollary 4.12, though we did not manage to show that result.

For the rest of the section, we introduce approaches to answer to this question, though
we do not answer it definitively. Again, if we find that G′D is indeed an EUDG, then we

46



4.3. Strongly Hyperbolic Unit Disk Graphs

Figure 4.3.: A strongly hyperbolic unit disk graph.
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would gain a reduction from HyperbolicSimpleStretchability the same way as for
normal HUDGs: We could transform a combinatorial description D into G′D which also is
a strongly hyperbolic unit disk graph if it is a Euclidean one, and as any embedding of G′D
gives us a line arrangement for D due to Lemma 4.11.

As a starting point, we recall the transformation of Kang and Müller. They embed the
graph GD in way that is If we can show that this embedding of GD already leads to a
correct embedding of G′D, we would show that our problem is ∃R-hard. However, that is
not the case: The distances between the ai and the origin are too large.

We could try to fix this issue by simply moving the vertices within the circle around O
while maintaining the same radius and hoping that the adjacencies do not change. That
is not successful as there are special instances of Recog(EUDG) that require double
exponential precision, as proposed by McDiarmid and Müller [MM13]. As the vertices need
to be precisely placed, we only have very little slack move them and still represent the
same unit disk graph. With this in mind, it is obvious that the transformation from Kang
and Müller does not lead to an embedding of G′D for every combinatorial description D as
the required change of the radius does not work for these special instances. However, there
could be other ways to embed G′D even for the special line arrangements.

At this point, we did not reach further conclusions. However, we have assembled a handful
of approaches that could work to show that recognizing SHUDGs is ∃R-complete:

• Show that G′D is a Euclidean unit disk graph for every stretchable D.

• Show that G′D is a hyperbolic unit disk graph for every stretchable D.

• Try a different reduction, from either HyperbolicSimpleStretchability,
Recog(HUDG) or a completely different problem.

If none of these approaches work, one could try to show that the reduction by Kang and
Müller does not work for this problem by finding a hyperbolic line arrangement with
combinatorial description D such that GD is no strongly hyperbolic unit disk graph. While
this does not disprove ∃R-hardness of recognizing SHUDGs, it at least is an indicator that
the problem might not be as hard as its general version.
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The definition of hyperbolic unit disk graphs, their interesting and useful properties and
the ∃R-completeness of the recognition problem is, in our minds, motivation for trying the
same approach for more geometric ∃R-complete problems. In order to start this process and
give an indication how it could look like, we define the hyperbolic version of the recognition
problem for segment graphs and consider its complexity. For that, we now generalize the
∃R-completeness proof from the last chapter in order to be applicable for other geometrical
problems and apply it on the segment graph recognition problem.

We first recall the proof structure we used for Recog(HUDG): We used that the Eu-
clidean problem version is ∃R-hard by reduction from EuclideanSimpleStretchability,
that EuclideanSimpleStretchability and HyperbolicSimpleStretchability are
equivalent, that every EUDG is also an HUDG and that the extraction process for the line
arrangements used in the Euclidean hardness proof also works in the hyperbolic context.
The proof then follows the following argumentation: We start with an instance D of
HyperbolicSimpleStretchability. As per Theorem 3.3, we can replace it with an
instance of EuclideanSimpleStretchability. We then use D in the Euclidean hardness
proof to obtain a graph GD. If D is realizable in hyperbolic space, then also in Euclidean
space, which means that GD is an EUDG and subsequently also a HUDG. On the other
hand, the process of extracting a line arrangement out of an embedding of GD also works
in the hyperbolic context. This concludes the hardness proof because if GD is a HUDG,
then D is realizable in hyperbolic space.

Now we use the same idea on other problems. Obviously, this only works for problems where
hyperbolic geometry is applicable, and that are shown to be ∃R-complete by reduction
from SimpleStretchability. As a first step, we visualize the argumentation:

EuclideanSimpleStretchability ⇔ HyperbolicSimpleStretchability
(a)

Euclidean problem version Hyperbolic problem version

(b)

(c)

(d)
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The equivalence (a) is given by Theorem 3.3. For the problems we consider in this thesis,
the reduction (b) is already established, in case of the unit disk graphs by Kang and
Müller [KM12]. The transformation (c) is an argument that establishes that the Euclidean
yes-instances of the problem are also hyperbolic yes-instances as in small areas, hyperbolic
and Euclidean space become similar. For unit disk graphs, this result is shown by Dohse
[Doh22] and Bläsius et al. [BFKS21]. For the last arrow (d), we have to argue that any
hyperbolic yes-instance of the problem induces a realization of the initial combinatorial
description the same way it does in the Euclidean case. For that, the concepts used to
show that have to work in hyperbolic geometry. This is the case for unit disk graphs.

In general, we need the following results for the framework to be applicable:

(a) Given by Theorem 3.3.

(b) Geometric reduction from EuclideanSimpleStretchability.

(c) Every Euclidean yes-instance is also a hyperbolic yes-instance.

(d) A hyperbolic line arrangement is extractable from the hyperbolic yes-instance that is
the result of the transformation given in (b).

In the rest of this chapter, we first show another application of this proof framework for the
problem of recognizing intersection graphs of segments. Matoušek [Mat14] and Schaefer
[Sch09] show that this problem is ∃R-complete in Euclidean space, which implements the
reduction (b). We complete the proof by implementing the (c) and (d) arguments. Finally,
we introduce a few problems whose hyperbolic variants likely can successfully be subjected
to this proof framework.

5.1. Intersection Graphs of Segments
The problem we use to show how to apply the proof framework is the problem of recognizing
segment graphs. A segment graph, short for intersection graph of segments, is a graph G
whose vertices can be represented by segments of lines in a given plane where two segments
intersect if and only if their corresponding vertices are adjacent. The Euclidean version of
the problem can be formalized in the following way:

Recog(ESEG):
Input: Graph G = (V,E)
Problem: Can V be represented by a set S of |V | segments in the Euclidean plane such
that two segments intersect if and only if the corresponding vertices are adjacent?

The problem is considered in the context of ∃R by Schaefer [Sch09] and Matoušek [Mat14].
They show that recognizing Euclidean segment graphs is ∃R-complete via geometric
reduction from EuclideanSimpleStretchability, which indicates that a ∃R-hard
hyperbolic variant might exist. Indeed, we now define the hyperbolic variant and use our
proof framework to show ∃R-hardness.

5.1.1. Hyperbolic Segment Graphs

The only thing we need to change from the Euclidean definition is the plane in which the
segments are placed. Segments of lines can be used in the hyperbolic plane in the same
way as in the Euclidean plane, so we define the hyperbolic version of the problem:

Recog(HSEG):
Input: Graph G = (V,E)
Problem: Can V be represented by a set S of |V | segments in the hyperbolic plane such
that two segments intersect if and only if the corresponding vertices are adjacent?
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Figure 5.1.: The ordering gadget for RECOG(ESEG) (Source: [Sch09])

In the case of hyperbolic unit disk graphs, there are graphs that can be represented by
hyperbolic unit disks but not by any Euclidean unit disk representation. We do not give a
similar result for hyperbolic segment graphs, so in theory the graph class could be identical
to Euclidean segment graphs. However, even if the classes are equivalent, this proof still
holds merit as an example of applying the proof framework.

We now use the proof framework to show that this problem is ∃R-hard. For that, we
formulate and prove the three necessary steps: Giving the Euclidean reduction from
EuclideanSimpleStretchability, showing that every Euclidean segment graph is also
a hyperbolic one, and showing that we can extract a hyperbolic line arrangement from
every hyperbolic segment graph that is built from a pseudoline arrangement in the way we
define now.

5.1.2. Euclidean Hardness Proof

The first step (b) is to recapitulate the Euclidean hardness proof:

Theorem 5.1 ([Sch09], [Mat14]). Recognizing Euclidean segment graphs is ∃R-complete.

Proof Sketch. We focus on the hardness proof. For that, we give the geometric reduction
introduced by Schaefer [Sch09] as it is more easily understandable. The reduction can of
course be formalized to receive a combinatorial description D as input and define a graph
GD from that.

The reduction starts with a pseudoline arrangement P . We add two additional border
lines lu and lb to form a triangle around the intersection points together with l0. Then we
cut every pseudoline just outside of this outer triangle to transform the pseudolines into
segments. Additionally, we add so-called ordering gadgets for each line which are displayed
in Figure 5.1. The graph GD is now defined by interpreting each segment, including the
ordering gadgets, as a vertex and adding edges for each intersection. The ordering gadgets
ensure that the order of intersections is forced in every realization of GD.

The proof gives us a graph GD for each combinatorial description D, where GD is a
Euclidean segment graph if and only if D is realizable in Euclidean space.
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5.1.3. Transforming Euclidean Segment Graphs

We now need to show step (c), which requires us to show that the class of Euclidean
segment graphs is a subset of the hyperbolic segment graphs:

Theorem 5.2. Every Euclidean segment graph is also a hyperbolic segment graph.

Proof. Similar to the proofs in Section 3.3, the idea here is to reduce the area in which the
segments lie. Then we can find a transformation from Euclidean to hyperbolic segments that
represent the same graph. We start with a Euclidean segment graph G and a corresponding
segment representation Se. We assume that the segments in Se are non-parallel. This
is possible because we may always move the endpoints of the segments in a small local
surrounding and thus can always avoid parallelity. Our idea is to use Euclidean scaling to
reduce the area in which the segments are situated and then build the hyperbolic segment
representation Sh. As a reminder, we have already done something similar in the proof of
Theorem 3.17 where we scaled down Euclidean line arrangements until the corresponding
hyperbolic line arrangements had the same combinatorial description. We use that result by
transforming Se into a Euclidean line arrangement, use Theorem 3.17 to get a hyperbolic
line arrangement with identical combinatorial description and extract a hyperbolic segment
representation of G.

In order to transform Se into a line arrangement Le, we first transform each of the segments
s into their respective lines l (each segment is part of exactly one line). Additionally, we
add two lines ll and lr for each s that intersect l each in one of the endpoints of s. Now, if
two segments intersect, then the intersection point of the corresponding lines lies between
the intersection points with ll and lr on both lines. If two segments do not intersect, either
the corresponding lines do not intersect or the intersection point is outside of the segment
defined by llandlr on at least one of the lines.

This is also the property we use to extract the hyperbolic segment represenation after
applying Theorem 3.17 to Le. We obtain a hyperbolic line arrangement Lh with identical
combinatorial description. We now define the hyperbolic segments as the segments between
the intersection points of c with cl and cr. As the combinatorial description of Le and Lh
is identical, the property ensures that the hyperbolic segments intersect if and only if the
Euclidean segments intersected. Thus, Sh also is a segment representation of G, and G is
a hyperbolic segment graph if it is a Euclidean one.

We thus now know that for each realizable combinatorial descriptionD of a simple hyperbolic
line arrangement, the corresponding graph GD is a Euclidean segment graph and thus a
hyperbolic segment graph. This concludes one direction of the reduction.

5.1.4. Reconstructing Hyperbolic Line Arrangements

The remaining step (d) requires us to show that we can define a simple hyperbolic
line arrangement Lh with combinatorial description D from each hyperbolic segment
representation of GD.

Theorem 5.3. Let D be an instance of HyperbolicSimpleStretchability. Then, if
GD is a hyperbolic segment graph, then D is realizable in hyperbolic space.

Proof. The proof relies on the ordering gadgets introduced in the proof of Theorem 5.1.
In order to see that the ordering gadgets indeed force the order of intersections on each
line to be correct, even for hyperbolic lines, we first need to understand how they work.
We explain them with no distinction of the underlying geometry to show that they work
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for both hyperbolic and Euclidean segment graphs, as the needed concepts can be used in
both geometries.

First, recall the geometric transformation of a pseudoline arrangement D into the graph
GD. The segment s corresponding to one of the initial lines l is completely surrounded
by other segments that are part of the ordering gadgets, with each intersection point on s
having its own cage, a simple polygon consisting of segments from the ordering gadgets.
If there would be a realization of GD with a different order of intersections, the segment
representing the initial line would need to cross the ordering gadget of other intersections
at some point. This is not possible without adding additional edges to the graph, thus
the order of intersections remains untouched. This means that for any realization of GD,
a hyperbolic line arrangement realizing D can be extracted by extending the segments
corresponding to the original lines included in D.

This was the last step we need to complete our proof framework. We obtain a reduction
from HyperbolicSimpleStretchability to Recog(HSEG) similarly to the reduction
to Recog(HUDG):

Theorem 5.4. Recognizing hyperbolic segment graphs is ∃R-hard.

Proof. We have filled the steps (a) - (d). The transformation of instances is the same one
as used in the Euclidean case. Theorems 5.1 and 5.2 and show that, when we start with
an instance of HyperbolicSimpleStretchability, the Euclidean transformation gives
us an equivalent instance of recognizing Euclidean segment graphs, and every Euclidean
segment graph is also a hyperbolic one. On the other hand, Theorem 5.3 shows the other
direction: If we have a hyperbolic embedding of our segment graph GD, we can reconstruct
a hyperbolic line arrangement that realizes D. Together, this completes the reduction
from HyperbolicSimpleStretchability to Recog(HSEG) and the application of the
framework.

5.2. More Potential Problems with Hyperbolic Variants

In the previous section, we showed how to apply our proof framework to another Euclidean
∃R-complete geometric problem. Recognizing segment graphs is only one of the many
possible problems. Now we list a few other candidates that could also have an interesting
∃R-complete hyperbolic variant. An overview over more ∃R-complete problems in Euclidean
geometry and thus potential candidates for this process can be found in [Bie20].

Intersection graphs of convex sets

Again Schaefer [Sch09] also introduces the generalization of recognizing intersection graphs
of convex sets as another ∃R-complete geometric problem:

RECOG(CONV):
Input: Graph G = (V,E)
Problem: Can V be represented by a set C of |V | convex sets in the Euclidean plane such
that two convex sets intersect if and only if the corresponding vertices are adjacent?

The hyperbolic problem version is apparent: We place the convex sets in the hyperbolic
plane instead of the Euclidean one. As the transformation Schaefer proposes is similar
to the one for segment graphs, again with ordering gadgets that force a correct order of
intersections, the framework should be applicable for this problem as well.

53



5. ∃R-Hardness Proof Framework

Unit Ball Graphs

Another generalization of a problem we have already seen in this paper is the graph problem
of recognizing unit ball graphs. In this problem, we are given a graph G = (V,E) and have
to place vertices into d-dimensional space for a given dimension d such that the distance
distance of two vertices is less than 1 if and only if they are adjacent. Unit disk graphs
are the special case of this for d = 2. For a given d-dimensional space P, with P = Rd or
P = Hd, the problem can be defined in the following way:

RECOG(UBG):
Input: Graph G = (V,E)
Problem: Is there an embedding f : V → P that fulfills {u, v} ∈ E ⇔ d(f(u), f(v)) ≤ 1?

In the Euclidean version, Kang and Müller [KM12] find a reduction from the recognition
problem of unit disk graphs to higher dimension, so the problem is ∃R-complete. Addition-
ally, Kisfaludi-Bak [KB20] studies the graph class of hyperbolic ball graphs and finds many
similarities to its Euclidean counterpart. This leads us to believe that this generalization
of unit disk graphs is also an interesting problem to consider in this setting.

Linkage Realization

Another problem that could be considered in a hyperbolic context is the problem of
LinkageRealizability. Here, we are given a graph G = (V,E) and a length function
l : E → R>0 that fixes the length of every edge in a straight-line drawing of G:

LinkageRealizability:
Input: Graph G = (V,E), function l : E → R>0.
Problem: Is there a straight-line drawing of G where every edge e has length l(e)?

The drawing can of course be done by placing the vertices in either the Euclidean or
hyperbolic plane and using the corresponding distance functions to determine if l has been
fulfilled. Schaefer [Sch13] shows that this problem is ∃R-complete in its Euclidean variant.
For the geometric transformation, he uses Peaucellier linkages, depicted in Figure 5.2, to
force points to be on straight lines and he represents line arrangements as graphs using those
linkages. The behaviour of Peaucellier linkages in hyperbolic space has been researched by
Kourganoff [Kou16], who presents a hyperbolic Peaucellier linkage with a slightly different
composition than in the Euclidean case. Using those would require a direct reduction from
HyperbolicSimpleStretchability, but his ideas could potentially also be used to show
the necessary steps in our proof framework. Either way, the problem is easily definable in a
hyperbolic way and seems to allow a hardness proof, which indicates it could be interesting
for further research.

Optimal Curve Straigthening

The last problem we consider is the problem CurveToPolygon, defined by Erickson
[Eri19]:

CurveToPolygon:
Input: Self-intersecting closed curve γ, integer m.
Problem: Can γ be continuously deformed into a polygon P with at most m vertices
without changing the pattern of intersections?

The closed curve γ and the polygon P can be used both in Euclidean and hyperbolic space,
defining the two problem versions. We include this problem because it is a geometric
problem, but not a graph problem. Also, the reduction by Erickson uses line arrangements
in a very direct way: He starts with a different representation of pseudoline arrangements,
wire diagrams (depicted in Figure 5.3). He cuts the pseudolines outside of the intersections
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Figure 5.2.: A Peaucellier linkage for LinkageRealizability (Source: [Sch13])

Figure 5.3.: Left: Wire diagram of the pseudoline arrangement. Right: The resulting
CurveToPolygon instance. (Source: [Eri19])

and combines neighbouring ends to form a closed curve γ. As he only allows 4 vertices for
each pseudoline, any polygon P that is isotopic to γ has to use up the available vertices
outside of the intersection points (depicted in Figure 5.4). The polygon thus directly
implements a line arrangement that stretches the pseudoline arrangement, which should
also work in the hyperbolic case.

These are some of the problems that could be considered in search for problems with
interesting properties of their hyperbolic variants. In general, we think that the results
for hyperbolic unit disk graphs and the hardness proof framework we established should
encourage similar approaches for more geometric problems. It is unclear if the hyperbolic
variants often differ from their Euclidean counterparts as it is the case for unit disk graphs,
or if the equivalence of hyperbolic and Euclidean variants seen for simple line arrangements
is more common. Nevertheless, this could be an interesting field of research that can and
should be explored further.

Figure 5.4.: The resulting polygon that realizes the pseudoline arrangement. (Source:
[Eri19])
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6. Conclusion

In this thesis, we examined geometrical problems that are complete for the complexity class
∃R. Until now, those problems were shown to be ∃R-complete when the underlying geometry
was assumed to be Euclidean. We defined problem variants for considering hyperbolic
geometry instead and showed that they are as hard as their Euclidean counterparts. In
Chapter 3, we first examined the SimpleStretchability problem and showed that the
Euclidean and hyperbolic versions are equivalent. In order to do that, we established
a way of scaling hyperbolic line arrangements that does not change their combinatorial
descriptions. This allowed us to bring the intersection points of the line arrangement to a
sufficiently small area to allow us to define an equivalent Euclidean line arrangement.

In Chapter 4, we considered the problem of recognizing unit disk graphs. We recalled the
existing proofs for ∃R-completenss of the Euclidean and ∃R-membership of the hyperbolic
problem version. Using the Euclidean hardness proof as well as the equivalence of Euclidean
and hyperbolic SimpleStretchability, we showed that recognizing hyperbolic disk graphs
is also ∃R-hard and thus has the same complexity as its Euclidean counterpart.

We then used the idea for this proof to define a framework that allows similar proofs for
other geometric ∃R-complete problems in Chapter 5. We defined the hyperbolic variant of
recognizing segment graphs and applied the framework to show ∃R-hardness. Finally, we
gave a description of additional candidates of geometric ∃R-complete problems that could
have interesting hyperbolic versions and can likely be subjected to this framework.

Open Questions

In Chapter 3, we wrote about the general stretchability problem and its hyperbolic
variant. Unlike the special case of simple line arrangements, we showed that there are
pseudoline arrangements that are stretchable in the hyperbolic but not in the Euclidean
plane. This could be studied further in order to understand what the differences between
pseudoline arrangements realizable in hyperbolic and Euclidean space are. Additionally,
we motivated that our version of defining the problem via the border line l0 excludes
hyperbolic line arrangements which leaves the question if there is a better way to define
HyperbolicStretchability.
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6. Conclusion

In Chapter 4, we showed that recognizing hyperbolic unit disk graphs is ∃R-complete, but
found no complexity result for the problem of recognizing strongly hyperbolic unit disk
graphs. We offered first thoughts and attempts to solve that problem but could find neither
a reduction to show ∃R-hardness nor a proof that the problem is not ∃R-hard. This line of
research could be continued to find an answer for the complexity of recognizing strongly
hyperbolic unit disk graphs.

The last chapter, Chapter 5, offers another interesting complex of open problems in this
thesis. We introduced a framework to show ∃R-hardness for hyperbolic variants of geometric
∃R-complete problems and gave an overview over potential candidates where this framework
could be applied. More research could be done if hyperbolic variants can be defined for
other problems. If yes, do they define interesting and relevant problem classes different from
their Euclidean counterparts, as in the case of unit disk graphs? Or are they equivalent as
the variants of SimpleStretchability? We believe that there are interesting results to
be found in this area.
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Appendix

A. Computing the Intersection Point of Euclidean Lines
Lemma 6.1. For given points O = (0, 0), P1 = (α1, d1) and P2 = (α2, d2) that uniquely
define a circle c with center M , the point T that is on the diameter of c that includes O
can be described in coordinates by T = (xT , yT ) with

xT = cos(α1)d2 − cos(α2)d1
sin(α1 − α2) , yT = sin(α1)d2 − sin(α2)d1

sin(α1 − α2) .

Proof. The main idea of this proof is to use a system of equations that describe the center
of a circle when given three points on its boundary to compute the cartesian coordinates
of T , as they are given by xT = 2xM and yT = 2yM . In order to obtain this system of
equations, we follow the argumentation of Brünner [Bru]:

In general, the points (x, y) of circle c with center M = (xM , yM ) and radius r can be
described via (x− xM )2 + (y− yM )2 = r2 because of Pythagoras’ theorem. Using variables
A = x2

M + y2
M − r2, B = 2xM and C = 2yM , this yields the system of equations from the

website for three points (xi, yi), i = 1, 2, 3 on the boundary of C:

(1) A− x1B − y1C = −x2
1 − y2

1

(2) A− x2B − y2C = −x2
2 − y2

2

(3) A− x3B − y3C = −x2
3 − y2

3

In our case, those points are O = (0, 0) as well as Pi = (sin(αi)di, cos(αi)di). Note that
B = xT and C = yT . For A, we can insert O into one of the equations to see that A = 0
holds true. Together, this simplifies the system of equations to just the following two
(inserting Pi = (sin(αi)di, cos(αi)di)):

(1) sin(α1)d1xT − cos(α1)d1yT = −(sin(α1)2d2
1 + cos(α1)2d2

1)
(2) sin(α2)d2xT − cos(α2)d2yT = −(sin(α2)2d2

2 + cos(α2)2d2
2)

As sin(α)2 + cos(α)2 = 1 and by dividing by d1 and d2, respectively, we obtain:

(1) sin(α1)xT + cos(α1)yT = d1

(2) sin(α2)xT + cos(α2)yT = d2
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6. Appendix

We now resolve the system of equations two times to obtain formulas for both xT and yT .
We start by solving the first equation for xT and the second one for yT :

xT = d1 − cos(α1)yT
sin(α1) , yT = d2 − sin(α2)xT

cos(α2)

To compute xT , we insert the formula for yT from the second equation into the first one:

xT = d1 − cos(α1)yT
sin(α1) = d1

sin(α1) −
cos(α1)
sin(α1) ·

d2 − sin(α2)xT
cos(α2)

= d1 cos(α2)− cos(α1)d2 + cos(α1) sin(α2)xT
sin(α1) cos(α2)

⇔ xT (sin(α1) cos(α2)− cos(α1) sin(α2)) = d1 cos(α2)− cos(α1)d2

⇔ xT sin(α1 − α2) = cos(α1)d2 − cos(α2)d1

In a similar fashion, we can insert the first equation into the second one to obtain

sin(α1 − α2)yT = sin(α1)d2 − sin(α2)d1.
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