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Abstract

The Ramsey turnaround game, first introduced by Mirbach, is a two-player game denoted
by G(G, n, f, q). The Builder and the Painter play on n vertices and q colors. In each
step, Builder exposes an edge and forbids f of the q colors, and Painter colors the edge
in one of the remaining colors. For a given graph G, the goal of Painter is to force a
monochromatic copy of G, while Builder wants to avoid it as long as possible. As a
variant of online Ramsey numbers, the Ramsey turnaround number Rf (G, n, q) equals
the minimum number of exposed edges in the game G(G, n, f, q), that Painter needs
to create a monochromatic copy of G no matter what Builder’s strategy is. In the
thesis, we determined lower and upper bounds on Ramsey turnaround numbers with
different parameters on general and specific graph classes, including complete graphs,
paths, cycles, stars and matchings. We also considered and compared offline and online
strategies for both Builder and Painter, and showed that online strategies can prove
strictly stronger bounds than offline ones.
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1 Introduction

1 Introduction

Beck [6], and Kurek and Rucinski [33] introduced the original Ramsey game indepen-
dently. The game has two players, Builder and Painter, and a graph G is fixed. In each
round, Builder exposes and edge and Painter colors it in either red or blue. The aim of
Builder is to force a monochromatic copy of G, while Painter tries to avoid this as long
as possible. The online Ramsey number of a graph G is the smallest number of rounds,
in which Builder can force a monochromatic copy of G regardless of Painter’s moves.

In this thesis, we turn the game around and investigate the Ramsey turnaround game
G(G, n, f, q), first introduced by Mirbach [34]. The game is played on a board of n
vertices, and with q colors. In each round, Builder exposes and edge, and Painter colors
it using one of the q colors. However, unlike in the Ramsey game, in the Ramsey
turnaround game Painter is the one trying to create a monochromatic copy of G, and
Builder tries to avoid it as long as possible. To prevent the Painter from choosing the
same color every time, the forbiddance number f is also given, and thus Builder forbids
the usage of f of the q colors in each round for the exposed edge. We also set n ≥ r(G, q),
where r(G, q) denotes the monochromatic Ramsey number on q colors, to guarantee that
Painter always reaches his goal and thus ends the game. The Ramsey turnaround number
Rf (G, n, q) is the smallest number of rounds that Painter needs in the game G(G, n, f, q)
to reach his goal. In the whole thesis we refer to Builder as a she and to Painter as a he.

In this thesis, we investigate the Ramsey turnaround number Rf (G, n, q) with various
parameters and graph families, and prove lower and upper bounds. The extremal number
ex(n,G) gives a trivial lower bound, as Builder can expose all edges of an extremal graph
so that no copy of G is exposed. As a trivial upper bound we have

(
n
2

)
, as from the

condition n ≥ r(G, q) follows, that any coloring of all edges of the complete graph Kn

in q colors contains a monochromatic copy of G. Thus the Ramsey turnaround number
is well-defined.

We investigate G as the concrete instance of 2K2, i.e. the graph of two independent
edges, with different values for the forbiddance number f and the number of colors q.
In Theorems 5.1 and 5.6 we prove, respectively,

R1(2K2, n, 2) = 2n− 2

and
n+ 2 ≤ R1(2K2, n, 3) ≤ n+ 3.

We study the two-color case as well, i.e. the game G(G, n, 1, 2). Here Builder deter-
mines the outcome of the game completely, as by forbidding one color she forces Painter
to choose the other one. In this setup, we have results showing a strong relation between
the game and the chromatic Ramsey number Rχ(G). Theorem 6.8 proves, using results
of Erdős et al. [21], Hancock et al. [30] and Gaa [27], that for any non-bipartite graph
G we have

R1(G, n, 2) =

(
1− 1

Rχ(G)− 1

)(
n

2

)
(1 + o(1)) + 1.
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1 Introduction

We also consider the monotonicity behavior of Ramsey turnaround numbers, as well
as lower and upper bounds for general G. In Theorems 7.9 and 7.7 we prove the following
general bounds:

n((f + 1)(∆(G)− 1) + 1)

4
+1 ≤ Rf (G, n, q) ≤ min

{
(f+1)ex(n,G); ex(n,Kr(G,f+1))

}
+1.

Our results with G as a complete graph, i.e. with the Ramsey turnaround number
Rf (Kt, n, q), belong to our main contributions. We proved lower bounds for different
parameter values of f, q and t using matchings, balanced colorings and the probabilistic
method. Table 1 presents our lower and upper bound results for complete graphs.

Theorem Bound Method Type Comment
8.3

(
1− 1

2t−3

)(
n
2

)
matchings LB q ≤ 2t− 3

8.10
(
1− 1

( t
2
)2

)(
n
2

)
balanced colorings LB q ≤ t

2

8.12
(
1− 1

(t−t0.525)2

)(
n
2

)
balanced colorings LB q ≤ t− t0.525 − 1,

t large enough

8.13
(
1− 1

t
t1−ϵ
ln t

)(
n
2

)
probabilistic LB t > t0 for some t0

with q ∈ o(tϵ0)

8.15
(
1− 1

qqt

)(
n
2

)
q-color Ramsey UB

Table 1: Lower and upper bound results for R1(Kt, n, q).

We also study and prove bounds for other graph families. Theorems 9.2, 9.4, 9.6 and
9.9 state our results for paths, cycles, stars and matchings, respectively.

Our other main contribution is considering and comparing offline and online strategies
for both Builder and Painter. After defining the concepts, we mainly focus on the
question of whether online strategies can prove strictly better bounds than offline ones.
For the game G(2K2, n, 1, 3) we prove in Theorems 10.5 and 10.10 that for both Builder
and Painter there exist online strategies proving a better bound than any offline one.
We conjecture, that the same holds for all or almost all cases, i.e. in (almost) every
game setup, the optimal strategies for both Builder and Painter are online.

The thesis is structured as follows. In Section 2 we present the preliminaries of graph
and game theory. In Section 3 we first present Ramsey variants related to the Ramsey
turnaround number. Then we show further similar games played on graphs. In Section
4 we define the Ramsey turnaround game and also formalize it game-theoretically. In
Section 5 we study the game with 2K2 and P3 as simple examples of G and with different
values for the forbiddance number and the number of colors. Section 6 presents results
for the two-color scenario. In Section 7 we first study the monotonicity properties of
Ramsey turnaround numbers and then prove lower and upper bounds for general G.
In Section 8 we study G as complete graph. First we give constructive lower bound
proofs using matchings and balanced colorings, and then prove a stronger bound via the
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1 Introduction

probabilistic method. We also present an upper bound proof that builds on multicolor
Ramsey number results. In Section 9 we consider G belonging to other graph families
and show lower and upper bound results for G as paths, cycles, stars and matchings.
In Section 10 we compare online and offline strategies for both Builder and Painter.
Finally, in Section 11 we conclude the thesis by listing open questions.
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2 Preliminaries

2 Preliminaries

We use the notation [q] = {1, . . . , q}. We use the abbreviations LB for lower bound and
UB for upper bound. We use the notation #{something} for the number of something.

2.1 Basics of graph theory

Most graph theory definitions and notations introduced in this and later sections coincide
with Diestel’s book [16]. For further graph-theoretic notations we also refer the reader
to his book.

A graph G is a pair G = (V,E) where V is a set and E ⊆
(
V
2

)
. We call V as vertex

set and E as edge set. The order of G is the size of the vertex set, denoted by |G| or
|V (G)|. The size of G is the size of the edge set, denoted by ||G|| or |E(G)|. In this
thesis we only consider simple graphs, i.e. finite graphs with undirected edges and with
no multi-edges or loops. We say that an edge e is incident to a vertex x if e = xy for
some vertex y. Vertices x and y are adjacent if they are connected by an edge.

The complement of a graph G, denoted by G, is defined as V (G) := V (G) and
∀e : e ∈ E(G) ⇔ e /∈ E(G). Two graphs G1 = (V1, E1) and G2 = (V2, E2) are
isomorphic, denoted by G1 ≃ G2, if there exists a bijection f : V1 → V2, so that

∀x, y ∈ V1 : xy ∈ E1 ⇔ f(x)f(y) ∈ E2.

For graphs G = (VG, EG) and H = (VH , EH) we say that H is a subgraph of G if VH ⊆ VG

and EH ⊆ EG. A vertex set S is a vertex cover set if ∀xy ∈ E : x ∈ S or y ∈ S. A set of
vertices is called independent if no two vertices are connected by an edge. A set of edges
is called independent if no two edges share a vertex. A set of independent edges is also
called a matching. A perfect matching is a matching of size n

2
. We denote the matching

of size t by tK2.
A complete graph is (V,

(
V
2

)
) for a vertex set V . We denote the n-vertex complete

graph by Kn. A graph is r-partite if its vertex set can be divided into r parts such that
each edge has its ends in different parts. A bipartite graph is a graph G = (V,E) whose
vertex set can be divided into two independent vertex sets A and B such that V = A∪B
and A∩B = ∅. For such bipartite graphs we can also write G = (A∪B,E). A complete
bipartite graph is a bipartite graph G = (A ∪ B,E) where ∀a ∈ A, ∀b ∈ B : ab ∈ E(G).
A complete bipartite graph G = (A ∪ B,E) with |A| = a, |B| = b is denoted by Ka,b.
A star on n vertices is the graph K1,n−1. A path on n vertices is a graph G = (V,E)
where V = {v0, . . . , vn−1} and E = {v0v1, . . . , vn−2vn−1} with no repeated vertices, i.e.
vi ̸= vj for i ̸= j. We denote a path on n vertices by Pn. A cycle of length n is a
graph G = (V,E) with V = {v0, . . . , vn−1} and E = {v0v1, . . . , vn−2vn−1, vn−1v0} with
no repeated vertices, i.e. vi ̸= vj for i ̸= j. We denote a cycle on n vertices by Cn. A
Hamiltonian path of a graph G is a path of length |G|. A Hamiltonian cycle of a graph
G is a cycle of length |G|.

The degree of a vertex v, denoted by deg(v) is the number of edges incident to v. The
maximum degree of a graph G is denoted by ∆(G). A graph is called k-regular if all
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2 Preliminaries

vertices have degree k. A tree is a connected graph without cycles. A leaf of a tree is a
vertex of degree 1.

A proper vertex coloring of a graph G with k colors is a function c : V (G) → [k] so
that if xy ∈ E(G) then c(x) ̸= c(y). The chromatic number of a graph G is denoted by
χ(G) and is defined as

χ(G) := min{k : ∃ proper coloring c : V (G) → [k]}.

A proper edge coloring of a graph G with k colors is a function c : E(G) → [k] so that for
any vertex v ∈ V (G) all incident edges of v have a different color. The edge-chromatic
number of a graph G is denoted by χ′(G) and is defined as

χ′(G) := min{k : ∃ proper coloring c : E(G) → [k]}.

The extremal number of a graph H is denoted by ex(n,H) and defined as

ex(n,H) := max{|E(G)| : |G| = n,H ̸⊂ G}.

The set EX(n,H) is the set of extremal graphs of H, defined as

EX(n,H) := {G : |G| = n, ||G|| = ex(n,H), H ̸⊂ G}.

The Turán-graph on n vertices, denoted by Tr(n), is a complete r-partite graph with
r parts of almost equal sizes, i.e. differing in their size by at most 1. We refer to the
size of the Turán-graph as Turán-number, and use the notation ||Tr(n)||. In 1941 Turán
proved the following theorem connecting extremal and Turán numbers:

Theorem 2.1 (Turán [45]). Let n, k ∈ N with r ≥ 2 and n ≥ 1. Then we have

ex(n,Kr+1) = ||Tr(n)|| =
(
1− 1

r

)(
n

2

)
.

In addition, EX(n,Kr+1) = {Tr(n)}.

For G graph the classical Ramsey number is denoted by r(G) and defined as

r(G) := min{n : every 2-edge-coloring of Kn contains a monochromatic copy of G}.

Figure 1 shows examples of some of the previously introduced graph theory concepts.

2.2 Basics of game theory

Most game theory definitions introduced in this and later sections build on the books of
Neumann and Morgenstern [36] and of Fudenberg and Tirole [26]. As the listings here
are non-exhaustive, we refer the reader for further game-theoretic notations to these
books.

A game consists of three elements:

9



2 Preliminaries

3-partite graphK5 complete graphmatching of size 5isomorphic graphs

K1,5 star P5 path C5 cycle T3(5) Turán-graph

Figure 1: Examples of graph families.

• the set of players P ,

• the pure-strategy space Si for each player i ∈ P ,

• the payoff function ui(s) for each player i ∈ P and strategy s.

A game consists of one or more rounds, and each player chooses his move from his
possible choices. Imagine that each player, instead of choosing the next move as the
necessity for it arises, makes a complete plan in advance for all possible situations, i.e.
as the player begins to play, the plan specifies what choices to choose for every possible
actual information that he may have at a certain point of the game. Such a plan is called
a pure strategy. The set of all possible pure strategies is the pure-strategy space. The
payoff function is designated to evaluate the players’ possible strategies. The players’
aim is to maximize their own payoff function, which may help or hinder the other players.

A two-player-zero-sum game is a game such that for all strategy s holds, that

2∑
i=1

ui(s) = 0.

As a consequence, in a two-player-zero-sum game the gains of one player equal the losses
of the other player. A mixed strategy is a probability distribution over pure strategies.
A Nash-equilibrium in a game with P = {1, 2} is some V ∈ R so that player 1 can
choose a mixed strategy to guarantee himself expected gains of at least V and player 2
can choose a mixed strategy to guarantee himself expected losses of at most V . This
common value V is also called the game payoff. In 1928 Neumann proved the existence
of such equilibrium, building the basis of modern game theory:

Theorem 2.2 (Neumann’s classic Minimax Theorem [35]). In every two-player-zero-
sum game a Nash-equilibrium exists, i.e. for P = {1, 2} there is some V ∈ R so that

10



2 Preliminaries

player 1 can choose a mixed strategy to guarantee himself expected gains of at least V
and player 2 can choose a mixed strategy to guarantee himself expected losses of at most
V .

11



3 Background

3 Background

3.1 Preliminaries on Ramsey variants

This section first introduces the main results of Ramsey numbers and then presents
several Ramsey variants. Ramsey’s theorem from 1930, stated in Theorem 3.1, builds
the base of the whole Ramsey theory [29].

Theorem 3.1 (Ramsey [39]). For k, l ∈ N there exists an n ∈ N such that any red-blue-
edge-coloring of Kn contains either a red copy of Kk or a blue copy of Kl.

In this thesis we only consider the symmetric case, i.e. the case k = l. For graphs
G,H we write G → H if any red-blue-edge-coloring of G contains a red or a blue copy
of H.

Definition 3.2 (Ramsey number). For a graph G we define the Ramsey number

r(G) := min{n : Kn → G}.

We use the notation r(Kt) = r(t) for complete graphs. Despite that the problem of
proving bounds on Ramsey numbers has garnered significant interest among mathemati-
cians during the last century, the rate of advancement has been extremely slow. The
first lower bound proof on Ramsey numbers is due to Erdős [17], who gave in 1947 a
probabilistic proof on the lower bound of

r(t) ≥ 2k/2.

This non-constructive proof initiated the development of the probabilistic method [1] in
combinatorial mathematics. In 1975 Spencer [42] asymptotically improved the lower
bound, proving the currently known best lower bound:

r(t) ≥ (1− o(1))

√
2t

e
2

t
2 .

The first upper bound on Ramsey number was given by Erdős and Szekeres [22] in 1935,
proving

r(t) ≤ 4t.

This bound was improved in 1988 by Thomason [44] by a polynomial factor, who showed
that there is some positive constant A such that

r(t) ≤ t−1/2+A/
√
log t

(
2t

t

)
.

In 2009, Conlon [13] extended Thomason’s method and improved the bound by a super-
polynomial factor. He proved that there is a positive constant C such that

r(t) ≤ t−C log t/ log log t

(
2t

t

)
.
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3 Background

In 2023 Sah [40] further extended their method and proved that there is a positive
constant C such that

r(t) ≤ 4t−C(log t)2 .

Recently, Campos et al. [12] published the currently known best upper bound,

r(t) ≤ (4− ϵ)t

for the constant ϵ = 2−7 and sufficiently large t. They also suspect that the value of ϵ
could be improved further with somewhat technical optimization. Theorem 3.3 states
the currently known best bounds on Ramsey numbers.

Theorem 3.3 (best Ramsey bounds). For sufficiently large t ∈ N and ϵ = 2−7 holds
that

(1− o(1))

√
2t

e
2

t
2 ≤ r(t) ≤ (4− ϵ)t.

The concept of Ramsey numbers has been generalized to q colors:

Definition 3.4 (q-color Ramsey number). For G graph and q ∈ N, 2 ≤ q the q-color
Ramsey number r(G, q) is defined as

r(G, q) := min{n : every q-edge-coloring of Kn contains a monochromatic copy of G}.

For complete graphs we use the notation of r(Kt, q) = r(t, q). The currently known
best lower and upper bounds on q-color Ramsey number for complete graphs are due to
Sawin [41] and Erdős and Szekeres [22] respectively. Theorem 3.5 shows these bounds.

Theorem 3.5 (bounds on q-color Ramsey numbers). For t, q ∈ N and q ≥ 3 we have

20.383796(q−2)t+ t
2
+o(t) ≤ r(Kt, q) ≤ 2tq log q.

Definition 3.6 (size Ramsey number). For a graph G we define the size Ramsey number
r̂(G) as

r̂(G) := min{m : ∃H with |E(H)| = m and H → G}.

In other words, the size Ramsey number is the smallest integer m such that a graph H
with |E(H)| = m exists for which each two-coloring of the m edges contains a monochro-
matic copy of G. The notation was first considered by Erdős et al. in [18] in 1978. From
the Ramsey number and size Ramsey number definitions follow, that for any graph G
we have

r̂(G) ≤
(
r(G)

2

)
.

For complete graphs we use the notation r̂(Kt) = r̂(t). Erdős et al. showed in [18],
that

r̂(t) =

(
r(t)

2

)
.
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3 Background

Definition 3.7 (q-color size Ramsey number). For a graph G we define the q-color size
Ramsey number r̂(G, q) as the smallest integer m such that a graph H with |E(H)| = m
exists, where each q-coloring of the m edges contains a monochromatic copy of G.

For complete graphs we use the notation r̂(Kt, q) = r̂(t, q).

Definition 3.8 (Ramsey game). The original Ramsey game is played between two play-
ers, Builder and Painter. Builder exposes edges one at a time and Painter colors them
in either red or blue. Builder’s goal is to force Painter to create a monochromatic copy
of a fixed graph G, while Painter tries to avoid it as long as possible.

The original Ramsey game was introduced independently by Beck [6] and Kurek and
Rucinski [33].

Definition 3.9 (online Ramsey number). The minimum number of edges the Builder
must expose to achieve her goal in the Ramsey game is called the online Ramsey number,
denoted by r̃(G).

For complete graphs we use the simplified notation r̃(Kt) = r̃(t). We can easily show
the following connection between Ramsey numbers and online Ramsey numbers:

Lemma 3.10. For t ∈ N we have

1

2
r(t) ≤ r̃(t) ≤

(
r(t)

2

)
.

Proof. LB: For the sake of contradiction assume 1
2
r(t) > r̃(t). By definition of online

Ramsey numbers, Builder can expose r̃(t) edges so that she forces a monochromatic Kt

regardless of how Painter plays. We know that r̃(t) edges cover at most 2r̃(t) vertices. So
if Builder can force a monochromatic Kt by exposing r̃(t) edges, then she can also force
it by exposing all edges of K2r̃(t), regardless of how Painter plays. Thus any two-edge-
coloring of K2r̃(t) contains a monochromatic copy of Kt. As 2r̃(t) < r(t), this contradicts
the Ramsey number definition. Thus our assumption was false, proving the lower bound.

UB: Builder can play by exposing all edges of a Kr(t). By definition of Ramsey
numbers, every two-edge-coloring of Kr(t) contains a monochromatic copy of Kt. Thus
Builder can force a monochromatic copy of Kt in |E(Kr(t))| =

(
r(t)
2

)
rounds.

Rödl [33] conjectured the following connection between the size Ramsey number and
the online Ramsey number:

lim
t→∞

r̃(t)

r̂(t)
= 0, i.e. r̃(t) = o

((r(t)
2

))
.

In 2009 Conlon [14] approached this conjecture by proving that for infinitely many
values of t the following holds:

r̃(t) ≤ 1.001−t

(
r(t)

2

)
.

14
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In the same paper [14], he proved the currently known best upper bound, i.e. there
exists a constant c > 0 such that

r̃(t) ≤ t−c log t
log log t4t.

The best lower bound known for the online Ramsey number is from 2020, when Conlon
et al. [15] used the probabilistic method to prove that

r̃(t) ≥ 2(2−
√
2)t+O(1).

Theorem 3.11 (best online Ramsey bounds). For t ∈ N and some positive constant c
holds that

2(2−
√
2)t+O(1) ≤ r̃(t) ≤ t−c log t

log log t4t.

The Ramsey game can be extended to use not only red and blue but possibly more
colors, naturally leading to the following definition:

Definition 3.12 (q-color online Ramsey number). The minimum number of edges the
Builder must expose to achieve her goal in the q-color Ramsey game is called the q-color
online Ramsey number, denoted by r̃(G, q).

3.2 Graph coloring games

This section presents various examples of graph coloring games. For further games
we refer the reader to the books of Beck on combinatorial games [7], and of Hefetz,
Krivelevich, Stojakovic and Szabó on positional games [31].

Definition 3.13 (Maker-Breaker game). A Maker-Breaker game is a game played by
two players, Maker and Breaker. A set of elements X and a family of winning subsets
of X, denoted by F , is given. The two players alternately occupy elements of X. Maker
wins if he manages to occupy each element of a winning subset set F ∈ F , while Breaker
wins if he prevents this by occupying one element of each F ∈ F .

In a Maker-Breaker graph coloring game on graph G, the set X is the set of some
elements of G, Maker wants to color all elements of X following the rules, and Breaker
wants to make this impossible for him.

The vertex coloring game was first proposed in 1981 by Brems [28] and then rediscov-
ered by Bodlaender [9] in 1991. The game is played on a graph G = (V,E) with two
players alternately coloring the vertices of the graph from the color set C. The order of
the coloring is defined by a given vertex order (v1, . . . , v|G|). They color so that any two
adjacent vertices have different colors. The first player wins if and only if in the end
all vertices are colored. The game chromatic number of a graph is the smallest number
of colors, for which the first player has a winning strategy in the vertex coloring game.
Faigle et al. [24] started investigating the parameter.

The edge coloring game was introduced by Cai and Zhu in [11] in 2001. This game
is very similar to the vertex coloring game with the only difference being that the two
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3 Background

players color the edges of the graph instead of the vertices. Hereby the game chromatic
index of a graph is the smallest number of colors, for which the first player has a winning
strategy in the edge coloring game.

The (a, b)-vertex coloring game was introduced by Kierstead [32] in 2004. This is an
asymmetric version of the vertex coloring game, where in each turn the first player colors
a vertices, and the second player colors b vertices. Note that the (1, 1)-vertex coloring
game is just the vertex coloring game. The corresponding parameter is the (a, b)-game
chromatic number, defined as the smallest number of colors needed for the first player
to have a winning strategy.

Definition 3.14 (online F -avoidance game). The online F -avoidance game for a graph
F is a single-player game played on a board of n vertices. The player receives a random
sequence of edges of the underlying complete graph Kn, and colors each edge as it comes
into one of two colors. His goal is to color as many edges as possible without creating
a monochromatic copy of F . The game ends as soon as a monochromatic copy of F is
created.

First Friedgut et al. [25] considered the game in 2003 for F = K3. Then Balogh
and Butterfield [5] introduced the game for general F in 2010. The online F -avoidance
game also may be considered as a one-player variant of the Ramsey game introduced in
Definition 3.8.
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4 The Ramsey turnaround game of graph G

4.1 General definition

The Ramsey turnaround game and number were first introduced by Mirbach in 2017 in
her Bachelor’s thesis [34]. The new concepts were inspired by the original Ramsey game
introduced in Definition 3.8. The turnaround game is the result of switching Builder’s
and Painter’s goals. The game setup remains the same, but the players play on a board
of n vertices and Builder wants to avoid, and Painter wants to achieve a monochromatic
copy of a fixed graph G. Without further restrictions the trivially best Painter strategy
would be to always choose the same color. This motivates the introduction of the
forbiddance number, which makes the question of Painter’s strategy more interesting
by allowing Builder to forbid the usage of a fixed number of colors for Painter in each
round. Although the two-color turnaround game is still not really a game (see Section
6), increasing the number of colors brings the turnaround game to life.

Definition 4.1 (Ramsey turnaround game [34]). Let n, f, q ∈ N with f < q, let G be
a graph and let n ≥ r(G, q). We define G(G, n, f, q) as the Ramsey turnaround game
(RTA). It is a game between Builder and Painter on a board of n vertices. The goal
of Painter is to force a monochromatic copy of graph G and Builder tries to avoid this
as long as possible. In each round of the game, Builder exposes one new edge and is
allowed to forbid the usage of f colors for the Painter to color this currently exposed
edge. Painter colors the edge according to these restrictions. The total set of colors is
[q]. The game is over as soon as Painter manages to achieve a monochromatic copy of
G.

Note that the game with r rounds can be looked at as a list of pairs (bi, pi) for
i = 1, . . . , r, where

• bi is the i-th step of Builder and pi is the i-th step of Painter,

• bi = (ei, Ci), where ei is the exposed edge and Ci with |Ci| = f is the set of
forbidden colors,

• pi is the color chosen by Painter for the exposed edge.

For the sake of simplicity, we refer to Builder as she and to Painter as he. Also note
that we chose n ≥ r(G, q), thus by definition of multicolor Ramsey numbers Painter
can always achieve his goal and end the game in at most

(
n
2

)
rounds. Note that during

the thesis we also present Builder strategies, where she sometimes forbids less than f
colors. These can be considered as if she would choose the remaining forbidden colors
arbitrarily as they are irrelevant to the strategy.

Definition 4.2 (Ramsey turnaround number [34]). The Ramsey turnaround number
Rf (G, n, q) equals the minimum number of exposed edges in the RTA game G(G, n, f, q),
that Painter needs to reach his goal, a monochromatic copy of G, no matter what
Builder’s strategy is.
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4 The Ramsey turnaround game of graph G

Definition 4.3 (forbiddance number [34]). The forbiddance number f is the number of
colors the Builder is allowed to forbid for an exposed edge.

Definition 4.4 (forcing). A player is forced to make a move or one of a set of moves
if any other moves are either invalid or lead to the other player winning the game. If
a player can force an edge-colored graph G, he has a strategy for achieving a copy of G
regardless of the other player’s moves.

Example 4.5. In the game G(G, n, 1, 3) and step bi = (e, {3}), Painter is forced to use
either color 1 or 2 on edge e.

Let G(G, n, f, q) be a game and Rf (G, n, q) be the corresponding RTA number. Then
from the game theoretical background of RTA numbers follows, that

• there exists a Builder strategy assuring that the game G(G, n, f, q) does not end
in Rf (G, n, q)− 1 rounds,

• there exists a Painter strategy assuring that the game G(G, n, f, q) ends in at most
Rf (G, n, q) rounds.

4.2 Game-theoretical formalization

The Ramsey turnaround game G(G, n, f, q) is a two-player-zero-sum game with

• set of players P = {Builder, Painter},

• strategies defining for each game situation the exposed edge and the forbidden
colors in the case of Builder, and the chosen color in the case of Painter,

• payoff function is the total number of exposed edges, i.e.

uBuilder(s) = #{edges exposed during the game when playing strategy s},
uPainter(s) = −#{edges exposed during the game when playing strategy s}.

Both Builder and Painter want to maximize their payoff functions, thus Builder wants
the game to last longer, and Painter wants it to end sooner. This leads to the Nash
equilibrium of the game, defined as the Ramsey turnaround number Rf (G, n, q).

The Ramsey turnaround game has, inter alia, the following game-theoretical properties
[26][36]:

• Sequential game: The two players make their choices after each other, knowing
and possibly reacting to each other’s choice.

• Complete information game: Both players possess full information about the pay-
offs, strategies, the current game stands, and the other player’s previous moves.

• Repeated game: The game consists of several repetitions of the same round, i.e.
Builder exposes an edge and forbids colors, and Painter chooses a color.
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4 The Ramsey turnaround game of graph G

The game can be visualized with a game tree, a rooted tree where

• a vertex corresponds to a decision point of a player (either Builder or Painter),

• incident edges correspond to the possible choices of the player,

• a root-leaf path corresponds to a complete run of a game,

• the half of the length of the root-leaf path (i.e. the length of the corresponding
game run) is assigned to each leaf.

See an example of a game tree for game G(P3, 3, 1, 3) in Figure 2. Note that we
visualized the case n = 3 for the sake of simplicity, even though it does not meet the
condition n ≥ r(P3, 3) of the Ramsey turnaround game definition.
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(e1, 3)

(e1, 2)
P

P
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3

(e2, 1)
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· · ·
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n = 3

q = 3
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B
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B
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B
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B
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P

· · ·(e2, 1)

· · ·

Figure 2: Part of the game tree of game G(P3, 3, 1, 3). Leaves with their assigned values
are shown in red.
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5 The game for simple examples of G

In this section we consider the scenarios of G as 2K2 or P3. We investigate the Ramsey
turnaround numbers in different cases regarding the number of colors and the forbiddance
number.

5.1 G as 2K2

5.1.1 2 colors, 1 forbidden

First note that the two-color case is not really a game: by forbidding a color, Builder
forces the Painter to use the other color and thus Painter has no choice, Builder deter-
mines the entire course of the game. Also note that in the case of f = 1 and q = 2,
if edges of 3K2 are exposed, by Pigeonhole principle a monochromatic copy of 2K2 is
forced, as shown in Figure 3. Thus Builder wants to avoid the exposure of a copy of
3K2.

?

Figure 3: With 3 independent edges Painter can force a monochromatic 2K2.

Theorem 5.1. For any n ∈ N, n ≥ 7 holds, that

R1(2K2, n, 2) = 2n− 2.

Proof. LB: We show 2n− 2 ≤ R1(2K2, n, 2) with a strategy for Builder. Let color 1 be
blue and color 2 be red. First expose 2 independent edges e1, e2. For e1 forbid color 2
and for e2 forbid color 1. So Painter colors e1 in color 1 and e2 in color 2. Expose all
edges of a star K1,n−1 containing e1, and forbid color 2 for each, such that the whole star
is colored in color 1. Now expose all edges of a star K1,n−1 containing e2, and forbid color
1 for each, thus the star is colored in 2 (except for one edge being part of both stars,
which already has color 1). See the resulting graph in Figure 4. Hence 2n− 3 edges are
exposed with no monochromatic 2K2, proving the lower bound 2n− 2 ≤ R1(2K2, n, 2).

UB: Now we show R1(2K2, n, 2) ≤ 2n− 2. Erdős and Gallai [19] proved

ex(n, tK2) = max

{(
2t− 1

2

)
, (t− 1)(n− t+ 1) +

(
t− 1

2

)}
.

Thus we have

ex(n, 3K2) = max

{(
5

2

)
, (3− 1)(n− 3 + 1) +

(
2

1

)}
= 2n− 3.

Hence by definition of extremal numbers, every 2-edge-coloring of 2n − 2 edges on n
vertices contains a monochromatic 2K2. Thus regardless of how Builder plays, the game
ends after 2n− 2 rounds, proving the upper bound.
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5 The game for simple examples of G

e2e1

Figure 4: Builder strategy without monochromatic 2K2.

5.1.2 3 colors, 1 forbidden

First note that if Builder exposes 3 independent edges, then Painter can reach his goal
by either painting the first two edges of this matching in the same color, or otherwise
choosing an appropriate color on the third edge.

Lemma 5.2. Let n ∈ N with n ≥ r(2K2, 3) and consider the game G(2K2, n, 1, 3). Let
Builder play so that at any point of the game, the exposed edges have a vertex cover set
of size 2. Then Painter has a strategy that guarantees a game length of at most n+ 2.

Proof. We prove this by showing a strategy for Painter. During the whole game, let
Painter create a monochromatic 2K2 if possible and follow the strategy rules otherwise.
Let G be a graph on n vertices with vertex cover set {v1, v2} and

E(G) := {xy : x = v1 or x = v2},

as shown in Figure 5.

v2v1

Figure 5: Graph G with main vertices v1 and v2.

During the game the size of the minimum vertex cover is at most 2, thus the exposed
graph is a subgraph of G at any point of the game. Call the vertices v1, v2 in G as main
vertices. Note that in the exposed graph any vertex w with deg(w) ≥ 3 must correspond
to a main vertex of G. Thus throughout the whole game, call vertices with at least 3
incident exposed edges as main vertices. Note that in the beginning there are no main
vertices and after n + 2 rounds, there are 2 of them, because by Pigeonhole principle
there must be two vertices with a degree of at least 3. Call the first vertex with 3 exposed
incident edges as v1 and the second as v2. When both v1 and v2 are identified, then all
exposed edges must be incident to at least one of them. Thus v1 and v2 in the exposed
graph correspond to v1 and v2 in G. When both v1 and v2 are identified, we call each
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5 The game for simple examples of G

edge e with e ̸= v1v2 as good. Note that the main vertices v1, v2 are not predetermined,
neither Builder nor Painter knows them at the beginning of the game. As they only can
be identified when 3 incident edges of a vertex are exposed, the goodness of edges can be
decided only when both main vertices are discovered. However, if a vertex has multiple
incident edges, then we may say that at least all but one of these edges is good, even
though it is not decidable yet, which ones.

Painter does not know the main vertices in advance, but he can identify a main vertex
when 3 of its incident edges are exposed. Let the Painter paint the exposed edges
arbitrarily as long as there is no vertex with 3 incident edges exposed. When Builder
exposes the third incident edge of a vertex, this vertex can be identified as a main vertex,
say v1. It is also possible, that this newly exposed edge reveals both v1 and v2, i.e. two
vertices with degree 3 appear. Then let Painter only focus on v1 and its 3 incident
edges. Let Painter color this newly exposed edge so that the 3 incident edges of v1 use
exactly 2 colors. W.l.o.g. say that it results in edges v1w1, v1w2, v1w3 with colors 1, 1, 2
respectively. Note that at this point, if v2 is not identified yet, at most 2 arbitrarily
colored other edges may be already exposed, both incident to the future v2. See the
current incident edges of v1 in Figure 6.

v1 w2

w3

w1

1

1

2

Figure 6: Vertex v1 has 3 incident edges, using exactly 2 colors. Vertex v2 may be not
yet identified.

Recall that we are defining a Painter strategy for a game of length at most n + 2.
After the exposure of n+ 2 edges, the exposed edges build a graph with a vertex cover
of size at most 2. With such n + 2 edges, there must be two vertices with a degree of
at least 4. Thus after n+ 2 rounds, both of the main vertices are identified and have at
least 3 incident good edges exposed. Let Painter continue painting the newly exposed
edges arbitrarily as long as one of the following cases occurs: (1) a fourth edge incident
to v1 is exposed, or (2) a third edge incident to another vertex (identifiable as v2) is
exposed. Let us distinguish the two cases:

Case (1): Color the newly exposed edge v1w4 so that v1 has no 3 incident edges of
the same color, i.e. color it in either color 2 or 3. At this point, v2 is unidentified but
each vertex except for v1 has at most 2 incident edges. Continue coloring the exposed
edges arbitrarily as long as there is no vertex other than v1 with 3 incident edges.
When the third incident edge e of some other vertex is exposed, this vertex can be
identified as v2. Again, we can distinguish two cases: (1.1) v2 ∈ {w1, w2, w3, w4}, or
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5 The game for simple examples of G

(1.2) v2 /∈ {w1, w2, w3, w4}.
Case (1.1): As edge v1v2 is already exposed, v2 has only 1 incident good edge already

colored. In a game of length n + 2, at least 3 incident good edges of v2 are exposed.
Painter can color at least e or some later good edge e′ so that it builds a monochromatic
2K2 together with v1wi for some i ∈ [4].

Case (1.2): As edge v1v2 is not exposed, e is the third incident good edge of v2. Painter
can color e so that together with v1wi for some i ∈ [4] it builds a monochromatic 2K2.

Case (2): At this point, Painter identifies v2, because the newly exposed edge e is the
third incident edge of v2. Color the e so that the 3 edges incident to v2 use exactly 2
colors. Both v1 and v2 have exactly 3 incident edges using 2 colors, possibly not the
same 2. Again, we can distinguish the following two cases: (2.1) v1v2 is already exposed,
or (2.2) v1v2 is not exposed yet.

Case (2.1): In this case, both main vertices are identified and have exactly 2 good
incident edges exposed. The next exposed edge is incident to either v1 or v2, but not
both. W.l.o.g. say it is incident to v1. Color it so that v1 has 3 incident good edges
using exactly 2 colors. The next exposed edge e∗ is either incident to v1 or v2:

• If v1 ∈ e∗: Color e∗ so that v1 has no 3 incident good edges the same color. The
vertex v2 has 2 incident good edges exposed. When the third one is exposed,
Painter can color it such that a monochromatic 2K2 appears.

• If v2 ∈ e∗: Color e∗ so that v2 has 3 incident good edges using exactly 2 colors.
Vertex v1 has 3 incident good edges exposed using exactly 2 colors as well. W.l.o.g.
say v1 has incident good edges in colors (1, 1, 2), then v2 must have its incident
good edges in colors (2, 3, 3), as shown in Figure 7. Otherwise a monochromatic
2K2 would already exist. But then Painter can color the next edge so that a
monochromatic 2K2 appears.

v1

1

2

1

v2

3 3

w

2

Figure 7: Both v1 and v2 have an incident edge in color 2, sharing a vertex w.

Case (2.2): Similarly to Case (2.1), both main vertices have 3 incident good edges
exposed. Say v1 has incident good edges in colors (1, 1, 2), then v2 has incident good
edges in colors (2, 3, 3), otherwise a monochromatic 2K2 already exists. Then Painter
can color the next exposed edge such that a monochromatic 2K2 appears.
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Figure 8: Examples of the scenarios (1.1)− (2.2).

See examples of the four cases (1.1)− (2.2) in Figure 8.

Definition 5.3 (N(X)). For G graph and X ⊆ V (G) let

N(X) := {v : v ∈ V (G)\X and ∃x ∈ X such that vx ∈ E(G)}.

Theorem 5.4 (Hall [38]). Let G = (A ∪ B,E) a bipartite graph with parts A and B.
Then the following holds:

∃ matching covering A ⇔ ∀X ⊆ A : |X| ≤ |N(X)|.

Lemma 5.5. Let n ∈ N with n ≥ r(2K2, 3) and consider the game G(2K2, n, 1, 3). If
at some point during the first n + 2 rounds of the game there are at least 3 vertices
{v1, v2, v3} with deg(vi) ≥ 3, then Painter can force the game to end by round n+ 3.

Proof. Note, that if Builder exposes 3 independent edges, then Painter can reach his goal
by either painting the first two edges of this matching in the same color, or otherwise
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5 The game for simple examples of G

choosing an appropriate color on the third edge. During the whole game let Painter
create a monochromatic 2K2 if possible and color the exposed edge arbitrarily otherwise.
Let G graph on n vertices and with vertices {v1, v2, v3} having deg(vi) ≥ 3. It suffices
to show that G has at most n+2 edges or contains a copy of 3K2 to conclude the proof.

Let A := {v1, v2, v3} with vi ∈ V (G) and deg(vi) ≥ 3. In the following, we refer to the
condition

∀X ⊆ A : |X| ≤ |N(X)|

from Theorem 5.4 as Hall’s condition. There are 3 independent edges covering A if and
only if Hall’s condition is fulfilled. We distinguish cases based on the number of edges
induced by A, as shown in Figure 9.

(2)

v1

v2

v3

(1)

v1 v2 v3

(0)

v1 v2 v3

(3a)

v1

v3

v2

(3b)

v1

v2

v3

Figure 9: Case distinction based on the number of edges induced by A.

Case 0: If A induces no edges, |N(vi)| ≥ 3 for each i ∈ [3]. Thus Hall’s condition is
fulfilled, G contains a 3K2.

Case 1: W.l.o.g. say A only induces the edge v1v2. Then |N(v1)| ≥ 2, |N(v2)| ≥ 2 and
|N(v3)| ≥ 3. Thus Hall’s condition is fulfilled, G contains a 3K2.

Case 2: In this scenario, the only G violating Hall’s condition, and thus not containing
a 3K2 is as shown in Figure 9 (2). We have n > 4, so this G has at most n+ 2 edges.

Case 3: In this case, there are two scenarios where the incident edges of v1, v2, v3 violate
Hall’s condition. These two scenarios are shown in Figure 9 (3a) and (3b). In the case
of (3a), adding incident edges to v3 keeps the graph 3K2-free. However, any additional
edge not incident to v3 creates a 3K2. Thus a 3K2-free G has at most n+2 edges in this
case. In the case of (3b) we have a K4. Adding additional edges incident to the same
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vertex, w.l.o.g. say v3, does not create a 3K2. This allows up to n+2 vertices. However,
adding additional edges incident to multiple vertices of K4 keeps G to be 3K2-free only
as long as G ⊆ K5. So graph G has at most n + 2 edges or contains a 3K2 in case (3)
too, concluding our proof.

Theorem 5.6. For any n ∈ N with n ≥ r(2K2, 3) we have

n+ 2 ≤ R1(2K2, n, 3) ≤ n+ 3.

Proof. LB: We prove n + 2 ≤ R1(2K2, n, 3) by showing a strategy for Builder. First,
Builder wants to force a P4 colored as shown in Figure 10 (a). She starts by exposing two
independent edges v1v2 and v3v4 forcing them to have different colors by forbidding the
color of v1v2 when exposing v3v4. W.l.o.g. say that Painter colors them in colors 1 and
2, respectively. Then Builder exposes edge v2v3 and forbids color 3, so the Painter must
use one of the previous colors. Say he chooses color 1. Then Builder exposes all edges
incident to v4 forbidding color 1, resulting in the graph shown in Figure 10 (b). This
construction has n + 1 edges and contains no monochromatic copy of 2K2, no matter
how Painter colors edges incident to v4 in 2 or 3. Thus the bound n+2 ≤ R1(2K2, n, 3)
is proven.

v1

v2 v3

v4

1

1

2

(b)

v1

v2 v3

v4

1

1

2

(a)

Figure 10: Builder strategy without monochromatic copy of 2K2.

UB: We prove R1(2K2, n, 3) ≤ n+ 3 by combining the proofs of Lemmas 5.2 and 5.5
to create a Painter strategy. Let Painter always create a monochromatic 2K2 if possible.
Hence he ends the game as soon as 3 independent edges are exposed, either by painting
the first two edges of this matching in the same color, or otherwise by choosing an
appropriate color on the third edge. Now let Painter follow the strategy presented in the
proof of Lemma 5.2. If during the whole game the exposed graph has a minimum vertex
cover of size 2, then by Lemma 5.2 we know, that Painter’s strategy ends the game in at
most n+ 2 rounds. Otherwise at some point during the first n+ 2 rounds of the game,
the exposed graph has a minimum vertex cover of size at least 3. At this point, if the
exposed graph has more than one component, then it must contain 3 independent edges
and thus Painter can end the game. Otherwise the exposed graph is connected and has
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a minimum vertex cover of size at least 3. The same holds after round n+2, the exposed
graph is connected, has n + 2 edges, and has a minimum vertex cover of size at least
3. This graph either contains 3 independent edges, letting Painter end the game, or 3
vertices {v1, v2, v3} with deg(vi) ≥ 3. In this latter case, by Lemma 5.5 we know that
Painter ends the game by round n + 3. Thus regardless of how Builder plays, Painter
can end the game in at most n+ 3 rounds, concluding the proof.

5.1.3 q colors, 1 forbidden

Theorem 5.7. For any n, q ∈ R, n ≥ r(2K2, q), q ≥ 4 we have

n+ 1 ≤ R1(2K2, n, q) ≤ n+ 3.

Proof. LB: We prove n+1 ≤ R1(2K2, n, q) by showing a strategy for Builder. Say Painter
colors the first exposed edge v1v2 in color 1. Let w be a vertex with w /∈ {v1, v2}. Expose
all edges incident to w and forbid color 1. We get a graph with n edges not containing
a monochromatic copy of 2K2. Hence the bound n+ 1 ≤ R1(2K2, n, q) is proven.

UB: Theorem 5.6 showed a Painter strategy proving R1(2K2, n, 3) ≤ n+3. Let Painter
use only colors {1, 2, 3} and play according to the strategy shown in Theorem 5.6. As
this strategy guarantees a game length of at most n+3, the upper bound is proven.

5.1.4 q colors, f forbidden with f>1

Theorem 5.8. For any n, q, f ∈ R with n ≥ r(2K2, q) and f < q we have

f + n ≤ Rf (2K2, n, q) ≤ (f + 1)

(
n− 1− f

2

)
+ 1.

Proof. LB: We prove the lower bound with a strategy for Builder. First, expose f + 1
independent edges e1, . . . , ef+1 and always forbid every previously used color to force
Painter to color the f +1 edges in different colors, c1, . . . , cf+1 respectively. Now expose
edges of a full star K1,n−1 containing the first edge e1, forbidding colors c2, . . . , cf+1.
Builder exposed n+ f − 1 edges without having a monochromatic copy of 2K2, thus the
lower bound is proved.

UB: If Builder exposes f +2 independent edges e1, . . . , ef+2, Painter can always force
a monochromatic copy of 2K2: either the first f + 1 edges already contain two of the
same color, or the last edge can be colored in one of the previous f + 1 colors. Hence
we have

Rf (2K2, n, q) < ex(n, (f + 2)K2) + 1.

By Erdős and Gallai [19] we have

ex(n, tK2) = max

{(
2t− 1

2

)
, (t− 1)(n− t+ 1) +

(
t− 1

2

)}
.

Thus we get

ex(n, (f + 2)K2) = (f + 1)

(
n− f

2
− 1

)
,

27



5 The game for simple examples of G

proving the upper bound.

5.2 G as P3

The case of P3 as G was considered in Mirbach’s thesis [34], and most theorems in this
section are derived from her thesis.

5.2.1 2 colors, 1 forbidden

Note that the two-color version is not really a game, as by forbidding one color, Builder
leaves no choice for Painter but forces him to use the other color.

Theorem 5.9 ([34]). For any n ∈ N, n ≥ r(P3, 2) holds, that

R1(P3, n, 2) =

{
n+ 1 n even,
n n odd.

5.2.2 3 colors, 1 forbidden

Theorem 5.10 ([34]). For any n ∈ N, n ≥ r(P3, 3) holds, that

R1(P3, n, 3) = n.

Proof. LB: We prove n ≤ R1(P3, n, 3) by giving a strategy for Builder assuring that
after the exposure of n− 1 edges, there is no monochromatic P3. Let P be a path on n
vertices, i.e. P = (v1, · · · , vn). Builder first exposes edge v1v2. In rounds 2 ≤ i ≤ n− 1
Builder exposes edge vivi+1 and forbids the color of edge vi−1vi. After n−1 rounds there
is no monochromatic copy of P3, proving n ≤ R1(P3, n, 3).

UB: We prove n ≥ R1(P3, n, 3) by giving a strategy for Painter assuring that he
creates a monochromatic P3 in at most n steps. We call an isolated edge lonely if the
graph has no other isolated edge in its color. We call an edge-colored graph H good for
Painter if

1. there is a lonely edge or

2. considering the set S of edges incident to vertices with degree 1 (and S containing
two copies of each independent edge), there is a color i for which S contains an
odd number of edges in color i or

3. there is a monochromatic copy of P3.

See examples of good graphs fulfilling conditions 1. and 2. in Figure 11 (a) and (b),
respectively.

The Painter strategy is to create a monochromatic P3 if possible, otherwise color the
newly exposed edge so that the resulting graph is good. Note that if 3 edges incident to
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5 The game for simple examples of G

(b)(a)

Figure 11: Good graphs fulfilling conditions 1.(a) and 2.(b).

the same vertex are exposed, Painter can achieve his goal. For the sake of contradiction
assume that Builder can play so that regardless of Painter’s strategy, after n rounds
there is no monochromatic copy of P3 (i.e. there is a Builder strategy proving a lower
bound of n+1). Painter’s strategy ensures that after n rounds the colored graph is still
good. As all vertices have a degree of at most 2, the graph consists of cycles. Then
conditions 1. and 2. of a good graph are not fulfilled as there is no vertex of degree 1. So
the good graph fulfills the 3. condition and contains a monochromatic copy of P3. This
is a contradiction, so the assumption was wrong and after n rounds Painter can force a
monochromatic P3.

The only thing left is to show that Painter can always color the newly exposed edge
so that the resulting graph is good. Call the firstly exposed edge starter, and say that
Painter colors it red. Starter is lonely so the graph is good. As long as the starter
is lonely, Painter can keep the graph good by using the other two colors, keeping the
starter lonely. When the first edge incident to the starter is exposed, after coloring it
the resulting graph contains only one vertex with degree 1 and red incident edge, so by
the 2. condition, it is good. As there is an even number of vertices with degree 1, there
are two colors fulfilling the 2. condition. From this point on, Painter can always choose
a color for the new edge so that the 2. condition stays fulfilled. This way Painter can
keep the graph good until n edges are exposed, proving R1(P3, n, 3) ≤ n.

5.2.3 q colors, 1 forbidden

Theorem 5.11 ([34]). For any n ∈ N with n ≥ r(P3, q) and q ≥ 3 we have

R1(P3, n, 3) = n.

Proof. The Builder strategy shown in the proof of Theorem 5.10 proves the lower bound
n ≤ R1(P3, n, 3) in the case of q ≥ 3 as well. To prove the upper bound n ≥ R1(P3, n, 3),
let Painter use only the colors {1, 2, 3}. Then he can use the Painter strategy presented
in the proof of Theorem 5.10 to create a monochromatic P3 in at most n rounds.

29



5 The game for simple examples of G

5.2.4 q colors, f forbidden with f>1

Theorem 5.12. For any n, q, f ∈ N with n ≥ r(P3, q) and f < q we have

f(n− f)

4
< Rf (P3, n, q) ≤

n(f + 1)

2
+ 1.

Proof. This is actually a special case of Theorem 9.6, which provides general bounds for
stars.

LB: We prove the lower bound by giving a strategy for Builder. First consider the case
when f is even with f = 2k. For each edge xy of Kk+2 holds, that from both x and y
there are k other incident edges. They use at most 2k = f colors. By forbidding these at
most f colors for each edge xy, Builder can prevent an occurrence of a monochromatic
copy of P3.

Hence for even f , Builder can expose
⌊

n
f
2
+2

⌋
=
⌊

2n
f+4

⌋
> 2n−f−4

f+4
disjoint K f

2
+2 without

a monochromatic P3. This gives a lower bound of

2n− f − 4

f + 4
·
(f

2
+ 2

2

)
=

(2n− f − 4)(f + 2)

8
>

f(n− f)

4
.

For odd f she can act forbidding at most f − 1 colors in each step and thus use the
even-case strategy, exposing edges of several K f+3

2
instances. She can expose the edges of⌊

n
f+3
2

⌋
=
⌊

2n
f+3

⌋
> 2n−f−3

f+3
disjoint K f+3

2
instances without a monochromatic P3, proving

a lower bound of

2n− f − 3

f + 3
·
(f+3

2

2

)
=

(2n− f − 3)(f + 1)

8
>

f(n− f)

4
.

Note that this lower-bound construction can be slightly increased by exposing a clique
of the remaining vertices, see Figure 12.

· · ·

f/2 f/2

Figure 12: Builder strategy construction for Rf (P3, n, q).
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5 The game for simple examples of G

UB: If Builder exposes all edges of a star K1,f+2, then Painter can force a monochro-
matic P3. If he is forced to color the first f + 1 edges in different colors, then Builder
cannot forbid all f + 1 colors for the last exposed edge. By choosing one of the pre-
viously used colors, Painter creates a monochromatic P3. Hence Builder can expose at
most ex(n,K1,f+2) edges without a K1,f+2. A graph being K1,f+2-free means that each
vertex has the degree of at most f + 1. Thus ex(n,K1,f+2) ≤ n(f+1)

2
proves the upper

bound.
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6 The two-color case: connection to chromatic Ramsey numbers

6 The two-color case: connection to chromatic
Ramsey numbers

The two-color case is actually not a really game itself, as with one color forbidden for
each edge, Painter has one single color left to choose. The same holds for any f = q− 1
setup. In this part we consider the two-color case of the Ramsey turnaround game.
Although it is not interesting in the game-theoretical sense, it has a strong connection
to the chromatic Ramsey number, which was introduced by Burr, Erdős and Lovász
in [10]. The content of this section builds on Simon Gaa’s Bachelor’s thesis [27], who
reiterated and complemented the results of Erdős et al. [21] and Hancock et al. [30].

Definition 6.1 (chromatic Ramsey number). The chromatic Ramsey number of a graph
H, denoted by Rχ(H), is defined as the minimum chromatic number of a graph G con-
taining a monochromatic copy of H in any 2-edge-coloring, i.e.

Rχ(H) := min{k : ∃G graph with χ(G) = k and G → H}.

The function f(n,H) was first introduced by Bialostocki et al. [8] in 1990, and also
considered by Erdős et al. [21].

Definition 6.2 (f(n,H)). Let H be a graph and n ∈ N. We define the function

f(n,H) := max{||G|| : |G| = n,G ̸→ H},

i.e. the maximum number of edges in a graph G on n vertices which can be edge-
partitioned into two H-free subgraphs.

Theorem 6.3. Let n ∈ N and G graph. Then we have

R1(G, n, 2) = f(n,G) + 1.

Proof. By forbidding one of the two colors, Builder determines the color for each exposed
edge. Thus her best strategy is to expose and color with two colors as many edges as she
can without creating a monochromatic copy of G. By definition, this means exposing
f(n,G) edges. Exposing one more edges creates a monochromatic copy of G.

Theorem 6.4 ([27]). Let H be a bipartite graph and let n ∈ N . Then we have

R1(H,n, 2) = f(n,H) + 1 = 2ex(n,H)(1− o(1)) + 1.

Definition 6.5 (homomorphism). For H and H ′ graphs, a homomorphism from H to
H ′ is a function f : V (H) → V (H ′) such that for ∀uv ∈ E(H) : f(u)f(v) ∈ E(H ′). We
say that H ′ is a homomorphic image of H if such f exists. The set of all homomorphic
images of H is denoted by H(H).

Example 6.6 (H(C5)). See Figure 13 showing the all homomorphic images of C5.
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6 The two-color case: connection to chromatic Ramsey numbers

Figure 13: H(C5).

Theorem 6.7 (Theorem 3.17 in [27]). Let H be a graph with χ(H) = 3 and let n ∈ N.
Then we have

R1(H,n, 2) = f(n,H) + 1 =

{
T4(n)(1 + o(1)) + 1 C5 ∈ H(H),

T5(n)(1 + o(1)) + 1 else.

Theorem 6.8 (Theorem 3.18 in [27]). Let H be a graph with χ(H) ≥ 3 and let n ∈ N.
Then we have

R1(H,n, 2) = f(n,H)+1 = TRχ(H)−1(n)(1+o(1))+1 =

(
1− 1

Rχ(H)− 1

)(
n

2

)
(1+o(1))+1.
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7 The game for general G

In this chapter we first examine monotonicity properties of Ramsey turnaround numbers.
Then we provide several lower and upper bounds, some given by Mirbach [34] and some
using various graph theory concepts like applying extremal numbers, maximum degrees
or polychromatic numbers.

7.1 Monotonicity of Ramsey turnaround numbers

Theorem 7.1 (monotonicity of f [34]). Let G graph and f, q, n ∈ N with f < q and
n ≥ r(G, q). Let f0 ∈ N such that f < f0 < q, then we have

Rf (G, n, q) ≤ Rf0(G, n, q).

Theorem 7.2 (monotonicity of q [34]). Let G graph and f, q, n ∈ N with f < q and
n ≥ r(G, q). Let q0 ∈ N such that q < q0, then we have

Rf (G, n, q) ≥ Rf (G, n, q0).

Theorem 7.3 (monotonicity of f and q). Let G graph and q, n ∈ N with q > 1 and
n ≥ r(G, q). Let f, q0 ∈ N with 1 ≤ f < q0 ≤ qf . Then we have

R1(G, n, q) ≤ Rf (G, n, q0).

Proof. Let B := R1(G, n, q). There exists a Builder strategy for the game G(G, n, 1, q)
exposing at least B − 1 edges so that in the end there is no monochromatic copy of G.
Call this strategy the original strategy. Let S1 ∪ · · · ∪ Sq = [q0] with Si’s being pairwise
disjoint sets of size at most f . Then we can modify the original strategy so that for
each i ∈ [q], instead of forbidding color i, Builder forbids all colors of the set Si. As the
original strategy guarantees for each i ∈ [q] that no monochromatic copy of G in color i
occurs, the modified strategy ensures that no monochromatic copy of G in any color of
Si occurs. Thus B ≤ Rf (G, n, q0) proves the statement.

Remark. Note that Theorems 7.1 and 7.2 show, that increasing the forbiddance number
leads to a larger or equal RTA number, while increasing the number of colors leads to
a smaller or equal RTA number. However, Theorem 7.3 shows cases where increasing
both q and f leads to a larger or equal RTA number.

Theorem 7.2 raises the question if strict inequality can be achieved, i.e. if increasing
the number of colors can lead to a smaller RTA number. Example 7.4 addresses this
question.

Example 7.4 (strict inequality in Theorem 7.2). Mirbach’s thesis [34] provides an ex-
ample of strict inequality in Theorem 7.2. We have

R1(P3, 6, 2) = 7 > 6 = R1(P3, 6, 3).

For proofs see Theorems 5.5 and 7.10 in [34].
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7 The game for general G

7.2 General upper bounds

Observation 7.5 (trivial upper bound). Let G graph, f, q, n ∈ N with n ≥ r(G, q) and
f < q. Then we have

Rf (G, n, q) ≤
(
n

2

)
.

Theorem 7.6 (easy upper bound [34]). Let G graph, f, q, n ∈ N with n ≥ r(G, q) and
f < q. Then we have

Rf (G, n, q) ≤ ex(n,Kr(G,q)) + 1.

Theorem 7.7 (general upper bound). Let G graph, f, q, n ∈ N with n ≥ r(G, q) and
f < q. Then we have

Rf (G, n, q) ≤ min
{
(f + 1)ex(n,G); ex(n,Kr(G,f+1))

}
+ 1.

Proof. We prove this by showing two strategies for Painter. First we prove

Rf (G, n, q) ≤ (f + 1)ex(n,G) + 1.

Let Painter use only colors [f +1] for coloring. For every exposed edge he may choose a
color from this set arbitrarily. As Builder may forbid at most f colors, there is always
at least one available for Painter to choose from. After (f + 1)ex(n,G) + 1 edges are
exposed, by Pigeonhole principle there exists a color class containing at least ex(n,G)+1
colors. By definition of extremal numbers, a monochromatic copy of G is present in this
color.

Now we show
Rf (G, n, q) ≤ ex(n,Kr(G,f+1)) + 1.

We can prove it by combining the previous idea with Theorem 7.6. Let Painter use only
the color set [f + 1] for coloring. For every exposed edge he may choose a color from
this set arbitrarily. By definition of the multicolor Ramsey number, every (f + 1)-edge-
colored graph on n vertices and ex(n,Kr(G,f+1)) + 1 edges contains a monochromatic
copy of G, concluding the proof.

Remark. Note that the tightness of the upper bound of (f +1)ex(n,G)+1 in Theorem
7.7 varies for different choices of G. For example, in the case of complete graphs we have(
n
2

)
< (f +1)ex(n,Kt), thus in this case the bound is useless. However, in other cases it

can lead to stronger results, like in the case of paths in Theorem 9.2. Also, the bound
of ex(n,Kr(G,f+1)) + 1 might be the stronger one, however it is more difficult to apply
due to our limited knowledge of multicolor Ramsey numbers.

7.3 General lower bounds

Observation 7.8 (trivial lower bound). Let G graph and f, q, n ∈ N with n ≥ r(G, q)
and f < q. Then we have

ex(n,G) < Rf (G, n, q).
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As a corollary of the lower bound proof of Theorem 9.6, we present another general
lower bound:

Theorem 7.9 (lower bound with ∆(G)). Let G be a graph, f, q, n ∈ N and ∆ := ∆(G)
with f < q and n ≥ r(G, q). Then we have

n((f + 1)(∆− 1) + 1)

4
< Rf (G, n, q).

Proof. First, note that graph G has a vertex v ∈ V (G) with deg(v) = ∆. Thus the star
K1,∆ is a subgraph of G. During the game, if there is no monochromatic star K1,∆, there
is also no monochromatic copy of G. Thus we have

Rf (K1,∆, n, q) ≤ Rf (G, n, q).

In Theorem 9.6 we proved for stars the lower bound of

n((f + 1)(t− 1) + 1)

4
< Rf (K1,t, n, q).

Applying this result for the star K1,∆ proves our statement.

Definition 7.10 (H-polychromatic number). Let H be a graph and |H| < n. An edge-
coloring of Kn with k colors is H-polychromatic if all subgraphs in Kn isomorphic to
H contain all k colors of the coloring. The H-polychromatic number of Kn, denoted
by polyH(Kn), is the largest k such that a H-polychromatic edge-coloring of Kn with k
colors exists.

Theorem 7.11 (general lower bound). Let G graph and t, f, q, n ∈ N with n ≥ r(G, q)
and f < q ≤ f · polyG(Kt) and |G| ≤ t. Then we have⌊n

t

⌋(t
2

)
< Rf (G, n, q).

Proof. We show a strategy for Builder to prove the lower bound. First consider the case
of q = polyG(Kt) and f = 1. Let c : E(Kt) → [q] be a G-polychromatic coloring with q
colors. Let Builder expose all edges e ∈ E(Kt) and forbid color c(e) for them, then for
each copy of G in Kt every color is forbidden for at least one of its edges. Thus there is
no monochromatic copy of G. She continues by exposing all edges of other disjoint Kt’s
similarly. Builder can expose

⌊
n
t

⌋
copies of Kt without any monochromatic copy of G,

proving the lower bound.
In the case of fewer colors, she can do the same but not forbid any colors for edges

e ∈ E(Kt) where c(e) > q. For larger forbiddance number f , she can apply the strategy
shown in Theorem 7.3. Let the set of colors be [q] = S1 ∪ · · · ∪ SpolyG(Kt), where Si’s
are pairwise disjoint sets of size at most f . Builder forbids Si on each edge e ∈ E(Kt)
where c(e) = i. This strategy guarantees that there is no monochromatic copy of Kt

and allows up to f · polyG(Kt) colors altogether.
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7 The game for general G

Remark. The presented lower bound results are applicable in different cases. The trivial
bound of ex(n,G) is a weak bound but applicable without further knowledge. The bound
shown in Theorem 7.9 requires only the additional knowledge of the maximum degree
of G. The bound shown in Theorem 7.11 is more difficult to apply due to our limited
knowledge of G-polychromatic numbers.
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8 G as complete graphs

8 G as complete graphs

This section presents the main results on RTA numbers for complete graphs. Theorem
8.3 gives a lower bound using a construction via matchings. Theorem 8.10 improves the
lower bound by extending the same idea to balanced colorings. Theorem 8.12 achieves
an even greater improvement for large enough t. We also tried improving the previous
idea via the probabilistic method in Theorem 8.13, resulting in a stronger bound for
very large t. Finally, we give an upper bound proof in 8.15. We have compiled Table 2
presenting RTA results on complete graphs for easier comparison.

Theorem Bound Method Type Comment
7.8

(
1− 1

t−1

)(
n
2

)
extremal numbers LB

8.3
(
1− 1

2t−3

)(
n
2

)
matchings LB q ≤ 2t− 3

8.10
(
1− 1

( t
2
)2

)(
n
2

)
balanced colorings LB q ≤ t

2

8.12
(
1− 1

(t−t0.525)2

)(
n
2

)
balanced colorings LB q ≤ t− t0.525 − 1,

t large enough

8.13
(
1− 1

t
t1−ϵ
ln t

)(
n
2

)
probabilistic LB t > t0 for some t0

with q ∈ o(tϵ0)

8.15
(
1− 1

qqt

)(
n
2

)
q-color Ramsey UB

Table 2: Bounds on R1(Kt, n, q).

Remark. Note that our best lower bound is in Theorem 8.13, proving(
1− 1

t
t1−ϵ

ln t

)(
n

2

)
≤ R1(Kt, n, q)

with t > t0 for some t0 with q ∈ o(tϵ0). The best upper bound is in Theorem 8.15, proving

R1(Kt, n, q) ≤
(
1− 1

qqt

)(
n

2

)
.

For the sake of easier comparison of our best lower and upper bounds, we can rewrite
the upper bound by substituting q := tϵ (acquired from the lower bound), resulting in

R1(Kt, n, q) ≤
(
1− 1

tϵt
ϵt

)(
n

2

)
=

(
1− 1

tt1+ϵϵ

)(
n

2

)
.

8.1 Lower bound via matchings

Definition 8.1 (maximal matching sequencibility). Let the maximal matching sequen-
cibility of a graph G, denoted by ms(G), be the largest integer s for which there is an
ordering of the edges of G such that every s consecutive edges form a matching.
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8 G as complete graphs

Lemma 8.2 (Alspach [2]). Let n ∈ N. Then we have

ms(Kn) =
⌊n− 1

2

⌋
.

Theorem 8.3. Let f, q, n, t ∈ N with t > 2, n ≥ r(Kt, q) and f < q ≤ (2t− 3)f . Then

||T2t−3(n)|| < Rf (Kt, n, q).

Example 8.4 (proof idea for Theorem 8.3). Before proving the theorem, we show the
proof idea through an example, see Figure 14. This example shows

||T9(n)|| < R1(K7, n, 5)

by proposing a strategy for Builder. First consider K9 and fix 3 edges forming a matching,
shown in red. Note that any copy of K7 contains at least one of the three red edges on
Figure 14(a). By forbidding color 1 for these three red edges, Builder can make sure
that no copy of K7 appears in color 1 after exposing all edges of K9. Similarly, in the
case of n vertices, she can expose all edges of the Turán-graph T9(n), and forbid color
1 for all edges corresponding to the red edges, as shown in Figure 14(b). To prevent
monochromatic copies of K7 in other colors as well, she can do for each color i ∈ [5] the
following: pick any matching of size 3 and forbid color i for the 3 matching edges.

(a) K9 (b) T9(n)

Figure 14: Builder strategy for K9 and T9(n) to prevent a monochromatic K7.

Proof. Let u := 2t− 3 and f = 1, we discuss larger forbiddance numbers later. We first
show a Builder strategy for exposing all edges of Ku, and then expand it to work for
exposing all edges of Tu(n), just as in Example 8.4. By forbidding color i for all edges
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8 G as complete graphs

of a matching of size u − t + 1, Builder prevents a monochromatic Kt in color i. Let
O = (e1, · · · , e(V2)) be an ordering of E(Ku) so that any u−1

2
consecutive edges form a

matching. Such ordering exists by Lemma 8.2. Note that for u = 2t− 3 we have

u− t+ 1 =
u− 1

2
,

so let s := u − t + 1. Let M1, · · · ,Mu be pairwise disjoint sets of edges with ∀i ∈ [u] :
|Mi| = s, so that any edge in Mi appears before any edge in Mj for i < j in the edge-
ordering above. In other words, M1 = {e1, . . . , es},M2 = {es+1, . . . , e2s}, . . . All edges
of K2t−3 are ordered, and we have

|E(K2t−3)|
t− 2

=
(2t− 3)(t− 2)

t− 2
= 2t− 3,

thus we can define 2t − 3 such matchings. For i ∈ [2t − 3], Builder forbids color i for
each edge of Mi. Note that each matching Mi spans a set of u − 1 = 2t − 4 vertices,
thus any t vertices induce at least one edge of Mi. Thus Builder guarantees that there
is no monochromatic Kt in color i for each i ∈ [2t − 3]. To expand the strategy to
n vertices, take the Turán-graph T2t−3(n) and let the 2t − 3 parts correspond to the
vertices of K2t−3. For each edge forbid the same color as which was forbidden for the
corresponding edge in K2t−3.

For larger forbiddance number f we can adjust the strategy as in the proof idea of
Theorem 7.3. We can define pairwise disjoint color sets S1, . . . , S2t−3 with

∀i ∈ [2t− 3] : |Si| ≤ f and S1 ∪ · · · ∪ S2t−3 = [f(2t− 3)].

We can adjust the Builder strategy by instead of forbidding color i for edge e, forbidding
all colors from set Si for e. So this modified strategy allows (2t−3)f colors altogether.

Remark. Note that we used Alspach’s Theorem 8.2 to show that the whole edge set
of Ku can be decomposed into disjoint matchings. In this specific case of u = 2t − 3,
we need complete matchings to prevent a monochromatic copy of Kt. It is well-known
that the edge set of Ku can be decomposed into disjoint complete matchings, and thus
Alspach’s theorem is not strictly necessary in this case. However, the advantage of
this proof is that the edge set of Ku can be decomposed into disjoint matchings of any
fixed size. In Turán graphs with fewer parts, smaller matchings also suffice to prevent a
monochromatic copy of Kt, just as shown in Example 8.4. Thus by reducing the number
of Turán parts, the analogous method allows more colors, i.e. it proves slightly weaker
lower bounds but for larger q.

8.2 Lower bound via balanced colorings

Definition 8.5 (balanced (r, n)-coloring). We call an edge r-coloring of KN a balanced
(r, n)-coloring if any set of ⌈N/r⌉ vertices for any i ∈ [r] contains a monochromatic Kn

in color i.
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8 G as complete graphs

Figure 15: Balanced (2, 2)-coloring.

Example 8.6 (balanced (2, 2)-coloring). An example of a balanced (2, 2)-coloring of K5

is shown in Figure 15. Any ⌈5/2⌉ = 3 vertices induce an edge (a K2) in both colors.

Lemma 8.7 (Erdős-Gyárfás, Theorem 5 in [20]). If a finite projective plane of order
r + 1 exists, then Kr2+r+1 has a balanced (r, 2)-coloring. In other words, there is an
r-edge-coloring of Kr2+r+1 so that for any i ∈ [r] any r + 2 vertices induce an edge in
color i.

Remark. Note that a projective plane is a 2−(q2+q+1, q+1, 1)-design. Also note that
a projective plane of order q can be constructed for any prime power q. The question of
whether a projective plane of order k exists is open for other integers k, but the answer
is conjectured to be no.

Theorem 8.8. Let f, q, n, t ∈ N with n ≥ r(Kt+2, q), f < q ≤ t · f and with t such that
a finite projective plane of order t+ 1 exists. Then

||Tt2+t+1(n)|| < Rf (Kt+2, n, q).

Proof. First we show a strategy for Builder in the case of q = t and f = 1. Let
c : E(Kt2+t+1) → [t] be an edge-coloring so that for any i ∈ [t], any t + 2 vertices
induce an edge in color i. Such a coloring exists by Lemma 8.7. By exposing all
e ∈ E(Kt2+t+1) with forbidding color c(e), Builder can prevent the occurrence of a
monochromatic Kt+2. She can have an analogous strategy on n vertices using the Turán-
graph Tt2+t+1(n). Let parts of the Turán-graph correspond to vertices of Kt2+t+1. Let
b : V (Tt2+t+1(n) → V (Kt2+t+1) be a function mapping the Turán-graph vertices to their
Turán-graph parts. Let each Turán-edge xy correspond to edge b(x)b(y) of Kt2+t+1.
Thus we can define c′ : E(Tt2+t+1(n)) → [t] so that for each e′ ∈ E(Tt2+t+1(n)) with
corresponding edge e ∈ E(Kt2+t+1) we have c′(e′) := c(e). By exposing each edge
e′ ∈ E(Tt2+t+1(n)) and forbidding color c′(e′), Builder can prevent the occurrence of a
monochromatic Kt+2. Thus ||Tt2+t+1(n)|| < R1(Kt+2, n, t).

In the case of fewer colors, i.e. q < t, the strategy works with the adjustment of
not forbidding anything on edges {e : c′(e) > q}. For larger forbiddance number f we
can adjust the strategy to work with more colors, just as in proof of Theorem 7.3 by
defining sets of colors instead of each color to forbid. This strategy allows up to t · f
colors altogether.
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8 G as complete graphs

Remark. The previous theorem works for prime power (t + 1) only. In the following,
we generalize it using Ortlieb’s proof idea of Theorem 4.25 in [37].

Lemma 8.9 (Bertrand-Chebyshev Theorem [43]). For all n ∈ N there exists a prime
pn such that pn ∈ [n, 2n].

Theorem 8.10. Let f, q, n, t ∈ N with n ≥ r(Kt+1, q) and f < q ≤ tf
2
. Then

||T( t
2
)2+ t

2
+1(n)|| < Rf (Kt+1, n, q).

Proof. If t is a prime, Theorem 8.8 proves an even stronger bound. Let pt be a prime
such that pt ∈ [ t

2
, t]. Such pt exists by Lemma 8.9. By Lemma 8.7, there exists a (pt−1)-

edge-coloring of K(pt−1)2+(pt−1)+1 so that for any color i ∈ [pt − 1] any (pt + 1) vertices
induce an edge in color i. By applying Theorem 8.8 we get

||T(pt−1)2+(pt−1)+1(n)|| < Rf (Kpt+1, n, (pt − 1)f).

As pt+1 < t+1, in the same (pt−1)-edge-coloring of K(pt−1)2+(pt−1)+1 any t+1 vertices
also induce an edge in each color. As t

2
≤ pt − 1, a (pt − 1)-edge-coloring of K( t

2
)2+ t

2
+1

with the same property also exists, so

||T( t
2
)2+ t

2
+1(n)|| < Rf (Kt+1, n, (pt − 1)f).

As t
2
≤ pt − 1, there also exists a t

2
-edge-coloring of K( t

2
)2+ t

2
+1 where any t + 1 vertices

induce an edge in each color as well. Hence

||T( t
2
)2+ t

2
+1(n)|| < Rf (Kt+1, n,

tf

2
).

For large enough t the bound can be bettered using the following lemma.

Lemma 8.11 (Baker [4]). There exists x0 ∈ R such that for all x > x0, the interval

[x− x0.525, x]

contains at least one prime number.

Theorem 8.12. Let f, q, n, t ∈ N with n ≥ r(Kt+2, q) and f < q ≤ (t − t0.525 − 1) · f
and t large enough (let t > x0 from Lemma 8.11). Then we have

||T(t−t0.525−1)2+(t−t0.525−1)+1(n)|| < Rf (Kt+2, n, q).

Proof. Let t′ be such that (t′ + 1) is prime and (t′ + 1) ∈ [t− t0.525, t]. Such t′ exists by
Lemma 8.11. By applying Theorem 8.8 we have

||Tt′2+t′+1(n)|| < Rf (Kt′+2, n, q).

As t > t′ we also have
||Tt′2+t′+1(n)|| < Rf (Kt+2, n, q).

As t− t0.525 − 1 ≤ t′ we have

||T(t−t0.525−1)2+(t−t0.525−1)+1(n)|| < Rf (Kt+2, n, q).
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8 G as complete graphs

8.3 Lower bound via the probabilistic method

In this section we give a better lower bound via the probabilistic method. The idea is
the same as in Subsections 8.1 and 8.2: we aim to color all edges of a complete graph
on possibly many vertices such that each copy of Kt induces edges in all of the q colors.

Theorem 8.13. Let ϵ > 0 and q ∈ N. There exists t0 ∈ N with q ∈ o(tϵ0) such that
∀t > t0 with t ∈ N and n > max(r(Kt, q), t

t1−ϵ

ln t ) we have

||T
t
t1−ϵ
ln t

(n)|| < R1(Kt, n, q).

Proof. Let ξ := t
t1−ϵ

ln t . We will show that a q-edge-coloring of Kξ exists with all copies
of Kt inducing edges in all q colors. Then Builder can expose all edges of Kξ in an
arbitrary order and forbid the corresponding color for each, while Painter cannot create
a monochromatic Kt. We show the existence of such coloring via the probabilistic
method. Consider a random edge-coloring of Kξ, where for each edge e ∈ E(Kξ) and
for each color i ∈ [q]

P(e has color i) =
1

q
.

Then for any S ⊂ V (Kξ) with |S| = t we have

P(each edge of the Kt induced by S has color from {1, · · · , q − 1}) =
(
1− 1

q

)(t2)
.

By defining the bad event A as

A := {there exists a Kt colored into at most q − 1 colors},

we get

P(A) = P

( ⋃
S⊂V (Kξ)

|S|=t

(⋃
i∈[q]

{S does not induce an edge in color i}
))

≤
∑

S⊂V (Kξ)
|S|=t

(∑
i∈[q]

P(S does not induce an edge in color i)

)

≤
∑

S⊂V (Kξ)
|S|=t

(∑
i∈[q]

(
1− 1

q

)(t2))
=

(
ξ

t

)
q
(
1− 1

q

)(t2)
< ξt · q · e−

(t2)
q .

We want P(A) < 1, so that by definition of A a coloring of Kξ exists such that every
copy of Kt contains all q colors. So far we have

P(A) < ξt · q · e−
(t2)
q .
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8 G as complete graphs

We can derive the following through equivalent transformations:

ξt · q · e−
(t2)
q < 1

⇕

et ln ξ+ln q−
(t2)
q < 1

⇕

t ln ξ + ln q −
(
t
2

)
q

< 0

⇕

t ln
(
t
t1−ϵ

ln t

)
+ ln q −

(
t
2

)
q

< 0

⇕

t2−ϵ + ln q −
(
t
2

)
q

< 0

As q ∈ o(tϵ0) for some t0 < t and we chose t to be large enough, the last inequality
holds. Thus there exists an edge-coloring of Kξ where every copy of Kt induces edges
in all q colors. Now blow up Kξ to Tξ(n) and extend the edge-coloring such that for
every v1, v2 ∈ V (Kξ) with v1, v2 being blown up into blobs B1, B2, every edge running
between B1 and B2 is colored into the color of v1v2. By exposing all edges of Tξ(n)
and forbidding the assigned edge color, Builder can prevent Painter from creating a
monochromatic Kt.

Remark. Note that although this bound is stronger than the previous ones, it works
only for very large t compared to q.

We also tried another probabilistic approach to improve the current bounds. Though
the attempt was unsuccessful, we describe the method in the following, as it may contain
ideas useful for further work. In Subsections 8.1-8.3 the main idea was to find a coloring
of a possibly large complete graph where each copy of Kt induces all colors, and then
blow it up to the Turán-graph on n vertices. Now we want to color possibly many (but
not necessarily all) edges of Kn such that each copy of Kt induces all colors. Note that
coloring all edges is not possible due to n ≥ r(Kt, q).

Consider a random graph G, where for each e ∈ E(Kn),

• P(e /∈ E(G)) = 1− p

• P(e has color i) = p
q

for each i ∈ [q].
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8 G as complete graphs

Note that each edge e is present in G with probability p. Let p =
(
1 − 1

ξ

)
, then

E(|E(G)|) = p
(
n
2

)
=
(
1− 1

ξ

)(
n
2

)
. For S ⊆ V (Kn) with |S| = t we have

P(S induces Kt and each edge has color from {1, · · · , q − 1}) =

((
1− 1

q

)
p

)(t2)
.

Defining the event

A := {there exists a Kt colored into at most q − 1 colors},

we get

P(A) = P

( ⋃
S⊆V (Kn)

|S|=t

(⋃
i∈[q]

{S induces Kt with no edge in color i}
))

≤
∑

S⊆V (Kn)
|S|=t

(∑
i∈[q]

P(S induces Kt with no edge in color i)
)

=
∑

S⊆V (Kn)
|S|=t

( ∑
C⊆[q]

|C|≤q−1

((
1− 1

q

)
p

)(t2))
=

(
n

t

)
· q

((
1− 1

q

)
p

)(t2)

≤ nt

(
q
(
1− 1

q

)(t2))
p(

t
2) = nt · f(t, q) · p(

t
2).

After leaving the constant part and substituting p =
(
1− 1

ξ

)
we have

P(A) ≤ nt
(
1− 1

ξ

)(t2) ≤ nt · e−
(t2)
ξ .

We want P(A) < 1 so that by definition of A a coloring of G exists such that every
copy of Kt contains all q colors. So we can derive the following:

P(A) < nt · e−
(t2)
ξ < 1

et logn−
(t2)
ξ < 1

t log n−
(
t
2

)
ξ

< 0

ξ <
t− 1

2 log n

So let ξ := t−1−ϵ
2 logn

and then p = 1− 1
ξ
= 1− 2 logn

t−1−ϵ
. However, as n ≫ t, this would mean

a negative probability, which is a contradiction.
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8 G as complete graphs

Remark. Note that this does not prove the non-existence of such graphs with many
edges. This also does not prove that the existence of such graphs cannot be proven via
the probabilistic method. It could be that this specific probabilistic approach did not
work because such graphs with good edge coloring are not "random" enough but are
structured in some way.

8.4 Upper bound

Lemma 8.14 states the current best upper bound on multicolor Ramsey numbers, which
is proved through a slight modification of the neighborhood-chasing argument of Erdős
and Szekeres in [23].

Lemma 8.14 (upper bound on multicolor Ramsey numbers). For t, q ∈ N and q ≥ 3
we have

r(Kt, q) ≤ qqt.

Theorem 8.15. Let f, q, n, t ∈ N with n ≥ r(Kt, q) and 3 ≤ q and f < q. Then

Rf (Kt, n, q) ≤
(
1− 1

qqt

)(
n

2

)
+ 1.

Proof. Theorem 7.6 states

Rf (Kt, n, q) ≤ ex(n,Kr(Kt,q)) + 1.

By applying Lemma 8.14 we get

Rf (Kt, n, q) ≤ ex(n,Kr(Kt,q)) + 1 =

(
1− 1

r(Kt, q)

)(
n

2

)
+ 1 ≤

(
1− 1

qqt

)(
n

2

)
+ 1.
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9 G belongs to other graph families

9 G belongs to other graph families

In this section we present our results where G belongs to different graph families, in-
cluding paths, cycles, stars and matchings.

9.1 Paths

Lemma 9.1 (Erdős-Gallai [19]). Let t, n ∈ N with k :=
⌊
t−1
2

⌋
. Then we have

ex(n, Pt) ≥
(
k

2

)
+ k(n− k).

Proof. We prove this by constructing a Pt-free graph on n vertices and
(
k
2

)
+ k(n − k)

edges. Let G graph on n vertices. Let T ⊆ V (G) with |T | = k. Let

E(G) := {xy : x ∈ T and y ∈ T} ∪ {xy : x ∈ T and y /∈ T}.

Then we have |E(G)| =
(
k
2

)
+ k(n − k) and G contains no copy of Pt, proving the

inequality.

Theorem 9.2 (bounds for paths). Let t, f, q, n ∈ N with f < q and n ≥ r(Pt, q). Let
k :=

⌊
t−1
2

⌋
. Then we have(

k

2

)
+ k(n− k) + 1 ≤ Rf (Pt, n, q) ≤

(f + 1)(t− 2)n

2
+ 1.

Proof. LB: By definition of extremal numbers we have

ex(n, Pt) + 1 ≤ Rf (Pt, n, q).

Thus by Lemma 9.1 we have the following:(
k

2

)
+ k(n− k) + 1 ≤ ex(n, Pt) + 1 ≤ Rf (Pt, n, q).

UB: Theorem 7.7 states

Rf (Pt, n, q) ≤ (f + 1)ex(n, Pt) + 1.

Erdős and Gallai [19] proved the following upper bound on extremal number of paths:

ex(n, Pt+1) ≤
1

2
(t− 1)n.

Using their result we get

Rf (Pt, n, q) ≤ (f + 1)ex(n, Pt) ≤
(f + 1)(t− 2)n

2
+ 1,

proving the upper bound.
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9 G belongs to other graph families

9.2 Cycles

Recall that polyH(Kn) denotes the largest integer k such that a k-edge-coloring of Kn

exists with all subgraphs in Kn isomorphic to H containing all k colors of the coloring.

Theorem 9.3 (Axenovich et al. [3]). Let t ∈ N, then⌊
log2

8(t− 1)

3

⌋
≤ polyCt(Kt).

Theorem 9.4 (bounds for cycles). Let t, f, q, n ∈ N with f < q ≤ f ·
⌊
log2

8(t−1)
3

⌋
and

n ≥ r(Ct, q). Then we have⌊n
t

⌋(t
2

)
≤ Rf (Ct, n, q) ≤

1

2
(f + 1)(n− 1)t+ 1.

Proof. LB: We can apply the result of Axenovich et al. in Theorem 9.3 to the general
lower bound result of Theorem 7.11 to get the lower bound.

UB: Theorem 7.7 states

Rf (Ct, n, q) ≤ (f + 1)ex(n,Ct) + 1.

Erdős and Gallai [19] proved the following upper bound on extremal number of cycles:

ex(n,Ct) ≤
1

2
t(n− 1).

Using their result we get

Rf (Ct, n, q) ≤ (f + 1)ex(n,Ct) + 1 ≤ 1

2
(f + 1)(n− 1)t+ 1.

9.3 Stars

Lemma 9.5 (Alspach on Hamiltonian decomposition [2]). Let k ∈ N. K2k+1 can be
decomposed into k Hamiltonian cycles. K2k can be decomposed into k − 1 Hamiltonian
cycles and a 1-factor.

Theorem 9.6. Let t, f, q, n ∈ N with f < q and n ≥ r(K1,t, q). Then we have

n((f + 1)(t− 1) + 1)

4
< Rf (K1,t, n, q) ≤

n(f + 1)(t− 1)

2
+ 1.

Proof. Note that a graph not containing a monochromatic K1,t means that there is no
vertex having t incident edges of the same color.

LB: We prove this with a strategy for Builder. By Lemma 9.5, the graph Kn can be
decomposed into Hamiltonian cycles and possibly one 1-factor, depending on the parity
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9 G belongs to other graph families

of n. We can construct a k-regular graph on n vertices for any k < n simply by taking
the union of some Hamiltonian cycles and, if k is odd, the 1-factor as well. Construct
such a regular graph G with degree

⌊ (f+1)(t−1)+1
2

⌋
. Builder exposes all edges of G in an

arbitrary order. When exposing edge xy, both x and y have at most (f+1)(t−1)−1
2

incident
edges which are already colored, so altogether at most (f + 1)(t− 1)− 1 colored edges.
See an illustration in Figure 16. By Pigeonhole principle, there are at most f colors, for
which the color is assigned to at least t− 1 of these edges. Builder forbids these at most
f colors, making sure that no color class of size t appears. Now she repeats these steps
for all other edges of G. Hence she guarantees that no vertex has t incident edges in the
same color, and no monochromatic K1,t occurs.

(f+1)(t−1)−1
2

(f+1)(t−1)−1
2

Figure 16: Builder strategy construction for Rf (K1,t, n, q).

UB: We prove this with a strategy for Painter. Say he uses only colors [f + 1]. If
Builder exposed n(t−1)(f+1)

2
+ 1 edges, by Pigeonhole principle there must be a vertex v

with deg(v) ≥ (t− 1)(f +1)+ 1. As Painter uses only f +1 colors, again by Pigeonhole
principle there must be t edges of the same color incident to v. These t edges together
build a monochromatic K1,t, proving the upper bound.

9.4 Matchings

Recall that tK2 denotes a matching of size t.

Theorem 9.7 (Erdős-Gallai [19]). Let n, t ∈ N. Then we have

ex(n, tK2) = max

{(
2t− 1

2

)
, (t− 1)(n− t+ 1) +

(
t− 1

2

)}
.

Corollary 9.8. For n ≥ 5t−2
2

we have

ex(n, tK2) = (t− 1)(n− t+ 1) +

(
t− 1

2

)
= (t− 1)

(
n− t

2

)
.

Theorem 9.9. Let t, n, q, f ∈ N with f < q and n ≥ r(tK2, q). Then we have

(t− 1)

(
n− t

2

)
+ 1 ≤ Rf (tK2, n, q) ≤ (f + 1)(t− 1)

(
n− t

2
− f(t− 1)

2

)
+ 1.
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9 G belongs to other graph families

Proof. LB: By Theorems 7.8 and 9.7 we have

Rf (tK2, n, q) > ex(n, tK2) = (t− 1)

(
n− t

2

)
,

proving the lower bound.
UB: Let Painter use only colors [f + 1] for coloring. For every exposed edge he may

choose a color from this set arbitrarily. If (t − 1)(f + 1) + 1 independent edges are
exposed, then by Pigeonhole principle there are t independent edges of the same color,
inducing a monochromatic copy of tK2. So this Painter strategy proves an upper bound
of

Rf (tK2, n, q) ≤ ex(n, ((t− 1)(f + 1) + 1)K2) + 1.

By Theorem 9.7 we have

ex(n, ((t− 1)(f + 1) + 1)K2) = (t− 1)(f + 1)

(
n− (t− 1)(f + 1) + 1

2

)
,

proving the upper bound.
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10 Online vs. offline strategies

10 Online vs. offline strategies

10.1 Builder strategies for 1 forbidden color

We say that a Builder strategy is offline if the Builder’s moves are independent of the
Painter’s choices, i.e. Builder moves are prescribed. Thus an offline Builder strategy for
the game G(G, n, 1, q) consists of a graph H, a q-edge-coloring of H and an ordering of
E(H), defining the exposed edge and the forbidden color for each step. However, the
order of edge exposure does not matter, as after exposing all edges of H there is no
monochromatic copy of G. An offline Builder strategy that guarantees that the game
does not end in m steps, guarantees a game length of at least m+ 1.

Definition 10.1 (online Builder strategy for G(G, n, 1, q)). In the game G(G, n, 1, q),
every Builder strategy that is not offline is called online.

Definition 10.2 (offline Builder strategy for G(G, n, 1, q)). In the game G(G, n, 1, q),
an offline Builder strategy that guarantees a game length of at least m+ 1 is defined as
a pair (H, c) with H graph, |H| = n, ||H|| = m and c : E(H) → [q] edge-coloring, such
that each copy of G in H induces an edge in all q colors.

Definition 10.3 (F (G, n, q)). Let F (G, n, q) be the largest number of edges in a graph
H on n vertices such that there is a q-edge-coloring of H where each copy of G in H
induces all q colors.

Remark. Equivalently, F (G, n, q) equals the largest m such that there is an offline
Builder strategy guaranteeing a game length of at least m+ 1 in the game G(G, n, 1, q).
Thus by definition,

F (G, n, q) < R1(G, n, q).

Sections 7, 8 and 9 all described offline Builder strategies only, i.e. graphs of order
n with each copy of G inducing all q colors. This raises the question of whether offline
strategies are always optimal. Do online strategies exist that lead to even better bounds?
More formally, we know F (G, n, q) < R1(G, n, q). Is this a strict bound with F (G, n, q) =
R1(G, n, q)− 1, or does F (G, n, q) ≪ R1(G, n, q) hold, meaning that some better online
strategies exist? Online Builder strategies are not easy to construct for large graph
families like complete graphs. However, we have results for concrete graphs showing an
online Builder strategy better than any offline ones. Theorems 10.4 and 10.5 show an
example for the game G(2K2, n, 1, 3).

Theorem 10.4. In game G(2K2, n, 1, 3) the best offline Builder strategy guarantees a
game length of at least n, i.e. proves the lower bound

n ≤ R1(2K2, n, 3).

Proof. We want an offline Builder strategy proving a lower bound of m, i.e. guaranteeing
a game length of at least m, for the largest possible m. Such a strategy defines a graph
H with |H| = n and |H| = m, where a 3-edge-coloring of H exists so that each copy of
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10 Online vs. offline strategies

2K2 contains all 3 colors. Thus Builder can expose all edges of H and forbid the color
corresponding to the coloring to prevent a monochromatic copy of 2K2. As we have 3
colors but 2K2 has only 2 edges, H may not contain any copy of 2K2. regardless of the
coloring. The graph H is edge-maximal if H ≃ K1,n−1, meaning |E(H)| = n− 1. So

F (2K2, n, 3) = ex(2K2, n) = n− 1,

proving that the best offline Builder strategy gives the lower bound of n ≤ R1(2K2, n, 3)
by guaranteeing that the game cannot end in n− 1 steps.

Theorem 10.5. There exists an online Builder strategy proving a better lower bound
than any offline Builder strategy for the game G(2K2, n, 1, 3).

Proof. Recall that Theorem 5.6 defines the following online Builder strategy for the game
G(2K2, n, 1, 3), proving R1(2K2, n, 3) ≥ n+ 2. For easier understanding, see Figure 17.
First, Builder exposes edge v1v2 and forbids no color, and w.l.o.g. Painter paints it in
color 1. Then Builder exposes an independent edge v3v4, and forbids the previously used
color 1, w.l.o.g. say Painter colors it into color 2. Note that Builder’s move is online, as
the forbidden color depends on Painter’s previous decision. Next, Builder exposes the
edge v2v3, and forces the usage of a previously used color by preventing color 3. This is
an online move again, as the forbidden color depends on the previous Painter steps. Say
Painter chooses color 1. Now we have an edge with a unique color, edge v3v4. Builder
chooses its free endpoint, v4, and exposes all of its outgoing edges while forbidding color
1. Note that these moves are online again, as both the edge and the forbidden color
choice depend on Painter’s previous moves. So Builder can expose n + 1 edges while
preventing a monochromatic copy of 2K2, guaranteeing a game length of at least n+ 2.

v1

v2 v3

v4

1

1

2

(b)

v1

v2 v3

v4

1

1

2

(a)

Figure 17: Online Builder strategy for game G(2K2, n, 1, 3).

From Theorem 10.4 we know, that the best offline Builder strategy possible proves the
lower bound n ≤ R1(2K2, n, 3). Thus the previously defined online strategy is better
than any offline ones, concluding our proof.
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10 Online vs. offline strategies

10.2 Painter strategies for 1 forbidden color

We can distinguish offline and online strategies in the case of Painter as well. We say
that a Painter strategy is offline if the Painter’s moves are independent of the Builder’s
choices, i.e. Painter moves are prescribed. In the case of offline Painter strategies, a
prescription of moves is slightly more complicated than in the case of Builder, as the
possible choices of Painter depend on which colors are forbidden by Builder.

Definition 10.6 (online Painter strategy for G(G, n, 1, q)). In the game G(G, n, 1, q),
every Painter strategy that is not offline is called online.

Definition 10.7 (offline Painter strategy for G(G, n, 1, q)). In the game G(G, n, 1, q),
an offline Painter strategy is defined as a list of pairs (a1, b1), . . . , (am, bm) for some
m ≤

(
n
2

)
, where each pair (ai, bi) defines the priorities for the possibly chosen 2 colors.

I.e., in round i Painter chooses bi, if the forbidden color is ai, and chooses ai otherwise.

Definition 10.8 (N(G, n, q)). Let N(G, n, q) be the smallest m such that Painter has
an offline strategy guaranteeing a game length of at most m in the game G(G, n, 1, q).

Remark. Thus by definition,

R1(G, n, q) ≤ N(G, n, q).

Remark. Note that we chose an arbitrary definition of an offline Painter strategy, but
other definitions could be suitable as well. As an example, consider the following Painter
strategy. Painter defines for all edges of Kn the first and second preferred colors in ad-
vance. More formally, we could define the prescription as E(Kn) → [m] × [m]. instead
of [m] → [m]× [m]. Whenever an edge e is exposed, he colors it according to these pre-
defined preferences (ae, be). Definition 10.7 considers this as an online Painter strategy,
as the chosen color does depend on the Builder’s edge choice. However one could say
that the preferences for each edge are prescribed and do not depend on the current game
situation or the Builder’s move. Nevertheless, in the following we only consider offline
strategies meeting our Definition 10.7.

Sections 7, 8 and 9 all described offline Painter strategies only, i.e. prescribed strategies
with Painter’s choice independent of Builder’s moves. This raises the question of whether
offline strategies are always optimal, or if online Painter strategies exist that lead to even
better bounds. More formally, which does hold,

R1(G, n, q) = N(G, n, q) or R1(G, n, q) < N(G, n, q),

meaning that some better online strategies exist? Such online strategies are not easy
to construct for large graph families like complete graphs. However, we have results for
concrete graphs showing an online Painter strategy better than any best offline ones.
Theorems 10.9 and 10.10 show an example for the game G(2K2, n, 1, 3).

Theorem 10.9. In the game G(2K2, n, 1, 3) the best offline Painter strategy guarantees
a game length of at most 2n− 2, i.e. proves the upper bound

R1(2K2, n, 3) ≤ 2n− 2.
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Proof. An offline Painter strategy proving the upper bound R1(2K2, n, 3) ≤ 2n − 2
means, that regardless of Builder’s strategy, Painter can create a monochromatic 2K2

in at most 2n − 2 steps. As an offline Painter strategy is a prescribed strategy, we
could think of it as if Builder also knew this prescription, i.e. Builder knows for each
i ∈ [2n − 2] Painter’s prescribed pair of color choices for step i. To prove that there is
no offline Painter strategy proving an upper bound of 2n− 3 or less, it suffices to show
a Builder strategy, which, given this prescription of Painter’s moves, can force the game
to last longer than 2n− 3 moves. Note that Builder can basically choose a color for the
edge exposed in step i from colors {ai, bi} by either forbidding ai or not. Let H be the
2-edge-colored union of two stars K1,n−1 with |H| = n as shown in Figure 18. If Builder
could force a colored copy H, she could force a game length of at least 2n− 2.

v2v1

1 2

Figure 18: Builder aims to force graph H in the first 2n− 3 steps.

Let Painter’s moves be p : (a1, b1), . . . , (a2n−2, b2n−2), where ∀i : ai, bi ∈ [3] holds and
ai ̸= bi. Consider only the first 2n− 3 pairs. For i ∈ [3] let

s(i) := #{(aj, bj) : i ∈ (aj, bj), j ∈ [2n− 3]},

i.e. the number of pairs containing color i. Note that we have

s(1) + s(2) + s(3) = 2(2n− 3).

W.l.o.g. say that s(3) ≤ s(1) and s(3) ≤ s(2), i.e.

s(1) ≥ 2

3
(2n− 3) and s(2) ≥ 2

3
(2n− 3).

As Builder can choose color 1 and 2 from at least 2
3
(2n− 3) pairs each, she can force a

copy of H by exposing the edges in the right order. So Builder can force a game length
of at least 2n − 2 and thus the best offline Painter strategy can prove no better upper
bound than R1(2K2, n, 3) ≤ 2n − 2. The offline Painter strategy ∀i : (ai, bi) := (1, 2) is
a strategy proving this bound, as any 2-coloring of 2n − 2 edges on n vertices contains
a monochromatic 2K2. Thus the best offline Painter strategy proves the upper bound
R1(2K2, n, 3) ≤ 2n− 2.

Theorem 10.10. There exists an online Painter strategy proving a better upper bound
than any offline Painter strategy for the game G(2K2, n, 1, q).

Proof. We know by proof of Theorem 5.6, that there exists a Painter strategy proving
R1(2K2, n, 3) ≤ n+3 in the game G(2K2, n, 1, q). See the theorem proof for the strategy
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details. By Theorem 10.9 we know, that the best possible offline Painter strategy proves
the upper bound R1(2K2, n, 3) ≤ 2n−2. Thus the online Painter strategy shown in The-
orem 5.6 proves a better upper bound than the best offline Painter strategy, concluding
our proof.

Remark. The proof of Theorem 10.9 on offline strategies raises the question of how
well offline Painter strategies perform in general. Thinking of the situation as if Builder
knew the prescribed offline Painter strategy may help prove stronger bounds even for
larger graph classes.

10.3 Larger forbiddance number

We can generalize the definitions of offline and online strategies for larger forbiddance
numbers as well. This section presents the generalized definitions of offline Builder and
Painter strategies. For some set S and some k ∈ N let

(
S
k

)
denote the set of all k-element

subsets of S.

Definition 10.11 (online Builder strategy for G(G, n, f, q)). In the game G(G, n, f, q),
every Builder strategy that is not offline is called online.

Definition 10.12 (offline Builder strategy for G(G, n, f, q)). Let (H, c) be a pair with
H graph, |H| = n, ||H|| = m and c : E(H) →

(
[q]
f

)
, i.e. c assigns a set of f colors to

each edge. In the game G(G, n, f, q), the pair (H, c) is an offline Builder strategy that
guarantees a game length of at least m+ 1 if each copy of G in H for each color i ∈ [q]
induces an edge e so that i ∈ c(e).

Definition 10.13 (Ff (G, n, q)). Let Ff (G, n, q) be the largest number of edges in a graph
H on n vertices such that there is a function c : E(H) →

(
[q]
f

)
, so that each copy of G

in H induces an edge e for each color i ∈ [q] so that i ∈ c(e).

Remark. Equivalently, Ff (G, n, q) equals the largest m such that there is an offline
Builder strategy guaranteeing a game length of at least m+1 in the game G(G, n, f, q).
Thus by definition,

Ff (G, n, q) < Rf (G, n, q).

Remark. Recall that Theorem 7.3 suggests a strategy, how to extend an offline Builder
strategy of game G(G, n, 1, q) to a strategy in game G(G, n, f, q) by assigning fixed color
sets to the edges. However, note that in an offline strategy, the assigned color sets are
not necessarily fixed. See an example in Figure 19.

Definition 10.14 (online Painter strategy for G(G, n, f, q)). In the game G(G, n, f, q),
every Painter strategy that is not offline is called online.

Definition 10.15 (offline Painter strategy for G(G, n, f, q)). In the game G(G, n, f, q),
an offline Painter strategy is defined as a list of (f + 1)-tuples

(a1,1, . . . , a1,f+1), . . . , (am,1, . . . , am,f+1)
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{1, 2, 3}

{4, 5, 6} {2, 7, 8}

{6, 8, 10}

{3, 5, 9}

{10, 12, 14}

{1, 11, 12}

{9, 14, 15} {4, 11, 13}

{7, 13, 15}

Figure 19: Offline Builder strategy for game G(K4, n, 3, 15) assuring a game length of at
least 11.

for some m ≤
(
n
2

)
, where each (f +1)-tuple (ai,1, . . . , ai,f+1) defines the priorities for the

possibly chosen f colors. I.e., in round i Painter chooses the first element of the tuple
(ai,1, . . . , ai,f+1), which is not forbidden.

Definition 10.16 (Nf (G, n, q)). Let Nf (G, n, q) be the smallest m such that Painter has
an offline strategy guaranteeing a game length of at most m in the game G(G, n, f, q).

Remark. Thus by definition,

Rf (G, n, q) ≤ Nf (G, n, q).
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11 Open questions

We conclude this thesis by listing problems that are closely related to the presented
results and are open for further exploration.

• In Theorem 5.6 we consider R1(2K2, n, 3) and prove

n+ 2 ≤ R1(2K2, n, 3) ≤ n+ 3.

Which does hold,

R1(2K2, n, 3) = n+ 2 or R1(2K2, n, 3) = n+ 3?

• In Section 8 we consider lower bounds for G as complete graph, i.e. Rf (Kt, n, q).

In Theorem 8.12 we give a constructive lower bound proof of
(
1− 1

(t−t0.525)2

)(
n
2

)
,

while in Theorem 8.13 we prove the lower bound of
(
1− 1

t
t1−ϵ
ln t

)(
n
2

)
probabilistically.

How could one improve the constructive bounds? And can the probabilistic lower
bound be improved?

• In Section 9 we prove results for paths, cycles, stars and matchings. Can these
bounds be improved? How about other classes like complete bipartite graphs or
k-regular graphs?

• Is there an offline strategy for some game G(G, n, f, q) that proves the best possible
upper or lower bound? I.e. is there a scenario with

Ff (G, n, q) + 1 = Rf (G, n, q) or Rf (G, n, q) = Nf (G, n, q)?

• In Section 10 Theorems 10.5 and 10.10 show examples of online strategies for the
game G(2K2, n, 1, 3), where some online strategy proves a stronger bound than
any offline one. Are there other examples of games and online strategies, where
the same holds? Or can we go even further and say that for (almost) all game
scenarios, the optimal strategies of the players are online, outperforming all offline
ones?
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