
Design and experimental evaluation of alo
al graph
lustering algorithm
Christian S
hulzJune 2, 20081232808Student thesisatInstitut for Theoreti
al Computer S
ien
e, Algorithmi
s IUniversitaet Karlsruhe (TH)

Supervisors:Prof. Dr. Dorothea Wagner,Robert Görke, Daniel Delling

ii

A
knowledgment
I would like to express my gratitude to all those who gave me the possibility to
omplete thispaper. I want to thank my advisors Daniel Delling and Robert Görke.

Hiermit versi
here i
h, dass i
h die vorliegende Arbeit selbstständig angefertigt habe und nurdie angegebenen Hilfsmittel und Quellen verwendet wurden.Karlsruhe, den 2. Juni 2008
iii

iv

Abstra
t
Finding natural groups in large graphs is a �eld with many appli
ations. Appli
ations, su
has analyzing so
ial networks or analyzing the web, provide graphs with a node
ount of up tomillions if not billions. The best known algorithm has a running time O(n2 logn) for sparsegraphs (see Related Work/Greedy). Roughly speaking,
urrent algorithms are too slow toanalyze su
h networks.We present a new algorithm for
lustering graphs, based on the
ontra
tion of dense regionswith weight updates and inserting short
uts. In
ontrast to most known algorithms, whi
hwork in a global way, we use lo
al operations and we do not dire
tly optimize an obje
tivefun
tion. We dete
t dense regions with a lo
al sear
h approa
h. The
ontra
tion order isobtained by using a simple priority fun
tion measuring the expe
ted weight per node. Ouralgorithm
an be used as a
lustering algorithm for itself or simply to redu
e the sear
h spa
efor the greedy algorithm.This thesis is a feasibility-study whi
h points out that it is possible to implement a lo
al
lustering algorithm. We do not analyse the running time of our algorithm.

v

vi

Contents
1 Introdu
tion 12 Fundamentals 32.1 General De�nitions . 32.2 Quality Indi
es . 52.2.1 Coverage . 52.2.2 Performan
e . 52.2.3 Modularity . 62.2.4 Example . 63 Related work 93.1 Iterative Condu
tan
e Cutting (ICC) . 93.2 Geometri
 MST Clustering (GMC) . 103.3 Markov Clustering (MCL) . 103.4 Greedy (Newman) . 114 Or
a - Or
a redu
tion
lustering algorithm 134.1 Remove Nodes . 134.2 Fast Dense Region Dete
tion . 144.2.1 Contra
tion of Dense Regions . 164.3 Densi�
ation via Short
uts . 174.4 Or
a redu
tion
lustering algorithm . 184.5 Post-Newman-Step . 185 Experimental evaluation 215.1 Graph Generators . 215.1.1 Attra
tor Generator . 215.1.2 Signi�
ant Gaussian Generators . 215.2 Attra
tor Generator Tests . 235.2.1 Estimating Parameters . 235.2.2 Setup . 235.2.3 Hierar
hies . 235.2.4 Comparison . 245.3 Signi�
ant Gaussian Generator Tests . 255.3.1 Estimating Parameters . 255.3.2 Results for Modularity . 255.4 Hierar
hies for Well Known Graphs . 28vii

5.4.1 Hierar
hy graph . 285.4.2 Za
hary's Karate Club . 296 Final remarks 316.1 Con
lusion . 316.2 Future work . 316.2.1 Cal
ulating Priorities . 316.2.2 Density Parameter . 32Appendix 33.1 A Note on Quality Indi
es for Hierar
hies . 33.2 More Experimental Results of Attra
tor Tests 34.2.1 Results for Gamma 4 / Sear
h Depth 1 34.2.2 Hierar
hies for Gamma 4 / Sear
h Depth 1 35.3 More Experimental Results of Signi�
ant Gaussian Tests 36.3.1 Hierar
hies for Gamma 6 / Sear
h Depth 1 36.3.2 Hierar
hies for Gamma 8 / Sear
h Depth 1 37.3.3 Hierar
hies for Gamma 10 / Sear
h Depth 1 38Bibliography 39

viii

1 Introdu
tion
Clustering is one of the most widely used methods for investigative data analysis. It has a verywide �eld of appli
ations in
luding data mining, gene analysis, protein domain de
ompositionand analyzing so
ial networks. In round terms,
lustering
onsists of dete
ting natural groupsof elements in data sets whi
h are similar. Graph
lustering is an interesting variant of data
lustering, in whi
h the separation of sparsely
onne
ted dense subgraphs from ea
h other is amain goal. In other words, a graph
lustering algorithm dis
overs groups whi
h are internallydense and only sparsely
onne
ted between ea
h other.A important appli
ation delivering very large graphs to be
lustered, arises in the area of s
ien-ti�

omputing ([14℄, [13℄). Engineers make extensive use of Finite Element Methods (FEM) toanalyze a variety of physi
al pro
esses whi
h
an be des
ribed by partial di�erential equations(PDE). Therefore, the simulation area has to be disse
ted into simple geometri
 elements, e.g.triangles, to approximate the solution of the partial di�erential equation.However, the approximation quality be
omes better, the �ner this dis
retization is performed.But disse
ting the simulation area in more elements also results in growing
omputational
om-plexity. State-of-the-art simulations make use of many millions of elements. To over
ome the
omputational e�ort a parallel
omputer is used. The parallelization of numeri
al simulationalgorithms usually follows the Single-Program Multiple-Data paradigm: Ea
h of the P pro
es-sors exe
utes the same
ode on a di�erent part of the data. Thus, the mesh has to be split intosub-domains, ea
h being assigned to one pro
essor.For using a parallel system e�
iently an even work load distribution onto the pro
essors isrequired. All pro
essors should roughly
ontain the same number of elements to minimizethe overall
omputation time. Furthermore, sin
e iterative algorithms perform mainly lo
aloperations, the parallel algorithm mostly requires
ommuni
ation at the partition boundaries.Communi
ation between the pro
essors should be kept minimal due to the relatively high la-ten
y
aused by
ommuni
ations. Hen
e, the partition boundaries should be as small as possibledue to the high
ommuni
ation
osts involved.The relationships between the elements
an be modeled as a graph, where the
omputationsare represented by nodes and the data dependen
ies by edges. A
ommon algorithm to dis-tribute the
omputational work onto the pro
essors
onsists of dividing the nodes of this graphinto equally sized sets (partitions) su
h that as few edges as possible
onne
t verti
es that arepla
ed in di�erent partitions. This mat
hes the
lassi
al graph partitioning problem. Althoughthe problem is a bit di�erent from our
lustering problem, it
an be approximated using a
lus-tering algorithm. First we generate
luster hierar
hies. Then we take that step of the hierar
hywith the minimal number of
lusters higher than the
ount of pro
essors k.

1

Figure 1.1: Example: Computations are represented by nodes and the data dependen
ies by edges.The
ut minimizes the
ommuni
ation and has optimal work load.Afterwards, it is possible to merge
lusters greedily regarding size and quality until only k
lus-ters in the
lustering are left. The resulting
lusters
an be used for the work-load distribution.

2

2 Fundamentals
2.1 General De�nitionsWe are now going to repeat some general de�nitions from [11℄ and [12℄ whi
h we need later.Throughout this paper we write G = (V,E) for an undire
ted, unweighted, simple graph. Theset of verti
es is denoted by V and E is the set of edges. We denote n = |V | and m = |E|. Ifthe graph is weighted we write G = (V,E, ω), where the mapping ω : E → [0, 1] is the weightfun
tion. The weight fun
tion represents the strength of the similarity relation between twonodes v1, v2 modeled by the edges. For the unweighted
ase, the weight fun
tion is assumed tobe
onstantly one.We say two nodes v, w are equal if and only if ω({v, w}) = 1 and for example two nodes are50 per
ent similar if and only if ω({v, w}) = 0.5.In the following we use an abbreviation for summing up the weight of an edge subset E ′ ⊆ E:

ω(E ′) =
∑

e∈E′

ω(e)De�nition 1 (Subgraph). A graph C = (VC , EC) is
alled subgraph of a graph G = (V,E) if
VC ⊆ V and EC ⊆ E. For V ′ ⊆ V and E(V ′) := {{v, w} ∈ E | v, w ∈ V ′} we de�ne

G[V ′] := (V ′, E(V ′))as the node-indu
ed subgraph.De�nition 2 (Clustering). Given a graph G = (V,E) a
lustering C = {C1, · · · , Ck} is apartition of V i.e. 1. V =
⋃k

i=1Ci2. i 6= j ⇒ Ci ∩ Cj = ∅3. Ci 6= ∅ ∀i ∈ {1, · · · , k} .The node-indu
ed subgraphs G[Ci] are known as
lusters. In the following, we often identify a
luster Ci with its node-indu
ed subgraph.The set E(C) :=
⋃k

i=1E(Ci) is the set of intra-
luster edges and E\E(C) the inter-
lusteredges. The number of intra-
luster edges is denoted by m(C) = |E(C)| and the number ofinter-
luster edges by m(C) = |E\E(C)|. Given a graph G = (V,E, ω) we de�ne A(G) as theset of all possible
lusterings of G. A
lustering C1 := {C1, . . . , Ck} is
alled a re�nement of
C2 := {C ′

1, . . . , C
′
l} i�

C1 ≤ C2 :⇔ ∀i ∈ {1..k} ∃j ∈ {1, . . . , l} : Ci ⊆ C ′
j 3

Figure 2.1: Two
lusterings indi
ated by node
olors and node shapes. The
lustering indi
ated bynode shapes is a
oarsening of the
lustering indu
ed by node
olors.The
lustering C2 is
alled a
oarsening of C1. A subset ρ of A(G) su
h that every pair is
omparable in ρ is a hierar
hy.De�nition 3 (Neighborhood). Let G = (V,E, ω) be a weighted graph. For a node v ∈ V theset
N(v) := {w | {v, w} ∈ E}is
alled the (standard)-neighborhood and we denote the Dijkstra neighborhood with

Nd(v) := {w | dist(v, w) ≤ d, v 6= w}where dist(v, w) is the length of the shortest path between v and w. d is the maximal distan
eto v in the set. Note that for ω(e) ≡ 1, we get N(v) = N1(v).

Figure 2.2: Dijkstra neighborhood N2.0(1)De�nition 4 (Degree). Given a graph G = (V,E, ω), the degree of a node v ∈ V is de�ned bydeg(v) := |N(v)|and regarding ω we denote the weighted degree of a node v ∈ V bydegω(v) :=
∑

e={v,w},w∈N(v)

ω(e)

4

2.2 Quality Indi
esClustering te
hniques are used to �nd groups of nodes that are internally dense and that areonly sparsely
onne
ted with ea
h other. The problem with this formulation is, that it is basedon our intuition. For an algorithmi
 approa
h, we need a measure whi
h tells us whether a
lustering is good or not. Furthermore, su
h quality indi
es allow us to
ompare two di�erent
lusterings. We only give a short summary on quality indi
es. For more information we referthe reader to [11℄.2.2.1 CoverageThe coverage(C) of a graph
lustering C is the fra
tion of the weight of all intra-
luster edgeswithin the
omplete weight of all edges, i.e.
coverage(C) =

w(E(C))
w(E)

.We get the unweighted
ase by setting ω(e) ≡ 1. Intuitively, the larger the value of coverage(C)the better the quality of a
lustering C. A disadvantage of
overage is that C = {V } and"min
uts" a
hieve the maximum value if the graph has more than one
onne
ted
omponent.A

ording to this quality index su
h trivial
lusterings are optimal. However, these
lusterings
annot be
onsidered to be good
lusterings for general graphs and therefore
overage is rarelyused as the only quality measurement of a
lustering.2.2.2 Performan
eFor the unweighted
ase the performance(C) of a
lustering C
ounts the number of "
orre
tly
lassi�ed pairs of nodes" in a graph. In this
ontext a "
orre
tly"
lassi�ed pair of nodes meanstwo nodes either belonging to the same
luster and
onne
ted by an edge, or belonging todi�erent
lusters and not
onne
ted by an edge. With f(C) =
∑k

i=1 |E(Ci)| whi
h
ounts theedges inside
lusters and g(C) =
∑

u,v∈V [{u, v} /∈ E] · [u ∈ Ci, v ∈ Cj , i 6= j] whi
h
ounts theedges between
lusters, we get
performance(C) :=

f(C) + g(C)
1
2
n · (n− 1)

.The de�nition is given in Iversion Notation: the terms inside the parentheses
an be any logi
alstatement. True statements are evaluated to 1, false statements to 0. In [15℄ it is proved that itis NP-hard to
al
ulate the maximum of f + g. Therefore n · (n− 1)/2 is used as upper boundfor the maximum of f + g (there are n · (n− 1)/2 di�erent node pairs). Clusterings with highperforman
e tend to have many
lusters.It is possible to de�ne performan
e for the weighted
ase. On �rst sight, it is not
lear how toassign a value to edges belonging to di�erent
lusters and not
onne
ted by an edge. Therefore,we need a meaningful maximum edgeweight M . We use the maximum weight of the graph
M := maxe∈E ω(e) and set

performance(C) :=
ω(C) +M · g(C)
M 1

2
n · (n− 1)

.

5

2.2.3 ModularityThe quality index
overage has the disadvantage that C = {V } and min
uts a
hieve the max-imum value 1 if there is more than one
onne
ted
omponent. Thus it is not a good measureof
ommunity stru
ture. To �x this problem a new quality index has been introdu
ed by [7℄.The main idea is to "subtra
t from [the measure℄ the expe
ted value [· · ·]". We get
modularity(C) = cov(C)− IE[cov(C)]

=
|E(C)|
|E| −

1

4|E|2
∑

C∈C

(

∑

v∈C

deg(v)

)2for the unweighted
ase and
modularity(C) = cov(C)− IE[cov(C)]

=
ω(E(C))
ω(E)

− 1

4(ω(E))2

∑

C∈C

(

∑

v∈C

degω(v)

)2for the weighted
ase.It is shown in [3℄ that modularity maps into (−1
2
, 1] and may be negative. If the value ofmodularity for a given
lustering C is
lose to zero, then C is not mu
h better than a random
lustering. A high value of modularity is a good indi
ator for a signi�
ant
lustering. Thequality index has a high a

eptan
e in the
ommunity and is
urrently the standard measurefor
lusterings. For more information on modularity we refer the reader to [3℄.2.2.4 ExampleIn Figure 2.3, we present an example to point out that the disadvantages of
overage andperforman
e are not only theoreti
al results. We
ompare the
lustering in whi
h ea
h nodehas its own
luster with the large
lustering and the
lustering indu
ed by the
olors of thenodes. Table 2.1 shows the numeri
al results a
hieved by the
lusterings.

Quality Index Singletons Large
luster Color-indu
ed
lusteringCoverage unweighted 0.0 1.0 0.833Coverage weighted 0.0 1.0 0.826Performan
e unweighted 0.769 0.231 0.871Performan
e weighted 0.831 0.168 0.827Modularity unweighted -0.086 0.0 0.498Modularity weighted -0.088 0.0 0.491Table 2.1: The results regarding the quality index and di�erent
lusterings for the sample graph in�gure 2.3.
6

Figure 2.3: A sample graph with a
lustering indu
ed by node-
olors. The weights of the edges aregenerated regarding the eu
lidean distan
es of the nodes. The evaluated quality indi
esare shown beneath.The winners regarding the
urrent quality index are emphasized. It is obvious that the large
luster and singletons are not "good"
lusterings. Anyhow, the large
luster wins regarding
overage and the singletons
lustering wins regarding performan
e. Furthermore, we
an seethat the di�eren
e for the unweighted performan
e value between the
olor-indu
ed
lusteringand the singleton
lustering is rather little. Looking at the modularity values, we
an
learlysee that the values for the singleton
lustering and the large
lustering are not better than arandom
lustering. The
olor-indu
ed
lustering a
hieves good modularity values.

7

8

3 Related work
This
hapter presents four
lustering algorithms related to this thesis. The �rst three algo-rithms make use of the normalized adja
en
y matrix of G. This matrix is de�ned by M(G) :=
D(G)−1A(G) where A(G) is the adja
en
y matrix and D(G) = diag(degω(v1), · · · , degω(vn)).3.1 Iterative Condu
tan
e Cutting (ICC)The Iterative Condu
tan
e Cutting
lustering algorithm, proposed by [17℄, works in a hierar-
hi
al way. The algorithm is a top down approa
h. The idea is to
ut the graph in two nearlyequalized subgraphs with minimal edge
ount between the subgraphs and then pro
eed withthe subgraphs until a threshold is rea
hed. For the formulation of the algorithm we need thede�nition of
ondu
tan
e
uts. Condu
tan
e
ompares the weight of the
ut with the edgeweight in one of the two indu
ed subgraphs. Thus,
ondu
tan
e
an be seen as a measure forbottlene
ks.De�nition 5 (Condu
tan
e). Let G = (V,E, ω) be a graph and C′ = (C, V \C) be a
ut, thenthe
ondu
tan
e of a
ut is de�ned by

φ(C′) =















1 , if C ∈ {∅, V }
0 , if C 6∈ {∅, V }, ω(E(C′)) = 0

ω(E(C′))min(
∑

v∈C
degω(v),

∑

v∈V \C
degω(v))

, otherwiseand the
ondu
tan
e of the graph G is denoted by
φ(G) = min

C⊆V
φ((C, V \C))De�nition 6 (Intra-
luster Condu
tan
e). Let G = (V,E, ω) be a graph and C = {C1, · · · , Cn}a
lustering. Then the intra-
luster
ondu
tan
e α is de�ned as the minimum
ondu
tan
eo

urring in the
luster-indu
ed subgraphs G[Ci]:

α(C) = min
1≤i≤k

φ(G[Ci])A
ut has a small
ondu
tan
e value if its size is small relative to the density of either side ofthe
ut. The algorithm starts by resetting the
lustering to one large
luster and pro
eeds byiteratively
utting the
luster with a minimum
ondu
tan
e
ut as long as the quality measureof the two resulting parts is below a threshold α∗. The iteration stops if it is not possibleto
ut a remaining
luster within the threshold. However, �nding su
h
uts is NP-hard ([1℄).Therefore, a heuristi
 has to be used. In [5℄ and [6℄ it is shown, that it is possible to approximate9

Algorithm 1 Iterative Condu
tan
e Cutting (ICC)Input: G = (V,E, ω),
ondu
tan
e threshold 0 < α∗ < 11: C ← {V }2: while ∃C ∈ C : φ(G[C]) < α∗ do3: (C ′, C\C ′)← approximate minimum
ondu
tan
e
ut in G[C]4: C ← (C\{C}) ∪ {C ′, C\C ′}5: end whilethe minimum
ondu
tan
e
ut of a graph with a poly-logarithmi
 approximation guarantee ingeneral. The approximation makes use of the eigenve
tor of M(G[Ci])) asso
iated with these
ond largest eigenvalue.A disadvantage of the algorithm is that the estimation of a
ondu
tan
e
ut is NP-hard andtherefore it has to be approximated.3.2 Geometri
 MST Clustering (GMC)The Geometri
 MST Clustering algorithm was introdu
ed by Gaertler in his master thesis([10℄). The algorithm �rst
al
ulates a geometri
 embedding of the graph G and then usesan extension of the Minimum Spanning Tree
lustering te
hnique by [19℄. The embedding ofG is
onstru
ted from d distin
t eigenve
tors x1, · · · , xd of M(G) asso
iated with the largesteigenvalues less than 1. Note that eigenve
tors are used due to their partitioning properties(Thm. 3.34 [10℄). We now present the algorithm as it is proposed in [4℄.Algorithm 2 Geometri
 MST Clustering (GMC)Input: G = (V,E, ω), embedding dimension d,
lustering valuation quality1: (1, λ1, · · · , λd)← d+ 1 largest eigenvalues of M(G)2: d′ ← max{i : 1 ≤ i ≤ d, λi > 0}3: x(1), · · · , x(d′) ← eigenve
tors of M(G) asso
iated with λ1, · · · , λd′4: for all e = (u, v) ∈ E do5: ω(e)←∑d′

i=1 |x
(i)
u − x(i)

v |6: end for7: T ← MST of G with respe
t to ω8: C ← C(τ) for whi
h quality(C(τ)) is maximum over all τ ∈ {ω(e) : e ∈ T}

C(τ) is the
lustering indu
ed by the
onne
ted
omponents of the forest indu
ed by all edgesof T with weight at most τ . It is remarkable that the algorithm has no parameters whi
h �xany
luster property. A disadvantage is that it is time-
onsuming to
al
ulate the embedding.3.3 Markov Clustering (MCL)MCL is short for Markov Clustering Algorithm. [16℄ proposed the algorithm in 2000. The mainidea is that "a random walk in G that visits a dense
luster will likely not leave the
lusteruntil many of its verti
es have been visited". A random walk is a path starting at a random10

vertex and then repeatedly moving to a neighbor in G with equal probabilities. The algorithmdoes not simulate random walks, but iteratively modi�es a matrix of transition probabilities.We now present the algorithm as it is proposed in [4℄. Note, the start matrix M ← M(G)
orresponds to random walks having a length not ex
eeding one.Algorithm 3 Markov Clustering (MCL)Input: G = (V,E), expansion parameter e, in�ation parameter r1: M ←M(G)2: while M is not a �xpoint do3: //simulate e steps of random walk4: M ← Me5: //re-normalize the transition probabilities6: for all u ∈ V do7: for all v ∈ V do8: Muv ←M r
uv9: end for10: for all v ∈ V do11: Muv ← Muv

∑

w∈V
Muw12: end for13: end for14: end while15: H ← graph indu
ed by non-zero entries of M16: C ←
lustering indu
ed by
onne
ted
omponents of HIt is argued in [16℄ that the algorithm in all likelihood ends up in a �xpoint or a re
urrent state.A disadvantage of the algorithm is that it exe
utes in every iteration a matrix multipli
ationwhi
h dominates the runningtime. This operation is very expensive for large n but
an bea

elerated using a parallel
omputer. The algorithm has no parameters whi
h �x any
lusterproperty whi
h is remarkable.3.4 Greedy (Newman)The last algorithm we present, was introdu
ed by Newman [7℄. The algorithm starts with sin-gletons and iteratively merges the
lusters whi
h lead to a maximal in
reasement of modularity.Therefore, this algorithm is a bottom up approa
h whi
h is in
ontrast to the ICC algorithmworking top down. Note, merging
luster pairs iteratively results in a hierar
hy as well. Thishierar
hy
an be represented as tree diagram also known as dendrogram. In [7℄ it is proovedthat this algorithm
an be implemented in O(md logn), where d is the depth of the resultingdendrogram. It is possible that d ∼ n if the dendrogram is a degenerated tree. This leadsto a asymptoti
 running time O(n2 log n) for sparse graphs m ∼ n. For good-natured sparsegraphs we get d ∼ logn and thus a running time O(n log2 n). An advantage of this algorithm isthat it always a
hieves good results regarding modularity. Therefore, the
al
ulated
lusteringmostly
at
hes the intuition. On the other hand, the runningtime of the algorithm is too slowfor really large graphs.

11

Algorithm 4 Greedy (Newman)Input: G = (V,E, ω)1: //start with singletons2: C ← ⋃

v∈V {{v}}3: while C is not the large
luster {V } do4: merge the
luster pair in
reasing modularity the most5: end while6: return the o

urred
lustering with highest modularity value

12

4 Or
a - Or
a redu
tion
lusteringalgorithm
We now formulate our algorithm. All
urrently known algorithms work in a global way. Ouralgorithm works in a lo
al way by using lo
al operations. This is promising sin
e the distan
eof two nodes v1, v2 belonging to the same
luster is most likely small. Therefore it is intimatingto use lo
al operations to identify dense regions and iteratively
ontra
t them to redu
e thesize of the input. A global perspe
tive seems to be overeager.Mainly our algorithm
onsists of three phases. At the beginning we remove all nodes havingdegree one or less. These nodes are later assigned to the
luster of their neighbor or stay assingletons if they have degree 0. In the �rst phase of the algorithm we �nd dense regions whi
hare
ontra
ted to a super node afterwards. We repeat this step until it is not possible to �ndanymore dense regions. To ensure that we
an pro
eed with the �rst two steps, we insertshort
uts. The three phases are exe
uted until we have only one node left. Note that thispro
ess
reates hierar
hies just as the greedy algorithm and the iterative
ondu
tan
e
uttingalgorithm.4.1 Remove NodesAs a �rst step of our algorithm, we remove nodes having degree 1 or less and iterate thispro
edure until all remaining nodes have a degree higher than 1. The removed nodes are laterassigned to the
luster of their original neighbor. The idea behind this is that it seems obviousfor nodes with degree 1 to belong to the
luster of their neighbor. In [3℄, it is shown that a
lustering with maximum modularity has no
luster that
onsists of a single node with degree1. Figure 4.1 gives an example. By not doing this we
ould have a singleton
onne
ted to a"dense" region. The pseudo
ode of this routine is given in Algorithm 5. Note that on theAlgorithm 5 DEGREE-ONE-REMOVALInput: G = (V,E, ω)1: while ∃v ∈ V with deg(v) = 1 do2: remove v3: end whileother hand, the approa
h is
ounterintuitive if the length of the removed path is too long. Butlong paths at dense regions do not o

ure often real world graphs. This part of our algorithm
an be implemented in O(m max(∆, log n)) time (see [2℄). 13

Figure 4.1: An exe
ution of Degree One Removal. The nodes with degree 1 have been removed.4.2 Fast Dense Region Dete
tionThe next step of algorithm is the dete
tion of dense regions. A dense region is a subset of Vwhi
h is highly
onne
ted. The dete
ted dense regions are later assigned to the same
lusterand get
ontra
ted to a super node to redu
e the sear
h spa
e and
ontinue with the algorithm.To dete
t dense regions in the graph, we use a lo
al sear
h approa
h. Roughly speaking, wepi
k a node v of the graph and then
ompare its neighborhood with the neighborhood of itsneighbors. If a neighbor has many neighbors of v, we add it to the
urrent dense region. Morepre
isely, we start at a node v and start then for every neighbor in the Dijkstra neighborhood alo
al sear
h to determine their Dijkstra neighborhood. Sin
e ω : E → [0, 1] models similarities,we use 2−ω as edge-weights for the Dijkstra-sear
h. Consequently nodes whi
h are less similarare more distant to ea
h other in our sear
h graph. What happens next is that every neighborin
rements the "seen" attribute of all nodes in their Dijkstra neighborhood. A node with ahigh "seen" attribute
an be a

essed by many nodes in the Dijkstra neighborhood of the startnode v. We take this as an indi
ator for a dense region and add this node to a potential denseregion if it is higher than a number depending on a parameter γ and the size of the Dijkstraneighborhood. After we found a potential dense region starting from node v, we assign aAlgorithm 6 FAST-DENSE-REGION-DETECTION-LOCALInput: G = (V,E, ω), γ ∈ R
+, sear
h depth d, Start-node vOutput: Dense region1: Set denseregion ← {v}2: for all w ∈ Nd(v) do3: for all u ∈ Nd(w) do4: u.seen++5: end for6: end for7: for all w ∈ Nd(v) do8: if w.seen ≥ |Nd(v)|

γ
then9: denseregion.add(w)10: end if11: end for12: return denseregion

14

Figure 4.2: One iteration of our lo
al sear
h from node with number 4 with γ = 2 and sear
h depth1. The numbers indi
ate the "seen by neighbors" attribute. The green nodes have beenre
ognized as dense regionpriority to the region by using the fun
tion ψ : P(V)→ [0, 1].
ψ(D) :=

∑

e∈E(D) ω(e)

|D| for D ⊆ VIn other words, ψ measures the expe
ted weight per node. Note, in the unweighted
ase ψ(D) =
1⇔ D is a
lique and furthermore ψ(D) = 0⇔ E(D) = ∅. The priorities deliver a
ontra
tionorder and we
ontra
t regions with the highest priority �rst. Sin
e ψ(D1) ≤ ψ(D2) implies thatthe weight per node of D2 is higher than the weight per node of D1, the
ontra
tion order trysto
ontra
t the densest regions �rst. By starting a lo
al sear
h for dense regions for every node
v ∈ V , the
ontra
tion order is built up in Lines 2-5 of Algorithm 7. We need the pro
edureNOT-USED-FOR-LOCAL-SEARCH(Denseregion), so that the nodes whi
h already belong toa dense region are not
onsidered in further lo
al-sear
hes. This is ne
essary be
ause we wantto
ontra
t the regions and therefore a node belongs to one dense region only. In other words,the
ontra
tion
an
hange the priority of other dense regions whi
h means that the originalpriority
an
hange. However, we do not update the priorities whi
h have been
al
ulated �rstsin
e this would be too ine�zient. It is indeed possible to implement a priority lower boundfor the
ontra
tion of regions.

Figure 4.3: One iteration of the global dense region dete
tion routine. The
ontra
tion order is shownthrough the priority labels and the
orresponding dense regions are
olored.
15

Algorithm 7 FAST-DENSE-REGION-DETECTION-GLOBALInput: G = (V,E, ω), γ ∈ R
+, sear
h depth d,1: PriorityQueue pq ← ∅2: for all v ∈ V do3: Denseregion ← FAST-DENSE-REGION-DETECTION-LOCAL(G, γ, d, v)4: pq.insert(v, ψ(Denseregion))5: end for6: List
ontra
tionlist7: while !pq.isEmpty() do8: v ← pq.popMax()9: Denseregion ← FAST-DENSE-REGION-DETECTION-LOCAL(G, γ, d, v)10: NOT-USED-FOR-LOCAL-SEARCH(Denseregion)11:
ontra
tionlist.add(Denseregion)12: end while13: for all Denseregion ∈
ontra
tionList do14: CONTRACTION(Denseregion)15: end for4.2.1 Contra
tion of Dense RegionsThe next lo
al operation is the
ontra
tion of dense regions. After we found dense regions, we
ontra
t them to a super node. This redu
es the input and we
an start the sear
h for denseregions with the new smaller graph again. The pro
ess is repeated until it is not possible to�nd more dense regions in the
urrent graph using the
urrent γ. This
an happen if the nodesare
onne
ted too weak.After the
ontra
tion of a subset D to a super node s, the super node s gets all edges of theiroriginal nodes with new weights assigned. The weights are assigned regarding the size of D andthe weight and multipli
ity of the original edges. In the unweighted
ase the weight of a newedge is 1 if every node in the
ontra
ted region is
onne
ted to a node outside the region. Thatmeans if a region is highly
onne
ted to a node v, the
reated super node is highly
onne
ted to

v too. The nodes in D are removed, after the
reation of the super node. We give an examplein Figure 4.4.Algorithm 8 CONTRACTIONInput: G = (V,E, ω), Nodes to
ontra
t D1:
reate a super-node s in G2: for all edges e = {v, w} with v ∈ D, w ∈ V \D do3: insert edge {s, w}4: ω({s, w})←
∑

ṽ∈D ω({ṽ,w})

|D|5: end for6: remove nodes D
16

Figure 4.4: The found dense regions are
ontra
ted regarding the
ontra
tion order.4.3 Densi�
ation via Short
utsThe last lo
al operation, we use in our algorithm, is the insertion of short
uts. We mentionedin the se
tion above that it is possible not to �nd a dense region if γ is too small or the graphis too weakly
onne
ted. In this
ase we insert short
uts. Usually we
all this part of ouralgorithm with d = δ := minv∈V deg(v) > 1. Using δ we ensure that the lost information isminimal. An example is given in Figure 4.5. The insertion of short
uts with weight updates isdone using the following Algorithm 9. The algorithm
an be seen as a densi�er sin
e it removesa node and inserts edges. After applying this routine, we are able to
ontinue with Algorithm7. The new inserted edgeweight is the geometri
 mean of the weights of the in
ident edges.Algorithm 9 SHORTCUTSInput: G = (V,E, ω), degree d > 11: for all v ∈ V do2: if deg(v) = d then3: for all pairs p = {v1, v2} with v1, v2 ∈ N(v) and v1 6= v2 do4: if !∃ edge between v1 and v2 then5:
reate edge between v1 and v26: end if7: ω1 ← ω(v, v1)8: ω2 ← ω(v, v2)9: ω(v1, v2)← 1
1

ω1
+ 1

ω210: end for11: remove v12: end if13: end for
Figure 4.5: An exe
ution with d = 2. A short
ut has been inserted from node 1 to 2.

17

4.4 Or
a redu
tion
lustering algorithmWith these lo
al operations at hand, we are now able to assemble Our redu
tion
lusteringalgorithm. The global dense region
ontra
tion step is exe
uted until it is not possible to �ndmore dense regions. To pro
eed with the algorithm and ensure termination we insert short
utsfor all nodes having min-degree δ. The algorithm
reates a hierar
hy. The levels are set inline 5. Indeed, the hierar
hies
ould be more granular if we set a new hierar
hy level afterthe
ontra
tion of ea
h dense region. To generate the �nal
lustering on a hierar
hy level, weAlgorithm 10 Our AlgorithmInput: G = (V,E, ω), γ ∈ R
+, sear
h depth d1: DEGREE-ONE-REMOVAL(G)2: while |V | > 2 do3: FAST-DENSE-REGION-DETECTION-GLOBAL(G, γ, d)4: while
ontra
ted nodes > 1 do5: //new hierar
hy level6: FAST-DENSE-REGION-DETECTION-GLOBAL(G, γ, d)7: end while8: δ := max(minv∈V deg(v), 2)9: SHORTCUTS(G,δ)10: end whileassign nodes to the
luster of their original super node be
ause they have been
ontra
ted tothis node. Nodes whi
h have been removed in the �rst step are assigned to the
luster of theirneighbor. The resulting �rst hierar
hy for the running example is shown in Figure 4.6.

Figure 4.6: The resulting
lustering on the �rst hierar
hy level.4.5 Post-Newman-StepThe greedy algorithm has a very slow start sin
e it begins with singletons and its running timedepends on the
luster
ount. Our algorithm
an be used to over
ome this slow start withouta loss of quality, empiri
ally.On the �rst hierar
hy level our algorithm produ
es a
lustering whi
h is granular if we
hoosea small γ. Choosing a small γ results in the fa
t, that nodes have to have nearly the sameneighborhood to get into the same dense region. However, this redu
es the sear
h spa
e for18

lusterings and it is possible to apply Newman's algorithm on the given
lustering. This algo-rithm merges iteratively the two
lusters whi
h in
rease modularity the most (see se
tion 5).With this te
hnique, we are able to in
rease the modularity value for our
lustering in everyhierar
hy level. We present the pseudo
ode in Algorithm 11.Algorithm 11 Post-Newman-StepInput: G = (V,E, ω), γ ∈ R
+, sear
h depth d1: apply our algorithm to obtain a
lustering C2: apply Newman's greedy algorithm on the
lustering C

19

20

5 Experimental evaluation
To assure that our algorithm works, we started an experimental evaluation. Moreover, sin
eour algorithm has two main parameters namely γ and sear
h depth d, tests have been ne
essaryto �nd the "best" parameters and to �nd parameters whi
h make "no sense" at all. We startedthe systemati
 evaluation by using graph generators and then tested the algorithm with wellknown real world graphs. An advantage of a graph generator is that it
reates a graph witha "hidden"
lustering whi
h serves for
omparisons. The main goal is to �nd the "hidden"
lustering or a
lustering whi
h has nearly the same quality. Through a generator it is possibleto rate the
apability of an algorithm to �nd the underlying stru
ture and further to test itwith a large variety of graphs. A disadvantage is that the generated graphs are perhaps abit arti�
ial. Therefore we used two di�erent generators as well as two well known real worldgraphs for the evaluation.We now present our test results. We �rst present the generators we used from [8℄ followed bythe a
hieved results. At the end we present the results for two real world graphs.5.1 Graph Generators5.1.1 Attra
tor GeneratorThe attra
tor generator uses geometri
 properties to generate a signi�
ant
lustering based onthe following idea: k
luster
enters, so
alled attra
tor nodes, are pla
ed uniformly at randomwith a
ertain minimum distan
e t in the plane. Then, n−k satellite nodes are assigned to theattra
tors and their
orresponding
lusters using the following poli
y. At a random position asatellite node u is inserted with probability d(u, a)/t, where d(u, a) is the eu
lidean distan
efrom u to the nearest attra
tor node a. If u is inserted, the edge {u, a} is inserted.The generator further takes a density parameter ρ
ontrolling the maximum distan
e betweentwo nodes that should be
onne
ted by an edge, dmax = 1

2
tρ. After
onne
ting all node pairshaving a distan
e lower than the maximum distan
e, the generated
luster
enters are deleted.We use an implementation whi
h makes use of the unit square for modeling the plane and

t =
√

2/(πk) as a threshold minimum distan
e between attra
tor nodes. We give an exampleof the generation pro
ess in Figure 5.1.5.1.2 Signi�
ant Gaussian GeneratorsFirst we des
ribe the gaussian generator and after that the signi�
ant gaussian generator whi
hwe use for our tests. The gaussian generator requires three parameters: an approximate numberof nodes n and two probabilities pin, pout. First an integer array P is generated. The arrayindi
ates the partition of the nodes, where |P | is the number of
lusters and ea
h entry of the21

Figure 5.1: Left: Two generated attra
tor nodes, Middle: After inserting satellite nodes, Right: After
onne
ting nodes and deleting
entersarray indi
ates the size of the
orresponding
luster. The number of
lusters |P | is
hosenuniformly at random between log10(n) and √n. The mean of the entries of P is a = ⌊n/|P |⌋and the standard deviation d is d = ⌊a/4⌋. The sum of all entries of P approximately equals
|P | · ⌊n/|P |⌋. The generator
onne
ts ea
h node pair within the same
luster with probability
pin and a node pair in di�erent
lusters with probability pout.The signi�
ant gaussian generator substitutes the parameter pout by an edge-ratio ρ :=IE(m(C))/IE(m(C)). This is needed be
ause for in
reasing n and a �xed pair (pin, pout) thegrowth of inter-
luster edges ex
eeds the growth of intra-
luster edges. Note that ρ is highlydependent on the number of
lusters. The generator initially
reates a gaussian partition asdes
ribed above, dynami
ally
al
ulates pout a

ording to the following equation and
alls thesame pro
edure as the gaussian generator for building the edge set.Sin
e (n

2

) is the
ount of possibilities the grab two di�erent nodes out of n and |P |(n/|P |
2

)
orresponds to the
ount of possibilities the grab two nodes out of the same
luster, we get
ρ =

IE(m(C))IE(m(C)) =
pout(

(

n
2

)

− |P |
(

n/|P |
2

)

)

pin|P |
(

n/|P |
2

) =
pout(n− n/|P |)
pin(n/|P | − 1)

.Algorithm 12 Signi�
ant Gaussian GeneratorInput: approx. #n, intra-
luster edge probability pin, edge-ratio ρ1: generateGaussianPartition P2:
ompute pout3:
reateGaussianGraph(P, pin, pout)

22

5.2 Attra
tor Generator Tests5.2.1 Estimating ParametersWe started our tests with a set of parameters in whi
h γ varied from 1 to 10, the sear
h depthvaried from 1 to 5 and the node
ount in
reased in steps of size 50 from 50 to 500. Every timewe have been twi
e as bad as Newman regarding modularity we modi�ed the parameter set byremoving the
urrent "bad" parameter. Table 5.1 gives an overview over the "best" parameters.
γ Sear
h Depth2 13 14 1Table 5.1: The "best" parameters.A possible explanation for "bad" results with γ varying between 4 and 10 is that for in
reasing

γ the algorithm
onverges very fast to a
lustering with a low number of
lusters. Thus, theresulting
lustering has a
oarse stru
ture. As a
onsequen
e, the quality-index modular-ity has a very low s
ore, but this does not indi
ate a mistake of our algorithm (see Appendix .1).5.2.2 SetupIn the following we present the a
hieved results for the above parameters. In this test the den-sity parameter ρ varied between 0.5 and 2.5 in steps of size 0.1. We then generated 30 graphsper density parameter using the attra
tor generator. For ea
h graph our algorithm generatedhierar
hies. In the following Se
tion 5.2.3, we present the qualities on the di�erent hierar
hylevels. In Se
tion 5.2.4, we
ompared the best of the
lusterings in the hierar
hy regardingquality with the
lustering of the greedy algorithm and
lustering of the generator.We mentioned earlier that our algorithm
reates hierar
hies. In the following hierar
hy level
i is the indu
ed
lustering after the i'th
omplete FAST-DENSE-REGION-DETECTION-GLOBAL step.5.2.3 Hierar
hiesIn Figure 5.2, we present the results for Modularity, Coverage and Performan
e whi
h we a
hieveon the �rst three hierar
hy levels using the above des
ribed setup for the "best" parameters
γ = 2 with sear
h depth 1 and γ = 4 with sear
h depth 1. The values for modularity andperforman
e of our algorithm using γ = 2 are always better than the values we a
hieve by using
γ = 4. The opposite is the
ase for
overage. We
an further observe that both algorithmsa
hieve nearly the same results on the �rst hierar
hy level. Consequently the parameter γ = 4seems to be to strong for
ontinuing on the se
ond hierar
hy level. An advantage of a higher
γ value is indeed the faster
onvergen
e, sin
e more nodes are
ontra
ted on the �rst hierar
hylevel. Furthermore, with in
reasing hierar
hy level modularity gets worse. Note that this does23

0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Modularity Gamma 2.0/4.0 − Searchdeep 1

Density
Q

ua
lit

y
In

de
x

+ +
+ + + + + + + + + + + + + + + + + + +

x
x

x x x x
x

x x x x x x
x x x

x x x x
x

+
x

2.0 Hierachy 1
2.0 Hierachy 2
2.0 Hierachy 3

4.0 Hierachy 1
4.0 Hierachy 2
4.0 Hierachy 3

0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Coverage Gamma 2.0/4.0 − Searchdeep 1

Density

Q
ua

lit
y

In
de

x

+ +

x x

+
x

2.0 Hierachy 1
2.0 Hierachy 2
2.0 Hierachy 3

4.0 Hierachy 1
4.0 Hierachy 2
4.0 Hierachy 3

0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Performance Gamma 2.0/4.0 − Searchdeep 1

Density

Q
ua

lit
y

In
de

x

+ +
x x x x x x x

x x
x x x x x x x

x x
x

x
x

+
x

2.0 Hierachy 1
2.0 Hierachy 2
2.0 Hierachy 3

4.0 Hierachy 1
4.0 Hierachy 2
4.0 Hierachy 3

Figure 5.2: Hierar
hies for Gamma 2 / 4 and Sear
h depth 1not indi
ate a mistake in our algorithm be
ause we generate hierar
hies (see appendix). For a�xed
luster
ount the
lusterings
al
ulated by our algorithm are still of good quality.5.2.4 ComparisonIn the Figure 5.3, we
ompare our a
hieved results for the given setup with the results obtainedby the greedy approa
h and the results given by the generator. In this
ase, +N means that wehave applied a Post-Newman-Step on our generated
lustering and -N means the opposite. Forevery iteration and quality index, we take the highest value out of the �rst three hierar
hy levelsfor our algorithm and the best value for the greedy approa
h. Sin
e the number of
lustersis very low in the third hierar
hy level
overage tends to be very high. The high performan
evalues arise from the fa
t, that there are many
lusters in the �rst hierar
hy level. Note, thatwe are on the same modularity level as the greedy approa
h if we apply the postnewman step.We
an further see if we apply a postnewman step, the values for performan
e go down. Thisis mainly due to the fa
t that
lusterings with good performan
e tend to have a high number of
lusterings and by applying a postnewmanstep for in
reasing the modularity value, we redu
ethe number of
lusters.24

0.5 1.0 1.5 2.0 2.5

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Modularity − Gamma 2.0 Searchdeep 1

Density
Q

ua
lit

y
In

de
x

+ + + + +
+ +

+ + +
+ + +

+ +
+ +

+
+ +

+

x
x x

x x
x x x

x x
x x

x x x
x x

x x x
x

+
x

OurAlgorithm+N
OurAlgorithm−N

Newman
Generated

0.5 1.0 1.5 2.0 2.5

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Coverage − Gamma 2.0 Searchdeep 1

Density

Q
ua

lit
y

In
de

x

+ +x x

+
x

OurAlgorithm+N
OurAlgorithm−N

Newman
Generated

0.5 1.0 1.5 2.0 2.5

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Performance − Gamma 2.0 Searchdeep 1

Density

Q
ua

lit
y

In
de

x

+ + + + + + + + + + + + + +
+ + + + + + +

x x

+
x

OurAlgorithm+N
OurAlgorithm−N

Newman
Generated

Figure 5.3: Comparison of Modularity, Coverage and Performan
e5.3 Signi�
ant Gaussian Generator Tests5.3.1 Estimating ParametersWe started our tests with a set of parameters in whi
h γ varied from 2 to 10 in steps of size2 and the sear
h depth varied from 1 to 5. The generated graphs had 500 nodes, pin variedbetween 0.1 and 0.7 in steps of size 0.1, ρ varied in steps of size 0.05 between 0.1 and 0.5. Forea
h parameter set for the generator we generated 30 graphs. Note, ρ = 0.5 means that the arehave as many inter-
luster edges as there are intra-
luster edges. After a few graphs we tookthe parameters with the best average modularity value to
ontinue our tests. Again, in
reasingthe sear
h depth does not improve quality.5.3.2 Results for ModularityIn Table 5.2, we present the "best" parameters
onsidering the average value of modularity andin Figure 5.4 we present the
orresponding
ontour plots for the in Se
tion 5.3.1 given setup.The best parameters have a high value of γ. We
on
lude that we are able to get signi�
ant
lusterings by using above parameters for our algorithm. The a
hieved quality equals the qual-25

ity obtained by the greedy approa
h if our algorithm is used as a prepro
essing step. Indeed,the quality gets worse for in
reasing ρ sin
e the generated
lustering is less signi�
ant.If we use our algorithm without a Post-Newman-Step, we get an average quality of our
lus-terings whi
h is 0.1 to 0.2 less than the average value generated by the greedy approa
h. Butthe values still indi
ate a signi�
ant
lustering. Also it is not astonishing that we rea
h aquality whi
h is less than the quality obtained by the greedy approa
h. The soul of the greedyapproa
h is the optimization of modularity and our algorithm doesn't know modularity at all.We further
on
lude that we are able to
ompete with other algorithms.
γ Average Modularity (-PNS) Average Modularity (+PNS) Level4.0 0.4166 0.6385 26.0 0.4616 0.6746 18.0 0.5567 0.6769 110.0 0.5858 0.6749 1Table 5.2: The "best" parameters. The average modularity value of the greedy approa
h has been0.6680

26

γ
=

6,-PNS
γ

=
6,+PNS

0.1
0.2

0.3
0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6

ρ

p_(in)

0.1
0.2

0.3
0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6

ρ

p_(in)

γ
=

8,-PNS
γ

=
8,+PNS

0.1
0.2

0.3
0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6

ρ

p_(in)

0.1
0.2

0.3
0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6

ρ

p_(in)

γ
=

10,-PNS
γ

=
10,+PNS

0.1
0.2

0.3
0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6

ρ

p_(in)

0.1
0.2

0.3
0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6

ρ

p_(in)

Generator
GreedyApproa
h

0.1
0.2

0.3
0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6

ρ

p_(in)

0.1
0.2

0.3
0.4

0.5

0.1 0.2 0.3 0.4 0.5 0.6

ρ

p_(in)

Figure5.4:Gamma6to10(stepsize2),Sear
hdepth1
27

5.4 Hierar
hies for Well Known GraphsWe now show some
lustering results for graphs whi
h are well known in the
luster
ommunity.First, we present a graph whi
h is
learly organized in 16 small groups whi
h themselves areorganized in four groups. This graph was proposed by Santo Fortunato ([9℄). The se
ondexample was
ompiled by Za
hary while doing a Karate Club Study ([18℄).5.4.1 Hierar
hy graph

Figure 5.5: The hierar
hy levels 1 and 3 produ
ed by our algorithm with parameters γ = 1.5,PAS =true, sear
h depth 1. The �rst hierar
hy level is indi
ated by the grouping, the thirdhierar
hy level is indi
ated by the
olors.In the given graph the verti
es have two levels of organization. The graph
ontains smallergroups, whi
h are organized in bigger modules. An algorithm has to �nd all modules and theirhierar
hy to
learly
hara
terize the roles of a verti
e. When using the above parameters, weare able to �nd the 16 small groups on the �rst hierar
hy level and then the 4 big groups onthe third hierar
hy level. That means we are able to identify the roles of ea
h verti
e in thegraph.

28

5.4.2 Za
hary's Karate ClubThe Za
hary Karate Club graph: the graph
onsists of 34 nodes representing people from akarate
lub. The friendship between the people is modeled by the edges. This graph was
ompiled by Za
hary. During the
ourse of Za
hary's study of the karate
lub, a dispute
ameup between the members of the
lub whi
h then split in two. The resulting fra
tions areindi
ated by the
lustering in the following graph.

Figure 5.6: The resulting fra
tions of the Za
hary Karate Club after a dispute.We used our algorithm with parameters γ = 2 and sear
h depth = 1 to
luster the karate
lub graph. The produ
ed hierar
hy levels 1 to 3 are shown beneath. The �rst
lustering is
Figure 5.7: From left to right hierar
hy levels 1 to 3 using γ = 2 and sear
h depth = 1granular and the
lustering on the third hierar
hy level is very
oarse sin
e it has only two
lusters. Note that the
lustering on the third hierar
hy level is nearly the same as the realworld
lustering. Only one node di�ers from the original splitting and this node whi
h hasdegree 2 is
onne
ted equipollent to both
lusters. Roughly speaking, we would have been ableto predi
t the resulting fra
tions of the Karate Club. Furthermore, we have to add that themodularity value for the original splitting is 0.3715 and 0.3718 for our
lustering on the thirdhierar
hy level and we a
hieve 0.399 on the se
ond hierar
hy level.

29

30

6 Final remarks
6.1 Con
lusionThe main
ontribution of this thesis is a new algorithm for
lustering graphs based on lo
aloperations namly lo
al dete
tion of dense regions and inserting short
uts. We do not dire
tlyoptimize a quality index. Most
urrently known algorithms work in a global way. The proposedalgorithm
an be used as alonestanding algorithm as well as a prepro
essing step for the greedyapproa
h to redu
e the sear
hspa
e.We tested our algorithm with real world graphs and two graph generators namly Signi�
antGaussian Generator and Attra
tor Generator. Through the experimental evalution we foundout that in
reasing the sear
h deep, whi
h results in in
reasing runningtime, has not a positivee�ekt on the quality of the
al
ulated
lustering. We rea
h the best quality by using sear
hdeep 1. Roughly speaking, we have seen that the results regarding quality, using our algorithmas prepro
essing step, do not di�er. When using the algorithm without Newman's algorithmas a postpro
essing step, we still �nd signi�
ant
lusterings but with a lower modularity value.This however is not astonishing, sin
e newmans algorithm optimizes modularity. We
on
ludethat our algorithm
an
ompete with other algorithms.6.2 Future workThere are �elds in whi
h further investigation is possible. For example it
ould be possible togain a speed up by applying another priority
al
ulation to obtain a
ontra
tion order and tolet γ vary dependent on the density of the graph G. However, it is not
lear on the �rst sighthow the new obtained
ontra
tion order a�e
ts the quality of the resulting
lustering.In this thesis, our main
on
ern was to �nd out if it is possible to
reate a lo
al algorithmfor
lustering graphs. For the future we plan to do an e�
ient implemenatation and test thealgorithm for really large real world graphs as well as analyse the running time of our algorithm.6.2.1 Cal
ulating PrioritiesIt is possible to obtain a
ontra
tion order by another faster algorithm for
al
ulating prior-ities. Instead of
al
ulating the priority for every node through lo
al sear
hes, the followinglo
ally propagative approa
h
ould be feasible. We
al
ulate the produ
t of all degrees in theneighborhood of a node v and use this as an indi
ator for a dense region. The idea behind thisapproa
h is that if a region is dense, it is most likely that many degrees are high in this region.

priority(v) := degree(v) ·
∏

w∈N(v)

degree(w)

31

Note that this
an be implemented in O(m+ n) by traversing edges.Algorithm 13 PrioritiesInput: G = (V,E, ω)Output: mapping priority: V → N1: for all v ∈ V do2: priority(v) ← degree(v)3: end for4: for all e = {v, w} ∈ E do5: priority(v) ← priority(v) · degree(w)6: priority(w) ← priority(w) · degree(v)7: end for

Figure 6.1: The
al
ulated priorities using the alternative approa
h.6.2.2 Density ParameterWe
urrently use a �xed density parameter γ. Roughly speaking, the parameter
ontrols for aneighbor w of a starting node v, how many neighbors have to be equal to get into the denseregion of v. It seems possible to improve the quality for a
lustering if we do not use a �xedvalue for γ. Instead, we should use a mapping γ : Set of all graphs→ R>1 determining a goodvalue for γ. This
ould be done regarding the density of a given graph.A further possibility to deal with the density parameter is the
ombination of di�erent valuesfor γ in the priority sear
h. That means, for a node v ∈ V several lo
al sear
hes with a varying
γ are started and only the region with the highest priority ψ is pushed on the priority queue.Algorithm 14 FAST-DENSE-REGION-DETECTION-GLOBALInput: G = (V,E, ω), Set Γ = {γ1, · · · , γk | γi ∈ R>1}, sear
h deep d1: PriorityQueue pq ← ∅2: for all v ∈ V do3: Denseregion ← argminγ∈Γψ (F-D-R-D-LOCAL(G, γ, d, v))4: pq.insert(v, ψ(Denseregion))5: end for6: //the rest of the algorithm
32

Appendix
.1 A Note on Quality Indi
es for Hierar
hiesIn this paper we
ompared the quality of di�erent hierar
hy levels with the generated qualityand the quality generated by the greedy approa
h. It seems di�
ult to
ompare
lusteringswhi
h have a �xed number of
lusters with all
lusterings we get from the hierar
hy, be
ausethe number of
lusters de
reases with in
reasing hierar
hy level. As we
an see for example inthe hierar
hy plots for γ 10, the quality gets worse as we in
rease the hierar
hy level and itseems that the
lustering is not good at all. But the
omparison is perhaps too strong.
Figure .2: A graph with two
lusterings. The
lustering indu
ed by node-
olors is a min-
ut (k = 2),has optimal modularity value under all
lusterings with
luster
ount 2, but the quality isworse the
lustering indu
ed by the grouping.As we see in Figure .2, it is possible that the
lusterings found by our algorithm are very goodwhen we hold the number k of
luster
onstant. Meanwhile we want to optimize modularitywith the
luster
ount as an additional
onstraint. To get a "fair"
omparison we should insteadof simply
omparing the value for modularity,
ompare the following value regarding the numberof
lusters

sizemod(k) := max
C∈A(G),|C|=k

mod(C) .We get furthermore
max

C∈A(G)
mod(C) = max

k∈{1,··· ,|V |}
sizemod(k) .

33

.2 More Experimental Results of Attra
tor Tests.2.1 Results for Gamma 4 / Sear
h Depth 1

0.5 1.0 1.5 2.0 2.5

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Modularity − Gamma 4.0 Searchdeep 1

Density

Q
ua

lit
y

In
de

x

+ + +
+ +

+ +
+ + +

+ + +
+ +

+ +
+

+ +
+

x
x x x

x x
x x

x x
x x x

x x x x x x x
x

+
x

OurAlgorithm+N
OurAlgorithm−N

Newman
Generated

0.5 1.0 1.5 2.0 2.5

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Coverage − Gamma 4.0 Searchdeep 1

Density

Q
ua

lit
y

In
de

x

+ +x x

+
x

OurAlgorithm+N
OurAlgorithm−N

Newman
Generated

0.5 1.0 1.5 2.0 2.5

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Performance − Gamma 4.0 Searchdeep 1

Density

Q
ua

lit
y

In
de

x

+ + + + + + + + + + + + + +
+ +

+ + +
+ +

x x

+
x

OurAlgorithm+N
OurAlgorithm−N

Newman
Generated

34

.2.2 Hierar
hies for Gamma 4 / Sear
h Depth 1

0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Modularity − Gamma 4.0 Searchdeep 1

Density

Q
ua

lit
y

In
de

x
+ + + + + + + + + + +

+ +
+ + + + + + + +

x
x

x
x x

x
x

x x
x x

x x

x x x
x

x
x x

x
+
x

Hierachy 1
Hierachy 2
Hierachy 3

Newman
Generated

0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Coverage − Gamma 4.0 Searchdeep 1

Density

Q
ua

lit
y

In
de

x

+ + + + + + + + + + +
+ + + + + + + + + +

x x

+
x

Hierachy 1
Hierachy 2
Hierachy 3

Newman
Generated

0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Performance − Gamma 4.0 Searchdeep 1

Density

Q
ua

lit
y

In
de

x

+ +
x

x
x

x x
x x

x
x

x x
x x

x x x
x

x
x x

x

+
x

Hierachy 1
Hierachy 2
Hierachy 3

Newman
Generated

35

.3 More Experimental Results of Signi�
ant GaussianTests.3.1 Hierar
hies for Gamma 6 / Sear
h Depth 1Hierar
hy level 2, -PNS Hierar
hy level 2, +PNS
0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

Hierar
hy level 3, -PNS Hierar
hy level 3, +PNS
0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

Hierar
hy level 4, -PNS Hierar
hy level 4, +PNS
0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

Generator Greedy Approa
h
0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

Figure .3: Hierar
hies for γ = 6, Sear
h Depth 1, Modularity
36

.3.2 Hierar
hies for Gamma 8 / Sear
h Depth 1Hierar
hy level 2, -PNS Hierar
hy level 2, +PNS
0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

Hierar
hy level 3, -PNS Hierar
hy level 3, +PNS
0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

Hierar
hy level 4, -PNS Hierar
hy level 4, +PNS
0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

Generator Greedy Approa
h
0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

Figure .4: Hierar
hies for γ = 8, Sear
h Depth 1, Modularity

37

.3.3 Hierar
hies for Gamma 10 / Sear
h Depth 1Hierar
hy level 2, -PNS Hierar
hy level 2, +PNS
0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

Hierar
hy level 3, -PNS Hierar
hy level 3, +PNS
0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

Hierar
hy level 4, -PNS Hierar
hy level 4, +PNS
0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

Generator Greedy Approa
h
0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ρ

p_
(in

)

Figure .5: Hierar
hies for γ = 10, Sear
h Depth 1, Modularity

38

Bibliography
[1℄ Giorgio Ausiello, Pierluigi Cres
enzi, Giorgio Gambosi, Viggo Kann, and AlbertoMar
hetti-Spa

amela. Complexity and Approximation - Combinatorial OptimizationProblems and Their Approximability Properties. Springer, 2nd edition, 2002.[2℄ Vladimir Batagelj and Matjaº Zaver²nik. Generalized Cores. Preprint 799, IMFMLjublana, Ljubljana, 2002.[3℄ Ulrik Brandes, Daniel Delling, Martin Höfer, Mar
o Gaertler, Robert Görke, ZoranNikoloski, and Dorothea Wagner. On Finding Graph Clusterings with Maximum Mod-ularity. In Andreas Brandstädt, Dieter Krats
h, and Haiko Müller, editors, Pro
eedingsof the 33rd International Workshop on Graph-Theoreti
 Con
epts in Computer S
ien
e(WG'07), volume 4769 of Le
ture Notes in Computer S
ien
e, pages 121�132. Springer,O
tober 2007.[4℄ Ulrik Brandes, Mar
o Gaertler, and Dorothea Wagner. Experiments on Graph Cluster-ing Algorithms. In Pro
eedings of the 11th Annual European Symposium on Algorithms(ESA'03), volume 2832 of Le
ture Notes in Computer S
ien
e, pages 568�579. Springer,2003.[5℄ Fan R. K. Chung and S.-T. Yau. A Near Optimal Algorithm for Edge Separators. InPro
eedings of the 26th Annual ACM Symposium on Theory of Computing, pages 1�8.ACM Press, 1994.[6℄ Fan R. K. Chung and S.-T. Yau. Eigenvalues, Flows and Separators of Graphs. In Pro-
eedings of the 29th Annual ACM Symposium on Theory of Computing, pages 1�8. ACMPress, 1997.[7℄ Aaron Clauset, Mark E. J. Newman, and Cristopher Moore. Finding
ommunity stru
turein very large networks. Physi
al Review E, 70(066111), 2004.[8℄ Daniel Delling, Mar
o Gaertler, and Dorothea Wagner. Generating Signi�
ant GraphClusterings. In Pro
eedings of the European Conferen
e of Complex Systems (ECCS'06),September 2006.[9℄ Santo Fortunato and Claudio Castellano. Community Stru
ture in Graphs. 2007.[10℄ Mar
o Gaertler. Clustering with Spe
tral Methods. Diplomarbeit, Fa
hberei
h Informatikund Informationswissens
haft, Universität Konstanz, Mar
h 2002.[11℄ Mar
o Gaertler. Clustering. In Ulrik Brandes and Thomas Erleba
h, editors, NetworkAnalysis: Methodologi
al Foundations, volume 3418 of Le
ture Notes in Computer S
ien
e,pages 178�215. Springer, February 2005. 39

[12℄ Dieter Jungni
kel. Graphs, Networks and Algorithms, volume 5 of Algorithms and Com-putation in Mathmati
s. Springer, 1999.[13℄ Henning Meyerhenke, Burkhard Monien, and Stefan S
hamberger. A

elerating ShapeOptimizing Load Balan
ing for Parallel FEM Simulations by Algebrai
 Multigrid. 2006.[14℄ Henning Meyerhenke and Stefan S
hamberger. A Parallel Shape Optimizing Load Bal-an
er. 2006.[15℄ Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster Graph Modi�
ation Problems. InPro
eedings of the 28th International Workshop on Graph-Theoreti
 Con
epts in ComputerS
ien
e (WG'02), volume 2573 of Le
ture Notes in Computer S
ien
e, pages 379�390.Springer, 2002.[16℄ Stijn M. van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University ofUtre
ht, 2000.[17℄ Santosh Vempala, Ravi Kannan, and Adrian Vetta. On Clusterings - Good, Bad andSpe
tral. In Pro
eedings of the 41st Annual IEEE Symposium on Foundations of ComputerS
ien
e (FOCS'00), pages 367�378, 2000.[18℄ Wayne W. Za
hary. An Information Flow Model for Con�i
t and Fission in Small Groups.Journal of Anthropologi
al Resear
h, 33:452�473, 1977.[19℄ C.�T. Zahn. Graph-Theoreti
al Methods for Dete
ting and Des
ribing Gestalt Clusters.IEEE Transa
tions on Computers, C-20:68�86, 1971.

40

	Introduction
	Fundamentals
	General Definitions
	Quality Indices
	Coverage
	Performance
	Modularity
	Example

	Related work
	Iterative Conductance Cutting (ICC)
	Geometric MST Clustering (GMC)
	Markov Clustering (MCL)
	Greedy (Newman)

	Orca - Orca reduction clustering algorithm
	Remove Nodes
	Fast Dense Region Detection
	Contraction of Dense Regions

	Densification via Shortcuts
	Orca reduction clustering algorithm
	Post-Newman-Step

	Experimental evaluation
	Graph Generators
	Attractor Generator
	Significant Gaussian Generators

	Attractor Generator Tests
	Estimating Parameters
	Setup
	Hierarchies
	Comparison

	Significant Gaussian Generator Tests
	Estimating Parameters
	Results for Modularity

	Hierarchies for Well Known Graphs
	Hierarchy graph
	Zachary's Karate Club

	Final remarks
	Conclusion
	Future work
	Calculating Priorities
	Density Parameter

	Appendix
	A Note on Quality Indices for Hierarchies
	More Experimental Results of Attractor Tests
	Results for Gamma 4 / Search Depth 1
	Hierarchies for Gamma 4 / Search Depth 1

	More Experimental Results of Significant Gaussian Tests
	Hierarchies for Gamma 6 / Search Depth 1
	Hierarchies for Gamma 8 / Search Depth 1
	Hierarchies for Gamma 10 / Search Depth 1

	Bibliography

