
Linear Space All-Pairs Shortest-Paths
Computation on Road Networks

Study Thesis of

Jan-Ole Sasse

At the faculty of Computer Science
Institute of Theoretical Informatics

Algorithmics I

Reviewer: Prof. Dr. Dorothea Wagner
Advisor: Dipl.-Math. Reinhard Bauer
Second advisor: Dipl.-Inform. Thomas Pajor

Processing Time: 21. September 2009 – 21. March 2010

www.kit.eduKIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related work . 1

2 Basics 3
2.1 Preliminaries . 3
2.2 The 2-core . 3
2.3 The Linear Space All-Pairs Shortest-Paths Problem 6
2.4 A simple solution . 6

3 Algorithm 7
3.1 CoreAPSP . 7
3.2 Stage 1: 2-core extraction . 7
3.3 Stage 2: Rebuilding the graph and distance precalculations 7
3.4 The distance vector calculation algorithms 9

3.4.1 CoreDijkstra . 9
3.4.2 treeNode . 11
3.4.3 pathNode . 11

3.5 Stage 3: The scheduler . 13

4 Experimental Evaluation 17
4.1 Hardware . 17
4.2 The implementation . 17
4.3 The Testset . 17
4.4 Results . 19

4.4.1 Precalculation time . 20
4.4.2 Graph structure . 20
4.4.3 The Schedulers . 21
4.4.4 Runtimes on variable sized graphs 24
4.4.5 Runtimes with different numbers of concurrent distance vectors . . . 25

5 Conclusion 29

Bibliography 31

iii

1. Introduction

1.1 Motivation

Route planning is omnipresent nowadays. Big logistics companies optimize their itinerary
with the help of computers and many car drivers rely predominantly on their navigation
system. The demand of path advices is growing and navigation software has to be improved
to keep up with it. While it is possible today to retrieve a shortest path very fast, all of
the advanced techniques rely on precalculated data and some of them need to calculate
all shortest paths to determine it. These calculations can last very long, making it time-
consuming to process large graphs. Additionally, it is impossible to store all of the data,
because the number of shortest paths is quadratic to the number of nodes the graph
contains. So, what is needed, is a fast algorithm to compute the paths while using only
constant-size memory in doing so.

This study thesis deals with such an algorithm. It exploits the structure of road networks
to gain information about spots the routes have to pass and uses information from other
shortest paths during the calculation of new ones. Depending on the graph, computation
times can thereby be decreased by a factor up to five on average compared to a classic
implementation of Dijkstra’s algorithm.

1.2 Related work

Finding a shortest path is one of the oldest and most studied problems in graph theory.
Till today, Edsger Wybe Dijkstra’s algorithm from 1959 [Dij59] still is one of the most
important approaches to solve the problem on weighted and directed graphs. The algo-
rithm has been able to stay on top of the game that long because it is rather a calculation
scheme than a precise specification, and the performance of the used data structures was
improving over time. The state of the art priority queue in the general case is the Fibonacci
Heap of Fredman and Tarjan from 1987 [TF87], yielding a time bound of O(m + n log n)
for Dijkstra’s algorithm, where n is the number of nodes and m the number of edges in the
graph. If the edge weights are bounded to integer values between 0 and C, Dial proposed
an O(m + nC) time algorithm using bucket queues [Dia69]. An advantage of Dijkstra’s
algorithm is that it not only calculates one shortest path but solves the Single Source
Shortest Paths problem, where all shortest paths from one source to all nodes of the graph
are desired.

1

2 1. Introduction

The All-Pairs Shortest-Paths (APSP) problem deals with the task of calculating the short-
est path for all pairs of nodes. This study thesis deals with the case of the problem where
the graph is directed and weighted with non-negative edge weights. Note that a graph
with negative edge weights, but without negative cycles, can be transformed into a new
graph without negative edge weights and preserved shortest paths in O(mn) time with
Johnson’s algorithm [Joh77]. The easiest way of solving the APSP problem is solving the
Single Source Shortest Paths problem for all nodes of the graph, needing O(nm+n2 log n)
time for real and O(mn + n2C) for integral edge weights. Karger, Koller and Phillips
[KKP93] as well as McGeoch [McG95] tuned this approach to O(m∗n + n2 log n), where
m∗ is the number of edges taking part in any shortest path. Pettie improved on this bound
by introducing an O(mn + n2 log log n) time algorithm [Pet04]. If the Word RAM model
is taken as the basis for the calculations, Hagerup [Hag00] obtained an O(mn+n log log n)
time algorithm.

Furthermore algorithms based on matrix multiplication have been developed (see [Zwi01]
for further references), but are not introduced here because our approach focuses on limited
space consumption. Also approaches based on scaling [Gab85, GT89, Gol95] or fast integer
sorting [Tho04] are skipped here, because they only work with integral edge weights.

2

2. Basics

2.1 Preliminaries

Throughout the work G = (V,E, len) denotes a directed and weighted graph with n nodes,
m edges and a positive length function len : E → R+. Given a node v, N (v) denotes the
set of neighbors of v, that is the set of nodes u ∈ V such that (u, v) ∈ E or (v, u) ∈ E. The
cardinality of N (v) is called degree of v. Note that u ∈ N (v) implies v ∈ N (u). Given a
set S of nodes, the neighborhood of S is the set S ∪

⋃
u∈S N (u). A path P from x1 to xn

in G is a finite sequence 〈x1, x2, . . . , xn〉 of nodes such that (xi, xi+1) ∈ E, i = 1, . . . , n−1.
Given a sequence p = 〈x1, x2, ..., xn〉 we write v ∈ p if there is an i such that xi = v and if
the sequence represents a path, we say v is on that path. The length of a path P in G is
the sum of the length of all edges in P . A shortest path between nodes s and t is a path
from s to t with minimum length. By P (s, t) we denote the set of all shortest s-t-paths.
Given two nodes s and t the distance dist(s, t) from s to t is the length of a shortest path
between s and t or infinity, if no path exists.

Given a graph G = (V,E, len) and a subset V ‘ ⊆ V , the node induced subgraph GV ‘ =
(V ‘, E‘, len) consists of V ‘, the subset E‘ of E for which both their source and their target
nodes are in V ‘, and len, the length function of G.

The corresponding simple, unweighted, undirected graph G
′
= (V

′
, E

′
) of a directed and

weighted graph G = (V,E, len) consists of V
′
= V and E

′
= {{u, v}|(u, v) ∈ E}, which is

the set containing a corresponding, undirected edge for every edge e ∈ E.

Given a graph G = (V,E, len) and two nodes v and w in V , we say that v and w are
connected if there exists a path from v to w in G. If no path exists, v and w are not
connected. G is connected, if all nodes of its corresponding simple, unweighted, undirected
graph G

′
are pairwise connected.

2.2 The 2-core

Given a weighted graph G = (V,E, len) and a source node s in V , the distance vector is
a function that maps every target node t in V to the shortest path distance from s to t in
V . This section deals with the theoretical analysis of our speedup techniques for distance
vector calculation.

Examining a graph that represents a road network, one can notice that many nodes are
located in regions which only have one or two paths connecting them with the rest of the

3

4 2. Basics

graph. For example, highways are modeled as sequences of edges between the slip roads
and nodes in dead ends only have one path leading back to the rest of the street network.
This chapter introduces the 2-core and the 2-core degree, two definitions that help to
identify nodes for which such cases apply.

The 2-core was first introduced by Bollobas [Bol84] in the more general form of a K-core
and can be used to help with the analysis of graph structures and properties. In our case,
it is used to identify subgraphs forming trees or paths.

Definition 2.2.1 The 2-core of an undirected graph is the maximal node induced subgraph
of minimum node degree 2. The 2-core of a directed graph is the 2-core of the corresponding
simple, unweighted, undirected graph.

Nodes that are part of the 2-core are called core nodes and those not being part are
called 1-shell nodes. The set of all 1-shell nodes is called the 1-shell. Note that connected
components within the 1-shell are trees. We distinct two types of trees.

Definition 2.2.2 Given a graph G and its corresponding simple, undirected, unweighted
graph G

′
, an unattached tree T = (VT, ET) is a maximal, connected, node induced sub-

graph of G
′
such that all nodes v ∈ VT are part of the 1-shell and are not connected to a

node from the 2-core of G
′
.

Definition 2.2.3 Given a graph G, its corresponding simple, undirected, unweighted graph
G

′
and a core node r ∈ V , the attached tree rooted at r is the maximal, connected, node

induced subgraph Tr = (VTr , ETr) of G
′
such that VTr contains r and VTr \ r is a subset

of the 1-shell of G
′
.

Note that Tr can only contain r, that all nodes in unattached trees only have 1-shell nodes
in their neighborhood, and that all nodes in attached trees, except the root node, also only
have 1-shell nodes or the root node in their neighborhood. The distances from a source
node that is a member of an unattached tree to all target nodes t in V can be calculated
in O(m) time using a depth first search, as all paths are unique. The distance to all nodes
that are not members of the same unattached tree is infinity. If the source is located in
an attached tree, all distances to nodes inside the tree can also be calculated via a depth
first search that is limited to 1-shell nodes and r. To determine the leftover distances, the
following Lemma 2.2.4 can be used.

Lemma 2.2.4 Given a graph G = (V,E, len), an arbitrary attached tree Tr with root
node r, a source node s ∈ Tr and a target node t 6∈ Tr or a source node s 6∈ Tr and a
target node t ∈ Tr, it holds for every shortest path that dist(s, t) = dist(s, r) + dist(r, t).

Proof Let p = 〈s, v1, v2, ..., vn, t〉 ∈ P (s, t) be an arbitrary shortest path from s to t. We
distinct the following cases:

s ∈ Tr, t 6∈ Tr: If i ∈ N is the highest index such that vi is in Tr, vi has to be r
because it is the only node inTr that has nodes in its neighborhood that are not from
within the same attached tree. By the shortest path property, that states that every
sub-path of a shortest path also has to be a shortest path, and according to the fact
that r has to be on this shortest path, it follows that dist(s, t) = dist(s, r)+dist(r, t).

s 6∈ Tr, t ∈ Tr: If i ∈ N is the lowest index such that vi is in Tr, vi has to be r. The
rest follows in analogy to the first case.

4

2.2. The 2-core 5

Lemma 2.2.4 implies an algorithm that can calculate distance vectors of source nodes that
are located in trees but are not the root of an attached tree by initializing the distance
vector with dist(s, r)+dist(r, t) for all nodes t ∈ V before updating the local distances via
a depth first search. This procedure takes O(m) time, if the distance vector of the root
node and the distance from the source node to the root node are available. CoreAPSP
makes use of such an algorithm. It is called TreeNode and will be introduced in section
3.4.2. The fact that all paths leading into an attached tree have to pass the tree root is
used to speed up CoreDijkstra which is introduced in Section 3.4.1.

For the following Lemma 2.2.7, we need to extend the notations of neighborhood and
degree in the 2-core context. The set Ncore(v) of a node v contains all nodes from its
neighborhood N (v) that are part of the 2-core and is called 2-core neighborhood. The
2-core degree degcore(v) of a node v is the cardinality of Ncore(v) and is only defined for
nodes that are part of the 2-core themselves. The 2-core degree helps us to identify graph
structures from within the 2-core, that have properties we can make use of, like 2-core
paths from Definition 2.2.5.

Definition 2.2.5 A 2-core path is a sequence of nodes P2 = 〈v1, v2, ..., vl〉 that is a path in
the corresponding simple, unweighted, undirected graph for which all nodes v ∈ P2, except
v1 and vl, have 2-core degree two. Both these nodes are called separators and have a 2-core
degree greater than two.

Note that all nodes except the separators only have their predecessor and their successor
from the sequence in their 2-core neighborhood, that all nodes except the separators have
to be pairwise distinct and that there neither has to be a directed path between v1 and vl,
nor between vl and v1. All nodes that are member of a 2-core path and are none of the
separators, are called path nodes. Figure 2.1 shows a little example graph with marked
1-shell and path nodes.

1-shell node

core node with 2-core-degree greater or equal 3

path node

Figure 2.1: Example graph with tagged nodes

Every node v on a 2-core path can be the root of an attached tree. Recall that Tv is
the set that contains v and all nodes inside the tree that v is the root of and that a tree
can only contain the root node. To simplify Lemma 2.2.7, we first introduce the following
Definition 2.2.6.

5

6 2. Basics

Definition 2.2.6 The 2-core path region Rpath(P2) of a 2-core path P2 is the union of Tv

for all v on P2.

Lemma 2.2.7 Given a weighted graph G = (V,E, len), an arbitrary 2-core path P2 in G
with its separators v1 and vl, a source node s ∈ Rpath(P2) and a target node t 6∈ Rpath(P2)
or a source node s 6∈ Rpath(P2) and a target node t ∈ Rpath(P2), it holds that the shortest
path distance from s to t equals min(dist(s, v1) + dist(v1, t), dist(s, vl) + dist(vl, t)).

Proof Let p = 〈s, u1, u2, ..., un, t〉 be a shortest path from s to t. We distinct the following
cases:

s ∈ Rpath(P2), t 6∈ Rpath(P2): Let i ∈ N be the highest index for which ui is in
Rpath(P2). As all nodes from Rpath(P2) that are located in attached trees only
have nodes from the tree or the root node in their neighborhood, ui has to be a node
out of P2. As in P2 only v1 and vl have neighbors that are not in Rpath(P2), ui

either has to be v1 or vl. The shortest path property implies that dist(s, t) is either
dist(s, v1)+dist(v1, t) or dist(s, vl)+dist(vl, t). As we are searching for the shortest
path, it has to be the one with the smaller length.

s 6∈ Rpath(P2), t ∈ Rpath(P2): If i ∈ N is the lowest index such that ui is in Rpath(P2),
ui either has to be v1 or vl. The rest follows in analogy to the first case.

Note that the distance between two nodes is infinity if no path exists. Lemma 2.2.7 implies
an algorithm that can calculate distance vectors of source nodes located on a 2-core path P2

by initializing the distance vector with min(dist(s, v1)+dist(v1, t), dist(s, vl)+dist(vl, t)),
before using a limited depth first search to update the distances to nodes in Rpath(P2).
This procedure takes O(m) time, if the distance vectors for v1 and vl and the distances
from s to v1 and vl are already present. CoreAPSP makes use of such an algorithm. It is
called PathNode and will be introduced in section 3.4.3. The fact that all paths entering
a 2-core path region have to pass one of the separators will be exploited in CoreDijkstra
from Section 3.4.1 to decrease the number of priority queue operations.

2.3 The Linear Space All-Pairs Shortest-Paths Problem

The problem of finding all shortest paths, from every node to every node, is as well known
as the problem of finding a single shortest path. As computation time is not the only
factor limiting the size of processable problem instances, some more restrictions have been
added to the definition of the problem.

Definition 2.3.1 Given a graph G = (V,E, len), the Linear Space All-Pairs Shortest-
Paths problem is that of calculating the distance vectors ~ds for all nodes s ∈ V , using only
O(n+m) space in total to store the graph representation and the results of the computations.

Note that it is, according to the problem definition, not always possible to have all distances
stored after the calculations are done, because this would require O(n2) space. Hence this
is only possible, if m is in Θ(n2).

2.4 A simple solution

The Linear Space All-Pairs Shortest-Paths problem can be solved in O(n(n log n + m))
time by using Dijkstra’s algorithm [Dij59] n times, whereas every node s ∈ V is the source
node once. As Dijkstra’s algorithm only needs O(n) space and the calculations for the
different sources are independent, the used space can be freed after all reachable nodes
for a source have been settled. The timebound is derived from the fact that one run of
Dijkstra’s algorithm requires O(n log n + m) time when using a Fibonacci Heap [TF87].

6

3. CoreAPSP

The CoreAPSP algorithm can be divided into three stages. The first one, is the extraction
of the 2-core and the determination of the 2-core degree for all core nodes by the use
of Extract2core. Afterwards, the representation of the graph is changed and some data
is precalculated. The target is both to store node information closely together that is
accessed in succession to lessen the number of cache misses, and to reduce overhead. Also
information about incoming edges is discarded, because the algorithm does not need it
after the precalculations are done. Section 3.3 describes the process in detail. The third
stage is the main part of the algorithm where the distance vectors are calculated. Its
central component is a scheduler that determines the order and the methods the distance
vectors are calculated with. The scheduler and the implementations of the distance vector
calculation algorithms, that are introduced in the Section 2.2, are described in Section 3.4
and 3.5.

3.1 Stage 1: 2-core extraction

The algorithm used by CoreAPSP to extract the 2-core and to determine the 2-core
degree during the precalculations is called Extract2core. Its pseudo code is listed under
Algorithm 1. It is an iterative procedure that extracts the core and determines the 2-core
degree of all core nodes in O(m) time.

The algorithm initializes the 2-core degree degcore(v) of every node v ∈ V with its degree
deg(v). To obtain the correct 2-core degree values, it substitutes the number of neigh-
bors that are not part of the 2-core. Extract2core identifies 1-shell nodes iteratively and
decreases the value of their neighbors 2-core degree by one. A node u is identified as a
1-shell node if deg(u) is one or degcore(u) is decreased to one by one of u’s neighbors. After
all nodes identified as not being part of the 2-core are processed, the algorithm finishes.

3.2 Stage 2: Rebuilding the graph and distance precalculations

The identification of 1-shell nodes and the 2-core degree of each core node is the only data
that has to be precomputed for the distance vector calculations to work. Nonetheless,
CoreAPSP uses further precalculations to improve the workflow and the performance.

To reduce cache misses, the identification numbers of the nodes are reorganized in order
to store data closely together that is accessed in succession. For example nodes that are
located within the same tree or on the same 2-core path satisfy this criterion.

7

8 3. CoreAPSP

Algorithm 1: Extract2core(Graph)

degreeOneNodes ← ∅1

degcore: Array[0..n] of N2

forall v ∈ V do3

degcore[v]← degree of v4

if degcore[v] ≤ 1 then5

degreeOneNodes← degreeOneNodes ∪ {v}6

while degreeOneNodes 6= ∅ do7

v ← arbitrary node from degreeOneNodes8

degcore[v]← 0 // set node deleted9

u← unique neighbor of v with degcore(u) ≥ 110

degcore[u]← degcore[u]− 111

if degcore[u] = 1 then12

degreeOneNodes← degreeOneNodes ∪ {u}13

degreeOneNodes← degreeOneNodes \ {v}14

To reduce the number of priority queue operations during distance vector calculations,
some specific distances are precalculated. Both the distances from the root node of a tree
to the nodes inside the tree and the length of the subpaths of 2-core paths, leading from
the separators to all nodes on the path, are determined. Since the trees contain no circles
and path nodes only have two neighboring nodes from within the core, these distances
can be determined in linear time using depth first searches limited either to 1-shell nodes
and the root of the corresponding tree or to core nodes with a 2-core degree of two. The
new node identification numbers are set to the same order as the nodes are settled by the
search and the results are saved as sets of tuples containing the nodes and the distance to
them. The sets with the distances on the 2-core paths are associated with newly inserted
shortcuts or loops, depending on whether a directed path to the other separator exists or
not.

As stated in Section 2.2, the distance from 1-shell nodes or path nodes to their correspond-
ing separators can be used to help speeding up distance vector calcualtions. Note that
for path nodes the length of the subpath of the 2-core path from the path node to the
separator is sufficient. All these distances can be calculated using limited backward depth
first searches. Recall that nodes on 2-core paths can have no directed path to any of their
separators and that there might be a path from a tree node to the corresponding root but
not from the root to the tree node or the other way around.

All of these calculations are triggered during an iteration over the graph’s edges. If one of
the following cases applies to an edge, a limited depth first search determines some of the
required distances.

the source is a core node, the target is a 1-shell node: These edges are identified as edges
leading into an attached tree. A depth first search limited to 1-shell nodes is ini-
tialized with the target node and the weight of the current edge to determine all
distances from the tree root to nodes inside the tree. Note that this search can be
triggered multiple times for an attached tree, if the root node is adjacent to more
than one of the attached tree’s nodes. At the same time, the new identification num-
bers for all reached nodes are defined in the same order as they are removed from
the search stack.

the source is a 1-shell node, the target is a core node: The edge is connecting an attached
tree, or at least a part of it, with the core, and all distances from nodes in this part

8

3.3. The distance vector calculation algorithms 9

of the tree to the tree’s root can be determined using a depth first search that is
limited to 1-shell nodes and follows edges in reverse order.

degcore(source) ≥ 3, degcore(target) = 2: This edge is leading onto a 2-core path. A depth
first search limited to nodes with a 2-core degree of 2 is triggered to determine the
distance from the separator to the nodes on the path. The identification numbers for
the path nodes are concurrently set according to the order in which they are found
by the search, if they have not been defined by another search yet.

degcore(source) = 2, degcore(target) ≥ 3: The edge is connecting a 2-core path with the
core. All distances from nodes on the 2-core path to the source of the edge, and thus
to one of the path’s separators, can be determined via a depth first search that is
limited to core nodes with a 2-core degree of 2 and follows edges in reverse order.

3.3 The distance vector calculation algorithms

CoreAPSP uses multiple methods for distance vector calculation. All of them are encap-
sulated into algorithms and are described in the following sections.

3.3.1 CoreDijkstra

The first distance vector calculation algorithm to introduce is called CoreDijkstra and is
a modification of Dijkstra’s algorithm. It tries to decrease the number of priority queue
operations by using precalculated distances from Section 3.3 and by exploiting the shortest
path properties introduced in Lemma 2.2.4 and Lemma 2.2.7. Recall that shortest paths
leading into attached trees have to contain the root node as well as paths entering a 2-core
path have to contain one of the separators v1 or vl.

The algorithm acts like a usual Dijkstra search, but only inserts core nodes with a 2-core
degree of at least three into its priority queue. To determine the remaining values, the
distances from tree roots to the nodes inside the tree and the length of the subpaths of
the 2-core path from the path separators to the nodes on the path, as precalculated in
Section 3.3, are used. If the search settles the separator of a 2-core path, the precalculated
subpath distances from separators to all nodes on the path are used to set the distance
of the corresponding path nodes to the minimum of the currently stored distance and the
distance to the separator plus the distance from the separator to the path node. As this
will be done for both separators, the distances are set to the correct values according to
Lemma 2.2.7. If the search settles a tree root, all distances to nodes inside the tree are set
to the minimum of their currently stored distance and the distance to the root node plus
their precalculated distance from the root. It is important to do a minimum check here
out of two reasons. First, the search might have been started in the attached tree and the
currently stored distance is already correct. Second, the root node might be a path node
and its currently determined distance might be wrong. The shortcuts that are inserted
during the precalculations assure the correctness of paths containing 2-core paths.

To speed up distance vector calculations for source nodes in an attached tree or in a 2-core
path region, CoreDijkstra does not start the Dijkstra search at the source node, but begins
with a depth first search limited to 1-shell nodes and core nodes with a 2-core degree of two
to determine the local distances and the distances to the nodes connecting the attached
tree or the 2-core path region with the core. Whenever a core node with a 2-core degree
greater or equal to 3 is reached, it is inserted into the priority queue to be used by the
main loop after the search. Note that for 2-core paths both separators might be equal. In
this case the key of the separator has to be set to the smaller path length. Algorithm 2
gives the pseudo code of the whole procedure.

9

10 3. CoreAPSP

Algorithm 2: CoreDijkstra(s,~ds)

Input: source node s and distance vector ~ds

PQ ← ∅1

~ds ← initialize with infinity2

if s is a core node with degcore(s) ≥ 3 then3

PQ.insert((s,0))4

else5

dfsStack.push({(s, 0)})6

while dfsStack 6= ∅ do7

(currentNode,currentDistance) ← dfsStack.pop();8

~ds[currentNode] ← currentDistance9

forall edges e going out of currentNode do10

if e’s target has already been processed then11

continue12

if e’s target is a 1-shell node or a core node with 2-core degree = 2 then13

dfsStack.push((target of e, currentDistance + weight of e))14

if e’s target is a core node with 2-core degree ≥ 3 then15

if e’s target is not in the priority queue then16

PQ.insert((target of e, currentDistance + weight of e))17

else18

PQ.decreaseKey((target of e, currentDistance + weight of e))19

while PQ 6= ∅ do20

(currentNode,currentDistance) ← PQ.deleteMin()21

~d[currentNode] ← currentDistance22

forall (treeNode,distanceFromRoot) in tree attached to currentNode do23

~ds[treeNode] ← min(~ds[treeNode],currentDistance + distanceFromRoot)24

forall edges e going out of currentNode do25

if target of e is a 1-shell node or a path node then26

continue27

targetDistance ← currentDistance + weight of e28

if targetDistance < ~ds[target of e] then29

if ~ds[target of e] = infinity then30

PQ.insert((target of e,targetDistance))31

else32

PQ.decreaseKey(target of e,targetDistance)33

if e is a shortcut then34

forall (pathNode,distanceFromSeparator) associated with the shortcut do35

~ds[pathNode] ← min(~ds[pathNode],currentDistance +36

distanceFromSeparator)
forall (treeNode,distanceFromRoot) in tree attached to curretNode do37

~ds[treeNode] ← min(~ds[treeNode],currentDistance +38

distanceFromSeparator + distanceFromRoot)

10

3.3. The distance vector calculation algorithms 11

3.3.2 TreeNode

The second distance vector calculation algorithm is called TreeNode and only works for
source nodes located in trees.

Recall Lemma 2.2.4, which stated that the distance of every path from within an attached
tree to a node that is not part of the same tree is the sum of the distance to the root and
the distance from the root to the target. All distances inside a tree can be determined in
linear time using a depth first search that is limited to 1-shell nodes and the root node.
Algorithm 3 lists TreeNode which implements this procedure in O(m) time. As we already
precalculated the path length to the corresponding tree root for every 1-shell node, it is
possible to initialize the distance vector right at the beginning of the procedure and replace
the false distance values afterwards. If the source is located in an unattached tree, the
root node argument has to be set to nullNode, which will tell the algorithm to initialize
the distance vector with infinity.

Algorithm 3: TreeNode(s,~ds,r,~dr)

Input: source node s and distance vector ~ds, root node r 1 and its distance vector ~dr

degcore ← precalculated array with 2-core degree value1

distanceToRoot ← precalculated distance to root node2

if r is not nullNode then3

~ds = ~dr+ distanceToRoot4

else5

~ds is initialized with infinity6

dfsStack ← ∅7

dfsStack.push((s,0))8

while dfsStack 6= ∅ do9

(currentNode,currentDistance) ← dfsStack.pop()10

~ds[currentNode] ← currentDistance11

forall outgoing edges e out of currentNode do12

if e’s target has already been discovered then13

continue14

if e’s target = r then15

distanceToRoot = currentDistance + weight of e16

dfsStack.push((target of e,currentDistance + weight of e))17

if e’s target is a 1-shell node then18

dfsStack.push((target of e,currentDistance + weight of e))19

The implementation depends on precalculations but does not do any of them by itself,
because their management is intended to be left to the scheduler. A 1-shell node s as
source, a distance vector ~ds, which does not have to be initialized in any way, to store the
results, the root node r or nullNode if s is located in an unattached tree, and the distance
vector of r, ~dr, have to be passed as arguments.

3.3.3 PathNode

The third distance vector calculation algorithm is called PathNode and only works for
source nodes located on 2-core paths.

As stated in Lemma 2.2.7, the distance dist(s, t) from a source node s that is located on
a 2-core path to a target node t outside the 2-core path region of s equals the minimum

1must be set to nullNode for unattached trees

11

12 3. CoreAPSP

of dist(s, v1) + dist(v1, t) and dist(s, vl) + dist(vl, t), where v1 and vl are the respective
separators. Furthermore the distances to nodes inside the 2-core path region can be
determined in linear time using a depth first search limited to nodes with a 2-core degree
of two combined with the information about the distances from tree roots to the nodes
inside the tree. Algorithm 4 lists PathNode who takes advantage of this and calculates
distance vectors for nodes on 2-core paths in O(m) time. As the distances to the separators
of the path have already been calculated during the preprocessing, the distance vector can
be initialized before the depth first search determines the local distances. If there is no
directed path from the source to one or both the separators, the distance vector has to be
initialized respectively.

Algorithm 4: PathNode(s,~ds,sep1,~dsep1,sep2,~dsep2)

Input: source node s and distance vector ~ds, first separator sep1 and its distance
vector ~dsep1, second separator sep2 and its distance vector ~dsep2

degcore ← precalculated array with 2-core degree values1

nodesInAttachedTree ← precalculated array with information about tree nodes2

if sep1 6= nullNode and sep2 = nullNode then3

distanceToSep1 ← precalculated distance to sep14

~ds = ~dsep1+ distanceToSep15

if sep1 6= nullNode and sep2 6= nullNode then6

distanceToSep1 ← precalculated distance to sep17

distanceToSep2 ← precalculated distance to sep28

~ds = min(~dsep1+ distanceToSep1,~dsep2+ distanceToSep2)9

if sep1 = nullNode and sep2 = nullNode then10

~ds is initialized with infinity11

bfsStack ← ∅12

bfsStack.push((s,0))13

while bfsStack 6= ∅ do14

(currentNode,currentDistance) ← bfsStack.pop()15

~ds[currentNode] ← min(~ds[currentNode],currentDistance)16

forall (treeNode,treeDistance) of the tree attached to currentNode do17

~ds[treeNode] = min(~ds[treeNode],currentDistance + treeDistance)18

forall outgoing edges e out of currentNode do19

if a shorter path to es target has already been found then20

continue21

if degcore[e.target] = 2 then22

bfsStack.push((target of e,currentDistance + weight of e))23

B C

10

1

1

1

DA

Figure 3.1: A difficult case

12

3.4. Stage 3: The scheduler 13

During the depth first search that determines the distances to the nodes in the 2-core
path region, there is one special case that has to be taken care of. An example is shown
in Figure 3.1. In this case, the source node, which is located on a 2-core path that forms
a ring, has no separators and thus is not connected to any core node with a 2-core degree
greater then two. A normal depth first search with source node A could fail determining
the right distance values, when it processes the nodes in the following order: First, node
A is settled and B is pushed on the stack after D. Then B is popped off the stack, and
C paired with the incorrect distance 11 is pushed on it. To avoid this error, the depth
first search of the PathNodealgorithm checks if the distance of nodes popped from the
stack is shorter than the distance already saved to the distance vector and pushes already
discovered nodes on the stack, if a shorter path to them has been found. Note that errors
in the distance vector can only appear if there is no core node with a 2-core degree of at
least three on the path. If such a node exists, all wrong distances will be set to the correct
ones when the 2-core paths, including the one the source node is located on, adjacent to
this node are updated. Also note that the search still only needs O(m) time.

Again, none of the required precalculations are done by the algorithm itself. The argument
list contains a source node s, a distance vectors ~ds to store the results, and the separators
with their respective distance vectors. Note that the separator argument has to be set to
nullNode, if no directed path from the source to the separator exists.

3.4 Stage 3: The scheduler

The scheduler is the central component of CoreAPSP and decides in which order and by
the use of which algorithms the distance vectors are calculated. These decisions are fun-
damental for good performance, as every decision leading to a distance vector calculation
with CoreDijkstra where TreeNode or PathNode could have been used as well as every
recalculation will extend the total running time.

CoreAPSP has 5 different schedulers to choose from. The first one, called All Plain Dijkstra
Scheduler, uses an unoptimized implementation of Dijkstra’s algorithm for all distance
vector calculations and only has one distance vector stored at a time. It is intended to
produce reference values with which the running times can be compared.

The second one, called All CoreDijkstra Scheduler, uses CoreDijkstra for all distance vector
calculations, only has one distance vector stored at a time, and is intended to measure the
speedup of the optimized Dijkstra variant compared to the plain one.

The CoreDijkstra and TreeNode Scheduler uses the TreeNode algorithm to calculate the
distance vectors of all 1-shell nodes and CoreDijkstra for the others. In doing so, it has at
most two distance vectors stored concurrently.

The CDTP Simple Scheduler, whose pseudocode is listed under Algorithm 5, implements
a simple scheduler that uses CoreDijkstra, TreeNode and PathNode. It iterates once over
all core nodes with a 2-core degree of at least three, determines their distance vector with
CoreDijkstra and tries to use this information to speed up the distance vector calculations
for adjacent 1-shell or path nodes. This is done by calculating the distance vectors of the
target nodes of all outgoing shortcuts. After a distance vector is calculated, all path nodes
associated with the shortcut and trees attached to those nodes are processed. After all
shortcuts have been processed, the distance vectors of the members of the attached tree
rooted at the current core node are determined. While this is working well with the 1-shell
nodes as their root is unique, it can slow down the algorithm with a useless CoreDijkstra
call if a 2-core path is only one node long or if all nodes on it have already been processed.
Note that the distance vectors of the shortcut target will be discarded and calculated
again at another point during the scheduler’s execution and that the maximal number of

13

14 3. CoreAPSP

concurrently stored distance vectors is four. The TreeNode and the PathNode algorithm
are also used to determine distance vectors of 1-shell nodes in attached trees and path
nodes that are associated with a shortcut. Member nodes of unattached trees and path
nodes that are not connected to their separators are also processed with the respective
algorithms. In the end, the distance vectors of all unprocessed vertices are calculated with
CoreDijkstra. These unprocessed nodes contain path nodes who are connected to at least
one of their separators but none of their separators is connected to them and attached trees
rooted at such path nodes. The reason why distance vectors of such path nodes are not
calculated with the PathNode algorithm is that they are not associated with any shortcut
and thus the scheduler is not able to identify them as members of a certain 2-core path.
The use of this scheduler is implementing a very basic approach to handle the problem of
finding a good schedule and it thereby delivers kind of a lower bound for other schedulers
to compete with.

Algorithm 5: defaultScheduler()

processed: Array[0..n] of bool initialised with false1

forall nodes v ∈ V do2

if not processed[v] then3

if v is a core node with degcore(v) ≥ 3 then4

CoreDijkstra(v,~dv)5

processed[v] ← true6

forall tree nodes t in attached tree Tv do7

TreeNode(t,~dt,v,~dv)8

processed[t] ← true9

forall shortcuts s going out of v do10

if s’ target equals s’ source then11

forall unprocessed vertices p associated with s do12

PathNode(p,~dp,v,~dv,v,~dv)13

processed[p] ← true14

forall unprocessed tree nodes t in attached tree Tp do15

TreeNode(t,~dt,p,~dp)16

processed[t] ← true17

else18

w ← target node of s19

CoreDijkstra(w,~dw)20

forall unprocessed vertices p associated with s do21

PathNode(p,~dp,v,~dv,w,~dw)22

processed[p] ← true23

forall unprocessed tree nodes t in attached tree Tp do24

TreeNode(t,~dt,p,~dp)25

processed[t] ← true26

if v is located within an unattached tree then27

TreeNode(v,~dv,nullNode,~dnullNode)28

processed[v] ← true29

if v is located on a 2-core path but has no directed path to its separators then30

PathNode(v,~dv,nullNode,~dnullNode,nullNode,~dnullNode)31

processed[v] ← true32

forall unprocessed nodes v ∈ V do33

CoreDijkstra(v,~dv)34

processed[v] ← true35

14

3.4. Stage 3: The scheduler 15

The CDTP Simple Checking Scheduler is an improved version of the CDTP Simple Sched-
uler, that only calculates the distance vector of shortcut targets and processes the associ-
ated nodes with the PathNode algorithm if at least two of the nodes associated with the
shortcut are unprocessed. If there is only one unprocessed node, the node and all members
of the attached tree it is the root of are processed using CoreDijkstra.

The CDTP Waves Scheduler is the most advanced scheduler currently implemented in
CoreAPSP. It is the only scheduler that works with a dynamic number of distance vectors
greater or equal than four and hence the only one in need of memory management.

The scheduler calculates all distance vectors of 1-shell nodes with the TreeNode algorithm
and uses the PathNode algorithm for path nodes. The excellence of this approach strongly
depends on the number of recalculations made during the whole process. It is important to
prefer the processing of nodes that have few neighboring 2-core paths, because the number
of newly calculated distance vectors for separators on the other side of the paths is low
and so is the space needed to store these. On the other hand, using the information from
distance vectors as long as they are still available is also of great significance.

To fulfill both these requirements, the CDTP Waves Scheduler begins traversing the sub-
graph that consists of all separators of 2-core paths and edges between those who are
separators of the same path in a breadth first search style. A node having fewest adjacent
shortcuts among all unprocessed nodes is inserted into a double ended queue and pro-
cessed. All nodes whose distance vector is calculated along the way are appended to the
end of the dequeue. When the algorithm is done with the calculations concerning the cur-
rent node, the nodes in attached trees rooted at it and the nodes on adjacent 2-core paths,
the next iteration starts by taking the node at the front of the queue and by repeating the
whole progress for it. If the queue runs empty, a new unprocessed node with the lowest
amount of adjacent shortcuts among all is appended to it until all nodes separating paths
are processed.

After this crucial part of the algorithm, all nodes on 2-core paths but with no directed
path to a separator as well as all core nodes with a 2-core degree greater or equal than
three and all 1-shell nodes in trees rooted at one of them are processed, before, in the final
stage, all nodes located in unattached trees are processed.

Algorithm 6: getVector(s,distanceVectors,maxStored) : ~ds

Input: source node s, set of vectors distanceV ectors, maximum cardinality for
distanceVectors maxStored

if distance vector of s is stored in distanceVectors then1

return stored distance vector of s2

else3

if distanceVectors contains maxStored distance vectors then4

remove distance vector from distanceVectors that was inserted earliest5

CoreDijkstra(s,~ds)6

distanceVectors ← distanceVectors ∪ {~ds}7

return ~ds8

15

16 3. CoreAPSP

Algorithm 7: wavesScheduler(concurrentTrees)
Input: maximum number of trees stored at the same time concurrentTrees
distanceVectors ← ∅1

PQ ← ∅2

forall nodes n who are a separator of at least one path do3

sn ← number of shortcuts going out of n4

PQ.insert((n,sn))5

while PQ 6= ∅ do6

(n,key) ← PQ.deleteMin()7

if n has already been processed then8

continue9

FIFO ← ∅10

FIFO.pushBack(n)11

while FIFO 6= ∅ do12

m ← FIFO.popFront()13

if m has already been processed then14

continue15

~dm ← getVector(m,distanceVectors,concurrentTrees -2)16

forall unprocessed tree nodes t in attached tree Tm do17

TreeNode(t,~dt,m,~dm)18

forall unprocessed path nodes p that m is a separator of do19

~dm ← getVector(m,distanceVectors,concurrentTrees -2)20

if p has a second separator then21

o ← second separator of p22

~do ← getVector(o,distanceVectors,concurrentTrees -2)23

if distance vector of s2 was calculated during getVector then24

FIFO.pushBack(o)25

PathNode(p,~dp,m,~dm,o,~do)26

else27

PathNode(p,~dp,m,~dm,m,~dm)28

forall unprocessed tree nodes t in attached tree Tp do29

TreeNode(t,~dt,m,~dm)30

forall core nodes n with degcore(n) = 2 and no separators do31

PathNode(n,~dn,nullNode,~dnullNode,nullNode,~dnullNode)32

forall unprocessed tree nodes t in attached tree Tn do33

TreeNode(t,~dt,n,~dn)34

forall core nodes n with degcore(n) ≥ 3 do35

CoreDijkstra(n,~dn)36

forall unprocessed tree nodes t in attached tree Tn do37

TreeNode(t,~dt,n,~dn)38

forall nodes t in unattached trees do39

TreeNode(t,~dt,nullNode,~dnullNode)40

16

4. Experimental Evaluation

4.1 Hardware

In this section, the results of an experimental evaluation of CoreAPSP are presented. All
experiments were conducted on one core of an AMD Opteron 2,218 running SUSE Linux
10.3. The machine is clocked at 2.6 GHz, has 16GB of RAM, and 2 × 1 MB of L2 cache.
The implementation was compiled using GCC 4.3.2 with optimization level 3. Further
details about the implementation can be found in Section 4.2.

4.2 The implementation

CoreAPSP has been implemented in C++. It makes use of classes and contains, without
libraries, nearly 6000 lines of code. For the graph representation, the Boost Graph Library
[SLL02] has been used, with vectors from the Standard Template Library as containers
for both the nodes and the edges. The priority queue used during all experiments is a fast
implementation of a binary heap [Sch08]. To avoid the initialization of distance vectors
with infinity, timestamps are used. Every distance vector has a search time and every
distance has a corresponding timestamp. A distance is only valid if the corresponding
timestamp equals the search time. If they differ, the distance is infinity. To initialize a
distance vector with infinity, the search time has to be set to a timestamp that was never
used before.

4.3 The Testset

The set of graphs used during the tests largely consisted of road networks, as CoreAPSP is
primarily intended to be used during the precalculation process of speedup techniques for
route planing. Nonetheless, the tests ought not only measure how good the implemented
techniques work on their primary problem class, but should also highlight for which other
graph types the approach performs good and for which it does not. Hence, some randomly
generated and some real world instances have been included into the setup. The instances
can be partitioned into three problem classes.

Road Networks: To conduct a precise experimental analysis, many different road net-
works have been used. All of them are subgraphs of either the European or the
North American road network. The European road network was kindly given to us
by the PTV [PTV08] and contains data from 2006. The American road network was

17

18 4. Experimental Evaluation

taken from the TIGER website of the U.S. Census Bureau [tig10]. The networks
can be divided into three classes. The first class contains city graphs. It must be
pointed out that these have a quite different structure. North American cities are
strictly organized in grids and European cities are not. New York and the Ruhrpott
(Figure 4.1), an area in Germany with multiple cities located closely together, have
been chosen as test graphs. In the second class, the German North Sea region and a
sparsely populated region within Texas (Figure 4.2) have been selected as examples
of rural road networks. These graphs are composed of many long roads and fewer
junctions. The third class is composed of subgraphs of the European road network,
where we select a geographic center uniformly at random and extract a rectangular
region around the respective center such that the number of nodes in the extracted
subgraph meets our requirements.

Figure 4.1: New York and the Ruhrpott, 2 000 nodes, 2-core paths dotted, trees in light
gray

Figure 4.2: Texas, German North Sea, 2 000 nodes, 2-core paths dotted, trees in light gray

Other real world: Besides the road graphs, we also considered further real-world in-
stances: station graphs of public-transportation networks and a graph replicating

18

4.4. Results 19

the structure of the Internet. The Rail Europe graph is a static modeling of the
European railway system, where every node represents a train station and an edge
between nodes u and v equals a connection between the respective train stations
without a stopover [PSWZ07]. The graph is very sparse, but still connected, and
contains many long 2-core paths. It is based on the timetable data of the winter
period 1996/1997 and was kindly given to us by HaCon [HaC08]. The station NY
graph models the bus network of New York. Every node represents a bus station and
an edge equals a bus connection between the stations with no stopover or a walking
route. All edges are weighted with their respective travel time. The structure of
this graph is quite similar to the Rail Europe graph. The data it is based on is the
timetable of 2010 and is freely available through a Google transit data feed [Fee10].
The Internet graph, taken from [Uni08], represents the Internet as of 2008/3/26 on
the level of autonomous systems. Every of the 28 000 nodes represents such an au-
tonomous system, and every edge equals a connection between them. The weight
of all edges is one. Although the degrees in the corresponding simple, unweighted,
undirected graph G

′
vary between 1 and 2 342, they are quite low on average.

Generated: Three different types of randomly generated graphs have been used. Grid
graphs, Delauny Triangulations (both in Figure 4.3) and Unit Disc graphs. The
nodes of the Grid graph are arranged in a grid pattern and the weights of the edges
are chosen uniformly at random between 20 and 300. The Unit Disc Graph generator
first chooses a random set of nodes in the plane and then adds an edge between all
pairs of nodes whose Euclidean distance falls below a certain bound. The edges are
weighted by the distance of their incident nodes. The Delauny Triangulation of a set
of points in the plane is a triangulation such that no point is inside the circumcircle
of any triangle. It is equal to the dual graph of the Voronoi tessellation.

Figure 4.3: Grid and Delauny, 2 000 nodes

4.4 Results

The following sections present the results of the experiments. Four types of experiments
have been conducted. At the beginning, all graphs have been analyzed regarding their
segmentation into 1-shell nodes, path nodes, and core nodes with a 2-core degree of at least
three (Section 4.4.2). In Section 4.4.3, the performance of the schedulers on the different
instances has been compared. In the last two sections, the CDTP Waves Scheduler’s

19

20 4. Experimental Evaluation

running time is analyzed on different graph sizes (Section 4.4.5) and with different numbers
of concurrent distance vectors (Section 4.4.4).

4.4.1 Precalculation time

All running time results include the time needed for the precalculations. They are not
listed separately because they do not have a big influence on the total running time, as
they only amount 1% of it in most cases. This was only different on the Internet graph,
where up to 41% of the running time was needed for the precalculations when using the
CDTP Waves Scheduler. The reason is the existence of nodes with very high degree in the
graph and a big number of memory operations resulting from it.

4.4.2 Graph structure

CoreAPSP gains its speedup by exploiting 2-core paths and trees. The higher the fraction
of nodes belonging to such structures is, the more possibilities CoreAPSP has to play on
its strengths. Table 4.1 reports the figures for the number of 1-shell nodes, path nodes,
and core nodes with a 2-core degree of at least three for all instances. Note that there are
no numbers given for the random graphs, since they vary a lot and that the graph with
100 000 nodes is taken as a representative for instances with graphs of different size.

nodes edges 1-shell % degcore = 2 % degcore ≥ 3 %
New York 99915 244876 9283 9 18463 18 72169 72
Ruhrpott 99979 224554 26783 27 35719 36 37477 37
Texas 99954 259260 18531 19 26283 26 173782 55
North Sea 100050 236250 28629 29 35378 35 36043 36
Rail Europe 30517 88091 4013 13 15541 50 10963 36
Station NY 13060 14980 3454 26 7392 57 2214 17
Internet 27909 114474 10368 37 11354 40 6187 22
Delauny 100000 599926 0 0 0 0 100000 100
Grid 10000 39600 0 0 4 0 9996 100
Unit Disc 7 99586 696016 780 1 2283 2 96523 97
Unit Disc 10 99977 993044 60 0 260 0 99657 100

Table 4.1: Node segmentation in test set graphs

Viewing the New York, Ruhrpott, Texas, and North Sea graphs, it emerges that Ruhrpott
and North Sea have higher fractions of 1-shell nodes and nodes located on 2-core paths,
which is due to the grid structure of American cities. In a grid, all nodes except the ones
located at the boundaries have a 2-core degree of four. It is to be expected, that CoreAPSP
will perform better on the European road networks than on the North American ones.

The station graphs have a very high fraction of nodes on 2-core paths (especially the
Station NY graph) and a low fraction of core nodes with a 2-core degree of at least three.
Very good speedups of CoreAPSP compared to an implementation only using the classic
Dijkstra algorithm can be expected for those.

The Internet graph also offers great potential for CoreAPSP because of its low fraction of
core nodes with a 2-core degree of a least three. On the other hand, the initially mentioned
existence of nodes with very high degree makes it difficult to find a good schedule.

For the Delauny, Grid, and Unit Disc graphs, no good speedup is to be expected because
they contain a very low fraction of 1-shell and path nodes. Thus CoreAPSP is expected
to act similar to a plain Dijkstra implementation.

20

4.4. Results 21

4.4.3 The Schedulers

This experiment was conducted to compare the running time of all schedulers on the
different instances. The maximal number of concurrent trees used by the CDTP Waves
scheduler was set to 1 100 for the Internet graph, and to 100 for all others. Note that these
numbers are big enough to make the scheduler work without any recalculations.

The columns CoreDijkstra (CoreDij.) and recalls contain the number of calls to the
CoreDijkstra algorithm. A distinction between calls with processed and calls with un-
processed source nodes is made. If the source is unprocessed, the call is counted in the
CoreDijkstra column. If the source has already been processed before by any of the dis-
tance vector calculation algorithms, the call is counted in the recalls column. The PathN-
ode (p.Node) and TreeNode (t.Node) columns list the number of calls to the respective
algorithm. Runtime is the total execution time of the algorithm. Speedup (Spd.up) is the
factor of the running time of the All Plain Dijkstra Scheduler divided by the runtime of
the examined scheduler.

CoreDij. recalls p.Node t.Node runtime Spd.up
New York (100,000 nodes)

All Plain Dijkstra - - - - 86.42m -
All CoreDijkstra 99915 0 0 0 71.33m 1.21
CoreDijkstra and TreeNode 90632 0 0 9283 64.74m 1.33
CDTP Simple 72260 20176 18399 9256 66.19m 1.31
CDTP Simple Checking 85599 3128 8621 5695 63.44m 1.36
CDTP Waves 72169 0 18463 9283 51.74m 1.67

Ruhrpott (100,000 nodes)
All Plain Dijkstra - - - - 89.20m -
All CoreDijkstra 99979 0 0 0 51.72m 1.72
CoreDijkstra and TreeNode 73196 0 0 26783 38.30m 2.33
CDTP Simple 37570 33030 35678 26731 37.71m 2.37
CDTP Simple Checking 55169 7447 24923 19887 33.34m 2.68
CDTP Waves 37477 0 35719 26783 20.36m 4.38

Texas (100,000 nodes)
All Plain Dijkstra - - - - 88.79m -
All CoreDijkstra 99954 0 0 0 63.38m 1.40
CoreDijkstra and TreeNode 81423 0 0 18531 51.78m 1.71
CDTP Simple 55161 30938 26269 18524 55.45m 1.60
CDTP Simple Checking 72744 4837 15000 12210 49.68m 1.79
CDTP Waves 55140 0 26283 18531 35.54m 2.50

North Sea (100,000 nodes)
All Plain Dijkstra - - - - 89.22m -
All CoreDijkstra 100050 0 0 0 52.13m 1.71
CoreDijkstra and TreeNode 71421 0 0 28629 37,70m 2.37
CDTP Simple 36070 38302 35363 28617 39,79m 2.24
CDTP Simple Checking 55830 7684 23525 20695 33.84m 2.64
CDTP Waves 36043 0 35378 28629 19.72m 4.52

Table 4.2: Comparison of the schedulers on the different road networks with 100000 nodes

Table 4.2 contains the comparisons of the schedulers for the road networks. The least
speedup is always scored by the All CoreDijkstra Scheduler. This is due to the fact that
the CoreDijkstra distance vector algorithm is used by the other schedulers too, and the
All CoreDijkstra Scheduler is, except the All Plain Dijkstra Scheduler, the only one that

21

22 4. Experimental Evaluation

does not use any further optimizations. The speedup amounts between 1.21 for the New
York and 1.71 for the North Sea graph and can be attributed to the fact that 72% of the
nodes in the New York graph but only 36% of the North Sea graphs nodes are part of the
core and have a 2-core degree greater or equal than three.

The CoreDijkstra and TreeNode Scheduler is able to improve this by speeding up the
calculation of nodes in trees with the help of Lemma 2.2.4. The gained speedup varies
between 1.33 on the New York graph and 2.37 on the North Sea graph. The great difference
is due to the fact that only 9% of the nodes in the New York graph are part of the 1-shell,
in contrast to a faction of 29% in the North Sea graph.

The CDTP Simple Scheduler gains results comparable to those of the CoreDijkstra and
TreeNode Scheduler. This demonstrates that the calculation of 2-core path nodes with the
use of Lemma 2.2.7 has pros and cons. On the one side, PathNode is able to determine
distance vectors much faster than CoreDijkstra, on the other side, the overhead needed to
calculate the separators distance vectors can even increase the total calculation time.

Because the CDTP Simple Checking Scheduler only uses PathNode if this improves the
overall calculation time, its results are superior compared to those of the Default Scheduler
and the CoreDijkstra and TreeNode Scheduler. Its speedup varies between 1.36 on the
New York graph and 2.68 on the Ruhrpott graph.

The CDTP Waves Scheduler outperformed all of the other schedulers by using PathNode
for every node on a 2-core path and TreeNode for every 1-shell node without having to
make any recalculations like the CDTP Simple or the CDTP Simple Checking Scheduler.
Recall that it only has to store 100 concurrent trees at a time to achieve this. The great
variance of the speedup between 1.76 on the New York graph and 4.52 on the North Sea
graph demonstrates how much the values depend on the graph structure.

CoreDij. recalls p.Node t.Node runtime Spd.up
Rail Europe (30,000 nodes)

All Plain Dijkstra - - - - 6.95m -
All CoreDijkstra 30517 0 0 0 4.10m 1.70
CoreDijkstra and TreeNode 26504 0 0 4013 3.64m 1.91
CDTP Simple 10963 14318 15541 4013 3.57m 1.94
CDTP Simple Checking 15785 2646 10920 3812 2.61m 2.66
CDTP Waves 10963 0 15541 4013 1.60m 4.36

Station NY (13,000 nodes)
All Plain Dijkstra - - - - 27.90s -
All CoreDijkstra 13060 0 0 0 11.51s 2.42
CoreDijkstra and TreeNode 9606 0 0 3454 9.78s 2.85
CDTP Simple 3226 1780 6807 3027 5.92s 4.71
CDTP Simple Checking 4100 978 6005 2955 5.91s 4.72
CDTP Waves 2214 0 7392 3454 2.94s 9.49

Table 4.3: Comparison of the schedulers on the Station networks

The results of the experiments on the station graphs are listed in Table 4.3. Again,
the CDTP Waves Scheduler performed best and the All CoreDijkstra Scheduler worst.
Although the speedup of the CDTP Simple and the CoreDijkstra and TreeNode Scheduler
are quite similar on the Rail Europe graph, the CDTP Simple Scheduler outperforms
the CoreDijkstra and TreeNode Scheduler on the Station NY graph. This primarily arises
from the number of recalculations. On the Rail Europe graph, the number of recalculations
equals 47% of the total number of nodes in the graph, compared to only 14% of the number
of nodes on the Station NY graph. Also, the Station NY graph only has 17% 2-core nodes

22

4.4. Results 23

with a 2-core degree of at least three, and the Rail Europe Graph has 36%. Since the
number of concurrent distance vectors was set to 100 for both graphs, this also was an
advantage for the smaller Station NY graph. The very good speedups between 2.42 and
9.40 on the Station NY graph can be ascribed to the graph’s very low fraction of core
nodes with a 2-core degree of at least three.

CoreDij. recalls p.Node t.Node runtime Spd.up
Internet (28,000 nodes)

All Plain Dijkstra - - - - 9.07m -
All CoreDijkstra 27909 0 0 0 5.39m 1.68
CoreDijkstra and TreeNode 17541 0 0 10368 3.69m 2.46
CDTP Simple 6187 22112 11354 10368 4.79m 1.90
CDTP Simple Checking 17342 259 557 10010 2.93m 3.10
CDTP Waves 6187 0 11354 10368 1.87m 4.84

Table 4.4: Comparison of the schedulers on the Internet graph

The results of the experiments on the Internet graph are listed in Table 4.4. The facts
that the CDTP Simple Scheduler is outperformed by the CoreDijkstra and TreeNode
Scheduler and that the CDTP Waves Scheduler needs 1 100 distance vectors concurrently
stored, show that a good distance vector calculation schedule is crucial on this graph.
Nevertheless, 1.68 speedup reached by the All CoreDijkstra and the 4.85 reached by the
CDTP Waves Scheduler show that our techniques work quite well. As mentioned in Section
4.4.1, the Internet graph is the only instance where the precalculation times are of influence.
They amount 45s in total. If we substitute this from the time needed by the All Plain
Dijkstra Scheduler, the speedup of the CDTP Waves Scheduler only amounts 4.45.

CoreDij. recalls p.Node t.Node runtime Spd.up
Delauny (100,000 nodes)

All Plain Dijkstra - - - - 1.68h -
All CoreDijkstra 100000 0 0 0 1.68h 1.00
CoreDijkstra and TreeNode 100000 0 0 0 1.67h 1.01
CDTP Simple 100000 0 0 0 1.67h 1.01
CDTP Simple Checking 100000 0 0 0 1.68h 1.00
CDTP Waves 100000 0 0 0 1.68h 1.00

Table 4.5: Comparison of the schedulers on a Delauny graph

The results of the scheduler comparison on the Delauny graph are listed in Table 4.5 and
the results of the experiments on the Grid graph are listed in Table 4.6. As the graphs
do not contain any 1-shell or path nodes, CoreAPSP is not able to improve the running
time compared to a plain Dijkstra implementation, because it basically performs the same
computations. The small differences in running time are due to small measurement errors.

The results of the Unit Disc graph experiment are listed in Table 4.7 and are quite similar
to those on the Delauny graph. In the case of the CDTP Simple Scheduler, the pre- and
recalculations even lead to an increase of the total running time, since they outweigh the
gain obtained by the use of PathNode and TreeNode. The best speedup is again reached
by the CDTP Waves scheduler, and amounts 1.05 on the graph with an average degree
of 7 and only 1.01 on the graph with an average degree of 10. Note that the Unit Disc
10 graph’s fraction of 1-shell and path nodes is lower than the Unit Disc 7 graph’s. The
fact that the runtimes on the Unit Disc graphs are longer than on the Grid and Delauny
graphs, results from the bigger number of edges.

23

24 4. Experimental Evaluation

CoreDij. recalls p.Node t.Node runtime Spd.up
Grid (100,000 nodes)

All Plain Dijkstra - - - - 1.38h -
All CoreDijkstra 99856 0 0 0 1.38h 1.00
CoreDijkstra and TreeNode 99856 0 0 0 1.38h 1.00
CDTP Simple 99852 8 4 0 1.38h 1.00
CDTP Simple Checking 99856 0 0 0 1.38h 1.00
CDTP Waves 99852 0 4 0 1.38h 1.00

Table 4.6: Comparison of the schedulers on a Grid graph

CoreDij. recalls p.Node t.Node runtime Spd.up
UnitDisc 7 (100,000 nodes)

All Plain Dijkstra - - - - 2.26h -
All CoreDijkstra 99586 0 0 0 2.25h 1.00
CoreDijkstra and TreeNode 98806 0 0 780 2.24h 1.01
CDTP Simple 96523 3732 2283 780 2.28h 0.99
CDTP Simple Checking 98434 125 542 610 2.23h 1.01
CDTP Waves 96523 0 2283 780 2.16h 1.05

UnitDisc 10 (100,000 nodes)
All Plain Dijkstra - - - - 2.79h -
All CoreDijkstra 99977 0 0 0 2.79h 1.00
CoreDijkstra and TreeNode 99917 0 0 60 2.80h 1.00
CDTP Simple 99657 484 260 60 2.81h 0.99
CDTP Simple Checking 99905 8 26 46 2.79h 1.00
CDTP Waves 99657 0 260 60 2.77h 1.01

Table 4.7: Comparison of the schedulers on two Unit Disc graphs

4.4.4 Runtimes on variable sized graphs

This section evaluates the data gained from runtime experiments conducted on random
road networks of different size and on four networks with 300 000 nodes. The intention is
to test both the robustness of CoreAPSP’s speedup on road networks and as its potential
to speed up large instances. As the preceding section showed that the CDTP Waves
Scheduler is superior, the other schedulers have been ruled out.

The first experiment examined the robustness of the speedups. It was conducted on random
subgraphs of the European road network containing 5 000, 10 000, 50 000 and 100 000 nodes.
For each of theses sizes, 100 instances have been used in the test set. Refer to Section
4.3 for further information about their generation. Every graph was processed by the All
Plain Dijkstra Scheduler and the CDTP Waves Scheduler. The speedups of the CDTP
Waves Scheduler compared to the All Plain Dijkstra Scheduler have been determined for
every graph and are displayed in Figure 4.4.

The distribution of the speedup values is large. Although half the values are between 3
and 9, outliers between 1 and 21 appear. This again points out the fact that the speedup
depends on the structure of the graph. The larger the size of a graph is the less likely it is
that it has a very high or low fraction of core nodes with a 2-core degree of at least three
and the smaller is the quartile region.

The second experiment compares the running times of the All Plain Dijkstra Scheduler and
the CDTP Waves Scheduler on the New York, Ruhrpott, Texas and North Sea instances,

24

4.4. Results 25

5000 10000 50000 100000

5
10

15
20

Speedup distribution

Graph size (#nodes)

S
pe

ed
up

Figure 4.4: The CDTP Waves Scheduler’s speedup on random road networks

each with 5 000, 10 000, 50 000, 100 000 and 300 000 nodes. The results can be found in
Figure 4.5.

The results show that our techniques can cope with large graphs, as the speedups increase
with the number of nodes in the graph. The reason why this does not hold for the Texas
graph is, that the 300 000 nodes graph does not have as high fractions of 1-shell and path
nodes as the one with 100 000 nodes.

4.4.5 Runtimes with different numbers of concurrent distance vectors

In this section, the running times of the CDTP Waves Scheduler with different numbers of
concurrent distance vectors are examined on the Texas, North Sea, Ruhrpott, and Internet
graph.

The results on the road networks of Texas and North Sea are presented in Figure 4.6, the
results of Ruhrpott in Figure 4.7. The scheduler needed less then 20 concurrent distance
vectors to determine all shortest paths with less then 200 recalculations. Regarding the
simplicity of the CDTP Waves Scheduler, this shows that finding a good schedule is easy
on road networks. The high correlation of the running time and the number of recalls
display the fact that if TreeNode is used for every 1-shell node and PathNode for every
path node, the number of recalculations is the last crucial factor for short computation
times. The influence of cache effects was lower, but still existent. On the Texas graph,
the running times are different for 8 up to 20 concurrent distance vectors, despite the fact
that the number of recalls is always 0.

The high correlation of the running time and the number of recalls can also be noticed in
the results of the Internet graph (Figure 4.7), but the number of concurrent distance vectors
the CDTP Waves Scheduler needed to execute the calculations without recalls is higher
than on the road network instances. The big difference in the number of recalculations
between 1 000 and 1 100 concurrent distance vectors mirror the schedulers lack of ability to
handle nodes with many adjacent 2-core paths. If such a nodes is processed, all distance
vectors that are needed to calculate the nodes on the adjacent 2-core paths have to be
stored. A future task could be developing a scheduler that works like a depth first search
and thus does not have this weakness.

25

26 4. Experimental Evaluation

0 50000 100000 150000 200000 250000 300000

0
5

10
15

New York

Graph size (#nodes)

R
un

ni
ng

 ti
m

e
(h

ou
rs

)

Plan Dijkstra
Waves Scheduler

1.58
1.67

2.14

0 50000 100000 150000 200000 250000 300000

0
5

10
15

Rurhpott

Graph size (#nodes)

R
un

ni
ng

 ti
m

e
(h

ou
rs

)

Plan Dijkstra
Waves Scheduler

4.03 4.38

5.02

0 50000 100000 150000 200000 250000 300000

0
5

10
15

Texas

Graph size (#nodes)

R
un

ni
ng

 ti
m

e
(h

ou
rs

)

Plan Dijkstra
Waves Scheduler

2.26
2.5

2.32

0 50000 100000 150000 200000 250000 300000

0
5

10
15

North Sea

Graph size (#nodes)

R
un

ni
ng

 ti
m

e
(h

ou
rs

)
Plan Dijkstra
Waves Scheduler

4.75 4.52

4.08

Figure 4.5: Runtimes of All Plain Dijkstra and CDTP Waves on graphs of different size
and annotated speedups

Texas

4 6 8 10 12 14 16 18 20

#concurrent distance vectors

35
.8

36
.2

36
.6

37
.0

37
.4

37
.8

38
.2

ru
nt

im
e

(m
in

)

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00

#r
ec

al
ls

runtime
#recalls

North Sea

4 6 8 10 12 14 16 18 20

#concurrent distance vectors

20
.0

21
.0

22
.0

23
.0

24
.0

25
.0

ru
nt

im
e

(m
in

)

0
10

00
30

00
50

00
70

00
90

00
11

00
0

#r
ec

al
ls

runtime
#recalls

Figure 4.6: Runtimes using the CDTP Waves Scheduler on the Texas (100 000 nodes) and
North Sea (100 000 nodes) graphs

26

4.4. Results 27

Ruhrpott

4 6 8 10 12 14 16 18 20

#concurrent distance vectors

20
.5

21
.0

21
.5

22
.0

22
.5

23
.0

23
.5

24
.0

24
.5

ru
nt

im
e

(m
in

)

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00

#r
ec

al
ls

runtime
#recalls

Internet

200 400 600 800 1000 1200

#concurrent distance vectors

1.
9

2.
0

2.
1

2.
2

2.
3

2.
4

2.
5

2.
6

ru
nt

im
e

(m
in

)

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00

#r
ec

al
ls

runtime
#recalls

Figure 4.7: Runtimes using the CDTP Waves Scheduler on the Ruhrpott (100 000 nodes)
and Internet (30 000 nodes) graphs

27

28 4. Experimental Evaluation

28

5. Conclusion

This study thesis investigated possibilities to exploit structures common to road networks
during the shortest path calculations for all pairs. It includes two lemmas about shortest
paths leading into or out of an attached tree or a 2-core path region, stating that their
distance is the sum of the distance from the source to a separator and from this separator
to the target.

With CoreAPSP, an algorithm solving the The Linear Space All-Pairs Shortest-Paths
Problem based on techniques making use of the lemmas was given and evaluated. It could
be shown, that speedups up to 5 are possible on road networks, if the fraction of 1-shell
and path nodes is high enough. Another result of the experiments is, that the number
of concurrently stored distance vectors and the schedule of their calculation is crucial to
the algorithms running time. It was also shown, that the number of concurrently stored
distance vectors needed for a schedule without recalculations is low on road networks.

Regarding the use of CoreAPSP on other types of graphs, the results have been diverse.
Since the speedup techniques are based on graph structures that can only be found in
sparse graphs, it does not decrease running times on dense graphs or graphs where every
node has a degree of at least three. It was also shown, that the CDTP Waves Scheduler
used by CoreAPSP has difficulties finding a good schedule on problem instances like the
Internet graph.

Further work could be put into the development of new schedulers or the extension of the
pool of distance vector calculation algorithms used by them. In this context, a Dynamic
Dijkstra or an algorithm for nodes with a 2-core degree of three or four are imaginable.
Also, further fine tuning could be applied to CoreAPSP and the idea of the 2-core paths
could be extended to regions with nodes having 2-core degrees greater then two. The size
of the region would not matter, the important thing is, that only few edges lead into it and
only few out of it. In this case, the idea of shortcuts could also be extended to shortcuts
skipping such regions.

A theoretical question could be, how difficult it is to find a perfect schedule and how much
concurrent trees will at least be needed for it.

29

30 5. Conclusion

30

Bibliography

[Bol84] B. Bollobás, “The Evolution of Sparse Graphs,” in Cambridge Combinatorial
Conference in honor of Paul Erdos, ser. Graph Theory and Combinatorics. Aca-
demic Press, 1984, pp. 35–57.

[Dia69] R. B. Dial, “Algorithm 360: Shortest-Path Forest with Topological Ordering [H],”
Communications of the ACM, vol. 12, no. 11, pp. 632–633, 1969.

[Dij59] E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs,” Nu-
merische Mathematik, vol. 1, pp. 269–271, 1959.

[Fee10] G. T. Feed, “http://code.google.com/p/googletransitdatafeed/,” 2010.

[Gab85] H. N. Gabow, “Scaling Algorithms for Network Problems,” Journal of Computer
and System Sciences, vol. 31, no. 2, pp. 148–168, September 1985.

[Gol95] A. V. Goldberg, “Scaling Algorithms for the Shortest Paths Problem,” SIAM
Journal on Computing, vol. 24, no. 3, pp. 494–504, 1995.

[GT89] H. N. Gabow and R. Tarjan, “Faster Scaling Algorithms for Network Problems,”
SIAM Journal on Computing, vol. 18, no. 5, pp. 1013–1036, 1989.

[HaC08] HaCon - Ingenieurgesellschaft mbH, “http://www.hacon.de,” 2008.

[Hag00] T. Hagerup, “Improved shortest paths on the word RAM,” in Proceedings of the
27th International Symposium on Algorithms and Computation (ISAAC’00), ser.
Lecture Notes in Computer Science, 2000, pp. 61–72.

[Joh77] D. B. Johnson, “Efficient Algorithms for Shortest Paths in Sparse Networks,”
Journal of the ACM, vol. 24, no. 1, pp. 1–13, January 1977.

[KKP93] D. R. Karger, D. Koller, and S. Phillips,“Finding the Hidden Path: Time Bounds
for All-Pairs Shortest Paths,” SIAM Journal on Computing, vol. 22, no. 6, pp.
1117–1349, 1993.

[McG95] C. C. McGeoch, “All-pairs shortest paths and the essential subgraph,” Algorith-
mica, vol. 13, no. 5, pp. 426–441, May 1995.

[Pet04] S. Pettie, “A new approach to all-pairs shortest paths on real-weighted graphs,”
Theoretical Computer Science, vol. 312, no. 1, pp. 47–74, January 2004.

[PSWZ07] E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis, “Efficient Models for
Timetable Information in Public Transportation Systems,” ACM Journal of Ex-
perimental Algorithmics, vol. 12, p. Article 2.4, 2007.

[PTV08] PTV AG - Planung Transport Verkehr, “http://www.ptv.de,” 2008.

[Sch08] D. Schultes, “Route Planning in Road Networks,”Ph.D. dissertation, Universität
Karlsruhe (TH), Fakultät für Informatik, February 2008, http://algo2.iti.uka.de/
schultes/hwy/schultes diss.pdf.

[SLL02] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library: User Guide
and Reference Manual. Addison-Wesley, 2002.

31

http://code.google.com/p/googletransitdatafeed/
http://www.hacon.de
http://www.ptv.de
http://algo2.iti.uka.de/schultes/hwy/schultes_diss.pdf
http://algo2.iti.uka.de/schultes/hwy/schultes_diss.pdf

32 Bibliography

[TF87] R. E. Tarjan and M. L. Fredman, “Fibonacci heaps and their uses in improved
network optimization algorithms,” Journal of the ACM, vol. 34, no. 3, pp. 596–
615, July 1987.

[Tho04] M. Thorup, “Integer Priority Queues with Decrease Key in Constant Time and
the Single Source Shortest Paths Problem,” Journal of Computer and System
Sciences, vol. 69, no. 3, pp. 330–353, 2004.

[tig10] “http://www.census.gov/geo/www/tiger/,” 2010.

[Uni08] University of Oregon Routeviews Project, “http://www.routeviews.org/,” 2008.

[Zwi01] U. Zwick, “Exact and approximate distances in graphs - a survey,” in Proceedings
of the 9th Annual European Symposium on Algorithms (ESA’01), ser. Lecture
Notes in Computer Science, vol. 2161, 2001, pp. 33–48.

32

http://www.census.gov/geo/www/tiger/
http://www.routeviews.org/

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Related work

	2 Basics
	2.1 Preliminaries
	2.2 The 2-core
	2.3 The Linear Space All-Pairs Shortest-Paths Problem
	2.4 A simple solution

	3 Algorithm
	3.1 CoreAPSP
	3.2 Stage 1: 2-core extraction
	3.3 Stage 2: Rebuilding the graph and distance precalculations
	3.4 The distance vector calculation algorithms
	3.4.1 CoreDijkstra
	3.4.2 treeNode
	3.4.3 pathNode

	3.5 Stage 3: The scheduler

	4 Experimental Evaluation
	4.1 Hardware
	4.2 The implementation
	4.3 The Testset
	4.4 Results
	4.4.1 Precalculation time
	4.4.2 Graph structure
	4.4.3 The Schedulers
	4.4.4 Runtimes on variable sized graphs
	4.4.5 Runtimes with different numbers of concurrent distance vectors

	5 Conclusion
	Bibliography

