
Shortcut Removal On SHARC

Edith Brunel

September 6, 2009

Student Research Project

Universität Karlsruhe (TH), 76128 Karlsruhe, Germany

Supervised by D. Delling, Prof. Dr. Dorothea Wagner

1

Contents

1 Introduction 3

2 Preliminaries 6

2.1 SHARC-Routing . 7

2.2 Definitions . 8

3 Removing Shortcuts 10

4 Removal Strategies 12

4.1 Level Information . 12

4.2 Arc-Flags . 12

4.2.1 Number Of Set Flags 12

4.2.2 Level Of Set Flags . 13

4.2.3 Flag Cost Function . 13

4.3 Represented Path . 14

4.3.1 HopCount . 14

4.3.2 Max Degree Of Nodes on Path 14

4.3.3 Summed Degree Of Nodes on Path 15

4.3.4 Search Space Coning Coefficient 15

4.4 Combinations . 16

4.4.1 Weighting Function . 17

4.4.2 Precomputed Orders 17

5 Experimental Results 18

5.1 Individual Metrics . 19

5.1.1 Level Based . 19

5.1.2 Flag Based . 20

5.1.3 Path Based . 22

5.1.4 Comparison . 24

5.2 Combinations . 25

5.2.1 Node Level & Flag Cost 25

5.2.2 Node Level & Search Space Coning Coefficient 27

5.3 Best Results . 28

6 Conclusion 29

2

1 Introduction

Motivation. Shortest path computation between a given source s and tar-
get t is a classical problem in graph theory with a number of significant
real-world applications, namely route planning in transportation networks,
logistic planning and traffic simulation. The standard for this problem, Di-
jkstra’s algorithm, although running in O(m + nlogn), does not achieve suf-
ficiently fast query times for use on large datasets, such as continental-sized
road networks. A number of speed-up techniques exploiting specific proper-
ties of such networks have been developed, many of them relying on extensive
precomputation. Any such approach operates by preprocessing the network
data during an offline phase, where information is precalculated and stored
which later on helps to reduce the shortest path query times during the on-
line phase, when the actual path-finding algorithm is executed. While the
speed-up factors that can be achieved are enormous, space consumption for
the precomputed data is generally also very high, which hinders the appli-
cation on systems with limited storage space and memory, e.g. PDAs and
other handheld devices. Some of the most successful techniques following
this two-phase concept rely, amongst other methods, on enriching the graph
with additional shortcut edges, that enable the query to traverse long paths
while only having to relax a single edge. This student thesis attempts to re-
duce space overhead for one such speed-up technique in particular, SHARC-
Routing [BD09], by identifying and removing unnecessary shortcuts from the
preprocessing.

Related Work. An overview on shortest path speed-up methods in general
can be found in Engineering Route Planning Algorithms [DSSW09]. SHARC-
Routing is a unidirectional approach based on the combination of Arc-Flags
[HKMS09, Lau04] with techniques from Highway Hierarchies [SS06], which
utilizes arc-flag information and shortcuts, inserted into the graph during sev-
eral preprocessing steps, to greatly reduce the eventual query time. Another
student thesis, Arc-Flag Compression by A. Gemsa [Gem08], dealt with the
corresponding problem of minimizing space overhead on SHARC by reduc-
ing the number of retained unique arc-flag vectors via probabilistic methods,
i.e., hash functions, and various importance measures for the individual flags.
The paper Mobile Route Planning by P. Sanders, D. Schultes and C. Vetter
[SSV08] demonstrated compression techniques for the related Contraction
Hierarchies routing, an entirely shortcut-based approach, in particular with
regard to application on mobile devices.

3

Our Contribution. This student thesis presents a thorough examination
of the space reduction attainable by removing nonessential shortcuts on a
SHARC preprocessing while maintaining good query performance. This
might be especially interesting for the time-dependent variant of SHARC
[Del09], where space-intensive edge weight functions make storing additional
shortcuts particularly expensive.

The main idea here is, that not all shortcuts added during SHARC prepro-
cessing are of equal importance. Shortcuts which skip only one or two nodes
of low degree, or have almost no arc-flags set, are arguably less crucial to the
SHARC query than shortcuts representing long paths with many set flags
(c.f. figure 1).

u v

(a) A shortcut (u, v) representing a very
short path with low degree nodes. It can
be removed from the preprocessing with-
out much of an impact on query perfor-
mance.

u v

(b) Removing shortcuts like this one,
however, which represent long paths
with a lot of high degree nodes, will re-
sult in a severe increase of the search
space.

Figure 1: Two shortcuts in comparison.

By focusing on such unimportant shortcuts for removal, it is possible to keep
the incurred search space increase to a minimum. Since removing shortcuts
from the preprocessing can be done without any alteration to the actual
SHARC query algorithm, the additional computational effort introduced by
this method of space reduction is comparatively small.

We present a detailed experimental evaluation on how a shortcut’s specific
attributes, such as their head and tail node level, flag information and the
path they represent in the graph, affect its value for the SHARC query. It
turns out that, following an order of removal based solely on these properties,
about 30-40% of all shortcuts can be discarded without any noticeable impact
on query times.

Outline. Section 2 settles some necessary preliminaries, in particular the
fundamentals of SHARC routing and the introduction of basic terms and
definitions. A proof for correctness of the shortcut removal routine is given
in section 3. The main subject of this work are a number of weighting metrics
assessing a shortcut’s significance for the SHARC query. These are detailed

4

in section 4, grouped by the shortcut properties they are based on, namely
level of head and tail node, set arc-flags, and represented path. Subsequently,
several favourable combinations of these strategies are discussed. Section
5 provides an overview of the experiments conducted and test results. A
summary concludes this thesis in section 6.

5

2 Preliminaries

Let G = (V, E) be a simple, directed graph with node set V and edge set E.
An edge is denoted as (u, v) ∈ E with head node u and tail node v in V .

Multi-Level Arc-Flags Let C = {C0, C1, ..., Ck} be a family of sets in V .
C is called a partition of V , if each v ∈ V is contained in exactly one Ci. The
basic idea behind arc-flags, as detailed in [HKMS09] and [Lau04], is to apply
such a partition to the graph and precompute arc-flags for each edge that
indicate for which target cells the edge is relevant in a shortest path query.
A Dijkstra query then only has to relax edges that have the corresponding
flag for the cell the target node inhabits set, which greatly reduces the search
space. Note that as the search approaches its destination, more and more
edges are likely to have the relevant flag set, and once the target cell has
been reached the query has to take into account all edges again. This results
in a distinctive coning of the search space.

The multi-level arc-flag algorithm expands on the basic concept by em-
ploying a multi-level graph partition instead, i.e., a family of partitions
{C0, C1, ..., CL−1}, such that ∀l<L−1 C l

i ∈ C l ∃C l+1
j ∈ C l+1 : C l

i ⊆ C l+1
j ,

where L denotes the number of partition levels. The query algorithm then
considers lower level arc-flags when the top level target cell has been reached,
which counteracts the search space coning and makes speed-up possible for
the latter part of the query. Figure 2 gives an example of such a multi-level
arc-flag vector for the number of levels L = 4, with 8 top level cells and 4
cells on all lower levels.

0 1 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0flags

level 3 2 1 0

Figure 2: The multi-level arc-flag vector for an edge in a 4-level hierarchy.

Contraction SHARC adopts contraction from Highway Hierarchies, as in-
troduced in [SS06]. The graph is contracted by bypassing nodes iteratively
to reduce the hop count of shortest paths and thereby speed up the query.
When a node v is removed, for each pair of edges (u, v) and (v, w) that is
discarded a shortcut (u, w) is introduced. Note that not every such shortcut
may be necessary, as it is possible that a shorter path from u to w already
exists in the graph. If such a witness path is found the shortcut can safely
be discarded.

6

2.1 SHARC-Routing

By and large, the SHARC preprocessing routine is organized as follows:

To start off with, the input graph is trimmed down to its maximal node
induced subgraph of minimum node degree 2 (the 2-core). Any stripped
nodes (1-shell nodes) have their arc-flags assigned directly, and are reattached
after the last step of preprocessing. A multilevel partition is applied to the
remainder.

Subsequently, shortcuts are inserted into the graph as nodes are bypassed
in L iterations of a contraction routine, L being the number of partition
levels. During each iteration step of this routine, nodes are discarded until
no more pass the bypass criterion #shortcut ≤ c · (degin(n) + degout(n)),
where #shortcut is the prospective number of shortcuts to be inserted in
case node n is removed, and c a tunable parameter. Also, a node is never
bypassed if any shortcut with a hop number greater than h := 10 would
have to be added, or if any of its neighbouring nodes is not contained in the
same partition cell. The last iteration additionally adds boundary shortcuts
between boundary nodes, i.e., nodes with at least one neighbour in a different
cell.

During contraction, arc-flags are set tentatively for the introduced shortcuts
and all edges on their respective represented paths. For every shortcut (u, v)
the edges it skips have all flags set to true, except their first passed edge, i.
e., the edge with tail node u. Such edges are only used in queries targeting
their own cell and therefore have just this one flag set. The shortcut itself
has the flag corresponding to its own cell set to false. A small example is
given in figure 3.

u v

01000

11111

u1 u2 u3

- 0 - - -

11111

11
11

1

Figure 3: The first edge on shortcut (u, v)’s represented path has only
the flag corresponding to its own cell set to true, while for the other edges
on the path all flags are set. On the shortcut itself, the flag for its own
cell is set to false.

7

A trailing edge reduction routine picks out any edges with no set arc-flags,
which are redundant since they are not part of any shortest path, and elimi-
nates them. Lastly, a refinement step enhances the arc-flags assigned by the
contraction routine.

Note that this is a very abridged summary meant only for the introduction
of the basic premise and terms this thesis is based on. For a more detailed
explanation refer to [BD09].

2.2 Definitions

Node Level. The level l(u) of a node u is defined by the step of the
contraction routine it is bypassed in. 1-shell nodes are assigned level 0,
nodes bypassed during step i of the contraction routine have level i . The
maximum level L + 1 is assumed by nodes which are never bypassed.

Arc Flag Vector. Given an edge (u, v), let AF (u, v) denote the n-bit arc-
flag vector of said edge and Fi(u, v), i ∈ {1, ..., n} represent the individual
flags.

Fi(u, v) =

{
1, if the flag is set
0, otherwise

,

where a higher value of i corresponds to a higher flag level l(Fi(u, v)). The
level of an arc-flag is defined as the partition level its corresponding cell
belongs to and ranges from 1 to L. |AF (u, v)| denotes the total number of
set flags.

Represented Path. The shortcut path (u =: u0, u1, ..., uk := v) of length
k currently represented by a shortcut (u, v) in the graph is denoted as P(u,v).
It may contain other shortcuts that have not been removed yet, as opposed
to the completely expanded path. A small example for the represented path
of a shortcut is given in figure 4.

8

u2

u1

u3 u4 u5

u6 u7 u8 u9

u v

Figure 4: The currently represented path of shortcut (u, v) is marked in
red. Shortcut (u1, u6) has already been removed, while shortcut (u7, u8)
still remains in the graph, and is therefore part of (u, v)’s represented path.

9

3 Removing Shortcuts

As mentioned in the preliminaries, every shortcut represents a unique path in
the graph, and when it is discarded the query can simply be rerouted along
this way. A shortcut can be safely removed from the preprocessing, if all its
set arc-flags are propagated to the first edge of their currently represented
path. That this is sufficient to maintain correctness of the SHARC query is
proven by the following theorem.

Theorem 3.1. Given an arbitrary shortcut (u, v) with arc-flag vector AF (u, v)
and represented path P(u,v) = (u =: u0, u1, ..., uk := v). Propagating all arc-
flags set on (u, v) to the first passed edge (u, u1) via AF (u, u1) = AF (u, u1)∨
AF (u, v) allows removal of the shortcut from the preprocessing without af-
fecting correctness of SHARC.

Proof. Consider any shortest path from source s to target t that contains
(u, v). When (u, v) is removed, the path (s, ..., u, u1, .., t) can be traversed by
the SHARC query instead if the arc-flags for t are set on all path edges. For
the subpath (s, .., u) this is given by definition, since SHARC is correct and
the flags have not changed for any of its edges. The same holds true for the
subpath (u1, .., t), because SHARC does not permit negative edge weights
and (u, v) therefore can’t be part of it. Lastly, the correct flags are set for
(u, u1) as well, as these must have been set on (u, v) and therefore have been
inherited by (u, u1) during propagation.

An example for the flag propagation is given in figure 5. This principle was
introduced in [BD09], where a stripped version of SHARC was presented
that disposed of shortcuts entirely. However, stripping all shortcuts from
the preprocessing results in a significant coning of the search space, and
consequently slows down the query considerably.

The main focus in the following is therefore on finding a better trade-off be-
tween space consumption and query performance by estimating a shortcut’s
importance for the eventual query and removing the ones deemed unimpor-
tant first. This will be the topic of the next chapter.

10

u v

01000

01100 01101

01
11

1

u1 u2 uk−2 uk−1

01100

u v

01100

01100 01101

01
11

1

u1 u2 uk−2 uk−1

Figure 5: After the shortcut (u, v) is discarded, all its set arc-flags are
propagated to the first edge on its represented path, (u, u1).

11

4 Removal Strategies

This section introduces various heuristics to assess the impact a shortcut’s
removal from the graph might have on the SHARC query. All of these are
based on specific shortcut properties, in particular the level of its head and
tail node, set arc-flags and represented path. Since the removal of a short-
cut might affect the properties of any shortcuts remaining in the graph, the
order of removal is relevant. Shortcuts are therefore first assigned an evalu-
ation value by the metric functions and then inserted into a priority queue,
which allows for correct updating of the remaining keys whenever a shortcut
is discarded. Upon removal of a shortcut from the graph, its set arc-flags are
inherited by the first edge on its current represented path, which suffices to
keep queries correct (c.f. section 3). The metrics presented in the following
are organized into three large categories according to the abovementioned
shortcut attributes they operate on, i.e., level information, arc-flags and rep-
resented path.

4.1 Level Information

A shortcut’s evaluation value is defined by the level of its head or tail node, re-
spectively, i.e., by the functions levelstart node(u, v) = l(u) and levelend node(u, v) =
l(v) for a shortcut (u, v). High level shortcuts can be considered more impor-
tant for the query, as they are introduced into the hierarchy at a later point
and might therefore be used more frequently, especially during long range
queries. They may bridge a longer distance as well.

4.2 Arc-Flags

The four evaluation strategies presented in this subsection all take into ac-
count a shortcut’s arc-flag vector. Since arc-flags are responsible for the
major part of the speed-up achieved by SHARC, the number and level of a
shortcut’s set arc flags might give a good indication of its importance for the
query.

4.2.1 Number Of Set Flags

This measure counts the number of set arc-flags on the shortcut. Each set
flag is rated at a value of one, the sum over all set flags on a shortcut makes

12

up its final value. It is denominated as

numset flags = |AF (u, v)| =
n∑

i=1

Fi(u, v)

A shortcut with many set flags might be relevant for more queries than
one with barely any flags set. Note that a shortcut’s value may have to
be updated whenever it happens to be the first passed edge of a shortcut
removed at an earlier point, as the propagation might set additional flags.
This applies for all subsequent flag-based metrics as well.

4.2.2 Level Of Set Flags

A shortcut is assigned the maximal level of any of its set flags as key value,
more specifically:

max levelset flags = max
i∈{1,..,n}

(l(Fi(u, v)))

Set high level flags indicate a shortcut may skip a long distance. Also, a
SHARC query usually climbs up to the top level of the hierarchy very quickly,
and only descends once it has reached the target supercell. Hence, shortcuts
with no set top level flags might not be relevant for as many queries.

4.2.3 Flag Cost Function

The flag cost function costset flags(u, v) is a combination of the previous two
metrics. Each flag Fi(u, v) is attributed a function value costlevel(l(Fi(u, v)))
based on it’s level, with the intention that high level flags are of greater
importance. The final flag cost value for a shortcut is then comprised of
their sum:

costset flags(u, v) =
n∑

i=1

costlevel(l(Fi(u, v)))

Figure 6 gives an example for costset flags with the level cost function costlevel =
2i.

0 1 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0

costs

flags

8 4 2 1

levels 3 2 1 0

Figure 6: An example for the flag cost function with costlevel = 2i. The
shortcut’s final value is costset flags(u, v) = 2 ∗ 8 + 2 ∗ 4 + 2 ∗ 2 + 1 ∗ 1 = 29.

13

Region Distance. Instead of relying solely on the level of a set flag for
evaluation, it might be beneficial for the costlevel function to also incorporate

Figure 7: Region
Distance Approxi-
mation.

a measure for the relative distance of a set flag’s cor-
responding cell from the cell the shortcut’s start node
inhabits. Set flags for distant cells might indicate a
shortcut’s importance for long range queries in particu-
lar. Since the computation of exact cell distances is rather
complex, this measure has to settle for an approximation.
For each top level cell a representing node is picked at
random and distances between these representing nodes
serve as an estimate. Furthermore, the region distance
information is only used in the weighting of highest level
flags, since these are considered the most important and
usually make up the major part of an arc-flag vector.

4.3 Represented Path

This final batch of removal strategies evaluates the path P(u,v) = (u =:
u0, u1, ..., uk := v) represented by a shortcut (u, v) in the graph. A short-
cut’s represented path might provide a precise estimate on the search space
coning its removal entails, based on path’s length and the degree of the nodes
it contains.

4.3.1 HopCount

A shortcut’s hop number is defined as the length of its represented path. The
corresponding evaluation function is denoted as numhops(u, v). Shortcuts
with a high hop count might reduce the number of hops on shortest paths,
and thereby speed up the query. Note that whenever a shortcut is removed,
the evaluation value of all shortcuts whose represented path it was part of
will increase, and consequently has to be updated.

4.3.2 Max Degree Of Nodes on Path

This metric values the maximal degree maxpath degree = maxi∈{1,...,k−1}(d(ui))
of any node ui on the represented path, excluding start and end node. A large
node degree on the path indicates the shortest path query might cone more
in case the shortcut is discarded, as it usually has to consider all outgoing
edges of the nodes it reaches.

14

Correct updates for this term introduce some computational overhead, since
a remaining shortcut’s key in the queue might

• increase, if a removed shortcut was part of its represented path

• decrease, if a removed shortcut was incident to any of its path nodes,
excepting start and end node

Therefore, on large graphs, a ’lazy’ variant, which only updates shortcut
values on the fly when they are removed from the queue, might be preferable.
While this function can correct the queue key only in case of an increase, and
is therefore no longer correct, it speeds things up significantly.

u0 = u

u1 u2 u3 u4

u5 = v

Figure 8: An example for maxpath degree updates. Removal of the short-
cut marked in green will entail an increase of shorcut (u, v)’s key, while
discarding the red edge will result in a key decrease.

4.3.3 Summed Degree Of Nodes on Path

This metric gives a rough indication of the search space increase induced by
a shortcut’s removal, and combines the two preceding measures as follows:
For each node ui on the represented path, excepting start and end node,
the node degree d(ui) is computed. The key value is then determined by
sumpath degree =

∑k−1
i=1 d(ui), the sum over all degrees. For updating, conse-

quently, the same as for the maxpath degree function applies.

4.3.4 Search Space Coning Coefficient

Given a shortcut (u, v) with arc-flag vector AF (u, v), number of set flags
|AF (u, v)| and represented path P(u,v) = (u =: u0, u1, ..., uk := v) of length

15

k, the search space coning coefficient is defined as:

sscc(u, v) =
k−1∑
i=1

(
∑

(ui,w)∈E
w 6=ui+1

costflags(AF (ui, w) ∧ AF (u, w))),

where costflags denotes the flag cost function introduced in 4.2.3. The in-
tention here is that when a shortcut is discarded, a SHARC query will only
consider alternate edges which have some of the same flags set as the short-
cut. This metric therefore provides a more exact estimate on the search
space increase than the simpler sumpath degree function, which does not con-
sider arc-flags at all.

u0 = u

u1 u2 u3 u4

u5 = v

Figure 9: An example for the sscc metric. Only the edges marked red
and the arc-flags set on shortcut (u, v) influence the computation of the
evaluation value sscc(u, v).

However, calculation and updates are more complex. A shortcut’s queue
value may

• increase, if

a removed shortcut was part of its represented path, or

a removed shortcut’s first passed edge was incident to any of its path
nodes, or

a removed shortcut’s first passed edge was the shortcut itself.

• decrease, if a removed shortcut was incident to any of its path nodes

For ’lazy’ updates the same drawbacks and advantages as before apply.

4.4 Combinations

As each group of introduced metrics rate disjoint aspects of a shortcut, a
weighted combination of the best performing functions in each category might

16

prove advantageous. While the most straightforward approach is a simple lin-
ear combination of the individual factors, scaling and computation time pose
significant problems. Therefore, an alternate solution is introduced in the
following, which might be preferable, especially for the more computation-
intensive metrics.

4.4.1 Weighting Function

Scale and range of the individual metrics’s evaluation values differ widely.
Moreover, no upper bound is known beforehand for any of the path based
measures, since these increase (and decrease) unpredictably as more and
more incidental shortcuts are discarded. This holds for the lazy and cor-
rect update strategies alike. Hence, scaling the individual function’s results
down to a common domain for a weighted evaluation function to operate on
brings about considerable computational overhead, as well as unavoidable
inaccuracies in the end result.

4.4.2 Precomputed Orders

The abovementioned drawbacks suggest a different approach, namely pre-
computing an order of removal on the set of shortcuts for each basic metric,
and subsequently weighting on these orders instead of directly on the func-
tions. However, this method does not allow for any reasonable updates of the
combinate’s key value at all, which is its predominant drawback. For each
individual order, at least, correct updates are possible, especially since they
only have to be computed once on each graph. This method is consequently
significantly faster for the more complex metrics.

17

5 Experimental Results

This section provides an experimental survey on the performance of all in-
troduced shortcut removal strategies, individually and in combination.

Setup. All experiments were conducted using one core of an AMD Opteron
2218 clocked at 2.6 GHz, on a testing system with 16 GB of RAM running
SUSE Linux 11.1. The implementation of the shortcut removal routine was
written in C++ and compiled with gcc 4.3.2, using optimization level 3.

Methodology. A metric’s quality is judged based on the resulting increase
in the amount of nodes settled by the SHARC query (i.e., the number of nodes
removed from the Dijkstra’s priority queue), and is normalised over the basis
of the unmodified preprocessing. All results are depicted on a logarithmic
scale, with the percentage of removed shortcuts on the x-axis and incurred
scale factor of settled nodes on the y-axis.

Rating based on the average number of settled nodes during multiple queries,
instead of their actual runtime, ensures the results are hardware-independent.
This average is computed over 10000 random shortest path queries, which are
executed at a fixed step of every 5% removed shortcuts (1% where stated).

Input. The standard input for all comparative tests is a SHARC prepro-
cessing for the road network of Western Europe. More specifically, the gen-
erous variant, i.e., with arc-flags computation on all levels. For more details,
in particular with regard to the differences between economical and generous
SHARC, refer to [BD09]. Additional information on all studied preprocess-
ings is listed in Table 1, in particular the number of shortcuts contained and
the partitioning scheme.

preprocessing #nodes #edges #shortcuts partitioning
gen. SHARC Europe 18 010 173 53 311 151 12 168 696 4-4-4-4-8-104
eco. SHARC Europe 18 010 173 53 365 407 12 222 952 4-4-4-4-8-104
gen. SHARC Germany 4 692 091 13 414 319 2 722 029 4-4-4-4-112
eco. SHARC Germany 4 692 091 13 426 252 2 733 962 4-4-4-4-112

Table 1: SHARC preprocessing properties.

18

5.1 Individual Metrics

The following gives an overview on the relative performance of all metrics per
category, as well as an account on which ones are relevant for combinations.

5.1.1 Level Based

By trend, it appears more beneficial to remove ’descending’ shortcuts, i.e.,
those leading from high level to low level nodes, before touching the ’ascend-
ing’ ones, since a long range SHARC query usually ascends quickly to a high
level in the hierarchy and descends only very late. However, weighting the
end node level more heavily than the start node level actually has no reliable
positive effect (c.f. figure 10), as this makes it possible for shortcuts ’ascend-
ing’ to a high level to be removed ahead of one ’descending’ from an even
higher level.

0 20 40 60 80 100

1
2

5
10

20
50

20
0

removed shortcuts [%]

se
ttl

ed
 n

od
es

 [s
ca

le
 fa

ct
or

]

1level start node ++ 1level end node
2level start node ++ 3level end node
3level start node ++ 2level end node

Figure 10: Weighting of start and end node level.

Therefore, in combinations, start and end node level are weighted with equal
factors and subsequently treated as a singular shortcut level metric. On
the generous SHARC preprocessing of Western Europe, this metric by itself
allows for the removal of about 35% of all shortcuts without any impact on
query performance, and of about 65% at an increase of settled nodes by only
factor two.

Results for other preprocessings are given in table 2. While the overall
trend remains the same, discarding shortcuts from the economical variant

19

of SHARC generally impairs query performance to a much higher degree
than is the case for the generous preprocessings. This may be mostly due
the fact that the arc-flags set by economical SHARC are less accurate, and
consequently the contribution of shortcuts to the speed-up is comparatively
larger.

preprocessing
removed shortcuts

0% 20% 40% 60% 70% 80%
gen. SHARC Europe 818 855 888 1 261 2 529 6 772
eco. SHARC Europe 945 1 059 1 173 2 068 5 162 15 850
gen. SHARC Germany 544 606 652 1 235 3 186 5 725
eco. SHARC Germany 623 832 949 2 392 7 170 14 213

Table 2: Settled nodes for the node level metric on different preprocess-
ings.

5.1.2 Flag Based

In Figure 11, the effect of different costlevel functions on the flag cost metric
is displayed. Overall, rating the flag level l exponentially provides the best
results.

0 20 40 60 80 100

1
2

5
10

20
50

20
0

removed shortcuts [%]

se
ttl

ed
 n

od
es

 [s
ca

le
 fa

ct
or

]

cost level == 1
cost level == 2((2i))

cost level == 2i

cost level == i

Figure 11: Different costlevel functions for the flag cost metric.

The exponential function with base two, costlevel(l) = 2l, is subsequently used

20

as a norm (in particular for the sscc metric), since faster growing exponential
functions, e.g. costlevel(l) = 3l and costlevel(l) = 22l, offer no noteworthy
improvement.

Including the region distance approximation in the costlevel function can fur-
ther improve the flag cost metric’s results slightly, as can be seen in table 3
for costlevel(l) = 2l, and distance values of top level flags scaled to the range
[0, costlevel(L)− 1].

preprocessing
removed shortcuts

0% 20% 30% 40% 50% 60%

gen. SHARC Eur.
basic 818 830 867 1 245 12 438 1 495 730
dist. 818 830 866 1 174 12 426 1 439 640

Table 3: costset flags with and without region information.

Figure 12 compares all three flag based metrics on a logarithmic scale. The
max levelset flags metric actually surpasses the costset flags function (with
costlevel(l) = 2l using region distance estimate) after about half the shortcuts
have been removed. In the relevant section, however, the flag cost metric
clearly outperforms both its incorporated functions.

0 20 40 60 80 100

1
2

5
10

20
50

20
0

removed shortcuts [%]

se
ttl

ed
 n

od
es

 [s
ca

le
 fa

ct
or

]

cost set flags
max level set flags
sum set flags

Figure 12: The three flag based metrics in comparison.

On the whole, when using the costset flags metric about 40-45% of all short-
cuts can be discarded at an increase in settled nodes by factor two. Table 4
shows the performance of the costset flags metric on all preprocessings, which

21

is somewhat worse for Germany than for Europe, and deteriorates notably
for the economical variants. In particular on Germany, where the removal of
only 30% of the shortcuts already doubles settled nodes for the query.

preprocessing
removed shortcuts

0% 20% 30% 40% 50% 60%
gen. SHARC Europe 818 830 866 1 174 12 426 1 439 640
eco. SHARC Europe 945 1 076 1 323 2 263 14 489 2 165 150
gen. SHARC Germany 544 563 679 1 229 61 036 445 827
eco. SHARC Germany 623 858 1 313 2 245 75 343 731 919

Table 4: costset flags on different preprocessings.

These results are significantly worse than for the node level metric, which
allowed for the removal of an additional 15% of the shortcuts at the same
penalty.

5.1.3 Path Based

It turns out that the ’lazy’ update strategy actually achieves better results
than the correct one for the sumpath degree metric and, to a much lesser degree,
for the sscc function (c.f. Figure 13). This may be largely due to the fact that
the removal of an edge incident to one of a shortcut’s path nodes may lead
to a decrease of this shortcut’s key value for both functions, when it actually
indicates an increase of the search space in case the shortcut is discarded.
Since the ’lazy’ variant only acknowledges key increases and ignores decreases
completely, it amends this somewhat. The effect is further mitigated for the
sscc metric, since all flags of a shortcut are propagated to its first passed
edge when it is removed, and the decrease in value is therefore considerably
smaller (i.e., the original costset flags value of this first passed edge, which
should not have many flags set).

Note that the region distance approximation is not applied for the costset flags

function used by the sscc metric, as it has no noticeable impact on the end
results and slows down computation.

22

0 20 40 60 80 100

1
2

5
10

20
50

20
0

removed shortcuts [%]

se
ttl

ed
 n

od
es

 [s
ca

le
 fa

ct
or

]
max path degrees correct
max path degrees lazy
sscc correct
sscc lazy

Figure 13: Lazy and correct updates for sumpath degree and the search
space coning coefficient in comparison.

A comparison of all path based metrics is given in Figure 14. As is to be
expected, the advanced sscc metric (using level weight function costlevel = 2i

without region distance approximation and lazy update strategy) outper-
forms the simpler path based measures by far. Also, it shows some improve-
ment over the costset flags metric, albeit not in the relevant section, as it only
allows for the removal of about 35-40% of the shortcuts before the average
amount of settled nodes increases by factor two.

0 20 40 60 80 100

1
2

5
10

20
50

20
0

removed shortcuts [%]

se
ttl

ed
 n

od
es

 [s
ca

le
 fa

ct
or

]

max path degrees
num hops

sscc
sum path degrees

Figure 14: All path based metrics on a large scale

23

As is shown in table 5, the performance of the search space coning coefficient
on other preprocessings is similar, although notably worse for the economical
variants. The results are slightly better for Europe than for Germany.

preprocessing
removed shortcuts

0% 20% 30% 40% 50% 60%
gen. SHARC Europe 818 906 960 1 512 11 603 169 657
eco. SHARC Europe 945 1 158 1 450 3 006 19 233 516 761
gen. SHARC Germany 544 616 773 2 149 14 352 96 194
eco. SHARC Germany 623 906 1 414 3 422 31 135 217 813

Table 5: The sscc metric on different preprocessings.

5.1.4 Comparison

As can be seen from figure 15, the shortcut level metric outperforms all
other measures by far, while also being the simplest and least computation
intensive. It generally allows for the removal of about 15-20% more shortcuts
than the best performing flag and path based metrics.

0 20 40 60 80 100

1
2

5
10

20
50

20
0

removed shortcuts [%]

se
ttl

ed
 n

od
es

 [s
ca

le
 fa

ct
or

]

costset flags

levelstart node ++ levelend node
sscc

Figure 15: The best metrics of each category

It is also notable that, while the search space coning coefficient does manage
to surpass it eventually, the flag cost function delivers arguably better results
in the most relevant section.

24

5.2 Combinations

Since the node level metric showed the best performance, all of the combi-
nations presented herein are aimed at improving this heuristic even further.

5.2.1 Node Level & Flag Cost

As stated before, the flag cost metric with costlevel(l) = 2l and region distance
information for top level flags is used. Figure 16 shows the best results for
a weighted combination of the precomputed orders for costset flags and the
node level metric. The optimum is reached by a ratio of about 4:1, and
manages to improve the shortcut level order metric somewhat.

0 20 40 60 80 100

1
2

5
10

20
50

20
0

removed shortcuts [%]

se
ttl

ed
 n

od
es

 [s
ca

le
 fa

ct
or

]

1level start node ++ 1level end node ((order))
3level start node ++ 3level end node ++ 1cost set flags ((order))
4level start node ++ 4level end node ++ 1cost set flags ((order))

Figure 16: Order based combination of shortcut level and flag cost metric

For direct weighting, the domains of the levelstart node and levelend node met-
rics are each scaled to the maximum of the costsetflags function. The results
(c.f. figure 17) are more impressive than for the order based combination. At
a ratio of 5:1, the weighted evaluation function performs much better than
the shortcut level metric by itself, and allows for the removal of more than
70% of all shortcuts before an increase of settled nodes by factor 2.

25

0 20 40 60 80 100

1
2

5
10

20
50

20
0

removed shortcuts [%]

se
ttl

ed
 n

od
es

 [s
ca

le
 fa

ct
or

]
1level start node ++ 1level end node ((scaled))
4level start node ++ 4level end node ++ 1cost set flags ((scaled))
5level start node ++ 5level end node ++ 1cost set flags ((scaled))

Figure 17: Direct combination of shortcut level and flag cost metric

Table 6 lists the results for order based and direct combination of the node
level and flag cost metrics on other preprocessings. The improvement is
notable for both the economical and generous variants alike (c.f. section
5.1.1, table 2 for the results achieved by the node level metric on its own),
although the performance on the preprocessing for Germany is significantly
worse than on Europe.

preprocessing
removed shortcuts

0% 20% 40% 60% 70% 80%

gen. SHARC Eur.
scaled (5:1) 818 837 897 1 216 1 649 3 748
order (4:1) 818 849 902 1 201 1 785 3 600

eco. SHARC Eur.
scaled (5:1) 945 1 033 1 328 2 500 3 483 10 073
order (4:1) 945 1 051 1 242 1 990 3 844 10 018

gen. SHARC Ger.
scaled (5:1) 544 570 647 1 108 1 927 4 786
order (4:1) 544 601 654 1 135 1 874 4 814

eco. SHARC Ger.
scaled (5:1) 623 778 931 2 152 5 209 10 034
order (4:1) 623 826 1 001 2 232 4 888 10 378

Table 6: Node level and flagcost combination results on different prepro-
cessings.

26

5.2.2 Node Level & Search Space Coning Coefficient

Order based combination of the node level and sscc metrics did not turn out
well in comparison (c.f. figure 18). Factoring in the sscc order leads only to
a very slight improvement in the most interesting section, which is, however,
barely noticeable on a large scale.

0 20 40 60 80 100

1
2

5
10

20
50

20
0

removed shortcuts [%]

se
ttl

ed
 n

od
es

 [s
ca

le
 fa

ct
or

]

1level start node ++ 1level end node ((order))
4level start node ++ 4level end node ++ 1sscc ((order))
8level start node ++ 8level end node ++ 1sscc ((order))

Figure 18: Order based combination of shortcut level and sscc metric

The results grow drastically worse over the 85-90% marks, where the combi-
nate’s performance declines more rapidly then the node level metric’s on its
own.

With direct combination slightly better results can be achieved (c.f. figure
19). The node level metrics’ domains are here scaled to a precomputed
maximum of the search space coning coefficient. The improvement is only
notable after settled nodes have already increased by factor five, however,
and therefore does not rival the results achieved by combination with the
flag cost function.

27

0 20 40 60 80 100

1
2

5
10

20
50

20
0

removed shortcuts [%]

se
ttl

ed
 n

od
es

 [s
ca

le
 fa

ct
or

]
1level start node ++ 1level end node ((scaled))
4level start node ++ 4level end node ++ 1sscc ((scaled))

Figure 19: Direct combination of shortcut level and sscc metric

5.3 Best Results

As mentioned before, the best performance of any heuristic on its own is
delivered by the shortcut level metric. Using this metric, about 30-40% of all
shortcuts can be discarded without any notable loss in query performance,
and about 60-65% at an increase in settled nodes by factor two. A weighted
combination of the node level metric with the flag cost function improves on
this, and generally allows for an additional 5% of the shortcuts to be removed
at the same penalties.

28

6 Conclusion

This student research project evaluated different strategies of determining
a shortcut’s relative importance for the eventual SHARC query, in order to
minimize space consumption of a SHARC preprocessing while retaining fast
query times. The presented heuristics exploited three specific shortcut prop-
erties, i.e., node level information, set arc flags and represented path. While
being the least computation intensive, the node level information based met-
ric surpassed the best performing heuristics in the other two categories by far.
A weighted combination with the predominant flag based metric improved
even further on these results, while barely increasing the computational effort.
This combination allows for the removal of about 60-70% of all shortcuts at
the relatively small penalty of doubling the average amount of nodes settled
by a SHARC query on almost all tested SHARC preprocessings.

Future Work. Within the scope of this student thesis experimental eval-
uation was only done for the static variant of SHARC. Since time-dependent
SHARC (c.f. [Del09]) operates on complex edge-weight functions, shortcuts
here make up a comparatively larger part of the space overhead. Therefore,
it might be especially interesting to see how well the metrics presented herein
can be applied in a time-dependent scenario.

Further space reduction for SHARC might be achieved by employing a more
space-efficient representation of the graph data itself, such as the one intro-
duced in ’An Experimental Analysis of a Compact Graph Representation’ by
Daniel K. Blandford, Guy E. Blelloch and Ian A. Kash (c.f. [BBK04]).

29

References

[BBK04] Daniel K. Blandford, Guy E. Blelloch, and Ian A. Kash, An Ex-
perimental Analysis of a Compact Graph Representation, Pro-
ceedings of the 6th Workshop on Algorithm Engineering and Ex-
periments (ALENEX’04), SIAM, 2004, pp. 49–61.

[BD09] Reinhard Bauer and Daniel Delling, SHARC: Fast and Robust
Unidirectional Routing, ACM Journal of Experimental Algorith-
mics 14 (2009), 2.4–2.29, Special Section on Selected Papers from
ALENEX 2008.

[Del09] Daniel Delling, Time-Dependent SHARC-Routing, Algorithmica
(2009), Special Issue: European Symposium on Algorithms 2008.

[DSSW09] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea
Wagner, Engineering Route Planning Algorithms, Algorithmics
of Large and Complex Networks (Jürgen Lerner, Dorothea Wag-
ner, and Katharina A. Zweig, eds.), Lecture Notes in Computer
Science, vol. 5515, Springer, 2009, pp. 117–139.

[Gem08] Andreas Gemsa, Arc-Flag Compression, 2008, Student Reseach
Project.

[HKMS09] Moritz Hilger, Ekkehard Köhler, Rolf H. Möhring, and Heiko
Schilling, Fast Point-to-Point Shortest Path Computations with
Arc-Flags, The Shortest Path Problem: Ninth DIMACS Imple-
mentation Challenge (Camil Demetrescu, Andrew V. Goldberg,
and David S. Johnson, eds.), DIMACS Book, vol. 74, American
Mathematical Society, 2009, pp. 41–72.

[Lau04] Ulrich Lauther, An Extremely Fast, Exact Algorithm for Finding
Shortest Paths in Static Networks with Geographical Background,
Geoinformation und Mobilität - von der Forschung zur praktis-
chen Anwendung, vol. 22, IfGI prints, 2004, pp. 219–230.

[SS06] Peter Sanders and Dominik Schultes, Engineering Highway Hi-
erarchies, Proceedings of the 14th Annual European Symposium
on Algorithms (ESA’06), Lecture Notes in Computer Science, vol.
4168, Springer, 2006, pp. 804–816.

[SSV08] Peter Sanders, Dominik Schultes, and Christian Vetter, Mobile
Route Planning, Proceedings of the 16th Annual European Sym-

30

posium on Algorithms (ESA’08), Lecture Notes in Computer Sci-
ence, vol. 5193, Springer, September 2008, pp. 732–743.

31

	Introduction
	Preliminaries
	SHARC-Routing
	Definitions

	Removing Shortcuts
	Removal Strategies
	Level Information
	Arc-Flags
	Number Of Set Flags
	Level Of Set Flags
	Flag Cost Function

	Represented Path
	HopCount
	Max Degree Of Nodes on Path
	Summed Degree Of Nodes on Path
	Search Space Coning Coefficient

	Combinations
	Weighting Function
	Precomputed Orders

	Experimental Results
	Individual Metrics
	Level Based
	Flag Based
	Path Based
	Comparison

	Combinations
	Node Level & Flag Cost
	Node Level & Search Space Coning Coefficient

	Best Results

	Conclusion

