Empirical analysis of K-Betweenness

Abian M. Blome

October 1, 2007

Contents

1 Introduction and motivation

2 Tests
2.1 Distance of clusterings oL
2.2 Relation between distanceand k
2.3 Good cuts in dendrogramso
2.3.1 Modularity
2.3.2 Inter-cluster conductance
2.3.3 Coverage
2.3.4 Performance
2.4 Relation between quality indicesand ko 0L
2.4.1 Modularity
2.4.2 Inter-cluster conductance
24.3 Coverage
2.4.4 Performance

3 Optimizing K-Betweenness
4 Results

5 chapter

14
15
15
15
17
18
20
20
23
23
23

26

27

28

1 Introduction and motivation

This paper presents the K-Betweenness algorithm and shows the evidence gathered on its
performance. The goal of the algorithm is to divide a graph into a number of clusters, each
consisting of nodes and being pairwise disjoint, which closely reflect the inherent community
structure of the graph. We are basically trying to identify the key groups of the graph using
only the information contained within it: the nodes and the edges connecting them. This
separates it from the well-known concept of graph partitioning where usually the number
of groups and their size is at least known approximately, and where the goal is finding the
best possible clustering under these constraints.

We will now introduce a small number of definitions that will be used for the remainder
of this paper: First of all we assume that a graph is given as G = (E, V) with n := |V/|
and m := |E|.

We define a clustering as a partition of nodes C := {C1,...,Cy} with the elements of
C being pairwise disjoint non-empty sets of nodes, called clusters. Additionally we denote
the set of edges within a cluster E(C;) := {{v,w} € Ejv,w € C;}. Let E(C;,C;) be the
set of nodes with one edge in C; and one in C;. We will call E(C) := Ule E(C;) the set of
intra-cluster edges and E\ E(C) the set of inter-cluster edges. The number of intra-cluster
edges shall be denoted with m(C) and the number of inter-cluster edges with m(C).

To ease the manipulation of the graph we will use the following function which returns
the clustering induced by the components of a graph: w(G) := {{w € V|3Path(v,w)}|v €
Vi

The K-Betweenness algorithm presented here is a variant of the Newman-Girvan algo-
rithm [1] which attempts to perform a speed-up in exchange for a small quality loss of the
resulting community structure. Like the original algorithm it is based on the concept of
edge betweenness [1]. The betweenness of an edge e in a graph G = (E, V) is the number of
shortest paths between all pairs of nodes that pass through it. However if there are several
shortest paths between two nodes the number of these shortest paths passing through each
edge on the paths is divided by the number of those paths (See Equation 1).

First we define some functions to actually number the shortest paths in a graph:
¢si(€) := Number of shortest geodesic paths from s to ¢ through edge e

¢« := Number of shortest geodesic paths between s and ¢

Now we use these values to properly define the betweenness of a certain edge:

Cple) = 3 2uld)

sttey 75t

Equation 1: Definition of betweenness

The main idea of the Newman-Girvan algorithm is that a high betweenness of an edge

2

-

v

Figure 1: Obvious inter-cluster edges can have a low betweenness value due to them being
masked by another inter-cluster edge as can be seen above. This makes a recomputation
of the betweenness value vital.

‘o o’
Se, e

can be seen as evidence for it being an inter-cluster edge (i.e. connecting two different
communities) since the number of edges between two clusters are small. Therefore each of
these edges is part of a large number of shortest paths. The information within a community
structure tends to have multiple ways of flowing, in other words, there are several paths
for the information to flow through, which are usually very short. If the information has
to flow to another community it has to go through the few “gateway” edges which connect
these two communities (and in some cases even through other communities). Thus one
can sequentially remove the edge with the highest betweenness, which indicates that it is
probably such a “gateway” edge, while taking care of recomputing the betweenness after
each step. The recomputation is vital because, as can be seen in Figure 1, an obvious
inter-cluster edge can be masked by the high betweenness of another edge.

After each step the individual components of the graph induce a clustering, i.e. a group
of community structures. A method for representing the evolution of these clusterings is
by means of a dendrogram, also known as a hierarchical tree. In it the clustering of the last
step (i.e. each node constitutes its own community structure) is represented as a number
of leaf nodes. For each time step, starting from the last and going backwards, the edge
connecting two community structures is also portrayed in the dendrogram, which is thus
a forest of binary trees. The roots of the trees represent the connected components of
original graph, and the children of a node represent the separation of that component at
a given time-step. Thus a cut in the dendrogram at a given level would return exactly the
clustering at the same time-step. An example dendrogram can be seen in Figure 2.

The problem of selecting the best clustering from the dendrogram is solved, at least
in the original algorithm, by simply searching through all of them using a quality index.
These indices try to formalize the intuitive idea of what a good clustering is in different
ways, and with different levels of success. An intuitive explanation of what a good clustering

R s TN

Figure 2: An example dendrogram. Each leaf represents a single node and the edges be-
tween the nodes represent the separation of components at a certain time step represented
by the y-axis. A horizontal cut through the dendrogram induces a clustering of the graph.

should look like is a very subjective matter, since it depends largely on what element of the
structure one hopes to find. There seem to be a few common points to most justifications
of good clusterings:

e The subgraph induced by a cluster should have a large density, i.e. the nodes inside
the cluster should be closely connected.

e Edges between different clusters should be minimized.
e The size of the clusters should be representative of the structure.

Of the large number of indices available to measure the quality of a community structure
(See for example [3] and [4]) four will be used in this paper:

e Modularity [3]: This index compares the number of intra-cluster edges to the ex-
pected number given the edge-distribution probability of the analyzed graph as can
be seen in Equation 2. Due to this the result can be either positive or negative, a
positive modularity indicating that the agglomeration in the given clusters is higher
than expected given a random graph, a negative value the opposite. Thus the modu-
larity can be used as an indicator for clusterings and the values range between —0.5
and 1. Finding a clustering of an optimal modularity for a given graph has been
proven to be NP-Complete [7].

o [nter-cluster conductance [6]: The inter-cluster conductance is defined by means of
the conductance of cuts. This is the ratio between the size of the cut and the size of the

Let our Clustering be C = {C},...,Ck} with each C; being the set of nodes of that
community, thus making them pairwise disjoint. Then the modularity is defined as:

P prod(C) == Z EC _ ('E(C)| + 2 cec Bl C/)|)2]

2m
cec

Equation 2: Definition of modularity

two communities induced by it. Using this one can further define the conductance
of a graph, which is the minimum conductance value over all its cuts. The inter-
cluster conductance is then, as seen in Equation 3, the maximum conductance value
over all cuts induced by the communities. A small inter-cluster conductance value
is usually an indicator for a community that has strong connections outside which
may indicate that the clustering is too fine. The inter-cluster conductance reaches
0 if either all the nodes are inside a single cluster (which is problematic if we are
analyzing a clique), or if there is a single cluster which has no intra-cluster edges and
at least one inter-cluster edge.

Let us first define the conductance of a cut (C,V\C).

Lif C e {0,V}

\Ijlnter(o) - 071f C ¢ {Q)u V} /\m({cv V\C}> =0
m({C,V\C})
min(}_, co degv,zvev\c degv

L otherwise

Using this we can now define the inter-cluster conductance as

(I)Inter(c) =1- rélg()j{ leInter(C>

Equation 3: Definition of inter-cluster conductance

e Coverage [3]: The coverage index is simply the ratio of intra-cluster edges (i.e. edges
within communities) to m, the number of edges in the graph (The definition can bee
seen in Equation 4). This has a couple of minor problems, as the resulting value says
little about the density of each community.

As can bee seen in Figure 3 both clusterings result in the same coverage value (8/9),
although we would clearly argue that the right one is, given our intuition, a better
clustering. Another big problem is that if all nodes are in one big cluster the coverage
is optimal, i.e. 1. This means that, unless we explicitly forbid this, our algorithm will
always return this clustering (or at least with each original component in one cluster,
which also shares this problem).

N A N U

) An obviously bad clustering of a simple) This clustering of the same graph is no-
graph that still manages to achieve a good tlceable better and achieves a good perfor-
coverage value but fails when it comes to per- mance value. The coverage is still the same.
formance.

Figure 3: Example clusterings of a simple graph

The coverage can be defined as
m(C)

m

q)Cov (C) =

Equation 4: Definition of coverage

e Performance [3]: The performance index is a variation of the coverage index which
is calculated by normalizing the amount of correctly clustered pairs of nodes, with
correct pairs being existing intra-cluster edges and all missing inter-cluster edges (See
Equation 1). Although this might appear to actually correct some of the problems
encountered with coverage there are still some issues when using this index. Still,
due to it also taking into account correct node pairs instead of just the inter-cluster
edges it works much better than coverage, as can be seen if applied to the same graph
as we used in the Coverage example (Again Figure 3). This time the clustering with
the singleton results in a worse performance value: 0.5. The second clustering, which
intuitively looks pretty good, also gets a good rating from the performance index
(23/28).

Performance can be defined as:

m(C) + X (o g B vecs wec; iti |

rers(C) 1= 1/2n(n — 1)

Equation 5: Definition of performance

The K-Betweenness algorithm consists of two crucial ideas. Firstly the betweenness of
edges is only computed every k steps. This results in a performance gain by the factor
k. Secondly not all cuts of the dendrogram are analyzed or even computed. Again this
results in a significant performance gain as the amount of loop iterations can be drastically
reduced. These two simple modifications result in a significant speed-up of the algorithm

in exchange for a marginal quality loss as we will show in the following. One thing to keep
in mind though is that the evidence is purely empirical, and thus no guarantees about the
quality can be given as of this moment.

Algorithm:Newman-Girvan algorithm

Data: Graph G = (E,V);
Quality index function ®(Clustering)
Result: Clustering C

1 C —w(G);

2 g — D(C);

3 G'=(E,V) G,

4 while |E'| > 0 do

5 Calculate edge-betweenness of G';
6 1) « edge € E’' with max. betweenness;
| B e B\{u):

8 if ®(w(G')) > q then

9 C —w(G@);

10 q — @(C);

11 end

12 end

W N =

© 0 N & w;

10
11
12
13
14
15
16

Algorithm: K-Betweenness

Data: Graph G = (E,V);

Quality index function ®(Clustering);
constant k;

range r = [ry, 2]

Result: Clustering C

C — w(G);

q — ®(C);

G' = (E, V') « G,

t < 0;

while |E'| > 0 At < max(r) do
if t mod k = 0 then
‘ Calculate edge-betweenness of G';
end
1) «+— edge € F' with max. betweenness;
E— EN{y};
if terA®(w(G)) > qthen
C — w(@);
q — ®(C);
end
t—1t+1;
end

Type of graph Number of nodes | Total number of graphs
Trees 1-283 283

Complete graphs 1-50 50

Attractor-generated graphs | 1-200 200

Real world examples 34-522 6

Table 1: Types of graphs used for empirical evidence

2 Tests

As mentioned in the previous section the two modifications in the K-Betweenness algorithm
are the computation of the betweenness every k’th step, k£ being a constant, and only
analyzing the clusterings of a range of time-steps. The obvious question is what a good
choice of k would be, as well as what the optimal range, lets call it r = [ry, 5| from now
on, for the analysis of the time-steps would be. In order to find good values for k£ and
r a number of statistical tests were run against several types of graphs (See Table 1).
The machine used for conducting these tests was an AMD Athlon(tm) XP 2000+ with
256 MByte of RAM running a Debian sid system. The language used for the algorithm
implementation was Java (J2RE 1.5) using the yWorks yFiles library. The results of the
tests will be presented in this section along with the introduction of the used concepts.

2.1 Distance of clusterings

In order to measure the similarity between the clusterings of the original Newman-Girvan
algorithm and our variant we need a metric. One possibility is the use of quality indices
already mentioned, but these wouldn’t represent the resemblance of the two clusterings
as even a difference of a single node can wreak havoc when it comes to the clustering
quality. Thus the following metric was used: Let G* = (E*,V) and G’ = (E’,V) be the
two graphs (whose components induce a clustering) to be compared based on G = (E, V),
which is the original graph. Additionally ®* : Ex — R (&' : E — R) assigns each
edge its betweenness value (0 if the edge isn’t in the clustering). Then the distance is
A(G*,G") =) cp|®* — @'|. In Figure 4 two different graphs can be seen which differ in
two edges. Since the distance is the difference of the betweenness value summed over all
edges the right component can be ignored as it is identical in both graphs. The betweenness
difference in the other edges (2.5 + 3.5 + 2.5 + 4 + 1.5) amounts to 16.

Thus the distance between two clusterings of the same graph is simply the absolute
difference between all their edges’ betweenness.

When the distance between two consecutive clusterings in the Girvan-Newman algo-
rithm is plotted, two kinds of graphs can be seen. On most graphs a sharp fall of the
distance with ever-decreasing spikes can be seen (See Figure 5(a)). The beginning distance
being the highest betweenness of all edges, it is no surprise that this value is near the
maximum. Each time-step there are two possibilities:

One is that the removal of the edge separates the component. Lets call the number of

(a) (b)

Figure 4: These two graphs differ in two edges. This leads to a different betweenness
distribution within the affected graph components which leads to a total difference of 16.

nodes in the new components n; and ny, and the removed edge e. Therefore the minimum
distance would be 2-n; - ny and the maximum being bounded by % +Cg(e) (See
Equation 6). Now while this is a tremendous distance, and it accounts for the spikes in
the decrease, the overall betweenness of all nodes is greatly reduced and thus the distance
in the next steps is much smaller.

If, on the other hand, the removal of e doesn’t cause a separation of components then
the distance is between 3 - Cg(e) and Cg(e) - n/, as the betweenness value of e is added
to other edges. Since these other edges have a smaller betweenness value, and typically
the betweenness value of e is distributed evenly across what later will become inter-cluster
edges, the maximum edge in the next time-step is much smaller, thus explaining the steady
decrease, although the fast decrease stems, as already mentioned, from the separation of
components with its cut of overall betweenness.

As mentioned in the previous paragraph not all graphs show the described development.
The big exception are complete, or nearly complete graphs. In these graphs the betweenness
of all edges is initially equal (1). Thus the removal of the first edge actually increases the
weight of the others, and this continues at an ever-increasing rate leading to exponential
growth which, after culminating, quickly falls to 0. (See Figure 5(b)).

The following results shed light on the development of the distance between the evo-
lution of the clusterings in the course of the time-steps compared to a static clustering,
in this case the initial graph as can be seen in Figure 6 left. Again there are two distinct
cases, and again the exceptional case are the near-complete graphs. As can be seen in
the example graph the distance increases in a clearly logarithmic fashion with little devi-
ation which seems dependent on the density of the graph. This corresponds to the falling
distance between consecutive steps, although the spikes have been smoothed out. This is
due to the separation of components not having such a strong effect, since the removal of
weight has been countered in previous time-steps with the increase of weight in the edges.

10

150
|

Distance
100
!
Distance
20

10

T T T T T T T T T T
0 10 20 30 40 50 5 10 15 20

Timestep Timestep

(a) This plot shows the distance between consecutive (b) Here we see the distance of consecutive time-

time-steps in a random attractor-generated graph steps in a complete graph with 20 nodes. Each re-

with 50 nodes. A sharp fall can be seen with spikes moved edge increases the betweenness value of all

symbolizing the separation of components. the others leading to an exponential growth until
the first separation of components occurs.

Figure 5: Distance of consecutive time-steps

11

If the removal of an edge e causes a separation of components (with the intra-component
edges named Ey, /Ey, and ny/ny nodes) we have an upper bound of:

A= ZfeE’q)* — ¢|
* * * /
= Dgeny, [P = ¥+ D pepy, [P — P[4+ [D7(e) = P'(e) |
Cg(e) 0
= D rern, |®7 = ¥+ 2 pep,, |97 — @+ Crle)

Each shortest path between elements of the two components had to go through e which
was the only interconnecting edge. Obviously only a single node from the first cluster had
a distance of n — 1 to the edge e. Only 2 could have a distance > n — 2, 3 over> n — 4,
and so on. This would be the case of a single path connecting all the nodes. Additionally
we can note that Cg(e) is equal to 2 * n; * ny. Using that we have:

ni—1

1
Z |CI)*—(I),|§TLQZZ§§TMHQ(TL1—1)

fEENl =1

And therefore (using the same for the second component):

A< gning(ng — 1) + 5ng - na(mn — 1) + 2% ny * n
ni-nz2(nitn2)
A S 1-Nn2 21 2
A lower bound for A is Cg(e) = 2-n; - ny as each path between the nodes of the different
components need to cross through e.

If the removal of an edge e doesn’t cause a separation of components we have a lower bound
of 3- Cp(e) (triangle-like construct). The exact value of Cz(e) can not be determined in
this case, since it depends greatly on the structure of the graph. But since it is easily
computable we can use this information to make predictions on A early on.

For completeness let us note that we have an upper bound of Cg(e) - n’ with n’ being the
number of nodes.

Equation 6: Upper & lower bounds of distance in consecutive time-steps

In the case of complete graphs a linear increase can be seen (see again Figure 6 right). This
stems from the fact that the removal of each edge just changes the overall betweenness by
two until the separation of components begins. Later on we see a dramatic fall, as the
removal of edges lets the distance approach the total initial betweenness of all edges.

12

800
|
50
|

600
|
40

Distance
400
!
Distance
30
!

200
|
10
|

T T T T T T T T T T
0 10 20 30 40 50 5 10 15 20

Timestep Timestep

(a) This plot shows the development of the the dis- (b) Here the development of the distance in relation

tance compared to the original graph in a random to the original graph in a complete graph with 20

attractor-generated graph with 50 nodes. As can be nodes can be seen. The increase is linear (each edge

seen the development is nearly logarithmic. removal increases overall betweenness by two) until
the components begin to separate.

Figure 6: Distance of time-steps relative to original graph

13

600
|
300
|

Distance
400
!
Distance
200
!

100
|

o - o -
T T T T T T T T T
0 10 20 30 40 0 20 40 60
Timestep Timestep
(a) This plot shows the distance in an attractor- (b) Here we see the distance in a random tree with

generated graph with 200 nodes for the common 150 nodes in the common time-steps for k1 = 2 and
time-steps (i.e. same number of removed items) for kg = 5.
klzlandk:2:5.

Figure 7: Distance between two constants

2.2 Relation between distance and k

After the short look at the development of distance within the Newman-Girvan algorithm
now the distance between the clusterings at different time-steps for two different k’s in the
K-Betweenness algorithm shall be examined. Let the two constants be k; and k. For the
analysis only the GC'D(ky, k2)/k1 + 1'th (resp. GCD(ky,k2)/ks + 1'th) time-step will be
compared, so that the same number of edges is removed.

Yet again, two different types of graphs appear, though luckily they are as easy to
categorize as in the previous subsection. Lets start with the easiest case: Nearly complete
graphs. In this type of graph the distance depends on the edge selected if several have
the same weight. Here the first edge based on an arbitrary order was selected. Thus
the distance throughout the time-steps was 0, with marginal deviations if the graph was
near-complete.

The most common development can be seen in Figure 7. Here we can see a big initial
distance, which isn’t surprising if we consider the effect that a single edge has at the
beginning of the algorithm as we saw in the above section. This distance then quickly falls
and oscillates around the minimum.

The previous section makes this development plausible: The impact of selecting a differ-
ent edge in the beginning is critical, as the change between the distance of two consecutive
time-steps, and thus of the nodes appearing in that time-step, is huge. The probability

14

of selecting an edge already removed by the other algorithm increases with time, and the
selection of a different edge has less impact, but creates the oscillation.

2.3 Good cuts in dendrograms

Up to this point we have been considering the effect of £ on the distance and left the
quality indices, as well as r (the range of time-steps for good clusterings) aside. We will
focus on these two issues in this section by analyzing how the different quality indices
develop for the clusterings in the course of the time-steps. Although the results presented
here are based on k = 1 they are still valid for higher k’s, and as such are always presented
in percentages of the total amount of steps. The reason for this is simple: the number of
edges removed at a certain percentage of the steps (obviously they need to match) is the
same, and with it the quality drops/raises are similar.

2.3.1 Modularity

The first quality index that we will take a look at is modularity. A plot of the different clus-
terings of the Newman-Girvan algorithm show (See Figure 8) a linear fall of the modularity
after the best clustering has been found, although at its maximum there is a short (in all
tested graphs within 10% of the total number of steps) oscillation. The point at which this
optimal cut of the dendrogram happens is strongly dependent on the inner structure of the
graph, with complete graphs being one extreme (optimum at time-step one) and graphs
whose best clustering consists of mostly singletons being at the other end of the spectrum.
On most graphs tested (the trees, real world examples and the Attractor-generated ones)
though the maximum is between these extremes, with the initial quality growth resembling
a step-function. Usually, except for the extremes already described and which can easily
be filtered out using the density, the peak is between 5% and 50% steps, with trees being
mostly on the edge of the first quarter.

2.3.2 Inter-cluster conductance

The results here are, yet again, varied. In complete graphs the conductance remains at a
constant 0 since the graph is always inside one big cluster until the first node separates
from the main group and is placed in a singleton. Both cases lead to an inter-cluster
conductance of 0. In other graphs though there is usually a short jump to a high value near
the beginning if there is a single component in the graph, as the first few time-steps usually
remove very obvious inter-cluster edges, and once at least two clearly cut components exist
the conductance value greatly increases. If there is more than one component to begin
with, the conductance is, using the definition presented in the introduction, already 1.
As more edges get removed the cuts induced by the clustering become worse and worse.
And since we are looking at the worst of all possible cuts, once a bad one occurs, which
depends on the graph structure but is, at least based on the Attractor/Tree sample size,
within the first 20% of the time-steps, the conductance value drops to nearly zero. So we

15

o
o
S
© o
Q-
0 3
o o 4
=]
|
~
z ° 2
= = o
© © I
S o | s O
ER I
= =
N
S 7 0
-
O_ —
< i
o
o o
S S
(=}
T T T T T T T T T T T T T
0 10 20 30 40 50 0 500 1000 1500 2000 2500
Timestep Timestep

(a) This plot shows the modularity in the course of (b) This plot shows the modularity development in

the time-steps in a tree with 50 nodes. As can beseen a complete graph with 50 nodes. Since there is no

there is a linear fall once the peak has been reached, separation of components for a long time things are

which is typically in the first 50% in both, trees and pretty constant until the first separation begins with

attractor-generated graphs. a drop in quality which continues as more and more
nodes are placed in singletons.

Figure 8: Development of modularity in the Newman-Girvan algorithm

16

1.0

Coverage
0.6

0.4

0.2

0.0
|

T T T T T T
0 20 40 60 80 100

Timestep

(a) This plot shows a typical development of the cov-
erage in non-complete graphs such as this attractor-
generated example with 50 nodes. We begin with an
optimal coverage value (the components as clusters)
and then slowly loose quality as we gain more and
more inter-cluster edges.

1.0

0.8

0.6

0.4

Inter-cluster conductance

0.2

T T T T T
0 100 200 300 400

0.0
|
L

Timestep

(b) Here we see the development of the inter-cluster
conductance in an attractor-generated graph with
100 nodes. It has a single component in the begin-
ning, which is the reason why it starts up at 0 (oth-
erwise it would have a value of 1). With the first cut
it reaches a good value that then can only become

worse with each bad cut.

Figure 9: Development of coverage and inter-cluster conductance in the Newman-Girvan
algorithm

basically only need the first two clusterings two find an optimal one based on inter-cluster
conductance.

2.3.3 Coverage

In the test results one can clearly see that if the graphs are either trees or complete graphs
the coverage value decreases linearly, as removing an edge (in complete graphs from the
point on where the separation of components begins) simply decreases the coverage by
1/n. In the case of Attractor-generated graphs very different kinds of development can be
seen, with linear-like quality decrease to very rapid decreases. The most notable feature
is that the earlier the quality drops, the smaller the value, but this should not come as
a surprise given the way the algorithm works. An early separation of components, which
is what would induce a quality drop, can only have a small number of edges between
those components. Therefore the coverage would only fall slightly. If, on the other hand,
the separation of components happens late, then usually a higher number of edges cross
the community boundaries and so, once the separation takes place, a sharp drop of the
coverage can be seen. But one thing is certain, the coverage is monotonously falling, since

17

Figure 10: A low density graph such as a tree has a high amount of missing edges. For
this reason if each node is placed in a singleton pretty good performance values can be
achieved (the lower the density the better the performance).

the separation of components can only decrease the amount of intra-cluster edges.

2.3.4 Performance

The performance index is, as was already mentioned, a variation of the coverage index
which can be achieved by normalizing the amount of correct pairs of nodes. In the case
of graphs with a very high density, specially complete graphs, this means that the result
is (nearly) exactly like coverage, i.e. a linear decrease with maybe a bit of oscillation in
the beginning. The optimal value in this case is within the first 10%. When it comes
to the other types of graph there is quite a difference. Most often (in around 70% of all
tested graphs, including all trees) a sharp increase in quality can be seen in the first few
time-steps (See figure 11 left).

In the other cases a very different development takes place. The clusterings induced by
the removal of edges rate very poorly in the performance scale. Once the removal of edges
reaches a critical point it begins with creating very fine-grained communities consisting
of only a few nodes. Since we are talking about a low to average density, the other ones
develop in a coverage-like manner, this means that the amount of correct pairs of nodes
greatly increases until finally culminating, once all nodes are clustered in singletons, in a
performance value of 1 —m/(0.5)n x (n — 1)). This is also the reason why trees perform
so well and are in the 70% of the graphs named above. As an example look at Figure 10
which clearly depicts this peculiarity of performance. If we suppose the clustering is down
to singletons then we have 25 non-existent inter-cluster edges, which greatly outnumber
the 5 existing ones, yielding a performance value of 0.83.

Therefore we can analyze the last 10% of the clusterings to achieve an optimal value
here.

18

E o | E 34
E g .|
T T T T T I T T T I
0 20 40 60 80 100 0 50 100 150
Timestep Timestep
(a) This plot shows the development of the perfor- (b) Here we can see another development of per-
mance in a tree with 100 nodes. The first few sep- formance in an attractor-generated graph with 50
arations dramatically increase the index value and nodes. Once the first separation takes place the qual-
later on the value continues to rise due to the miss- ity rises rapidly and then continues to rise to reach
ing inter-cluster edges as more and more separations its final value.
take place.

Figure 11: Development of performance in the Newman-Girvan algorithm

19

2.4 Relation between quality indices and k

The most interesting observation on the behavior of k, at least within the topic discussed
here, is how it evolves in relation the different quality indices, as these are generally used
to select a good clustering. Judging from the information on the distance related to k we
can probably assume that a small value won’t result in a big change of quality. This shall
now be examined for each of the quality indices named above.

2.4.1 Modularity

With respect to modularity the graphs separate into two very distinct categories:

One one hand we have a large group of graphs that behave very similarly and of which
12(a) is an example. As can be seen they have a small period of steadiness with a minimum
of oscillation in the beginning followed by a slow decrease. Now this period of steadiness is
exactly the range of acceptable k’s for our algorithm as it is in here that there is a minimum
amount of quality loss. The evidence from the tested graphs indicates a maximum k of
15 1s acceptable with a lower value offering only a marginal quality increase. As usual the
different types of graphs show a slight difference.

In complete graphs the variance within the above mentioned range was always 0, which
is not a big surprise given that the best clustering always contains all nodes. In trees the
variance in the development can be seen in 13(a). Here the maximal variance of all k’s
up to {5 in a certain graph is smaller than 0.1 except in the case of 4 trees which range
slightly higher. Even these trees follow the pattern of Figure 12(a).

When it comes to the attractor generated graphs things start changing though. Again
most graphs do have the pattern mentioned above, but now a few graphs appear (roughly
2.5%) that have a worse variance within that k-range than 0.1. A look at the statistics
from these graphs reveals the following: The modularity value was always below 0.4. Also
the development of these graphs shows a dramatically different behavior from the one we
saw before. It is much more chaotic and show little similarity to one another. As of this
moment we have not been able to find a distinguishing feature of these graphs so as to
recognize before running the algorithm. Figure 12(b) shows an example development of
such a chaotic graph. The real world examples show the aforementioned pattern with a
small variance, but due to the small number of these it is to be expected that chaotic
developments will appear here as well.

If the quality loss described above is acceptable then the value of {5 for k allows a
dramatic increase in the runtime. As described in the introduction each iteration in the
Girvan-Newman algorithm has a runtime of O(m - n) which leads to a total runtime of
O(m?-n) if the quality index computation is not considered. Since the removal of additional
edges within the iteration step is dominated by the computation of the betweenness and we
only compute every k’th step we reach a runtime O(m - n?) in addition to the modularity
computation.

In the testing system this resulted, when run at a graph with 100 nodes and 1400 edges,
in a runtime of 4.32 seconds with £ = 10 compared to the 24.96 seconds needed if k£ = 1.

20

0.7
|

0.5
|

Modularity
0.3
!

0.1

0.0

0 100 200 300 400

k

(a) Here we can see a "normal" example of the devel-
opment with increasing k’s. The graph was attractor-
generated and had 100 nodes. As can be seen the
quality loss if £ = 10 is minimal.

020 0.25
| |

Modularity

0.10
|

0.05
|
=
<.

200 400 600 800 1000

o

k

(b) This plot shows one of the extremely chaotic ex-
amples: An attractor-generated graph with 93 nodes.
As can be seen it oscillates wildly in ever increasing
amplitudes.

Figure 12: Development of modularity. The x-axis represents the used k, the y-axis repre-
sents the modularity of the best clustering generated using that k.

21

Maximal modularity Variance

0.00
|

T T T T T T
100 150 200 250

Graph size

(a) Here we can see the variance of the modularity
value in different trees for the accepted range for k
(n/10). Each dot represents the variance of the worst
performing k for that graph.

0.7
|

Inter—cluster conductance
0.2 0.3 0.4 0.5 0.6
! !

0.1

0.0
|
[

200 300 400 500 600

(b) This plot shows the development of inter-cluster
conductance with increasing values of k£ in an
attractor-generated graph with 100 nodes. As can
be seen there is a rapid exchange between good and
bad values at the beginning which appears to be ran-
dom. The distance between those peaks differs wildly
with values of up to one quarter of the total k’s in
some graphs.

Figure 13: Development of graphs with using the performance and coverage indices.

22

2.4.2 Inter-cluster conductance

As the inter-cluster conductance index concentrates on finding the worst possible cut in-
duced by the clustering the use of a value of k£ other than 1 is a high risk to undertake.
Often choosing a higher value of k leads to at least one cut that is, as measured by the
inter-cluster conductance, catastrophic. In the case of complete graphs, for reasons already
discussed in previous sections, the result is always 0. In the case of attractor-generated
graphs (as well as in the real-world examples) the inter-cluster conductance using a k > 1
is nearly always 0 as some cuts only have inter-cluster edges (singletons). For this same
reason all the trees end up with an inter-cluster conductance of 0 if such a k is used. In
the attractor-generated graphs from time to time there exists a k that avoids creating such
a bad cut (4% of the tested graphs, none of the real-world examples and all with a very
high inter-cluster conductance in the region of 0.94). But it is just a game of chance and
very unpredictable as can be seen in Figure 13(b). Therefore we suggest sticking to 1 if
this index is used as a quality metric.

2.4.3 Coverage

There is a remarkable similarity in the development of coverage to the one found in the
case of modularity when the Attractor-generated graphs are used (See Figure 14(a)), but
we have to note that in the case of coverage we are just analyzing the clustering of the
first component separation, as the quality is monotonously falling and we forbid the use of
the clustering induced by the original components. Again we find mostly a small period
of steadiness in the beginning with an oscillation that in this case is slightly higher. Af-
terwards this slowly decreases until it reaches 0. Typically the range of acceptable k’s is
within (1,7/20) with 90% of the tested graphs having a maximal deviation in the interval
k € [1,n/20] of 0.1 when compared to the case of k = 1.

And again there are a number of cases, in which the development is chaotic. Here the
coverage swings within values close to the maximum and near 0. To counter this effect
it is possible to actually do runs with consecutive k’s, as that reduces the probability of
hitting one of those lows while still being a considerable improvement over the runtime
when using k£ = 1.

In the case of trees the quality is exactly 1 —k/m, as the first iteration removes k edges.
Therefore using k = n/20 we have a coverage of 1 — % =0.95— ﬁ

In the case of complete graphs we have, as always with coverage, a quality of 1.

2.4.4 Performance

Now performance delivers pretty unusual results. In the case of complete graphs it is the
usual deal, it doesn’t matter what k is chosen, the result is always a single cluster because
of the definition of performance. Most of the tested graphs from the group of attractor-
generated graphs, trees and real world examples were similar to the one seen in Figure
15(a). A pretty long period of steadiness with only a minor oscillation, but in the period
of steadiness there are a few very sharp drops of quality for only a few time-steps. The

23

0.30
|

0.8

Coverage
0.6
!
0.20
!

0.4
!
Performance variation
0.15
!

0.2
0.05
|

o IS]
T T T T T T T T T T
0 100 200 300 400 0 50 100 150 200
k Number of nodes

(a) Here we see the development of coverage in an (b) This plot shows the maximal variance of perfor-
attractor-generated graph with 100 nodes. Similar mance for the tested graphs. Each dot symbolizes the

to the modularity case there is a small period of os- difference between the worst performing & within the
cillation, typically within n/20. accepted range (n/20) for a specific graph.
Figure 14:

amount of these drops, which only last for a few k’s ranges from 0 to 4 in the tested graphs
and appear in the second quarter of the steps. The reason for this interesting phenomenon
is as of this moment unknown.

Afterwards we find a couple of small drops and then another increase. Now this increase
in the end is, like in the previous section, probably due to the fact that the amount of correct
pairs increases radically when a small density occurs. Supporting this is the fact that in
graphs with a big density the results look more like in Figure 15(b). Now, the interesting
thing is why there is such a period of steadiness and why it suddenly ends. A possible
explanation would be that there is a point of equilibrium in the number of correct nodes.
While up to a large k strongly linked groups of nodes still remain together, and the errors
are mostly on sparse areas of the graph, there comes a point where this changes but the
amount of non-existing inter-cluster nodes still isn’t big enough to counter this effect. Only
later on, when the communities have become small enough for this effect to really pick up
the performance rapidly rises again. Of course, this is again only the case in graphs that
do not have a large density.

Choosing values for k& within the first 20% of the time-steps (n/20) in order to avoid
the sharp drops delivers a maximal variance of 0.1 in 93% of the graphs (See Figure 14(b)).

24

2.0

~
S] 0
-
©o | o
o —
(4] [
(5] Q
=4 c
£ £
s 3 s °
© ©
o [2
o
< o 7
3
wn
9
™ |
o
<
U 3
T T T T T I T T T I
0 200 400 600 800 1000 0 100 200 300
k k

(a) This plot shows the development of performance (b) This plot shows the development of the perfor-
with increasing values of k in an attractor-generated mance in a complete graph with 28 nodes. As can
graph with 100 nodes. As with most graphs there be seen the performance value stays at its top value
is a large period of oscillation near the optimum (up until the very end.

until around m/2) with small drops to 0 in between.

In the tested graphs these always appeared after the

first m/20 (m/17.3 to be exact).

Figure 15: Development of performance with increasing k in a single graph

25

Figure 16: Using a big k will make several of the edges in the chain of nodes (green) vanish
thus creating a number of singletons. This can easily be identified afterwards and those
nodes can then be appended to a neighboring cluster.

3 Optimizing K-Betweenness

In addition to the already mentioned two changes to the Newman-Girvan algorithm there
are a small number of additional changes that usually bring with them an increase in the
quality of the found clustering. A look at the tested graphs shows that strongly connected
groups of nodes, which later commonly become separate community structures, are often
connected by a chain of nodes (See Figure 16). The edges of those chains being obvious
inter-cluster candidates they are selected for removal by the algorithm. In the case of £ =1
this represents no problem, as one of those edges is removed and the edge-betweenness value
of the others drops, but if the £ is higher then several of the edges are removed. This creates
a number of singletons which increase the number of community structures.

The effect of this on the quality varies with the different quality indices. In modularity,
coverage and performance the effect is a negative one, although not tragically so. In the
case of inter-cluster conductance though this means the quality drops to 0, something to
be avoided at all costs.

This information helps to increase the quality index of clusterings created with a high
k value in a pretty easy way: Each singleton is appended to a connected community
structure. Of course, one could further reduce this deviation by simply checking which
community structure the singletons should be appended to, but that could result in a
significant increase of the runtime, something which K-Betweenness wants to avoid. And
since in the case of £ = 1 the edge to be removed from the chain is selected randomly,
as they have the same betweenness value, the performance is in no way worse due to this
randomness.

26

4 Results

In this paper a variant of the Newman-Girvan algorithm was introduced which conveys
two changes: The calculation of the edge-betweenness every k’th step, and the analysis
of only a certain range r of clusterings to select the best. This brings a speed-up but in
turn results in worse clusterings. To make the trade-off acceptable empirical data based
on several hundred graphs was used to gather information on how to select k as well as
r for four different indices. The results show there is a big difference on the performance
of the algorithm depending on what quality indices are used, and also show some of the
potential problems:

e Modularity: This was one of the good performers in the K-Betweenness algorithm:
The range was successfully reduced by over 50% without any quality loss! Addition-
ally it performed admirably well with a & = n/10 in over 97% of the tested graphs.
This results in a speed-up factor of over (n/5).

e Inter-cluster conductance: Here the range can easily be confined to the first two, i.e.
only a calculation up to first separation of components needs to be run resulting in
a very fast computation. The use of a & # 1 has a dramatic effect on the quality
loss as a single bad cut (for example through the creation of singletons) is enough to
make the whole clustering worthless.

e Coverage: As each component separation diminishes the quality (which starts at
its peak) the range plays no significance. In case the initial clustering by compo-
nents is forbidden we have a development for k very similar to modularity, although
performing slightly worse with good values for k& going up to n/20.

e Performance:The range here was confined to the first and last 10% of the time-steps.
This, together with an acceptable value of k& = n/20 (over 93% of the graphs had
only minimal quality losses with this k) made performance a candidate for speed-up
using the K-Betweenness algorithm.

In order to help correct some of these problems, such as the drop of inter-cluster con-
ductance to 0 due to the creation of clusters with only inter-cluster edges, an addition to
K-Betweenness was presented: Group singletons to nearby clusters.

It is important to note that while while most graphs performed very similar to one
another the class of complete (and nearly-complete) graphs performed quite differently
with mostly constant values at a constant value (dependent on the index, e.g. 0 in the case
of modularity) up to the point of the first separation.

The results presented in this paper stem purely from empirical data gathered from a
number of randomly generated graphs as well as some real world examples and as such can
not be taken as a guarantee for the performance. However we provide several explanations
for different observed phenomena and give deductions based on the gathered data. Since
most of the problems related to finding optimal clusterings are NP-hard the use of heuristics
and empirical evidence to find out more about the community structure is justified.

27

APPENDIX

i

o]
i
/

/’_A
1
/1
{

S
@

(Z/,‘r.

ZAININ
anh
o uvm)
0 RA AR h
R LTS
DU A T
AN R N
AL

i
N
S AR
¥ W h
SO
ip%8 s AN ‘\
.4\\?"4! (\\

W20
@5
ol “
TR
Wl

i
/)

RO T R

R
VAN, | Tyt
N

0
\»\

i
bAY ‘

—Z

Figure 17: This is an attractor-generated graph with 93 nodes which results in a chaotic
clustering if parsed using the k-Betweenness algorithm using modularity as the quality
index.

28

»‘ *4 ~
WA

QWK A
IR R

N\
OC T P “ { P4 '.,/ 2
Q77 h . o SN RIINY &/ @

i 1\\»“ ‘ o4 IO / '} %
Y ’, \

W\

4

\/

ST

S

Figure 18: This is an attractor-generated graph with 98 nodes which returns a nice clus-
tering when using the k-Betweenness algorithm using modularity as the quality index.

29

(7

o ake
24 ' ‘y/‘f

7/

7
4

y——— 7 /7
7 2]

g! /
A L[]
P =
; \ A S
g N\ (> \\\\‘ \VQ.‘Z’_I/'/"'O ‘
Al AP \ ALY w e =1
AN NN S CrN s
N\ ”/

Vs

\ 'Q:Q,// o" l.r‘ﬁ,\\v
N V0% e
\ ;

Y /SN
//////,\\“ N
/’}‘ \»'«;\N N
/ -4 < } ;v "“‘A -

i
AN

@
o
.\’\
N
-

Figure 19: Another attractor-generated graph, this time with 100 nodes. Like many others

this one shows a sudden drop of performance for a number of k’s as can be seen in Figure
15

30

References

[1] M. E. J. Newman, M. Girvan: Finding and evaluating community structures in net-
works, 2003

[2] M. E. J. Newman: Modularity and community structure in networks, 2006

[3] D. Delling, M. Gaertler, R. Gorke, Z. Nikoloski, D. Wagner: How to Evaluate Clustering
Techniques, 2006: Technical Report 2006-24.

[4] F. Boutin, M. Haskoét: Cluster Validity Indices for Graph Partitioning, 2004: Confer-
ence on Information Visualization IV.

[5] M. E. J. Newman: Modularity, Community Structure and Spectral Properties of Net-
works

[6] U. Brandes, M. Gaertler, D. Wagner: Ezperiments on Graph Clustering Algorithms

[7] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, D. Wagner:
On Finding Graph Clusterings with Maximum Modularity

31

