
Universität Karlsruhe (TH)
Institut für Theoretische Informatik

Diplomarbeit

Scheduling and Topology Control in
Wireless Sensor Networks

Markus Völker

30. Oktober 2008

Betreut durch:

Universität Karlsruhe:
Dipl.-Inform. Bastian Katz
Prof. Dr. Dorothea Wagner

Carnegie Mellon University:
Ass.-Prof. Dr. Willem-Jan van Hoeve
Prof. Dr. R. Ravi

Acknowledgements

First of all, I want to thank my supervisors Bastian Katz and Prof. Wagner (Univer-
sity of Karlsruhe), as well as Ass.-Prof. van Hoeve and Prof. Ravi (Carnegie Mellon
University), for all their help and support! In particular, I would like to thank Prof.
Wagner for the opportunity to write my thesis at her institute, and for supporting my
application for the interACT exchange program. As well, I want to thank Prof. van
Hoeve and Prof. Ravi for the very obliging supervision and care during my time at
Carnegie Mellon University. My most profound thanks go to Bastian Katz, for pointing
me to the topic of sensor networks and for the great support and the helpful assistance
throughout my work on this thesis.

I am much obliged to Agilent Technologies for the financial support during my studies.
At this point, I also want to sincerely thank Stefan Weiss and Markus Walter for their
support! Moreover, I am very grateful to the people behind the interACT exchange
program for making my stay abroad possible.

Finally, I would like to thank Lars Hofer, Matthias Thoma, and Tatiane Utumi for
proofreading this thesis, and Viswanath Nagarajan for useful discussions.

This thesis is dedicated to my parents, Alfred and Maria Völker.

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig angefertigt habe und
nur die angegebenen Hilfsmittel und Quellen verwendet wurden.

Karlsruhe, den 30. Oktober 2008

Unterschrift: ..

1

Abstract

Within recent years, wireless sensor networks became a very popular tool for distributed
monitoring of various physical and environmental conditions. Thanks to the ongoing
miniaturization of the required hardware, this trend is likely to continue. In this the-
sis, we study the problems of scheduling and topology control in wireless networks.
We consider both, networks with fixed transmission powers, and networks with freely
adjustable transmission powers. For the scheduling problem, several methods for the
computation of optimum schedules, as well as the computation of upper and lower
bounds on the length of optimum schedules, are presented and analyzed. Additionally,
various possibilities for optimizing the proposed methods are described. All methods
have been implemented and are used in an experimental section, to gain additional in-
sights into the properties of wireless networks. Subsequently, the scheduling heuristics
are extended to topology control algorithms. Goal of this topology control algorithms
is the computation of topologies whose links can be scheduled efficiently. At the same
time, the resulting topologies are required to conserve certain properties of the orig-
inal network, such as connectivity or spanner properties. Furthermore, we propose a
simple topology control algorithm that works local and does not require any informa-
tion about node positions. The proposed topology control algorithms are compared to
various existing algorithms, using several quality measures for network topologies.

A central part of this thesis is dedicated to the evaluation of constraint programming
as a tool for solving scheduling problems based on the physically motivated SINR inter-
ference model. For this purpose, constraint programming is compared to integer linear
programming, and several experiments are performed to highlight the pros and cons of
both approaches. The constraint programs have been solved using the freely available
Gecode solver, which is described to some detail in the beginning of this thesis.

2

Contents

1 Introduction 7

2 Preliminaries 11
2.1 Graphs and Networks . 11
2.2 Mathematical Programming . 12

2.2.1 Linear Programming . 13
2.2.2 Integer Programming . 14

2.3 Constraint Programming . 14
2.3.1 Notations and Definitions . 15

2.4 Gecode: Generic Constraint Development Environment 16
2.4.1 Models and Constraints . 17
2.4.2 Propagators and Filtering . 18
2.4.3 Search Engines for CSPs and COPs 19
2.4.4 Branchings . 20
2.4.5 Performance Measures . 21
2.4.6 Extending Gecode . 21
2.4.7 C++ Interface vs. Java Interface 22

3 Survey on Wireless Sensor Networks 23
3.1 Communication Graphs . 23
3.2 How to deal with Interference . 25
3.3 Scheduling Problem . 26
3.4 Interference Models . 27

3.4.1 SINR Model . 28
3.4.2 Conflict Graphs and Graph-based Interference Models 29
3.4.3 Graph-based Models vs. SINR Model 31

3.5 Topology Control . 32
3.5.1 Quality Criteria for Topologies 33

3.6 Related Results . 34

4 Scheduling 37
4.1 Power Control . 37
4.2 Exact Scheduling Algorithms . 40

4.2.1 Constraint Programming . 40

3

Contents

4.2.1.1 Fixed Transmission Power 40
4.2.1.2 Variable Transmission Power 44
4.2.1.3 Optimizations . 45

4.2.2 Integer Linear Programming . 48
4.2.2.1 Fixed Transmission Power 49
4.2.2.2 Variable Transmission Power 51
4.2.2.3 Additional Objectives 53

4.3 Scheduling Heuristics . 54
4.3.1 Fixed Transmission Power: MaxSINR 54
4.3.2 Variable Transmission Power: MinPower 56

4.4 Computation of Lower Bounds for Optimum Schedules 57

5 Topology Control 61
5.1 Overview of existing Algorithms and Topologies 61

5.1.1 Gabriel Graph and Relative Neighborhood Graph 62
5.1.2 LIFE and LISE . 63
5.1.3 Minimum Spanning Tree Algorithms 63
5.1.4 Cone Based Topology Control (CBTC) 64
5.1.5 XTC Algorithm . 64

5.2 Topologies which can be efficiently scheduled 65
5.2.1 MaxSINR Topology and MinPower Topology 65
5.2.2 MinInterference Topology . 67
5.2.3 Constraint Programming . 68

6 Experimental Results 71
6.1 Implementation and Testing Environment 71
6.2 Parameters used for the SINR Model . 72
6.3 Scheduling . 73

6.3.1 Test data . 73
6.3.2 Graph-based Models vs. SINR Model 75
6.3.3 Analysis of Optimum Schedules 76
6.3.4 Variable Power vs. Fixed Power 80
6.3.5 Quality of Heuristic and Lower Bound 82
6.3.6 Performance . 84
6.3.7 Solution Quality . 86
6.3.8 Random Restarts . 87

6.4 Topology Control . 90
6.4.1 Quality Measures . 90
6.4.2 Test Data and considered Topologies 92
6.4.3 Visual Comparison based on a single Sample 93
6.4.4 Comparison based on a Series of Samples 98
6.4.5 Similarities between the Topologies 103

4

Contents

7 Final Remarks 105
7.1 Mathematical Programming vs. Constraint Programming 106
7.2 Outlook . 107

8 Zusammenfassung (German abstract) 109

List of Figures 111

List of Tables 112

List of Algorithms 112

Bibliography 113

5

6

1 Introduction

Networks of small sensor nodes, so-called sensor networks, consist of spatially dis-
tributed autonomous devices which use sensors to cooperatively monitor physical or
environmental conditions, such as pressure, temperature or vibration, at different lo-
cations. Originally, the development of sensor networks was motivated by military
applications such as battlefield surveillance. However, the ongoing miniaturization of
the sensor nodes as well as the availability of cheaper and cheaper hardware led to an
abundance of new applications, including habitat and environment monitoring, indus-
trial machinery surveillance, healthcare and home automation.

Today, the smallest sensor nodes already have a diameter of only about one millimeter.
Yet, there is no end in sight for the miniaturization and it is hoped that soon the sensor
nodes will be small and cheap enough that thousands of them can be scattered in
order to work cooperatively. This concept became known as smartdust [18] because the
devices are intended to be only the size of a dust particle. Of course, these applications
put high demands on the used hardware and software. Due to their tiny size, sensor
nodes cannot be equipped with big batteries. Moreover, in many applications it is
impossible to recharge or replace sensor nodes that run out of power. Therefore, energy
conservation is very crucial in the context of sensor networks.

Since energy is the limiting factor of lifetime and operability of most ad-hoc networks,
there has been a lot of research on how to conserve energy in sensor networks. One
of the approaches proposed so far is topology control. The basic idea behind topology
control is to restrict the network topology, the structure of links connecting pairs of
network nodes, to a small connecting subset of all possible links in order to make routing
on the topology faster and easier. Moreover, the energy needed for a transmission
strongly depends on the distance between sender and receiver. The energy required
for communication between two sensor nodes grows at least quadratically with their
distance. Therefore, avoiding large-distance links usually helps to conserve energy.

Most of the theoretical work on sensor networks is based on oversimplified graph-based
models. These models neither adequately take into account the dependence between
transmission quality and sender-receiver-distance, nor do they consider that sensor
nodes that are not within transmission range also interfere to a certain extent with
each other. For this reason, this thesis relies on the more sophisticated SINR model, a
physically motivated radio propagation model.

The main goals of this thesis are: providing efficient heuristics for the computation of

7

1 Introduction

good upper and lower bounds on the length of optimal schedules in wireless networks,
to develop and study optimized methods for the computation of exact schedules, to use
the aforementioned methods to analyze differences and similarities between different
models for sensor networks, to propose new topology control algorithms which try to
minimize the number of slots that are necessary to schedule all links of the generated
topologies, to compare this topology control algorithms with existing algorithms, and,
last but not least, to evaluate constraint programming and compare it to integer linear
programming based on the experiments that were performed in the context of this
thesis.

Organization of this thesis

In the following, we give a brief chapter outline in order to provide a quick overview on
the organization of this thesis.

Chapter 2: The second chapter provides the reader with the necessary background
knowledge that is not directly connected to wireless sensor networks. It starts
with some basic notations and definitions in the field of graph theory. Subse-
quently, the techniques mathematical programming and constraint programming
are introduced. As most of the readers are probably not so familiar with constraint
programming, this topic is covered in more detail. The chapter is concluded with
a detailed description of Gecode, the constraint programming solver that is used
for the experiments in this thesis.

Chapter 3: A brief survey on sensor networks is given. First, it is shown how network
topologies can be modeled using communication graphs. Two famous kinds of
communication graphs, namely unit disk graphs and quasi unit disk graphs, are
described. Next, different ways of how the medium access layer of the network
can deal with interference and resulting transmission failures are shown. This is
followed by the definition of the scheduling problem, one of the main topics of this
thesis. Subsequently, a brief overview on how interference in wireless networks
can be modeled is given. Graph based models of interference, as well as the more
profound SINR model, are introduced and compared to each other. At this, the
use of the SINR model is motivated. Finally, the topology control problem is
introduced.

Chapter 4: The fourth chapter is dedicated to the scheduling problem. It starts with
the question how one can decide if a set of transmissions can be scheduled at
the same time, and how one can determine optimal transmission powers such
that all transmissions satisfy the SINR constraint without wasting energy. Af-
terwards, constraint programs (CPs) and integer linear programs (ILPs) for the

8

computation of optimum solutions of the scheduling problem are given. To push
up the size of exactly solvable problems, several optimizations for the CPs and
ILPs are discussed. However, real world instances of the scheduling problem are
intractable with exact algorithms. Thus, efficient heuristics for the computation
of upper and lower bounds on the length of optimal schedules are discussed.

Chapter 5: This chapter deals with the topology control problem. An overview of
existing algorithms for the topology control problem is given and several quality
measures for network topologies are described. The list of well-established quality
measures is extended with new measures that are based on the SINR model. After
that, the scheduling heuristics from chapter four are extended to topology control
algorithms. Goal of this algorithms is the computation of topologies that can be
fast scheduled and that, at the same time, preserve connectivity as well as certain
spanner properties. Furthermore, another topology control algorithm, which tries
to minimize the SINR model interference, is given. This chapter concludes with
the description of a CP for the optimal solution of the aforementioned topology
control problem.

Chapter 6: The experimental chapter starts with a description of implementation and
testing environment. Afterwards, the SINR model parameters used for the ex-
periments are described and motivated. Subsequently, the methods of Chapter 4
and Chapter 5 are used to examine some basic properties of optimum schedules
and of the presented topologies. Among others, the advantages of using variable
transmission powers instead of fixed transmission powers, the differences between
graph-based and SINR-based models of interference, the length of optimal sched-
ules depending on sender density, and the quality of the upper and lower bounds
on schedule lengths, which are produced by the heuristics, are examined. The
performance of the ILPs and CPs is analyzed empirically in various ways and both
approaches are compared with each other. Moreover, the benefit of using random
restarts during the solution of the constraint programs is analyzed. Finally, the
topologies presented in this thesis are compared to each other using numerous
quality measures.

Chapter 7: The most important results of this thesis are resumed and some conclusions
are given. In particular, constraint programming is compared to mathematical
programming based on the results achieved during the experiments. This chapter
concludes with a brief outlook.

Chapter 8: The last chapter of this thesis gives a summary of the main achievements
of this thesis in German. Such a summary is obligatory for a diploma thesis,
which is not written in German, to be accepted at University of Karlsruhe.

9

10

2 Preliminaries

In this chapter we will introduce the basic notions and main concepts that will be used in
the remainder of this thesis. Section 2.1 recalls some common terminology in connection
with graphs and networks. Sections 2.2 and 2.3 deal with mathematical programming
and constraint programming, respectively. Both are optimization techniques that are
suitable for various kinds of problems and allow the user to define a problem in a formal
way. The problem can subsequently be solved using highly optimized solvers. Finally,
in Section 2.4, the freely available constraint programming solver Gecode is introduced
in some detail.

2.1 Graphs and Networks

Definition 2.1 (Graph, Digraph). An undirected graph or graph is a pair G = (V,E),
where V is a finite set of vertices and E ⊆ V ×V is a set of unordered pairs of vertices,
called edges. An edge between u ∈ V and v ∈ V is denoted by {u, v}. Two vertices that
are connected by an edge are called adjacent or neighbors. In contrast to an undirected
graph, a directed graph or digraph G = (V,A) consists of a finite set of vertices V and
a set A ⊆ V × V of ordered pairs of vertices, called arcs. An arc from u ∈ V to v ∈ V
is denoted by (u, v).

Definition 2.2 (Path). A path P in a graph G = (V,E) is a sequence (v1, v2, . . . , vk)
of distinct vertices v1, . . . , vk ∈ V such that {vi, vi+1} ∈ E for 1 ≤ i < k. Similarly, a
directed path in a digraph G = (V,A) is a sequence (v1, v2, . . . , vk) of distinct vertices
v1, . . . , vk ∈ V such that (vi, vi+1) ∈ A for 1 ≤ i < k. The number of edges of a path is
called its length.

In the following, all definitions are related to undirected graphs if not stated otherwise.
The notions for directed graphs are defined analogously and can be found in the standard
literature on graph theory, for example in [6].

Definition 2.3 (Induced Subgraph). An induced subgraph of a graph G = (V,E) is a
graph G′ = (V ′, E′) such that V ′ ⊆ V and E′ = {{u, v}|u ∈ V ′, v ∈ V ′, {u, v} ∈ E}.

Definition 2.4 (Independence). Pairwise non-adjacent vertices or edges are called
independent. A set of vertices or edges is called independent if no two of its elements
are adjacent.

11

2 Preliminaries

Definition 2.5 (Neighbor, Vertex Degree). The set of neighbors of a vertex v in a
graph G = (V,E) is denoted by NG(v), or briefly by N(v). The degree dG(v) = d(v)
of a vertex v is the number |E(v)| of edges at v. For undirected graphs this is equal to
the number of neighbors of v. The number d(G) :=

∑
v∈V d(v)/|V | = 2|E|/|V | is called

the average degree of G.

Definition 2.6 (Connectivity). We call a non-empty graph G connected if any two of
its vertices are linked by a path in G. G is called k-connected (for k ∈ N) if |G| > k
and any two of its vertices can be joined by k independent paths. A maximal connected
subgraph of an undirected graph G is called a connected component of G.

Definition 2.7 (Symmetry). A directed graph G = (V,A) is symmetrical if each pair
of nodes u, v linked by an arc (u, v) in one direction is also linked in the other direction,
i.e., if (u, v) ∈ A ⇒ (v, u) ∈ A. Thus, a symmetrical digraph is equivalent to an
undirected graph.

Definition 2.8 (Sparseness). A graph G = (V,E) is sparse if its average node degree
is bounded by a small constant. This is equivalent to the condition that the number of
edges of G is about linear in the number of vertices. For a graph to be sparse, it is not
required that the maximum degree of a single node is bounded.

Definition 2.9 (Weighted Graph). In many situations it is useful to assign to each
edge e = {u, v} ∈ E a weight w(e). For example, in the context of sensor networks this
weight could be the distance between sensor nodes u and v or the power required for a
transmission between u and v. Such a graph G with weighted edges is referred to as a
weighted graph.

Definition 2.10 (Minimum Spanning Tree, Minimum Spanning Forest). Given a con-
nected graph G = (V,E), a spanning tree of G is a subgraph G′ = (V,E′) of G which
is a tree and connects all vertices from V . If G is a weighted graph, then we can assign
a weight to each spanning tree by summing up all the weights of edges in the spanning
tree. A minimum spanning tree (MST) is now every spanning tree with weight less than
or equal to the weight of every other spanning tree. If the graph G is not connected,
then every connected component has a minimum spanning tree. The union of the min-
imum spanning trees of all connected components is called a minimum spanning forest
(MSF).

Definition 2.11 (t-Spanner). A t-spanner of a weighted graph G=(V,E) is a spanning
subgraph G’ of G in which every two vertices are at most t times as far apart from each
other on G′ than on G. The number k is called dilation.

2.2 Mathematical Programming

In computer science, mathematical programming refers to techniques that allow the user
to define optimization problems in a formal way and which provide the necessary tools

12

2.2 Mathematical Programming

for solving the problems using mathematical methods. The user only has to describe
the problem, and not how the problem can be solved. In this work, we will use an
optimization technique called integer linear programming (ILP) to find optimal solu-
tions for small instances of several NP-hard optimization problems. In Section 2.2.1 we
start with a short introduction into the closely related field of linear programming (LP).
Then, in Section 2.2.2, the main aspects of integer linear programming are described.
At this point, we will confine ourselves to some basic definitions and properties of math-
ematical programming. For more details on the extensive theory of linear programming
and the algorithms to solve LPs and ILPs there is an abundance of literature available.
See for example the book on the theory of linear and integer programming by Alexander
Schrijver [38].

2.2.1 Linear Programming

Linear Programming deals with the maximization or minimization of a linear objective
function such that the solution fulfills a set of linear constraints. The objective function
together with the constraints is called a linear program (LP). This can be formalized
as follows:

Definition 2.12 (Linear Program). Let A ∈ Rm×n be a m × n matrix, b ∈ Rm a
m-dimensional vector and c ∈ Rn a n-dimensional vector. The corresponding linear
program is then given as

minimize cTx
subject to Ax ≤ b

where x ∈ Rn is an n-dimensional vector of real variables.

Problems in which the objective function is maximized or in which the linear constraints
are given as Ax = b or Ax ≥ b can easily be transformed to this standard representation
of linear programs.

There are several algorithms available for the solution of linear programs. The simplex
algorithm proposed by Dantzig in 1947 was one of the first of them and, although it
does not have polynomial worst-case running time, it is still frequently used, because
it is extremely fast even on huge real world examples. It solves linear programs by
constructing an admissible solution at a vertex of the solution polyhedron and then
walking along edges of the polyhedron to vertices with successively higher values of the
objective function until the optimum is reached.

For a long time it has not been known whether linear programming is solvable within
polynomial time. This was resolved in 1979 by Leonid Khachiyan with the ellipsoid
method [21], which had a worst-case polynomial time. The ellipsoid method itself did
not find its way into industrial applications as the simplex algorithm outperformed it for
all but some specially constructed problems. However, it lead to the development of the

13

2 Preliminaries

so-called interior point methods, which do not progress along points on the boundary
of a polyhedral set but instead move through the interior of the feasible region. One
of them is the interior point projective method proposed by N. Karmarkar in 1984 [19]
which was the first polynomial-time algorithm that was efficient enough for real-world
problems. Today, good implementations of simplex-based methods and interior point
methods are believed to have similar performance for routine applications.

Thanks to the diverse possible applications of linear programming in industrial opti-
mization and operations research, there are many highly optimized LP-solvers available,
for instance ILOG CPLEX [5] and Xpress-MP [49]. Usually, they implement different
LP algorithms and can solve problems with tens of thousands decision variables and
millions of constraints.

2.2.2 Integer Programming

In many applications the decision variables are not continuous but have to be chosen
from a finite set of integer values. In this case, linear programming usually is not appli-
cable to determine the optimum solution. Instead, an extension of linear programming,
the so-called integer programming, can be used. In an integer (linear) program (IP,
ILP), some or all decision variables are required to be integers. Unfortunately, integer
programming is NP-hard and in most cases the time to solve an integer program ac-
tually grows exponential with the number of integer variables. If some of the decision
variables are allowed to be real, which is often the case, we use the notation mixed
integer programming. A mixed integer program (MIP) is defined similar to the LP.

Definition 2.13 (Mixed Integer Program). Let A ∈ Rm×n be a m× n matrix, b ∈ Rm

a m-dimensional vector and c ∈ Rn a n-dimensional vector. Let further I ⊆ {1, . . . , n}.
Then the corresponding mixed integer program is given as

minimize cTx
subject to Ax ≤ b

xi ∈ Z ∀i ∈ I

where x = (x1, . . . , xn) ∈ Rn is an n-dimensional vector of variables.

Depending on I we get an ordinary LP for I = ∅ and an IP if I = {1, . . . , n}. As
for the LP, there are many commercial and non-commercial solvers available. For the
solution of the MIPs in this thesis the ILOG CPLEX solver was used.

2.3 Constraint Programming

Constraint programming (CP) is a relatively new programming paradigm which evolved
within the last years especially for the solution of combinatorial problems. Similar to

14

2.3 Constraint Programming

linear programming, CP is a declarative programming paradigm. Instead of describing
how to solve the problem, the problem itself is modeled in a rather formal way and the
solution of the problem is left up to some specialized CP solver. For this purpose, the
solver usually provides the user with a set of predefined models and constraints, which
can be extended almost arbitrarily according to the special needs of the application.
Interestingly, constraints can be added, removed, or modified during the execution of
the solver.

Constraint programming has proven to be useful in many fields of combinatorial op-
timization such as operations research, electrical engineering, molecular biology, and
natural language processing. Actually, scheduling is one of the major applications of
constraint programming though usually the constraints used for the scheduling prob-
lems are simpler than the non-linear constraints that evolve for scheduling in the SINR
model. One of the goals of this thesis is to examine how well constraint programming
is suited to deal with the rather complex SINR model.

2.3.1 Notations and Definitions

In the following we give a short overview on some notations and definitions related to
constraint programming. Most definitions follow the ones used in [36].

A constraint satisfaction problem (CSP) consists of:

• a set of variables X = {x1, . . . , xk}

• for each variable xi, a finite set D(xi) of possible values (the domain of xi)

• a finite set of constraints restricting the values that the variables can simultane-
ously take

The domain D(x) of a variable x is often, but not necessarily, a set of integers or an
enumerated set of values. Another possibility are set variables whose values are sets.

A constraint C on X is a subset of the Cartesian product of the domains of the variables
in X, i. e., C ⊆ D(x1)×· · ·×D(xk). We call each tuple (d1, . . . , dk) ∈ C a solution to C.
Each solution assigns the value di to the variable xi, for all 1 ≤ i ≤ k. We also say that
the assignment of a solution satisfies C. If C = ∅, then there exists no assignment that
fulfills C and we say that C is inconsistent. There are two ways to specify a constraint:
intentionally, e. g. x1 6= x2, or extensionally as a set of allowed tuples of values, e.g.
{(1, 2), (2, 1)}. Today, constraints are almost always expressed intentionally.

A solution to a CSP is an assignment of a value d ∈ D(x) to each x ∈ X, such that all
constraints are satisfied simultaneously. Possible goals of solving a CSP are to decide
whether a CSP has a solution or not, to find some solution of the CSP, or to enumerate
all solutions. Often it is not enough to find just some solution, but we want to find
the optimum solution to a CSP with respect to certain criteria. This leads us to the
constraint optimization problem.

15

2 Preliminaries

A constraint optimization problem (COP) consists of:

• a CSP P with variables x1, . . . , xk

• an objective function f : D(x1)× · · · ×D(xk)→ Q

A solution d to P that minimizes (maximizes) the value of f(d) is called an optimum
solution to the minimization (maximization) COP.

There are many ready-to-use constraint programming libraries available for Java and
C++, many of which are free. Usually, they solve the CSPs and COPs by a combination
of:

• systematic search through the space of possible variable assignments (using back-
tracking)

• constraint propagation (using the constraints to derive new information about the
problem)

• stochastic local search

• linear programming

For our implementations and the experiments we used the freely available CP solver
Gecode. In the following section, we will describe the main capabilities of Gecode.

2.4 Gecode: Generic Constraint Development Environment

Gecode [7] is a free open source CP solver. The first stable version of Gecode was
released in the end of 2005 and since then, there have been many improvements and
new versions. The latest updates have been within the last months, so it seems that
the Gecode project is still alive and likely to be continued.

Besides being free, there are many reasons why to choose Gecode over other CP solvers.
First of all, it is very portable. It is written in standard compliant C++ and runs on
a wide range of hardware (32bit and 64bit) and operating systems (e.g., Unix/Linux,
MacOS X, Windows). Extensive reference documentation is available and there are
also several small examples for famous optimization problems available, which help to
get started with Gecode. Unfortunately, the more complex programming tasks are not
documented as well, but most questions can be answered with a look into the freely
available source code of Gecode. Considering the performance, Gecode seems to be
competitive even with commercial state-of-the-art solvers like ILOG CP Solver [8]. Last
but not least, Gecode can be easy extended with new propagators (as implementations
of constraints), variable domains, branching strategies, and search engines. In the
following, we will give a short introduction into these different components of a Gecode
CP formulation.

16

2.4 Gecode: Generic Constraint Development Environment

2.4.1 Models and Constraints

Gecode offers two main models for the formulation of constraint programs, finite domain
integers and finite integer sets. Finite domain integers are more common and all our
CPs are based on them. Therefore, we confine ourselves to finite domain integers in
this short introduction.

The constraint satisfaction problem (CSP) is given as a set of variables and a set of
constraints. The general procedure to solve the CP is as follows: In the beginning, the
domainD(x) ⊂ Z of each variable x is a finite set of integers. The variables are, one after
another, assigned values from their domains. After each assignment, the constraints
are used to thin out the domains of the not yet assigned variables as much as possible.
If, at some point, the domain of a variable gets empty, then we immediately know that
the current assignment does not yield a feasible solution. In this case, a backtrack step
is performed and the variable that has been assigned most recently will be assigned
the next value from its domain. If all variables could be assigned a value, then a valid
solution is found. The details of this search approach will be explained in the following
sections. Let us first have a look on some of the constraints for finite domain integers
that are already provided by Gecode.

Domain constraints: The domain of a variable or a set of variables can be defined by
domain constraints. They allow to give lower and upper bounds on the variable
or to define the domain as a set of integers. They also can be used to check if the
value of a variable is an element of a given set of integers and then, to assign the
result to some Boolean variable.

Relation constraints: They can be used to enforce arbitrary relations (>,≥, <,≤,=, 6=)
between a variable and a constant or between two variables. They also can be
used to check if a relation is satisfied and then, to assign the result to some
Boolean variable.

Distinct constraints: Distinct constraints can be used to enforce that all variables of
a given set are distinct. Furthermore, it is possible to give offsets to the variables
so that the variables plus the corresponding offsets have to be distinct.

Channel constraints: Given two lists of integers (x1, . . . , xn) and (y1, . . . , yn) it can
for example be enforced that xi = j ↔ yj = i for all 1 ≤ i ≤ n.

Graph constraints: One example is the circuit constraint. Given a set x of integers,
the graph with edges i → j where xi = j must have a single cycle covering all
nodes and thus form a circuit.

Scheduling constraints: Some constraints for scheduling problems with a set of ma-

17

2 Preliminaries

chines and a set of tasks that have to be assigned to the machines are given. The
tasks can have start and end dates as well as durations and resource requirements.
The machines can have certain amounts of resources available.

Sorted constraints: Given two lists of integers x = (x1, . . . , xn) and y = (y1, . . . , yn)
it can be enforced that x and y are equally reordered such that x is sorted in
increasing order.

Cardinality constraints: There are several count constraints available, which for exam-
ple allow to specify or restrict the number m of variables in a set x of variables
that are assigned a given value n. Instead of n one can also use the value of
another variable y. Furthermore, it is possible to count the number of variables
in the set x which are equal to n or y and write the result to some variable z.

Arithmetic constraints: They can be used to apply arithmetic functions on the vari-
ables, for instance to determine the minimum or maximum of a set of variables,
or to compute absolute values, products, roots, etc.

Linear constraints: They can be used to determine the (weighted) sum of a list of
variables or to enforce some relation (>,≤, . . .) between this sum and a given
constant or variable.

It is possible to extend Gecode with new constraints by implementing own propagators.
The concept of propagators is introduced in the next section.

2.4.2 Propagators and Filtering

In Gecode constraints are implemented as propagators. Every time when a variable x is
assigned or the domain of x is modified, the propagators of those constraints that are
affected by x are executed. The propagator now checks if the smaller domain of x helps
to thin out the domains of other variables, meaning that values from other domains
can be removed without changing the set of solutions. This process is called filtering.
If the propagator is able to filter other domains, then this in turn possibly triggers the
execution of other propagators or another execution of the same propagator. This is
repeated until the domains reach a fix point or one of the domains becomes empty.

At this constraint programming distinguishes between two kinds of filtering: complete
filtering and partial filtering. The filtering is complete with respect to constraint C if
removing any additional value from one of the domains would alter the set of solutions
to C. This can be formalized as follows (cf. [36]):

Definition 2.14 (Domain Consistency). Let C be a constraint on the variables
x1, . . . , xk with respective domains D(x1), . . . , D(xk). We say that C is domain consis-

18

2.4 Gecode: Generic Constraint Development Environment

tent if for every 1 ≤ i ≤ k and v ∈ D(xi), there exists a tuple (d1, . . . , dk) ∈ C such
that di = v. A CSP is domain consistent if each of its constraints is domain consistent.

Establishing domain consistency for non-binary constraints is in general NP-hard even
though there are several important constraints for which complete filtering is quite
efficient. In contrast to complete filtering, partial filtering does not necessarily eliminate
all infeasible values. For example, it is often much easier to determine new upper and
lower bounds on the variables than to eliminate all infeasible values. Let, for some
variable x, L(x) and U(x) denote lower bound and upper bound of x, respectively. Given
two variables x1 and x2 with domains D(x1) = {5, . . . , 61, 85} and D(x2) = {1, . . . , 41}.
This means L(x1) = 5, U(x1) = 85, L(x2) = 1, U(x2) = 41. Given the constraint
x1 + x2 = 100 it is now easy to see that every valid solution has to fulfill x1 ≥ 59 and
x2 ≥ 15. Thus, only by knowing U(x1) = 85, U(x2) = 41, we can immediately update
L(x1) to 59 and L(x2) to 15. This gives us D(x1) = {59, 60, 61, 85} and D(x2) =
{15, . . . , 41}. This process to shrink the domain intervals as much as possible without
losing any solutions is called filtering with bound consistency. Formally:

Definition 2.15 (Bound Consistency). Let C be a constraint on the variables x1, . . . , xk
with respective lower and upper bounds L(x1), U(x1), . . . , L(xk), U(xk). We say that
C is bound consistent if for every 1 ≤ i ≤ k, there exists a tuple (d1, . . . , dk) ∈ C such
that di = L(xi) and there exits a tuple (e1, . . . , ek) ∈ C such that ei = U(xi)

In this example filtering with domain consistency would have given the more accurate
domain D(x2) = {15, 39, 40, 41}. However, in every case where complete filtering is too
costly or even intractable, partial filtering is preferable.

One remarkable property of constraint programming is the possibility to add or alter
propagators during the search process. If, for instance, all but two variables of an n-ary
constraint are fixed, then it is sometimes advantageous to replace the propagator by a
similar binary propagator that is more efficient. Another application of this feature will
be explained in the next section in the context of constraint optimization problems.

2.4.3 Search Engines for CSPs and COPs

Gecode offers several search engines which roughly control the search process. The
most common search engine for CSPs is a simple depth-first search. The variables
are assigned one after another. After each assignment filtering takes place. If the
domain of a variable becomes empty a backtrack step is performed and the next possible
assignment is checked out. This is repeated until all variables have been successfully
assigned a value or the domain of the first variable in the search tree is empty.

One problem with the depth-first search is, that if we do a bad assignment for one of
the first variables in the search tree, then we have to visit all nodes of the possibly huge
subtree before the bad decision can be revised. This can possibly be avoided by using

19

2 Preliminaries

limited discrepancy search (LDS). LDS works best if it is used in combination with
a good heuristic that determines the order in which a variable is assigned the values
from its domain. The idea is that, given the heuristic performs well, usually only a few
variables in the search tree are assigned bad values. LDS systematically searches all
paths that differ from the heuristic path in at most a small number of decision points,
or discrepancies. Starting with discrepancy 0, the nodes of the search tree are searched
in increasing order of discrepancies. Further information on this topic can be found
in [14].

In Gecode constraint optimization problems are solved using a branch-and-bound
search. Initially, a simple depth-first search is performed to find a valid solution
(d1, . . . , dk) to the underlying constraint satisfaction problem. The corresponding value
z = f(d1, . . . , dk) of the objective function gives an upper bound on the solution. Now,
the possibility of constraint programming to add new constraints during runtime is
used to enforce f(x1, . . . , xk) < z. This, of course, invalidates the current solution of
the CSP. A backtracking step is performed and the depth-first search continues with the
additional constraint. If the new CSP is unsatisfiable, then (d1, . . . , dk) was an optimal
solution with objective value z and we are done. If, on the other hand, the new CSP
has a solution, then we get a new upper bound and repeat the process until we reach
an unsatisfiable CSP, which proves the optimality of the last valid solution. Of course
it is also possible to define some timeout and thus get the best solution that can be
found within the given time.

Similar to the branch-and-bound search is the depth-first restart best solution search.
The only difference is that every time after an improved solution with objective value z
was found and the constraint f(x1, . . . , xk) < z was added the depth-first search starts
with the additional constraint from the beginning instead of extending the current
solution.

2.4.4 Branchings

One crucial point that heavily influences the performance of the search is the order in
which the variables are visited in the search tree, and the order in which the values from
the domains are assigned to the corresponding variables. Both is realized in Gecode
with so-called branchings. There is an abundance of standard branchings available in
Gecode.

The next variable to be assigned in the search tree can be chosen to be, among others:
the first unassigned variable, the variable with smallest or largest domain minimum,
the variable with smallest or largest domain maximum, the variable with smallest or
largest domain size, or the variable with minimum or maximum number of dependent
propagators. In many situations it is a good choice to select the variable with smallest
domain size. This minimizes the probability of a bad assignment and possibly it can be
shown relatively quick that there does not exist a feasible assignment for the variable.

20

2.4 Gecode: Generic Constraint Development Environment

If the next variable in the search tree is chosen it has to be decided, which value to
select first for branching. For this purpose, the following options are available: the
smallest value, the median value, the maximum value, the lower half of the domain,
and the upper half of the domain.

There often exist good heuristics to decide which variable to assign next or which of
the possible values to select next. Gecode offers the possibility to implement such
heuristics in custom branchings and to use them in the CP. This usually pays off with
improved performance, therefore one should consider to implement an own branching
if the standard branchings are not sufficient.

2.4.5 Performance Measures

The most common performance measure for CPs is the number of failures, what is
equivalent to the number of backtracks. This is because the number of failures is in-
dependent of the underlying hardware and it gives a good indication on how good the
filtering and the branchings work. Thus, the failures allow for a good comparison be-
tween different CPs. The number of propagations is also of interest. The less often
the propagators have to be executed the better. However, the number of propagations
does not tell much about the overall running time as different propagators might have
different running times. Unfortunately, both measures are inapplicable to compare
the performance of a CP with completely different approaches like integer program-
ming. For this purpose, using the running time of the CP seems to be the best choice.
Depending on the application the memory consumption might also be important. In
our experiments, Gecode usually did not use more than some negligible megabytes of
memory, therefore we will not consider this measure in the following.

2.4.6 Extending Gecode

Gecode offers enough functionality to model most combinatorial problems using only
the available propagators, search engines, and branchings. If, however, some necessary
functionality is unavailable, then Gecode can be extended almost at will. Besides propa-
gators, search engines, and branchings, even new types of variables can be implemented.
If performance is substantial, then the implementation of good branching heuristics is
often worthwhile. Unfortunately, while using the basic functionality of Gecode is quite
straightforward, extending Gecode is more complicated. A good understanding of how
Gecode works is necessary and as there is not much documentation available on how
to extend Gecode, one has to learn this task by reading and understanding the source
code of Gecode. Fortunately, Gecode’s source code is very well structured so that it
usually is possible to find the necessary code passages within reasonable time. Thanks
to the extendibility of Gecode it should be possible to model almost all combinatorial
problems. This is a great advantage over mathematical programming approaches. And

21

2 Preliminaries

in contrast to an integer program, a CP usually gets faster the more constraints are
used.

2.4.7 C++ Interface vs. Java Interface

Gecode is written in C++ and originally designed to be a C++ library for constraint
programming. However, there exists a Java interface, Gecode/J, which makes Gecode
available in Java programs and provides most of the functionality of Gecode. As most of
our implementations were done in Java, we first used Gecode/J in our Java framework.
Gecode/J was easy to learn and convenient to use. Unfortunately, we soon realized that
Gecode/J was not as developed as the C++ implementation of Gecode and in particular
not optimized for performance. As we intended to compare constraint programming
with integer linear programming with respect to performance, we decided to use the
optimized C++ interface. Nevertheless, if performance is not so crucial and one is only
interested in the number of failures and propagations, then Gecode/J is worth to be
considered.

22

3 Survey on Wireless Sensor Networks

The success or failure of transmissions in wireless networks depends on a big number
of factors. This chapter deals with some of the models that have been proposed to
make wireless sensor networks tractable for theoretical considerations. The reader will
be provided with the background knowledge about wireless sensor networks that is
necessary in the context of this thesis. The SINR interference model will be introduced
and motivated by comparison with other models of interference. Furthermore, the
problems covered in this thesis, namely the scheduling problem and the topology control
problem, are defined.

3.1 Communication Graphs

It seems very natural to model sensor networks using graphs. Every sensor node cor-
responds to a vertex of the graph and every pair of sensor nodes that is theoretically
able to communicate directly is connected by an edge. The resulting graph is the
communication graph of the sensor network.
Definition 3.1 (Communication Graph). Given a sensor network and a graph G =
(V,E) with V representing the set of sensor nodes. If there is an edge euv = {u, v} ∈ E if
and only if the sensor nodes corresponding to u and v are able to communicate directly
with each other, then we call G the communication graph of the sensor network

Usually, it can be assumed that the transmission power of a sensor node is restricted
and that this also restricts the maximum transmission range R of the sensor. In many
applications all sensor nodes furthermore share the same maximum transmission range
R. This means that in the communication graph there is an edge between two nodes u
and v if and only if the distance dist(u, v) between u and v is less than or equal to R. In
this case the distances are usually normalized such that R ≡ 1 and the communication
graph is a unit disk graph.
Definition 3.2 (Unit Disk Graph). A graph G = (V,E) is a unit disk graph (UDG) if
and only if there is an embedding of the nodes in the plane such that there exists an
edge {u, v} between node u and node v if and only if the Euclidean distance between u
and v is less than or equal to 1.

Figure 3.1(a) shows a set of sensor nodes in the plane with three exemplary transmission
ranges of radius R. Next to it, the corresponding unit disk graph is depicted.

23

3 Survey on Wireless Sensor Networks

R

(a) Nodes which are within transmission
range are connected

(b) Resulting Unit Disk Graph

Figure 3.1: Illustration of the Unit Disk Graph model

However, in reality things are a little more complicated. For example, there often are
obstacles such as trees or walls in the line-of-sight between sensor nodes and absorb
their radio waves. Therefore, considering only the distance between two nodes is not
sufficient to decide whether a direct communication is possible. This leads to the
somewhat more refined model known as quasi unit disk graph. Like in the unit disk
graph there is no communication possible if the distance between two senders is greater
than the maximum transmission range R. Moreover, if the distance between sender
and receiver is less than or equal to some r with r < R, then it is assumed that the
transmission is possible by all means. In the case that the distance is between r and R
a communication could be possible but does not have to be. Introducing a parameter
d = r/R we get the so-called d-quasi unit disk graph model.

Definition 3.3 (d-Quasi Unit Disk Graph). Given some parameter d ∈ [0, 1], a graph
G = (V,E) is a d-quasi unit disk graph (d-QUDG) if and only if there is an embedding
of the nodes in the plane such that dist(u,v) ≤ d ⇒ {u, v} ∈ E and dist(u, v) ≥ 1 ⇒
{u, v} 6∈ E.

As long as we are in situations without concurrent transmissions there is nothing wrong
about the aforementioned communication graphs. On the contrary, if we know that the
communication graph is an unit disk graph, then this gives us additional information
which can be used to design efficient algorithms. It can for instance be shown that
every unit disk graph in which two nodes are never closer than some constant distance
has bounded degree. This assumption that there is some minimum distance between
any two nodes is referred to as the Ω(1)−Model and has proven useful in a variety of
cases [23].

Unfortunately, things are getting much more complicated when there is more than

24

3.2 How to deal with Interference

one active sender involved at the same time. In this case, concurrent transmissions will
interfere with each other and that can result in failure of some or all of the transmissions.

3.2 How to deal with Interference

Let us have a quick look on the possibilities to deal with interference and transmission
failures before we get deeper into the topic of interference modeling. In the OSI model,
it is the task of the Medium Access Layer (MAC Layer) to manage the access to the
shared medium in wireless networks. Therefore, the MAC Layer has to take care that
no transmissions get lost due to interference. This is done by either retransmitting
unsuccessful transmissions or by scheduling all transmissions such that the interference
does not lead to transmission failures. Several MAC Protocols have been proposed to
achieve this goal:

ALOHA: The most basic and one of the first protocols was ALOHA [35]. Every
packet is send as soon as it is generated. Received packets are acknowledged
by the receiver with an acknowledgement message. If the sender does not get
the acknowledgment, he just tries to resend the message after a random period.
However, this approach usually results in a very poor network usage.

Carrier Sense Multiple Access (CSMA): In contrast to the ALOHA protocol, a
sender using the CSMA method [44] first checks if other nodes are transmitting
before it starts a transmission. If the channel is clear, it starts immediately
to transmit. If not, the sender waits for all active transmissions to finish and
starts to transmit after some random back-off time in order to avoid starting its
transmission concurrently with other waiting nodes.

CSMA with Collision Avoidance (CSMA/CA): In networks that use the CSMA
protocol it can happen that two senders s1 and s2 both want to send to the same
receiver r but are unable to hear each other. Thus, they send at the same time
and both transmissions fail due to the interference at r. This problem is known
as the hidden terminal problem. The CSMA/CA protocol was developed with
three-way-handshake in order to avoid the hidden terminal problem. Here, the
sender s first sends a Request-To-Send (RTS) message. If the addressed receiver
r is willing to accept the transmission, it answers with a Clear-To-Send message.
This CTS message can be received by all other senders in transmission range of
r and prevents them from communicating with r. As soon as sender s receives
the CTS message, it starts with the transmission. Finally, when the transmission
is finished, r informs the neighboring nodes that the medium is idle again using
an acknowledgment message (ACK). The CSMA/CA protocol is used in most of

25

3 Survey on Wireless Sensor Networks

today’s wireless networks. The most famous example is the IEEE 802.11 wireless
LAN protocol family [33].

Time Division Multiple Access (TDMA): TDMA protocols are based on an idea
completely different from the aforementioned contention based protocols: Instead
of transmitting in a trial-and-error-fashion, the nodes agree in advance on a sched-
ule. This schedule assigns to every node a time slot such that the node can send
freely without interfering with concurrent transmissions. At this, only such nodes
are allowed to share the same time slot that are so far from each other that the
caused interference can be ignored. This approach helps in several ways to con-
serve energy: nodes can go to an energy-saving sleep mode between their assigned
time slots, there is less contention-introduced overhead, nodes can transmit with
less transmission power as they can estimate the occurring interference, and theo-
retically there are no collisions which result in energy-consuming retransmissions.
However, TDMA based protocols usually do not allow to dynamically change
frame lengths and time slot assignments. Therefore, they usually do not scale as
good as contention based protocols. Nevertheless, if durability is of greater im-
portance than network performance (that probably is true in many applications
of wireless sensor networks), then TDMA based methods seem to be better suited
than their contention based rivals. Some proposals for TDMA algorithms can be
found in [15, 32].

The methods and algorithms described in this thesis are completely aimed at the TDMA
method: the scheduling algorithms help to determine good schedules and to research the
basic properties of optimum schedules, and the goal of the proposed topology control
algorithm is to find a subset of the communication links such that the connectivity of
the network is preserved and the number of slots necessary to schedule all selected links
in an TDMA fashion is minimized.

3.3 Scheduling Problem

The basic idea of scheduling is to assign all requests from a multiset T of transmission
requests to different time slots such that all transmissions that are assigned to the same
time slot can be active concurrently without running into danger of failures. At this, a
transmission request t = (s, r) consists of a sender s and a receiver r. For convenience,
we will refer to transmission requests simply as transmissions in the following. The same
sender-receiver-pair (s, t) can be contained in T multiple times, representing different
transmissions.

Additionally, every transmission t ∈ T has assigned a transmission power Pt. We distin-
guish between scheduling with fixed transmission powers where all transmissions share
the same transmission power Pmax, and scheduling with variable transmission powers
where every transmission can have a distinct transmission power Pt ∈ [0, Pmax]. At this,

26

3.4 Interference Models

the transmission power of a single sender can vary between different transmissions. The
process of determining good transmission powers is called power control and in most
cases power control is part of the scheduling algorithm.

We say that a set T ⊆ T of transmissions with associated transmission powers Pt
for all t ∈ T is valid with respect to some interference model (cf. Section 3.4) if the
model allows to schedule all transmissions from T concurrently without failures. A
sequence S = T1, T2, . . . , Tk of transmission sets with associated transmission powers
and
⋃k
i=1 Ti = T is a schedule of T . A schedule S is valid if every transmission set Ti

of the schedule is valid. Single transmission sets of a schedule are allowed to be empty
(an empty transmission set is always valid) and we also refer to the transmission sets
of a schedule S as time slots or simply slots. The length or makespan of a schedule S
is the number of slots in S. The scheduling problem can now be formalized as follows:
Definition 3.4 (Scheduling problem with fixed transmission powers). Given a set T
of transmission requests and common transmission power P . Find a schedule S of T
such that S is valid and has minimum length among all valid schedules of T .
Definition 3.5 (Scheduling problem with variable transmission powers). Given a set T
of transmission requests and maximum transmission power Pmax. Compute transmis-
sion powers Pt ∈ [0, Pmax] for all transmissions t ∈ T and a schedule S of T such that
S is valid and has minimum length among all valid schedules of T with every possible
power assignment.

st

rt

t time slot 1
time slot 2
time slot 3

T

Input: Set T of transmissions t = (st, rt) Output: Assignment of transmissions to time slots

Figure 3.2: Input and output of the scheduling problem

The situation for fixed transmission powers is depicted in Figure 3.2. The input consists
of a set T of transmissions and some common transmission power P . The output of
the scheduling algorithm is an assignment of the transmissions to three different slots
(which is equivalent to a partition of T into three valid transmission sets T1, T2, T3).

3.4 Interference Models

Now let us have a closer look on how interference can be modeled and how we can
decide if a set of transmissions is valid. Every transmission t = (s, r) involves a sender

27

3 Survey on Wireless Sensor Networks

s and a receiver r. The sender transmits the information in form of radio waves, which
are usually emitted by some kind of omnidirectional antenna. If there is a concurrent
transmission t′ = (s′, r′), then the radio waves emitted by s′ interfere with the radio
waves from s at receiver r. Thus, the transmission quality of t is affected negatively.
In the worst case this means that none of the concurrent transmission attempts is
successful. There have been many proposals how to model this interference. Especially
in theoretical computer science, people often use interference models that are directly
based on communication graphs like the unit disk graph. In the following, we will
introduce such graph-based models as well as the physically motivated SINR model on
which this thesis is based. Finally, both types of models are compared against each
other and the use of the SINR model is motivated.

3.4.1 SINR Model

We start with the description of the so-called SINR model which is used in this thesis.
The SINR model is physically motivated and is widely believed to resample reality very
closely. Its introduction into algorithms for wireless networks is addressed to [13]. There
are several definitions of the SINR model in use, which mainly differ in granularity.
For example, some definitions allow to model obstacles and random influences on the
transmission quality. In the context of this thesis those random influences are undesired
as the goal is an unbiased study of basic properties of wireless networks. Therefore, we
confine ourselves at this point with the most basic model in which the distance between
sensor nodes is the only defining factor for signal strength. This model is also known as
the geometric SINR model (or short, SINRG). A more refined model can, for instance,
be found in [20]. Note, however, that all proposed algorithms and heuristics can be
used with more complicated SINR models without any modifications.

Given a wireless network with n nodes v1, . . . , vn. Assume node vi starts a transmission
to node vj using transmission power Pi > 0. The signal from vi will reach the receiver
vj with signal strength Sij :

Sij = Pi
d(vi, vj)α

(3.1)

At this, d(vi, vj) is the distance between sender vi and receiver vj and α is the so called
path loss exponent. It is usually assumed that α is a position-independent constant with
a known value between 2 and 5. In this thesis, α = 4 is used. However, the value of α
does not have significant impact on the results of this thesis.

In general, vi does not have to be the only active sender. Let U ⊆ {v1, . . . , vn} be the
set of all senders that are active concurrently with vi. The radio waves emitted by every
concurrent sender vu also reach our receiver vj with signal strength Suj and interfere
with the signal from vi. This leads to the following interference Ij at receiver vj :

Ij =
∑
vu∈U

Pud(vu, vj)−α =
∑
vu∈U

Suj (3.2)

28

3.4 Interference Models

Finally, the model takes into account some background noise ηj > 0 at receiver vj .
This background noise combines all interfering influences at vj that are not caused by
concurrent transmissions of the considered network nodes. Usually it is assumed that
all nodes share the same background noise η.

So how can we decide if transmission t = (vi, vj) is successful? The necessary condition
is that the ratio of transmission signal strength to the sum of all interfering influences
exceeds some constant κ. This leads to the SINR inequality or SINR constraint:

γij := Sij∑
vu∈U Pud(vu, vj)−α + η

= Sij
Ij + η

> κ (3.3)

Here, γij is the so-called Signal to Interference and Noise Ratio (SINR) from which the
SINR model got its name. The constant κ is the minimum SINR that is necessary for vj
to successfully decode a message. κ depends on hardware and software characteristics of
the receiving node and can in general be different for every node. For modern hardware
κ lies somewhere between 5 and 15. For the sake of simplicity it will be assumed in the
following that all network nodes share the same minimum SINR κ = 10.

s2

r2s1

r1

r3

s3

η

S2

I12
I32

γ2 = S2

I12+I32+η

Figure 3.3: Illustration of the signal-to-interference-plus-noise-ratio (SINR)

The situation is illustrated in Figure 3.3. There are three concurrent transmissions:
t1 = (s1, r1), t2 = (s2, r2), and t3 = (s3, r3). We will have a closer look at transmission
t2. The radio waves emitted by s2 are received at r2 with signal strength S2. Moreover,
the radio waves emitted from s1 and s3, though not designated for r2, will reach r2
with signal strengths I12 and I32 and interfere with the signal from s2. Additionally,
the omnipresent background noise η is interfering with t2. Now, transmission t2 is
successful if and only if SINR γ2 exceeds κ, the lower bound on the SINR for a successful
transmission.

3.4.2 Conflict Graphs and Graph-based Interference Models

In this section we will see how the scheduling problem can be reduced to coloring
problems in graphs. There are two possibilities how to assign time slots: they can be

29

3 Survey on Wireless Sensor Networks

assigned to nodes, or, alternatively, to transmissions (which corresponds to edges in the
communication graph). Assigning the time slots to transmissions offers several advan-
tages. It can, for instance, be considered that communications over smaller distances
result in better signal quality and that thus more interference can be tolerated. For
this reason, let us concentrate on the case that time slots are assigned to transmis-
sions. A frequently used approach is to use a so-called conflict graph, which defines the
transmission pairs that cannot be active concurrently.

Definition 3.6 (Conflict graph). Let G = (V,E) be the communication graph of a
wireless network. The conflict graph of G is the graph C = (E,C) which has a node
e ∈ E for every edge of the communication graph G, and an edge {e, f} ∈ C for every
pair of transmissions e, f ∈ E if and only if transmission e and transmission f cannot
be scheduled successfully at the same time.

Conflict graphs can be defined on arbitrary sets of transmissions and not only on com-
munication graphs. Such an example of a conflict graph can be seen in Figure 3.4. The

(a) Transmission set (b) Conflict graph nodes (c) SINR conflict graph (fixed p.)

Figure 3.4: Transmission set and corresponding SINR conflict graph

left picture shows the input, a set of 30 randomly placed transmissions. In the middle
picture, the nodes of the conflict graph are shown. Every transmission of the input
set is replaced by one conflict graph node. The picture to the right shows one possible
conflict graph, the conflict graph defined by the SINR model with fixed transmission
powers. We will see later, how this conflict graph is defined.

Now, the basic idea of graph-based scheduling is that every transmission set T that is
an independent set in C = (E,C) can be scheduled simultaneously. Thus, a coloring
of the conflict graph C defines a valid schedule. A time-optimal schedule can then be
computed as a coloring with minimum number of colors. Unfortunately, this concept
oversimplifies reality. The main problems with graph-based methods are shown in
Section 3.4.3.

Theoretically, the edges of a conflict graph can be chosen arbitrarily. But usually, they

30

3.4 Interference Models

are defined by geometric properties or neighborhood relations of the input set. For the
remainder of this thesis the conflict graphs defined by the SINR constraint are of special
importance.

In the following, the SINR conflict graph (fixed power) will be defined as the unique
conflict graph whose edges are given by the pairs of transmissions that cannot be ex-
ecuted simultaneously in the SINR model with fixed transmission powers. Similarly,
we define the SINR conflict graph (variable power) as the unique conflict graph whose
edges are given by the pairs of transmissions that, given an arbitrary valid power assign-
ment, cannot be executed simultaneously in the SINR model with variable transmission
powers.

In Section 6.3.2, we will describe some additional conflict graph models, which are
frequently used in conjunction with graph-based scheduling, and compare them exper-
imentally with the SINR conflict graphs.

3.4.3 Graph-based Models vs. SINR Model

It is widely accepted that the SINR model reflects reality very well. Thus, it seems to
be natural to evaluate the appropriateness of graph-based models by comparing them
against the SINR model. Figure 3.4.3 shows three major differences between most
graph-based models and reality (or the SINR model): First, interference from differ-

r

r r

r r

Graph-based model: YES
Reality: NO

(a) Interference does not accumu-
late

r

Graph-based model: NO
Reality: YES

(b) Sender-receiver-distance is
not taken into account

1.5rr

Graph-based model: YES
Reality: NO

(c) Range of interference is too
limited

Figure 3.5: Three examples of why graph-based models are unrealistic

ent concurrently sending nodes sums up in reality. This for instance means that the
simultaneous execution of three transmissions might be impossible although each trans-
mission pair could be scheduled together. This is usually not considered in graph-based
models. Second, most graph-based models do not take the sender-receiver-distance into

31

3 Survey on Wireless Sensor Networks

account. The closer sender and corresponding receiver are positioned, the more stable
is the transmission. Hence, it is not sufficient to consider only the distance between re-
ceiver and interfering senders, but one also has to take the signal strength into account.
Lastly, most graph-based models underestimate the range of interference. Especially
methods that work on the communication graph are unable to model interference be-
tween nodes in different connected components. In Section 6.3.2 the last two issues are
examined on random transmission sets.

3.5 Topology Control

The topology of a network defines the structure of links connecting pairs of nodes of the
network. Each communication between two nodes of the network is routed based on
the network topology. Usually, the network topology is represented by a communication
graph. The primary goal of topology control is to choose a connecting subset from all
possible links such that the overall network performance remains good while routing
on the topology is faster and easier thanks to the reduced number of links. Moreover,
the restriction to energy efficient links can help to save transmission energy and thus to
extend the lifetime of the sensor nodes. As pointed out by Chandrakasan et al. [4], this
is of special importance in sensor networks because the available power is often limited.

The topology control problem can be described is as follows: Given a network N and
underlying graph G = (V,E) where V is the set of all nodes of N and E is the set of all
possible links between node pairs in N . At this, there exists an edge (u, v) ∈ E if and
only if sensor node v lies within transmission range of node u. It is often assumed that all
sensor nodes have the same transmission range. In this case, the graph G is undirected.
It is now the task of topology control to choose a subgraph G′ = (V,E′), E′ ⊆ E such
that the restriction to the links in E′ helps to improve the performance and lifetime of
the network. Usually, the resulting topology has to fulfill some minimum requirements.
For example it could be required that the number of remaining links is only linear in
the number of network nodes or that the length of a shortest path in G′ is, for all
node pairs from V , not more than twice as long as the corresponding shortest path in
G. Section 3.5.1 gives a brief overview on such quality criteria for network topologies.
Topology control was mentioned for the first time in [41]. A good survey on local
algorithms for topology control is given in [47].

Figure 3.6 gives a first example of topology control. The left figure shows a unit disk
graph with all possible communication links. The right picture depicts the resulting
network after application of topology control. The resulting topology is still connected,
but consists of much less links and it is obvious that especially the long-distance links
have been discarded.

32

3.5 Topology Control

(a) Unit Disk Graph (b) Connectivity-preserving topology

Figure 3.6: Network topology before and after topology control

3.5.1 Quality Criteria for Topologies

LetG = (V,E) denote the network graph before running the topology control algorithm.
V is the set of sensor nodes and E the set of possible communication links. Running the
topology control algorithm on G will yield a subgraph G′ = (V,E′) of G. There have
been a lot of proposals on how to measure the quality of resulting topologies and on
minimum requirements that every topology control algorithm should accomplish. This
section gives a short overview on possible quality criteria. A good survey on this topic
can also be found in [47].

Connectivity: The most basic requirement for topology control algorithms is to
preserve the connectivity of input graph G. This means that for every pair {u, v}
of sensor nodes that is connected by a (directed) path from u to v in G there has
to be a (directed) path from u to v in G′. In addition, some topology control
algorithms also guarantee k-vertex-connectivity respectively k-edge-connectivity.
This means that at least k vertices respectively k edges have to be removed for the
graph to become disconnected. Of course, increasing k results in better reliability
of the network.

Sparseness: One of the main goals of topology control is to compute simple topologies
that are easy to maintain. The complexity of a topology is strongly dependent on
the number of edges. Therefore, the computed topology should contain only few
edges. Preferably, the number of edges should be linear in the number of nodes,
i. e., the average vertex degree should be constant. Such a topology is called

33

3 Survey on Wireless Sensor Networks

sparse. In general there is a trade-off between network connectivity and sparse-
ness. If nodes abandon links to too many far away-neighbors, either the network
becomes partitioned or the routing paths become non-competitively long.

Spanner-property: Topology control also has some negative effects: After removing
possible communication links the shortest paths between several pairs of nodes
from G can become longer. Moreover, communication between some node pairs
can become more power-consuming. As energy-conservation is one of the main
goals of topology control, it is sometimes expected that the new topology G′ is an
energy-spanner of G. This means that every pair of nodes is connected in G′ by a
path p′ such that sending messages along p′ does not need more than a constant
factor t times the energy that is needed for the nodes to communicate over an
power-optimal path p in G. Of course it might also make sense to require other
spanner-properties for G′, such as G′ being a distance-spanner (using Euclidean
distances) or a hop-spanner.

Interference: It is known that higher interference at a receiver r means that any node
who wants to send to r has to use higher transmission power or, even worse, that
some transmissions might become infeasible due to the interference. Therefore,
it is very popular among topology control algorithms to try to minimize or at
least reduce interference. Several interference measures as well as algorithms to
minimize the corresponding interference have been proposed. In the experimental
section, we will examine how this different measures correlate with each other and
how much they influence the length of a time-optimal schedule.

Symmetry: In many scheduling protocols receivers confirm the reception of data
packets by acknowledgment messages (ACK). Those ACK messages have to be
routed back to the sender. The simplest possibility to do so is to send the ACK
message along the same path that the original message used. For this to be
possible, the communication links have to be bidirectional. Therefore, it is mostly
required that G′ is symmetric (or undirected).

Planarity: Several efficient scheduling algorithms require that no two edges of the
topology intersect. Therefore, in order to make those algorithms applicable, the
computed topology has to be planar.

3.6 Related Results

In [11], Goussevskaia et al. examine the complexity of scheduling in the geometric
SINR model. They show that the scheduling problem with fixed transmission powers
is NP-complete by giving a polynomial-time reduction of the partition problem to the

34

3.6 Related Results

scheduling problem. Furthermore, they prove the NP-completeness of the one-shot-
scheduling problem with a polynomial-time reduction of knapsack. The task of the
one-shot-scheduling problem is to fill a single time slot with as many transmissions as
possible from a given set of transmission requests. Finally, they give centralized ap-
proximation algorithms for the scheduling problem and the one-shot-scheduling problem
with fixed transmission powers.

To this day, it is not known whether or not the problem of scheduling with variable
transmission powers is NP-complete. This problem is regarded as a most fundamental
problem in the field of sensor networks [28].

In [30], Moscibroda et al. examine several scheduling complexities. They define the
scheduling problem for a network property Ψ to be the problem to find a schedule S of
minimal length T (S) such that the union of all successfully transmitted links satisfies
property Ψ. Then, the scheduling complexity of a property Ψ is the minimal number of
time-slos T such that there always exists a valid schedule S for Ψ of length T = T (S).
They show that for scheduling with fixed transmission powers the scheduling complex-
ity is Ω(n) even for the simple property Ψmin that every node should send at least one
transmission successfully. Furthermore, they show that the scheduling complexity for
Ψmin is also Ω(n) if the transmission powers of all senders are proportional to the mini-
mal power required for transmitting over the wireless link, meaning Pt = ρ · d(s, r)α for
the transmission power Pt of transmission t = (s, r), given some constant ρ. Both lower
bounds are based on networks in which some communication links are exponentially
longer than others. They also prove that the scheduling complexity of strong connectiv-
ity in wireless networks is at most O(log4 n) and that thus non-linear power assignments
are able to produce much more efficient schedules than linear power assignments or fixed
power assignments in worst-case scenarios.

35

36

4 Scheduling

The first section of this chapter deals with the problem of power control: Given a set of
transmissions, how can one decide whether there exists a power assignment such that
all transmissions can be scheduled at the same time, and what is an optimum power
assignment.

In Section 4.2, CPs and ILPs for the computation of optimum schedules are given.
Of course, one cannot expect to solve big instances of the scheduling problem due to
its NP-completeness. Nevertheless, several optimizations for the CPs and ILPs are
discussed which significantly push up the size of solvable problems.

As there is probably no way to solve big instances of the scheduling problem exactly,
Section 4.3 deals with heuristics for the scheduling problem. The idea of the heuris-
tics is to fill the time slots one by one with as many transmissions as possible. In the
case of fixed transmission powers, this is achieved by choosing transmissions that max-
imize the minimum signal-to-noise ratio. In the case of variable transmission powers,
this is achieved by choosing transmissions that minimize the maximum transmission
power. The heuristics also build the foundations for two topology control heuristics in
Section 5.2.1.

Lastly, in Section 4.4, several techniques to determine lower bounds on the number of
slots of an optimum schedule are discussed. Those lower bounds provide good approx-
imations to optimal solutions. Thus, they will be used in the experimental section to
give estimates on the length of optimum schedules. Furthermore, they can be used to
substantially speed up the ILPs and CPs.

4.1 Power Control

Before we deal with the actual scheduling problem with many time-slots, let us have a
quick look on the problem to determine if and how a set of transmissions can be sched-
uled to the same slot. If we have fixed transmission powers, everything is clear: Based
on the transmission powers we are able to compute signal strength and interference and
just have to check whether all transmissions have a sufficient SINR.

Unfortunately, if we allow senders to adjust their transmission powers, things get more
complicated because, then we also have to choose good power levels for all senders. Let
us assume that we already have found optimum power levels for a set of transmissions.

37

4 Scheduling

Input: Set T of transmissions, minimum SINR κ, background noise η
Output: Minimum transmission powers Pt for all t ∈ T
foreach t ∈ T do

Pt ← 0
maxChange ← Pmax
while maxChange > εPmax do

maxChange ← 0
foreach t ∈ T do

oldPower ← Pt
Pt ← κ Pt/ Sinr(t,T ,η)
if Pt - oldPower > maxChange then

maxChange ← Pt - oldPower
if Pt > Pmax then

foreach t ∈ T do
Pt ←∞

break

Algorithm 4.1: Minimum transmission powers for a set of concurrent transmissions

If we now want to add a single new transmission t, then this possibly starts a chain
reaction. The neighbors of t have to suffer from additional interference and thus need to
increase their transmission powers. This in turn results in an increased interference at
their neighbors and forces them to increase their transmission powers. This can go back
and forth throughout the network. At the first moment one might assume that this
leads to an endless process in which nodes have to increase their powers alternatingly.
However, we will see soon that this process either terminates after some cycles or some
node has to exceed its maximum transmission power. That, of course, would tell us
that the transmissions cannot be scheduled concurrently.

This leads us to Algorithm 4.1 to determine minimum power levels for a set T of trans-
missions such that all transmission can be successfully scheduled at the same time:
First, assign every sender just enough transmission power to reach its corresponding
receiver if the only interference is caused by the background noise. Now that we have
assigned every sender some transmission power, we get a lower bound on the interfer-
ence from concurrent transmissions. Thus, in the next round, we assign every sender
just enough power to reach its receiver taking account of background noise and the
transmission powers of the previous round. This procedure is repeated until either the
transmission power increase falls below some threshold, meaning that a fix point is
reached, or some sender exceeds its maximum transmission power.

Algorithm 4.1 assumes the availability of a function Sinr(t, T , η) that computes the
SINR of transmission t, given the transmission powers t′ of all transmissions t′ ∈ T and
ambient noise η. This function depends on the details of the used SINR model and can

38

4.1 Power Control

be easily implemented with running time O(n). Thus, the whole while-loop has running
time O(n2). The constant ε, with 0 < ε � 1, defines the minimum increment εPmax
that at least one power level has to get every round. By this, ε controls the precision
of the solution. If fast convergence is required, and a good but not necessarily optimal
power assignment is sufficient, then one can use a constant κ∗ that is slightly bigger
than κ for the computation of the new power levels. As soon as all SINRs are at least
κ∗ the method can terminate. In this case, the ratio of κ∗ and κ defines the precision
and the quality of the solution.

Lemma 4.1. Algorithm 4.1 always terminates.

Proof: If, at some point, no transmission power is increased by at least εPmax, then the
algorithm has found a feasible power assignment and terminates by definition. So let
us assume that at least one transmission is incremented by at least εPmax every round.
Obviously, this implies that after a finite number of steps some transmission power
exceeds Pmax. This means that the transmission set cannot be scheduled concurrently
and the algorithm stops. �

Lemma 4.2. The power assignment of Algorithm 4.1 is optimal in the sense that there
exists no valid power assignment such that any of the transmissions uses a transmission
power less than the power computed by Algorithm 4.1.

Proof: This can be proven easily by induction. In the beginning, all transmission
powers are set to zero and thus provide a lower bound for an optimum solution. So let
us assume that at the beginning of the while loop no transmission power overestimates
the power in an optimal solution. Then, the interference that we consider is a lower
bound of the interference in an optimal solution and the new powers that we compute
in turn also do not exceed the powers of an optimal solution. �

As the optimum power assignment problem is a very basic problem, similar algorithms
have been presented in the past. Compare for example [12] and the references given
there. It is also possible to compute optimum transmission powers using a linear pro-
gram. The formulation of the LP is straightforward. However, the scheduling methods
that we will introduce later in this thesis have to determine optimum powers very fre-
quently. For this purpose, Algorithm 4.1 is better suited than an LP because it is very
fast and does not require an LP solver. Moreover, a very beneficial property of Algo-
rithm 4.1 is that it can be used incrementally: if we already know optimum powers for
a set T ′ of transmissions and only want to add some more transmissions, then we do
not have to start all over again with the computation. Instead, we use the known trans-
mission powers from T ′ as lower bounds and compute the initial transmission powers
of the new transmissions based on them. Afterwards, the algorithm can be used in its
original formulation. Thus, the computation converges very fast, usually within some
steps. Either way, in realistic cases, the number of executions of the while-loop can be
assumed to be mainly dependent on the precision ε and not so much on the number

39

4 Scheduling

of transmissions. Therefore, the overall running time of Algorithm 4.1 is O(n2f(ε)) for
some function f . As ε is a constant, this is equivalent to O(n2).

4.2 Exact Scheduling Algorithms

As mentioned before, the scheduling problem with fixed transmission powers is NP-
hard and the complexity of scheduling with variable powers is yet unknown. Thus, one
cannot expect to solve big instances of those scheduling problems in reasonable time.
Nevertheless, developing optimized exact methods is still worthwhile as it provides
means to estimate the quality of heuristics and to analyze basic properties of optimal
schedules based on optimal solutions for small to medium-sized instances. Therefore, we
will study optimized CPs and ILPs for the scheduling problem in the following sections.

4.2.1 Constraint Programming

In the first part of this section, we give a CP formulation for scheduling with fixed
powers that is mainly based on standard models and constraints provided by Gecode.
Subsequently, we show how Gecode can be extended with custom propagators to realize
the SINR constraint for variable transmission powers. At this, we use Algorithm 4.1 in
the propagator to determine optimum power levels. This section is concluded with a
discussion of several approaches that can help to speed up the computation of the CPs.

4.2.1.1 Fixed Transmission Power

The scheduling problem with fixed transmission powers can easily be modeled using
the finite domain integers model provided by Gecode and described in Section 2.4.1.
In order to demonstrate the simplicity of CP definitions in Gecode (as long as Gecode
does not have to be extended), we will give brief code snippets of the most important
parts of the CP formulation. Variables and arrays are italicized, Gecode methods are
highlighted in blue, Gecode classes are underlined, and Gecode constants are colored
green.

Let us assume that we already know an upper bound maxSlots on the maximal number
of slots necessary for an optimal schedule. This can be the number of slots of a schedule
that was computed by a simple heuristic or, in the worst case, just the number of
transmissions that have to be scheduled. In comparison to the ILPs, which are described
later, the CPs are not so sensitive to the quality of this upper bound. For every
transmission t ∈ T we introduce a finite domain integer variable slot [t] whose domain
represents the feasible slot assignments for t during the execution of the CP solver and
which finally will contain the slot assignment of an optimum solution. In the beginning,
all domains of the variables slot [t] are set to {1, 2, . . . ,maxSlots}.

40

4.2 Exact Scheduling Algorithms

IntVarArray s l o t = IntVarArray (this , n , 1 , maxSlots) ;

At this, n = |T | denotes the number of variables, 1 and maxSlots define lower and upper
bound of the domains, respectively, and this is a pointer to the enclosing object which
is a member of the Gecode class Space and represents a solution space in Gecode.

Additionally, we introduce a variable slotNumber which represents the number of slots
used in the current (partial) solution. slotNumber can take on values between 1 and
maxSlots and is defined as maximum of all slot [t] variables.

IntVar slotNumber = IntVar (this , 1 , maxSlots) ;
max(this , s l o t , slotNumber) ;

In order to get some deeper insight into constraint programming, let us have a closer
look on how this max-constraint works. Obviously, as soon as all slot [t] variables are
assigned, slotNumber contains the maximum of them. The more interesting part is how
the max-constraint works during the search process. If we define a new upper bound on
slotNumber, something that we will do later on, then the domains of all slot [t] variables
are adjusted accordingly. If we assign one of the slot [t] variables to a value that is
greater than the current lower bound of slotNumber, then this lower bound is adjusted
accordingly. And finally, if we do not assign a variable slot [t], but only filter some of
the possible values from its domain, then this also leads to an adjustment of the lower
bound of slotNumber, if now the smallest value in the domain of slot [t] is bigger than
the smallest value in the domain of slotNumber.

Determining the number of transmissions per slot is rather unspectacular. For every
transmission t ∈ T we introduce a variable slotCount[t]. Then, we use Gecode’s count-
constraint as follows:

IntVarArray s lo tCount = IntVarArray (this , maxSlots , 0 , n) ;
for (int i = 1 ; i <= maxSlots ; i++)

count (this , s l o t , i , IRT_EQ, s lo tCount [i]) ;

We generate one count-propagator per slot. The count-propagator of the i-th slot
counts the number of variables in the array slot whose values are equal to i. The
count-propagator could also be used to count the number of variables that are less than
i, greater than i, or unequal i, by using the constants IRT_LE, IRT_GR, or IRT_NQ,
respectively, instead of IRT_EQ. If we set an upper bound b on one of the slotCount
variables and there are already b slot transmissions assigned to the corresponding slot,
then Gecode would remove this slot from all unassigned variables. If thereby one of
the domains would become empty, then the partial solution could not be extended to
a complete solution and a backtrack step would be performed.

41

4 Scheduling

Now let us get to the implementation of the SINR constraint. Here we get the first
problem, if we only want to use propagators that are predefined by Gecode: There
is, to our knowledge, no propagator available which works with real numbers. Thus,
the SINR constraint cannot be implemented directly. The problem can be solved by
mapping the real numbers to integers.

for (int j = 0 ; j < n ; j++) {
BoolVarArgs sameSlot = BoolVarArgs (n) ;
for (int i = 0 ; i < n ; i++)

sameSlot [i] = post (this , ~(s l o t [i] == s l o t [j])) ;
IntArgs c (n) ;
for (int i = 0 ; i < n ; i++)

c [i] = (int) (M / b u f f e r [j] ∗ i n t e r f e r e n c e [i] [j]) ;
l i n e a r (this , c , sameSlot , IRT_LQ, M, ICL_BND) ;

}

The outer loop iterates over all n transmissions and constructs one constraint per
transmission. For every transmission j, an BoolVarArgs array sameSlot of size n is
constructed. The post method constructs for every variable sameSlot[i] an propagator
such that sameSlot[i] = 1 if and only if transmission i and transmission j are assigned
to the same slot. Now, we linearly scale the interferences from all senders to the re-
ceiver of transmission j such that the interference c[i] from sender of transmission i
to receiver of transmission j equals some big constant M if the interference equals the
maximum interference that can be tolerated by transmission j. This maximal tolerable
interference will be referred to as interference buffer of j in the following.

The new interference value is finally converted to an integer to be usable with Gecode.
The error introduced by the conversion from real to integer is less than 1/M of the inter-
ference buffer of transmission j. As we choseM to be a big constant, this error is negli-
gible. Finally, we have to require that the sum of all interferences from simultaneously
active senders does not exceed our normalized interference buffer M . This constraint
is posted by the linear method which translates into

∑n
i=1 c[i] · sameSlot[i] ≤ M . By

the optional parameter ICL_BND we tell the propagator that it is sufficient to enforce
bound consistency (cf. Definition 2.15).

It is noteworthy that the propagator does not simply take care that the constraint is
fulfilled by the current (partial) variable assignment. Instead, every time one of the
variable domains is updated, it checks which of the yet unassigned transmissions still
would fit into the corresponding time slot. If for some transmission a future assignment
to this slot would violate the constraint, then the slot is immediately removed from the
domain of that transmission variable. If only one slot remains in the domain, then the
transmission is immediately assigned to this slot. If a variable domain becomes empty,
then the current partial solution is invalid and backtracking is performed.

Last but not least we have to define the kind of branching that we want to use. The

42

4.2 Exact Scheduling Algorithms

standard branchings which are provided by Gecode can be selected using the branch
method.

branch (this , s l o t , INT_VAR_SIZE_MIN, INT_VAL_MIN) ;

The second parameter of branch specifies the array of variables on which we want to
branch. In our case this is the slot array. The third parameter determines how the
variable that is assigned next is elected. With INT_VAR_SIZE_MIN we tell Gecode
to use the variable with smallest domain size. This choice should be good for several
reasons: Possibly the corresponding transmission can only be placed in a small number
of slots. This means that the transmission interferes with many of the already assigned
transmissions and thus, if the problem cannot be solved with the given number of slots,
it is likely that the transmission belongs to the transmission subset that cannot be
scheduled within the given time slots. Moreover, this strategy can help to decompose
the problem into subproblems and deal with one subproblem after another. Of course,
instead of using the variable with smallest domain size, we could have used all the
possibilities listed in Section 2.4.4. The last parameter defines the order in which the
remaining domain values of the selected variable are checked out. With INT_VAL_MIN
the smallest value of the domain will be chosen. This does not give an advantage over
choosing the largest value or some random value, but for a better assignment one has
to define his own branching (cf. Section 4.2.1.3).

So far, we have only defined a constraint satisfaction problem. Now we have to extend
this CSP to a constraint optimization problem by telling Gecode that we want to
minimize the number of slots. To do this, we use the ability of constraint programming
to add new constraints during the execution of the CP solver. If we use the branch-and-
bound search engine, then, every time a new solution is found, the method constrain
of the solution space instance is called. This method can be overridden in our class
ScheduleInt which is derived from Gecode’s Space class.

void Schedule Int : : c on s t r a i n (Space∗ s) {
Schedule Int ∗ l a s t S o l = static_cast<Schedule Int∗>(s) ;
r e l (this , slotNumber , IRT_LE, l a s t S o l−>slotNumber . va l ()) ;

}

The rel constraint enforces some relation between two variables or between a variable
and an integer. Here we define that the slot number has to be smaller than the slot
number in the solution that we just found. This invalidates the current solution. The
CP solver has to backtrack so far that none of the transmissions is assigned to the last
slot of the current solution. That could, in extreme cases, also mean that all current
assignments have to be discarded. Starting from the resulting partial solution, the
solver tries to find a solution having one slot less than the best solution so far. If no

43

4 Scheduling

such solution can be found, then we know that the last solution found was optimal with
respect to the number of slots.

Now we are finished with our initial formulation of the COP for scheduling with fixed
powers. In the following sections we will see how the performance of the COP can be
significantly enhanced by adding further constraints and by defining own branchings.

4.2.1.2 Variable Transmission Power

As mentioned before, the standard propagators of Gecode do not support real values.
We were able to get around this problem for fixed transmission powers by mapping the
reals to integers, accepting a negligible error. Unfortunately, things get more compli-
cated when we want to allow arbitrary transmission powers. It still would be possible to
model the power of each transmission by some integer variable, but this would involve
n new variables with large domains if we do not want to restrict ourselves to some few
power levels. This would significantly increase the computational complexity, so prob-
ably only very small problems could be solved by this approach. Fortunately, Gecode
can be extended with user-defined propagators and thus allows to model the scheduling
problem with variable transmission powers efficiently.

We do not want to go too much into detail about how to define own propagators
in Gecode, so let us focus on the main ideas of an efficient implementation of the
SINR constraint. The first decision one has to make is which events should trigger
the execution of the propagator. It can be triggered if one of the involved variables is
changed, if one of the boundaries of an involved variable is changed, or if one of the
variable domains is changed. In our problem all variables interact with each other and
the situation for the SINR constraint only changes when one of the variables is actually
assigned. Therefore, we decided to create one single propagator, which is called every
time some variable is assigned or unassigned.

For the following it is important that usually between two executions of the propagator
only minor changes do occur. One possibility is that new variables have been assigned.
Mostly this is only one variable, but sometimes it happens that the last assignment
removed all but one slot from some variables and then those variables are assigned at
once. The second possibility is that backtracking took place and some of the variables
are again unassigned. We will use this insight, that the situation does not change too
much between consecutive executions, in order to avoid recomputations.

For every transmission and every time slot, we store the interference that the transmis-
sion currently would receive if it were assigned to that slot. Furthermore, we save for
every slot which transmissions are currently assigned to it, what transmission power
they currently need to communicate successfully, and how much interference they could
tolerate additionally if they sent with maximum power instead of the current trans-
mission power. Each time the propagator is called, this information can be updated

44

4.2 Exact Scheduling Algorithms

efficiently. We first determine which transmissions have been additionally assigned and
to which slots they have been assigned. For all slots with changes we use Algorithm 4.1
described in Section 4.1 to update the necessary transmission powers. In most of the
cases we only have to add one more transmission and thus Algorithm 4.1 usually con-
verges very fast. In rare cases the execution of the power assignment algorithm shows
that the additional transmissions do not fit into the selected slot, and then we have to
do backtracking.

Next, we have to take care of the filtering. Again we consider only slots with changes.
Based on the new transmission powers, we update for all transmissions that are not
yet assigned the interference that they received if they were placed in the respective
slot. If this interference exceeds the maximum interference that the transmission can
tolerate using maximum transmission power, the slot is removed from the transmission’s
domain. Additionally, we compute for every slot the minimum transmission power that
the sender needs to reach its receiver. With this transmission power we can compute
lower bounds on the interference that this transmission would cause to the receivers
that are already assigned to the respective slot. For all transmissions already in the
slot we check if this additional interference could be tolerated. If this is not the case,
then the slot is removed from the domain of the transmission in consideration. Thus,
we are able to filter infeasible slots from the variable domains relatively early.

Lastly, we have to consider what to do if the propagator is called after backtracking
was performed. Fortunately, Gecode helps us at this. During the branchings, copies of
the states of all variables are saved. When backtracking is performed, the respective
copy is reloaded and we can just continue as if the intermediate assignments had never
occurred. The remaining parts of the COP formulation, such as which search engine
and which branchings should be used, are analogous to the ones for scheduling with
fixed transmission powers in the last section.

In the next section we will see how the COP can be optimized further.

4.2.1.3 Optimizations

In the following, we will discuss some ideas how to increase the performance of the
CSPs and COPs. Some of them turned out to work very well, others actually had bad
influence on the performance. We will also try to explain why they succeeded or why
they failed.

Symmetry breaking

The set of optimum solutions of a scheduling problem contains an enormous number of
solutions that are identical except for unimportant properties such as the order of the
slots. If the optimum solution consists of n time slots, then there are, for instance, n!
solutions which only differ by the slot order. One first idea to deal with these symmetries

45

4 Scheduling

was to require that the slot size, meaning the number of transmissions of a slot, was
monotonically decreasing in all valid solutions. This can be easily enforced by adding
the following relational constraint:

for (int i = 0 ; i < maxSlots −1; i++)
r e l (this , s lo tCount [i] , IRT_GQ, s lo tCount [i +1]) ;

To our first surprise, the performance went down instead of up. However, this can
be easily explained: In order to find the optimum solution, Gecode tries to find any
solution that fulfills the constraints and then adds a new constraint which requires that
the next solution has to be better than the current one. At this, the aforementioned
symmetries have no effect at all. Besides, finding any solution with arbitrary order of
slot sizes is much easier than finding a solution where the slot sizes decrease. Only
when the CP solver tries to prove that no solution with smaller number of slots exists,
the additional constraint helps because it eliminates some of the symmetries. But, this
usually does not outweigh the performance losses that we cause during the computation
of the optimum solution.

Fixing one transmission

It might sound banal, but even fixing only one transmission to the first slot can already
help to speed up the computation noticeably. If n is the number of slots in an optimal
solution and one uses no optimization at all, then this trivial additional constraint gives
a remarkable speedup of factor n− 1 for proving that no schedule with only n− 1 slots
exists because it eliminates all possibilities where the fixed transmission is not in the
first slot. Fixing two random transmissions in either the same slot or in different slots
possibly alters the set of optimum solutions.

Fixing a maximum clique of the conflict graph

The ultimate solution for breaking symmetries that are caused by the ordering of the
slots is the computation of a maximum clique of the SINR conflict graph and then
assigning the transmissions of that clique to different slots. This surely does not alter
the set of optimal solutions, as we know that no pair of transmissions from the maximum
clique can be scheduled together. As we will see later in Section 6.3.5, the size of a
maximum clique usually is about the number of slots in an optimum solution. Thus,
we can fix the position of almost all slots and eliminate the corresponding symmetries.
Furthermore, we immediately assigned all the transmissions of the clique and thus
reduced the size of our problem. As the run time usually grows exponentially with the
problem size, this can be a tremendous improvement. Moreover, the maximum clique
gives us a lower bound on the number of slots of an optimal solution. Therefore, if we
find a schedule that has the length of the size of the maximum clique, then we do not
have to prove the optimality of that schedule. Usually, proving the optimality is much

46

4.2 Exact Scheduling Algorithms

more time consuming than finding an optimal solution. So this can make a really big
difference.

Generating the additional propagators in Gecode is straightforward. Let us assume that
we already have given the transmission IDs of a maximum clique in a list of integers
named clique. We now just fix the i-th transmission to the i-th slot.

int i = 0 ;
l i s t <int >:: i t e r a t o r i t ;
for (i t = c l i q u e . begin () ; i t != c l i q u e . end () ; i t++)

r e l (this , s l o t [∗ i t] , IRT_EQ, i++);

One might argue that computing a maximum clique is NP-hard. That is true in general,
but we will see in Section 4.4 that the structure of the conflict graph usually allows us to
compute the maximum clique in reasonable time. And the savings that we can achieve
at the computation of an optimal schedule should almost always justify the additional
effort. If we consider a big problem and only intend to find a good schedule using the
CP, then we can use a heuristic to find a big clique instead of an exact algorithm to
compute a maximum clique.

Custom branchings

Defining own branchings offers several possibilities for improvements. The first respon-
sibility of a branching is to select the variable that should be assigned next. In our
implementation of a custom branching, we stayed with the standard approach to select
the variable with smallest domain size. But probably it would be better to select among
all unassigned transmissions the one that interferes most with the other transmissions,
based on some appropriate interference measure.

The second decision in a custom branching concerns the values that should be assigned
to the selected variable and the order of those values. This offers another great op-
portunity for symmetry breaking. A standard branching would try to assign all values
that are left in the domain of the variable in some order. This means that if there is
more than one empty slot, the transmission will be assigned to all those empty slots
one after another and thus we will get the redundant solutions mentioned before. If
we implement our own branching, then we can avoid this by filtering all empty slots
but one from the domain. We also can improve the order in which we check out the
different slots. Instead of simply using the slot with smallest id, we can reorder the
slots such that slots in which the transmission receives less interference are tried first.

Adding more efficient constraints

Gecode allows to specify the expected running time of propagators. Some possibilities
are constant, linear, quadratic, cubic, and exponential running time (in the number of
involved variables). Furthermore, one can specify if the constants hidden by the big-O-

47

4 Scheduling

notation are rather big or small. We can use this to introduce additional propagators
that are redundant but faster than the SINR constraint. For example we could add an
inequality constraint for every pair of transmissions that cannot be scheduled together.

for (int i = 0 ; i < n ; i++)
for (int j = i+1; j < n ; j++)

i f (! s c h e du l e a b l e [i] [j])
post (this , s l o t [i] != s l o t [j]) ;

This actually leads to a small constant speedup, but as it does not reduce the number
of failures and backtracks the advantage is rather small.

Limited Discrepancy Search

Another possibility for performance improvements is the use of limited discrepancy
search (LDS) as mentioned in Section 2.4.3 about Gecode search engines and described
in [14]. Usually, the most time consuming task of solving a COP is to prove the
optimality of the final solution. At this LDS does not offer an advantage because all
possible assignments have to be checked systematically. Therefore, we did not check
out LDS in detail. However, if someone wants to find good solutions for problems that
are too big to be solved optimally, having a closer look at LDS might be interesting.

Random Restarts

Another technique which is mainly of interest for problems which are too big to be
solved to optimality within the given time is the use of random restarts. The goal is
similar to the goal of limited discrepancy search: to avoid that some bad decisions are
made early in the search tree and that the whole subtree has to be searched before
the decisions are revised. Instead of running the CP solver once with timeout T , it
is executed z times with timeout T/z. Before each execution, the order of the input
variables is shuffled. This increases the possibility that strongly interacting variables
are arranged beneficial. It is even possible to control the restarts such that no variable
assignment is produced more than once. This guarantees that the optimum solution will
be found at some point and that it is possible to prove unsatisfiability with intermediate
restarts. Further information on this topic can be found in [10].

4.2.2 Integer Linear Programming

Both, the scheduling problem and the technique of integer linear programming are very
famous in the scientific community. Therefore, it is not so surprising that we were not
the first ones who thought of using ILPs to solve scheduling problems. Another ILP for
scheduling with fixed transmission powers can be found in [2]. Unlike the ILP presented
in this thesis, it does not have any optimizations. The objective function and SINR

48

4.2 Exact Scheduling Algorithms

constraint are also implemented slightly different. They also give a column generation
method for the scheduling problem. In their experimental results, this method worked
extremely fast. For example, for a set with 134 transmissions it only needed 4 minutes
and 22 seconds to find a schedule on a computer with only 400 MHz. However, they
only tested 6 networks, which, in our opinion, seem to be very advantageous for a
column generation approach. For example, the schedule with 134 transmissions had a
length of 70 time slots. This means that on average less than two transmissions could
be scheduled together.

We did not encounter an ILP formulation for scheduling with variable transmission
powers in the literature. Nevertheless, we would not be surprised if it does exist some-
where.

4.2.2.1 Fixed Transmission Power

Let T be the set of transmission requests, and n = |T | be the number of transmissions.
Let us further assume that we know an upper bound Zmax on the number of necessary
slots. Again, Zmax could be the result of a scheduling heuristic or just Zmax = n. In
order to keep things short, let us define the set S of possible slots, S = {1, . . . , Zmax}.
Additionally, we have to know the parameters of the SINR model: background noise η,
minimum SINR κ, path-loss exponent α, and for every transmission t the fixed trans-
mission power Pt. Of course, we could also use the same power P for all transmissions.

For every transmission t ∈ T and for every i ∈ S, we introduce a binary variable xti
which tells us whether transmission t is active in time slot i.

xti =
{

1, if transmission t is active in time slot i
0, if transmission t is inactive in time slot i (4.1)

Additionally, we introduce an integer variable Z, which represents the number of time
slots in our solution. We want to minimize Z, so our objective function is obviously

minZ (4.2)

Now we have to ensure that Z actually represents the number of slots in use. This can
be done with constraint

Z ≥ xtii ∀t ∈ T , i ∈ S (4.3)
Using equation ∑

i∈S
xti = 1 ∀t ∈ T (4.4)

we make sure that every transmission is scheduled exactly once.

For our formulation of the SINR constraint we introduce some new constants. For every
transmission t ∈ T , let

St = Pt
dist(st, rt)α

(4.5)

49

4 Scheduling

be the signal strength from sender st to receiver rt. Furthermore, for every pair of
transmissions s, t ∈ T , s 6= t, let

Ist = Ps
dist(ss, rt)α

(4.6)

denote the interference that sender ss causes at receiver rt if ss is active. We define
Itt = 0. Next, we compute for every transmission t the maximum interference

Imax
t =

∑
s∈T \{t}

Ist (4.7)

that can occur if all senders are active concurrently. Thus, Imax
t is an upper bound

on the interference that has to be expected for transmission t. Finally, we compute
for every transmission the maximum interference Bt that transmission t can tolerate
without transmission failures

Bt = St
κ
− η (4.8)

Using this, we can formulate the SINR constraint:

Imax
t xti +

∑
s∈T

Ist xsi ≤ Imax
t +Bt ∀t ∈ T , i ∈ S (4.9)

The summands with Imax
t make sure that the constraint is only used for the slot in

which t is active.

Optimizations

As with the constraint program, we need additional constraints to make the ILP prac-
ticable. Some of the ideas that we used for the CPs are directly transferable to the
ILPs. Similar to the CP, enforcing a decreasing slot size did not bring performance
enhancements on average. In some cases the ILP became faster, in others it was slowed
down. Quite different from the CP, using several restarts with random input orders did
not help for the ILP. This is not surprising, as the ILP is not so dependent on the input
order. The ILP solver can choose in every step an arbitrary variable to be updated.
This is a big advantage compared to CP solvers like Gecode, which usually keep the
already assigned variables fixed until it is proven that they cannot be extended to a
valid solution. However, as mentioned in the CP section, this disadvantage can partly
be avoided by using techniques like limited discrepancy search.

Again, the best of all optimization approaches that we checked out was the computation
of a maximum clique of the SINR conflict graph and then fixing the transmissions of
the clique to different slots. Like for the CP, the advantages are that we decrease the
problem size and that we additionally eliminate symmetries by fixing slot positions.

Let us assume that we found a maximum clique of the corresponding SINR conflict
graph (with fixed powers) of size |cf | and that cf (i) gives us the i-th transmission in

50

4.2 Exact Scheduling Algorithms

the maximum clique. Then, we can fix the transmissions of the maximum clique using
the constraints:

xcf (j),i =
{

1, if i = j
0, if i 6= j

∀j ∈ {1, . . . , |cf |}, i ∈ S (4.10)

The complete ILP for scheduling with fixed transmission powers is depicted in Algo-
rithm 4.2. It uses the aforementioned constants.

Input: T ,S, Ist, Imax
t , Bt, cf

Variables: Z, xti
Output: xti = 1⇔ transmission t is active in slot i; number of slots Z
Constraints:

minimize Z
Z ≥ i xti ∀t ∈ T , i ∈ S∑
i∈S xti = 1 ∀t ∈ T

Imax
t xti +

∑
s∈T Ist xsi ≤ Imax

t +Bt ∀t ∈ T , i ∈ S

xcf (j)i =
{

1, if i = j
0, if i 6= j

∀j ∈ {1, . . . , |cf |}, i ∈ S

Algorithm 4.2: Schedule with minimum number of slots (ILP, fixed power)

4.2.2.2 Variable Transmission Power

The more complex problem to schedule with power control can be modeled using a
mixed integer program (MIP). Unfortunately, it seems to be necessary that we introduce
one power variable per transmission and slot. We also tried to model the problem using
only one power variable per transmission, but this resulted in a quadratic program
which could not be solved by CPLEX, because it was not positive semi-definite.

Again, let T be the set of transmission requests, n = |T | the number of transmissions,
S = {1, . . . , Zmax} the set of available slots, η the background noise, κ the minimum
SINR, and α the path-loss exponent. Furthermore, we have to know the maximum
transmission power Pmax.

Like in the case of fixed transmission powers, we use an integer variable Z for the
number of time slots in our solution. For all transmissions t and slots i, we use binary
variables xti with xti = 1 if and only if transmission t is active in slot i. Additionally,
we introduce real variables Pti which represent the transmission power of transmission
t in slot i.

51

4 Scheduling

Equations 4.3 and 4.4 from the ILP for fixed powers, as well as objective function 4.2,
can be reused in our new MIP. We restrict the transmission powers to the valid values
using the constraints:

0 ≤ Pti ≤ Pmax ∀t ∈ T , i ∈ S (4.11)

For the formulation of the new SINR constraint, we introduce some abbreviations:

The signal power Sti of transmission t in slot i is computed as:

Sti = Pti
dist(st, rt)α

(4.12)

Similarly, the interference Isti at the receiver of transmission t due to transmission s in
slot i is given as:

Isti = Psi
dist(ss, rt)α

(4.13)

An upper bound on the interference at the receiver of t due to transmission s can be
computed as:

Imaxst = Pmax
dist(ss, rt)α

(4.14)

This helps to define an upper bound on the maximum interference at the receiver of t

Imaxt =
∑

s∈T \{t}
Imaxst (4.15)

Finally, the interference buffer Bti of transmission t in slot i in dependence of signal
power Sti is given as:

Bti = Sti
κ
− η (4.16)

This allows a compact formulation of the SINR constraint:

Imaxt xti +
∑

s∈T \{t}
Isti ≤ Imaxt +Bti ∀t ∈ T , i ∈ S (4.17)

However, note that this constraint uses many abbreviations. For example, Bti is neither
a constant nor a variable, but a term that is dependent on the power of transmission t
in slot i.

Lastly, we add the maximum clique optimization: Let us assume that we found a
maximum clique of the corresponding SINR conflict graph (with variable powers) of
size |cv| and that cv(i) gives us the i-th transmission in the maximum clique. Then, we
can fix the transmissions of the maximum clique using the constraints:

xcv(j),i =
{

1, if i = j
0, if i 6= j

∀j ∈ {1, . . . , |cv|}, i ∈ S (4.18)

52

4.2 Exact Scheduling Algorithms

The MIP works as follows: Every transmission has to be assigned to exactly one slot.
If the transmission is assigned to a slot, then it has to fulfill the SINR constraint in
that slot. Due to background noise η, this is only possible if the transmission power is
set to an appropriate value. If this is done, then this causes interference at all other
transmissions that are assigned to the same slot. This, in turn, forces them to send
with higher power. Thus, the MIP solver computes a slot assignment as well as a valid
power assignment for a schedule with minimum length.

The final MIP, using the aforementioned abbreviations, is shown in Algorithm 4.3. It
uses O(n · |S|) variables and constraints. Therefore, it might be worthwhile to compute
a good upper bound on the number of slots using some scheduling heuristic.

Input: α, κ, η, Pmax, T ,S, cv
Variables: Z, xti, Pti
Output: xti = 1⇔ transmission t is active in slot i; number of slots Z,

transmission powers Pti
Constraints:

minimize Z
0 ≤ Pti ≤ Pmax ∀t ∈ T , i ∈ S

Z ≥ i xti ∀t ∈ T , i ∈ S
Imaxt xti +

∑
s∈T \{t} Isti ≤ Imaxt +Bti ∀t ∈ T , i ∈ S∑
i∈S xti = 1 ∀t ∈ T

xcv(j)i =
{

1, if i = j
0, if i 6= j

∀i ∈ S, j ∈ {1, . . . , sv}

Algorithm 4.3: Schedule with minimum number of slots (ILP, variable powers)

4.2.2.3 Additional Objectives

The MIP can be easily extended to fulfill additional objectives. For example it might
be interesting to compute a schedule that is time-optimal and that has the smallest
sum of transmission powers among all time-optimal schedules. This can be achieved
with the following objective function:

minimize (n+ 1) · Pmax · Z +
∑

t∈T ,i∈S
Pti (4.19)

Note, that in an optimal solution it holds: 0 <
∑
t∈T ,i∈S Pti ≤ n · Pmax.

53

4 Scheduling

4.3 Scheduling Heuristics

In the following, we will describe two heuristics for the scheduling problem. They
can, for example, be used to achieve good solutions for big instances of the scheduling
problem, for an upper bound on the necessary number of slots, or for fast computation
of good initial solutions for the ILPs. Section 4.3.1 deals with scheduling with fixed
transmission powers, Section 4.3.2 explores the problem with variable powers. In the
remainder of this chapter, let T denote the set of transmission requests and n = |T |.

4.3.1 Fixed Transmission Power: MaxSINR

The main idea of the heuristic consists in processing one time slot after another and
trying to fill each slot with as many not yet scheduled transmissions as possible. This
way, transmissions that are put together in a slot usually fit together very well, meaning
that they do not interfere too much with each other. In my student research paper [46],
it is shown that one can achieve a good slot utilization by starting with an empty
transmission set A and consecutively adding the transmission t that maximizes the
minimum SINR which occurs if all transmissions in A ∪ {t} are executed at the same
time.

Note, that the minimum SINR of all transmissions in A is strictly monotonically de-
creasing with growing A. This means, if at some point the addition of a transmission
t ∈ T to the set of active transmissions A would result in a SINR γ < κ, it surely would
also lead to a signal-noise-ratio less than κ in every further pass of the loop. Thus,
as soon as the addition of a transmission t to A leads to a SINR less than κ, we can
remove it from the set T of possible transmissions. This substantially improves the
performance of the method.

This approach to fill a time slot efficiently is outlined in Algorithm 4.4. It uses a function
MinimumSINR which, given a set A of concurrently active transmissions, computes the
minimum occurring SINR of all transmissions in A. In every step of the outer loop,
at least one transmission is removed from T . Therefore, the outer loop is executed
not more than O(n) times. The inner loop is executed O(n) times as well. If we
implemented MinimumSINR naively, then it had a running time of O(n2). This can be
improved to O(n), by storing for each transmission t ∈ A the interference at the receiver
of t, caused by all transmissions in A. If we add a transmission, then this information
can be updated in O(n) and the transmission with minimum SINR can, based on this
data, also be determined in O(n). All together we get a running time of O(n3).

Now that we know how to fill a single slot efficiently, we just have to fill one slot after
another until there are no transmissions left to schedule. This approach is outlined in
Algorithm 4.5. At this, FillSlot is the method described above.

54

4.3 Scheduling Heuristics

Input: Set T of transmissions, required signal-noise-ratio κ
Output: Set A of concurrently feasible transmissions
A ← ∅
maxMinSinr ← −1
bestT ← undefined
while T 6= ∅ do

forall t ∈ T do
sinr ← MinimumSINR(A ∪{t})
if sinr > maxMinSinr then

maxMinSinr ← sinr
bestT ← t

if sinr < κ then
T ← T \ {t}

if maxMinSinr ≥ κ then
A ← A ∪ {bestT}
T ← T \ {bestT}

else
T ← ∅

Algorithm 4.4: Good utilization of a time slot (fixed transmission powers)

Input: Set T of transmissions
Output: Schedule S = (S1, S2, ..., Sn) such that S is a partition of T
i← 0
while T 6= ∅ do
Si ← FillSlot(T)
T ← T \Si
i← i+1

Algorithm 4.5: Computation of a good schedule

55

4 Scheduling

4.3.2 Variable Transmission Power: MinPower

If we allow that senders adjust their transmission powers, then they try to choose the
powers such that the resulting SINR equals the minimal SINR that allows for successful
communication. For this reason, Algorithm 4.4 is not directly applicable. However, the
idea of Algorithm 4.4 can be transfered to scheduling with variable transmission powers:
Instead of maximizing the minimum SINR, we just minimize the maximum power that
is used in the slot. This leads to Algorithm 4.6.

Input: Set T of transmissions
Output: Subset A of T with big cardinality
A ← ∅
P ∗min ← 0
while P ∗min ≤ Pmax do

topt ← undefined
P ∗min ←∞
foreach t ∈ T do

ct ← MaximumPower(A ∪ {t})
if ct < P ∗min then

P ∗min = ct
topt ← t

if P ∗min ≤ Pmax then
A ← A ∪{topt}
T ← T \{topt}

return A
Algorithm 4.6: Good utilization of a time slot (variable transmission powers)

In every step of the while-loop, we check for every transmission t ∈ T how the trans-
mission powers were affected if we put t in the time slot. For this purpose, we use
function MaximumPower, which computes the optimum transmission powers for trans-
mission set A using algorithm 4.1 from Section 4.1. Then, it returns the maximum of
all transmission powers. Finally, we choose the topt ∈ T that resulted in the minimum
maximum transmission power. We add topt to A and remove it from T . We are finished
as soon as either T is empty, or no transmission can be added without exceeding the
maximum transmission power.

As we will show in Section 6.3.5, the approximation ratios of Algorithm 4.4 for fixed
transmission powers and those of Algorithm 4.6 for variable transmission powers are
very similar.

56

4.4 Computation of Lower Bounds for Optimum Schedules

4.4 Computation of Lower Bounds for Optimum Schedules

In this section, we will discuss methods for the computation of lower bounds for op-
timum schedules. Lower bounds have several useful applications. For example, they
can be used to classify the quality of scheduling heuristics. Moreover, in cases where a
good solution is sufficient, the lower bound can help to decide if a computed solution
already fulfills the requirements. Sometimes, the lower bound equals the length of an
optimum schedule. Then, if we find a schedule whose length equals the lower bound,
we immediately know that we are done and do not have to prove optimality or look for
better solutions.

Conflict Graph Cliques

By definition, pairs of transmissions that are connected by an edge in the conflict graph
cannot be scheduled concurrently. For this reason, the size of a set of transmissions
that are all pairwise connected in the conflict graph gives a lower bound on the number
of slots of every valid schedule. Such a set of transmission forms a clique in the conflict
graph. As we are interested in good bounds, the maximum clique seems to be the tool
of choice. We already utilized the maximum conflict graph clique to speed up the CPs
and ILPs in Section 4.2. In this section, we will have a closer look on the properties of
conflict graph cliques.

Figure 4.1 shows a unit disk graph of 200 nodes which are distributed on an area of
8 × 8 maximum transmission radii. The UDG has 859 edges that represent possible
communication links. In order to examine communications in such a topology, let us
replace every link of UDG by two transmission requests, one in each direction. By
doing this, we model that every node wants to send one message to every other node
within transmission range. The conflict graph of the resulting transmission set consists
of 1718 nodes, one for every transmission. If a pair of transmissions cannot be scheduled
simultaneously, then they are connected by an edge in the conflict graph. We computed
big cliques in the conflict graph and highlighted the involved transmission red in the
UDG.

It is striking that all transmission of the clique lie within the same area. This is not
surprising, as the interference caused by a sender falls of at least quadratically with
distance. However, this locality is extremely important for the feasibility of maximum
clique computations. It is well known that the problem of computing a maximum clique
is NP-complete. Usually, this means that the running time grows exponentially with
problem size. For sufficiently widespread networks, this does not hold in our case. In
most realistic networks, nodes are placed apart from each other, to cover an area as big
as possible with as few as possible nodes. This restricts the density of nodes per area.
Thus, the maximum number of edges incident to any transmission in the conflict graph
is bounded by some constant b. This also means that no clique can have size greater

57

4 Scheduling

(a) Clique of SINR conflict graph (fixed power) (b) Clique of SINR conflict graph (variable power)

Figure 4.1: Unit disk graphs with maximum conflict graph cliques

than b. As soon as we decide to take one node to our clique, the size of the remaining
problem is reduced to O(b). Thus, every of the O(n) subproblems can be solved in time
O(2b). As b is usually rather big, this still might be intractable. Nonetheless, if we
consider b to be constant, the time complexity for finding a maximum clique is in O(n)
for sufficiently large networks.

Our implementation of the maximum clique computation was able to find maximum
cliques up to size 30-35 within reasonable time. In contrast to node density, the size
of the network only played a minor role for the computation time. Unfortunately, for
networks with densities like the network in Figure 4.1, this is not sufficient. The left
picture shows a clique of the SINR conflict graph (fixed power), the right picture a clique
of the SINR conflict graph (variable power). They consist of 133 transmissions and 116
transmissions, respectively. Thus, at least with our implementation, this network is out
of reach for computation of a maximum clique.

In such cases, when a maximum clique cannot be computed in reasonable time, one
can use heuristics to compute big cliques. One simple, yet efficient, heuristic is as
follows: Of all nodes in the conflict graph, choose one with maximum degree. If several
nodes have the same degree, choose the one whose corresponding transmission has the
smallest sender-receiver-distance. In the following, we maintain a list of candidates for
our clique. This list is initialized with the neighbors of our selected node. For every
node n in the list of candidates, we compute the intersection of the list of neighbors of
n and the list of clique candidates. Now, among all nodes in the list of candidates, we
choose the one that had the most neighbors in the list of candidates. Again, in case

58

4.4 Computation of Lower Bounds for Optimum Schedules

of a tie, we select the node with smaller sender-receiver-distance. The selected node is
removed from the list of candidates and added to our clique. Furthermore, all nodes
that are not neighbors of the selected node are removed from the list of candidates.
This process is repeated until the list of candidates is empty. In our tests, this simple
heuristic performed very well. The cliques in Figure 4.1 also have been computed using
this heuristic.

Chromatic Number of the Conflict Graph

The chromatic number of a graph G is the smallest number of colors needed to color
the vertices of G such that no two adjacent vertices share the same color. Given such a
coloring of the vertices of our conflict graph, we can assign all transmissions with same
color to the same time slot. This gives us a schedule in which all transmissions can
transmit pairwise simultaneously. The chromatic number of a graph must be greater
than or equal to the size of a maximum clique. Therefore, the chromatic number pro-
vides a better lower bound than the maximum clique. Yet, this slight improvement can
only be achieved with tremendous additional computational effort. Like the maximum
clique problem, the computation of chromatic numbers is NP-complete [40]. Moreover,
the locality that helps to speed up the computation of maximum cliques does not exist
for the computation of chromatic numbers. As we will see in Section 6.3.5, the lower
bound provided by the maximum clique is already almost optimal. For this reason, we
do not consider the computation of the chromatic number of the conflict graph being a
good lower bound heuristic.

LP relaxation of the ILPs and MIPs

For every ILP or MIP, one can replace the requirement that variables are integer by ap-
propriate continuous constraints. Objective function and constraints are not modified.
The resulting problem is called the LP relaxation [1] of the original problem. Now that
we have only continuous variables, the LP relaxation can be solved in polynomial time
using an LP solver. Thus, the LP relaxation usually can be solved for very big problem
instances. In general, the solution values of the relaxed problem are not integer. But in
many problems, they can be rounded to a feasible solution of the integer program. The
objective value of an optimum solution of the relaxed problem gives a lower (upper)
bound on the optimum solution of the original minimization (maximization) problem.

To evaluate the quality of this lower bound, we solved the LP relaxation for different
formulations of the scheduling problem. Unfortunately, the results were very poor. In
the LP relaxation, it is allowed that transmissions are not completely scheduled in a slot,
but only fractions of them. What happened was, that all transmissions were distributed
over several slots. As a result, the interferences were much lower and the value of the

59

4 Scheduling

objective function was not a good approximation on the length of an optimal schedule
of the original problem.

60

5 Topology Control

Most of the topology control algorithms proposed recently are local. This means, that
every node of the network only has to know his own neighborhood in order to decide
which links he wants to keep and which links he wants to discard. In realistic scenarios,
this locality is a useful property for algorithms used in sensor networks. Especially
in ad-hoc networks, nodes usually only know their neighborhood, and it would be too
expensive to maintain positions of all involved nodes.

Yet, there are some useful applications for centralized algorithms. For example, if the
considered network is static, it can be worthwhile to have a one-time negotiation phase
in the beginning, in which all nodes agree on a global schedule. Every link of the
topology is assigned to a time slot such that a collision-free transmission is guaranteed.
This schedule is repeated perpetual. Especially in networks where the nodes only have
to communicate infrequently, and where power-awareness is of special importance, such
a TDMA approach (cf. Section 3.2) might be interesting. Of course, the length of the
schedule strongly influences the network performance and latency. Therefore, methods
that compute topologies that can be scheduled in a minimal number of slots are of high
interest.

In this chapter, we describe two algorithms that compute topologies with the goal of
minimizing the number of slots necessary to schedule all topology links. One of them is
based on the scheduling heuristics from the last chapter, the other one uses an approach
similar to the LIFE algorithm (cf. chapter 5.1.2), but using another interference measure
that is motivated by the SINR model. Both algorithms can be used to find connected
topologies, as well as topologies which are spanners of certain graph properties.

In order to classify the quality of the produced topologies, we will compare them to
a number of existing topology control algorithms in the experimental section. Those
algorithms are described in Section 5.1.

We conclude this chapter with a description of a CP that computes topologies whose
links can be scheduled using minimum number of slots.

5.1 Overview of existing Algorithms and Topologies

Additional to the topology control algorithms that we will describe later, we imple-
mented several existing algorithms and compared them to our algorithms and to each

61

5 Topology Control

other. These algorithms, as well as some other famous topology control algorithms, are
described in the following. Example topologies of most of the described algorithms can
be found in the experimental chapter.

5.1.1 Gabriel Graph and Relative Neighborhood Graph

As stated before, local algorithms are of special importance in the field of wireless
networks because they allow for a distributed computation and thus help to avoid
network traffic and to save energy. Therefore, it is not surprising that well-known
locally definable graphs have been among the first proposals for topology control. Two
famous examples are Gabriel graphs and relative neighborhood graphs.

In a Gabriel graph, a pair of vertices is only be connected by an edge, if the disk
with the vertices as diameter contains no further vertices. This situation is depicted
in figure 5.1(a). The area that is shaded gray has to be empty. In our special case of
network topologies, the nodes furthermore have to be within transmission range to be
connected.

(a) Gabriel Graph (b) Relative Neighborhood Graph

Figure 5.1: Edges in Gabriel graphs and relative neighborhood graphs

In a relative neighborhood graph, two vertices can only be connected by an edge if the
intersection of the two disks centered at the endpoints of the edge, with their radii equal
to the distance between the two vertices, is empty. This area is highlighted in gray in
figure 5.1(b). Again, in the case of network topologies, an edge is not allowed to exceed
the maximum transmission radius.

If a node knows its neighborhood, then it can easily decide for all possible links if
they belong to the Gabriel graph or to the relative neighborhood graph. Thus, those
topologies can be computed extremely efficient in a distributed fashion.

Both, Gabriel graph and relative neighborhood graph are known to be connected, planar
and sparse. Further information on relative neighborhood graphs and their relatives
can be found in [16].

62

5.1 Overview of existing Algorithms and Topologies

5.1.2 LIFE and LISE

In [3], Burkhart et al. examine the question if so-far proposed topology control algo-
rithms really help to reduce interference. They show that neither sparseness nor low
node degree are guarantees for low interference. Furthermore, they precisely define
their notion of interference. This definition of interference is based on the question,
how many nodes are affected by communication over a certain link. Given a network
G = (V,E) and a transmission (u, v) ∈ E from sender u ∈ V to receiver v ∈ V , they
define D(u, r) to be the disk centered at u with radius r = dist(u, v). If u sends to v, ac-
cording to their definition, all nodes within the disk D(u, r) are affected. Additionally,
they define the coverage Cov(u, v) of an edge (u, v) as the number of network nodes
that are affected, if nodes u and v communicate with each other. At this, it is assumed
that u and v choose their respective transmission powers such, that they exactly reach
each other. Formally:

Cov(e) := |{w ∈ V |D(u, |u, v|) coversw}| ∪ |{w ∈ V |D(v, |v, u|) coversw}|

Based on this interference measure, they further introduce two scheduling algorithms.

Low Interference Forest Establisher (LIFE) LIFE is a global algorithm which finds
a connectivity-maintaining, interference-optimal topology G′ = (V,E′), meaning
that the connectivity is preserved and the maximum coverage Cov∗(E′) of all
edges e ∈ E′ is minimized. The algorithm works similar to Kruskal’s minimum
spanning forest algorithm, using the coverage of the links as edge weights.

Low Interference Spanner Establisher (LISE) In contrast to LIFE, LISE establishes a
topology that is a distance-spanner. With slight modifications, the algorithm can
also be used to compute a hop-spanner topology. First, the algorithm computes a
link with minimum coverage Covmin. Then, it adds all links with coverage Covmin
to the topology. If the desired spanner-property is fulfilled, the algorithm stops.
If not, it again determines an edge with minimum coverage Covmin among the
remaining edges and adds all edges with coverage Covmin to the topology. This
is repeated until the desired spanner-property is satisfied. Again, the topology is
interference-optimal, meaning that the maximum interference among all edges of
the topology is minimized. Furthermore, in order to compute a t-spanner, every
node only has to know its (t2)-neighborhood. Thus, the algorithm is local.

5.1.3 Minimum Spanning Tree Algorithms

There exist several algorithms, which, like the LIFE algorithm, define some weight on
the edges and subsequently compute a minimum spanning tree of the weighted graph.
Probably the most famous of them is the Euclidean minimum spanning tree (EMST),

63

5 Topology Control

which uses the Euclidean distance as edge weights. The EMST topology can also be
used to bound the maximum node degree, as every EMST of a finite set of points in
the plane has a maximum node degree of six [29].

5.1.4 Cone Based Topology Control (CBTC)

The basic idea of the CBTC algorithm is that every node u transmits with the mini-
mum power pu,α required to ensure that in every cone of degree α around u, there is
some node that u can reach with power pu,α. In [24, 25], Li et al. show that using
α = 5π/6 is a necessary and also a sufficient condition to guarantee that network con-
nectivity is preserved. Besides, they propose three optimizations that further reduce
power consumption and prove that they retain network connectivity.

A node u is said to be a boundary node if u has still an α-gap at the end of the algorithm.
In the basic CBTC(α) algorithm, all boundary nodes would broadcast with maximum
power. The Shrink-Back Optimization reduces the transmission powers of all boundary
nodes as much as possible without reducing the cone coverage of the nodes.

Let Eα be the set of edges of the topology Gα = (V,Eα) computed by the CBTC(α)
algorithm. The second optimization, the Asymmetric Edge Removal, removes all di-
rected edges (u, v) ∈ Eα from the topology Gα for which (v, u) 6∈ Eα. Li et al. prove
that this optimization preserves connectivity for α ≤ 2π/3.

The so called Pairwise Edge Removal is the third and last optimization proposed in [25].
They show that, for α ≤ 5π/6, if there is an edge from u to v and from u to w, then the
longer edge is redundant and can be removed as long as d(v, w) < max(d(u, v), d(u,w)).
Since the transmission power of each node should be reduced, only the redundant edges
with length greater than the longest non-redundant edge are removed.

One of the advantages of their algorithm is that it does not need the exact positions
of the sensor nodes but only directional information. According to the authors, CBTC
was the first algorithm that simultaneously achieved a variety of useful properties, such
as symmetry, sparseness, and good routes [25].

5.1.5 XTC Algorithm

The XTC algorithms was proposed by Wattenhofer et al. in [48]. Compared to most
previously proposed algorithms, it is really simple: Two vertices u and v are connected
if they are within transmission range and if there is no vertex w which is closer to
either u or v than u and v are to each other. XTC is strictly local and does not require
availability of node position information. Besides, the underlying network graph does
not need to be a Unit Disk Graph. Instead, XTC works on every general weighted
network graph.

For the special case that the network graph is a Unit Disk Graph, the resulting topology

64

5.2 Topologies which can be efficiently scheduled

has bounded degree, is a planar graph, and—on average-case graphs—a good span-
ner [48].

5.2 Topologies which can be efficiently scheduled

In the following sections, we study the problem of computing time-optimal topologies.
We define a time-optimal topology as follows:

Definition 5.1 (Time-optimal topology). Given an input graph G = (V,E) and some
graph property Ψ, a topology G′ = (V,E′), E′ ⊆ E, is a time-optimal topology of
G regarding Ψ, if it fulfills Ψ and if there does not exist another topology G∗(V,E∗),
E∗ ⊆ E, which also fulfills Ψ and whose edges can be scheduled with less time slots
than the minimum number of slots required to schedule all edges of G′.

At this, every edge {u, v} of a topology is regarded as two transmissions (u, v) and
(v, u), one in each direction. In the following, we require that the considered graph
property Ψ is either preservation of connectivity, or some spanner-property, such as
hop-spanner, distance-spanner, or power-spanner. The proposed methods cannot be
used with arbitrary properties. In this case, preservation of connectivity means that
each pair of nodes that is connected by a path in G also has to be connected by a path
in G′.

5.2.1 MaxSINR Topology and MinPower Topology

In our experiments, the scheduling heuristics from Section 4.3 produced very good
schedules. Therefore, it is tempting to extend them to topology control algorithms,
hoping that the links of the resulting topologies can also be scheduled efficiently. The
basic idea of both scheduling algorithms was to fill the slots one by one, as good as
possible. Every slot is filled in a greedy fashion, such that the minimum SINR is
maximized, or that the necessary maximum power is minimized. These approaches can
be extended to topology control algorithms as follows: We still add the transmissions
one by one to the schedule. Furthermore, we maintain a data structure, which allows to
check efficiently if a transmission t is still necessary to fulfill the required graph property
Ψ. As soon as we encounter a transmission that is no longer necessary, we remove it
from the list of unprocessed transmissions. In the end, all transmission that have been
assigned to slots belong to the topology.

If we want the topology to be undirected, we have to take care that for every trans-
mission that has been scheduled, the second transmission belonging to the same edge
(in opposite direction) also will be scheduled. For this purpose, we add a marker to
each transmission. As soon as one of the transmissions belonging to an edge is added
to the topology, we mark the second transmission of the edge as necessary. Thus, the

65

5 Topology Control

transmission will be scheduled for sure at some point. Besides, as soon as we add the
first transmission t1 = (u, v) of a pair (t1, t2) of transmissions to some slot, we update
our data structure as if t2 = (v, u) already belongs to the topology.

Let us see how we can maintain the aforementioned data structure and how we can
decide if a transmission is unnecessary:

Connectivity If m is the number of nodes in the network, we just need a m×m-matrix
C, which stores for every pair of nodes whether it is already connected. Every
time a transmission (u, v) is added, we check for all nodes if they are already
connected by some path to u and not yet connected to v. For all nodes that fulfill
this requirement, we update the connectivity information in C such that they now
are also connected to v, as well as to all nodes that are reachable from v.
If we have to decide if a transmission t = (u, v) should be added to the topology,
we check using C[u, v] if they are already connected by some path. If this is true
and t is not marked to be necessary, we know that we can discard t.

It is obvious, that in the end all pairs of nodes that are in the same connected component
of the input graph are also connected by some path in the resulting topology. This holds,
because no edge which could be used to connect two yet unconnected components in
the new topology is discarded.

Spanner-Property Given some distance measureM, we compute for all pairs (u, v) of
nodes the length p(u, v) of a shortest path in the weighted input graph G = (V,E).
If we want to compute a s-spanner G′ = (V,E′) with regard to M, we have to
make sure that the length p′(u, v) of a shortest path between every pair (u, v) of
nodes in G′ is at most s times the length p(u, v). In the beginning, all distances
in G′ are set to∞. Every time we add a transmission t = (u, v) with edge-weight
w(u, v), we check for all nodes x ∈ V if p′(x, u) + w(u, v) < p′(x, v). For all
nodes which fulfill this condition, we update all shortest path lengths p′(x, z) to
p′(x, z) = min{p′(x, z), p′(x, u) + w(u, v) + p′(v, z)}.
If we have to decide if a transmission t = (u, v) should be added to the topology,
we check if p′(u, v) ≤ s ·p(u, v). If this is true, we know that there already exists a
path between u and v that fulfills the s-spanner property, and, if t is not marked
as necessary, we can discard it.

In the end, every node u is connected in G′ to all of its neighbors v in G by a path
p′(u, v) with p′(u, v) ≤ s · w(u, v).

Then, for all u, v ∈ V , it holds that p′(u, v) ≤ s · p(u, v). Proof: Let (u, x1, . . . , xn, v) be
a shortest path between u and v in G. Every edge (v1, v2) of this path can be replaced
in G′ by a path with length less than or equal to s · w(v1, v2). Thus, there exists a
path in G′ that is not longer than s · p(u, v) and G′ is an s-spanner with respect to the
distance measure.

66

5.2 Topologies which can be efficiently scheduled

Note, that these algorithms are not proposed to be used in real networks. They are
mainly intended to verify if topologies that are generated by such an approach are easier
to schedule than topologies which are produced by simpler heuristics. We will see later,
that the produced topologies can be scheduled very well, but that the much easier
approach to greedily take the shortest links into the topology generates topologies that
are equally good.

5.2.2 MinInterference Topology

Many of the existing topology algorithms try to minimize some interference measure.
The proposed interference measures range from node degrees to the coverage of an edge
that was used for the LIFE and LISE algorithms (cf. Section 5.1.2).

To our knowledge, there exists no interference measure for topology edges that is mo-
tivated by the SINR model. Such an interference measure has to take into account
that transmissions over shorter distances can tolerate more interference and that the
interference received from some sender decreases with the distance with path loss expo-
nent α. Furthermore, if the measure should be meaningful, there has to be some upper
bound on the interference received from a single sender. This is because the worst thing
that can happen is that a pair of transmissions cannot be scheduled concurrently. If
this is the case, it does not matter how close together interfering sender an disturbed
receiver actually are.

Therefore, we define that the interference I(t1, t2) from transmission t1 to another
transmission t2 equals 1 if t1 and t2 cannot be active simultaneously. For a pair of
transmissions (t1, t2) that can be scheduled together, we define I(t1, t2) as follows: Let
B(t2) be the maximum interference that t2 can tolerate if the sender of t2 sends with
maximum power, and let I(t1, t2) be the interference that transmission t1 causes at t2
in the case that the sender of t1 sends with maximum power. Now, for our interference
measure, we define the interference I(t1, t2) from t1 to t2 as I(t1, t2) = I(t1, t2)/B(t2).
This equals the fraction that t1 uses of the interference buffer of t2 if both transmit
with maximum power.

Then, the interference I(t) of a transmission t is the sum of the interferences from all
transmissions that interfere with t. The interference I(e) of a topology edge e = {u, v}
is defined as the sum of the interferences of transmissions t1 = (u, v) and t2 = (v, u)
that represent e in our optimization problem.

The proposed topology control algorithm is now similar to the LIFE algorithm, with
the difference that we use our interference measure I(e) instead of coverage Cov(e).
In order to be able to compute spanner topologies, we further use the techniques from
Section 5.2.1. It is shown in [3], that it is sufficient to consider the t-neighborhood of
every node to compute a topology that is a t-spanner based on an appropriate distance

67

5 Topology Control

measure. Thus, if we compute a spanner instead of a spanning tree, the algorithm can
be realized based on local information.

Our interference measure I(e) has several advantages compared to Cov(e): Both, the
interference buffer B(t) of a transmission and the interferences I(t1, t2) can be deter-
mined without having any knowledge about positions, distances, or directions. In an
initial phase, the nodes just have to send ping messages with maximum power to al-
low the other nodes to measure the received signal strength. Then, the nodes tell the
other nodes which signal strengths they measured. There is nothing more necessary
to compute the required information. This approach even takes into account obstacles
that negatively influence the power gain between pairs of nodes. Furthermore, it is
considered that transmissions over short ranges can tolerate more interference.

Note, however, that we build our topology based on the interferences weights that
every node gets assigned in the input graph. In general, the final topology has much
less edges. Thus, the interference measure of an edge differs between input graph
and output topology. The resulting topology therefore is not optimal regarding our
interference measure. Nevertheless, it seems to be a good heuristic and this topology
control algorithm performed very well in our experiments. It should be especially useful
in situations where no kind of position information is available, or when the signal
strength is not solely determined by distance.

5.2.3 Constraint Programming

The constraint programs from Section 4.2.1 can be extended to a CP formulation that
finds, given an input graph G = (V,E), a time-optimal topology fulfilling the desired
graph property Ψ. For this, we introduce for every edge e = {u, v}of the input graph two
transmissions t1 = (u, v) and t2 = (v, u), which have to be scheduled. In the following,
let m = |V | be the number of nodes, and n = 2|E| the number of transmissions.

To be able to model that some edges do not belong to the resulting topology, we
introduce a new dummy time slot with ID 0. The transmissions corresponding to edges
that do not belong to the final topology are assigned to this dummy time slot.

Let us first assume that we want to preserve connectivity in our resulting topology. We
introduce m2 new Boolean variables connected[u][v], which store for every pair (u, v)
of nodes, whether they are already connected in the current partial topology. If a
transmission t = (u, v) is added to the partial topology, then its sender and receiver are
connected. This can be realized by a constraint

slot[t] > 0⇒ connected[u][v] = 1 (5.1)

for all transmissions (u, v) ∈ T . For every triple (u, v, w) of nodes, we add another
constraint

connected[u][v] ∧ connected[v][w]⇒ connected[u][w] (5.2)

68

5.2 Topologies which can be efficiently scheduled

Now, every time a transmission t is added, Gecode updates the connectivity variables
in O(n2).

To achieve that transmissions are not taken into the topology, if they are not neces-
sary because sender and receiver are already connected otherwise, we add, for every
transmission t = (u, v), a new custom propagator to connected[u][v], which enforces:

connected[u][v] = 1 ∧ slot[t] is not yet assigned⇒ slot[t] = 0 (5.3)

Next, as we want to get an undirected topology, we add for each edge {u, v} ∈ E with
corresponding transmissions t1 = (u, v) and t2 = (v, u) a constraint:

slot[t1] > 0⇔ slot[t2] > 0 (5.4)

Now, let us get to the branching: As we do not have to schedule all transmissions,
it does no longer seem to be a wise choice to always select the transmission variable
with minimum domain size for the next branching. If we would do so, we would first
check out the variables that suffer from the most interference. There is a good chance,
that these variables do not belong to an optimum topology. Instead, we order the
transmissions according to their sender-receiver-distance, and begin with the short-
distance transmissions. As we will see later in the experimental section, good topologies
usually mainly consist of the shortest edges of the input graph. Now, the order in which
the values from the domain of the chosen variable are checked out has to be determined.
Again, it seems to be a good choice to start with the slots in which the considered
transmission receives least interference. If we unsuccessfully tested out all possibilities
to assign the transmission to one of the slots, we assign it to the dummy slot 0, meaning
that the corresponding edge will not be in the final topology. Thanks to constraint 5.4,
the second transmission belonging to the same edge will automatically be assigned to
slot 0.

Every solution of the CP that is found defines a spanning forest of the input graph. As
soon as we find a new solution, we add a new constraint that enforces that the next
solution has to be scheduled using one slot less.

This CP can be easily adjusted to compute topologies which fulfill arbitrary graph
properties. Let us, for example, assume that we want to compute a topology that is a
distance s-spanner. To do this, we maintain a matrix of shortest paths in the partial
solution and implement a new propagator, which keeps this matrix up to date. As we
are only interested in a distance s-spanner, it is sufficient to consider the s-neighborhood
(meaning the neighborhood within a radius of s times the maximum transmission range)
of every node. If for every node the distance stretch factor to every other node in the
s-neighborhood is below s, then the stretch factor to all nodes in the topology is below
s [3]. Now, the decision whether a transmission has to be scheduled or not is made
directly within the branching. If the nodes involved in a transmission t are already
connected with stretch factor less than s in the current topology, then t is unnecessary

69

5 Topology Control

and we can immediately set slot[t] = 0. If the nodes are not yet connected, or if they are
connected only with stretch factor greater than s, we first try to assign the transmission
to any of the possible slots before we decide to discard it from our topology.

Note that the maximum clique optimization cannot be used in connection with this
CP formulation, as we cannot be sure that all transmissions of a maximum clique do
belong to edges of a time-optimal topology. We first expected that the CP that only
preserves connectivity should be usable in networks with many edges, because we never
have to schedule more transmissions at the same time than twice the number of nodes.
Unfortunately, if we want to prove optimality, this assumption is wrong. The reason for
this is, that, given 2|E| transmissions, the number of valid partial schedules is immense,
even if not all transmissions have to be scheduled at the same time.

70

6 Experimental Results

Most of the algorithms and techniques described in this thesis have been implemented
in Java and C++. In this chapter, we use these implementations to analyze some
fundamental properties of sensor networks and to compare the performance and running
times of the different methods. At this, the comparison between the constraint programs
and the integer programs is one of the main aspects.

This chapter is organized as follows: In Section 6.1, the implementation and testing
environment are specified. Afterwards, in Section 6.2, we show important aspects of
the choice of SINR model parameters and describe which parameters were used for the
experiments in this thesis. The experiments that are related to scheduling can be found
in Section 6.3, those related to topology control in Section 6.4.

6.1 Implementation and Testing Environment

The algorithms and methods which are described in this thesis have been implemented
partly in Java and partly in C++. For the solution of the ILPs and CPs, we used the
external solvers ILOG CPLEX 11 [5] and Gecode 2.1.1 [7]. CPLEX is a commercial
product and is known to be one of the fastest and most developed solvers for (integer)
linear programs. Gecode is an open source environment for modeling and solution of
constraint programs. A detailed introduction into Gecode is given in Section 2.4.

Originally, we intended to do all the implementations in Java, in order to avoid im-
plementing the core functionality (e.g., the SINR model) twice. We decided on Java
because it is freely available, highly portable, almost as fast as C++, and there are
several good libraries for the visualization of graphs and networks available.

Unfortunately, the Gecode libraries for Java are currently, according to the authors,
mainly intended for testing purposes and not optimized for high performance. Normally,
this is no problem as the performance of a constraint program is usually measured in
the number of failures and backtracks, and not in running time. The number of failures
allows for comparisons which are independent of the testing environment and the CP
solver in use. But as one of the goals of this thesis was to evaluate the usability of
constraint programming compared to integer linear programming, it would have been
unfair to compare the actual running times of the Java Gecode implementation with
the running times of the highly optimized ILOG CPLEX Solver. For this reason, the
constraint programming related parts have been implemented in C++.

71

6 Experimental Results

For the visualization of the sensor networks, we used JUNG 2.0 alpha 1 [17], the Java
Universal Network/Graph Framework.

The experiments and running time comparisons have been done on a computer with
two Dual-Core AMD OpteronTM 2218 processors (2.6 GHz) and 32 GB RAM, running
Linux 2.6.16.13 (SUSE).

6.2 Parameters used for the SINR Model

In order to stay realistic, it is assumed that every sensor node has some maximum
transmission power Pmax. For the sake of simplicity, we use the same maximum trans-
mission power for all sensor nodes. In the case of fixed transmission powers, we set
P = Pmax. The minimum SINR κ is set to 10, a value which should be realistic for
modern hardware. For the path loss exponent we choose α = 4 .

If we consider the case that there is no interference due to concurrent transmissions and
solve the SINR inequality for the distance d between sender and receiver, this gives us:

d ≤ α

√
Pmax
ηκ

(6.1)

As α, η, and κ are constants, it is obvious that the maximum transmission power
implies a maximum transmission range dmax. In order to make the results descriptive
for the reader it seems to be natural to normalize the parameters by setting η such that
Pmax = 1 and dmax = 1. This means η = κ−1.

However, this can lead to undesirable results. If we allowed transmissions over a distance
of almost one, then this would mean that the transmission cannot tolerate concurrent
transmissions even from senders relatively far away. This is unrealistic and complicates
theoretical considerations about the model. Therefore, it is better to restrict transmis-
sions to a maximum sender-receiver-distance d∗max < dmax. In the following, we will
refer to d∗max as transmission radius. We can normalize d∗max to the value 1 using the
following definition for η:

η = 1
(1 + β)κ (6.2)

In this equation, β is some arbitrary constant that defines how much interference (in
multiples of η) every transmission with transmission power Pmax and sender-receiver-
distance less than or equal d∗max = 1 should be able to tolerate from concurrent trans-
missions.

The advantage of using d∗max instead of dmax as maximum sender-receiver-distance is
shown in Figure 6.1. The left picture shows 145 nodes which are randomly distributed
in an area of 12 × 12 units of length. Every pair of nodes with distance not greater
than 1 is connected. Now, we compare the conflict graphs in dependence of our choice

72

6.3 Scheduling

(a) Unit Disk Graph (b) Bad model parameters (c) Good model parameters

Figure 6.1: Good vs. bad choice of SINR model parameters

of β. The result for β = 0 can be seen in Figure 6.1(b): Even transmissions which are
really far away from each other conflict with each other. Theoretically, a transmission
over distance dmax could fail because of one single active sender in arbitrary distance.
Figure 6.1(c) shows the situation for β = 1. Here, the conflicts only occur between
transmissions whose nodes are near to each other as one would expect in reality.

6.3 Scheduling

In the following sections, we study several properties of wireless networks that are
related to scheduling. After a brief description of our test data, we compare graph-
based interference models with the SINR model. Subsequently, we examine optimum
schedules and the advantages of using variable transmission powers instead of fixed
transmission powers. This is followed by an evaluation of the quality of our scheduling
heuristics, as well as of the lower bounds that are achieved by computing a maximum
clique of the conflict graph. The ILPs and CPs are compared based on the percent-
age of problems which they were able to solve within 180 seconds, and based on the
average number of slots of the schedules that they found within the given time. This
section concludes with an evaluation of random restarts as a tool to speed up constraint
programs.

6.3.1 Test data

In order to make the different experiments as comparable as possible, most of the
experiments were run on the same sets of input data. The defining properties of each
data set are the number of transmissions and the dimensions of the area on which the
transmissions are placed. Obviously, both play an important role for the running time of

73

6 Experimental Results

the algorithms as well as for the number of slots in an optimum solution. The dimensions
of the considered area are given in transmission radii. At this, a transmission radius is
the maximum distance between a sender and a receiver, such that they still are able
to communicate if the only interference is caused by the background noise η. The data
sets are divided into three big classes, depending on the dimensions of the test area:
5× 5 transmission radii, 10× 10 transmission radii, and 15× 15 transmission radii. Of
course, this only covers rather small sensor networks. But, due to the NP-hardness of
the scheduling problem, the computation of exact solutions for bigger instances would
be too time-consuming. Nevertheless, the results show clear tendencies and thus can
be easily transfered to bigger dimensions.

For the classes with 5× 5, 10× 10, and 15× 15 transmission radii, we created data sets
with n = 10, 20, ..., 100, n = 10, 20, ..., 120, and n = 10, 20, ..., 170 transmissions, respec-
tively. Each data set consists of 50 random transmission sets. They were generated
by first placing each sender randomly within the test area and, afterwards, placing the
corresponding receiver randomly within transmission range such that the receiver also
lies in the test area.

(a) 5× 5 radii, 100 transmissions (b) 10 × 10 radii, 100 transmis-
sions

(c) 15 × 15 radii, 100 transmis-
sions

Figure 6.2: Examples of the transmission sets used for the scheduling experiments

Of course, the transmission density, meaning the number of transmissions per unit
area, is the main determination factor for the number of slots in an optimum schedule.
Therefore, in order to give a first impression on the transmission densities, Figure 6.2
depicts three of the overall 1950 transmission sets.

74

6.3 Scheduling

6.3.2 Graph-based Models vs. SINR Model

There are several scheduling algorithms that are based on conflict graphs. Depending on
the quality of the conflict graph used, these algorithms either put transmissions which
cannot be scheduled together into the same slot, or they do not allow the concurrent
execution of transmissions which actually could be scheduled together. It is widely
believed that the SINR model represents reality pretty well. Therefore, it seems to
be interesting to compare some frequently used conflict graph models to the SINR
conflict graph. Edges additional to the edges of the corresponding SINR conflict graph
indicate that the considered model is over-restrictive, edges missing compared to the
SINR conflict graph indicate that the model is not sufficiently restrictive.

The first experiment to compare graph based conflict graphs with the SINR conflict
graph is accomplished as follows: We generated 100 node sets of 300 nodes at a time,
which have been randomly distributed within an area of 15×15 transmission radii. For
each of the node sets, the unit disk graph was constructed. Then, we computed the
conflict graphs of the following models:

Distance-2 Fixed Model In the distance-2-fixed model, every sender has a fixed
transmission range r. If two transmissions t1 = (u, v) and t2 = (u′, v′) are active
concurrently, then transmission t1 fails if

dist(u′, v) ≤ r. (6.3)

Distance-2 Variable Model In the distance-2-variable model, every node adjusts its
transmission range on a per-message basis. Here, transmission t1 fails if

dist(u′, v) ≤ dist(u′, v′). (6.4)

Sigma Model In the σ-model with parameter σ ≥ 0, the distance between sender u
and corresponding receiver v is taken into account. Furthermore, the parameter
σ allows to specify, that the interference is not restricted to the maximum trans-
mission range r. Transmission t1 = (u, v) fails, if for some concurrently active
sender u′

dist(u′, v) ≤ (1 + σ)dist(u, v). (6.5)
This model comes closest to the SINR model.

Two Hop Model In the two-hop model, two transmissions are interfering if the
corresponding edges in the unit disk graph are adjacent or if they are connected
by an edge. This model was used by Tamura et al. in [42].

The average edge numbers of the resulting conflict graphs now give some insight on how
the methods behave compared to the SINR conflict graphs. The results can be seen in
Table 6.1. For the sigma model, σ = 2.16 was used.

75

6 Experimental Results

Distance-2 Fix Distance-2 Var Sigma Two Hop
Conflict graph edges 12161.9 9127.1 20464.4 13854.7
Additional to SINR Fixed 476.1 44.5 2664.2 808.4
Missing from SINR Fixed 6114.4 8717.6 0.0 4753.9
Additional to SINR Var 1717.7 401.5 7849.0 2508.9
Missing from SINR Var 2171.2 3889.8 0.0 1269.6

Table 6.1: Number of edges in different conflict graph models

The SINR conflict graph (fixed power) and SINR conflict graph (variable power) had
an average of 17800 and 12615 edges, respectively. Again, it can be seen that the use
of variable transmission powers pays off. The first thing that strikes if one looks at
Table 6.1 is that all conflict graphs contain a big number of edges that do not exist
in the corresponding SINR conflict graph. The reason for this is, that the models do
not take advantage of short distances between senders and corresponding receivers.
As the signal quality decreases extremely fast with the distance, a short sender-receiver
distance means that the transmission can tolerate much interference from outside. How-
ever, being too cautious with concurrent transmissions is by far not as bad as allowing
transmissions to be scheduled together which interfere so much that one or both trans-
missions fail. Unfortunately, all models but the Sigma model are missing a tremendous
number of edges from the SINR conflict graph. This certainly shows that scheduling
based on this conflict graphs does not result in reliable schedules.

So let us have a closer look on how the conflict graph models differ. Figure 6.3(a)
shows a set of randomly distributed sensor nodes with corresponding unit disk graph.
The vertices of the corresponding conflict graph are depicted in Figure 6.3(b). In the
remaining pictures of Figure 6.3, the different conflict graphs are compared. Probably
the most obvious distinction is, that the SINR conflict graphs connect edges that do
not belong to the same connected component.

If one wants to use a graph based model and tolerates rare cases of transmission failures,
then the SINR based conflict graphs should be the first choice. On the other hand, if
failures are not tolerable, then the methods proposed in my student research paper [46]
and in [20] should be considered.

6.3.3 Analysis of Optimum Schedules

In this section, we will have a closer look on the properties of optimum schedules.
Figure 6.4 shows the average slot numbers of the schedules that were generated with
the ILPs and CPs described in this thesis. The scheduling problems have been solved
to optimality for most of the transmission sets. If neither the ILP nor the CP was able
to compute the optimum solution within the given time, then the best of both solutions

76

6.3 Scheduling

(a) Unit Disk Graph (88) (b) Conflict Graph Vertices (c) SINR Fixed (5142)

(d) SINR Variable (3612) (e) Distance-2 Fixed (1302) (f) Distance-2 Variable (1050)

(g) Sigma 2.16 (2554) (h) Two-Hop (1516)

Figure 6.3: Graph-based conflict graphs vs. SINR-based conflict graphs

77

6 Experimental Results

was used. More information on the transmission sets which could not be solved to
optimality and the quality of the resulting schedules can be found in Section 6.3.6. By
all means, we can assume that the schedules which we analyze in this chapter are almost
optimal if not optimal. At this point, we only want to analyze the asymptotical behavior
of optimum schedules for fixed and variable transmission powers, independently of each
other. They will be compared with each other later in Section 6.3.4.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 0 20 40 60 80 100 120 140 160 180

Sl
ot

s

Transmissions

5 x 5, Fix
5 x 5, Var

10 x 10, Fix
10 x 10, Var
15 x 15, Fix
15 x 15, Var

Figure 6.4: Optimum solutions fixed power vs. optimum solutions variable power

Probably the most outstanding property of the graphs is, for fixed dimensions, the
almost linear dependence of transmission number and slot number in the corresponding
(almost) optimal schedule. Especially for the transmission sets with dimension 5× 5 it
seems that the slot number increases more than linear for transmission numbers greater
than 70. However, this is obviously only an artifact of the non-optimality of some of
the schedules and can be ignored at this point. It is not surprising that the slot number
of an optimal schedule decreases on average, when we consider the same number of
transmissions distributed over a bigger area. Actually, we would have expected that
the number of necessary slots is linear in the density of the transmissions, meaning
transmissions per unit area. However, in our experiments the slot number of an optimal
solution decreased almost exactly with A−3/4 instead of A−1, A being the available area.
This can bee seen in Figure 6.5 where the x-value is given by transmissions / A−3/4. We
assume that this behavior is causes by some kind of border effect, which is proportional
to A1/4. For example, the bigger the area, the more receivers lie near the border of the
test area and thus have less interfering senders around them.

One property of the optimal solution, which maybe does not sound too interesting at
the first moment, is the spread of optimal solutions. However, this explains why the
median running time of scheduling algorithms is relatively meaningless. This becomes
important in connection with so-called hardness peaks, which provide further insights
in the complexity of a problem. Hardness peaks are not covered in this thesis, but
further information can be found in [9]. We will only consider the transmission sets

78

6.3 Scheduling

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

 0 1 2 3 4 5

Sl
ot

s

Transmissions / A3/4

5 x 5, Fix
5 x 5, Var

10 x 10, Fix
10 x 10, Var
15 x 15, Fix
15 x 15, Var

Figure 6.5: Dependence of the optimal solution on test area

with dimensions 5 × 5 and fixed transmission powers. Choosing a different class of
transmission sets would yield similar results.

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30

Pr
ob

le
m

 In
st

an
ce

s
(in

 %
)

Slots

20 Transmissions
40 Transmissions
60 Transmissions
80 Transmissions

100 Transmissions

Figure 6.6: Spread of optimal solutions in dependence of transmission number

Figure 6.6 shows the distribution of the optimal solutions for 20, 40, 60, 80, and 100
transmissions. For every number of transmissions we get a definite peak. Probably, we
would see some kind of Gauss distribution if the resolution were high enough. There
are two main aspects that one should note. First, the optimal solutions are spread
so widely that no slot number is optimal for more than 25% of the transmission sets.
Second, the offset between the different peaks seems to be about proportional to the
number of transmissions of the corresponding peak. This second observation can be
refined by looking at Figure 6.7.

Here, the slot number is divided by the number of transmissions. As expected, most
of the peaks overlap. The two outliers, 20 transmissions and 40 transmissions, can be

79

6 Experimental Results

 0

 5

 10

 15

 20

 25

 0 0.1 0.2 0.3 0.4 0.5 0.6

Pr
ob

le
m

 In
st

an
ce

s
(in

 %
)

Slots / Transmissions

20 Transmissions
40 Transmissions
60 Transmissions
80 Transmissions

100 Transmissions

Figure 6.7: Normalized illustration of optimal solution spread

easily explained: The test area is probably not covered well enough. Even if we have,
for instance, only two transmissions on a huge area, it could happen that those two
transmissions are next to each other and occupy two slots. Something similar seems to
happen with the transmission sets with only 20 and 40 transmissions The remaining
transmission sets with 60, 80, and 100 transmissions overlap almost exactly and we can
read from the figure that we need about one slot per 5 transmissions.

6.3.4 Variable Power vs. Fixed Power

Throughout this thesis, we distinguished between networks with variable transmission
powers and networks with fixed transmission powers. It turned out that fixed trans-
mission powers are much easier to handle than variable powers. In this section, we
analyze the advantages that one can achieve by allowing variable transmission powers.
Figure 6.4 in Section 6.3.3 already gives a good impression on the absolute difference be-
tween optimum slot numbers for schedules with fixed and variable powers. The relative
differences are shown in Figure 6.8.

On average, it seems that optimal scheduling with fixed powers requires about 15%
to 20% more slots than with variable powers. This ratio seems to be almost constant
independently from the number of transmissions. Only for the data sets with dimensions
5 × 5 it looks as if the ratio would decrease. However, in this case the data are not
completely accurate for more than 60 transmissions because many schedules could not
be solved to optimality. Therefore, we assume that this ratio should also approach
some fixed value if one uses a sufficient number of samples and solves every problem to
optimality.

It is questionable whether it is worth to expend the additional effort of scheduling with
variable powers if one can only be about 15% faster. But the time savings are probably

80

6.3 Scheduling

 100

 105

 110

 115

 120

 125

 0 20 40 60 80 100 120 140 160 180

Sl
ot

s
(F

ix
) /

 S
lo

ts
 (V

ar
) [

%
]

Transmissions

5 x 5
10 x 10
15 x 15

Figure 6.8: Percental disadvantage of fixed power scheduling

by far not the most important advantage of using variable powers. As already stated,
saving power is one of the most substantial issues in algorithm design for wireless
sensor networks. So let us have a closer look on the power consumption. For fixed
transmission powers the case is clear: we always use maximum power. In the case
of variable transmission powers, it seems in the first moment to be plausible that we
also need high transmission powers for optimal schedules because we pack as many
transmissions as possible in every time slot. Amazingly, it looks as if we can save
a lot of energy by using variable transmission powers. Figure 6.9 shows the average
transmission powers used for the time-optimal schedules which we generated with the
CPs and ILPs.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180

Av
er

ag
e

Tr
an

sm
is

si
on

 P
ow

er
 [%

]

Transmissions

5 x 5
10 x 10
15 x 15

Figure 6.9: Average transmission powers (time-optimal schedule, variable power)

The average transmission power is always way below 50%. This means that we are
not only faster by using variable transmission powers, but we also can save more than
50% transmission energy and thus we possibly are able to double the lifetime of the

81

6 Experimental Results

wireless network. Note that neither the CP nor the ILP was optimized for producing
power-efficient schedules. So there is a good chance that we could do even better. The
figure also shows the maximum and minimum of the average transmission powers as
errorlines for the data with dimensions 10 × 10. Of course, this spread is the bigger
the less transmissions are involved. Interestingly, even the maximal average powers are
only about 40% of the maximum transmission power.

6.3.5 Quality of Heuristic and Lower Bound

As said before, the scheduling problem is NP-complete for fixed transmission powers
and believed to be NP-complete for variable transmission powers. To the best of our
knowledge, there is also no exact algorithm for scheduling with variable powers available,
which has a good average running time. For this reason, algorithms that give good upper
and lower bounds on optimal solutions are of great importance. In this chapter, we want
to analyze the quality of the upper bound computed by the scheduling heuristic and
the lower bound given by the maximum clique of the conflict graph in comparison to
the solutions given by the ILPs and CPs.

Figure 6.10 and Figure 6.11 show the average slot numbers for fixed and variable trans-
mission powers, respectively. Obviously, both bounds are pretty tight. Especially the
maximum clique almost exactly predicts the number of necessary slots. The discrep-
ancy for high transmission numbers, in particular for more than 60 transmissions on an
area of 5× 5 transmission radii, can again be explained by the non-optimality of some
solutions because the instances were to hard to solve within the given time. For an un-
biased interpretation, one should only consider the data points for which all instances
could be solved to optimality (cf. 6.3.6).

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140 160 180

Sl
ot

s

Transmissions

5 x 5, Heuristic
5 x 5, Optimum

5 x 5, Clique
10 x 10, Heuristic
10 x 10, Optimum

10 x 10, Clique
15 x 15, Heuristic
15 x 15, Optimum

15 x 15, Clique

Figure 6.10: Quality of heuristic and lower bound (fixed power)

82

6.3 Scheduling

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140 160 180

Sl
ot

s

Transmissions

5 x 5, Heuristic
5 x 5, Optimum

5 x 5, Clique
10 x 10, Heuristic
10 x 10, Optimum

10 x 10, Clique
15 x 15, Heuristic
15 x 15, Optimum

15 x 15, Clique

Figure 6.11: Quality of heuristic and lower bound (variable power)

The ratio of the upper and lower bounds to the ILP and CP solution is shown in
Figure 6.12. In order to improve the comparability, we chose to use the transmission
density (with rectified border effects) on the x-coordinate. The heuristics for fixed and
variable power seem to behave equally well, with an average performance ratio of 1.25
or better for the considered data sets. The lower bound is even tighter and does not
underestimate the optimal value by more than 6 percent on the average within the
depicted range.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 0.5 1 1.5 2 2.5

R
at

io
 to

 IL
P

or
 C

P
so

lu
tio

n
(in

 %
)

Transmissions / A3/4

10 x 10, Heuristic, Fix
10 x 10, Clique, Fix

15 x 15, Heuristic, Fix
15 x 15, Clique, Fix

10 x 10, Heuristic, Var
10 x 10, Clique, Var

15 x 15, Heuristic, Var
15 x 15, Clique, Var

Figure 6.12: Performance ratios of heuristic and lower bound

83

6 Experimental Results

6.3.6 Performance

We already mentioned, that some of the problem instances have been too big to be
solved to optimality. In the next two sections, we will examine which problems could
actually be solved completely and how good the CP and ILP behaved in the other
cases. Figure 6.13 depicts the percentages of problems that could be solved in 180
seconds, using the different methods. Considering the CP, we distinguish two different
methods. CP Int Model is solely based on Gecode standard propagators and branchings,
whereas in CP Own Model, we implemented our own SINR propagator and our own
branching (cf. 4.2.1). As we can take from the figure, the own model performed
substantially better than the standard implementation. Probably, this is mainly thanks
to the improved branching. For big problem sizes, in most cases, the ILP was able to
solve more problems than the CP. In our opinion, the reason for this is that the ILP is
not so dependent on the input order. In every step of the ILP, the solver can choose
one arbitrary variable to be adjusted, whereas in the CP, a variable assignment is only
revised if it has been shown that there exists no feasible solution with this assignment.
Two possibilities to avoid this problem are the use of random restarts and the use of
limited discrepancy search, as described in Section 4.2.1.3. On an area of 5 × 5, the
ILP with variable power performed surprisingly bad. One explanation for this could be
the relative high slot number of an optimum solution for those instances. Possibly, the
ILP is more dependent on the number of slots than the CP. On the other hand, the
performance of the CP seems to depend strongly on the number of transmissions. Even
on an area of 15× 15, where the transmission density is rather small, the performance
of the CPs went down for more than 100 transmissions. Again, this probably is due to
the fixed order in which the Gecode branch-and-bound-search considers the variables.

Usually Gecode was faster to find an optimum solution, while CPLEX was faster in
proving the optimality. In general, it takes much longer to prove the optimality of
a solution than to find the solution. Thus, there is a good chance that many of the
computed schedules have been optimal, even though the ILP and CP were not able to
prove it.

84

6.3 Scheduling

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

So
lv

ed
 (i

n
%

)

Transmissions

ILP, Fixed Power
CP Own Model, Fixed Power

CP Int Model, Fixed Power
ILP, Variable Power

CP Own Model, Variable Power

(a) Dimension: 5x5, Timeout: 180 sec

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

So
lv

ed
 (i

n
%

)

Transmissions

ILP, Fixed Power
CP Own Model, Fixed Power

CP Int Model, Fixed Power
ILP, Variable Power

CP Own Model, Variable Power
CP Own Model, Var Power, No Clique

(b) Dimension: 10x10, Timeout: 180 sec

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180

So
lv

ed
 (i

n
%

)

Transmissions

ILP, Fixed Power
CP Own Model, Fixed Power

CP Int Model, Fixed Power
ILP, Variable Power

CP Own Model, Variable Power

(c) Dimension: 15x15, Timeout: 180 sec

Figure 6.13: Percentage of solved problem instances (timeout: 180 sec)

85

6 Experimental Results

6.3.7 Solution Quality

In the last section, we saw that for big problem sizes many problems could not be solved
to optimality. Now, we want to compare the best solutions found by the ILP and the
CP within 180 seconds with each other, as well as with the solution of the heuristic.
The average schedule length is shown for fixed transmission powers in Figure 6.14, and
for variable transmission powers in Figure 6.15.

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160 180

Sl
ot

s

Transmissions

5 x 5, ILP
5 x 5, CP, Own Model

5 x 5, Heuristic
10 x 10, ILP

10 x 10, CP, Own Model
10 x 10, Heuristic

15 x 15, ILP
15 x 15, CP, Own Model

15 x 15, Heuristic

Figure 6.14: Average length of schedules found by ILP, CP, and heuristic (fixed power)

Up to about 80 transmissions, the solution quality of ILP and CP is almost identical.
This is a strong indication that those instances have been solved to optimality for the
most part. For 80 transmissions and above, the solution quality of the CP decreases.
The number of slots of the final schedule is now mainly determined by the quality of the
initial solution, as most of the variables cannot be revised within the given 180 seconds.
Interestingly, for variable transmission powers, the MinPower heuristic outperforms the
CP. The reason for this is simple: In our branching, we chose the next variable by its
domain size and not by interference-based considerations. As a result, the schedule of
the MinPower heuristic is much better than the initial solution of the CP. At this point,
there is surely room for optimizations.

However, as we will see in the next section, randomization can help substantially to
improve the solutions of the CP.

86

6.3 Scheduling

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160 180

Sl
ot

s

Transmissions

5 x 5, ILP
5 x 5, CP, Own Model

5 x 5, Heuristic
10 x 10, ILP

10 x 10, CP, Own Model
10 x 10, Heuristic

15 x 15, ILP
15 x 15, CP, Own Model

15 x 15, Heuristic

Figure 6.15: Average length of schedules found by ILP, CP, and heuristic (var. power)

6.3.8 Random Restarts

As we saw in the previous sections, constraint programming is very sensitive to the
order in which the decision variables are assigned. This is in stark contrast to integer
programming, where the variables can be updated in arbitrary order depending on the
objective function. In this section, we want to analyze this dependence of constraint
programming on the order of the input. For this purpose, we compare the results of
a single CP execution with timeout 180 seconds against the best result achieved by 30
independent executions with timeout 6 seconds on the same input data in randomized
order. For the comparisons, we use the 50 data sets with 100 transmissions on an area
of 10× 10 transmission radii.

In Figure 6.3.8, we compare for each data set the best solution (minimum number of
slots) against the solution of the 3 minute run. In all but two of the 50 data sets, the
random restart method behaves at least as good as the 3 minute computation. On
the contrary, in most cases it is clearly superior to the single run, although every run
had a timeout of only 6 seconds instead of 3 minutes. At first glance, this might look
surprising. One reason for the good performance of the restarts is that there exist a
relatively big number of optimum solutions. With every restart, there is a good chance
that the assignment of the first transmissions allows for a good schedule. Even if some
of the input orderings are bad, this does not make a difference thanks to the many
restarts. In contrast, if in the single run some of the first transmissions are placed
unfavorably, then all possible assignments of the remaining transmission have to be
enumerated before those bad assignments can be undone.

87

6 Experimental Results

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 0 5 10 15 20 25 30 35 40 45 50

Sl
ot

s

Dataset

Dimension: 10x10, Transmissions: 100

CP 1x 180sec
CP 30x 6sec (min)

Figure 6.16: Improvement by using 30 random restarts (CP vs. CP)

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 0 5 10 15 20 25 30 35 40 45 50

Sl
ot

s

Dataset

Dimension: 10x10, Transmissions: 100

CP 30x 6sec (min,avg,max)

Figure 6.17: Range of solutions produced by 30 CP restarts

88

6.3 Scheduling

In order to give an impression on how the solutions spread over the different independent
runs, Figure 6.3.8 gives an overview on best, worst, and average solutions. The span
between best and worst solution is usually between two and three slots, which is actually
over 20% of the slot number. Obviously, the performance is heavily influenced on the
input order.

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30 35 40 45 50

Sl
ot

s

Dataset

Dimension: 10x10, Transmissions: 100

ILP 1x 180sec
CP 30x 6sec

Figure 6.18: Improvement by using 30 random restarts (CP vs. ILP)

Last but not least, Figure 6.3.8 compares the best solution of the CP restarts against
the best solution of a single ILP run. The ILP has still a slight advantage over the
CP, but in most cases the CP now lies level with the ILP. We also did some tests with
restarts of the ILP. But as expected, this did hardly bring an advantage for the ILP.
This is not astonishing because the ILP is free to reassign an arbitrary variable in every
step and thus, it is not so dependent on the input order.

A different approach to avoid the dependence of CPs on the input order is the use of
limited discrepancy search [14].

89

6 Experimental Results

6.4 Topology Control

The major part of the previous chapters has dealt with scheduling algorithms and with
topologies that are fast to schedule. In the following, we will use the proposed heuris-
tics and some other quality measures to compare several topology control algorithms
(including the ones proposed in this thesis) to each other. We start with a visual
comparison of the different topologies in Section 6.4.3. Subsequently, a series of 500 in-
dependent topology computations is analyzed, based on the quality measures described
in the next section. The chapter is concluded with a study of the similarities between
the different topologies.

6.4.1 Quality Measures

A common approach in most papers about topology control is to optimize the new
algorithm for a certain structural property, and then to show that the new method out-
performs existing algorithms. In this thesis, we want to make the comparison between
different topologies as broad as possible. For this purpose, we used the common quality
measures, as well as some new ones, to compare the topologies. What follows is a list
of the used quality measures:

Edge number One of the goals of topology control is to reduce the number of links
in the topology, in order to avoid the use of costly links and to simplify routing.
Thus, the number of topology edges is of special importance.

Node degree If a node has many neighbors in the topology, then it is likely that a
lot of traffic will be routed through the node. Therefore, it can be worthwhile to
avoid nodes with high degree, to avoid congestions and to get a good load sharing.
The average node degree, of course, has a similar meaning as the edge number.

Transmission radius Usually, the energy required for a transmission grows at least
quadratically with sender-receiver-distance. Thus, the average transmission ra-
dius gives an estimate on the expected power consumption. Besides, a long-
distance transmission causes strong interference at other receivers nearby. Hence,
avoiding long links is one of the best tactics for topology control.

Transmission power Of course, it is also possible to measure the average transmis-
sion power that a sender needs to communicate with one of his neighbors (in
the absence of interference). Minimizing this measure can help to improve the
lifetime of the network. The maximum transmission power is not so meaningful,
because it is often necessary to allow single long-distance links in order to preserve
connectivity.

90

6.4 Topology Control

Hop stretch factor The average number of hops that is necessary for communication
between pairs of senders influences the network performance in several ways: The
more hops are necessary, the more nodes have to relay the messages. Thus, a
higher average number of hops makes congestions more likely and increases the
network latency. The average hop stretch factor is defined by the quotient of
average number of hops necessary in the new topology and average number of
hops necessary in the original topology. The maximum hop stretch factor is
defined analogously.

Power stretch factor The ultimate goal of topology control is power conservation.
Let us assume that communication is equally likely between every pair of nodes.
The average power stretch factor tells us, how much more power, on average,
is needed for a power-optimal transmission in the new topology compared to a
power-optimal transmission in the original topology. Of course, this does neither
consider interferences, nor the possibility of transmission failures. As we will
see later, we usually can discard most of the network links without getting a
maximum power stretch factor of more than 1.2.

Distance stretch factor Several algorithms for the computation of distance-spanners
have been proposed in the literature. Like hop spanners, distance spanners can be
easily computed using local topology control algorithms. This makes the resulting
algorithms well applicable for use in wireless sensor networks. The distance stretch
factor is defined analogously to hop stretch factor and power stretch factor.

Conflict graph edges The number of edges in the conflict graph of the topology is
an excellent measure for the interference that we have to expect. It tells us, how
many pairs of links cannot be used concurrently without transmission failures.

Length of an optimum schedule One very interesting property for classification
of a topology is the length of an optimum schedule. It tells, how many slots
would be required to schedule all links of the topology in a time-division-multiple-
access (TDMA) fashion. The shorter the schedule is, the higher is the expected
throughput. Using such a TDMA approach, transmission failures could be almost
ruled out. Unfortunately, the computation of optimum schedules is too time-
consuming to be performed on hundreds of topologies. Therefore, we used the
aforementioned scheduling heuristics to get upper bounds on this measure.

Conflict graph clique A maximum clique of the conflict graph gives a good approxi-
mation on the length of a time-optimal schedule and provides a lower bound on
such a schedule. However, the computation of a maximum clique is NP-complete,
therefore it might be better in most cases to use some fast heuristic to determine
a big clique in the conflict graph.

91

6 Experimental Results

Node coverage The node coverage is an interference measure proposed in [3]. The
coverage Cov(u, v) of an edge (u, v) is defined as the number of network nodes
that are affected by a communication between nodes u and v. Further information
is given in Section 5.1.2.

Interference This is our interference measure discussed in Section 5.2.2. In contrast to
most interference measures proposed before, it takes the sender-receiver distances
into account. This means for a transmission t = (u, v), that the interference
caused by other senders is weighted depending on the distance between u and v,
and depending on the distance between v and the interfering senders.

6.4.2 Test Data and considered Topologies

We chose to perform our experiments on networks with 200 nodes, which are randomly
distributed over an area of 7 × 7 transmission radii. Most of the topology control
algorithms could be easily used on much bigger networks, but the computation of some
of the quality measures is rather time consuming. For example, the optimum distances
which are needed for the stretch factors are computed by a variation of the Floyd-
Warshall algorithm which has time complexity O(n3). However, as we will see in the
next sections, the topologies are big enough to allow for a good comparison of the
topologies.

In our experiments, we compared the following topologies: Unit Disk Graph (Sec-
tion 3.1), Gabriel Graph and Relative Neighborhood Graph (Section 5.1.1), LIFE and
LISE (Section 5.1.2), MaxSINR and MinPower (Section 5.2.1), Interference, Random,
and Distance. Interference is an abbreviation for the MinInterference algorithm from
Section 5.2.2. Random and Distance work on the same principle as Interference, with
the difference that Random chooses in every step a random edge from all edges that
are not marked as unnecessary and Distance chooses the shortest edge from all edges
that are not marked as unnecessary. The names of these algorithms will be highlighted
with a capital first letter, to make them distinguishable from the remaining text. All
topologies but Unit Disk Graph, Gabriel Graph, and Relative Neighborhood Graph, are
used in three variations: to produce a connected topology, to produce a hop-3-spanner,
and top produce a power-1.2-spanner. Note, that LIFE originally was only intended to
compute connected topologies, and LISE was intended for the computation of spanners.
Nevertheless, the underlying principles can be easily extended to allow the computation
of topologies with almost arbitrary graph properties. Of course, if LISE is adjusted to
compute only a connected topology, it is no longer locally computable. But in the
following, we are only interested in properties of the resulting topologies, and not in
how efficiently they can be computed.

92

6.4 Topology Control

6.4.3 Visual Comparison based on a single Sample

The goal of this section is to provide the reader with a visual impression of the input
graphs and the different topologies. The number of edges of every topology is shown in
the corresponding caption. This section contains three figures: The first figure shows
the Unit Disk Graph of the given point set, Gabriel Graph and Relative Neighborhood
Graph, and three Random topologies of which the first one preserves connectivity, the
second one is a hop-3-spanner, and the third one a power-1.2 spanner. The remaining
topologies are depicted in the following three figures. In Figure 6.20, all algorithms have
been configured to generate connected topologies, and in Figure 6.21 and Figure 6.22
to produce hop-3-spanners and power-1.2-spanners, respectively.

Let us first have a closer look at the Random topologies. Compared to all other topolo-
gies, they look more chaotic and, obviously, they consist of much longer edges. Due
to this, they need much more edges to guarantee spanner properties. The MaxSINR,
MinPower, Distance, Interference, and LIFE topology all look very similar, although
they are motivated differently. Also, concerning the number of edges, they only vary
slightly. We will see in the following sections that this is no coincidence. The topologies
produced by the LISE algorithm always have the highest number of edges. This is not
surprising, as LISE only tries to minimize the maximum transmission power and not
the number of edges.

Now that we have a feeling about how the topologies look like, let us proceed to a
detailed analysis of the algorithms based on several measures.

93

6 Experimental Results

(a) Unit Disk Graph (2288) (b) Gabriel Graph (704)

(c) Relative Neighborhood Graph (476) (d) Random (Connected, 398)

(e) Random (Hop-3-Spanner, 720) (f) Random (Power-1.2-Spanner, 1066)

Figure 6.19: Comparison of different topologies
94

6.4 Topology Control

(a) MaxSINR (398) (b) MinPower (398)

(c) Distance (398) (d) Interference (398)

(e) LIFE (398) (f) LISE (922)

Figure 6.20: Comparison of different topologies (connected)
95

6 Experimental Results

(a) MaxSINR (638) (b) MinPower (642)

(c) Distance (634) (d) Interference (632)

(e) LIFE (646) (f) LISE (1720)

Figure 6.21: Comparison of different topologies (hop-3-spanner)
96

6.4 Topology Control

(a) MaxSINR (466) (b) MinPower (468)

(c) Distance (458) (d) Interference (470)

(e) LIFE (482) (f) LISE (1228)

Figure 6.22: Comparison of different topologies (power-1.2-spanner)
97

6 Experimental Results

6.4.4 Comparison based on a Series of Samples

For the results in this section, we computed topologies on 500 random graphs. Every
graph was generated by placing 200 nodes randomly in an area of 7 × 7 transmission
radii, and subsequent computation of the corresponding unit disk graphs. Those unit
disk graphs have been used as input for the topology control algorithms. Finally, several
measures have been determined on the resulting topologies. In the following tables, the
averages of all those measures are depicted. We will briefly analyze some of them one
by one.

Concerning the average edge number, MaxSINR, MinPower, Distance, and Interference
perform about equally well, with Distance slightly in front. The Random topologies,
although they are also designed to reduce the number of edges, are significantly worse
on average. This can be seen as a justification for sophisticated topology control al-
gorithms. Interestingly, most algorithms need less than 20% nodes additional to a
minimum spanning forest in order to guarantee that the power stretch factor of all
possible node pairs is bounded by 1.2. Compared to the better algorithms, a Random
spanner needs more than twice the number of edges. Even concerning average node de-
gree, average radius, and average power, most algorithms behave similar. The average
power seems to be surprisingly low. This is a result of the strong dependence of signal
strength and distance (the path-loss-exponent α was assumed to be 4).

Table 6.3 depicts upper and lower bounds of the length of a time-optimal schedule.
In every column, the left values represent the results based on the SINR model with
fixed powers, and the right values those based on the SINR model with variable powers.
Again, the results can be seen as a motivation for using variable transmission powers.
The results also show that, using topology control, the length of an optimum schedule
of the topology can be drastically reduced. The lower bound on the schedule of the
Unit Disk Graph is about five times the upper bound of a schedule Distance (Power-
1.2-Spanner). If the network would be denser, this difference would be even bigger.

The average and maximum stretch factors are shown in Table 6.4. Note, that in this
case maximum does not denote the maximum of all topologies, but the average of the
maximums of every single topology. This makes the enormous stretch factors of the
Random topologies even more surprising. Regarding stretch factors, LISE outperforms
the other methods. This is logical, as LISE keeps much more transmissions. Surpris-
ingly, the average power stretch factor is almost one for most spanner topologies, even
for those that are only hop-spanners. Again, the sole exemption is the Random topol-
ogy. The huge hop stretch factors and non-negligible power stretch factors discourage
the use of spanning trees as network topologies.

At first glance, the almost constant value of the covered nodes (fix) measure might
puzzle. However, this measure is defined as number of nodes covered by the two disk
with radius 1 around both endpoints of an edge. This is independent of the edge
length and thus, most edges are almost equally bad. Concerning the other interference
measures, there is again no big difference between MaxSINR, MinPower, Distance,
Interference and LIFE. .

98

6.4 Topology Control

Edges Node Degree Radius Power
(Avg) (Avg / Max) (Avg) (Avg)

Unit Disk Graph 2258.41 11.30 / 20.88 0.66 16 %

Gabriel Graph 709.75 3.55 / 6.82 0.46 6 %

Relative Neighborhood Graph 481.48 2.41 / 4.01 0.39 4 %

Random (Connected) 398 1.99 / 5.69 0.66 16 %

MaxSINR (Connected) 398 1.99 / 3.78 0.34 2 %

MinPower (Connected) 398 1.99 / 3.72 0.34 2 %

Distance (Connected) 398 1.99 / 3.78 0.33 2 %

Interference (Connected) 398 1.99 / 3.72 0.34 2 %

LIFE (Connected) 398 1.99 / 3.71 0.34 2 %

LISE (Connected) 897.99 4.49 / 7.01 0.43 4 %

Random (Hop-3-Spanner) 717.98 3.59 / 7.12 0.68 18 %

MaxSINR (Hop-3-Spanner) 644.18 3.22 / 5.51 0.49 9 %

MinPower (Hop-3-Spanner) 644.35 3.22 / 5.49 0.49 9 %

Distance (Hop-3-Spanner) 642.70 3.21 / 5.52 0.49 8 %

Interference (Hop-3-Spanner) 646.19 3.23 / 5.52 0.49 9 %

LIFE (Hop-3-Spanner) 645.59 3.23 / 5.50 0.49 9 %

LISE (Hop-3-Spanner) 1725.14 8.63 / 12.90 0.58 11 %

Random (Power-1.2-Spanner) 1097.18 5.49 / 11.66 0.58 12 %

MaxSINR (Power-1.2-Spanner) 467.59 2.34 / 4.16 0.37 3 %

MinPower (Power-1.2-Spanner) 469.05 2.35 / 4.14 0.37 3 %

Distance (Power-1.2-Spanner) 458.06 2.29 / 4.08 0.37 3 %

Interference (Power-1.2-Spanner) 475.54 2.38 / 4.20 0.37 3 %

LIFE (Power-1.2-Spanner) 474.15 2.37 / 4.19 0.37 3 %

LISE (Power-1.2-Spanner) 1307.91 6.54 / 9.68 0.51 7 %

Table 6.2: Topology comparison based on graph properties and transmission power

99

6 Experimental Results

Conflict Graph Clique Schedule Heuristic
(Fixed / Variable) (Fixed / Variable)

Unit Disk Graph 149.05 / 142.81 343.99 / 303.32

Gabriel Graph 25.46 / 18.82 61.28 / 48.33

Relative Neighborhood Graph 14.14 / 9.80 32.04 / 24.07

Random (Connected) 25.96 / 22.87 57.22 / 49.09

MaxSINR (Connected) 10.28 / 6.72 19.39 / 14.60

MinPower (Connected) 9.90 / 6.77 20.32 / 13.74

Distance (Connected) 10.32 / 6.69 20.39 / 14.98

Interference (Connected) 10.08 / 7.13 20.42 / 14.70

LIFE (Connected) 9.84 / 7.13 21.12 / 15.07

LISE (Connected) 20.86 / 17.87 60.15 / 45.47

Random (Hop-3-Spanner) 47.90 / 43.71 110.21 / 96.14

MaxSINR (Hop-3-Spanner) 30.70 / 24.42 63.57 / 52.93

MinPower (Hop-3-Spanner) 30.38 / 24.49 63.71 / 52.48

Distance (Hop-3-Spanner) 30.46 / 24.48 63.56 / 52.64

Interference (Hop-3-Spanner) 30.12 / 24.38 63.91 / 52.96

LIFE (Hop-3-Spanner) 30.93 / 24.66 64.30 / 53.22

LISE (Hop-3-Spanner) 60.29 / 48.98 186.02 / 153.72

Random (Power-1.2-Spanner) 61.18 / 53.54 136.69 / 117.18

MaxSINR (Power-1.2-Spanner) 13.01 / 9.61 29.02 / 21.72

MinPower (Power-1.2-Spanner) 13.00 / 9.64 29.40 / 21.63

Distance (Power-1.2-Spanner) 12.50 / 9.29 28.25 / 20.93

Interference (Power-1.2-Spanner) 13.08 / 10.08 29.75 / 22.14

LIFE (Power-1.2-Spanner) 13.39 / 10.05 30.08 / 22.39

LISE (Power-1.2-Spanner) 34.69 / 29.25 111.06 / 87.84

Table 6.3: Topology comparison based on schedule length (lower and upper bound)

100

6.4 Topology Control

Distance Hop Power
(Avg / Max) (Avg / Max) (Avg / Max)

Unit Disk Graph 1.00 / 1.00 1.00 / 1.00 1.00 / 1.0

Gabriel Graph 1.09 / 1.74 1.80 / 5.52 1.00 / 1.00

Relative Neighborhood Graph 1.26 / 3.55 2.44 / 9.26 1.01 / 1.67

Random (Connected) 3.44 / 248.94 3.67 / 37.28 2921 / 56585061

MaxSINR (Connected) 2.56 / 30.61 5.63 / 60.39 1.78 / 19.12

MinPower (Connected) 2.87 / 37.46 6.23 / 68.68 2.17 / 31.74

Distance (Connected) 2.32 / 26.12 5.26 / 57.99 1.31 / 7.38

Interference (Connected) 3.24 / 51.79 6.56 / 75.05 3.40 / 90.41

LIFE (Connected) 2.73 / 35.16 5.73 / 61.72 2.14 / 39.20

LISE (Connected) 1.45 / 12.58 2.27 / 19.14 1.22 / 7.70

Random (Hop-3-Spanner) 1.27 / 68.60 1.34 / 3.00 1586 / 30914380

MaxSINR (Hop-3-Spanner) 1.14 / 2.46 1.64 / 3.00 1.01 / 2.22

MinPower (Hop-3-Spanner) 1.14 / 2.46 1.64 / 3.00 1.01 / 2.05

Distance (Hop-3-Spanner) 1.14 / 2.40 1.64 / 3.00 1.00 / 1.69

Interference (Hop-3-Spanner) 1.14 / 2.51 1.64 / 3.00 1.01 / 2.44

LIFE (Hop-3-Spanner) 1.14 / 2.62 1.63 / 3.00 1.01 / 7.43

LISE (Hop-3-Spanner) 1.03 / 1.85 1.18 / 2.74 1.00 / 1.01

Random (Power-1.2-Spanner) 1.11 / 3.50 1.30 / 5.19 1.00 / 1.19

MaxSINR (Power-1.2-Spanner) 1.35 / 5.84 2.78 / 15.34 1.00 / 1.18

MinPower (Power-1.2-Spanner) 1.35 / 5.75 2.76 / 14.91 1.00 / 1.18

Distance (Power-1.2-Spanner) 1.37 / 6.08 2.84 / 15.99 1.00 / 1.18

Interference (Power-1.2-Spanner) 1.34 / 5.67 2.75 / 14.80 1.00 / 1.18

LIFE (Power-1.2-Spanner) 1.35 / 5.78 2.75 / 14.99 1.01 / 1.18

LISE (Power-1.2-Spanner) 1.08 / 3.21 1.43 / 5.30 1.00 / 1.05

Table 6.4: Topology comparison based on stretch factors

101

6 Experimental Results

Covered Nodes CG Edges Interference
(Fix / Var) (Fix / Var) (Fix / Var)

Unit Disk Graph 12.63 / 6.75 396.68 / 263.94 915.72 / 291.97

Gabriel Graph 11.75 / 3.29 64.36 / 32.67 312.27 / 35.52

Relative Neighborhood Graph 11.57 / 2.33 30.91 / 13.49 216.46 / 15.05

Random (Connected) 11.76 / 6.39 61.23 / 39.57 179.72 / 44.53

MaxSINR (Connected) 11.45 / 1.89 17.89 / 7.00 184.94 / 8.32

MinPower (Connected) 11.43 / 1.87 17.90 / 6.79 184.14 / 8.12

Distance (Connected) 11.56 / 1.85 17.77 / 6.93 116.62 / 8.26

Interference (Connected) 11.26 / 1.88 17.74 / 6.79 115.65 / 8.12

LIFE (Connected) 11.42 / 1.79 18.14 / 6.83 121.31 / 8.14

LISE (Connected) 11.56 / 2.86 62.46 / 33.60 302.99 / 36.26

Random (Hop-3-Spanner) 12.02 / 6.83 124.34 / 82.83 261.45 / 93.22

MaxSINR (Hop-3-Spanner) 11.97 / 4.04 70.41 / 36.44 279.43 / 39.88

MinPower (Hop-3-Spanner) 11.96 / 4.03 70.28 / 36.35 278.64 / 39.79

Distance (Hop-3-Spanner) 11.97 / 4.01 70.08 / 36.20 130.99 / 39.63

Interference (Hop-3-Spanner) 11.95 / 4.06 70.61 / 36.53 101.46 / 40.00

LIFE (Hop-3-Spanner) 11.95 / 3.99 71.13 / 36.77 116.55 / 40.28

LISE (Hop-3-Spanner) 12.01 / 5.05 221.72 / 138.41 449.06 / 151.12

Random (Power-1.2-Spanner) 12.19 / 5.40 155.15 / 91.91 583.74 / 100.95

MaxSINR (Power-1.2-Spanner) 11.55 / 2.17 26.34 / 11.37 212.20 / 12.82

MinPower (Power-1.2-Spanner) 11.53 / 2.17 26.66 / 11.47 212.01 / 12.92

Distance (Power-1.2-Spanner) 11.55 / 2.11 25.22 / 10.76 105.62 / 12.19

Interference (Power-1.2-Spanner) 11.50 / 2.20 27.11 / 11.77 97.10 / 13.24

LIFE (Power-1.2-Spanner) 11.55 / 2.14 27.11 / 11.72 105.03 / 13.18

LISE (Power-1.2-Spanner) 11.73 / 3.92 126.65 / 74.95 374.75 / 80.63

Table 6.5: Topology comparison based on interference measures

102

6.4 Topology Control

6.4.5 Similarities between the Topologies

In the previous sections, we realized that some of the algorithms, although they are
defined differently, have very similar properties. For this reason, we want to analyze
the similarities between the topologies in the following. Tables 6.6, 6.7, and 6.8 deal
with the algorithms for connected topologies, hop-3-spanners, and power-1.2-spanners,
respectively. Unit Disk Graph (UDG), Gabriel Graph (GG), and Relative Neighborhood
Graph (RNG) are presented in all three tables to simplify comparison.

In the columns, the topology names are abbreviated by numbers. The corresponding
name can be found out by looking at the topology names in the rows. The value v in
row y and column x represents the average ratio of edges, which are both in topology x
and topology y, to the edges, which are only in topology x. For example, we can take
from Table 6.6, column 7 and row 6, that the connected MinPower topology contains,
on average, 94% of the edges from an Euclidean minimum spanning tree. In contrast,
row 4 tells us, that the connected Random topology only shares about 19% of its edges
with the other topologies. It is no coincidence that this almost equals the ratio of edge
number in a spanning topology to the average number of nodes in the Unit Disk Graph.

Topology (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1) UDG 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(2) GG 0.31 1.00 1.00 0.34 1.00 1.00 1.00 1.00 0.98 0.64
(3) RNG 0.21 0.68 1.00 0.23 0.97 0.97 1.00 0.95 0.96 0.50
(4) Random 0.18 0.19 0.19 1.00 0.19 0.19 0.19 0.20 0.19 0.19
(5) MaxSINR 0.18 0.56 0.80 0.19 1.00 0.92 0.93 0.91 0.89 0.44
(6) MinPower 0.18 0.56 0.80 0.19 0.92 1.00 0.94 0.91 0.90 0.44
(7) Distance 0.18 0.56 0.83 0.19 0.93 0.94 1.00 0.90 0.91 0.44
(8) Interference 0.18 0.56 0.79 0.20 0.91 0.91 0.90 1.00 0.88 0.44
(9) LIFE 0.18 0.55 0.79 0.19 0.89 0.90 0.91 0.88 1.00 0.44
(10) LISE 0.40 0.80 0.93 0.43 0.99 0.99 0.99 0.99 1.00 1.00

Table 6.6: Percentage of common edges (Connected Topologies)

Tables 6.6, 6.7, and 6.8 also confirm that the MaxSINR, MinPower, Distance, and
Interference topologies are extremely similar. In the case of connected topologies, they
coincide in about 90% of the edges. The corresponding power-1.2-spanner topologies
even coincide in about 95% of the edges. In our experiments, the MaxSINR and Min-
Power algorithms did not bring any advantage in comparison to the simple Distance
algorithm. Especially, against our hope, they did not produce topologies that can be
scheduled faster than topologies produced by simpler algorithms. Therefore, the use

103

6 Experimental Results

of these methods does not seem to be worthwhile, even in cases where an initial time-
consuming computation of a schedule can be tolerated.

Topology (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1) UDG 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(2) GG 0.31 1.00 1.00 0.31 0.78 0.79 0.79 0.78 0.78 0.40
(3) RNG 0.21 0.68 1.00 0.21 0.70 0.71 0.73 0.69 0.70 0.28
(4) Random 0.32 0.31 0.31 1.00 0.31 0.31 0.31 0.31 0.31 0.32
(5) MaxSINR 0.29 0.71 0.94 0.28 1.00 0.88 0.90 0.86 0.82 0.34
(6) MinPower 0.29 0.71 0.95 0.28 0.88 1.00 0.92 0.87 0.84 0.34
(7) Distance 0.28 0.71 0.98 0.28 0.90 0.92 1.00 0.86 0.86 0.34
(8) Interference 0.29 0.71 0.93 0.28 0.86 0.87 0.86 1.00 0.81 0.34
(9) LIFE 0.29 0.71 0.93 0.28 0.83 0.84 0.86 0.81 1.00 0.34
(10) LISE 0.76 0.98 1.00 0.76 0.90 0.90 0.91 0.90 0.91 1.00

Table 6.7: Percentage of common edges (Hop-3-Spanners)

Topology (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1) UDG 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(2) GG 0.31 1.00 1.00 0.43 0.99 1.00 1.00 1.00 0.98 0.50
(3) RNG 0.21 0.68 1.00 0.34 0.94 0.95 0.97 0.93 0.93 0.36
(4) Random 0.49 0.67 0.78 1.00 0.81 0.81 0.82 0.80 0.81 0.59
(5) MaxSINR 0.21 0.66 0.91 0.35 1.00 0.96 0.98 0.95 0.94 0.36
(6) MinPower 0.21 0.66 0.92 0.35 0.97 1.00 0.99 0.95 0.95 0.36
(7) Distance 0.20 0.65 0.92 0.34 0.96 0.97 1.00 0.94 0.94 0.35
(8) Interference 0.21 0.67 0.91 0.35 0.96 0.97 0.98 1.00 0.94 0.36
(9) LIFE 0.21 0.66 0.91 0.35 0.95 0.96 0.98 0.94 1.00 0.36
(10) LISE 0.58 0.92 0.99 0.71 1.00 1.00 1.00 1.00 1.00 1.00

Table 6.8: Percentage of common edges (Power-1.2-Spanners)

104

7 Final Remarks

In this thesis, we studied the problems of scheduling and topology control in wireless
networks. Our considerations were based on the physically motivated SINR interfer-
ence model. In this model, scheduling with fixed transmission powers is known to
be NP-complete, and scheduling with variable transmission powers is also believed
to be NP-hard. We gave constraint programming (CP) formulations and integer lin-
ear programming (ILP) formulations for the exact solution of the scheduling problem.
Although we implemented several optimizations, most problems with more than 100
transmission still cannot be solved within reasonable time. Therefore, we analyzed
heuristics for the scheduling problem, as well as methods to compute lower bounds on
the length of optimum schedules. In our experiments, the schedules produced by the
heuristics have only been slightly worse than the optimum schedules that were com-
puted using the ILP and CP. For computing good lower bounds on the length of an
optimum schedule, the maximum clique of the conflict graph proved to be very useful.
The maximum clique problem is known to be NP-complete, but thanks to the (effec-
tive) locality of interference, there is some chance that it still can be solved in real-size
networks. In cases where computation of a maximum clique is too time-consuming, one
still can use heuristics for finding big cliques in the conflict graph.

The aforementioned methods have been used to study fundamental properties of
scheduling in the SINR model. For example, it turned out that scheduling our randomly
generated transmission sets with fixed transmission powers needed about 20% more
time slots than scheduling the same transmissions with variable powers. Although we
computed time-optimal schedules, which entails high interference, we mostly required
less than 40% of the maximum transmission power to realize a successful transmission.
We also compared the performance of the ILPs and CPs, but this is topic of the next
section.

Concerning topology control, we studied the problem of computing a topology that
can be scheduled efficiently. For this purpose, we extended our scheduling heuristics to
topology control algorithms. Furthermore, we proposed a topology control algorithm
that tries to minimize a new interference measure, which takes into account the signal
quality of transmissions. We compared these algorithms and several established topol-
ogy control algorithms to each other. It turned out that the best of those algorithms,
although they are defined differently, compute very similar topologies. These topolo-
gies mainly consist of short edges. None of the algorithms was able to outperform the
simple greedy algorithms that adds the shortest edge until the desired graph property

105

7 Final Remarks

is fulfilled. The additional effort of our MaxSINR and MinPower topology control algo-
rithms did not result in an any advantages compared to this much simpler algorithm.
The topology control algorithm that tries to minimize interference performed slightly
worse than the one that greedily chooses the shortest edge. However, it can be used
without any knowledge of distances or directions. Additionally, it probably would out-
perform the other algorithms in situations with obstacles, where the distance is not the
dominating factor of transmission quality.

7.1 Mathematical Programming vs. Constraint Programming

In our opinion, ILPs and CPs both are appropriate tools for solving small scheduling
problems to optimality. In situations with few transmissions and many slots, the CPs
outperformed the ILPs. On the other hand, for problems with many transmissions,
the ILPs performed much better. One of the reasons for this behavior was, that our
branching heuristics was not optimal. But using Gecode’s branch-and-bound search,
even with a good branching heuristic, the initial variable assignment almost determines
the quality of the final solution. This is because the branch-and-bound search only
revises a decision when it was able to prove that the decision does not lead to a feasible
solution. Thus, if the problem consists of hundreds of transmissions, most of the variable
assignments will not be revised within reasonable time. Two ways out of this dilemma
are the use of random restarts or limited discrepancy search. We checked out the first
approach, and it led to significantly better solutions. Unfortunately, even though the
best solution found this way is much better, none of both methods is able to sufficiently
speed up the process of proving optimality. In most cases, Gecode was faster to find
the optimum solution, and CPLEX was faster in proving optimality.

Constraint programming has the big strength that pretty much every combinatorial
problem can be modeled. If the solution has to fulfill some property which is not
directly modelable, one simply implements a new propagator that takes care of the
condition. By combining the own custom constraints with the optimized constraints
already offered by the CP solver, one can save developing time and gets an efficient
tool to solve his problem. Moreover, the high level of abstraction of problem definitions
makes it easy for people without much programming experience to solve their problems
efficiently.

Both problems, scheduling with fixed power and scheduling with variable power, could
be elegantly formulated as ILPs and MIPs with only O(n2) variables and constraints.
In situations where such an efficient modeling is not possible, constraint programming
is surely the tool of choice.

Lastly, we have to note that constraint programming can be combined with arbitrary
methods to solve a problem. For example, some solvers allow to specify parts of the
CP as LPs or ILPs. The issues that we encountered while solving our CPs were mainly

106

7.2 Outlook

caused by the use of Gecode’s branch-and-bound-method, which is the standard ap-
proach of Gecode for solving constraint optimization problems. Other CP solvers might
be based on different principles and thus be more efficient for this specific problems.

7.2 Outlook

The most interesting problem concerning scheduling in wireless networks surely is the
complexity of scheduling with variable transmission powers. Although it is assumed
that this problem is NP-hard, so far no one was able to proof it. There are also several
possibilities how the results of this thesis could be extended or improved. For example,
if we know the length of a time-optimal schedule, another interesting problem is to
distribute the transmissions such to the time slots that the maximum or average of
the transmission powers is minimized. Concerning the scheduling CP, there surely
is room for optimizations by using better branching heuristics or techniques such as
limited discrepancy search. Furthermore, it would be very interesting to evaluate the
performance of the different topology control algorithms in situations where the signal
strength does not only depend on the distance between sender and receiver. This
would reflect reality better and should thus be analyzed. Our intention is, that in
such situations our interference minimization algorithm outperforms other approaches.
Actually, we believe that it would be even better to greedily choose simply the link
that maximizes the signal strength instead of choosing the link which minimizes our
interference measure. In the geometric SINR model used in this thesis, this equals the
algorithm that chooses the links in increasing order of length. But in situations with
obstacles, it is a completely different method, which is very simple and which has the
potential to outperform most other methods.

107

108

8 Zusammenfassung (German abstract)

Der erste Teil dieser Arbeit beschäftigt sich mit dem Problem des Schedulings in Sen-
sornetzen. Es werden mehrere Heuristiken vorgestellt, mit denen sich verhältnismäßig
effizient gute obere und untere Schranken für die Anzahl der in einem optimalen Sched-
ule benötigten Zeitslots bestimmen lassen. Hierbei wird sowohl der Fall fester Sendeleis-
tungen, als auch der Fall, dass alle Sender ihre Leistung bis zu einer gewissen Ober-
grenze selbst regeln können, betrachtet. Im Falle fester Sendeleistungen ist bekannt,
dass das Scheduling Problem NP-vollständig ist, und man geht davon aus, dass auch
das Scheduling mit variablen Sendeleistungen NP-schwer ist. Daher ist die Suche nach
einem exakten Algorithmus mit polynomieller Laufzeit für das Schedulingproblem rel-
ativ aussichtslos. Stattdessen werden in dieser Arbeit Methoden der mathematischen
Optimierung (ganzzahlige lineare Programme, ILPs) und der kombinatorischen Opti-
mierung (Constraint Programs, CPs) eingesetzt, um mittels hochoptimierter Solver für
kleine Probleminstanzen Optimallösungen bestimmen zu können. Ferner werden zahlre-
iche Optimierungen untersucht, mit denen sich die CPs und ILPs erheblich beschleu-
nigen lassen. Um die Methoden miteinander vergleichen zu können, wurden die ILPs
auf Basis des kommerziellen ILOG CPLEX Solvers, und die CPs auf Basis des frei
verfügbaren GECODE Solvers implementiert. Die vorgeschlagenen Heuristiken wurden
mittels Java implementiert. Anschließend wurden umfangreiche Tests und Laufzeitmes-
sungen durchgeführt, um einen Eindruck über die Qualitäts- und Leistungsunterschiede
der einzelnen Verfahren zu erhalten, und um verschiedene Versionen der ILPs und CPs
miteinander zu vergleichen.

Aufbauend auf den zuvor genannten Ergebnissen zum Scheduling werden diverse
Fragestellungen im Zusammenhang mit Sensornetzen angegangen. So wird beispiel-
sweise untersucht, wie stark das Scheduling durch den Einsatz variabler Sendeleistung
im Vergleich zum Scheduling mit festen Sendeleistungen beschleunigt werden kann, und
wieviel Energie sich hierbei einsparen lässt. Des Weiteren wird der Frage nachgegan-
gen, wie realistisch graphenbasierte Interferenzmodelle im Vergleich zum physikalisch
motivierten und als realitätsnah angesehenen SINR-Interferenzmodell sind.

Der zweite Teil der Arbeit beschäftigt sich mit Topology Control in Sensornetzen.
Hierbei geht es um die Bestimmung einer Netztopologie, also einer Teilmenge aller
möglichen Verbindungen zwischen benachbarten Sensorknoten, so dass bestimmte Net-
zwerkeigenschaften wie beispielsweise Zusammenhang oder Spanner-Eigenschaften er-
halten bleiben, das Netzwerk aber gleichzeitig auf geringen Energieverbrauch oder ähn-
liches optimiert wird. In dieser Arbeit beschäftigen wir uns mit dem Optimierungsprob-

109

8 Zusammenfassung (German abstract)

lem eine Topologie zu bestimmen, bei der die Kanten der Topologie möglichst effizient
gescheduled werden können. Die Idee hierbei besteht darin, dass es aus Gründen
der Energieeinsparung durchaus sinnvoll sein kann Sensorknoten nur in vordefinierten
festen Zeitslots senden zu lassen. Auf diese Weise kann garantiert werden, dass es
zu keinen Kollisionen bei den Übertragungen kommt. Hierdurch können letztendlich
Mehrfachübertragungen vermieden werden. Da man lange Latenzzeiten im Netzw-
erk verhindern will, empfiehlt es sich die Topologie so zu bestimmen, dass die Anzahl
der zum Schedulen aller Kanten benötigten Zeitslots möglichst gering ist. Es werden
Topology Control Heuristiken zur Bestimmung derartiger Topologien vorgeschlagen,
die wahlweise nur den Zusammenhang des Netzes sichern, oder aber zusätzlich Span-
nereigenschaften, z.B. für Energieverbrauch oder Distanzen im Netz, garantieren kön-
nen. Diese Heuristiken sind aufgrund ihrer Komplexität für den Einsatz in realen Net-
zen weniger geeignet. Stattdessen sollen sie dazu genutzt werden, die Qualität einfacher
Topology Control Algorithmen in Bezug auf Scheduling-Eigenschaften einzuschätzen.

Darüber hinaus wird ein einfacher Topology Control Algorithmus angegeben, der da-
rauf abzielt die Interferenz in der erzeugten Topologie zu minimieren. Im Gegensatz zu
den meisten existierenden Topology Control Algorithmen mit ähnlichem Ziel verwen-
det dieser Algorithmus einen am SINR Modell orientierten Interferenzbegriff. Dieser
Algorithmus besitzt mehrere für den praktischen Einsatz wertvolle Eigenschaften: Er
ist verteilt berechenbar und kommt ohne jegliche Entfernungs- oder Richtungsinforma-
tionen aus. Jeder Netzknoten muss lediglich die Leistungen der einkommenden Signale
messen und hat dadurch bereits alle benötigten Informationen. Hierdurch werden au-
tomatisch Effekte berücksichtigt, die die Sendeleistung beeinflussen. Dies ist bei den
meisten bekannten Verfahren zum Topology Control nicht der Fall.

Selbstverständlich lässt sich das Problem, eine effizient planbare Topologie zu bestim-
men, auch optimal lösen. Hierzu wird ein Constraint Program beschrieben. Aufgrund
der Komplexität des Problems ist dieses leider nur für kleine Eingabegrößen nutzbar.

Neben den beschriebenen Methoden zur Topologiebestimmung wurden noch einige
Standardalgorithmen des Topology Control implementiert. Die einzelnen Verfahren
wurden experimentell anhand zahlreicher Qualitätsmaße für Netztopologien, und unter
Verwendung der in dieser Arbeit vorgestellten Methoden, miteinander verglichen. Hi-
erbei stellte sich heraus, dass viele der Methoden trotz teils relativ unterschiedlicher
Ansätze im Ergebnis sehr ähnlich zueinander sind.

110

List of Figures

3.1 Illustration of the Unit Disk Graph model 24
3.2 Input and output of the scheduling problem 27
3.3 Illustration of the signal-to-interference-plus-noise-ratio (SINR) 29
3.4 Transmission set and corresponding SINR conflict graph 30
3.5 Three examples of why graph-based models are unrealistic 31
3.6 Network topology before and after topology control 33

4.1 Unit disk graphs with maximum conflict graph cliques 58

5.1 Edges in Gabriel graphs and relative neighborhood graphs 62

6.1 Good vs. bad choice of SINR model parameters 73
6.2 Examples of the transmission sets used for the scheduling experiments . 74
6.3 Graph-based conflict graphs vs. SINR-based conflict graphs 77
6.4 Optimum solutions fixed power vs. optimum solutions variable power . 78
6.5 Dependence of the optimal solution on test area 79
6.6 Spread of optimal solutions in dependence of transmission number . . . 79
6.7 Normalized illustration of optimal solution spread 80
6.8 Percental disadvantage of fixed power scheduling 81
6.9 Average transmission powers (time-optimal schedule, variable power) . . 81
6.10 Quality of heuristic and lower bound (fixed power) 82
6.11 Quality of heuristic and lower bound (variable power) 83
6.12 Performance ratios of heuristic and lower bound 83
6.13 Percentage of solved problem instances (timeout: 180 sec) 85
6.14 Average length of schedules found by ILP, CP, and heuristic (fixed power) 86
6.15 Average length of schedules found by ILP, CP, and heuristic (var. power) 87
6.16 Improvement by using 30 random restarts (CP vs. CP) 88
6.17 Range of solutions produced by 30 CP restarts 88
6.18 Improvement by using 30 random restarts (CP vs. ILP) 89
6.19 Comparison of different topologies . 94
6.20 Comparison of different topologies (connected) 95
6.21 Comparison of different topologies (hop-3-spanner) 96
6.22 Comparison of different topologies (power-1.2-spanner) 97

111

List of Tables

6.1 Number of edges in different conflict graph models 76
6.2 Topology comparison based on graph properties and transmission power 99
6.3 Topology comparison based on schedule length (lower and upper bound) 100
6.4 Topology comparison based on stretch factors 101
6.5 Topology comparison based on interference measures 102
6.6 Percentage of common edges (Connected Topologies) 103
6.7 Percentage of common edges (Hop-3-Spanners) 104
6.8 Percentage of common edges (Power-1.2-Spanners) 104

List of Algorithms

4.1 Minimum transmission powers for a set of concurrent transmissions . . . 38
4.2 Schedule with minimum number of slots (ILP, fixed power) 51
4.3 Schedule with minimum number of slots (ILP, variable powers) 53
4.4 Good utilization of a time slot (fixed transmission powers) 55
4.5 Computation of a good schedule . 55
4.6 Good utilization of a time slot (variable transmission powers) 56

112

Bibliography

[1] S. Agmon. The relaxation method for linear inequalities. Canad. J. Math., 6:382–
392, 1954.

[2] Patrik Björklund, Peter Värbr, and Di Yuan. A column generation method for
spatial TDMA scheduling in ad hoc networks. Ad Hoc Networks, 2:2004, 2004.

[3] Martin Burkhart, Pascal von Rickenbach, Roger Wattenhofer, and Aaron Zollinger.
Does topology control reduce interference? In MobiHoc ’04: Proceedings of the 5th
ACM international symposium on Mobile ad hoc networking and computing, pages
9–19, New York, NY, USA, 2004. ACM.

[4] A. Chandrakasan, R. Amirtharajah, Seonghwan Cho, J. Goodman, G. Konduri,
J. Kulik, W. Rabiner, and A. Wang. Design considerations for distributed mi-
crosensor systems. Custom Integrated Circuits, 1999. Proceedings of the IEEE
1999, pages 279–286, 1999.

[5] ILOG CPLEX: High-performance software for mathematical programming and op-
timization. http://www.ilog.com/products/cplex/.

[6] Reinhard Diestel. Graph Theory (Third Edition), volume 173 of Graduate Texts
in Mathematics. Springer-Verlag, 2005.

[7] GECODE: Generic Constraint Development Environment. http://www.gecode.
org.

[8] GECODE Benchmarks. http://www.gecode.org/benchmarks.html.

[9] Carla P. Gomes and Bart Selman. Problem structure in the presence of pertur-
bations. In In Proceedings of the 14th National Conference on AI, pages 221–226.
AAAI Press, 1997.

[10] Carla P. Gomes, Bart Selman, and Henry Kautz. Boosting combinatorial search
through randomization. In AAAI ’98/IAAI ’98: Proceedings of the fifteenth nation-
al/tenth conference on Artificial intelligence/Innovative applications of artificial
intelligence, pages 431–437, Menlo Park, CA, USA, 1998. American Association
for Artificial Intelligence.

[11] Olga Goussevskaia, Yvonne Anne Oswald, and Roger Wattenhofer. Complexity
in geometric SINR. In MobiHoc ’07: Proceedings of the 8th ACM international
symposium on Mobile ad hoc networking and computing, pages 100–109, New York,
NY, USA, 2007. ACM.

113

http://www.ilog.com/products/cplex/
http://www.gecode.org
http://www.gecode.org
http://www.gecode.org/benchmarks.html

BIBLIOGRAPHY

[12] S.A. Grandhi, R. Vijayan, and D.J. Goodman. Distributed power control in cel-
lular radio systems. IEEE Transactions on Communications, 42(234):226–228,
Feb/Mar/Apr 1994.

[13] Piyush Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Trans-
actions on Information Theory, 46(2):388–404, 2000.

[14] William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search. In Pro-
ceedings of the Fourteenth International Joint Conference on Artificial Intelligence
(IJCAI-95); Vol. 1, pages 607–615. Morgan Kaufmann, 1995.

[15] L. van Hoesel and P. Havinga. A lightweight medium access protocol (LMAC)
for wireless sensor networks. In Proceedings of the International Conference on
Networked Sensing Systems (INSS), Tokyo, Japan, June 2004.

[16] J.W. Jaromczyk and G.T. Toussaint. Relative neighborhood graphs and their
relatives. Proceedings of the IEEE, 80(9):1502–1517, Sep 1992.

[17] Java universal network/graph framework (JUNG). http://jung.sourceforge.
net.

[18] Joseph M. Kahn, Randy H. Katz, and Kristofer S. J. Pister. Next century chal-
lenges: Mobile networking for "smart dust". In MOBICOM, pages 271–278, 1999.

[19] N. Karmarkar. A new polynomial-time algorithm for linear programming. In STOC
’84: Proceedings of the sixteenth annual ACM symposium on Theory of computing,
pages 302–311, New York, NY, USA, 1984. ACM.

[20] Bastian Katz, Markus Völker, and Dorothea Wagner. Link Scheduling in Local
Interference Models. In Proceedings of the 4th International Workshop on Algo-
rithmic Aspects of Wireless Sensor Networks, 2008. to appear.

[21] L. G. Khachiyan. A polynomial algorithm in linear programming. Soviet Mathe-
matics Doklady, 20:191–194, 1979.

[22] David Kotz, Calvin Newport, and Chip Elliott. The mistaken axioms of wireless-
network research. Technical Report TR2003-467, Dartmouth College, Computer
Science, Hanover, NH, July 2003.

[23] Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Asymptotically optimal
geometric mobile ad-hoc routing. In DIALM ’02: Proceedings of the 6th inter-
national workshop on Discrete algorithms and methods for mobile computing and
communications, pages 24–33, New York, NY, USA, 2002. ACM.

[24] Li Li, Joseph Y. Halpern, Paramvir Bahl, Yi-Min Wang, and Roger Wattenhofer.
Analysis of a cone-based distributed topology control algorithm for wireless multi-
hop networks. In PODC ’01: Proceedings of the twentieth annual ACM symposium
on Principles of distributed computing, pages 264–273, New York, NY, USA, 2001.
ACM.

114

http://jung.sourceforge.net
http://jung.sourceforge.net

BIBLIOGRAPHY

[25] Li Li, Joseph Y. Halpern, Paramvir Bahl, Yi-Min Wang, and Roger Wattenhofer. A
cone-based distributed topology-control algorithm for wireless multi-hop networks.
IEEE/ACM Trans. Netw., 13(1):147–159, 2005.

[26] Ning Li and J.C. Hou. Localized topology control algorithms for heterogeneous
wireless networks. Networking, IEEE/ACM Transactions on, 13(6):1313–1324,
Dec. 2005.

[27] Ning Li, Jennifer C. Hou, and Lui Sha. Design and analysis of an mst-based
topology control algorithm. In INFOCOM, 2003.

[28] Thomas Locher, Pascal von Rickenbach, and Roger Wattenhofer. Sensor networks
continue to puzzle: Selected open problems. In Shrisha Rao, Mainak Chatterjee,
Prasad Jayanti, C. Siva Ram Murthy, and Sanjoy Kumar Saha, editors, ICDCN,
volume 4904 of Lecture Notes in Computer Science, pages 25–38. Springer, 2008.

[29] Clyde Monma and Subhash Suri. Transitions in geometric minimum spanning trees
(extended abstract). In SCG ’91: Proceedings of the seventh annual symposium
on Computational geometry, pages 239–249, New York, NY, USA, 1991. ACM.

[30] T. Moscibroda and R. Wattenhofer. The complexity of connectivity in wireless
networks. INFOCOM 2006. 25th IEEE International Conference on Computer
Communications. Proceedings, pages 1–13, April 2006.

[31] Thomas Moscibroda, Roger Wattenhofer, and Aaron Zollinger. Topology control
meets sinr:: the scheduling complexity of arbitrary topologies. In MobiHoc ’06:
Proceedings of the seventh ACM international symposium on Mobile ad hoc net-
working and computing, pages 310–321, New York, NY, USA, 2006. ACM Press.

[32] Tim Nieberg, Stefan Dulman, Paul Havinga, Lodewijk van Hoesel, and Jian Wu.
Collaborative algorithms for communication in wireless sensor networks. pages
271–294, 2003.

[33] LAN MAN Standards Committee of the IEEE Computer Society. Wireless LAN
medium access control (MAC) and physical layer (PHY) specification. IEEE Std
802.11-1997, November 1997.

[34] Ravi Prakash. Unidirectional links prove costly in wireless ad hoc networks. In
DIALM ’99: Proceedings of the 3rd international workshop on Discrete algorithms
and methods for mobile computing and communications, pages 15–22, New York,
NY, USA, 1999. ACM.

[35] Lawrence G. Roberts. Aloha packet system with and without slots and capture.
SIGCOMM Comput. Commun. Rev., 5(2):28–42, 1975.

[36] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Pro-
gramming (Foundations of Artificial Intelligence). Elsevier Science Inc., New York,
NY, USA, 2006.

115

BIBLIOGRAPHY

[37] Stefan Schmid and Roger Wattenhofer. Algorithmic models for sensor networks.
In IPDPS. IEEE, 2006.

[38] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley &
Sons, June 1998.

[39] Yao Shen, Yunze Cai, and Xiaoming Xu. Localized interference-aware and energy-
conserving topology control algorithms. Wirel. Pers. Commun., 45(1):103–120,
2008.

[40] Steven Skiena. Implementing discrete mathematics: combinatorics and graph the-
ory with Mathematica. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1991.

[41] H. Takagi and L. Kleinrock. Optimal transmission ranges for randomly distributed
packet radio terminals. IEEE Transactions on Communications, 32(3):246–257,
1984.

[42] H. Tamura, K. Watanabe, M. Sengoku, and S. Shinoda. On a new edge coloring
related to multihop wireless networks. Circuits and Systems, 2002. APCCAS ’02.
2002 Asia-Pacific Conference on, 2:357–360 vol.2, 2002.

[43] Jian Tang, Guoliang Xue, Christopher Chandler, and Weiyi Zhang. Link schedul-
ing with power control for throughput enhancement in multihop wireless networks.
In IEEE Transactions on Vehicular Technology, volume 55, pages 733–742, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[44] F. Tobagi and L. Kleinrock. Packet Switching in Radio Channels: Part II–The
Hidden Terminal Problem in Carrier Sense Multiple-Access and the Busy-Tone
Solution. IEEE Transactions on Communications, 23(12):1417–1433, 1975.

[45] P. von Rickenbach, S. Schmid, R. Wattenhofer, and A. Zollinger. A robust inter-
ference model for wireless ad-hoc networks. Parallel and Distributed Processing
Symposium, 2005. Proceedings. 19th IEEE International, pages 8 pp.–, April 2005.

[46] Markus Völker. (Lokales) Scheduling von Übertragungen in Sensornetzen im SINR-
Modell. Student research paper, Universität Karlsruhe, January 2008.

[47] Dorothea Wagner and Roger Wattenhofer, editors. Algorithms for Sensor and Ad
Hoc Networks, volume 4621 of Lecture Notes in Computer Science. Springer-Verlag,
2007.

[48] Roger Wattenhofer and Aaron Zollinger. XTC: A Practical Topology Control
Algorithm for Ad-Hoc Networks. In 4th International Workshop on Algorithms for
Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN), Santa Fe, New Mexico,
April 2004.

[49] Xpress-MP: suite of mathematical modeling and optimization tools. http://www.
dashoptimization.com.

116

http://www.dashoptimization.com
http://www.dashoptimization.com

	Introduction
	Preliminaries
	Graphs and Networks
	Mathematical Programming
	Linear Programming
	Integer Programming

	Constraint Programming
	Notations and Definitions

	Gecode: Generic Constraint Development Environment
	Models and Constraints
	Propagators and Filtering
	Search Engines for CSPs and COPs
	Branchings
	Performance Measures
	Extending Gecode
	C++ Interface vs. Java Interface

	Survey on Wireless Sensor Networks
	Communication Graphs
	How to deal with Interference
	Scheduling Problem
	Interference Models
	SINR Model
	Conflict Graphs and Graph-based Interference Models
	Graph-based Models vs. SINR Model

	Topology Control
	Quality Criteria for Topologies

	Related Results

	Scheduling
	Power Control
	Exact Scheduling Algorithms
	Constraint Programming
	Fixed Transmission Power
	Variable Transmission Power
	Optimizations

	Integer Linear Programming
	Fixed Transmission Power
	Variable Transmission Power
	Additional Objectives

	Scheduling Heuristics
	Fixed Transmission Power: MaxSINR
	Variable Transmission Power: MinPower

	Computation of Lower Bounds for Optimum Schedules

	Topology Control
	Overview of existing Algorithms and Topologies
	Gabriel Graph and Relative Neighborhood Graph
	LIFE and LISE
	Minimum Spanning Tree Algorithms
	Cone Based Topology Control (CBTC)
	XTC Algorithm

	Topologies which can be efficiently scheduled
	MaxSINR Topology and MinPower Topology
	MinInterference Topology
	Constraint Programming

	Experimental Results
	Implementation and Testing Environment
	Parameters used for the SINR Model
	Scheduling
	Test data
	Graph-based Models vs. SINR Model
	Analysis of Optimum Schedules
	Variable Power vs. Fixed Power
	Quality of Heuristic and Lower Bound
	Performance
	Solution Quality
	Random Restarts

	Topology Control
	Quality Measures
	Test Data and considered Topologies
	Visual Comparison based on a single Sample
	Comparison based on a Series of Samples
	Similarities between the Topologies

	Final Remarks
	Mathematical Programming vs. Constraint Programming
	Outlook

	Zusammenfassung (German abstract)
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

