
Design and Implementation of an
Efficient Hierarchical Speed-up Technique

for Computation of
Exact Shortest Paths in Graphs

Diploma thesis
at the

Institute for Theoretical Informatics
University of Karlsruhe (TH)

by

Kirill Müller

Supervised by:

Prof. Dorothea Wagner
Dr.rer.nat. Frank Schulz

Dipl.-Math. Martin Holzer
Dipl.-Inf. Daniel Delling

Acknowledgements

I would like to thank my supervisors, Prof. Dorothea Wagner, Dr. Frank Schulz, Martin
Holzer und Daniel Delling, for the extensive support with the development of this work
and for many hints, motivating discussions and ideas.

1

Contents

1 Introduction 3

2 Related Work 5

3 Formal Description and Correctness 7
3.1 Definitions . 7
3.2 Decomposition . 8
3.3 Component Hierarchy . 10
3.4 Search Space Parts . 12
3.5 Query . 17

4 Optimization 29
4.1 Removal of Superseded Edges . 29
4.2 Construction of Equivalent Graphs . 34

5 Preprocessing Algorithm 43
5.1 Child Separator Subset Closure . 44
5.2 Search Space Parts . 47
5.3 Parallelization . 54

6 Implementation 61

7 Empirical Analysis 63
7.1 Graph Size vs. Preprocessing Time . 63
7.2 Trade-off between Preprocessing Effort and Query Time 64
7.3 The Road Map Graph of Western Europe 66

8 Conclusion and Outlook 75

A Proofs 77

B Document Type Definitions 81

2

3

1 Introduction

Computation of shortest paths in graphs is a central requirement for many applications.
Route planning in traffic networks is perhaps the best-known one. Dijkstra’s algorithm
[Dij59] solves this problem efficiently, but query time may be intolerably long for large
graphs, such as the road map graph of a country or even a continent. In practice, optimality
of the result often is abandoned by employing a heuristics. In this work, we focus only on
exact solutions to the shortest-path problem.

We cannot afford precomputing shortest paths between all pairs of vertices in terms of
neither computation time nor space. However, a graph can be preprocessed in an off-line
stage so that subsequent on-line queries take only a fraction of the time used by Dijkstra’s
algorithm. Recent preprocessing techniques [SS05, GH05] yield a considerable speed-up
for the query time while maintaining optimality of the solution.

In this work, preprocessing is developed to the maximum. We introduce a multi-level
technique based on hierarchical decomposition that outsources almost all of the effort
needed to compute a shortest path to the off-line preprocessing stage. A long-lasting
preprocessing and a fair amount of preprocessed data is accepted. We parallelize the
preprocessing to perform it in reasonable time on conventional hardware. Our technique
fits best into an environment where query time is invaluable but long preprocessing times
can be afforded, such as a car navigation system or a web-based route planner.

Unlike many other preprocessing techniques, we do not precisely enrich the graph with
detailed information that allows a modified version of Dijkstra’s algorithm to selectively
skip edges. Instead, we compute a large number of small graphs to be interconnected
afterwards. For each possible query, we are able to combine a search space graph in which
the distance between two dedicated vertices matches the length of the shortest path queried
for. A query is answered by determining the distance in the search space graph, for which
we derive a fast algorithm in this work.

The trade-off between preprocessing effort and query time is adjustable. For fixed
parameters, we can provide a guarantee for the query time before even starting the pre-
processing, and tightly refine this guarantee by analyzing the preprocessed data. We can
also state the average number of edges considered by a query for a preprocessed graph. For
an implementation that keeps the preprocessed data in secondary storage, we can answer
a query through few random accesses to that storage. If the preprocessed data entirely fits
into main memory, the query performance of our technique is by all means competitive to
other recent approaches.

The remainder of this work is structured as follows. Section 2 offers an overview of
other speed-up techniques for source-target shortest-path queries. In Section 3, we show
the basic idea of our preprocessing technique and prove its correctness. Section 4 describes
two options for optimization that reduce both the size of the preprocessed data and the
query time. In Section 5, we give a detailed description of the preprocessing algorithm,
including the parallelization scheme. After that, we briefly describe our implementation
that was used for the empirical study in Section 7. The final section summarizes our work
and proposes further enhancements.

4 1 INTRODUCTION

5

2 Related Work

In this section, we briefly present other preprocessing approaches and highlight common
aspects and differences to our approach.

HEPV An approach very similar to ours, called HEPV (Hierarchically Encoded Path
Views) [JHR98], has been presented by Ning Jing, Yun-Wu Huang and Elke Rundensteiner.
Here, too, a hierarchical decomposition has been used to conquer the computational com-
plexity of the preprocessing. Furthermore, this approach also constructs a dedicated search
space graph for a given query.

In this paper, also the computation of the course of a shortest path and the update of
the preprocessed data upon edge modification has been considered in detail. Both aspects
remain out of scope for this work. However, due to the similarity between our work and
the HEPV approach, we are confident that we would be able to apply many, if not all, of
the missing concepts to our work. On the other hand, optimization of the preprocessed
data and parallelization are not considered by the HEPV approach.

Multi-level approach for timetables The multi-level approach presented by Frank
Schulz, Dorothea Wagner and Christos Zaroliagis in [SWZ02] performs a preprocessing
for timetable graphs by means of a hierarchical decomposition. We use many concepts,
including the component tree and the computation of the components that must be visited,
in a similar fashion. Unlike ours, this preprocessing approach employs a modification of
Dijkstra’s algorithm. Thus, the preprocessed data essentially consists of an enriched
input graph. Nevertheless, our speed-up technique was greatly influenced by this multi-level
approach. For instance, the upward, downward and level edges from [SWZ02] correspond
to the upward, downward or level graphs from our technique.

For our work, we used the implementation presented in [HSW06] to obtain a hierarchical
decomposition. As we considered only road map graphs, the technique denoted by “Planar-
Separator criterion” in above work seemed to be a good choice, and turned out to perform
well for our test instances.

Briefly, a decomposition is obtained by repeated application of the Planar Separator
theorem [LT79, LT80]. Special care must be taken for road map graphs that are not entirely
planar. For details, we refer to [HPS+05].

HiTi graphs The Hierarchical multi graph model introduced by Sungwon Jung and Sakti
Pramanik [JP96] is another multi-level approach. The most eye-catching difference is, that
the decomposition is based on edges rather than on vertices. Also, the query algorithm is
a modification of Dijkstra’s algorithm that prunes the search space by skipping edges.

Highway Hierarchies For this recent technique, due to Peter Sanders and Dominik
Schultes [SS05], the input graph is recursively searched for “important edges”, called high-
way edges. The edges are also arranged in a hierarchy. However, no hierarchical decompo-

6 2 RELATED WORK

sition of the input graph is used. The query employs a modification of the bi-directional
version of Dijkstra’s algorithm that advances the highway hierarchy both from the start
and the end vertex until the search frontiers eventually meet.

Reach for A* Recently, Andrew Goldberg and Chris Harrelson have implemented an-
other preprocessing technique [GH05] that combines the well-known A* approach with
reach-based routing proposed by [Gut04]. This technique also uses a variant of Dijk-
stra’s bi-directional algorithm to perform the query.

7

3 Formal Description and Correctness

This section provides a basic description of our acceleration technique. We show what kind
of preprocessed information we use, and how we execute a source-target query provided the
data is already available. For this work, we are only interested in the length of a shortest
path.

After defining some symbols, we describe our notion of a hierarchical decomposition.
This description is used for the definition of our preprocessed information. Next, we show
how this data can be used to carry out a query, and prove the correctness of the query
algorithm.

3.1 Definitions

A weighted graph G(V, c) consists of a vertex set V and a nonnegative cost function
c : V × V → R∞

+ . For all v ∈ V , c(v, v) = 0. We omit the commonly used edge set.
Instead, by the term “edge” we denote a vertex pair with finite cost. Missing edges fea-
ture an infinite cost for the associated pair of vertices. (The “number of edges” refers to
the count of vertex pairs with finite cost. Accordingly, “removing an edge” means setting
the according value for the cost function to infinity.) We write V [G] and c[G] to denote,
respectively the vertex set and the cost function of a specific graph G.

A graph induced by a road map is simply called road map graph.
A path p = 〈v1, v2, . . . , vz〉 is a sequence of vertices in V with c(vx, vx+1) <∞ for all x

with 1 ≤ x < z. Paths have a length c(p) that is obtained by summing up the costs of
all adjacent vertex pairs. For a given path, the subpath from index x to index y with
1 ≤ x ≤ y ≤ z is denoted by px→y := 〈vx, vx+1, . . . , vy〉.

We call a graph connected iff for every pair of vertices there is a path in the graph’s
undirected version G(V, min(c, cT)). We do not care about strong connectivity.

Every graph G has an associated distance function d[G] : V × V → R∞
+ that returns the

length of a shortest path between two vertices (or ∞ where no such path exists). We may
omit the index if it can be deduced from the context. Obviously, the triangle inequality
always holds for a graph’s distance function: A detour never decreases the cost of a path.

The graph union G1(V1, c1) ∪G2(V2, c2) =: G(V, c) is obtained by setting V := V1 ∪ V2

and c := min(c1, c2). This operation is expedient especially if V1∩V2 6= ∅: Common vertices
are merged in the union graph.

The directed subset closure G(V, c)|V1→V2
of a graph G for vertex subsets V1, V2 ⊆ V

is a graph that has only vertices from V1 ∪ V2 and edges from vertices in V1 to vertices
in V2 with costs equal to the distance in the original graph: c

[
G|V1→V2

]
:= d[G]|V1×V2

.
The (simple) subset closure for V1 ⊆ V is a special case of the directed subset closure:
G(V, c)|V1

:= G(V, c)|V1→V1
. Any directed subset closure G(V, c)|V1→V2

can be computed
in |V1| iterations of Dijkstra’s single-source algorithm.

Throughout this work, the term input graph denotes the graph we want to query the
distances for. We use n to denote the number of levels for the hierarchical decomposition
of the input graph.

8 3 FORMAL DESCRIPTION AND CORRECTNESS

3.2 Decomposition

The hierarchical decomposition of a given input graph G(V, c) is a cornerstone of our
speed-up technique. Owing to that, we define it precisely and also prove rather obvious
implications. We shall focus on decomposition first and introduce the hierarchy in the next
subsection. (To improve readability, the proofs for this and the next subsection are given
in Appendix A).

Definition 1 (Decomposition). The decomposition induces a nonempty index set I and
splits G(V, c) into |I| components Gi(Vi, ci) for i ∈ I so that the following properties all
hold:

1. Only vertices of the input graph are used:

Vi ⊆ V.

2. Each component has at least two vertices:

|Vi| ≥ 2.

3. The components’ cost functions is obtained by restricting the input graph’s cost
function to the component vertices:

ci = c|Vi×Vi
.

4. Every vertex and every edge is contained in at least one component:⋃
i∈I

Gi = G.

5. All Gi(Vi, ci) are connected (in their undirected version).

6. No edges exist between distinct components:

c(v1, v2) <∞⇒ ∃i : v1, v2 ∈ Vi.

We define the separator set that contains all vertices that exist in more than one
component:

S :=
⋃

i,j∈I,i6=j

Vi ∩ Vj.

Apparently, we desire a decomposition that yields a small separator set.
Figure 1 shows a graph and a possible decomposition. We will use this sample graph

throughout this work and highlight different aspects of interest.
Although our notion of a component that also contains separators can be found in

several related works (e.g., [Fre87], [JHR98]), others use a notion where components are
induced by removing the separator set from the set of vertices ([SWZ02, Hol03, HPS+05]).
With the alternative notion, separator vertices do not belong to any component. Both
notions actually describe the same thing, but in a slightly different way. The following
lemma shows the equivalence of the two notions and serves as base for several other lemmas:

3.2 Decomposition 9

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

v1 v2

v3

v4

v5

Figure 1: A graph that has been decomposed.
The drawing at the left shows a graph. For the sake of clarity, we omit costs and directions for edges
throughout this work.
The right-hand side drawing shows a possible decomposition for this graph. Dotted lines show component
boundaries. The vertices that lie on a component boundary (denoted by v1 to v5) belong to all adjacent
components — thus, they are separators.

Lemma 2. For any pair of component indices i, j ∈ I, i 6= j, and for any pair of vertices
s ∈ Vi, t ∈ Vj, every path in G between s and t contains at least one vertex in S.

We use Bi to denote the set of boundary vertices around component Gi, i.e., those
vertices in that component that are separators:

Bi := Vi ∩ S.

A component can be left only through one of its boundary vertices. The first separator
encountered on any path that leaves the component is such a boundary vertex. This is
shown in the next lemma:

Lemma 3. For any pair of component indices i, j ∈ I, i 6= j, and for any pair of vertices
s ∈ Vi, t ∈ Vj, every path in G between s and t contains at least one boundary vertex of
each Gi and Gj, that is, at least one vertex of Bi and at least one vertex of Bj.

A decomposition into only one component (i.e., |I| = 1) is called the empty decom-
position. For a given graph, the empty decomposition is unique apart from the choice
of the the index set’s only element. The following corollary shows that only the empty
decomposition does not feature any separators:

Corollary 4. The separator set S is empty iff |I| = 1.

The next corollary deals with paths without separators except for the end vertex which
may or may not be a separator: Such a path does not leave the component where it origins.

Corollary 5. For any component index i ∈ I and for any two vertices s ∈ Vi\S, t ∈ Vi, any
path p = 〈v1, v2, . . . , vz〉 in G that, apart from t, does not contain vertices in S, contains
only vertices in Vi.

10 3 FORMAL DESCRIPTION AND CORRECTNESS

For the sake of completeness, we provide a mirrored version of above corollary:

Corollary 6. For any component index i ∈ I and for any two vertices s ∈ Vi, t ∈ Vi\S, any
path p = 〈v1, v2, . . . , vz〉 in G that, apart from s, does not contain vertices in S, contains
only vertices in Vi.

For a given separation, we choose a canonical home component function h : V → I,
that indicates the index of a component where a vertex is located:

∀v ∈ V : v ∈ Gh(v).

This is a precise definition only for the empty separation. For any separation into more than
one component, we can choose, for separator vertices, between more than one component
index as value for this function. We fix one such function for each separation and use it
consistently.

3.3 Component Hierarchy

In this subsection, we define the component hierarchy: One component is contained by
some parent (unless it is a top-level component) and contains several children itself (unless
it is a bottom-level component). As usual, containment means that all edges and verti-
ces of a child component are contained in the parent component, too. For the definition,
we use multiple decompositions of the same input graph and impose restrictions on the
decompositions.

Definition 7 (Component hierarchy). A sequence of decompositions{
{G0

i : i ∈ I0}, {G1
i : i ∈ I1}, . . . , {Gn−1

i : i ∈ In−1}, {Gn
i : i ∈ In}

}
forms a component hierarchy of depth n, denoted by

{
Gk

i

}
, iff the following properties all

hold:

1. The decomposition at level n is an empty decomposition with 0 as the only index:

In := {0}.

2. For each k ∈ {1, . . . , n} and for each i ∈ Ik there exist relationship sets Hk
i ⊆ Ik−1

with the following properties:

(a) At each level, each component is assigned to at most one relationship set:

∀i, j ∈ Ik, i 6= j : Hk
i ∩Hk

j = ∅.

(b) At each level, each component is assigned to at least one relationship set:⋃
i∈Ik

Hk
i = Ik−1.

3.3 Component Hierarchy 11

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

v1 v2

v3

v4

v5

Figure 2: A graph in a possible two-level decomposition.
Dashed and dotted lines show component boundaries for level 1 and level 0, respectively. (The dashed line
also separates level 0 components, cf. Lemma 8.) Vertices v3 and v4 are separators both at levels 0 and 1.

(c) The relationship set Hk
i defines, at level k − 1, the indices of those components

that are contained in Gk
i , the i-th component at level k:

∀i ∈ Ik : Gk
i =

⋃
j∈Hk

i

Gk−1
j .

The trivial level n is included only for notational convenience, we also refer to it as
universe. According to the definition, level 0 is always the lowest level with the finest
separation. The components at level 0 do not have children. Consequently, level n − 1 is
the highest non-trivial level, all components at this level share the universe as parent. The
universe itself has no parents, as the name suggests.

In such a hierarchy, we use Sk to denote the separator set at level k. The following
lemma shows that the separator sets form a descending subset sequence with respect to k.

Lemma 8. For all k ∈ {1, . . . , n}, Sk ⊆ Sk−1.

The relationship sets Hk
i indicate, for each component, which child components it

contains. Conversely, at level k with 0 ≤ k < n− 1, for every component Gk
i with i ∈ Ik,

a parent component index fk(i) exists so that i ∈ Hk+1
fk(i)

. It is easy to see from Definition 7

that every component (apart from the universe) features exactly one parent component.
Therefore, our definition of fk is precise. Note that fn−1(i) = 0 for all i ∈ In−1.

By rewriting Definition 7.2c, we instantly obtain

Gk
i ⊆ Gk+1

fk(i)

for each suitable k and i.
Every component Gk

i has its set of boundary vertices Bk
i , defined as for the flat case.

Note that Bn
0 is empty — indeed, the universe is boundless.

In this work, we do not require home component functions for levels higher than level 0,
so h(v) ∈ I0 denotes the home component of a vertex v at level 0.

Figure 2 shows our graph in a possible hierarchical decomposition in two levels.

12 3 FORMAL DESCRIPTION AND CORRECTNESS

3.4 Search Space Parts

In this subsection, we formally define the so-called search space part graphs (in short, search
space parts). Later, when answering a query for G, we merge several search space parts
into a search space graph and run a shortest-path algorithm on that graph.

There are five kinds of search space parts: entry, exit, upward, downward and level
graphs. Informally, the entry and exit graphs connect a vertex (separator or not) to
boundary vertices of the home component at level 0, the upward and downward graphs
connect boundary vertices of components at adjacent levels, and the level graphs connect
boundary vertices of components that share the same parent component. To build a search
space graph, we stick together one entry, several upward, one level, several downward and
one exit graph.

The following definition specifies the properties of the part graphs. Figures 3, 4 and 5
show examples for the five part graph kinds.

Definition 9 (Search space parts). For a given hierarchical decomposition
{
Gk

i

}
of an input

graph G, we define the search space part graphs as follows:

Common properties All search space parts P share the following properties:

• Each search space part P is a directed bipartite graph. The vertices are divided
into source vertices and drain vertices . Edges exist only from source to drain ver-
tices, i.e., source vertices have no incoming, and drain vertices have no outgoing
edges.

• A vertex of P is a pair with a vertex of G as the first and an integer as the
second tuple component:

V [P] ⊆ V [G]× Z.

• The vertex set of P is essentially a disjoint union of two subsets of V , called
source base vertex set and drain base vertex set (in short, source base and drain
base) and denoted by Σ and ∆, respectively. (Although this is not supported
by our notation, we would like to stress that the source and drain vertex sets
are potentially different for each search space part.)

Furthermore, each search space part defines two distinct integers that are used
as disambiguators for the disjoint union:

kσ, kδ ∈ Z, kσ 6= kδ.

(Again, kσ and kδ are chosen separately for each search space part.)

As the name suggests, the source base vertex set (which is a subset of V)
generates the source vertices of P (which are two-tuples): For a source base
vertex v1 ∈ Σ, we form the corresponding source vertex in P by using the
source disambiguator kσ as second tuple component:

v1 ∈ Σ =⇒ (v1, kσ) ∈ V [P] .

3.4 Search Space Parts 13

�

�

�

�

�

v

�

�

�

�

	

�

�

�

�

v1 v2

v3

v4

v5

G0

0

G0

1

G0

2G1

0

G0

3

G0

4

G0

5

G1

1

�

�

�

�

�

v

�

�

�

�

	

�

�

�

�

v1 v2

v3

v4

v5

G0

0

G0

1

G0

2G1

0

G0

3

G0

4

G0

5

G1

1

Figure 3: Entry and exit graphs.
The drawing on the left shows a designated vertex v with curved edges representing distances, in G0

0,
from v to the boundary vertices of its home component (edge targets). We do not examine paths that
leave G0

0. To compose the entry graph Ev, we use these distances and append, to the source vertex v and
to the boundary vertices, an integer tuple component for disambiguation: The vertex set of Ev becomes
{(v, 0), (v1, 1), (v2, 1), (v4, 1)}.
In the right-hand side drawing, the edges that build up the exit graph Xv are highlighted. Corresponding
entry and exit graphs are antisymmetric except for the second tuple component of the vertices.

Conversely, a drain base vertex v2 ∈ ∆ induces a drain vertex in P:

v2 ∈ ∆ =⇒ (v2, kδ) ∈ V [P] .

As expected from the disjoint union, a vertex v ∈ Σ∩∆ has two corresponding
vertices in P, disambiguated with kσ and kδ. Yet, each vertex in P has exactly
one corresponding vertex in G.

Formally, we set
V [P] := (Σ× {kσ}) ∪ (∆× {kδ}) .

(Recall also the commonly used definition of the disjoint union.)

• For a source vertex (v1, kσ), the cost to and a drain vertex (v2, kδ) matches the
length of the shortest path from v1 to v2 in some component Gm

l . (Here, we fix l
and m for one search space part, i.e., we use the same component to compute all
costs. However, the indices are potentially different for each search space part.)
Intuitively, each edge in P can be thought of as a “shortcut” for a shortest path
in a component of G.

Formally, for v1 ∈ Σ and v2 ∈ ∆, we set the cost of the corresponding edge in P
as follows:

c[P] ((v1, kσ), (v2, kδ)) := d[Gm
l] (v1, v2).

Entry graph For s ∈ V , an entry graph Es represents the connection of a designated
source vertex s to all the boundary vertices of the corresponding home component:

• The only source base vertex is s. We call s the entry vertex .

14 3 FORMAL DESCRIPTION AND CORRECTNESS

• The drain base is the set of boundary vertices of the home component, at level 0,
of vertex s.

• We use kσ := 0 and kδ := 1 as disambiguators.

• The cost from (v, 0) to each appropriate (t, 1) equals the distance between v
and t in the home component. We do not consider paths that leave the home
component:

c[Es] ((s, 0), (v, 1)) := d
[
G0

h(s)

]
(s, v).

Formally, an entry graph is a part graph with the following parameters:

Σ := {s}, ∆ := B0
h(s), kσ := 0, kδ := 1, l := h(s), m := 0.

Exit graph For t ∈ V , an exit graph Xt is sort of an “inverse” entry graph that connects
all boundary vertices of t’s home component to t:

• The source base is the set of boundary vertices of the home component, at
level 0, of vertex t.

• The only drain base vertex is t. We also refer to t as exit vertex .

• We use kσ := −1 and kδ := 0 as disambiguators.

• The cost from each appropriate (v,−1) to (t, 0) equals the distance between v
and t in the home component. Here, we also focus only on paths inside the
home component:

c[Xt] ((v,−1), (t, 0)) := d
[
G0

h(t)

]
(v, t).

We can also specify an exit graph as a parametrized search space part graph:

Σ := B0
h(t), ∆ := {t}, kσ := −1, kδ := 0, l := h(t), m := 0.

Upward graph For 0 ≤ k < n − 1 and for i ∈ Ik, an upward graph U k
i connects the

boundary vertices of component Gk
i to those of its parent component:

• The source base is Bk
i .

• The drain base is Bk+1
fk(i)

.

• We use kσ := k + 1 and kδ := k + 2 as disambiguators.

• The cost between each pair ((s, k +1), (t, k +2)) with (s, t) ∈ Bk
i ×Bk+1

fk(i)
equals

the distance between s and t in the parent component, not taking into account
paths that leave that parent component:

c
[
U k

i

]
((s, k + 1), (t, k + 2)) := d

[
Gk+1

fk(i)

]
(s, t).

3.4 Search Space Parts 15

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

v1 v2

v3

v4

v5

G0

0

G0

1

G0

2G1

0

G0

3

G0

4

G0

5

G1

1

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

v1 v2

v3

v4

v5

G0

0

G0

1

G0

2G1

0

G0

3

G0

4

G0

5

G1

1

Figure 4: Upward and downward graphs.
In the left-hand side drawing, the curved edges depict the distances between boundary vertices of G0

0 (edge
sources) and those of its parent, G1

0 (edge targets). The distances consider only paths that do not leave
G1

0, possible shorter paths via vertices in G1
1 are not taken into account here. As v4 is contained both in B0

0

and B1
0 , it features a self-loop which we avoid otherwise. The upward graph U 0

0 is composed from these
distances by appending, to each boundary vertex used, an integer tuple component to assure uniqueness:
The vertex set of U 0

0 becomes {(v1, 1), (v2, 1), (v4, 1), (v3, 2), (v4, 2)}.
The drawing on the right shows the same for the downward graph D0

0 . Nothing has changed except for
the direction of the edges: The downward graphs are antisymmetric to the corresponding upward graphs.

We also provide an overview of this part graph’s parameters:

Σ := Bk
i , ∆ := Bk+1

fk(i)
, kσ := k + 1, kδ := k + 2, l := i, m := k.

Additionally, we represent k in terms of kσ:

k = kσ − 1.

Downward graph For 0 ≤ k < n−1 and for i ∈ Ik, a downward graph Dk
i is an “inverse”

upward graph, the source and drain bases are swapped. Downward graphs connect,
for a component Gk

i , the boundary vertices of the parent component to those of the
component itself:

• The source base is Bk+1
fk(i)

.

• The drain base is Bk
i .

• We use kσ := −k − 2 and kδ := −k − 1 as disambiguators.

• The cost between each pair ((s,−k − 2), (t,−k − 1)) with (s, t) ∈ Bk+1
fk(i)
× Bk

i

equals the distance between s and t in the parent component, disregarding paths
that leave the parent component:

c
[
Dk

i

]
((s,−k − 2), (t,−k − 1)) := d

[
Gk+1

fk(i)

]
(s, t).

16 3 FORMAL DESCRIPTION AND CORRECTNESS

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

v1 v2

v3

v4

v5

G0

0

G0

1

G0

2G1

0

G0

3

G0

4

G0

5

G1

1

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

v1 v2

v3

v4

v5

G0

0

G0

1

G0

2G1

0

G0

3

G0

4

G0

5

G1

1

Figure 5: Level graph.
In the drawing at the left, the curved edges stand for the distances between boundary vertices of G0

0 (edge
sources) and those of G0

1 (edge targets). The distances are in respect to the whole input graph, paths that
do leave G1

0 are also taken into account here. The vertices v1 and v2 are contained both in B0
0 and B0

1 ,
so a self-loop has been added here for consistency. As with the other search space parts, we construct
the level graph L 0

0,1 by appending an integer tuple component to each of above boundary vertices for
disambiguation: The vertex set of L 0

0,1 becomes {(v1, 1), (v2, 1), (v4, 1), (v1,−1), (v2,−1), (v3,−1)}.
The drawing at the right-hand side shows the same for L 1

0,1. As v3 and v4 both are boundary vertices of
G1

0 and G1
1, we obtain {(v3, 2), (v4, 2), (v3,−2), (v4,−2)} as vertex set for L 1

0,1.

Again, we summarize this by explicitly indicating the parameters for that part graph:

Σ := Bk+1
fk(i)

, ∆ := Bk
i , kσ := −k − 2, kδ := −k − 1, l := i, m := k.

We show how k can be computed from kσ:

k = −kσ − 2.

Level graph Finally, for 0 ≤ k ≤ n− 1 and for i, j ∈ Ik with fk(i) = fk(j), a level graph
L k

i,j connects boundary vertices of Gk
i to those of Gk

j :

• The source base is Bk
i .

• The drain base is Bk
j .

• We use kσ := k + 1 and kδ := −k − 1 as disambiguators.

• The cost between each pair ((s, k + 1), (t,−k− 1)) with (s, t) ∈ Bk
i ×Bk

j equals
the distance between s and t in the input graph. Here, we explicitly consider,
for k < n−1, even those paths that leave the parent component. (For k = n−1,
the universe is the parent.)

c
[
L k

i,j

]
((s, k + 1), (t,−k − 1)) := d[G] (s, t).

As usual, we shall formalize this. (Recall that Gn
0 = G.)

Σ := Bk
i , ∆ := Bk

j , kσ := k + 1, kδ := −k − 1, l := 0, m := n.

3.5 Query 17

At last, we rewrite the equation for k and kσ:

k = kσ − 1.

Note the slight differences between up-/downward and level graphs. The latter are also
defined for level n− 1. Furthermore, in level graphs the distance between vertices matches
the distance between corresponding vertices in the input graph, which may be shorter than
the distance in the parent component graph used for entry, exit, upward and downward
graphs.

In Section 5, we will show how to compute the search space parts efficiently. For now,
we rely on their properties only and prove that we can use them to compute the distances
between arbitrary vertex pairs in G.

3.5 Query

To answer a source-target shortest-path query between a source vertex s and a target ver-
tex t, we craft a comparatively small search space graph for this vertex pair. (That is, for
each distinct pair of vertices, we get a different search space graph.) For this subsection,
we focus on a single distance query between some fixed vertices s, t ∈ V . Unless stated
otherwise, we assume distinct home components:

h(s) 6= h(t).

The search space graph is combined, by means of graph union, from the search space
parts introduced in the previous subsection: As mentioned before, we use one entry, several
upward, one level, several downward and one exit graph. More precisely, we use Es and
Xt as entry and exit graph, respectively. By that, the entry and exit vertices (namely,
(s, 0) and (t, 0)) correspond to s and t in the input graph. The distance between those
two vertices in the search space graph shall be proven to equal the distance between s
and t in G. Thus, by running a distance query in our search space graph, we can solve the
distance query in G.

Our search space graph is, in a way, a “tiny version” of the input graph G: Every path
in G between s and t has a corresponding path in our search space graph that is at most
as long as the path in G. The same is true in the opposite direction. By that, shortest
paths must have the same length in both graphs. This is proven by our main theorem.
To prepare the proof, we spot, on each path in G, those vertices that have corresponding
vertices in the search space graph: Every path must contain certain boundary vertices in
a well-defined order. (Recall that, apart from the entry and exit graphs, vertices in search
space part graphs correspond to boundary vertices.)

First, we need to determine which components must be traversed by any path from
s to t. We define the index sequences i[k] and j[k], starting at the corresponding home
components at level 0, as follows:

i[0] := h(s), i[k + 1] := fk(i[k])

18 3 FORMAL DESCRIPTION AND CORRECTNESS

�

�

�

�

�

s

�

�

�

�

	

�

t

�

�

v1 v2

v3

v4

v5

G0

0

G0

1

G0

2G1

0

G0

3

G0

4

G0

5

G1

1

G0

0
G0

1
G0

2
G0

3
G0

4
G0

5

G1

0
G1

1

G2

0

Figure 6: Component tree.
In computing the length of a shortest path, at first, we determine those components that must inevitably
be hit by our path. We start in the home components of both source and target vertex, simultaneously
walk up the hierarchy tree until we meet eventually, and note the components that we have visited in our
walk.
If we wanted to retrieve a shortest path from s to t in the graph shown in the left-hand side drawing, we
would thus start at G0

0 and G0
4, then move to their respective parent components G1

0 and G1
1, and finally

meet at G2
0, the universe.

In the drawing at the right, the bold lines show this path in the component tree. Here, i[0 . . . 2] = {0, 0, 0},
j[0 . . . 2] = {4, 1, 0} and m = 1, as i[1] 6= j[1] and i[2] = j[2]. All components drawn in bold contain the
source or the target vertex, while G2

0 is the only component that contains both.

j[0] := h(t), j[k + 1] := fk(j[k]) .

Let m be the smallest index so that i[m] = j[m]. As fn−1(l) = 0 for all suitable l, we
know that i[n] = j[n], so m exists and is not greater than n. Informally, we simultaneously
walk upward the component hierarchy tree from both source and target components at
level 0, until we eventually meet at some level m ≤ n. Note that also, for distinct home
components of s and t, we can deduce m > 0. We provide a detailed example in Figure 6.

The components Gk
i[k] and Gk

j[k] form a subset sequence: For all k < n, the set inequal-
ities

Gk
i[k] ⊆ Gk+1

i[k+1]

Gk
j[k] ⊆ Gk+1

j[k+1]

both hold, which follows immediately by the definitions of component hierarchy and parent
component index. In fact, any path between s and t crosses the boundary vertices of Gk

i[k]

in ascending order before crossing those of Gk
j[k] in descending order, both with respect

to k. We prove the following three lemmas to derive that in the next corollary. Figure 7
illustrates this statement.

Lemma 10. For every path p = 〈v1, v2, . . . , vz〉 between s and t with v1 = s and vz = t,
for each 0 ≤ k < m, the path contains at least one boundary vertex of component Gk

i[k] and

3.5 Query 19

�

�

�

�

�

s

�

�

�

�

	

�

t

�

�

v1 v2

v3

v4

v5

G0

0

G0

1

G0

2G1

0

G0

3

G0

4

G0

5

G1

1

Figure 7: Boundary vertex indexes.
The drawing above shows a rather complicated path between s and t. As a result of Lemma 10, for all
components G0

0, G1
0, G1

1 and G0
4, at least one boundary vertex must be encountered. We use the earliest

for G0
0 and G1

0 and the latest for G1
1 and G4

0 — namely, v1, v4, v3 and v5 (in this order). Note that v1

has been visited no later than v4, and that v5 has been visited no earlier than v3, according to Lemma 11.
Furthermore, as required by Lemma 12, v4 is visited no later than v3. Starting from one, v1 is the third,
v4 is the eighth, v3 is the tenth, and v5 is the thirteenth vertex touched by the path. Thus, x[0] = 3,
x[1] = 8, y[1] = 10 and y[0] = 13 — a nondecreasing sequence, as Corollary 13 states.

at least one of component Gk
j[k]. That is, there exist a (smallest) vertex index x[k] with

vx[k] ∈ Bk
i[k], and a (largest) vertex index y[k] with vy[k] ∈ Bk

j[k] for each 0 ≤ k < m.

Proof. For k < m, we have i[k] 6= j[k], as m is the smallest index with i[m] = j[m]. We
apply Lemma 3, which states that all paths between distinct components must contain
boundary vertices, and conclude the claim straight away.

Lemma 11. For every path p = 〈v1, v2, . . . , vz〉 between s and t with v1 = s and vz = t,
x[k] is ascending and y[k] is descending with respect to k. That is, for each k < m− 1, the
following both inequalities hold:

x[k] ≤ x[k + 1]

y[k] ≥ y[k + 1].

Proof. We explicitly prove the first inequality only and deduce the second by antisymmetry.
Fix a path p between s and t arbitrarily, and k < m−1. As x[k] is the index of the first

separator vertex at level k, all vx with x < x[k] are not separators at level k. According
to Lemma 8, they are no separators at level k + 1, too. Hence, x[k] is the smallest index
in p that qualifies a vertex for possibly being a separator at level k + 1, which is required
for being a boundary vertex at level k + 1. This satisfies our claim.

Lemma 12. For every path p = 〈v1, v2, . . . , vz〉 between s and t with v1 = s and vz = t, the
first boundary vertex at level m− 1 for component Gm−1

i[m−1] occurs before the last boundary

vertex for component Gm−1
j[m−1]. That is,

x[m− 1] ≤ y[m− 1].

20 3 FORMAL DESCRIPTION AND CORRECTNESS

Proof. Like in Lemma 11, all vx with x < x[m − 1] are not separators at level m − 1. As
vy[m−1] is supposed to be a boundary vertex at level m− 1, it must at least be a separator
at this level. This makes x[m− 1] the smallest possible value for y[m− 1], as claimed.

We provide the next corollary as a summary:

Corollary 13. For every path p = 〈v1, v2, . . . , vz〉 between s and t with v1 = s and vz = t,
the vertices vx[k] and vy[k] for 0 ≤ k < m, as defined in Lemma 10, always occur in the
following order:

vx[0], vx[1], . . . , vx[m−1], vy[m−1], . . . , vy[1], vy[0]

Proof. Immediately from Lemmas 11 and 12.

Now, we are ready to construct the search space graph. We connect one entry, m up-
ward, one level, m downward and one exit graphs. The following definition describes this
construction in detail.

Definition 14 (Search space graph). The graph

Gs,t := Es ∪

(⋃
0≤k<m−1

U k
i[k]

)
∪L m−1

i[m−1],j[m−1] ∪

(⋃
0≤k<m−1

Dk
j[k]

)
∪Xt

is called the search space graph for (s, t). The vertices νs := (s, 0) and νt := (t, 0) are called
source or drain vertex of the search space, respectively.

Figure 8 explains the construction of the search space graph.
It can be easily verified from Definition 9, that each edge in the search space graphs

originates from exactly one search space part used in the composition. That is, for a given
edge in the search space graph, we can deduce exactly which search space part contains
this edge. This is stated more precisely in the following lemma:

Lemma 15. Each edge ((v1, kσ), (v2, kδ)) in Gs,t, with v1, v2 ∈ V and kσ, kδ ∈ {0, . . . ,m−
1}, can be found in one and only one of the search space parts used to compose Gs,t.

Proof. If ((v1, kσ), (v2, kδ)) is an edge of Gs,t, it must be present in one of the search space
parts used to create Gs,t, because the graph union employs only vertices and edges of the
graphs to be united and does not add new edges.

We distinguish between five cases. Each case matches a type of search space part. For
each case, we quote the search space part where this edge came from.

1. kσ = 0, kδ = 1. In this case, the edge originates in the entry graph Es, as no other
search space part features edges with 0 or 1, respectively, as disambiguators.

2. kσ > 0, kδ > 0. This condition is fulfilled only for edges in an upward graph. That
given, we know that kδ = kσ + 1. From the definition of the upward graph follows,
for k := kσ − 1, that U k

i[k] contains this edge.

3.5 Query 21

�

�

�

�

�

s

�

�

�

�

	

�

t

�

�

v1 v2

v3

v4

v5

G0

0

G0

1

G0

2G1

0

G0

3

G0

4

G0

5

G1

1

Es

U 0

0

L 1

0,0

D0

4

Xt

s, 0

v2, 1 v1, 1 v4, 1

v3, 2 v4, 2

v3,−2 v4,−2

v5,−1

t, 0

Figure 8: Search space graph.
For the graph shown in the left-hand side drawing, the corresponding search space graph for a source-
target query between the vertices s and t is composed from Es, U 0

0 , L 1
0,1, D0

4 and Xt. The highlighted
edges represent distances between boundary vertices that were used to generate those search space parts.
(Compare that to Figures 3 to 5.)
The drawing on the right shows Gs,t. The vertices of this graphs are two-tuples, each formed from a vertex
of G and an integer disambiguator. Each edge corresponds uniquely to one of the highlighted edges in the
left-hand side drawing; the dotted ones on the right have a cost of zero, they correspond to self-loops in
the drawing at the left. The distance between (s, 0) and (t, 0) in Gs,t equals that between s and t in G.
As shown in the drawing, the search space graph can be arranged in stages, where each stage corresponds
to a search space part the graph has been composed of. This implies also a topological sort of Gs,t.

3. kσ > 0, kδ < 0. Here, we have an edge from a level graph. In this case, kδ = −kσ. By
applying the definition of the level graph for k := kσ − 1, we conclude that L k

i[k],j[k]

must contain our edge.

4. kσ < −1. This case is antisymmetrical to case 2. Our edge must be part of a
downward graph, thus, kδ = kσ + 1. From the definition of the downward graph
follows, for k := −kσ − 1, that Dk

i[k] contains this edge.

5. kσ = −1, kδ = 0. The argumentation for the final case is just like that for case 1, this
edge is part of the exit graph Xt.

The case differentiation is complete, as the conditions used are disjoint, and no other cases
may exist for the disambiguators.

We call an edge from Gs,t by the type of the search space part where this edge originates.
That is, an edge from Es is called entry edge, and so on. This will help to clarify later case
differentiations.

In our main theorem, we prove that we can use the search space graph to compute
the distance between s and t in G: The distance between source and drain vertex in Gs,t

matches the distance between s and t in G.

22 3 FORMAL DESCRIPTION AND CORRECTNESS

Theorem 16. The distance between s and t in G is the same as the distance between (s, 0)
and (t, 0) in Gs,t:

d[G] (s, t) = d[Gs,t] ((s, 0), (t, 0)).

Proof. We prove that for every path in G between s and t, there exists a corresponding
path in Gs,t between (s, 0) and (t, 0) that is not longer, and vice versa. Thereby, it is proven
that the distance, or length of a shortest path, must be the same in both graphs.

(⇐) Fix an arbitrary path π = 〈ν1, ν2, . . . , νz〉 in Gs,t with ν1 = (s, 0) and νz = (t, 0).
We show that there exists a corresponding path p = 〈v1, v2, . . . , vw〉 in G with v1 = s and
vw = t that is not longer than π.

We start with an empty path p for G. For each adjacent pair of vertices (νx, νx+1) =
((vx, kx), (vx+1, kx+1)) in π, we append, to p, some shortest path px := 〈vx, . . . , vx+1〉 be-
tween vx and vx+1 in G. Thus, c[G] (px) = d[G] (vx, vx+1). As ν1 = (s, 0) and νz = (t, 1),
the path p indeed is a path between s and t. We show, for each subpath added to p, that
its length is not larger than the cost of the corresponding edge in Gs,t. We use Lemma 15
to classify the edges in π, and Definition 9 to bound the path cost:

Entry edge

d[G] (vx, vx+1) ≤ d
[
G0

h(s)

]
(vx, vx+1) = c[Es] (νx, νx+1).

Upward edge Set k := kx:

d[G] (vx, vx+1) ≤ d
[
Gk+1

i[k+1]

]
(vx, vx+1) = c

[
U k

i[k]

]
(νx, νx+1).

Level edge Set k := kx, too:

d[G] (vx, vx+1) = c
[
L k−1

i[k−1],j[k−1]

]
(νx, νx+1).

Downward edge Set k := −kx+1 (antisymmetrical to the “upward” case):

d[G] (vx, vx+1) ≤ d
[
Gk+1

j[k+1]

]
(vx, vx+1) = c

[
Dk

j[k]

]
(νx, νx+1).

Entry edge (antisymmetrical to the “entry” case):

d[G] (vx, vx+1) ≤ d
[
G0

h(t)

]
(vx, vx+1) = c[Xt] (νx, νx+1).

Thus, the length of px is never greater than the cost of the edge (νx, νx+1) in Gs,t. By
that, we can safely claim that p is at most as long as π.

(⇒) Fix an arbitrary path p = 〈v1, v2, . . . , vz〉 in G with v1 = s and vz = t. We show
that there exists, in Gs,t, a corresponding path π = 〈ν1, ν2, . . . , νw〉 with ν1 = (s, 0) and
νw = (t, 0) not longer than p.

3.5 Query 23

For the definition of the path, we use, for p, the index sequences x[k] and y[k] defined in
Lemma 10. Set π :=

〈
(s, 0), (vx[0], 1), . . . , (vx[m−1], m), (vy[m−1],−m), . . . , (vy[0],−1), (t, 0)

〉
.

As m > 0, the path contains at least the vertices (vx[m−1], m) and (vy[m−1],−m), apart from
start and end vertex. Yet to prove is that each adjacent vertex pair indeed is an edge in
Gs,t. For each vertex pair, we name a search space part from Definition 14 that contains
this vertex pair. Again, we distinguish between five cases:

Entry edge The edge ((s, 0), (vx[0], 1)) is present in the entry graph Es, because vx[0] is a
boundary vertex of G0

h(s).

Upward edge For 0 ≤ k < m − 1, the edge ((vx[k], k + 1), (vx[k+1], k + 2)) can be found
in the upward graph U k

i[k], for both vx[k] and vx[k+1] being boundary vertices for the

components Gk
i[k] and Gk+1

i[k+1], respectively.

Level edge The level graph L m−1
i[m−1],j[m−1] contains the edge (vx[m−1], m), (vy[m−1],−m), as

both vx[m−1] and vy[m−1] are boundary vertices for Gm−1
i[m−1] and Gm−1

j[m−1], respectively.

Downward edge For 0 ≤ k < m−1, the edge ((vy[k],−k−2), (vy[k+1],−k−1)) is present
in the downward graph Dk

j[k], in analogy to the “upward” case.

Exit edge The edge ((vy[0],−1), (t, 0)) appears in the exit graph Xt, this is antisymmet-
rical to the “entry” case.

To prove that π is not longer than p, we split p into subpaths and bound each edge of π
by the length of a distinct subpath:

p = p1→x[0] + · · ·+ px[m−2]→x[m−1] + px[m−1]→y[m−1] + py[m−1]→y[m−2] + · · ·+ py[0]→z.

We know from Corollary 13 that the start index of above subpaths is never larger than the
end index, so we may decompose p like that.

Throughout the following case differentiation, we use the definition of the search space
parts to bound the distance of a search space edge by a distance in some component of the
input graph and argue that the subpath does not leave that component:

Entry edge The cost of the entry edge ε := ((s, 0), (vx[0], 1)) can be bounded by the length
of p1→x[0]:

c[Es] (ε) = d
[
G0

h(s)

]
(s, vx[0])

≤ c
[
G0

h(s)

]
(p1→x[0]) = c[G] (p1→x[0]).

The second equality (line 2) follows from Corollary 5, owing to the fact that all
vertices with index smaller than x[0] are not separators at level 0.

24 3 FORMAL DESCRIPTION AND CORRECTNESS

Upward edge For 0 ≤ k < m− 1, we use the length of px[k]→x[k+1] to limit the cost of an
upward edge υ := ((vx[k], k + 1), (vx[k+1], k + 2)):

c
[
U k

i[k]

]
(υ) = d

[
Gk+1

i[k+1]

]
(vx[k], vx[k+1])

≤ c
[
Gk+1

i[k+1]

]
(px[k]→x[k+1]) = c[G] (px[k]→x[k+1]).

As in case 1, we obtain the second equality from the definition of x[k + 1] and
Corollary 5. Note that, for the given bounds for k, we use each of the subpaths

px[0]→x[1], . . . , px[m−2]→x[m−1]

exactly once.

Level edge The cost of the level edge λ := ((vx[m−1], m), (vy[m−1], m)) is not higher than
the length of px[m−1]→y[m−1]:

c
[
L m−1

i[m−1],j[m−1]

]
(λ) = d[G] (vx[m−1], vy[m−1])

≤ c[G] (px[m−1]→y[m−1]).

Downward edge Antisymmetrically to the “upward” case, we use, for 0 ≤ k < m − 1,
the length of px[k]→x[k+1] to bound the cost of a downward edge δ := ((vx[k],−k −
2), (vx[k+1],−k − 1)):

c
[
Dk

i[k]

]
(δ) = d

[
Gk+1

j[k+1]

]
(vy[k+1], vy[k])

≤ c
[
Gk+1

j[k+1]

]
(py[k+1]→y[k]) = c[G] (py[k+1]→y[k]).

Here, we employ every subpath

py[m−1]→y[m−2], . . . , py[1]→y[0]

exactly once.

Exit edge Finally, we perform the estimation for the exit edge ξ := ((vy[0],−1), (t, 0)) in
analogy to that of the exit edge, using py[0]→z:

c[Xt] (ξ) = d
[
G0

h(t)

]
(vy[0], t)

≤ c
[
G0

h(t)

]
(py[0]→z) = c[G] (py[0]→z).

Thus, we can bound each edge of π by the length of a corresponding subpath of p. We
use each subpath of p exactly once in this estimation. This proves that π indeed is not
longer than p.

We have explicitly stated, in both directions, for any path in one graph a corresponding
path in the other graph that is not longer. This shows that the distance between s and t
in G can be computed from that between (s, 0) and (t, 0) in Gs,t.

3.5 Query 25

Next, we will show how to compute the distance in a search space part graph in linear
time. As we shall see, any search space part graph is a DAG, i.e., it contains no paths with
the same start and end vertex. To show that, we define a relation for all vertices of the
search space graph Gs,t, show that it is a strict linear order and conclude that it is indeed
a topological sort for Gs,t in the forthcoming two lemmas.

Definition 17 (Relation for the vertices of Gs,t). We define a relation / for vertices of Gs,t

as follows:

• The vertex (s, 0) is the “minimum”: For all (v, kδ) ∈ V [Gs,t] \ {(s, 0)},

(s, 0) / (v, kδ).

• The vertex (t, 0) is the “maximum”: For all (v, kσ) ∈ V [Gs,t] \ {(t, 0)},

(v, kσ) / (t, 0).

• The other vertices are arranged in ascending order with respect to the value of the
disambiguator (second tuple component), except that vertices with positive disam-
biguator values are always arranged before vertices with negative disambiguator val-
ues in our relation. Formally, any two vertices (v1, kσ), (v2, kδ) ∈ V [Gs,t] with kσ 6= 0
and kδ 6= 0 are ordered as

(v1, kσ) / (v2, kδ)

iff one of the following conditions is true:

– 0 < kσ < kδ

– kσ < kδ < 0

– kδ < 0 < kσ

The relation is irreflexive and transitive. Hence, it is a strict linear order:

Lemma 18. The relation / is a strict linear order.

Proof. Irreflexivity is obvious. Transitivity can be proven by case differentiation.

The linear order is similar for all possible search space graphs. Source and drain ver-
tices are always minimum or maximum, respectively. For the other vertices, those that
originate in an upward graph are smaller than those from a downward graph; vertices
from an upward graph are smaller than those from any upward graph at a higher level;
and vertices from a downward graph are ordered before vertices from downward graphs at
lower levels. Intuitively, this order matches the sequence of visited vertices for any path
from source to drain in Gs,t. The following lemma formalizes that:

26 3 FORMAL DESCRIPTION AND CORRECTNESS

Lemma 19. The linear order / is a topological sort for Gs,t. That is, for any edge
((v1, kσ), (v2, kδ)) in Gs,t that is not a self-loop, the source vertex is smaller than the target
vertex in our linear order:

(v1, kσ) / (v2, kδ).

Proof. Fix an arbitrary edge ((v1, kσ), (v2, kδ)) in Gs,t with (v1, kσ) 6= (v2, kδ). We prove
the claimed relation by means of case differentiation by edge kind, in accordance with
Lemma 15:

Entry edge Here, the source node is the minimum in our partial order: (v1, kσ) = (s, 0).
The claim follows straight away.

Upward edge From Lemma 15 it follows, for this case, that kσ > 0 and kδ = kσ + 1. By
that, 0 < kσ < kσ, hence, our claim is satisfied.

Level edge Finally, for level edges, kσ > 0 and kδ = −kσ. Accordingly, it follows that
kδ < 0 < kσ, from which our claim follows.

Downward edge By antisymmetry to the second case, we have kσ < −1 and kδ = kσ +1
for this case. As the inequality kσ < kδ < 0 holds then, we conclude our claim for
this case, too.

Exit edge Antisymmetrically to the first case, the target node is the maximum in our
partial order for this case: (v2, kδ) = (t, 0).

We have concluded our claim for each possible case. This proves that indeed / is a topo-
logical sort for Gs,t.

According to [CLRS01], Sect. 22.4, p. 549, this makes the search space graph a DAG.
This enables us to run a query in linear time in terms of number of vertices and edges of the
search space. Likewise, in [CLRS01], Sect. 24.2, pp. 592-594, a source-target shortest-path
algorithm for arbitrary DAGs is presented and proven correct.

Algorithm 1 is a variant of that algorithm that is tailored to our search space graphs.
We do not need to explicitly compute the topological sort, as it is a structural property of
any search space graph.

The algorithm uses two procedures. The procedure update updates the distance labels
of all drain vertices for a given search space part. We call this procedure once for each
search space part. Before each call to update, all distance labels of the the current search
space part’s source vertices have already been computed, as we obey the order imposed by
our topological sort /. For the first call, there is only one source, namely, νs, the source of
the search space graph, for which we know the distance to be zero. The procedure update

calls relax once for each edge of the search space part graph. The “relaxation of an edge”
means the update of the distance label for an edge’s target vertex if the distance via the
edge’s source vertex is shorter than the previously known distance.

3.5 Query 27

Algorithm 1: Query algorithm.

foreach vertex ν of Gs,t do1

d[ν]←∞2

d[νs]← 03

initialize d to ∞ for all other vertices in Gs,t4

update(Es)5

for k ← 0 to m− 1 do6

update(U k
i[k])7

update(L m−1
i[m−1],j[m−1])8

for k ← m− 1 downto 0 do9

update(Dk
i[k])10

update(Xt)11

return d[νt]12

Procedure update(P)

forall source vertices ν1 of P do1

foreach drain vertex ν2 of P with c[P] (ν1, ν2) <∞ do2

relax(ν1, ν2)3

Procedure relax(ν1, ν2)

d[ν2]← min (d[ν2], d[ν1] + c(ν1, ν2))1

28 3 FORMAL DESCRIPTION AND CORRECTNESS

An execution of relax can be performed in constant time. Each run of update calls
relax for each edge exactly once, and enumerates all source and drain vertices. As we call
update once for each search space part, the algorithm requires linear time in the number
of vertices and edges in the search space graph.

Finally, we show how to deal with those queries where source and target lie in the same
home component. We offer two options:

1. For all components at level 0, precompute and store the distances between all pairs
of vertices.

2. Run a source-target query algorithm.

The first option tends to be tremendously expensive in terms of memory consumption.
Assuming a graph that has been decomposed in components of roughly the same size
r := |V |/|I0|, we need to store

|I0| · r2 =
|V |
|I0|
·
(
|I0| · |V |

|I0|

)
= r · |V |

distance values. If many queries for nearby vertices can be expected, this may seem feasible.
However, the vast majority of precomputed distances might never be queried for.

For the second option, we cannot assume that a shortest path will not leave the common
home component. However, we can efficiently determine the length of a shortest path that
contains a boundary vertex: Like in the general case, we can construct a search space
graph and query the distance between source and drain vertex. By setting m := 1, we can
use Gs,t from Definition 14 straight away. Note that no upward or downward graph will
be utilized in this case. Furthermore, as i[0] = j[0], we use a level graph that we would
never employ in the general case. Similarly to the proof of Theorem 16, we can prove that
the distance in the search space graph equals the length of the shortest among all paths
between s and t that contain at least one boundary node.

Thus, we can run a source-target query algorithm on the home component to determine
the distance inside the component, then compare this distance to the length of a shortest
path via a boundary vertex. The shortest of both distances is the length of a shortest path
in the whole input graph.

If the components at bottom level are small enough, we can employ Dijkstra’s algo-
rithm to determine the distance between two vertices in a bottom-level component. Yet
this approach is efficient only if the number of vertices in a bottom-level component is low.
For a large component at the bottom level, we can recursively apply the whole preprocess-
ing with this bottom-level component as input graph. Note that this is essentially different
from just adding one more level to the hierarchical decomposition. A detailed analysis is
beyond the scope of this work.

29

4 Optimization

We have introduced the general approach for our speed-up technique in the previous sec-
tion. In this section, we shall refine it by removing unneeded edges from the search space
parts and transforming the search space parts into equivalent graphs with fewer edges.
Both improvements reduce both size of the preprocessed data and query time, while main-
taining correctness.

We assume that the search space parts have been computed and stored as complete
bipartite graphs. The next section shows how the search space parts can be computed
efficiently.

4.1 Removal of Superseded Edges

Recall that the edges in the search space parts introduced in the previous section represent
shortest paths in some component of the input graph. For instance, an edge in an upward
graph represent a shortest path between boundary vertices at adjacent levels. The search
space parts are always used in connection with other search space parts to form a search
space graph where a distance query from source to drain is executed. If we can prove,
for an edge in a search space part, that its omission will not change the distance between
source and drain in any possible search space graph, we can safely remove it.

In this section, we will provide a sufficient condition for removing superseded edges
in upward graphs and prove that the removal can occur in arbitrary order. From that,
we derive a straightforward algorithm that removes all superseded edges from an upward
graph, and analyze its run time. We will also present, without proof, the corresponding
algorithms for downward and level graphs. For the remainder of this section, we will focus
on a fixed upward graph U k

i , unless stated otherwise.
Intuitively, an edge can be omitted if it represents a shortest path that immediately

re-enters the child component Gk
i . Figure 9 provides a detailed example. We can even

quote a slightly weaker condition that relies only on distances in child separator closures.
For this, we define a relation between edges of the same search space part. We can omit
those edges that are related, on the right-hand side, to any other edge:

Definition 20 (Supersedement). Let ν# = (v#, k + 1) and νy = (vy, k + 1) be two source
vertices, and ν∗ = (v∗, k + 2) be a drain vertex of U k

i . The edge (νy, ν∗) supersedes the
edge (ν#, ν∗), iff the following two conditions are fulfilled:

d
[
Gk

i

]
(v#, vy) > 0

d
[
Gk

i

]
(v#, vy) + c

[
U k

i

]
(νy, ν∗) ≤ c

[
U k

i

]
(ν#, ν∗).

In this case, we write
(νy, ν∗) lL (ν#, ν∗).

We call (νy, ν∗) the superseding and (ν#, ν∗) the superseded edge. (As for the vertex in-
dexes, intuitively, the looped arrow stands for a detour, while the curved arrow is supposed
to indicate a more direct path. The star symbolizes the common target of both edges.)

30 4 OPTIMIZATION

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

v1 v2

v3

v4

v5

G0

0

G0

1

G0

2G1

0

G0

3

G0

4

G0

5

G1

1

Es

U 0

0

L 1

0,0

D0

4

Xt

s, 0

v2, 1 v1, 1 v4, 1

v3, 2 v4, 2

v3,−2 v4,−2

v5,−1

t, 0

Figure 9: Superseded edges.
In the left-hand side drawing, the highlighted straight edges represent a shortest path between v1 and v3

in G1
0. The curved edges represent distances that are used to create U 0

0 . The corresponding edges in the
upward graph are shown in bold in the drawing at the right.
As a shortest path from v1 to v3 visits v2 before leaving G0

0, we can safely claim that any path from any
vertex in G0

0 to v3 via v1 cannot be shorter than a shortest path to v3 via v2: For any shortest path via v1,
there is an equally short path that uses both v1 and v2, but does not leave G0

0 before reaching v2. Thus, the
distance between v1 and v3 serves no purpose for the upward graph U 0

0 , and the corresponding edge in the
upward graph can be removed. In this case, the edge ((v2, 1), (v3, 2)) supersedes the edge ((v1, 1), (v3, 2)).

We use the supersedement relation as an indicator when to omit edges. We shall show,
in the next lemma, that we are able to omit any superseded edge.

Lemma 21. For an arbitrary search space graph Gs,t that contains U k
i (i.e., s ∈ Gk

i and t
“far enough” from s), let ν# = (v#, k + 1) and νy = (vy, k + 1) be two source vertices,
and ν∗ = (v∗, k + 2) be a drain vertex of U k

i . Furthermore, let (νy, ν∗) supersede (ν#, ν∗),
i.e.,

(νy, ν∗) lL (ν#, ν∗).

Then, for any shortest path between source and drain of the search space graph that contains
the superseded edge, there exists another path that has the same length and contains the
superseding edge instead.

Proof. (Sketch.) Fix arbitrarily s, t ∈ V so that Gs,t contains U k
i according to Definition 14.

Fix a shortest path π = 〈ν1, ν2, . . . , νz〉 between source and drain of the search space graph
that contains the superseded edge, i.e., with ν1 = νs, νz = νt, νx = ν# and νx+1 = ν∗. (Note
that the edge (νx, νx+1) is contained in U k

i .) For π1→(x+1), the subpath of π between νs and
ν∗, we are going to find an equally long path π′′, also between νs and ν∗, that contains νy
instead of ν#. The concatenation of π′′ and π(x+1)→z is a path between νs and νt that is
as long as π and contains νy instead of ν#. Thus, by presenting an appropriate path π′′,
we will have satisfied our claim.

Let π′ be a shortest path between νs and νy. Then, by concatenating π′ and the
superseding edge (νy, ν∗), we obtain a path π′′ between νs and ν∗ that is as long as π1→(x+1):

π′′ := π′ + (νy, ν∗).

4.1 Removal of Superseded Edges 31

The following backward argumentation proves that the lengths of π′′ and π1→(x+1) are
equal. For a transition, the expressions that have changed are highlighted. Some of the
non-obvious transitions are marked with a number on the right and explained in detail
below:

c[Gs,t] (π
′′) = c[Gs,t] (π1→(x+1))

⇔ c[Gs,t] (π
′) + c[Gs,t] (νy, ν∗) = c[Gs,t] (π1→(x+1))

⇐ c[Gs,t] (π
′) + c[Gs,t] (νy, ν∗) ≤ c[Gs,t] (π1→(x+1)) (1)

⇔ c[Gs,t] (π
′) + c[Gs,t] (νy, ν∗) ≤ c[Gs,t] (π1→x) + c[Gs,t] (ν#, ν∗)

⇔ c[Gs,t] (π
′)− c[Gs,t] (π1→x) ≤ c[Gs,t] (ν#, ν∗)− c[Gs,t] (νy, ν∗)

⇔ d[Gs,t] (νs, νy)− d[Gs,t] (νs, ν#) ≤ c
[
U k

i

]
(ν#, ν∗)− c

[
U k

i

]
(νy, ν∗) (2)

⇐ d[Gs,t] (νs, νy)− d[Gs,t] (νs, ν#) ≤ d
[
Gk

i

]
(v#, vy) (3)

⇔ d
[
Gk

i

]
(s, vy)− d

[
Gk

i

]
(s, v#) ≤ d

[
Gk

i

]
(v#, vy) (4)

⇔ d
[
Gk

i

]
(s, vy) ≤ d

[
Gk

i

]
(s, v#) + d

[
Gk

i

]
(v#, vy).

Because the triangle inequality always holds for distance functions in graphs, we have
proven our claim by that. We explain the logical transitions that have been marked with
a number on the right as follows:

1. As π is a shortest path, its subpath π1→(x+1) is also a shortest path. No other path
can be shorter.

2. (Left.) The path π1→x is a subpath of a shortest path, which makes it a shortest
path, too. The path π′ is a shortest path by definition. Hence, we can replace path
cost by distance.

(Right.) The edges (ν#, ν∗) and (νy, ν∗) both are contained in the upward graph U k
i .

3. (Right.) By rewriting the definition of supersedement:

d
[
Gk

i

]
(v#, vy) ≤ c

[
U k

i

]
(ν#, ν∗)− c

[
U k

i

]
(νy, ν∗).

4. (Left.) A shortest path between νs and νx in Gs,t represents a shortest path between s
and v# in Gk

i . The next lemma states that the lengths of both paths match.

We provide the next lemma as final brick for the proof of Lemma 21. It is, in a way,
similar to our main theorem: We prove that the distance from the source vertex νs to
any other vertex ν of the search space graph matches the corresponding distance in some
component of G. The proof can be found in the appendix.

Lemma 22. For any pair of vertices s, t ∈ V with h(s) 6= h(t), and for any vertex ν =
(v, k + 1) of Gs,t with k ≥ 0, the distance between νs and ν in Gs,t equals the distance
between s and v in Gk

i[k]:

d[Gs,t] (νs, ν) = d
[
Gk

i[k]

]
(s, v).

32 4 OPTIMIZATION

We have proven that we can remove any one superseded edge without changing the
distance between source and drain. In fact, we can iteratively remove all edges that feature
a superseding edge. For that, we show that our supersedement relation indeed imposes an
order:

Lemma 23. The relation lL is a strict partial order. That is, it is irreflexive and transi-
tive.

Proof. (Sketch.)

Irreflexivity Both
((vy, k), (v∗, k + 1)) lL ((v#, k), (v∗, k + 1))

and
((v#, k), (v∗, k + 1)) lL ((vy, k), (v∗, k + 1))

at the same time would imply

d
[
Gk

i

]
(v#, vy) = −d

[
Gk

i

]
(vy, v#),

from which by non-negativity of edge costs would follow

d
[
Gk

i

]
(v#, vy) = 0,

a contradiction to the definition of supersedement.

Transitivity Effectively by triangle inequality of the distance in graphs.

As our supersedement relation lL is a strict partial ordering, we can conclude that each
transitive sequence has an endpoint. If we repeatedly apply Lemma 21, such an endpoint
edge can never be removed. By that, for each candidate edge that has a superseding edge,
there always exists a superseding edge that will remain in the upward graph and that
we can use for Lemma 21 at any time in the process. Because no edge removal forbids
other edges to be removed that could have been before, we can remove superseded edges
in arbitrary order. This is what Algorithm 4 does:

Algorithm 4: Removal of superseded edges.

forall drain vertices ν∗ of U k
i do1

forall source vertices νy of U k
i do2

forall source vertices ν# of U k
i do3

if (νy, ν∗) lL (ν#, ν∗) then4

c
[
U k

i

]
(ν#, ν∗)←∞5

Symmetrically, we can provide a similar supersedement relation for downward graphs:

4.1 Removal of Superseded Edges 33

Definition 24 (Supersedement in downward graphs). In a downward graph Dk
i , an edge

(ν∗, νy) supersedes another edge (ν∗, ν#) iff the following two conditions are fulfilled:

d
[
Gk

i

]
(vy, v#) > 0

c
[
Dk

i

]
(ν∗, νy) + d

[
Gk

i

]
(vy, v#) ≤ c

[
Dk

i

]
(ν∗k + 1, ν#k).

In this case, we write
(ν∗, νy) lR (ν∗, ν#).

The relation lR specifies removable edges in downward graphs just as lL did for upward
graphs. The proof for that would be completely symmetrical to the one for the upward
graphs. For the sake of completeness, we present Algorithm 5 that performs removal of
superseded edges.

Algorithm 5: Removal of superseded edges for downward graphs.

forall source vertices ν∗ of Dk
i do1

forall drain vertices νy of Dk
i do2

forall drain vertices ν# of Dk
i do3

if (ν∗, νy) lR (ν∗, ν#) then4

c
[
Dk

i

]
(ν∗, ν#)←∞5

Finally, for a level graph L k
i,j, we can use both supersedement relations to check if we

can omit an edge. The intuition behind that is, that a shortest path can either immediately
re-enter the source component Gk

i and leave it via another boundary vertex on its way to
Gk

j , or that it can enter the drain component Gk
j via another boundary vertex and reach

the target from inside Gk
j , or even both. By subsequential execution of both Algorithms 4

and 5 we can remove all superseded edges in a level graph. The proof for that is essentially
a repetition of the proof for upward and downward graphs: For level graphs, both source
and drain vertex are connected to an upward or a downward graph, respectively.

For a search space part P, let |Σ| and |∆| denote the number of source and drain
vertices. As each algorithm features a triply nested loop, we can state the following run
times for removing the superseded edges:

Upward graphs O(|Σ|2 · |∆|)

Downward graphs O(|Σ| · |∆|2)

Level graphs O(|Σ| · |∆| · (|Σ|+ |∆|))
In practice, the values of |Σ| and |∆| are usually below 100, so we can afford a cubic
algorithm here. Any optimal algorithm for this problem needs to check at least once each
edge of the search space part, which, in general, requires

O(|Σ| · |∆|)

run time.

34 4 OPTIMIZATION

4.2 Construction of Equivalent Graphs

A search space part has been defined as a complete directed bipartite graph. Recall that
in our query algorithm (Algorithm 1) we used the search space parts as parameters to the
procedure update that updated the distance labels for all drain vertices. We are free to
modify the implementation of update, provided that its functionality is preserved.

In particular, we can replace a search space part by an equivalent DAG. Here, equiva-
lence means that the substitute has at least the same set of source and drain vertices, plus
an arbitrary number of new, unique vertices, and that the distance between each pair of a
source and a drain vertex matches the cost of the corresponding edge in the search space
part. By reducing the number of edges used, we reduce both storage space for this search
space part and query time for the search space graphs this search space part is used in.
We use the term minimization to denote such a replacement in general.

First of all, we shall show why we expect a minimization to result in a reduction of the
number of edges if road map graphs are used as input graph. The edges in a search space
part represent shortest paths between boundary vertices in the input graph. These shortest
paths cannot be disjoint for a planar input graph if both components have more than two
boundary vertices. (If the paths were disjoint, the graph formed of these paths, a subgraph
of the input graph, could be reduced to the Kuratowski graph K3,3, in contradiction to
planarity.) Moreover, many shortest paths may share a common vertex — the further the
components are from each other, the more probable this becomes. Even if not all paths
share a common vertex, often we can find an equivalent graph with considerably fewer edges
than the complete bipartite graph. Figure 10 illustrates how the graph formed by unifying
shortest paths between source and drain vertices can be shrunken to yield an equivalent
graph with fewer edges. We refer to this minimization technique as path overlay. — As
road map graphs can be considered “almost planar”, above applies to them to a very high
degree, too.

For the ideal case, imagine a decomposition of the road map graph of Europe where
both London and Paris result in a top-level component. For a query from a point in London
to a point in Paris, the search space graph would include the level graph between London
and Paris. Now, any shortest path from any point in London to any point in Paris most
probably crosses the English Channel via ferry between Dover and Calais. To render all
distances between all pairs of boundary vertices, it is sufficient to keep the distance from all
boundary vertices of London to Calais, and from Calais to all boundary vertices of Paris,
instead of keeping all distances between all pairs. If many boundary vertices are affected,
the saving is enormous.

In this work, a source-drain graph that has an equivalent directed star graph is called
perfectly minimizable. For our example, the level graph between London and Paris has this
property. In Figure 11, we show an example of a better optimization than in Figure 10
and identify a perfectly minimizable subgraph.

For the minimization problem, we offer a heuristic approach called star minimization
that uses weighted bipartite graphs as input. By that, we can optimize even if we do
not know the structure of the paths behind a search space part, as opposed to the path

4.2 Construction of Equivalent Graphs 35

δ1

δ2

δ3

δ4

σ1

σ2

σ3

σ4

�

�

�

�

�
�

�

��

	

�

�

�

�

��

�

�

�

�

�

�

δ1

δ2

δ3

δ4

σ1

σ2

σ3

σ4

�

�

�

�

�
�

�

��

	

�

�

�

�

��

�

Figure 10: Minimization by path overlay (1).
The drawing at the left shows a directed weighted graph. The highlighted edges are contained in at least
one shortest path between any source vertex at the left to any drain vertex at the right.
In the right-hand side drawing, the shaded edges are those that participate in a shortest path. The other
edges have been omitted. The bold curved edges are the result of the contraction of all vertices with
indegree or outdegree of one; the distance between any source and any drain in the graph made of the
curved edges matches that in the original graph. It contains 12 edges, which is four fewer than the number
of distinct pairs of source and drain vertices.

overlay technique. The algorithm is robust and comparatively simple. Again, we denote
missing edges by infinite edge costs. The heuristics performs well in practice, and we
propose extensions and further options. As for our speed-up technique, the minimization
constitutes an optimization and not a requirement, we are content with a potentially
suboptimal solution here.

In the remainder of the current subsection, we present our heuristic approach by pro-
viding a description and pseudocode. We also analyze briefly the run time requirement
for our heuristics. At the end, in Figure 12, we offer a visual description for the most
important stages of the heuristics.

Unlike the optimization by supersedement shown in the previous subsection, we do
not need to consider the context a search space part is used in. Owing to that, in this
subsection we examine directed bipartite graphs with vertex set V := Σ∪∆ for disjoint Σ
and ∆. We call Σ the source vertex set and ∆ the drain vertex set and allow only edges
from a source to a drain vertex. We use the term bipartite source-drain graph to denote
such a graph.

Our heuristics tries to minimize the number of edges by introducing exactly one addi-
tional vertex, called center vertex or center and denoted by ζ. We add edges to and from
the central vertex in hope that many edges between a source and a drain vertex have the
same length as a path via the central vertex and thus can be removed afterwards. The
newly added edges are denoted by the term central edge. In contrast, the edges of the
complete bipartite graph are referred to as original edges or source-drain edges .

Obviously, we may not insert central edges that result in a shorter path than before
between any source and drain vertex. However, we allow central edges to have negative

36 4 OPTIMIZATION

δ1

δ2

δ3

δ4

σ1

σ2

σ3

σ4

�

�

�

�

�
�

�

��

	

�

�

�

�

��

�

δ1

δ2

δ3

σ1

σ2

σ3

σ4

�

�

�

�

�
�

�

��

	

�

�

�

�

�

Figure 11: Minimization by path overlay (2).
The contracted graph from Figure 10 at the right is not the minimum equivalent graph in terms of number
of edges: The drawing at the left shows an equivalent graph with 11 edges. In this special case, we can
save one edge by contracting a vertex of both indegree and outdegree two.
Observe that if the drain vertex δ4 is not considered, the graph is perfectly minimizable. This is shown in
the drawing at the right.

costs. By the insertion of central edges, a source-drain edge becomes obsolete iff its cost
equals the length of a shortest path via center. Obsolete edges can be removed without
affecting the distance between any source vertex and any drain vertex.

Before presenting the pseudocode, we shall introduce one of the most important con-
cepts in our heuristics. The gain from the central edges is defined to be the number of
obsolete edges minus the number of central edges. We try to construct a cost function for
the central edges that maximizes the gain. We foreclose that, in our pseudocode, for a
given set of source and drain vertices and a given cost function, the function computeGain

returns the gain defined above. Later, we present the pseudocode for this function and
explain it.

Algorithm 6 presents a pseudocode for our heuristic approach. We shall describe it in
detail. In Figure 12, we provide an example for the most important stages of the algorithm.

First, we add the central vertex ζ to our graph. The main loop that starts in line 2
iterates over all source vertices. We call ρ the root vertex of each iteration. (Each source ver-
tex is treated exactly once as root vertex.) Then, the root vertex is connected to the central
vertex with an edge of cost zero. In turn, the central vertex gets connected to all drain
vertices with costs that match the cost of the original edge from root to the corresponding
drain. We use the term root edge to denote an edge added in this initialization phase,
i.e., an edge from root to center or from center to any drain. The costs of the root edges
remain unchanged for a fixed root vertex. For each root vertex, we use a distinct drain
vertex set ∆σ, as we intend to exclude, for each source vertex, a potentially different set
of gain-reducing drain vertices.

Due to the root edges, we can omit all edges from root to any drain. Yet no gain
is achieved by that transformation — on the contrary, the graph contains one additional
edge, the edge from root to center. (The function computeGain would return −1.)

4.2 Construction of Equivalent Graphs 37

Algorithm 6: Star minimization of a source-drain graph.

add a new vertex ζ as central vertex1

forall source vertices ρ ∈ Σ (root vertex) do2

c(ρ, ζ)← 03

forall drain vertices δ ∈ ∆ do c(ζ, δ)← c(ρ, δ)4

gold ← alterCostFunction(ρ, ζ, Σ, ∆, c)5

∆ρ ← ∆6

repeat7

gbest ← −∞8

forall drain vertices δ′ ∈ ∆ρ do9

gcnt ← alterCostFunction(ρ, ζ, Σ, ∆ρ \ {δ′}, c)10

if gbest < gcnt then11

gbest ← gcnt12

δbest ← δ′13

if gbest >= gold then14

∆ρ ← ∆ρ \ {δbest}15

c(ζ, δbest)←∞16

gold ← gbest17

until gbest < gold18

memorize gbest and ∆ρ19

return of all root vertices, the minimized graph with the best gain20

The root vertex, the central vertex and the source and drain vertex sets are passed to
alterCostFunction function as arguments. This function finds, for a given set of drain
vertices, a cost function that leads to the maximal gain under the restriction that costs for
root edges are not modified. We shall explain it in detail before returning to the description
of the algorithm.

In the function alterCostFunction, for all source vertices σ except the root vertex,
the minimum length of an edge to the central vertex is computed and assigned to the cost
function c. Recall that we can add a central edge only if it does not shorten existing paths.
As we do not alter costs for root edges, this imposes a minimum length for an edge from
a source vertex to a central vertex, and we use this minimum for each new central edge.
The minimum is stored in cmin, it is initialized with −∞. For each drain vertex, we check
if it requires the cost of the current edge from source to center to be higher, and adjust
it accordingly. Note that we use a local set of drain vertices that does not necessarily
contain all drain vertices from our source-drain graph: In subsequent passes, we remove
drain vertices that lead to a low gain. If, after considering all drain vertices, the resulting
minimum is ∞, we effectively add an edge of infinite cost, i.e., we omit this central edge.
Conversely, for −∞, the edge cost does not matter, and we can skip the edge and also set
its cost to ∞. Finally, as a courtesy to the caller, the function returns the gain that is

38 4 OPTIMIZATION

Function alterCostFunction(ρ, ζ, Σ, ∆, c)

forall source vertices σ ∈ Σ \ {ρ} do1

cmin ← −∞2

forall drain vertices δ ∈ ∆ do3

if c(σ, δ) 6=∞∨ c(ρ, δ) 6=∞ then4

ccnt ← c(σ, δ)− c(ρ, δ)5

if cmin < ccnt then6

cmin ← ccnt7

if cmin = −∞ then8

cmin ←∞9

c(σ, ζ)← cmin10

return computeGain(ζ, Σ, ∆, c)11

obtained for the modified cost function.
The function alterCostFunction generates the cost function with the best gain pos-

sible for the provided set of drain vertices under the restriction that no root edge is mod-
ified. If any of the altered edges from source to center had a lower cost than computed
by alterCostFunction, there would be a source-drain edge with costs higher than the
corresponding path via center.

Now, we analyze how our minimization algorithm employs alterCostFunction. First,
the cost function for the unchanged drain vertex set ∆ is computed in line 5. Between
lines 9 and 13, the algorithm computes, for all drain vertices, the gain that would result
if this drain vertex was removed. If we can, by removing a drain vertex, achieve a better
gain, in lines 14-17, the drain vertex whose removal induces the best gain is finally removed
from our set of drain vertices ∆ρ, and the next iteration starts where the algorithm looks
for yet another drain vertex to be removed. If no better gain is possible by removing a
single drain vertex, the algorithm memorizes the set of drain vertices that lead to the best
gain for this root vertex, and continues by using the next source vertex as root, if possible.

Finally, after all source vertices have been processed as root vertex, we use the root
vertex that produced the globally best gain and construct the corresponding minimized
graph. Essentially, the construction is performed like in the function alterCostFunction,
except that, in addition, edges with matching lengths are removed.

At last, we shall present the function computeGain. The function starts with a gain of
zero, stored in the variable g. In the lines 1-5, for each pair of source and drain vertex, the
cost of the source-drain edge is compared to the length of the path via the central vertex.
If the edge cost matches the length of the path, we can later omit the source-drain edge,
and thus increment the gain. Between line 6 and 9, we subtract, from the gain, the number
of newly added edges to and from the central vertex. Ultimately, we return the gain that
is stored in g.

We cannot guarantee optimality for the solution returned by the algorithm. However,

4.2 Construction of Equivalent Graphs 39

Function computeGain(ζ, Σ, ∆, c)

g ← 01

forall source vertices σ ∈ Σ do2

forall drain vertices δ ∈ ∆ do3

if (σ, δ) 6=∞ then4

if c(σ, ζ) + (ζ, δ) = (σ, δ) then g ← g + 15

forall source vertices σ ∈ Σ do6

if c(σ, ζ) 6=∞ then g ← g − 17

forall drain vertices δ ∈ ∆ do8

if c(ζ, δ) 6=∞ then g ← g − 19

return g10

if the graph is perfectly minimizable, our algorithm finds the best solution.
The algorithm in its pure form needs

O(|Σ|2 · |∆|3)

time to complete in the worst case: For each of the |Σ| source vertices, we need at
most |∆| iterations of the repeat loop that starts at line 7, each requiring O(|∆|) calls
to alterCostFunction. In turn, alterCostFunction needs O(|Σ| · |∆|) run time, as it
includes a nested loop for all pairs of source and drain vertices. The function computeGain,
called by alterCostFunction, requires asymptotically the same time for similar reasons.

For our implementation, we have reduced the worst-case run time to

O(|Σ|2 · |∆|2)

with a modification to alterCostFunction: We simultaneously compute, for each drain
vertex, the gain that results in its removal. Another optimization that we have implemented
is, that the algorithm quits immediately once a perfect minimization has been found. As
the source and drain vertex sets usually contain no more than 100 vertices, in total, we
can afford to employ this algorithm.

Of course, we are not obliged to perform the star optimization if it results in a negative
gain. This is especially true if we have only one source or only one drain vertex. In this
case, we simply skip this optimization step.

As the graph produced by the star optimization is a DAG, we can afford negative edge
costs without possible penalties for the query time. This is essential, as we might be able
to produce a better gain with negative edges allowed. Recall from the previous section
that we used the procedure update to update the distance labels of all drain vertices of a
search space part, once the distance labels to all source vertices have been computed. We
need only a slight modification to the update procedure: After all edges that originate in a
source vertex have been visited, we visit all edges that originate in the central vertex. For
the sake of completeness, we present a revision of the update procedure called updateStar.

40 4 OPTIMIZATION

Procedure updateStar(P, ζ)

forall source vertices ν1 of P do1

foreach drain vertex ν2 of P with c[P] (ν1, ν2) <∞ do2

relax(ν1, ν2)3

relax(ν1, ζ)4

foreach drain vertex ν2 of P with c[P] (ζ, ν2) <∞ do5

relax(ζ, ν2)6

Another possible argumentation is that the central vertices perfectly fit in our topolog-
ical sort / for the vertices of a search space graph, and that a search space graph composed
of star-minimized search space parts remains a DAG.

The star optimization can be easily combined with the removal of superseded edges:
Both optimizations remove source-drain edges, and only the star optimization adds new
vertices and edges. By that, we can remove a source-drain edge either if it is super-
seded or obsoleted by a path via center. We can fine-tune the combination by improving
computeGain so that only those edges are counted as obsolete that have not been already
superseded.

Further enhancements of our heuristics are possible, but were beyond the scope of this
work. For instance, we could allow more than one central vertex. Also, minimization by
path overlay as in Figures 10 and 11 could produce good results.

4.2 Construction of Equivalent Graphs 41

σ1

σ2

σ3

σ4

δ1

δ2

δ3

δ4

ζ

σ1

σ2

σ3

σ4

δ1

δ2

δ3

δ4

σ1

σ2

σ3

σ4

δ1

δ2

δ3

δ4

ζ

σ1

σ2

σ3

σ4

δ1

δ2

δ3

δ4

σ1

σ2

σ3

σ4

δ1

δ2

δ3

δ4

ζ

σ1

σ2

σ3

σ4

δ1

δ2

δ3

δ4

σ1

σ2

σ3

σ4

δ1

δ2

δ3

δ4

ζ

σ1

σ2

σ3

σ4

δ1

δ2

δ3

δ4

Figure 12: Star minimization of a source-drain graph.
In this figure, we use the bidirected source-drain graph induced by the distances between source and drain
vertices in Figures 10 and 11.
The drawing at the top left shows the result of the initialization phase (lines 3 to 4 of Algorithm 6) for
σ2 as root vertex. The cost of the edge from σ2 to the central vertex ζ equals zero, the cost of each edge
from the central vertex to any drain vertex equals the cost of the edge from the root vertex to this drain
vertex. The highlighted edges represent the newly added edges, their cost is fixed for this root vertex.
The drawing at the top right shows the edges added by the function alterCostFunction in lines 1 to 9.
The costs of the new edges are minimal under the restriction that no path from any source to any drain
vertex via the central vertex is shorter than the corresponding edge.
In the two drawings at the bottom, we present a hypothetical example. We cannot conclude which edges
need to remain in the graph without specifying edge costs. Instead, we assume that edge costs have been
chosen so that above situation arises. (Assume that the distance between σ2 and δ4 is large compared to
the distance from σ2 to all other drain vertices.)
The drawing at the bottom left shows a source-drain graph after the first execution of alterCostFunction
in line 5. The shaded edges are obsolete. Note that the gain is negative here: We need eight new central
edges, but only six source-drain edges become obsolete.
In the right-hand side drawing, the same is shown if δ4 is deleted from the set of drain vertices ∆ρ for this
root vertex. Now, we need to keep all edges to δ4, as this vertex cannot be reached via the center anymore.
However, many other edges become obsolete now: We achieve a total gain of 5, which is as good as with
the sophisticated contraction presented in the left-hand side drawing of Figure 11.

42 4 OPTIMIZATION

43

5 Preprocessing Algorithm

In the previous two sections, we have shown how our speed-up technique works in general
and presented options for further optimization. The current section is devoted mainly to the
preprocessing procedure. We show in detail how to produce the preprocessing information
for a given input graph, and prove the correctness of our algorithm. Furthermore, we
investigate the data flow of our algorithm and provide a parallelization scheme. The
description of both algorithm and parallelization scheme highly conforms to the actual
implementation. We use a given hierarchical decomposition of an input graph to produce
unoptimized search space parts, i.e., complete bipartite graph. These can be subsequently
optimized, as shown in the previous section.

Recall that we used search space parts of different kinds to compose a search space
graph. To be able to answer a shortest-path query for an arbitrary pair of vertices, we
need to precompute, optimize and store all search space parts that possibly might be
required. In total, we need the following search space parts:

• We need to be able to get from any vertex in the input graph to its boundary verti-
ces, and back. That is, for each vertex v ∈ V , we need the entry and exit graphs Ev

and Xv.

• Once we are at a boundary vertex, we may need to move to boundary vertices at
higher levels, and back. In other words, for each k ∈ {0, . . . , n − 2} and for each
i ∈ Ik, we need the upward and downward graphs U k

i and Dk
i .

• Finally, we connect boundary vertices of components at the same level that share
their parent component. To put it another way, we need, for each k ∈ {0, . . . , n− 1}
and for each i, j ∈ Ik with i 6= j and fk(i) = fk(j), the level graph L k

i,j.

Note that, for n = 1, we do not use any upward or downward search space parts.
It is very expensive, in terms of run time, to compute all search space parts näıvely,

through multiple runs of Dijkstra’s single-source algorithm: Potentially, each source ver-
tex of each level graph requires all vertices and edges of the input graph to be considered.
Fortunately, we can use the properties of the hierarchical decomposition to design an
efficient preprocessing algorithm.

Here, we assume that the graph already has been decomposed hierarchically, i.e., that
a hierarchical decomposition according to Section 3.3 has been provided. Apart from that,
the preprocessing consists of two stages:

Distances between separators For each component at each level, we compute and store
the distance between all pairs of vertices that are separators one level beneath. This
preprocessing stage serves as a base for the actual computation of the search space
parts.

Search space parts Once all of the above distances have been computed, we can fairly
easily extract all entry, exit, upward and downward search space parts from this
information, and need only a little more work to compute all level graphs.

44 5 PREPROCESSING ALGORITHM

We present, in detail, each preprocessing stage. Finally, we explain how the algorithm can
be parallelized.

5.1 Child Separator Subset Closure

The goal of this preprocessing stage is to determine, for each parent component in the
hierarchy, the distances between the boundary vertices of the child components. By design,
we do not take into account paths that leave the parent component here.

To formalize this, we define for k ∈ {1, . . . , n} the set of child separators Ck
i — vertices

of the component Gk
i that are separators one level below:

Ck
i = V k

i ∩ Sk−1.

From Lemma 8, we immediately derive Bk
i ⊆ Ck

i . Furthermore, the equality Cn
0 = Sn−1

holds: The child separators of the universe are exactly the top-level separators.
Now we can formulate our problem as follows: Compute the subset closure

Gk
i (V

k
i , ck

i)
∣∣
Ck

i

for each k ∈ {1, . . . , n} and i ∈ Ik. We use the term child separator subset closure (in
short, child separator closure) to denote this special subset closure.

For k = n, above formula converts into

G(V, c)|Sn−1 .

That is, we compute the distance between all top-level separator vertices for this choice
of k.

In the following proofs, we often use another special subset closure, the one created by
restricting a component to its boundary vertices:

Gk
i (V

k
i , ck

i)
∣∣
Bk

i
.

We call this the boundary closure of a component Gk
i .

To compute the child separator subset closures, we employ a bottom-up approach,
bearing in mind that subpaths of shortest paths are shortest paths themselves. That is,
for k > 1, we use the already computed closures at level k − 1 to compute the closures at
level k. The initial source for the child separator closures at level 1 are the components at
the lowest level. Algorithm 10 outlines the basic procedure.

This algorithm saves us from the necessity of keeping the potentially huge input graph
in memory at the time of preprocessing. In turn, this improves the benefit from a paral-
lelization of the preprocessing.

We prove the next lemma to specify more precisely the informal algorithm mentioned
above. Figure 13 provides an intuitive description for the next lemma. From the lemma, we
also conclude the algorithm’s correctness in the forthcoming corollary. Finally, we specify
the same algorithm more precisely by using actual operations in place of the loose textual
representation.

5.1 Child Separator Subset Closure 45

Algorithm 10: Computation of child separator closures (brief)

forall i ∈ I1 do1

compute G1
i |C1

i
from the child components of G1

i2

for k ← 2 to n do3

forall i ∈ Ik do4

join all Gk−1
i′

∣∣
Ck−1

i′
with i′ ∈ Hk

i5

compute Gk
i

∣∣
Ck

i
from the join6

Lemma 25. For all k ∈ {1, . . . , n} and for all i ∈ Ik, define the boundary closure union
as the graph union of all boundary closures for all child components of Gk

i :

Ḡk
i :=

⋃
i′∈Hk

i

(
Gk−1

i′

∣∣
Bk−1

i′

)
.

Then, for any pair of source and target vertices s, t ∈ Ck
i , the distance in the component Gk

i

can be computed from that in the boundary closure union Ḡk
i :

d
[
Gk

i

]
(s, t) = d

[
Ḡk

i

]
(s, t) .

Proof. (Sketch) Fix arbitrary s, t ∈ Ck
i . We prove this lemma by showing that there exists,

for each path between s and t, a corresponding path in Ḡk
i , also between s and t, with at

most the same length; and vice versa. Then, we can conclude that the distance must be
the same in both graphs. This technique is similar to that used in the proof of our main
theorem.

(⇐) The proof for this direction essentially constitutes an edge-wise expansion of an
arbitrary path in the boundary closure union Ḡk

i to one in the component Gk
i . This

expansion cannot increase path length, as we shall see.
Fix an arbitrary path p̄ = 〈v1, v2, . . . , vz〉 in Ḡk

i with v1 = s and vz = t. For each
x ∈ {1, . . . , z − 1}, fix a shortest path px := 〈vx, . . . , vx+1〉 in Gk

i . Such a path must exist,
otherwise the edge (vx, vx+1) would have infinite costs, in contrary to the path property
of p̄.

We create the corresponding path p in Gk
i by adding, to p̄, the intermediate vertices of

the path px between each pair (vx, vx+1). The cost of an edge in p̄ can be bounded by the
length of the corresponding path in Gk

i :

c
[
Gk

i

]
(px) = d

[
Gk

i

]
(vx, vx+1) ≤ min

i′∈Hk
i

d
[
Gk−1

i′

]
(vx, vx+1) = c

[
Ḡk

i

]
(vx, vx+1).

Intuitively, a hop in p̄ corresponds to multiple hops in p, the total cost of those hops in p
matches the cost of the single hop in p̄. As this inequality holds for each edge of p̄, our
claim is satisfied.

46 5 PREPROCESSING ALGORITHM

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

v1 v2

v3

v4

v5

G0

0

G0

1

G0

2G1

0

G0

3

G0

4

G0

5

G1

1

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

v1 v2

v3

v4

v5

G1

0

G1

1

Figure 13: Child separator closure graph.
In the left-hand side drawing, a path p between v3 and v4 in G1

0 is highlighted. The corresponding path p̄
in Ḡ1

0 is denoted by double-lined edges, which themselves represent shortest paths in different components:
The edge (v3, v1) represents a shortest path in G0

1, whereas the edge (v1, v4) stands for a shortest path
in G0

0.
For the proof of Lemma 25, observe the following: If p̄ was a shortest path in the boundary closure
union Ḡ1

0, its edges would correspond to a shortest path in G1
0. Conversely, if p was a shortest path in G1

0,
its length would be the same as the length of p̄.
The double-lined edges in the drawing on the right represent all edges of the child separator closure G1

0

∣∣
C1

0
.

All pairs of vertices in C1
0 = {v1, v2, v3, v4} are connected in this subset closure. Edge costs denote lengths

of shortest paths in G1
0. Corollary 26 states that we can compute this closure from the corresponding

boundary closure union Ḡ1
0 = G0

0

∣∣
B0

0
∪ G0

1

∣∣
B0

1
.

(⇒) For this direction, we perform a path contraction for a path in Gk
i , leaving only

the vertices that are contained in the boundary closure union Ḡk
i . We show that this

contraction does not increase the length of the path.
Fix an arbitrary path p = 〈v1, v2, . . . , vz〉 in Gk

i with v1 = s and vz = t. The corre-
sponding path p̄ in Ḡk

i is obtained by removing all vertices from p that are not in Ck
i . (The

vertices s and t remain in the path, since they are in Ck
i by definition.) This is not exactly

the inverse operation to (⇐), since the removed vertex sequences do not necessarily repre-
sent the intermediate vertices of shortest paths in Gk

i . However, for two vertices vx, vy ∈ Ck
i

of p with y smallest so that y > x, the path px→y entirely lies in one child component of Gk
i .

As edges in Ḡk
i represent shortest paths between boundary vertices of child components,

we can bound the length of each subpath by the length of the corresponding edge in Ḡk
i .

Therefore, the length of p̄ is not greater than the length of p, according to our claim.

The next corollary presents a closed notation of Lemma 25: We provide an identity for
computing a child separator closure from a boundary closure union.

Corollary 26. For all k ∈ {1, . . . , n} and for all i ∈ Ik, we can compute the child separator
closure of a component Gk

i by computing a subset closure of the boundary closure union Ḡk
i :

Gk
i

∣∣
Ck

i
= Ḡk

i

∣∣
Ck

i
.

5.2 Search Space Parts 47

Proof. Apply Lemma 25 to all pairs of vertices from Ck
i × Ck

i .

All boundary vertices are also child separators: Bk
i ⊆ Ck

i . Thus, we can immediately
conclude by the definition of the subset closure, that a boundary closure is a subgraph of
the corresponding child separator closure:

Gk
i

∣∣
Bk

i
⊆ Gk

i

∣∣
Ck

i
.

This allows us to compute any requested boundary closure Gk
i

∣∣
Bk

i
simply by using the child

separator closure Gk
i

∣∣
Ck

i
minus vertices not in Bk

i , i.e., the non-boundary vertices.

Before presenting the precise formulation for the algorithm, we anticipate that we will
also need certain directed subset closures at level 0 to be able to easily extract the entry
and exit graphs. Namely, we need to compute, for all i ∈ I0,

G0
i

∣∣
Vi→B0

i

(for the entry graphs) and

G0
i

∣∣
B0

i→Vi

(for the exit graphs). For both of above special directed subset closures, we use the term
elevating closure.

As a boundary vertex for a component is part of this component, i.e., B0
i ⊆ Vi, we also

know that the boundary closure is contained in each of the elevating closures:

G0
i

∣∣
B0

i
⊆ G0

i

∣∣
Vi→B0

i
and G0

i

∣∣
B0

i
⊆ G0

i

∣∣
B0

i→Vi
.

In analogy to the last paragraph, to obtain the boundary closure G0
i |B0

i
, we use an elevating

graph and skip all non-boundary vertices, i.e., all vertices that are not in B0
i .

Algorithm 11 provides a detailed description for this preprocessing stage. By Corol-
lary 26, we have proven its correctness. We considerably speed up the computation of
the child separator closures compared to the straightforward approach, since the boundary
closure unions Ḡk

i have much less vertices than the original component graphs Gk
i .

5.2 Search Space Parts

With the computation of the child separator subset closures from the previous subsection,
we are now ready to derive the search space part graphs. As mentioned already, for each
entry, exit, upward and downward graph, the edge lengths are already present in some
child separator closure and only need to be extracted. This is possible, as we do not take
into account paths outside the upper-level component for these kinds of part graph. We
briefly state, for each of above kinds of search space part, where to obtain the edge lengths
from, before explaining the more complicated computation of level graphs.

48 5 PREPROCESSING ALGORITHM

Algorithm 11: Computation of child separator closures (detailed)

forall i ∈ I0 do1

compute the elevating closures G0
i |Vi→B0

i
and G0

i |B0
i→Vi

using Dijkstra’s2

single-source algorithm
extract G0

i |B0
i

from the elevating closure G0
i |Vi→B0

i
3

for k ← 1 to n do4

forall i ∈ Ik do5

Ḡk
i ← ∅6

forall i′ ∈ Hk
i do7

Ḡk
i ← Ḡk

i ∪ Gk−1
i′

∣∣
Bk−1

i′
8

compute Ḡk
i

∣∣
Ck

i
using Dijkstra’s single-source algorithm9

Gk
i

∣∣
Ck

i
← Ḡk

i

∣∣
Ck

i
10

if k < n then11

extract Gk
i

∣∣
Bk

i
from Gk

i

∣∣
Ck

i
12

Entry and exit graphs For all s ∈ V and for i := h(s), the next equation follows
instantly from the definition of the subset closure:

∀v ∈ B0
i : d

[
G0

i

]
(s, v) = c

[
G0

i

∣∣
Vi→B0

i

]
(s, v).

Recall from the definition of the entry graph that these were the distances used to con-
struct Es. Antisymmetrically, for all t ∈ V and for i := h(t), the following equation holds:

∀v ∈ B0
i : d

[
G0

i

]
(v, t) = c

[
G0

i

∣∣
B0

i→Vi

]
(v, t).

These are precisely the distances the exit graph Xt can be constructed from.
Hence, we can immediately look up the edge lengths for the entry and exit graphs from

the directed subset closures of G0
i that also are computed by Algorithm 11.

Upward and downward graphs For l := fk(i), the following two identities result from
the definition of the subset closure, too:

∀(s, t) ∈ Bk
i ×Bk+1

l : d
[
Gk+1

l

]
(s, t) = c

[
Gk+1

l

∣∣
Ck+1

l

]
(s, t)

∀(s, t) ∈ Bk+1
l ×Bk

i : d
[
Gk+1

l

]
(s, t) = c

[
Gk+1

l

∣∣
Ck+1

l

]
(s, t)

By definition of the upward and downward graphs, these are exactly the distances that
need to be computed for these kinds of part graph.

Thus, the upward and downward graphs can also be extracted as soon as Algorithm 11
has computed the corresponding child separator closure.

5.2 Search Space Parts 49

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

v1 v2

v3

v4

v5

G0

0

G0

1

G0

2G1

0

G0

3

G0

4

G0

5

G1

1

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

v1 v2

v3

v4

v5

G0

0

G0

1

G0

2G1

0

G0

3

G0

4

G0

5

G1

1

Figure 14: Two possible paths between child separators.
A path between v1 and v2 can either stay in the common parent component G1

0, or leave it. The drawings
above show an example for both cases. In the second case, the component G1

0 may be left and re-entered
only via its boundary vertices. Thus, any leaving and re-entering path must contain at least one boundary
vertex of G1

0, in our example, v3 or v4. (In fact, any path that truly leaves G1
0 must contain at least two

boundary vertices. We make do with the weaker condition that one vertex must be contained here, as it
is still a necessary condition for a path to leave the common parent component.)

Level graphs Computation of the level graphs is not as easy, because paths that leave
the parent component need to be incorporated, and such paths are not considered in the
computation of the child separator closures. Fortunately, we can use an approach similar
to the one in Section 5.1 to avoid scanning the whole input graph for shortest paths outside
a component.

For this, we analyze the possible courses of a shortest path that starts in the compo-
nent Gk

i and ends in the component Gk
j . Here, we are interested in the globally shortest

path, i.e., in the shortest of all paths in the whole input graph G; the length of such a path
is referred to as global distance. As in the definition of the level graph, both components
share a common parent component Gk+1

l with l = fk(i) = fk(j), but the path may exit
and re-enter the parent component. We observe that either of the following may apply:

1. The shortest path entirely lies in the common parent component Gk+1
l . For being a

shortest path, its cost matches both the global distance and the distance in Gk+1
l .

In turn, the distance in Gk+1
l can be looked up in the child separator subset closure

for Gk+1
l , which has been computed by Algorithm 11.

2. The shortest path leaves the parent component. That given, the distance in Gk+1
l

may be longer than the distance in the input graph G. Such a path must visit at
least one of the boundary vertices of the common parent component Gk+1

l . By that,
there must be, in the sequence of the vertices in the path, a first and a last boundary
vertex. We can split the path in three parts, either of which may be empty: From
the source to the first boundary vertex, from the first to the last boundary vertex,
and from the last boundary vertex to the target. Again, the lengths of the first and
third subpath match the distance in the parent component Gk+1

l and can be obtained

50 5 PREPROCESSING ALGORITHM

from the child separator closure for Gk+1
l computed by Algorithm 11. However, in

general, the cost of the second subpath is lower than the length of the corresponding
edge in the child separator closure.

Figure 14 presents an example for both cases. Note that the second case is possible only
for k < n−1, as top-level components share the universe as parent which has no boundary
vertices.

For level graphs, we are interested precisely in the global distances, or lengths of a
globally shortest path, that match above description. In the two cases above, almost
all distances can be looked up in the child separator closure for Gk+1

l . Still, we need to
determine the global distance between boundary vertices of the parent component Gk+1

l .
In the graph

G|Bk+1
l

,

edge costs represent the global distances between boundary vertices of Gk+1
l . We use the

term surrounding graph for Gk+1
l to denote this graph. If we computed all distances in

the surrounding graph, we could determine the global distance between any two vertices
in Gk

i and Gk
j , respectively, from the two cases above, without considering the input graph

in detail. Reflecting above considerations on the second case, for components at level
k = n− 1, the surrounding graph is empty.

Luckily, we need only a little extra work to compute a surrounding graph. Recall from
the definition of the level graph, that we use global distances to derive the cost function for
a level graph. More precisely, for k < n− 1, for the level graph L k+1

l,l , we use exactly the

global distances between all boundary vertices of the component Gk+1
l . (In other words,

the surrounding graph G|Bk+1
l

is a homomorphism of the level graph L k+1
l,l .) That is, by

computing L k+1
l,l , we effectively compute the surrounding graph G|Bk+1

l
.

In Definition 14, we did not use level graphs L k
i,j with i = j for a search space graph.

However, such level graphs are well-defined, as we have never demanded i 6= j for level
graphs L k

i,j. For these special level graphs, we use the term reflexive level graph.
Now, by computing the level graphs at level k + 1 and all child separator closures, we

provide all preconditions required to compute efficiently the level graphs at level k. The
proceeding for computing the level parts is shown briefly in the following Algorithm 12.

In the forthcoming lemma, we shall refine the actions performed inside the innermost
loop for k < n − 1: For a component, we construct a graph where the distance between
any two child separators matches the global distance. After having proven the lemma, we
return to the algorithm again and provide a detailed version that contains formal instead
of textual descriptions of the actions taken. Figure 15 illustrates the lemma.

Lemma 27. For 0 ≤ k ≤ n− 1 and for l ∈ Ik+1, define the embraced graph

G̃k+1
l := Gk+1

l

∣∣
Ck+1

l

∪ G|Bk+1
l

.

Then, for all pairs of vertices s, t ∈ Ck+1
l , the global distance matches that in the embraced

5.2 Search Space Parts 51

Algorithm 12: Computation of the level graphs (brief)

forall i ∈ In−1 do1

forall j ∈ In−1 do2

compute the level graph L n−1
i,j by looking up the edge lengths in the already3

computed child separator closure Gn
0 |Cn

0
= G|Sn−1

for k ← n− 2 downto 0 do4

forall l ∈ Ik+1 do5

create the surrounding graph G|Bk+1
l

from the reflexive level graph L k+1
l,l6

retrieve the already computed child separator closure graph Gk+1
l

∣∣
Ck+1

l
7

forall i ∈ Hk+1
l do8

forall j ∈ Hk+1
l do9

use the child separator closure to determine the length of a shortest10

path among all paths inside the parent component Gk+1
l

use the child separator closure and the surrounding graph to11

determine the length of a shortest path among all paths that contain
a boundary vertex of the parent component Gk+1

l

set the cost of the corresponding edge in the level graph L k
i,j to the12

minimum of both lengths

graph G̃k+1
l :

d[G] (s, t) = d
[
G̃k+1

l

]
(s, t).

Proof. As in the proof of Lemma 25, we show that for each path in G between s and t,
there exists a corresponding path G̃k+1

l that is not longer, and vice versa.
(⇐) In this direction, we perform the expansion of a path in the embraced graph by

adding intermediate vertices of globally shortest paths.
Fix an arbitrary path p̃ = 〈v1, v2, . . . , vz〉 in the embraced graph G̃k+1

l with v1 = s
and vz = t. We construct the corresponding path p in G by expanding each adjacent pair
(vx, vx+1) of vertices in p̃ to a corresponding shortest path in G. That is, for each (vx, vx+1)
with x ∈ {1, . . . , z − 1}, we insert, into p, the intermediate vertices of a shortest path
px := 〈vx, . . . , vx+1〉. Each expansion does not increase distance, as for each pair (vx, vx+1)

in p̃, the length of the expanded path px is not longer than the length of the edge in G̃k+1
l .

Recall that G̃k+1
l is the result of a graph union, so the cost of an edge equals the minimum

of the edge’s cost in the unified graphs. By that, we only need to verify the following both
inequalities:

c[G] (px) = d[G] (vx, vx+1) ≤ c
[
Gk+1

l

∣∣
Ck+1

l

]
(vx, vx+1)

52 5 PREPROCESSING ALGORITHM

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

v1 v2

v3

v4

v5

G0

0

G0

1

G0

2G1

0

G0

3

G0

4

G0

5

G1

1

Figure 15: Illustration for Lemma 27.
Assume we want to compute the length of the shortest path between v2 and v1 in G. As shown in
Figure 14, we cannot rule out the possibility that a shortest path leaves G1

0 via v4 and re-enters it via v3.
From Lemma 2, we can deduce that a path can leave or re-enter G1

0 only via its boundary vertices (namely,
v3 or v4). We use the surrounding graph G|B1

0
as a shortcut for all shortest paths between the boundary

nodes of G1
0. Then, leaving and re-entering G1

0 means only one hop in G|B1
0
, and we do not need to dig

into other level 1 components (here, G1
1).

In above drawing, the double line with arrows represents the only edge of G|B1
0
. All shaded edges in

component G1
1 are already covered by G|B1

0
and can be ignored. We can easily extract this surrounding

graph from L 1
0,0.

The shaded edges in component G1
0 do not need to be considered in detail when computing the level graph.

Instead, the according child separator closure Ḡ1
0 (denoted by double-lined edges) is used to quickly retrieve

the distance between level 0 separator nodes, cf. also Figure 13.

c[G] (px) = d[G] (vx, vx+1) ≤ c
[
G|Bk+1

l

]
(vx, vx+1).

It is easy to see from the definition of the subset closure, that both inequalities actually
hold. This is slightly imprecise, as the second inequality is defined only if vx, vx+1 ∈ Bk+1

l .
However, if vx or vx+1 is no boundary vertex, the edge (vx, vx+1) is no member of G|Bk+1

l
,

and the first inequality suffices to bound the costs of the edge in G̃k+1
l .

Thus, we can bound the subpath’s length by the cost of the edge in the embraced graph
G̃k+1

l :

c[G] (px) = d[G] (vx, vx+1) ≤ c
[
G̃k+1

l

]
(vx, vx+1).

As we can do that for each edge of p̃, the path p in G is at most as long as p̃ in G̃k+1
l .

(⇒) For this direction, we construct, for a given path in the input graph, a path with
either one or three edges in the embraced graph. We use one edge in the embraced graph if
the path does not leave the common parent component, and three if it does. As such, this
construction closely resembles the differentiation between the two cases at the beginning
of the current subsection: The given path in the input graph either stays in the parent
component, or it contains a boundary vertex and potentially leaves it.

Fix an arbitrary path p = 〈v1, v2, . . . , vz〉 in G with v1 = s and vz = t. The construction

of the corresponding path p̃ in G̃k+1
l depends on whether p contains vertices from Sk+1.

5.2 Search Space Parts 53

1. If p contains no vertices from Sk+1, then p does not contain any vertices not from
Gk+1

l either, according to Corollary 5. This assures that p is not shorter than a
shortest path in Gk+1

l :
d
[
Gk+1

l

]
(s, t) ≤ c[G] (p).

Set p̃ := 〈s, t〉. As the vertices s and t also cannot be boundary vertices of Gk+1
l , i.e.,

s, t /∈ Sk+1, we conclude that the edge (s, t) in the embraced graph originates from
the child separator closure of Gk+1

l . By that,

c
[
G̃k+1

l

]
(s, t) = d

[
Gk+1

l

]
(s, t).

The path p̃ consists of only one edge:

c
[
G̃k+1

l

]
(p̃) = c

[
G̃k+1

l

]
(s, t).

Finally, by connecting the three relations above, we obtain

c
[
G̃k+1

l

]
(p̃) ≤ c[G] (p).

2. In case p does contain a vertex of Sk+1, let x be the smallest and y be the largest
index so that vx, vy ∈ Sk+1. That given, no vertex with index smaller than x or
larger than y can be a separator at level k + 1. As a result of Corollaries 5 and 6,
the subpaths p1→x and py→z entirely lie in Gk+1

l . (Notice that we expressly allow the
special cases vx = vy, x = y, x = 1 or y = z, this does not affect our argumentation.)

Set p̃ := 〈s, vx, vy, t〉. By definition, the length of this path equals the sum of the
edge costs:

c
[
G̃k+1

l

]
(p̃) = c

[
G̃k+1

l

]
(s, vx) + c

[
G̃k+1

l

]
(vx, vy) + c

[
G̃k+1

l

]
(vy, t).

Each summand can be bounded by lengths of the corresponding (possibly empty)
subpaths of p, according to the definition of the embraced graph:

c
[
G̃k+1

l

]
(s, vx) = d

[
Gk+1

l

]
(s, vx)

= d[G] (s, vx)

≤ c[G] (p1→x)

c
[
G̃k+1

l

]
(vx, vy) = min

{
c
[
G|Bk+1

l

]
(vx, vy), c

[
Gk+1

l

∣∣
Ck+1

l

]
(vx, vy)

}
= min

{
d[G] (vx, vy), d

[
Gk+1

l

]
(vx, vy),

}
= d[G] (vx, vy)

≤ c[G] (px→y)

c
[
G̃k+1

l

]
(vy, t) = d

[
Gk+1

l

]
(vy, t)

= d[G] (vy, t)

≤ c[G] (py→z)

54 5 PREPROCESSING ALGORITHM

We know that d
[
Gk+1

l

]
(s, vx) = d[G] (s, vx) and d

[
Gk+1

l

]
(vy, t) = d[G] (vy, t), because

p1→x and py→z entirely lie in Gk+1
l . The first, second or third inequality is obviously

obeyed for s = vx, vx = vy or vy = t, respectively, as edge costs are required to be
nonnegative, and the cost from a vertex to itself is defined to be zero.

By summing up above three inequalities, we obtain the desired result for this case:

c
[
G̃k+1

l

]
(p̃) = c

[
G̃k+1

l

]
(s, vx) + c

[
G̃k+1

l

]
(vx, vy) + c

[
G̃k+1

l

]
(vy, t)

≤ c[G] (p1→x) + c[G] (px→y) + c[G] (py→z)
= c[G] (p).

The case differentiation is complete, as the second case covers all paths that are not
covered by the first case. Thus, we have quoted a corresponding path in the embraced
graph for each possible path in the input graph.

We have stated for each path in the embraced graph a corresponding path in the input
graph, and vice versa. Our proof is complete.

Algorithm 13 shows, in detail, how to compute all level graphs. Basically, it is identical
to Algorithm 12, only the actions performed have been formulated precisely as a result of
Lemma 27. We were able to merge the two outer loops of Algorithm 12 into one main
loop.

This algorithm performs correctly, as we have shown in the previous lemma. Still,
lines 10 and 13 of Algorithm 13 deserve further explanation. Effectively, in line 10 we
compute for a given i the distance from all boundary vertices of Gk

i to all child separator
vertices of the current parent component. Then, in line 13, we can look up the distance
in G̃k+1

l for each possible pair of vertices instead of computing it from scratch.
Note that we could also have computed

G̃k+1
l

∣∣∣
Ck+1

l

before line 9 to achieve the same result roughly twice as fast: Our algorithm uses most
vertices in Bk

i as starting vertex for Dijkstra’s single-source algorithm more than once.
However, the proposed algorithm performs better in terms of memory usage and paralleliz-
ability. We need to keep in memory only |Bk

i | · |Ck+1
l | path lengths at any time, instead

of |Ck+1
l |2 which may be substantially larger. Furthermore, for k = n − 1, there is only

one possible value for l, namely, 0. With Algorithm 13, we can potentially assign each
i ∈ Hk+1

l to a different processor, while the seemingly optimal approach can be executed
on one processor only, unless we employ a sophisticated communication pattern.

5.3 Parallelization

In this subsection, we provide a scheme for parallelizing the preprocessing procedure for our
speed-up technique. First, we outline the basic strategy for parallelizing the preprocessing:

5.3 Parallelization 55

Algorithm 13: Computation of the level graphs (detailed)

for k ← n− 1 downto 0 do1

forall l ∈ Ik+1 do2

retrieve Gk+1
l

∣∣
Ck+1

l

from the already computed child subset closures3

if k < n− 1 then4

create G|Bk+1
l

from the reflexive level graph L k+1
l,l5

else6

use the empty graph as G|Bk+1
l

7

G̃k+1
l ← Gk+1

l

∣∣
Ck+1

l

∪ G|Bk+1
l

8

forall i ∈ Hk+1
l do9

compute G̃k+1
l

∣∣∣
Bk

i →Ck+1
l

using Dijkstra’s single-source algorithm
10

forall j ∈ Hk+1
l do11

foreach (s, t) ∈ Bk
i ×Bk

j do12

set the length of the corresponding edge in L k
i,j:13

c
[
L k

i,j

]
((s, k + 1), (t,−k − 1))← d

[
G̃k+1

l

]
(s, t)

We split the preprocessing algorithm into small tasks that must obey a linear precedence
relation imposed by the data flow between tasks. This is done by introducing a generic
system of parametrized task types. For this system, we identify a bottleneck and show a
possible workaround. Finally, we briefly justify our way of subdividing the preprocessing
algorithm.

Assume a computational problem that has been split up into several sub-tasks with
a cycle-free static dependency relation between tasks. That is, each task has a set of
precondition tasks and potentially constitutes as precondition for other tasks itself. As
a cycle-free static dependency is also deadlock-free, we can use a lazy execution scheme
to solve the computational problem: We assign a task to a free processor as soon as all
precondition tasks have finished. If no processor is free, the task is put into ready state
and assigned to the next free processor. With a static priority assigned to each task, we
can fine-tune the choice of the next task. We can employ this parallelization scheme to
our preprocessing algorithm, provided that we can find a suitable subdivision into smaller
tasks. A task can have four states:

Blocked There exist unfinished precondition tasks.

Ready All precondition tasks have finished, but this task has not been started yet.

Running The task has been started, but still is in process of computation.

56 5 PREPROCESSING ALGORITHM

Finished Computation of this task is complete. By that, other depending tasks may have
become ready.

As we required the dependency relation to be static, the only transitions possible are from
blocked to ready, from ready to running and from running to finished.

The scheduling , or assignment of tasks to processors, is performed by an omniscient
master processor that keeps track of the processor load. Correspondingly, the processors
the tasks are assigned to are called slaves . We make do with a greedy priority-based
scheduling here, as our dependency graph is deadlock-free.

Recall from the previous two subsections, that some computations needed to be carried
out in a well-defined order. To sum up, the following dependencies were introduced by our
preprocessing algorithms:

• To compute a child separator closure at non-bottom level k for a component Gk
i , we

need the child separator closures of all child components at level k − 1.

• For any search space part, we need a certain subset closure to be available:

Entry and exit graph For search space parts Ev, Xv with v ∈ Vi, we need one of
the elevating closures G0

i |Vi→B0
i

or G0
i |B0

i→Vi
, respectively.

Upward and downward graph A search space part U k
i or Dk

i at level k requires
the child separator closure of the corresponding parent component Gk+1

fk(i)
to be

available.

Level graph For L k
i,j, a level graph at level k, we also need the child separator

closure of the common parent component at level k + 1.

• Finally, a level graph also requires the reflexive level graph for its parent component
to have been computed already.

For the parallelization, we split the computation of our preprocessing in tasks of different
kinds. We need to choose this subdivision carefully. If it is too finely-grained, we may
encounter an intolerable decrease of performance. On the other hand, a split too coarse
decreases the benefit from parallelization by creating bottlenecks — tasks that are a direct
or indirect precondition for many other tasks. Situations may occur where the bottleneck
task is the only task running and no ready tasks are available because all other tasks
depend upon the bottleneck task.

In the following, we show the seven task types employed by our solution. Each task
type serves a predefined purpose. A task is specialized by providing parameters for a task
type. The preconditions for a task type depend only on the task’s parameters and are
therefore static for a given set of tasks.

To each task, a priority that is potentially dependant on its parameters is assigned. As
opposed to the commonly used interpretation, high-valued priorities indeed mean prece-
dence over low-valued priorities to avoid confusion. The priority is a soft criterion, we

5.3 Parallelization 57

employ it only if we have more than one ready task. That is, a task with a low priority
can be executed while a task with a high priority still is blocked.

We have a designated parameter-less task type called Goal that does not compute
anything. It only serves as a collector for all task that we need for our preprocessing, as it
employs these tasks as preconditions. As soon as this task has finished, our computation
is complete.

The first type of task, Decomposition, computes a hierarchical decomposition for a
given input graph G. We treat this task as “black box”. This task type is the only one
that contains no requirements. Obviously, we must begin by computing the only task of
this type.

Task Decomposition

Priority : 2
compute: a hierarchical decomposition for the input graph G

The task type ClosureDir computes the elevated closures needed for the entry and
exit graphs and also for the child separator closures.

Task ClosureDir(i)
Priority : 1
require : Decomposition
compute: the elevating closure G0

i |V 0
i →B0

i

compute: the elevating closure G0
i |B0

i→V 0
i

Tasks of the type Closure compute child separator closures for a component Gk
i . Each

tasks that computes upward, downward and level graphs is dependent on a task of this
type. As shown in this section, we use child separator closures at a lower level to compute
those at a higher level. Thus, we require, for k > 0, all child separator closures of all child
components of Gk

i . Due to our choice for the priority, the computation of all closures at
low level starts before all closures at high level, but after all tasks of type ClosureDir have
started. (We do not expressly require all task of type ClosureDir to have finished before
a task of type Closure can start, as this might also create a bottleneck.)

For the task type EntryExit, we depend only on the directed subset closures computed
by ClosureDir. Besides Goal, no other tasks depend on tasks of this type. Hence, we
assign tasks of this type a low priority.

Tasks of the type UpDown need a specific child separator closure to be computed. For
the same reasons as with EntryExit, we employ here a low priority, too. Note that tasks
of this type also optimize the upward and downward graphs with the algorithms presented
in Section 4.

Recall that level graphs used the surrounding graph that could be obtained from a
reflexive level graph at the level above. By that, tasks of the type Level depend on a child
separator closure and on another task of the same type. The choice for the priority mirrors

58 5 PREPROCESSING ALGORITHM

Task Closure(k, i)

Priority : −k
if k = 0 then

require : ClosureDir(i)
compute: the boundary closure G0

i |B0
i

else
forall i′ ∈ Hk

i do
require : Closure(k − 1, i′)

compute: the child separator closure Gk
i

∣∣
Ck

i

Task EntryExit(i)

Priority : −n− 1
require : ClosureDir(i)
forall v ∈ V 0

i do
compute: the entry graph Ev

compute: the exit graph Xv

Task UpDown(k, i)

Priority : −n− 1
require : Closure(k, i)
forall i′ ∈ Hk

i do
compute: the optimized upward graph U k−1

i′

compute: the optimized downward graph Dk−1
i′

this: To avoid potential bottlenecks, we want all computations for level graphs at a higher
level to have started before starting those for level graphs at a lower level. Here, we also
perform the optimization of the level graph right after having computed it.

Task Level(k, i)

Priority : k
l← fk(i)
require : Closure(k + 1, l)
if k < n− 1 then

require : Level(k + 1, l)

forall j ∈ Hk+1
l do

compute: the optimized level graph L k
i,j

The final task simply requires all tasks that, in total, compute all search space parts our
preprocessing consists of. Its priority does not matter, as the final task does not perform

5.3 Parallelization 59

Task Goal

forall i ∈ I0 do
require : EntryExit(i)

for k ← 1 to n− 1 do
forall i ∈ Ik do

require : UpDown(k, i)

forall i ∈ Ik do
require : Level(k, i)

any computation by itself. When the final task has finished, our preprocessing is complete.
Figure 16 shows all tasks executed by the preprocessing of our sample graph as a depen-

dency graph. Apart from the decomposition, the task that computes the child separator
closure at the highest level is the main bottleneck: The tasks for level graphs all depend on
it, directly or indirectly. This problem is partially compensated by our choice of the pri-
orities. Effectively, we delay the computation of entry, exit, upward and downward graphs
until the task for the top-level child separator closure starts. By that, one processor com-
putes the bottleneck task Closure(n, 0), while the others take care of the entry/exit and
upward/downward tasks.

However, in our experiments, we have observed that the task Closure(n, 0) constitutes
a real bottleneck for some input instances: All processors but one were idle for some time
until this task has eventually finished. It may be worthwhile to further split this special
task into one sub-task for each processor available and merge the results later.

Finally, we shall briefly motivate our subdivision of the preprocessing algorithm into
tasks. Our set of task types is sort of a natural partitioning of the non-parallel algorithms:
The tasks of type ClosureDir and Closure together form Algorithm 11, while a single
level task is equivalent to the execution of Algorithm 13 for a fixed i. (This reflects our
considerations on parallelizability from the previous subsection.) As the entry, exit, upward
and downward graphs are not used as input for other computations, we are unbound in the
choice of the granularity of these tasks. By that, we are able to use such a granularity that
each child separator closure is utilized by exactly one task of type UpDown. Accordingly,
each elevating closure is employed by exactly one task of type EntryExit.

60 5 PREPROCESSING ALGORITHM

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

v1 v2

v3

v4

v5

G0

0

G0

1

G0

2G1

0

G0

3

G0

4

G0

5

G1

1

Decomposition

EntryExit(0) EntryExit(1) EntryExit(2) EntryExit(3) EntryExit(4) EntryExit(5)

ClosureDir(0) ClosureDir(1) ClosureDir(2) ClosureDir(3) ClosureDir(4) ClosureDir(5)

Closure(0, 0) Closure(0, 1) Closure(0, 2) Closure(0, 3) Closure(0, 4) Closure(0, 5)

Closure(1, 0) Closure(1, 1)

Closure(2, 0)UpDown(0, 0) UpDown(0, 1)

Level(1, 0) Level(1, 1)

Level(0, 0) Level(0, 1) Level(0, 2) Level(0, 3) Level(0, 4) Level(0, 5)

Figure 16: Dependencies between tasks.
The drawing at the top shows, once again, our sample graph in the hierarchical decomposition used
throughout this work.
In the drawing at the bottom, each box represents a task for the precomputation of our sample graph.
The arrows represent dependencies. Only the task Decomposition does not depend on any other task.
The task Goal has been omitted for the sake of clarity; instead, all tasks that are a prerequesite for Goal
have a bold-lined box. Note the two main bottlenecks: The task Decomposition at the beginning, and
the task Closure(2, 0).

61

6 Implementation

This section is devoted to a brief presentation of our reference implementation that has
been used for the empirical analysis shown in the next section.

The implementation consists of several applications, all written in C++. For compila-
tion, we used GCC in version 3.4.3 running under SuSE Linux 2.6.11 on a machine with
two AMD Opteron processors. In addition, most programs employed LEDA, the Library
of Efficient Data types and Algorithms [NM99], in version 5.0.1.

In the following, we highlight some interesting facts about our implementation.

Scalable and parallel From the beginning, perhaps the main goal has been to provide
an implementation that would be able to handle huge input graphs. We attained this goal:
Our implementation can even handle graphs as large as the road map graph of Western
Europe. However, we believe that the implementation still can be sped up by magnitudes.

It is worth mentioning that many subtle technical problems that would have remained
unnoticed with small inputs came up in the process of implementation, as we processed
larger inputs.

We used the Message Passing Interface [GLS94], as a base for our parallel implemen-
tation of the preprocessing procedure. Of course, MPI can be used in a much more so-
phisticated way than for implementing a master-slave task scheduling system. Anyway, it
suited our needs: By using the MPICH implementation [MCH] of MPI, we were able to
configure, in short time, a computer cluster from the four machines available to us. As
MPI is portable, our implementation can also be run on other parallel architectures, e.g.,
on a massively parallel shared-memory machine.

Also, the memory footprint for our parallelized preprocessing is considerably low: We
get by with 512 MB of RAM per processor for preprocessing the road map graph of Western
Europe.

All data produced by our preprocessing application, intermediate or final, is stored to
and read from secondary storage. We access the data via NFS (Network File System), this
saved us from implementing a communication pattern. However, this also constitutes a
major performance penalty, as the creation of a file via NFS is expensive. Owing to that,
to save file create operations, we merged data into single files that best would have resided
in different files. We expect that, by passing data via MPI instead of via NFS, we can
again improve the performance of our implementation.

Human-readable data Whenever there was a need to store intermediate or final data,
XML has been employed. This is another slowdown, as binary data can be written and
read significantly faster than XML. However, this simplified debugging a lot, as we were
able to use standard Unix text processing tools like grep, sed, sort, uniq and the like, to
quickly analyze the preprocessed data when the implementation produced wrong results.

To minimize performance impact, we used FleXML [Ros], a tool that transforms a given
DTD into a table driven parser. (More precisely, it creates a flex rule set [LMB92].) A

62 6 IMPLEMENTATION

parser that is generated by this tool accepts only documents that conform to the DTD
the parser has been created for. In exchange, these documents can be parsed really fast
compared to generic XML parsers that accept a variety of document types.

The DTDs used for our applications are presented in Appendix B.
As we are usually interested only in a small part of the data an XML document contains,

we made use of forward pointers in our documents. The forward pointers were implemented
as attributes named offset, values for this attribute must contain exactly 16 hexadecimal
digits. The offset attribute stores the file offset for a specific record in an XML document.
By reading the offset for a forward reference, we already know where the data we are looking
out for resides in the document, and can quickly position to it instead of reading over the
whole document. As we do not know the position of a record when creating the XML
document, we insert a placeholder as value for the offset attribute and overwrite this
placeholder with the real file offset once we know it.

Generic command interface for unattended execution Often, several commands
need to be executed repeatedly, but with different parameters, e.g., for different input
graphs. As the commands usually constitute a pipe in the sense of data flow, the second
command needs to wait for the first command to complete, and the whole process should
be aborted on error. Reflecting this, a shell script has been written that creates, based
on the parameters, a custom Makefile that has a target for each command that needs to
be executed. Afterwards, make is executed. This script serves as the only control for our
applications, the applications are never started manually. This is convenient, as we only
need to remember the make target names instead of the commands with all their options,
and we can run a command pipe unattended without taking special care.

Restartable If the preprocessing is interrupted, it can be later restarted at the point of
interruption without unnecessarily recomputing data. This is possible, as the preprocessing
application checks, for each file to be created, if it already exists and if it is in a correct
format. In the affirmative case, there is no need to rewrite the file. As each check can be
performed very quickly, without the need to read the whole file, the overhead for stopping
and restarting the preprocessing is low.

63

7 Empirical Analysis

In this section, we present the results of the experiments that we conducted with our
implementation. As input, we used road maps graphs of Western European countries,
courtesy of PTV AG, Karlsruhe.

We tested two series, one with road map graphs of different countries and the other for
different decompositions of a fixed road map graph. Finally, we present our result for the
preprocessing of the road map graph of Western Europe.

For our tests, we used four machines, each equipped with two AMD Opteron processors
and interconnected by a separate switched Gigabit Ethernet. The characteristics of each
machine are listed in Table 1.

Name RAM CPU model name CPU clock rate L1 cache

compute3 4 GB 2 x AMD Opteron 248 2 x 2.1 GHz 2 x 1 MB
compute4 8 GB 2 x AMD Opteron 248 2 x 2.1 GHz 2 x 1 MB
compute5 16 GB 2 x AMD Opteron 252 2 x 2.5 GHz 2 x 1 MB
compute6 16 GB 2 x AMD Opteron 252 2 x 2.5 GHz 2 x 1 MB

Table 1: Characteristics of the machines used in our tests.

For each test, we started one master and eight slave tasks that performed the pre-
processing in parallel. The preprocessed data was written to and read from a separate
hard disk with a capacity of 60 GB installed on compute4. Access to this hard disk was
performed via NFS. The coordinating master process always was executed on this machine,
too.

For this section, we use informally the terms preprocessing size and preprocessing time
to denote the total size of the data needed to execute an arbitrary query, and the elapsed
time to produce this data. We do not consider the time needed to obtain a hierarchical
decomposition of the input graph.

As a parameter to our tests, we use the granularity of the hierarchical decomposition (in
short, granularity) that declares, for each level in the hierarchical decomposition, a maxi-
mum for the number of boundary vertices a component may have. For a given granularity,
we obtain a hierarchical decomposition with at most the required number of boundary
vertices for each component. Note that a granularity constitutes an implicit guarantee for
the maximum size a search space can possibly have.

7.1 Graph Size vs. Preprocessing Time

In the first series of experiments, we ran the preprocessing for our speed-up technique for
several countries of different sizes. We used two levels and required components at level 0
to have no more than 20, and components at level 1 to have no more than 40 boundary
vertices, respectively.

Table 2 presents the main results for this series. Notably, there is no obvious dependency
between the number of vertices and the time or space required for the preprocessing. We

64 7 EMPIRICAL ANALYSIS

C
o
u
n
tr

y

N
u
m

b
e
r

o
f
v
e
rt

ic
e
s

N
u
m

b
e
r

o
f
e
d
g
e
s

T
im

e
(s

)

S
iz

e
,
co

m
p
re

ss
e
d

(M
B

)

T
im

e
p
e
r

1
,0

0
0

v
e
rt

ic
e
s

(s
)

T
h
ro

u
g
h
p
u
t

(K
B

/
s)

S
iz

e
p
e
r

v
e
rt

e
x

(b
y
te

s)

Belgium 458,936 1,093,454 21:41 185 2.83 145 422
Spain 695,770 1,546,558 20:46 193 1.79 158 290

The Netherlands 850,186 2,034,591 14:58 174 1.06 198 214
Sweden 1,546,984 3,580,059 22:22 310 0.87 236 210
Italy 2,078,477 4,824,859 55:07 509 1.59 158 257

Table 2: Preprocessing of the road map graphs of different countries with a fixed granu-
larity.

assume that the structure and density of a country’s road network affects these values
stronger than the number of vertices alone. The amount of produced preprocessing data
per second, denoted by the term throughput , suggests that the preprocessing is CPU-bound
rather than being I/O-bound.

As the preprocessing size tends to be quadratic in the number of vertices for a fixed
granularity, we conclude that this granularity is too fine to be applicable for preprocessing
the whole road map graph of Western Europe. We mention the compressed size here, as
it reflects the amount of main memory needed to load the preprocessed data better than
the uncompressed size.

7.2 Trade-off between Preprocessing Effort and Query Time

In the next series, we considered different granularities for a fixed input graph formed from
the road map graphs of Spain and Portugal. The graph contains 855,660 vertices. We
considered hierarchical decompositions of two levels only.

Table 3 shows an overview of the results. The data is grouped by the granularity at
level 0, as preprocessings with different granularities at the lowest level cannot easily be
compared: For coarser granularities, the size of the bottom-level components increases and
fewer vertex pairs are covered by our preprocessing.

In our test, we analyze three size indicators : The initially guaranteed search space size,
imposed by the granularity, and the maximum and average search space sizes as observed
from the preprocessed data. In each group, all size indicators are nondecreasing. This

7.2 Trade-off between Preprocessing Effort and Query Time 65

G
ra

n
u
la

ri
ty

a
t

le
v
e
l
0

(b
o
u
n
d
a
ry

v
e
rt

ic
e
s

p
e
r

co
m

p
o
n
e
n
t)

G
ra

n
u
la

ri
ty

a
t

le
v
e
l
1

(b
o
u
n
d
a
ry

v
e
rt

ic
e
s

p
e
r

co
m

p
o
n
e
n
t)

P
re

p
ro

ce
ss

in
g

si
ze

(c
o
m

p
re

ss
e
d

M
B

)

P
re

p
ro

ce
ss

in
g

ti
m

e
(m

:s
s)

T
h
ro

u
g
h
p
u
t

(c
o
m

p
re

ss
e
d

K
B

/
s)

In
it
ia

ll
y

g
u
a
ra

n
te

e
d

se
a
rc

h
sp

a
ce

si
ze

M
a
x
im

u
m

se
a
rc

h
sp

a
ce

si
ze

A
v
e
ra

g
e

se
a
rc

h
sp

a
c
e

si
ze

20 25 268 36:02 127 1665 658 213
20 30 130 22:23 99 2140 916 286
20 35 88 17:18 86 2665 1133 387
20 40 104 19:16 92 3240 1440 530
20 45 100 22:13 77 3865 1440 563
20 50 98 16:16 102 4540 1608 655

25 30 117 13:38 147 2450 940 229
25 35 55 10:17 91 3025 1291 358
25 40 46 8:15 94 3650 1604 561
25 45 41 8:23 84 4325 1604 611
25 50 38 7:26 87 5050 1676 680

30 35 43 6:55 105 3385 1360 343
30 40 31 5:41 94 4060 1649 567
30 45 27 4:43 97 4785 1649 615
30 50 24 4:29 90 5560 1664 700

35 40 19 3:00 107 4470 1556 484
35 45 14 2:56 82 5245 1615 525
35 50 11 2:12 84 6070 1830 619

40 45 13 2:45 83 5705 1360 367
40 50 10 1:59 86 6580 1559 467

45 50 10 1:42 98 7090 1559 429

Table 3: Preprocessing of a fixed input graph with different granularities.

66 7 EMPIRICAL ANALYSIS

holds, by definition, for the initially guaranteed size. However, for the preprocessings in
the first group, both size and time are not monotonic — a local minimum for our series
is at (20;35). With higher differences between the granulations at level 1 and level 0, the
number of level graphs at level 0 increases in a nonlinear fashion. So, the granularity
(20;35) can be considered a good trade-off between preprocessing effort and query time.

Furthermore, the granularity at the top level, if chosen too fine, may result in an
infeasible preprocessing size, as the distances between all top-level separators need to be
computed. Compare, for instance, the preprocessing size for (20;25) to that for (20;30)
and (20;35).

In Figure 17 we present three diagrams for this experiment. We analyze the impact of
the optimization of the search space parts on their size and the relationship between the
size indicators. An interpretation of the diagrams can be found underneath.

7.3 The Road Map Graph of Western Europe

The preprocessing of the road map graph of Western Europe was the heftiest stress test for
our implementation. For this preprocessing, we used a three-level setup with a granularity
of at most 20, 40 or 80 boundary vertices per component, respectively. By that, we
guarantee that our search spaces have less than

80 · 80 + 2 · 80 · 40 + 2 · 40 · 20 + 2 · 20 = 6400 + 6400 + 1600 + 40 = 14440

edges each. However, the actual search spaces are by far smaller on average, mainly due
to optimization of the search space parts.

General information At a glance, we present some key facts about the preprocessing
for the road map graph of Western Europe in Table 4.

In Table 5, we show the impact of search space part optimization on the sizes of the
level graphs at the top level. We focus on these level graphs, as they account for the vast
majority of the edges in our preprocessed data. About a quarter of all level graphs could
be reduced to star graphs. For each level graph, half of the edges could be reduced on
average, either by supersedement, by obsoletion or by both. The next two lines show the
number of edges that can be removed if just one of the optimization methods is used. The
last line states that, on average, one fifth of the edges of each level graph were considered
reducible by both optimization methods.

Query Unfortunately, we were unable to construct the entry and exit graphs for our
queries, as this would have exceeded the amount of hard disk space available. This is merely
a restriction caused by wasteful usage of memory and not a fundamental problem. Instead,
we compose the entry and exit graphs on demand from the bottom level components for
our query algorithm.

To test our speed-up technique, we computed the distances between more than 36,000
randomly chosen pairs of vertices, both with Dijkstra’s algorithm and with our query

7.3 The Road Map Graph of Western Europe 67

0 %

25 %

50 %

75 %

100 %

(4
5;

50
)

(4
0;

50
)

(4
0;

45
)

(3
5;

50
)

(3
5;

45
)

(3
5;

40
)

(3
0;

50
)

(3
0;

45
)

(3
0;

40
)

(3
0;

35
)

(2
5;

50
)

(2
5;

45
)

(2
5;

40
)

(2
5;

35
)

(2
5;

30
)

(2
0;

50
)

(2
0;

45
)

(2
0;

40
)

(2
0;

35
)

(2
0;

30
)

(2
0;

25
)

R
at

io
 p

er
 s

ea
rc

h
sp

ac
e

pa
rt

Granularity

Superseded edges
Superseded and obsolete edges

Obsolete edges
Required edges

0

2000

4000

6000

8000

10000

(4
5;

50
)

(4
0;

50
)

(4
0;

45
)

(3
5;

50
)

(3
5;

45
)

(3
5;

40
)

(3
0;

50
)

(3
0;

45
)

(3
0;

40
)

(3
0;

35
)

(2
5;

50
)

(2
5;

45
)

(2
5;

40
)

(2
5;

35
)

(2
5;

30
)

(2
0;

50
)

(2
0;

45
)

(2
0;

40
)

(2
0;

35
)

(2
0;

30
)

(2
0;

25
)

N
um

be
r

of
 e

dg
es

Granularity

Initially guaranteed size
Maximum size

Average size

0 %

10 %

20 %

30 %

40 %

50 %

(4
5;

50
)

(4
0;

50
)

(4
0;

45
)

(3
5;

50
)

(3
5;

45
)

(3
5;

40
)

(3
0;

50
)

(3
0;

45
)

(3
0;

40
)

(3
0;

35
)

(2
5;

50
)

(2
5;

45
)

(2
5;

40
)

(2
5;

35
)

(2
5;

30
)

(2
0;

50
)

(2
0;

45
)

(2
0;

40
)

(2
0;

35
)

(2
0;

30
)

(2
0;

25
)

S
iz

e
ra

tio

Granularity

Maximum vs. guaranteed size
Average vs. guaranteed size

Figure 17: Spain and Portugal: Ratio of required edges. Sizes of search space graphs.
In the diagram at the top, we analyze the impact of the optimization of search space parts on their size.
We count, for each level graph at the top level, the number of superseded and obsolete edges and relate it
to the size of the bipartite graph. The edges that are removed by both optimization techniques are counted
separately. The plotted data represents the mean over all level graphs at the top level. On average, no
more than a third of the edges of the bipartite graph are needed. Note also that roughly half of the edges
of a search space graph are superseded.
The two diagrams at the bottom correlate the size indicators. The maximum size is never bigger than half
the guaranteed size, while the average size can be expected to be around 10 % of the guaranteed size.

68 7 EMPIRICAL ANALYSIS

Countries used A, B, CH, D, DK, E, F,
I, L, N, NL, P, S

Vertices 15.4 million
Edges 35.7 million

Average vertex out-degree 2.33
Total elapsed preprocessing time 20 hours @ 8 processors

Size of the input data (GraphML) 7.5 GB
Size of the input data (GraphML, compressed) 521 MB

Total size of preprocessed data (XML) 14.6 GB
Total size of preprocessed data (compressed) 2.19 GB
Memory overhead for preprocessing (factor) 1.95

Memory overhead for preprocessing (factor, compressed) 4.3
Additional bytes per vertex (XML) 525

Additional bytes per vertex (compressed) 154

Table 4: The preprocessing for the road map graph of Western Europe.

Perfectly minimizable 27 %

Average superseded and/or removed edges 51 %
Average superseded edges 40 %

Average obsolete edges 31 %
Average superseded and obsolete edges 20 %

Table 5: Western Europe: Optimization of the level graphs at the top level.

algorithm. We considered only pairs of vertices with distinct home components. The pre-
processing resided completely on secondary storage, only the search space parts necessary
for each query were loaded, and dropped again after the query has been performed.

First, we compare our speed-up technique to Dijkstra’s algorithm. As a measure, we
use the size of the search space. For Dijkstra’s algorithm, the search space consists of all
edges touched. The same holds for our algorithm, too. However, as our query algorithm
touches each edge of a search space graph exactly once, the size of the search space equals
the size of the search space graph — hence the name.

In Figure 18, three diagrams show the sizes of the search space with Dijkstra’s algo-
rithm and with our speed-up technique and the resulting speed-up. For our set of queries,
we observed an average speed-up of 9,960.

Figure 19 presents an analysis of the distribution and the frequency density of the sizes
of the search space graphs used in our queries.

Query run time is depicted in Figure 20. For this, we separately loaded, for each search
space graph, the required search spaces from secondary storage. Each search space part
is loaded into a separate data structure. We measured the time needed to initialize the
distance labels for all vertices and to perform the query. To allow for a more precise
measurement, we ran each query 1,000 times and divided the total time by the number of

7.3 The Road Map Graph of Western Europe 69

1e+3

1e+4

1e+5

1e+6

1e+7

1e+8

 10 100 1000 10000

S
iz

e
of

 th
e

se
ar

ch
 s

pa
ce

 fo
r

D
ijk

st
ra

’s
 a

lg
or

ith
m

Distance (km)

1e+1

1e+2

1e+3

1e+4

1e+5

10 100 1000 10000

S
iz

e
of

 s
ea

rc
h

sp
ac

e
gr

ap
h

Distance (km)

10

100

1000

10000

100000

1000000

10 100 1000 10000

S
pe

ed
−

up
 o

f p
re

pr
oc

es
se

d
qu

er
y

vs
. D

ijk
st

ra
’s

 a
lg

or
ith

m

Distance (km)

Figure 18: Western Europe: Query.
In the three diagrams above, we analyze the performance of more than 36,000 queries between randomly
chosen vertex pairs for the road map graph of Western Europe. All diagrams are plotted against the
length of a shortest path between the randomly chosen vertices. Each query executed matches a point in
each diagram. As the vertices were chosen at random, most vertex pairs were comparatively far from each
other.
The diagram at the top visualizes the size of the search space for Dijkstra’s algorithm. The search space
is naturally bounded by 35.7 million, the number of edges in the graph. The dashed line represents this
bound.
The diagram at the bottom left shows the sizes of the search space graphs with our speed-up technique
for the same set of queries, which is precisely the number of edges our query algorithm needs to consider.
The diagram resembles three clouds stacked over each other: One fat one at the top, around the y-value
of 2,000, a second, much thinner cloud around 500, and a third one, vaguely noticeable, around 80. The
clouds represent queries against search space graphs consisting of seven, five or three search space parts,
respectively. Note also that our initial guarantee of no more than 14,440 edges per search space graph,
visualized by a dashed line, has been significantly undercut.
In the diagram at the bottom right, we compared the performance of our speed-up technique with that of
Dijkstra’s algorithm. For that, we divided the size of the search space of Dijkstra’s algorithm by the
size of our search space graph. The average speed-up of 9,960 is marked with a dashed line. The fact that
our query algorithm requires only linear time in the number of edges has not been incorporated into this
diagram.

70 7 EMPIRICAL ANALYSIS

0

0.25

0.5

0.75

1

0 1000 2000 3000 4000 5000 6000 7000

R
el

at
iv

e
de

ns
ity

Number of edges in a search space graph

0

0.25

0.5

0.75

1

0 1000 2000 3000 4000 5000 6000 7000

R
el

at
iv

e
de

ns
ity

Number of edges in a search space graph

0 %

0.02 %

0.04 %

0.06 %

0.08 %

0.1 %

0 1000 2000 3000 4000 5000

R
el

at
iv

e
fr

eq
ue

nc
y

Number of edges in a search space graph

0 %

0.02 %

0.04 %

0.06 %

0.08 %

0.1 %

0 1000 2000 3000 4000 5000

R
el

at
iv

e
fr

eq
ue

nc
y

Number of edges in a search space graph

0 %

0.02 %

0.04 %

0.06 %

0.08 %

0.1 %

0 1000 2000 3000 4000 5000

R
el

at
iv

e
fr

eq
ue

nc
y

(b
lu

rr
ed

)

Number of edges in a search space graph

0 %

0.02 %

0.04 %

0.06 %

0.08 %

0.1 %

0 1000 2000 3000 4000 5000

R
el

at
iv

e
fr

eq
ue

nc
y

(b
lu

rr
ed

)

Number of edges in a search space graph

Figure 19: Western Europe: Distribution of search space graph sizes for a given set of
queries.
In the plots, the density and the frequency for the number of edges in the search space graphs encountered
for our set of queries are shown. The vertical line at 2,088 denotes the average size of all search space
graphs, which is pretty close to the median. We counted 5,426 edges in the biggest search space graph
used for our queries.
The plot at the bottom right is simply a blurred version of the plot at the bottom left. It has been obtained
by convoluting the measured data with a narrow normal distribution.

7.3 The Road Map Graph of Western Europe 71

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000A
bs

ol
ut

e
qu

er
y

tim
e

(m
ic

ro
se

co
nd

s)

Size of search space graph

20
30
40
50
60
70
80
90

100
110
120

1000 2000 3000 4000 5000 6000

R
at

io
 b

et
w

ee
n

qu
er

y
tim

e
an

d
gr

ap
h

si
ze

(m
ic

ro
se

co
nd

s
pe

r
10

00
 e

dg
es

)

Size of search space graph

Figure 20: Western Europe: Query run time.
In the two plots above, we analyze the run time of our query algorithm. Each dot represents a query
executed.
The plot at the left shows the run time with respect to the size of the corresponding search space graph.
Note that the run time is mostly scattered around a line through origin, except for a comparatively small
number of search space graphs with few edges.
The plot at the right helps to estimate the asymptotic behaviour. Owing to that, we have considered only
search space graphs with more than 1,000 edges. If we plot the same ratio for the smaller search space
graphs as well, we need a much larger scale for the ratio to fit all queries. The plot suggests asymptotically
linear run time with respect to the number of edges.

runs.

In the plots, comparatively few queries took longer than average, especially for small
numbers of edges in the search space graph. An investigation of the reasons for this may
be worthwhile, but was beyond the scope of this work.

Furthermore, we observe a slight increase of the average query times for search spaces
larger than 3,000 or 4,000. We hold cache effects responsible for this, as search space
graphs with a size of 3,000 edges or more may have a footprint large enough to exceed the
size of the L1 cache, while smaller ones may fit. Yet, a precise analysis also fell out of the
scope of this work.

In the following, we shall discuss how our query algorithm will perform if employed
in an industry-strength system that keeps all search space parts in main memory. Our
implementation of the query algorithm does not copy the search space parts to construct the
graph explicitly. Thus, we only need to determine and locate the search space parts required
for a query before we can run our query algorithm. This lookup can be implemented by
means of few array accesses if the vertex set V and the component index set I both are
compact integer sets, or with few accesses to a dictionary structure otherwise. Furthermore,
most our search space parts resided completely in the processor’s L1 cache even before the
query was executed. For an industry-strength system, we need to account for the time
needed to load the search space parts from RAM into the L1 cache. We are confident
that lookup, location and caching can be implemented to take at most as long as the time

72 7 EMPIRICAL ANALYSIS

0

0.25

0.5

0.75

1

0 1000 2000 3000 4000 5000 6000 7000

R
el

at
iv

e
de

ns
ity

Number of edges in a search space graph

0

0.25

0.5

0.75

1

0 1000 2000 3000 4000 5000 6000 7000

R
el

at
iv

e
de

ns
ity

Number of edges in a search space graph

0 %

0.01 %

0.02 %

0.03 %

0.04 %

0.05 %

0.06 %

0.07 %

0 1000 2000 3000 4000 5000 6000 7000

R
el

at
iv

e
fr

eq
ue

nc
y

Number of edges in a search space graph

0 %

0.01 %

0.02 %

0.03 %

0.04 %

0.05 %

0.06 %

0.07 %

0 1000 2000 3000 4000 5000 6000 7000

R
el

at
iv

e
fr

eq
ue

nc
y

Number of edges in a search space graph

Figure 21: Western Europe: The sizes of all possible search space graphs.
The plots above show the density and the frequency for the number of edges in all possible search space
graphs for our preprocessing of the road map graph of Western Europe. The mean, or expected size of a
search space graph, equals 2,095. It has been marked with a vertical dashed line. Again, mean and median
almost coincide. The biggest of all possible search space graphs has 7,223 edges.

needed to perform the query itself.

Off-line analysis From our preprocessed data, we are able to compute the frequency
distribution for the sizes of all possible search space graphs. From that, we can derive
the expected size of a search space part for a random pair of vertices and also strictly
bound the size any search space can have. Of course, we do not iterate over all pairs of
vertices to obtain the distribution. On the contrary, we consider the number of edges of
each search space part only once and derive the desired distribution by means of addition
and convolution of the size distributions for the particular search space parts.

Figure 21 shows the frequency density and the frequency distribution for the sizes of
search space graphs among all possible search space graphs. The distribution strongly
resembles a Gaussian distribution, apart from a tiny part of the search space graphs has
more than 4,000 edges. Due to these few search space graphs, we can only guarantee that
the search space will have no more than 7,223 edges with this preprocessing. Notably, the
maximum of all possible sizes of search space graphs is quite precisely a half of the initial
guarantee of 14,440 imposed by the granularity.

We explain briefly a feasible technique for beating down the guaranteed size of a search
space graph, as this would be beyond the scope of this work. First, we specify an upper
bound for the size of any search space, say, 5,000 in our case. Obviously, level graphs
at the top level potentially use more edges than the other kinds of search space part. If
we encounter a bad level graph L n−1

i,j , i.e., one that would generate search space parts
exceeding our requested guarantee, we compute and store the graph union between this
bad level graph and all upward graphs that can be connected to this bad level graph.
Informally, we bypass the bad level graph by direct connections from the boundary verti-

7.3 The Road Map Graph of Western Europe 73

ces of all child components of Gk
i to the boundary vertices of Gk

j . Note that this does not
obsolete the original upward graphs, as other level graphs still may be connected to them.
However, the particular search space graphs that would normally contain our bad level
graph now can be built with the help of the readily available bypasses and would exhibit
a smaller size. Other variants of bypasses are also possible.

Finally, in Figure 22 we compare the search space graph sizes observed with our queries
and those of all possible search space graphs. For this, we plot the difference between the
two frequency densities. As expected, both densities differ only slightly.

−0.2 %

−0.1 %

0 %

0.1 %

0.2 %

0.3 %

0.4 %

0.5 %

 0 1000 2000 3000 4000 5000 6000 7000D
iff

er
en

ce
 b

et
w

ee
n

re
la

tiv
e

de
ns

iti
es

Number of edges in a search space graph

Figure 22: Western Europe: Difference between size distributions.
The above plot shows the difference between the frequency densities for sizes of search space graphs: We
subtracted the average sizes from the sizes from our queries. The lower dashed line represents zero, whereas
the upper one denotes the mean of the difference, which is lower than 1 h.

74 7 EMPIRICAL ANALYSIS

75

8 Conclusion and Outlook

In this work, we have presented an efficient preprocessing approach to the shortest-path
problem. We have provided a strong theoretical fundament and proven the correctness of
each aspect of our approach. Our theoretical considerations were backed up by empirical
evidence.

The main contribution in this work is a scalable implementation of our speed-up tech-
nique that can handle huge input graphs such as the road map graphs of Western Europe.
The achievable query performance turned out to be competitive to state-of-the-art tech-
niques. In the scope of this work, many prospects could not have been investigated in
depth. In the following, we depict some of topics that, as we believe, deserve further
attention.

Improved implementation Our implementation could be optimized for speed to im-
prove preprocessing time. The options include, but are not limited to the following:

• Employment of binary data formats in place of XML, while maintaining human
readability through converters from the binary formats to XML.

• Tailored data structures.

• Usage of MPI instead of NFS to exchange data.

• Faster heuristics for the minimization of the search space parts.

Loading the whole preprocessed data into RAM In our reference implementation,
the preprocessing resided on secondary storage. By loading the whole amount of
preprocessing data into main memory, we could test our implementation for practical
setups.

Efficient implementation for external memory Our preprocessing technique natu-
rally allows an implementation based on external memory. Essentially, such an
implementation has been used to carry out our experiments. We could optimize
our implementation in terms of block accesses to secondary storage.

Path views Storage and retrieval of the course of a shortest path is a major requirement
for practical applications. To allow for that, we could enrich our preprocessing by
path information as in [JHR98].

Faster query through bi-directional search Queries against our search space graphs
can be performed by simultaneously looking for a path from source and from target.
By that, we can reduce the number of level edges needed to consider.

Parallelized query We could parallelize the query procedure by spreading the prepro-
cessed data over several machines (e.g., in a computer cluster) where every machine
is responsible for looking up paths in a distinct top-level component. Apart from
task scheduling, communication is required only for queries with comparatively large
distances between source and target.

76 8 CONCLUSION AND OUTLOOK

Dynamization Due to the multi-level approach, we believe that only small parts of the
preprocessed data need to be updated when an edge changes in the input graph.

Combination with other techniques We believe that we can enhance our technique
by including some aspects covered by other approaches, e.g., time-dependent edge
costs.

Theoretical analysis For graph minimization, we have employed a heuristics that per-
forms well in practice. However, it remains an open question whether the construction
of a minimal equivalent graph is a hard problem.

77

A Proofs

Lemma 2. For any pair of component indices i, j ∈ I, i 6= j, and for any pair of vertices
s ∈ Vi, t ∈ Vj, every path in G between s and t contains at least one vertex in S.

Proof. If s ∈ S or t ∈ S, the claim follows straight away. From here on, assume s ∈ Vi \ S
and t ∈ Vj \ S.

For the sake of contradiction, assume we have a path p = 〈v1, v2, . . . , vz〉 with v1 = s,
vz = t and ∀x : vx /∈ S. The path must contain at least one vertex in Vi \ S and at
least one vertex not in Vi \ S, namely, s and t. (We have t /∈ Vi \ S, because Vi \ S and
Vj \ S are disjoint by definition of S.) That given, we can choose x so that vx ∈ Vi \ S
and vx+1 /∈ Vi \ S and get c(vx, vx+1) <∞ from the path property. We conclude that even
vx+1 /∈ Vi, since vx+1 /∈ S according to our assumption that no separators be touched by
the path.

This contradicts the requirement that edges exist only between vertices of the same
component: By definition of decomposition, there must exist an l ∈ I with vx, vx+1 ∈ Vl.
Since vx ∈ Vi \S, we have vx /∈ Vl for all l 6= i; otherwise vx would be a member of both Vi

and Vl and thus contained in S. On the other hand, vx+1 /∈ Vi. From this follows that no
such l can exist, which proves our assumption wrong.

Lemma 3. For any pair of component indices i, j ∈ I, i 6= j, and for any pair of vertices
s ∈ Vi, t ∈ Vj, every path in G between s and t contains at least one boundary vertex of
each Gi and Gj, that is, at least one vertex of Bi and at least one vertex of Bj.

Proof. We prove the containment of at least one vertex of Bi in any path between s and t.
The other claim follows by symmetry.

Fix any path p = 〈v1, v2, . . . , vz〉 with v1 = s and vz = t. It follows from Lemma 2
that p must contain at least one separator. Let x be the smallest index so that vx ∈ S.
We claim that also vx ∈ Bi. To prove that, we only need to prove that vx ∈ Vi, according
to the definition of the boundary vertices.

For x = 1, we are through, because v1 = s ∈ Vi. For x > 1, we assume, for the sake of
contradiction, that vx /∈ Vi. Then, by definition of separation it follows that vx−1 /∈ Vi, as
edges may only connect vertices in the same component, and c(vx−1, vx) <∞ by the path
property. Consequently, there must be some l ∈ I with l 6= i and vx−1 ∈ Vl. We again
apply Lemma 2 for s and vx−1 and derive the presence of a separator vertex in the subpath
p1→(x−1), in contradiction to our prerequisite that x be the first separator of p.

Corollary 4. The separator set S is empty iff |I| = 1.

Proof. (⇒) Assume |I| > 1 and S = ∅ for the sake of contradiction. Choose two component
indices i, j ∈ I so that i 6= j. The vertex sets Vi and Vj are not empty, so choose arbitrary
s ∈ Vi and t ∈ Vj. Because G is connected, there exists a path between s and t. From
Lemma 2 follows, that this path must contain at least one vertex in S. This leads to
contradiction to our assumption that S be empty.

(⇐) For |I| = 1, the separator set is empty by definition: No i, j ∈ I with i 6= j exist.

78 A PROOFS

Corollary 5. For any component index i ∈ I and for any two vertices s ∈ Vi\S, t ∈ Vi, any
path p = 〈v1, v2, . . . , vz〉 in G that, apart from t, does not contain vertices in S, contains
only vertices in Vi.

Proof. For the sake of contradiction, assume that p contains a vertex vx /∈ Vi with x <
z. Due to our prerequisite, vx /∈ S. Choose j with vx ∈ Vj. Such a j must exist by
Definition 1.4. We know that j 6= i due to vx /∈ Vi. According to Lemma 2, the path
p′ := 〈v1, . . . , vx〉 is supposed to contain a separator, which contradicts our prerequisite.

Corollary 6. For any component index i ∈ I and for any two vertices s ∈ Vi, t ∈ Vi\S, any
path p = 〈v1, v2, . . . , vz〉 in G that, apart from s, does not contain vertices in S, contains
only vertices in Vi.

Proof. Symmetric to the one for Corollary 5.

Lemma 8. For all k ∈ {1, . . . , n}, Sk ⊆ Sk−1.

Proof. Fix a k ∈ {1, . . . , n}. Choose any vertex v ∈ Sk. We will prove that v is also
contained in Sk−1.

By the definition of the separator set, there must exist at least two distinct component
indices i, j with v ∈ V k

i and v ∈ V k
j . Choose component indices i′ ∈ Hk

i and j′ ∈ Hk
j so

that v ∈ V k−1
i′ and v ∈ V k−1

j′ . Such indices must exist, since there must be at least one child

component of Gk
i and Gk

j , respectively, to contain v, cf. Definitions 7.2b and 7.2c. Because
of Definition 7.2a, the indices are distinct: i′ 6= j′. So, we have two distinct components
that contain v at level k − 1: v ∈ Gk−1

i′ and v ∈ Gk−1
j′ . This makes v a separator at level

k − 1, i.e., v ∈ Sk−1.

Lemma 22. For any pair of vertices s, t ∈ V with h(s) 6= h(t), and for any vertex ν =
(v, k + 1) of Gs,t with k ≥ 0, the distance between νs and ν in Gs,t equals the distance
between s and v in Gk

i[k]:

d[Gs,t] (νs, ν) = d
[
Gk

i[k]

]
(s, v).

Proof. (Sketch.) We only offer an intuition for the course of the proof. Figure 23 informally
presents the lemma’s main statement.

The definition of ν implicitly states that v is a boundary vertex for the component Gk
i[k]

at level k. Owing to that, we can prove our claim by induction over k.
The root for the induction at k = 0 immediately follows from the definition of the entry

graph.
For k > 0, any path to a boundary vertex at level k must pass at least one boundary

vertex at level k − 1. We indicate, for each path between s and v in G, a corresponding
path between νs and ν in Gs,t that is at most as long as the path in G, and vice versa.
We use the induction hypothesis for level k − 1 when we bound the path lengths. — The
inductional part of the proof strongly resembles the proof of our main theorem.

79

�

�

�

�

�

s

�

�

�

�

	

�

�

�

�

v1 v2

v3

v4

v5

G0

0

G0

1

G0

2G1

0

G0

3

G0

4

G0

5

G1

1

Es

U 0

0

L 1

0,0

D0

4

Xt

s, 0

v2, 1 v1, 1 v4, 1

v3, 2 v4, 2

v3,−2 v4,−2

v5,−1

t, 0

Figure 23: Illustration for Lemma 22.
The highlighted edges in the drawing at the left denote a shortest path between s and v3 in G. The bold
edges in the right-hand side drawing represent a shortest path between (s, 0) and (v3, 2) in Gs,t. Both
paths correspond to each other and are equal in length. We can prove that such corresponding shortest
paths can be found for each boundary vertex of a component that contains s.

80 A PROOFS

81

B Document Type Definitions

<!ELEMENT compchildren (parent, children)>

<!ELEMENT parent ((neighbors|universe)?)>

<!ATTLIST parent comp-id ID #REQUIRED>

<!ATTLIST parent level CDATA #IMPLIED>

<!ELEMENT neighbors (separator*)>

<!ELEMENT separator (neighbor*)>

<!ATTLIST separator node-id CDATA #REQUIRED>

<!ELEMENT neighbor EMPTY>

<!ATTLIST neighbor comp-id ID #REQUIRED>

<!ELEMENT universe EMPTY>

<!ELEMENT children (child*)>

<!ELEMENT child EMPTY>

<!ATTLIST child comp-id ID #REQUIRED>

<!ATTLIST child path CDATA #IMPLIED>

Figure 24: Contents of compchildren.dtd.
Documents that conforms to compchildren.dtd store information about a component’s children in the
hierarchical decomposition.

82 B DOCUMENT TYPE DEFINITIONS

<!ELEMENT nodetocomp (n*)>

<!ELEMENT n EMPTY>

<!ATTLIST n x ID #REQUIRED>

<!ATTLIST n c IDREF #REQUIRED>

Figure 25: Contents of nodetocomp.dtd.
We use a single document that conforms to nodetocomp.dtd to store the home component for each vertex.

<!ELEMENT closure (node*,end,source*)>

<!ELEMENT node comp*>

<!ATTLIST node node-id ID #REQUIRED>

<!ATTLIST node type (sep|nosep) "nosep">

<!ATTLIST node offset CDATA #REQUIRED>

<!ELEMENT comp EMPTY>

<!ATTLIST comp comp-id CDATA #REQUIRED>

<!ELEMENT end EMPTY>

<!ATTLIST end offset CDATA #REQUIRED>

<!ELEMENT source target*>

<!ATTLIST source node-id IDREF #REQUIRED>

<!ELEMENT target EMPTY>

<!ATTLIST target node-id IDREF #REQUIRED>

<!ATTLIST target dist CDATA #REQUIRED>

<!ATTLIST target pred-id IDREF #IMPLIED>

Figure 26: Contents of closure.dtd.
Documents conforming to closure.dtd store the child separator closures for a component.

83

<!ELEMENT searchspaceparts (type-desc,base-comp,

end-fwd,rel-comp-fwd+,rel-comp+)>

<!ELEMENT type-desc EMPTY>

<!ATTLIST type-desc type (up|down|level)>

<!ELEMENT base-comp n*>

<!ATTLIST base-comp comp-id CDATA #REQUIRED>

<!ELEMENT n EMPTY>

<!ATTLIST n x ID #IMPLIED>

<!ATTLIST n k (b|r|i)>

<!ATTLIST n p CDATA #REQUIRED>

<!ELEMENT end-fwd EMPTY>

<!ATTLIST end-fwd offset CDATA #REQUIRED>

<!ELEMENT rel-comp-fwd EMPTY>

<!ATTLIST rel-comp-fwd comp-id CDATA #REQUIRED>

<!ATTLIST rel-comp-fwd offset CDATA #REQUIRED>

<!ELEMENT rel-comp (n+,s+)>

<!ATTLIST rel-comp comp-id CDATA #REQUIRED>

<!ELEMENT s t*>

<!ATTLIST s x IDREF #IMPLIED>

<!ATTLIST s p CDATA #REQUIRED>

<!ELEMENT t EMPTY>

<!ATTLIST t x IDREF #IMPLIED>

<!ATTLIST t p CDATA #REQUIRED>

<!ATTLIST t d CDATA #REQUIRED>

Figure 27: Contents of searchspaceparts.dtd.
A document that conforms to searchspaceparts.dtd stores a set of related upward, downward or level
graphs. The layout of these documents has been optimized for size.

84 B DOCUMENT TYPE DEFINITIONS

Index

bad
level graph, 72

bipartite source-drain graph, 35
bottleneck, 56
boundary closure, 44
boundary closure union, 45
boundary vertices, 9
bypass, 72

center, 35
center vertex, 35
central edge, 35
child separator closure, 44
child separator subset closure, 44
child separators, 44
closure

boundary, 44
child separator, 44
elevating, 47

component hierarchy, 10

directed subset closure, 7
disambiguator, 12
downward edge, 21
downward graph, 15
drain vertex

of a search space part, 12
of the search space, 20

drain vertex set
for star minimization, 35

drain base, 12
drain base vertex set, 12

elevating closure, 47
embraced graph, 50
empty decomposition, 9
entry edge, 21
entry graph, 13
entry vertex, 13
exit edge, 21
exit vertex, 14

gain, 36
global distance, 49
globally shortest path, 49
granularity, 63

of the hierarchical decomposition, 63
graph

bipartite source-drain, 35
downward, 15
embraced, 50
entry, 13
exit, 14
input, 7
level, 16

reflexive, 50
road map, 7
search space, 3, 12, 20
search space part, 12
surrounding, 50
upward, 14
weighted, 7

graph union, 7

home component function, 10

index set, 8
input graph, 7

level edge, 21
level graph, 16

bad, 72
reflexive, 50

levels
number of, 7

master, 56
minimization, 34

number of levels, 7

obsolete, 36
original edge, 35

85

86 INDEX

parent component index, 11
path, 7
perfectly minimizable, 34
precondition task, 55
preprocessing size, 63
preprocessing time, 63
priority, 55

reflexive level graph, 50
relationship set, 10
road map graph, 7
root edge, 36
root vertex, 36

scheduling, 56
search space, 68
search space graph, 3, 12, 20
search space part, 12
search space part graph, 12
separator set, 8
simple subset closure, 7
size indicators, 64
slave, 56
source vertex

of a search space part, 12
of the search space, 20

source vertex set
for star minimization, 35

source base, 12
source base vertex set, 12
source-drain edge, 35
star minimization, 34
subset closure, 7

child separator, 44
directed, 7
simple, 7

supersedement, 29
surrounding graph, 50

task, 56
task type, 56
throughput, 64

universe, 11

upward edge, 21
upward graph, 14

weighted graph, 7

REFERENCES 87

References

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press and McGraw-Hill, second edition
edition, 2001.

[Dij59] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269–271, 1959.

[Fre87] Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with
applications. SIAM J. Comput., 16(6):1004–1022, 1987.

[GH05] Andrew Goldberg and Chris Harrelson. Computing the shortest path: A* search
meets graph theory. In Proceedings of the 16th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2005). SIAM, 2005.

[GLS94] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Paral-
lel Programming with the Message-Passing Interface. Scientific and engineering
computation. 1994.

[Gut04] Ronald J. Gutman. Reach-based routing: A new approach to shortest path
algorithms optimized for road networks. In ALENEX/ANALC, pages 100–111,
2004.

[Hol03] Martin Holzer. Hierarchical Speed-up Techniques for Shortest-Path Algorithms.
Master’s thesis, Dept. of Informatics, University of Konstanz, Germany, Febru-
ary 2003.

[HPS+05] Martin Holzer, Grigorios Prasinos, Frank Schulz, Dorothea Wagner, and Chris-
tos Zaroliagis. Engineering Planar Separator Algorithms. In Proceedings of the
13th European Symposium on Algorithms (ESA), 2005. Springer-Verlag, Octo-
ber 2005.

[HSW06] Martin Holzer, Frank Schulz, and Dorothea Wagner. Engineering multi-level
overlay graphs for shortest-path queries. In Proceedings of the Eighth Work-
shop on Algorithm Engineering and Experiments (ALENEX). SIAM, 2006. To
appear.

[JHR98] Ning Jing, Yun-Wu Huang, and Elke A. Rundensteiner. Hierarchical encoded
path views for path query processing: An optimal model and its performance
evaluation. IEEE Transactions on Knowledge and Data Engineering, 10(3):409–
432, 1998.

[JP96] Sungwon Jung and Sakti Pramanik. Hiti graph model of topographical roadmaps
in navigation systems. In Stanley Y. W. Su, editor, Proceedings of the Twelfth
International Conference on Data Engineering, February 26 - March 1, 1996,
New Orleans, Louisiana, pages 76–84. IEEE Computer Society, 1996.

88 REFERENCES

[LMB92] John R. Levine, Tony Mason, and Doug Brown. lex & yacc (2nd ed.). O’Reilly
& Associates, Inc., Sebastopol, CA, USA, 1992.

[LT79] Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar
graphs. SIAM Journal on Applied Mathematics, 36(2):177–189, 1979.

[LT80] Richard J. Lipton and Robert Endre Tarjan. Applications of a planar separator
theorem. SIAM Journal on Computing, 9(3):615–627, 1980.

[MCH] MPICH – a portable implementation of MPI. http://www-unix.mcs.anl.gov/
mpi/mpich1/.

[NM99] Stefan Näher and Kurt Mehlhorn. The LEDA Platform of Combinatorial
and Geometric Computing. Cambridge University Press, 1999. http://www.

algorithmic-solutions.com.

[Ros] Kristoffer Rose. Generating fast validating XML processors. http://temppeli.
org/doc/flexml/html/paper.html.

[SS05] Peter Sanders and Dominik Schultes. Highway hierarchies hasten exact shortest
path queries. In Proceedings 17th European Symposium on Algorithms (ESA),
volume 3669 of Springer LNCS, pages 568–579. Springer, 2005.

[SWZ02] Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Using multi-level
graphs for timetable information in railway systems. In Proceedings 4th Work-
shop on Algorithm Engineering and Experiments (ALENEX), volume 2409 of
LNCS, pages 43–59. Springer, 2002.

http://www-unix.mcs.anl.gov/mpi/mpich1/
http://www-unix.mcs.anl.gov/mpi/mpich1/
http://www.algorithmic-solutions.com
http://www.algorithmic-solutions.com
http://temppeli.org/doc/flexml/html/paper.html
http://temppeli.org/doc/flexml/html/paper.html

	Introduction
	Related Work
	Formal Description and Correctness
	Definitions
	Decomposition
	Component Hierarchy
	Search Space Parts
	Query

	Optimization
	Removal of Superseded Edges
	Construction of Equivalent Graphs

	Preprocessing Algorithm
	Child Separator Subset Closure
	Search Space Parts
	Parallelization

	Implementation
	Empirical Analysis
	Graph Size vs. Preprocessing Time
	Trade-off between Preprocessing Effort and Query Time
	The Road Map Graph of Western Europe

	Conclusion and Outlook
	Proofs
	Document Type Definitions

