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Abstract

A wide range of large-scale, rapidly evolving networks are omnipresent and
of high importance in our daily life, such as communications, ecological
system etc. Such networks are essentially large complex networks. In order
to ensure the normal work of these systems, it is necessary to research these
evolving networks. However, the structure and the feature of these different
networks are still unclear to us. For decades the "Erdds-Rényi” random
model has been a guide for the research until the recently proposed scale-
free network. The research can be categorized into three areas: network
topology generation and evolving model; the stability of the topology; the
dynamics of the topology. In our work we focus on the evolving model for
the Internet topology concerning the dynamics of nodes in the network over
time, because traditional analysis just views the mass of all nodes together.
In our work, we particularly scrutinize how specific nodes behave over time
with respect to certain measures, asking for examples how volatile a node’s
movement in the core hierarchy is over time or whether there observable
tendencies.

With the help of graph theory, we chose several different well-known
metrics (the metrics here is not meant mathematically, but the charateristic
in networks), such as degree, frequency, core and rich club connectivity etc.
for our analysis. We observed converted trade information of dm chemist
supermarket during Oct. 2004 and Oct. 2006 into a product-receipt-product
network. We applied our metrics, statistic and visualization approaches in
our analysis of the p-r-p network. We found that the degree distribution
of the nodes in the dm p-r-p network has a steady structure over the ob-
servation. The trade of products is also stable and moreover the customers
exhibit certain shopping habit. There are 13% of the products stay in the
maximal shell all the time. Judging by the value of rich club connectivity,
the core products (e.g. daily used stuffs) are always bought together. The
nodes distribution in each shell is chaotic. Whether a new added product is
distributed in a low shell or a how shell is not predictable, since it depends a
lot on the own feature of the product. We compared our visualized results of
the network with the statistic results from the database and we found that
our chosen metrics and approaches are suitable for analyzing an evolving
network concerning a node’s dynamics in the network over time.

Since our chosen metrics and analysis approaches are feasible for the
evolving networks, we then observed the Internet at the AS level during Apr.
2004 and Feb. 2006. In the observation, we found the Internet topology has
also a steady structure because the degree distribution is similar over the
whole time. Nodes with low degree or in low shell constitute the majority of
the network. Most of the degree or shell changes are in the low degree or low
shell group. The nodes, which have high degree and are in the maximal shell
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stay quasi the same over the whole time. Half of the nodes stay in the original
shell. Other nodes move up or down to their neighbor shells. 97% of the
new added nodes are assigned with low degree, or in another word, if a new
node enters the networks, it starts with a low degree with 97% probability.
New nodes are firstly assigned in a low shell and they will either stay in the
low shell area or move to a much higher shell area according to their own
feature (e.g. a backbone AS starts with low shell and will eventually move
into a very high shell as time goes by.) . The distribution proportion for
different degrees in a shell always stays the same. We also found the number
of nodes in each shell evolves in an approximately linear fashion. Besides,
we found the value of rich club connectivity (against 1% rank) decreased
1 each year during the observation, but for a definite assumption, we need
more observation data in the future.

Since we found the Internet topology at the AS level does have some
regularities with respect of a node’s behavior, we propose three relative suc-
cessful different evolving models on the base of our analysis of the Internet.
We propose a universal transformation matrix M, to change the start state
of an Internet topology to the state at next time point and to simulate the
Internet topology at any time point by repeating our algorithms. We also
programmed a simulator as a realization of our algorithm and evaluate our
algorithm by comparing the simulated Internet topology at the AS level with
the original one. Furthermore, we propose two refinements (average window
size and universal transformation matrices with step n) for our algorithm
to make our model more precise. Additionally, we propose another evolving
model using curve fitting on the dynamics of nodes in the transformation
matrix over time. We also estimated the theoretical runtime for the three
successful models in each attempt of our documentation. At the very end we
also evaluated proposed models (including all the models and refinements)
by comparing them with the real Internet system.



Zusammenfassung

Eine grofle Auswahl von skalenfreien, sich rasch-entwickelnden Netzw-
erken sind allgegenwéltig und wichtig in unserem téaglichen Leben, wie
Kommunikationen, 6kologischem Systeme usw. Solche Netzwerke sind im
Wesentlichen groie komplex Netzwerke. Um die Arbeit dieser Systeme
sicherzustellen, ist es notwendig eines komplexen Netzwerkes zu erforschen.
Jedoch sind die Struktur und die Eigenschaften des komplex Netzwerkes
oftmals noch zu unklar. Das ER Zufallsmodell ist fiir Dekaden ein Maf-
gabe fuer die Forschung gewessen bis vor kurzem das sogenannte akalen-
freie komplexen Netzwerk vorgeschlagen wurde. Die Forschung des kom-
plexen Netzwerken kann in drei Bereiche kategorisiert werden: Erzeugung
und Modellierung der Entwicklung von Netzwerkstopologien; die Stabilitat
der Topologie; die Dynamik der Topologie. In unserer Arbeit konzentrieren
wir auf das entwickelnde Modell fiir die Netzwerkstopologie iiber die Zeit.

Mit Hilfe der Graphentheorie wahlten wir einige unterschiedliche wei-
thin bekannte Mafle, wie den Grad, die Frequenz, die Kernstruktur und
die ”Rich-Club-Konnectivitat” usw. fiir unsere Analyse. Wir beobachteten
umgewandelte gesammelte Verkaufszahlen des dm Drogerie Supermarkt aus
dem Zeitraum von Okt. 2004 bis Okt. 2006 in einem Artikel-Bon-Artikel
Netzwerk. Wir wendeten unsere Mafle, Statistik und Visualisierung in un-
serer Analyse des Netzwerks an.

Wir entdeckten, dass die Gradverteilung der Knoten im dm Artikel-Bon-
Artikel Netzwerk eine konstant Struktur {iber dem Zeitraum der Beobach-
tung hat. Der Handel der Produkte ist auch stabil und auBdem haben
die Kunden bestimmte Einkaufengewohnheit. Es gibt 13% die Produkte
bleiben stets in der maximalen Kernschall. Durch den Wert der ” Rich-Club-
Konnectivitat”, wir entdeckten, dass die Kernprodukte (z.B. die téglich
benutzten Materialien) immer zusammen gekauft werden. Die Knoten-
verteilung in der Kernschall ist chaotisch. Es is nicht veraussagbar, ob ein
neu hinzufiigt Knoten in die niedrigen Kernschall oder in die hohe Kernschall
zugewiesen wird, da es von Eigenschaften des Produktes abhaengt ist. Wir
verglichen unsere visualisierten Resultate des Netzwerkes mit den Statis-
tikresultaten von der Datenbank und wir entdeckten, dafl unsere gewahlten
Mafl und Methoden fiir das Analysieren eines sich entwickelnden Netzwerkes
beziiglich der Dynamik eines Knotens im Netzwerk iiber Zeit geeignet sind.

Da unsere gewaehlten Mafle und Methode fiir die entwickelnden Netzw-
erke geeignet sind, beobachteten wir dann das Internet auf dem AS Level
im Zeitraum von Apr. 2004 bis Feb. 2006. In der Beobachtung des Internets
auf dem AS Level, entdeckten wir, dass die Internet-Topologie auch eine
konstant Struktur haben, da die Gradverteilung iiber der Zeit dhnlich ist.
Die Knoten mit niedrigem Grad oder im niedrigen Shell setzen die Mehrheit
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des Netzwerks fest. Die meisten Grad- oder Kernschallinderungen spie-
len sich beim niedrigen Grad-oder Kernschallgruppe ab. Die Knoten, die
hohen Grad haben und in der maximalen Kernschhall bleiben, sind quasi
die selben Knoten iiber der Zeit. Die halfte der Knoten bleiben in der ur-
springlichen Kernschhell. Andere Knoten bewegen sich nach oben oder nach
unten auf ihre Nachbarshell. Etwa 97% aller Knoten, die neu in das Net-
zwerk eingefiigt werden, wird ein niedriger Grad zugewiesen. Neue Knoten
werden zunachst einer niedrigen Kernschall zugewiesen und dann bleiben sie
entweder in der niedrigen Kernschall oder ziehen auf eine viel hohere Kern-
schall entsprechend seiner eigenen Eigenschaften um (z.B. ein Backbone AS
fangt mit niedriger Kernschall an und bewegt sich schliefflich in eine sehr
hohe Kernshall, wie Zeit vergeht). Die Verteilung der Anteile der unter-
schiedlichen Grade in einer der Kernschall bleibt quasi immer die selbe. Wir
fanden auch heraus, dass die Entwicklung der Menge der Knoten in jeder
Kernschall quasi linear sind. Auflerdem fanden wir den Wert der ”Rich-
Club-Konnektivitdat” gegen Rank 1% verringerte 1 jedes Jahr waehrend der
Beobachtung, aber fuer eine definitive Annahme, benoetigen wir Daten iiber
ein ldngeren Zeitraum.

Da wir herausfanden, dass die Internet-Topologie einige Regelmafigkeit
hat, schlagen wir vor, drei relativ erfolgreiche unterschiedliche Entwick-
lungsmodelle anhand unserer Analyse des Internets. Wir schlagen eine uni-
versale Umwandlungsmatrix M, vor, um den Anfangszustand einer Internet-
Topologie in dem Zustand am folgenden Zeitpunkt umzuwandeln und die
Internet-Topologie zu jedem beliebigen Zeitpunkt zu simulieren, indem wir
unsere Algorithmen wiederholen. Wir programmierten auch einen Simu-
lator als Realisierung unseres Algorithmus und werteten unseren Algorith-
mus aus, indem wir die simulierte Internet-Topologie auf dem AS level mit
dem urspriinglichen verglichen. Auflerdem schlagen wir zwei Verfeinerungen
(die durchschnittliche Fenstergrofie und die universale Transformationsma-
trizen) vor, damit unser Algorithmus unser Modell exakter bildet. Uberdies
schlagen wir ein andere Entwicklungsmodell vor, die die Kurveanpassung
auf die Dynamik der Knoten in der Transformationsmatrix iiber Zeit ver-
wendet. Wir haben auch die theoretishe Laufzeit fiir die drei erfolgreiche
Modelle in jedem Versuch unserer Arbeit geschitzt. Am Ende werteten wir
auch die vorgeschlagene Modelle (inklusiv alle Modelle und Verfeinungen).



VII

Acknowledgment

First of all, I am very grateful for my referee and mentor, Prof. Dr. Dorothea
Wagner and Mr. Robert Gorke, without whose help I wouldn’t have come
so far. Secondly, I appreciate it that I am allowed to use all the dm data
and the Core Decomposition program from Mr. Marco Gartler, which make
my work convincing and easier.






Contents

Declaration I
Abstract I1I
Zusammenfassung A%
Acknowledgment VII
Table of Contents IX
List of Figures XIII
1 Motivation 1
2 Previous Work 5
2.1 Regular Network . . . .. .. .. ... ... ... ... ... )
2.2 Random Network Model . . . . . . . . .. .. ... .. .... 6
2.3 Small-world network . . . . . ... .. ... 7
2.4 BA Scale-Free Network Model . . . . . . .. ... ... .... 8
2.5 Deterministic Network Model . . . . . . . . . ... .. .... 8
2.6 Evolving Network Model . . . . . . .. ... ... ... .... 9
3 Fundamentals 11
3.1 The Definition and Illustration of a Network . . . . . . . . .. 11
3.2 The Internet at the ASlevel . . . . . . . . . ... ... ... 12
3.3 Data Source . . . . . .. e 13

3.3.1 dm Trading Information . . . . . . ... ... ..... 13



CONTENTS

3.3.2 Route Viewsdata . . ... ... .. .. ........
3.4 Metrics for a Complex Network . . . .. .. .. ... .....
3.4.1 Power-Law Metrics . . . . . . .. ... ... ... ...
342 Core . ...
3.4.3 Rich Club Connectivity . . . .. ... ... ... ...
35 R
3.5.1 Benefitsof R . .. ... ... o
3.5.2  General Functionsof R . . . . . ... ... ... ...
3.5.3 Statistical Model of R: Linear Regression Model
3.5.4 Graphicsof R . . . .. ... ... ... ... ......
3.6 Time Series Analysis . . . . . . . ... ... ... ... ...,
3.6.1 Benefits of Time Series Analysis . . . ... ... ...
3.6.2 Definition of Time Series . . . . .. .. .. ... ...
3.6.3 Development Statistics . . . . . . ... ... ... ...

Program Algorithms used for the Analysis

4.1 Degree . . . . .o e

4.2 Core . ... e

4.3 Rich Club Connectivity . . . .. .. .. .. ... ... ....

Analysis

5.1 dm Trading Network . . . . . . ... ... ... ... .....
5.1.1  Overview . . . . . ... o
5.1.2  Degree-Frequency-Time . . . . ... ... .. .....
5.1.3 Core-Time . . .. ... ... ... .. ...
5.1.4 Rich Club Connectivity-Time . . . . .. .. ... ...
5.1.5  Time Series Statistics . . . . ... .. ... ... ...
5.1.6  Summary . . . . . ...

5.2 The Internet Topology at the AS Level . . . . . . .. ... ..
521 Overview . . . . . . ..o
5.2.2  Degree-Frequency-Time . . .. ... ... .. .....
5.2.3 Core-Degree-Time . . . . .. ... ... ... .....
5.2.4 Rich Club Connectivity-Time . . . . . ... ... ...

25
25
26
27



CONTENTS XI

5.2.5  Time Series Statistics . . . . . . . . . . .. ... ... 55
5.2.6  Summary . . ... 56

6 Proposal of an Evolving Model for the Internet at the AS

Level 59
6.1 LAttempt . . .. . . . .. 59
6.2 TLAttempt. . . . . . . . . 62
6.2.1 Transformation Matrix . . . . . . . .. ... ... ... 62
6.2.2 Refinement 1 . . ... ... ... ... ......... 64
6.2.3 The Simulator and Evaluation of the Proposed Evolv-
ing Model . . . . . .. .. Lo 68
6.2.4 Refinement 2 . . . . ... ... ... ... ... ..., 70
6.2.5 Refinement 3 . . . .. ... ... ... ... ... 71
6.3 TIL. Attempt . . . . . . . . . 73
6.4 TIV.Attempt . . . . . . . ... 75
6.5 Evaluation of Different Simulation Methods . . . . . . .. .. 77
6.5.1 Normalization of the observation data . . . . . .. .. 7
6.5.2 Comparison of Different Simulation Methods . . . . . 78
6.6 Summary . . . ... .o e e e 85
7 Conclusion 87
7.1 Achievements . . . . . .. . ... .. 87
7.2 SCOPE . v v e e e e 89
7.2.1 Several points could be done in the future . . . . . . . 89

7.2.2  New Aspects for the Modeling of the Complex Network 90

References 93
Appendix 97
A 97
A-1 Tables of Time Series Statistics for the Internet . . . . . . .. 97
A-1.1 dm p-r-p Network . . . . . ... .. ... ... ... 97

A-1.2 Internet Topology at the AS Level . . . ... ... .. 98

A-2 Comparison in the Evaluation . . . . . ... ... ... .... 100



XII CONTENTS

A-2.1 Comparison of Different Simulation Methods Con-
cerning the Amount of Nodes in Each Shell . . . . .. 100

A-2.2 Comparison of Different Simulation Methods Con-
cerning Nodes” Dynamics . . . . .. .. .. ... ... 102



List of Figures

2.1
2.2

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8

5.1
5.2
5.3
0.4

2.5
5.6
5.7
5.8
5.9

ER random network model . . . . ... ... L 6
Random rewiring procedure of the WS model . . . . . . . .. 7
Undirected graph and directed graph . . . . . .. .. ... .. 11
Internet topology at the router and the AS level . . . .. .. 12
procedure from source data to network . . . . ... ..o L. 13

A small example of product-receipt-product network of dm

trade information . . . . . ... ... .. 14
procedure from source data to observed data . . . . ... .. 15
k-Shell Structure . . . . . . . ... 18
Rgui . . . . 20
Example of residual plots . . . . . ... ... ... ... 22
dm data Overview . . . . . . . . .. ... 30
dm data Overview . . . . . . . . . ... 31
Degree of each node over time . . . . . .. ... ... .. ... 32

An example of the stability of products group that is bought

together . . . . . .. 32
Difference of the degree between months . . . . . . . ... .. 33
Frequency of each node over time . . . . . .. ... ... ... 34
Frequency of each degree over time . . . . . . ... ... ... 35
The amount of nodes for each degree change over time . . . . 35
Differences of shellness between months . . . . . ... .. .. 36

5.10 Percentage of nodes which stay in the maximal shell over time 37

5.11 The amount of nodes for each shell changes over time . ... 38



X1V LIST OF FIGURES
5.12 Nodes’ movement among all shells . . . . ... ... ... .. 39
5.13 Distribution of nodes with different degrees in shells . . . . . 40
5.14 Internet topology at ASlevel . . . . . ... ... ... .. .. 43
5.15 Degree changes of every node in the real Internet network

topology over time . . . . . .. ... Lo 44
5.16 Degree changes of every node in the real Internet network
topology over time . . . . . .. ... Lo 45
5.17 The amount of nodes with the same degree changes. . . . . . 46
5.18 Frequency distribution of each degree in the real Internet net-
work topology over time . . . . ... .. L Lo L. 47
5.19 Shellness changes of every node in the real Internet network
topology over time . . . . .. ... L Lo Lo 48
5.20 The amount of nodes with same shellness changes . . . . . . 49
5.21 Nodes’ movement among all shells . . . . ... ... ... .. 50
5.22 Nodes’s movement among all shells(above 17000 nodes) . . . 51
5.23 Nodes’ movement among all shells(above 8th shell) . . . . . . 52
5.24 Distribution of nodes with different degrees in shells . . . . . 53
5.25 Percentage of nodes which stay in the maximal shell over time 54
6.1 Residual g-gplots for entry in M matrix . . .. .. ... ... 60
6.2 Illustration of the matrices. . . . . . .. .. .. .. ... ... 61
6.3 Observation of proportion of nodes’ movement among all
shells for 70 time steps . . . . . . . . .. ... oL 63
6.4 TIllustration of the matrices. . . . . . . .. .. ... ... ... 66
6.5 simulated nodes’ movement among all shells for 90 time steps 69
6.6 Illustration of average window size . . . . . .. .. ... ... 70
6.7 Comparison between the real Internet topology and the sim-
ulated topology with different average window size . . . . . . 71
6.8 Illustration of the average universal transformation matrix W 72
6.9 Illustration of matrices . . . . . . .. .. .. .. .. 73
6.10 The example of distributions of the parameters a, b, ¢ for
different rows (shells) . . . . . .. ... ..o oL 74
6.11 Illustration of the matrices. . . . . . . . .. .. .. ... ... 76
6.12 Comparison of amount of nodes in each shell at time point 70 79
6.13 Comparison of amount of nodes in each shell at time point 215 80



LIST OF FIGURES

XV

6.14

6.15

6.16

Al

A2

A3

A4

Comparison of the percentages of nodes stay at own shell
over time between the simulated topology and the normalized
Internet topology . . . . . . . . ... ...

Comparison of the percentages of new nodes added into each
shell over time between the simulated topology and the nor-
malized Internet topology . . . . . ... ... ... ... ...

Comparison of the percentages of nodes moving to one shell
higher over time between the simulated topology and the nor-
malized Internet topology . . . . . ... ... ... ... ...

Comparison of the percentages of nodes moving one shell
down over time between the simulated topology and the nor-
malized Internet topology (the different color of lines are the
same as described in 6.5.2) . . ... ..o Lo

Comparison of the percentages of nodes moving two shells
higher over time between the simulated topology and the nor-
malized Internet topology (the different color of lines are the
same as described in 6.5.2) . ... ... oL L

Comparison of the percentages of nodes moving two shells
down over time between the simulated topology and the nor-
malized Internet topology (the different color of lines are the
same as described in 6.5.2) . ... ... oL

Comparison of the percentages of nodes dropped from the
network over time between the simulated topology and the
normalized Internet topology (the different color of lines are
the same as described in 6.5.2) . . . . ... ... ... ...






Chapter 1

Motivation

A large complex network is becoming a hot spot in the research area. They
occure in lots of fields, such as communication, neural networks, economics
and management etc. Each node in the network stands for an element of the
system and the connection between them indicates the interaction between
two nodes. For example, in the social network, a node denotes a person,
an organization or a country, and an edge indicates the social connection
between them; in the genetics network of the life system, the node and the
edges illustrate the chemical interaction between proteins, which can serve
for signal transduction from the kernel of a cell to the outside.

In our normal life, a wide range of large-scale, rapidly evolving networks
are omnipresent and of high importance: the Internet (FFF99), the electric-
ity network (AANa), the air transportation network (AANb), the WWW
network (AJB99), the E-mail network (BFNWO04), the food chain network
etc. They are all related to our daily life. The increasing dependence on
these networks reveals a serious question: How on earth are these networks
reliable? In the year 2000, the virus intruded the E-mail system of the
British Parliament, which led to the paralysis of the system. In the same
year, the O’Hare airport was closed because of the storm in Chicago, which
influenced the flight plans in the whole USA. In the year 2003, the collapse
of the electricity network in the state California in USA let most New Yorker
upset. And nowadays, the damage of the ecological system influences the
living environment of ours. How can we prevent the spread of the virus on
the Internet? How can we design a network (electricity, flight etc.) which is
strong enough for dealing with unexpected trouble? How can we keep the
balance of the ecological system? All the solutions to these problems are
related to the research of complex networks.

However, the structure and the features of complex networks are still
unclear to us. Firstly, the structure of complex networks is complicated.
Often, there is still no precise idea about how two nodes are connected in
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the network. Besides, networks are developing. More and more new nodes
are added into the network. The connections between two nodes increase
too as time goes by. The research of complex networks can make use of
graph theory to describe the evolving model, evolving regulation and func-
tionality. According to the Erd6s-Rényi (ER) model (ERm60), a realization
of a random complex network was first proposed. The ER model has been
for decades a guide for the research of complex networks. As the interest
in complex networks grows, other scientists proposed the famous scale-free
network. But until now, there is still no clear definition for a large group of
complex networks.

Nowadays, the research of complex networks can be concentrated on the
following three areas:

e Network topology generation model and evolving model. It simulates
the real network according to the generation model.

e The stability of a complex network. The research focuses on the impact
of the constraints on the structural features of the network, e.g. the
ability of the network for bearing the attack.

e The dynamics of complex networks. It’s the ultimate goal of the re-
search on complex networks.

This documentation focuses on the evolving model for the network topol-
ogy concerning nodes’ dynamics in the network over time. Evolving models
can capture the feature of the generation of the network and help to obtain
the impact of microscopic processes on the network topology. In our work,
we observed two different networks. Firstly, we analyzed the trade infor-
mation network from dm, chemist supermarket, with our chosen metrics to
verify the feasibility of our approaches applied to analyze evolving networks.
And then we analyzed the Internet at the AS level and tried to uncover the
hidden regularities and organizational principles of this evolving network.
Furthermore, we proposed evolving models on the base of our analysis of
the Internet. We propose a universal transformation matrix ﬁp to change
the start state of an Internet topology to the state at the next time point
and to simulate the Internet topology at any time point by repeating our al-
gorithms. We also programmed a simulator as a realization of our algorithm
and evaluate our algorithm by comparing the simulated Internet topology at
the AS level with the original one. Furthermore, we propose two refinements
for our algorithm to make our model more precise. Additionally, we propose
another evolving model using curve fitting on the dynamics of nodes in the
transformation matrix over time. We also evaluated proposed models by
comparing them with the real Internet system.

This work is structured as follows:



The scale of the network in our real life is huge and the interaction
between nodes is complicated, the topology of the network is still unclear.
In the past, there were a lot of researches of the topology of a real system.
In Chapter 2 we will introduce the reader to some previous work that has
been done and the results that have been achieved in the research of complex
networks.

In Chapter 3,we will introduce some fundamentals like the different
metrics (such as degree, frequency, core), the concepts (such as the concept
in time series analysis), data source and tools (such as the R environment),
we chose in order to accomplish the analysis and modeling.

How to get the analytic values according to the different metrics from
the network graph will be introduced by listing the algorithms in Chapter
4.

In Chapter 5 we will show you the results we have achieved by studying
the dm receipt-product-receipt network and the Internet at the AS level. We
found that both network topologies have a steady structure. But over time,
they have their own regulations in the nodes’ distribution, nodes’ movement
area etc., because of their different own features as different networks.

Since we have found some interesting points in chapter 5, in Chapter 6
we are trying to model the Internet topology at the AS level by simulating
the evolution of the Internet over the time in different ways.

In Chapter 7 we summarize again what we have achieved in our study
and outline the interests that we can work on in the future.






Chapter 2

Previous Work

Because the scale of complex networks in our real life is huge and the inter-
action between nodes is complicated, the topology of networks is still largely
unclear. In the past two hundred years, the research for describing the topol-
ogy of a real system could be divided into three phases. In the first hundred
years, scientists believed that the relationship between the elements in a
system could be described with some regular structure, such as Euclidean
network in a two dimensional space. From the late fifties to late nineties in
the 20th. century, large scale networks with no clear design principle were
described with simple random networks. The idea of random graphs domi-
nated the research in the complex network area for about forty years. Only
until recently, the scientists found that a number of real networks are neither
regular networks, nor random networks. They are, however, the networks,
which have different feature from the above mentioned two networks. The
most famous networks are the small-world network (WS98) and the scale-
free network (BA99). The discovery of these two kinds of networks leads to
more interest in the research of complex network. In this chapter we will
introduce the reader some previous work that has been done and the results
that have been achieved in the research of complex networks.

2.1 Regular Network

For a long time, it was believed that the relationship between the elements
in real-world system could be represented by some regular network, such
as Euclidean network in a two dimensional space. The most used regular
network is the circle network with N nodes. In this network, every node is
only connected to the nearest K nodes and every node has the same degree
and clustering coefficient.
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2.2 Random Network Model

Random graph (ERm60) theory was first studied by the Hungarian math-
ematicians Pal Erdés and Alfred Rényi. They proposed the classical ER
model. The definition of the ER model is as follows: in the graph, in which
there are N nodes and C% = w edges, randomly, g edges were picked
out to form a random network, Gy 4. There are C?V(N_l) such networks,

2
which are constructed with N nodes and g edges. The probability of every
network is the same.

Another random network model, which is equivalent to the ER model,
is the polynomial model. It is defined as follows: the number of the nodes
N is fixed. We assume that any two nodes have the probability p to be
connected. Such a network is denoted as G'n,. As we can see, the number

of the edges in the whole network is a variable, pN(]g_l). Let Gg be the
random network with nodes Vi, Vs, ---, Vi and g edges, according to the

N(N-1)

above mentioned process, with probability P(Go) = p/(1—p)(~ 2z 9, we
can obtain network Gy. If g = pCJQV, model Gy 4 is equivalent to model
Gnp- It is very easy to get one model from the other one. Fig. 2.1 is an
example with N = 10 isolated nodes. They are connected with probability
p. It illustrates this process with different probabilities.

[ ]
o
@

[

Figure 2.1: ER random network model

The degree distribution of the ER random graph is a Poisson distribu-
tion. It has a small average path length and a small clustering coefficient.
From the late fifties to late nineties in the 20th. century, large scale networks
with no exact design principle were described with simple random graph
topology, in which the connections between nodes are random. In those
years, some mathematicians researched the random graph and achieved a
lot of approximate and even precise result through strict proofs. The idea of
random graph controlled the research in the complex network area for about
forty years. Only until recent years, because of the rapid development of the
data processing and ability of computation by computers, scientists found
that a number of real-world network are not completely random.
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2.3 Small-world network

Regular ring lattice with 10 nodes, p =0 Ring lattice with rewired edges

»

Increasing
randomness

Figure 2.2: Random rewiring procedure of the WS model

Through experiments, it is discovered that a lot of real-world networks,
especially social networks, have a small-world character, which inspired the
research of the small-world. The earliest small-world network model (WS
model) (WS98) was proposed by Watts and Strogatz in the year 1998. It
(see Fig. 2.2) starts with a ring lattice with N nodes, in which every node
is connected with its m next neighbors on both sides. Every edge of the
ring is then rewired with probability p (self-connections and duplicate edges
are excluded). Those rewired edges are called ”long-range” edges, which
decrease the average path length of the network and have less impact on the
clustering coefficient in the network. The WS model has a social derivation:
In the social system, most people know about their neighbors and colleagues
and some of them have friends, who are far away from them, such as foreign
friends.

After the WS model, Newman and Watts improved the WS model. They
randomly add edges between any two nodes and rewire those new added
edges. The original edges in the ring lattice stay the same. The improved
model (NW) (NW99) is easier to analyze compared with the old one, because
in the generation process of this model, there wouldn’t be isolated clusters,
which could happen in the old WS model. In the year 1999, Kasturirangan
proposed a substitute (Kas99) for the WS model. It also starts with a ring
lattice. And then new nodes are added to the lattice and connected ran-
domly with nodes in the lattice. These randomly connected edges function
as the "long-range” edges.
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2.4 BA Scale-Free Network Model

The degree distribution of the ER model and the WS model is actually a lot
different from many real networks. There would be a lot of restrictions using
random graph to describe these real networks. Therefore, some researchers
tried to find another model to describe the networks better. In the year
1999, Barabasi and Albert researched the evolving process of the WWW
network and discovered that most complex networks have such a feature
that the degree distribution of the complex networks complies with a so
called Power Law. And they referred this kind of networks as the scale-
free network (BA99). Barabasi proposed that the incremental growth and
the preferential attachment are two necessary mechanisms in the generation
of the scale-free network. This thought has been widely accepted in the
research area.

The original scale-free network model , which is called Barabasi-Albert
(BA) model (or BA network) (BA99), is the first random scale-free network
model. It starts with few isolated nodes (ny nodes) and periodically a new
node with s (s < ng) edges that link to s different existing in the graph
nodes, is added to the graph. According to the preferential attachment, the
BA model decides for each existing node v, whether it is connected to the

new node s by the so called linear preference L(v) = Z@(vT;i)C)’ where 7 is an
J

existing node in the graph, d is the degree of a node and c is a constant. As
we can see, if an existing node has a high degree, then the probability L(v)
is high, which means that the new coming node is preferentially connected
to this node. The probability is proportional to the degree of the existing
node. We call this the preferential attachment. The average path length of
the BA model is small and the clustering coefficient (FHJS02) is also small.

2.5 Deterministic Network Model

Stochasticity is the common feature of the small-world network and the
Power-law complex network, namely, a new node connects to the existing
nodes in the system according to different probabilities. However, as what
was said by Barabasi (BRV), randomness is a major feature of most real-
world networks, but it is hard to get a visual understanding of what makes
them scale-free and how two different nodes are connected. Furthermore,
the probability analysis and the random connection between edges are not
suitable for the communication networks, whose nodes have fixed connectiv-
ity, such as the electricity network. Therefore, it would be of great interest
to generate a small-world network or a scale-free network in a deterministic
fashion. The advantage of a deterministic network is that we can analyze
the features of the networks, such as the degree distribution, clustering co-
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efficient and average path length, etc.

In the year 2000, making use of graph theory, Comellas et al. proposed
a deterministic small-world communication network (CnP00). Two years
later, they proposed two more models (CnP02) to generate the small-world
network. In one network, every node has a constant connectivity and in the
other not. There are also many other small-world network models. Corso
from Brazil generates a small-world network (G.), in which the natural num-
bers are the nodes and they made use of the decomposition of natural num-
bers by primary numbers to decide the connections between nodes. With
the help of number theory, Achter analyzed the main features of the network
topology.

It was Barabasi, who simulate the first deterministic scale-free network.
In the year 2002, Dorogovtsev et al. proposed a pseudofractal scale-free web
(DGMO02) generated by a simple structure mechanism and they analyzed
the related network features, such as degree distribution, clustering coeffi-
cient and the spectrum of the network etc. In the year 2004, Comellas et
al.(CGA04) determined recursive graphs with small-world scale-free prop-
erties. The best constructed deterministic network model should probably
be the Deterministic Apollonian Networks (AJHAdS05). It was inspired
by the problem of space-filling packing of spheres according to the ancient
Greek mathematician Appollonius of Perga. This model is the scale-free
and small-world features of the networks. The features of this network are
similar to many real-world networks. It is widely applied.

2.6 Evolving Network Model

The idea of the BA (2.4) model provides others a new aspect of the research
of complex networks. However, compared with many real-world networks,
there seem to be apparent drawbacks in the BA model. As mentioned above,
BA model has a small clustering coefficient, which is in real networks not
true. And during the evolving process of the networks, each tiny change may
have influence on the whole topology of the networks. Moreover, because of
different influences (aging (DMO00), competition (Bar00) etc.), different net-
works evolve very differently. Therefore, evolving network models attracted
much interest in the research.

Preferential attachment is a widely accepted major mechanism in the
Power-Law network. Nevertheless, many researchers proposed some other
new mechanisms to generate the scale-free network. Kleinberg (KKR™99) et
al. and Kumar (KRR ™00) et al. proposed an evolving copy model to explain,
how the Power-Law in the WWW network forms. Chung et al. suggested
duplication models for biological networks (FYGO03).
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In real-world networks, the addition of new nodes, new edges, the re-
moval of edges and the rewiring of the edges (AB00) are a set of basic events,
which cause the evolution of the networks. Actually, any partial change in
the network is caused by these four kinds of events or by the combination
of them. BA model only considers the addition of new nodes. In the year
2000, Barabasi and Albert proposed an extended BA model (AB00). They
researched the impact of the addition and rewiring of edges on the topology
of the networks. In the BA model, old nodes always have a relative higher
probability to get connected with new nodes. However, in the real-world
networks, whether a node obtain a new connection is not only decided by
its degree, but also by its competition ability (or fitness). Those node, which
have a high fitness, may gain more connections than the node, which have a
higher degree, but lower fitness. They will later become the nodes with high
degree. This is called ”the fitter are getting richer”. To illustrate this phe-
nomenon, Bianconi and Barabasi proposed a simple fitness model (Bar00).
In this model, according to some certain distribution, every node is assigned
a fitness value and they assume that the connection probability of an old
node is proportional to its fitness and its degree.

Besides scale-freeness, a big clustering coefficient is another feature of
real-world networks. In order to capture this phenomenon, Holme et al. ,
with the help of the mechanism ”Triad Formation”, proposed a scale-free
network model (HK02), whose clustering coefficient is tunable by setting the
probability of ” Triad Formation”. Inspired by citation networks, Klemm and
Eguiluz proposed a highly clustered scale-free network model (KE02). This
model divides nodes into two categories: active and non-active nodes. At
any time, any two active nodes are connected. And if a new node is added,
only an active node can be connected to it.

Above mentioned models are all 0-1 models, in which all the edges are the
same, which is not true in the real life. Yook, Jeong and Barabasi were the
first ones, who discussed the weighted evolving network model (YJBTO1).
They constructed a weighted network on the basis of an unweighted network,
in which every edge is assigned a weight according to the relationship of the
degree of every node. The research in the weighted network area is becom-
ing more important. Especially, the proposal of the BBV model (BBV04)
from Barrat, Barthelemy and Vespignani according to the statistic of the
international flight network, inspired the research in this aspect. In the real
life, the weight value is influenced by many elements. The investigation in
weighted networks is a very difficult task and a big challenge.



Chapter 3

Fundamentals

In this chapter, we will introduce you to all the fundamentals that we use in
this work, including different metrics, such as degree, frequency, core etc.,
that we used for the analysis. We will also talk about the tool R, we used to
accomplish and present our analysis. Furthermore, we are going to introduce
you to some general concept of the time series analysis that we use to make
some simple analysis of our observation over the whole time.

3.1 The Definition and Illustration of a Network

m n

" ns
undirected graph G = (V, E} directed graph G = (V, E}
V = {ny, Nz, N3, Ny, N5} V= {n, na, ns, Ny, Ns}
E={{n;, ng}, {m.naf, {ng nads {nooned, {ng, nsj, {ns, ns}} E= {(ny, ng). (nz, n), (02, n3), (02, ns), (03, ). (0, 02}

Figure 3.1: Undirected graph and directed graph

A network is presented as a graph mathematically. A complex network
can be easily and precisely described by graph theory. A network (or graph)
can be thought of as a set G(V, E), where V and E are disjoint finite sets
and we call V' the vertex set and E the edge set of G. Every edge [; in the
set F has a related node pair u, v in the set V. If any node pair u, v and v, u
in set E are the same edge, the network is an undirected network, otherwise
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it is a directed network. The number of nodes in the set V is called ”order”
and the number of edges in the set F is called "size”. If order and size are
finite, then the graph is a finite graph. The nodes connected by edges are
referred to as end-vertices. An edge, which has the same end-vertices is a
loop. Multi-edges or parallel edges are more than one edges that are incident
to the same two vertices. A graph, which has no loop and no multi-edge
is called a simple graph. The networks (or graphs) mentioned in this work
are all undirected simple graphs with no multi-edge. The network topology
is modeled by an undirected graph where the network devices are modeled
by the nodes of the graph and the communication links are modeled by the
edges of the graph.

3.2 The Internet at the AS level

4
J‘rﬂmeﬂnS
'

Domainl

Router level AS level

Figure 3.2: Internet topology at the router and the AS level

The Internet is composed of connected subnetworks which are known as
domains or autonomous systems. They mainly consist of a large collection
of routers and are under separate administrative authorities. Hence the
study of Internet topology could be conducted at the router level, where
each router is represented by a node or at the AS level, where each AS
is represented by a node (see Fig. 3.2). In this work our study focuses
at the AS level, since there are too many nodes (routers) at the router
level. Furthermore, the AS level is particularly interesting, because they
can be seen, technically, as internally homogeneous(composed of routers
and have own polices), but they also form a network between them with
routing policies etc.
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3.3 Data Source

3.3.1 dm Trading Information

Bon file Bonxxxx Bonnummer ANr

T 8 200411020048020104 1
Fé}_g | Sonnummer 200411020772018453 1
K. ﬁ e Tag 200411120105032127 1
artenummer Filiale 200411240388012001 1
Kundennummer Kundennummer 200411290331013824 1
Bonnummer Artikelnummer 200411020021014780 76
'\Aﬂmkelnummbef Menger 200411020772018453 76
lenger 200411120105032127 76

200411240388012001 76
200411290331013824 76

\_/—\ Network

Table

Relational database

Source file

Figure 3.3: procedure from source data to network

The source data are about the trade information of customers in the
chemist supermarket dm, who have pay-back cards. The data originally
is all in CSV format. It includes four different kinds of files: Bon files,
Kartennummer file, Atikelstamm file and Filialstamm file. For every month
from Oct. 2004 to Oct. 2006 there is a so called Bon file.

1. Bon files: In these files each record is a receipt. It describes on which
day, in which store, which customer using which payback card has
bought how many and which products.

2. Kartennummer file: In this file the customer information is stored
in the Kartennummer file. This file shows us the personal information
of the card owner, where he always shops and besides dm, where he
can use payback card to shop too.

3. Artikelstamm file: In this file each record describes the detail in-
formation of a single product, such as the number, the brand, import
date of the product, etc.

4. Filialstamm file: Every record stands for the information of a store.
Where is this store? When does it open? For questions like these, we
all could look it up in this file.

To analyze these data, different kinds of network graphs were generated.
We join the tables so that we get the relationship network graph. We could
generate such a graph, where vertices stand for the products, and the line
between two vertices means that these two products are together included
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Figure 3.4: A small example of product-receipt-product network of dm trade
information

in at least two receipts. A graph whose vertex is the product and the edge is
the customer, stands for the fact, that the connected products were bought
by at least two customers. Likewise, if a graph whose vertex is the customer
and the edge is the product, it means that the connected customers have
bought the same product. We can also get a graph with the receipts as
the vertices and the products as the edges. The connected vertices denote
that two receipts include at least two same products. In this way, we can
discover the relationship among the products, customers and receipts. In
this work, we analyze the product-receipt-product (3.4) network, in which a
node stands for a product and if two products are two times bought together,
namely, on the same receipt at least twice, then they have a connection, or an
edge, between them. Since the trade information for all stores in the whole
Germany is huge, we only choose the product-receipt-product network of a
major store, who has the most turnover.
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Figure 3.5: procedure from source data to observed data
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3.3.2 Route Views data

To analyze the Internet topology at the AS level. We use the
oix-full-snapshot-xxxx-xx-xx-xxxx files, which can be obtained at
www.routeviews.org and then converted them into graphml format. Such
a file describes the Internet at the AS level at a certain time point. For
example, oix-full-snapshot-2004-04-01-2200 describes the Internet at the AS
level at 22 o’clock on Apr. 01 2004. The data in the files are described with
XML as follows:

<graph id="G" edgedefault="directed">
<node id="n0">
<data key="d0" >
<y:ShapeNode >
<y:Geometry x="-15.0" y="-15.0" width="30.0"
height="30.0"/>
<y:Fill color="#FF0000" transparent="false"/>
<y:BorderStyle type="line" width="1.0"
color="#000000" />
<y:Shape type="rectangle"/>
</y:ShapeNode>
</data>
<data key="d1" >11537</data>
<data key="d2" >true</data>
</node>

It describes a node’s id, geometrical position in a graph etc. Using
”yfiles” to load and analyze the graphml file, we can compute the analysis
information, such as degree of a node etc.
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3.4 Metrics for a Complex Network

What we should notice here is that the metrics we speak in our documen-
tation is a property, a characteristic or a measure in the network. It is not
the concept of the metrics that we use in a mathematically rigorous way as
usual.

3.4.1 Power-Law Metrics

Studying the properties of Internet topology actually consists of finding out
the metrics that describe the properties. Such a topology model consists of
several metrics, the nominal values for these metrics are measured according
to the data of the real Internet topology. Within all the discovered Internet
topology properties, f;, the frequency of a degree d, is a basic foundation
to judge if the topology graph is similar to the Internet topology. In the
earlier studies, some researchers consider that the distribution of the degree
of a node in the Internet is either totally random (Waxman model (BM99)
or regular (Tiers (JCJ00)). But with the discovery of power laws (FFF99),
it is proved that the Internet topology ranges between both of them.

In the year 1999, Faloutsos et al. analyzed the BGP information of the
year 1998 from the National Lab for Applied Network Research (NLANR)
and discovered that there are 3 Power-Laws in Internet topology (FFF99).

Power-Laws are expressions of the form y o x®, where a is a specific
constant of this law, x and y are the measures of interest and  stands for
”proportional to”:

Power-Law 1 (rank exponent): The degree, d,, of a node v, is propor-
tional to the rank of the node, r,, to the power of a constant, R: d, o r%;

Power-Law 2 (degree exponent): The frequency, fg, of a degree, d, is
proportional to the degree to the power of a constant, O: fy o d°;

Approximation (hop-plot exponent): The total number of pairs of nodes,
P(h), within h hops, is proportional to the number of hops to the power of
a constant, H: P(h) o< k', h < § , where § is the diameter of the graph;

Power-Law 3 (eigen exponent): The eigenvalues, \;, of a graph are pro-

portional to their order, i, to the power of a constant, E: \; o< i¥.

In the topology graph, the number of the connections of a node with
other nodes is referred to as the degree of a node. Every node in the graph
with a certain degree has a rank. The higher the degree is, the higher the
rank is. The frequency refers to the amount of nodes that have the same
degree. The neighborhood size of a node n within h hops is the number
of all the nodes that are reachable from node n within A hops from m.
Furthermore, the pair size within h hops is the sum of neighborhood sizes
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of all nodes within A hops, it thus reflects the connectivity of a graph. The
order i is the order of the eigenvalue, );, in the decreasing sequence of
eigenvalues.

Power-Law 1 implies that in the real Internet there is neither such total
equality like in the Waxman model (BM99) nor a strict hierarchy like in
Tiers (JCJOO) and Transit-Stub models. It suggests a ”loose” hierarchy.
Power-Laws 1 and 2 reflect that the actual Internet has the feature of high
irregularity, which means that the minority has higher degree, while the
majority has lower degree. For example, in the Internet, R = —0.7, O =
—2.2 at the AS level and R = —0.4, O = —2.4 at the router level (FFF99).
The exponent H in the approximation could be used to classify the topology
graph. For instance, in the Internet, H = 4.7 at the AS level and H = 2.8
at the router level (FFF99). Power-Law 3 is used to further distinguish two
similar graphs of the same kind. An example value of constant E could
approximately be -0.4 at the AS level and -0.1 at the router level (FFF99).
All these examples of constant values derived from the experiment results
on the real Internet (FFF99), which are by now of course slightly outdated.

In our work we will use metrics frequency and degree as one of our main
metrics.

3.4.2 Core

The concept of cores was proposed by Seidman in the year 1982, when he
was researching the structure of the network. We call a set of nodes a k-core
(AIb06), if each node in the set is connected to at least k other nodes in the
set. We call a set of nodes a k-core-shell (Alb06), if all the nodes in this set
belong to the k-core and do not belong to the (k+ 1)-core. To get the cores
of a graph, the following steps are repeated:

1. Put all nodes with degree i (starting with ¢=0) into shell i
2. Remove them from the graph

3. Search again repeatedly in the new graph until no more nodes with
degree ¢ are found.

4. Increase 7 by one.

Fig. 3.6 is an example of k-cores and k-core-shells. All nodes are in the
core 0. The second core (core 1) includes all nodes except the isolated gray
node. The core 2 is composed of green and blue nodes. Finally, the blue
nodes constitute the core 3. Concerning the core-shell, the number of the
nodes in shell 0 is 1 because only the gray node in core 0 and not in core
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Figure 3.6: k-Shell Structure

1 belongs to shell 0. Accordingly, the red nodes are the elements of shell 1,
the green ones belong to shell 2 and the blue ones are the nodes in shell 3.

As we can see, there is some relationship between the core and the degree
of a graph. A node with a low degree definitely doesn’t belong to a core
with a high order. However, a node with a high degree could belong to a
core with low order. For instance, a node, which works as a provider, could
have an infinite degree (star structure connections), but it is in a very low
core. Actually, the real Internet network has in many cases such a feature
of the core structure. Let’s take a look back at Fig. 3.2. The AS graph has
some interesting feature, such as its core structure. 70 — 85% of the nodes
are in core 1 and core 2 but not in the core 3. The cores with higher order
have fewer nodes. However the maximum core number (k = 26 with 20k
nodes in the real Internet) again is very large.

In this work, we define which shell a node belongs to as the concept of
shellness of a node.
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3.4.3 Rich Club Connectivity

The metrics degree and frequency in Power-Law focus on the connections
of a node. The metric core focuses on the whole hierarchical structure of
a network. But the metric rich club connectivity, we are also going to use,
focuses on the connections inside a small-world group. As we read in Section
3.4.1, every node in the network has a rank according to its degree. Those
nodes, which have the same degree, are assigned with a position arbitrarily
in that group. Therefore, each node has a distinct rank. The nodes in the
network are sorted decreasingly, which means, who has the highest degree
has the highest rank (rank 1). We denote the rank as r and it is normalized
by the total number of nodes N. Now we define the rich club connectivity
¢(r) as follows: the rich club connectivity of a rank r is the ratio of the
total actual number of links of the nodes, whose rank is higher than r, to
the numbers of the links if these nodes are completely connected, namely,

Yconnections of nodes within the rank r
¢(r) = n(n—1)

2

Through this metric, we acknowledge that the nodes with a higher degree
(or a higher rank) are well connected between each other.

3.5 R

3.5.1 Benefits of R

R (VS) is a programming environment for data analysis and graphics. Most
analysis in this work is accomplished with R. The following are the reasons
why we choose R to analyze our data information:

1. R is a free statistics software. It is a copy of a commercial program
named S. It’s free, but its ability is not worse than any other same
kind commercial software. According to its function, R and MATLAB
are most alike.

2. R is an object oriented statistics programming language. It’s easier
for most of us, who are born in this OOP year, to understand and use
R.

3. R has interfaces for other programming languages, such as JRE for
JAVA. So that we can also call R functions in our java program.
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Figure 3.7: Rgui

3.5.2 General Functions of R

R can accomplish some simple manipulation of numbers, vectors, arrays and
matrices etc, such as assignment, arithmetic and comparison. Moreover, R
can also realize the outer product of two arrays or the multiplication of ma-
trices. One of R’s significant functions is the statistics ability it provides.
R has a set of statistics tables, which can evaluate and simulate the dis-
tribution of a data set, such as Poisson, binomial etc. Furthermore, it can
generate a fitted statistical model for a data set.

3.5.3 Statistical Model of R: Linear Regression Model

The statistical model, we will use later (see 6.1), is a linear regression model.
The data information over time might form a non linear curve. The linear
regression model collects the analysis data together and fit them into a linear
curve. Therefore, according to the fitted curve, we can predict the value of
the data in the future. Suppose that the value of Y is influenced by the value
of X1, X9 and X3. The general form for Y would be Y = f(X1, X2, X3) +¢,
where f is the function that maps X to Y and ¢ is the error. Normally, we
cannot figure out directly the f function. Therefore, we restrict it as the
form Y = By + 1 X1 + P2 X2 + 83 X3 4+ . Now, we only need to estimate the
value of the s@s. R uses here the least square estimation. It defines that if
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T

the sum of the squared errors, €* €, is minimal, then it estimates 3 the best.

Yej=ele=(y—XB) (y—XB) =y y—28XTy+ " X"Xp

After the differentiation with respect to 8 and setting it to zero, we find
the best estimation of 3, 3.

'y — 28Xy + 67 XTXB) =0

XTxp=XxTy

B=(X"x)"'xTy
For a simple regression y; = a + fx; + &;,

5 X(x; -7y
b= E(Ii — 52)

The Gauss-Markov theorem proves that it is best linear unbiased esti-
mate (see (Jul)).

3.5.4 Graphics of R

Besides the above mentioned versatile functionalities, R has also a very
strong graphical facility. It can plot data sets with different options (two or
three dimensional, multiple figures, piechart, histogram etc). For our linear
model regression analysis, R can plot a series of residual summary (Fig. 3.8
is a random example) to show us whether the linear model is good or not.
In the fitted value and residual figure, for each fitted value 7; on X-axis,
there is a corresponding residual value on Y-axis. Obviously, if the nodes
are around the line y = 0, it means the linear model is good. The right
upper figure is a normal quantile-quantile plot for residuals. The residuals
are normal if this graph falls close to a straight line. The scale-location
graph is a plot that calculates the square root of the standardized residuals.
The highest points show us the largest residuals. The right bottom plot
identifies points that have a lot of influence in the linear regression model.
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Figure 3.8: Example of residual plots

3.6 Time Series Analysis

3.6.1 Benefits of Time Series Analysis

Taking advantage of time series analysis, we can:

1. reveal the dynamic regulation of the development of the phenomenon
we observe

2. forecast the future development

Time series analysis is used in many areas, such as sales forecasting,
inventory studies etc. In order to observe different evolving networks, we also
make use of some basic idea of the time series analysis, since the networks we
study evolve over time. It helps us to understand the underlying structure
that produced the observed data. And if we could find a proper model
for the structure, it would be possible to forecast, monitor or simulate the
networks.
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3.6.2 Definition of Time Series

A time series is an ordered sequence of values of a variable at equally spaced
time intervals. Two main factors constitute a time series. One is the time
point. And the other is the value of the observed phenomenon at a time
point. Normally we refer to the time point as ¢; and to the observed value as
a;, where i = 0,1,2,--- ,n. A time series can be written as ag, a1, a2, -+, ap
or {a}. We call a; the development level at each corresponding time. We call
the average value of a; the chronological average or the dynamic average.

Dtartay--Fap1+Y

n

a (dynamic average) =

It denotes the average change of the observed value over time.

A time series can be categorized into absolute value time series, relative
value time series and average value time series according to the observed
value. Furthermore, it can also be categorized into time period series and
time step series according to the time. In this work, we analyze the absolute
value of our observation at each time step.

3.6.3 Development Statistics

We have the following standards that show us how the observed phenomenon
develops:

1. increment amount = a, — ag, it denotes the total increment of the
amount of the observed data;
accumulated increment amount at each time point ={a; — ag, a2 —

ap, -+ ,an —ap}, it is the increment of the amount at each time point
compared with the one at the first time point;
increment amount for each time step = {a;—ag,as—a1, -+ ,an—an_1},

it describes the increment of amount of the observed data for a time
point to the next;

2. development rate (v) = ¢, it denotes a development rate at each time
point compared with the first time point;
development rate for each time step = Z—é, Z—f, cee aij - }, it describes
the development rate of the observed data for a time point to the next;

3. increment rate = v — 1, unlike the development rate, the increment
rate denotes how fast the observed data increase;

increment rate for each time step = {“1(;0%, QQ(;IC” R ,a"a_ anl_l , 1t
—
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Fundamentals

describes the increment rate of the observed data for a time point to
the next;

. geometric average development rate

ap az Gn, Qnp
ap ax Gn—1 agp

. __ Gp

-0 - U= —

ao

—
ap a2 an,
nl(—=.

U=
ap aj Gp—1

it calculates the average value of the development rate over a long time
observation;

. average increment rate = v — 1, it calculates the average value of the

increment rate over a long time observation



Chapter 4

Program Algorithms used for
the Analysis

In this chapter, we will list the algorithms of the programs that we used
to calculate the different metrics, such as degree, frequency, shell, rich club
connectivity etc., used for our analysis. All the base data is stored in the
mySQL server in our institute.

4.1 Degree

The number of the connections of a node with other nodes is referred to as
the degree of a node. yFiles is an extensive Java class library that provides
algorithms and components enabling the analysis, visualization and the au-
tomatic layout of graphs, diagrams, and networks. With the help of it, we
can obtain a lot of features of a network in graphml format, such as degree,
number of edges etc. The calculated degree for each node at each time point
with the respective node’s id is stored in the mySQL server.

label degree degree degree
200404012200 | 200404082200 200602232200

11964 2 2 Null

30403 1 Null 1

6366 2 2 2

Table 4.1: The node-degree table in mySQL server
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Algorithm 1: To obtain the degree of a node from the network and
store it in the database

Data: Network in graphml format

Result: Degree of each node

1 for i < 1 to (graph.allnodes).length do

2 node« graph.allnodeli] ;
3 degree<— node.degree ; /* yfiles library */
4 save node.degree in database;

4.2 Core

We call a set shell k&, if all the nodes in this set belong to the k-core and
not belong to the (k 4 1)-core. We define that a node has a shellness k, if
it belongs to k shell. We used the Core Decomposition program by Marco
Gaertler from our institute to get the shellness of each node. The following
steps will be repeated until there is no node without a shellness in the
network: We firstly search for a node which is not assigned with a shellness
and has the smallest degree in the network. This smallest degree is then the
current shellness we are looking for. Now we look for all the nodes which has
no shellness and whose degree is smaller or equals the current shellness. If
we find such a node, we assign it with the current shellness and then search
for all its neighbors. All its neighbors’ degree will be decreased by 1 and if
the neighbor has no shellness and the degrees of the neighbor is smaller or
equals the current shellness, it will be put into a candidate list. After all
the nodes, whose degree is smaller or equals the current shellness, have a
shellness, we repeat the above mentioned steps for all nodes in the candidate
list until the list is empty.

label | shell20040401220 | shell200404082200 shell200602232200
10764 8 8 8

1103 15 16 15

3333 22 22 25

Table 4.2: The node-shell table in mySQL server
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Algorithm 2: To obtain the core of a node from the network and

store it in the database
Data: Network in graphml format

Result: Shellness of each node

1 while There is a node without shellness do

2 level«—the smallest degree of the nodes without shellness;

3 list candidate;

4 while There is a node n without shellness and n.degree<level do

5 n.core«—level;

6 (n.neighbors).degree«—(n.neighbors).degree-1;

7 if a node nn € n.neighbors and nn has no shellness and
nn.degree<level then

8 L candidate.put(nn);

9 while Candidate list is not empty do

10 cn«—candidate.get();

11 if cn has no shellness and cn.degree<level then

12 cn.core«level;

13 (cn.neighbors).degree< (cn.neighbors).degree-1;

14 if a node nn € cn.neighbors and nn has no shellness and

nn.degree<level then
15 L candidate.put(nn);

4.3 Rich Club Connectivity

We define the rich club connectivity ¢(r) as follows: the rich club connectiv-
ity of a rank r is the ratio of the total actual number of links of the nodes,
whose rank is higher than r, to the numbers of the links if these nodes are
completely connected, namely,

Yconnections of nodes within the rank r
¢(T) - n(n—1)

2

We firstly sort all nodes in descending order in the network. Since the
rich club connectivity is about the connections between at least two nodes,
the node with the highest degree doesn’t have this value. And we set the
value of this node as zero in the initialization. Now we repeat the following
steps until each node has a rich club connectivity: We pick out a node in
the sorted nodes list once a time, and look for its neighbors using yFiles
class. And then we find all the neighbor nodes whose rank are higher than
the selected nodes. These neighbor nodes and the selected nodes are stored
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in the rnl list. Now we can calculate the actual quantity of connections
among the nodes in the rnl list and divide it by the amount of connections
among these nodes if they are completely connected. The ratio is the rich
club connectivity of the selected value. The values for 1% rank of nodes for
the dm p-r-p network and Internet at the AS level over time are listed in
table 5.1 and 5.2.

Algorithm 3: Computation of rich club connectivity against rank of
nodes

Data: Network in graphml format

Result: Rich club connectivity against rank of nodes

1 sorted nodes«—sort(graph.allnodes) ; /* according to nodes’
degrees in descending order */
; /* Initialization */

2 list I;

3 1« 1;

4 n < sorted_nodes][i[;

5 edgenum «— 0 ;

6 l.put(n);

7 rce «— 0

; /* Computation of Rich club connectivity (rcc) */

8 for i — 2 to (graph.allnodes).length do

9 n « sorted_nodel];

10 nl < n.neighbors() ; /* function from yfiles */

11 rnl < nlN1l; /* pick out the nodes whose rank is higher
than the current node */

12 edgenum « sizeof(rnl) + edgenum ; /* sum the number of
edges among nodes in the rich group */

13 b — z(z;l) ; /* number of edges if nodes are fully
connected */

14 rce — W% ; /* calculation of the value of rich club
connectivity (rcc) as described in the above text */

15 l.put(n);




Chapter 5

Analysis

We obtained a lot of information from the chemist supermarket dm
(see 3.3.1). We applied our approaches of the analysis to this real-world
data to ensure the feasibility of the approaches and metrics (3.4) used for
our analysis of an evolving network. We also obtained lots of information
data from the Internet at the AS level (see 3.3.2). Applying our approaches
that we approved in the analysis of the p-r-p network of dm chemist super-
market, we tried to reveal the hidden regularities of the changes of nodes as
the Internet evolves over time.

5.1 dm Trading Network

We applied our approaches of the analysis to these sets of real data to ensure
the feasibility of the approaches and metrics (3.4) used for our analysis of
an evolving network. We should notice, that all our figures listed in our
work are visualizations of our statistics and most conjectures we made in
our analysis are proven facts, such as the degree/frequency distribution over
time (5.3, 5.7), the movement of nodes among shells over time (5.12). We
examined them by the statistic of the dm and the real Internet data in our
database. Meanwhile, a few statements we made are only conjectures, such
as the implication of a certain shop habit of a customer (5.7).

5.1.1 Overview

First of all, we will talk about what our chosen metrics represent in our ob-
servation of dm product-receipt-product network (3.4). A node with a high
shellness implies that it is in a group of products in which lots of products
are always bought together. The product groups with high shellness are
composed of daily used products. Meanwhile a node with high degree can
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only tell us that it is more often bought or popular, but it cannot imply
that it is in a product group. This is true, because a node with high degree
can also have a low shellness. For example, a node n has a high degree, say,
500, but they are all connected to nodes (my, ma, -+ ,mso0) with degree 1,
then its shellness is only 1. As we can imagine, this implies that it is always
bought together individually with another product, such as product pair
(n,mq) or (n,msg), but not bought altogether, such as a products group
(n,mqy,ma,- -+ ,mspp). For example, product like Nivea Visage Cleansing
Milk, Tempo, Balea Bodylotion etc. are in a relative high shell group, the
shell 20 group. The mentioned products are always bought altogether. And
the baby food Bebivita has a relative high degree (about 85) but its shellness
is about 30. It is not in a product group. However, in our dm observation,
there is no such node which has a high degree but a very low degree, vise
versa. Therefore, in this observation a node with high degree or high shell-
ness means it is popular. The value of the rich club connectivity implies how
well the nodes with high degrees are connected with each other. It denotes
if popular products might be bought together. How strong the group is,
that is formed by the most well-connected products.
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Figure 5.1: dm data Overview

Secondly, let’s get an overview of the data we are observing. Fig. 5.1
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are some figures that show us the general consuming states. Fig.(a) shows
us how many receipts were printed out every month. Fig.(b) shows us how
many products are sold out every month and Fig.(c) tells us how many
products each receipt includes on the average. For example, in October
2004, there were about 238000 different kind of products sold out (same
products sold out for more times are counted as one), about 37500 receipts
are printed out and about every receipt includes about 6 products.

5.1.2 Degree-Frequency-Time

Fig. 5.2 are two figures that illustrate the degree distribution of the nodes
of the network over the whole time. Fig. (a) is the degree distribution of
nodes at one time point (Oct. 2004) and Fig. (b) is the degree distribution
of nodes over the whole time. Different time points are illustrated with
different colors. The x coordinate is the degree and the y coordinate is the
number of nodes (or frequency) which have the same degree. The z and
y coordinates are both in log form. As we can see, every month there are
always about 900 nodes with degree 1 and about 600 nodes with degree 2
and the same is true for other degrees. This is an indicator for the network
to have a steady structure over time.

Frequency Distribution over Degree in Oct.2004 Frequency Distribution over Degree for Months from Oct.2004 to Oct.2006
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Figure 5.2: dm data Overview

Fig. 5.3 is a degree-time figure. Every node in the figure denotes a
degree. The vertices (in the p-r-p network), which have the same degree,
are illustrated by an identical node in this figure. Each line stands for the
degree changes of a node as time goes by. As we can see, most nodes have
few degree changes, which means even as the time changes, the trading of
the products has a stability. Some items are always bought together. We
can see in Figure 5.4, customers always buy the cat food (Dein Bestes)
together over time. The most sold product is the non free plastic bag, which
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Degree Distribution of each Node over Months from Oct.2004 to Oct.2006
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Figure 5.3: Degree of each node over time
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a customer uses to hold the products, he bought. Obviously, it is a popular
product, which can be bought with any other products. The second and the
third one are kitchen work and toilet paper. We can also find in the figure,
there is a node, whose degree changes a lot over time. Sometimes it has
the degree over 4000, and after couple of months it falls back to about 1500
or even lower. It is actually the payback card with a special bonus. Once
a new payback card with new bonus is in the market, a lot of customers
will buy it together with other products (lines with sharp peak) and after
a period of time the card is sold out(the single red line on the very left in
the figure). We can also see, that except for some special nodes, such as
the node for payback card, each other node’s degrees fluctuate around their
original degrees as time goes by.
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Figure 5.5: Difference of the degree between months

Figure 5.5 shows, how much the degree of a node changes from one
month to the next month. The x coordinate indicates the step from one
month to the next month and the y coordinate indicates from one month
to the next month, how many degrees of a node have changed. The line
between the nodes denotes the continuous changes through all months. For
example, the single node on the left bottom in the figure means that the
degree of this node from the first month to the second month decreases by
about 3000.In this figure, we can find that the degree changes of most of
the nodes ranges from —100 to 100. In this figure, we can also find, that
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except for some special nodes, such as the node for payback card, each other
node’s degrees fluctuate around their original degrees as time goes by, since
the change alternates between being positive and negative.

Frequency of each Node
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Figure 5.6: Frequency of each node over time

The following two figures are the frequency (of each node)-time figure 5.6
and frequency (of each degree)-time figure 5.7. As we can also see, the
movement of the frequency, as the time changes, tends to be stable too.
Every month, there are always about 1000 items sold with one other product,
likewise, there are always about 600 items sold with two other products and
so on. What is interesting, is that the distance (in frequency of each degree
figure) between any two lines stays almost the same as the time passes.
Meanwhile, in the frequency of each node figure, we acknowledge that every
month there are some products that fall from a high frequency level to a
lower frequency level, which means they have a higher degree than before, or
in another word, they are sold together with more other products. And some
of the nodes have the opposite situation. They get into a higher frequency
level. Furthermore, a few nodes (or products) are not sold anymore. Because
of these changes, the distance between any two lines stays stable. It indicates
that all customers have a certain shopping habit. The customers always buy
a lot of things, which are used commonly in our daily life, and the products,
that are durable or rarely used are always sold less.

Figure 5.8 illustrates how many nodes have the same degree changes
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between two months. The x coordinate indicates the step from one month
to the next month and the y coordinate indicates the number of the nodes.
Each line indicates, from one month to the next month how many nodes
have the same degree changes. The different color of each line shows the
range of the degree changes. For instance, the red line on the top means
that from the first month to the second month, there are 800 nodes, whose
degree changes greater than 10. And from the second to the third month, the
degree of about 550 nodes changes over 10. The interesting discovery in this
figure is that there are always two lines, whose movements are roughly the
opposite. For example, the movement of green and yellow lines are opposite
to the blue and purple lines. It is the reason that cause the overall stability
of the degree and frequency changes in the above figures. The degree and
frequency changes a lot, but macroscopically, they have stability.

5.1.3 Core-Time

Difference of the Coreness between Monthes

Ditference of the Coreness
a
1

Month

Figure 5.9: Differences of shellness between months

Figure 5.9 shows, how much the shellness of a node changes from one
month to the next month. The x coordinate indicates the step from one
month to the next month and the y coordinate indicates from one month
to the next month, how many shellnesses of a node have changed. The line
between the nodes denotes the continuous changes through all months. As
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we can obviously find that if the shellness of a node increases over about 12
in a month, it will not increase again. In another word, in the next step,
its shellness will definitively reduce. The shellness of most products will not
continuously increase over 12 in two months. Likewise, the shellness of most
products will not continuously decrease over 12 in two months. That means,
if a product is populary sold this month, it will maybe stay popular, but it
is impossible, that it is becoming much more popular in the next month.
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Figure 5.10: Percentage of nodes which stay in the maximal shell over time

Figure 5.10 are some figures about the percentage of the nodes, which
always stay in the maximal shell as time goes by. The z coordinate is
the month interval. For example, in Fig.(a) the month interval is one (first
month to second month, second to third and so on) and in Fig.(b) the interval
is two (first month to third month, second to fourth and so on). Likewise,
we can get a series figures with different month intervals (see the complete
figures in appendix). These figures actually show us the overlap of nodes,
which always stay in the maximal shell. For instance, in Fig.(a) in the first
15 months, there are always about 60% nodes stay in the maximal shell every
month. In Fig.(b) from the third to the fifth month, there are about 55%
nodes that stay in the maximal shell. Within all months of our observation,
there are 13% nodes stay in the maximal shell. Fig.(c) is the average of all
the figures. The x coordinate denotes the general month interval. ’1” means
the interval is ’every two months’ and ’2’ means the interval is ’every three
months’. The y coordinate indicates the percentage of nodes, which stay in
the maximal shell. For instance, after 5 months (start month is random),
there are 35% nodes still stay in the maximal shell. As we can see, the curve
looks like a part of a normal distribution.

Figure 5.11 illustrates how many nodes has the same changes between
two months. The x coordinate indicates the step from one month to the
next month and the y coordinate indicates the number of the nodes. The
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The number of nodes for coreness distance of every node between every two monthes from Oct.2004 to Oct.2006
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Figure 5.11: The amount of nodes for each shell changes over time

different color of each line shows the range of the shellness changes. For
instance, the blue line on the top means, that from the first month to the
second month, there are about 500 nodes, whose shellness changes are zero.
It shows, every month, there are about 500 nodes, whose shellness does not
change at all. The more changes of the shellness of a node, the less nodes
there are. You may notice that the changes of the number of the nodes,
whose shellnesses increase or decrease, are in correspondence. See month
step 3 and 4, the total amount of nodes reduces, whose shellness increases
by 1, 2, 3 or 4, meanwhile, the total amount of nodes increases, whose
shellness decreases by 1, 2, 3 or 4. Actually, the movements of two lines,
for instance, the number of the nodes, whose shellnesses increase by 1 and
the number of nodes, whose shellnesses decrease by 1, are symmetrical. The
sharp peeks at the month step 14, 17 and 19 are caused by the dramatic
increments and then decreases of the shellness in those months.

Figure 5.12 is an illustration about how nodes move among all shells
over time. The z coordinate denotes time stamps. The figure is composed
of 25 pillars. There is a pillar at each time stamp. A pillar is filled with
different color of short lines. Each line represents a node. The colors of
the line illustrate different shells (Since there are too many shells, we use 26
different colors cyclically to represent different shells). The nodes in the first
pillar are ordered increasingly by shells and illustrated by different colors.
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Nodes’ Movement among Core Shells over Months from Oct.2004 to Oct.2006
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Figure 5.12: Nodes’ movement among all shells

For example, black lines stand for shell 1 and dark gray ones stand for shell
2 and so on. The remaining 24 pillars are a little different than the first one.
The colors of these pillars denote in which shell a node at the first time point
was. And a node’s current shell is illustrated by the shell tiers. A shell tier
in our figures ends when the next shell, which the color represents, in the
pillar is smaller than the current shell represented by the color. For instance,
in the 25th pillar, shell 1 starts with the light gray color (new nodes) and
ends before the next light gray color; shell 2 starts with the second light gray
color and ends before the third light gray color and so on. The shellness
of every node of these pillars at a time point is firstly ordered increasingly
by its shellness and is then ordered by its original shellness at the first time
point. For example, if a node was in the shell 1 at the first time point and
is now in the shell 2 at the 25th time point, then it is in the second black
area from the bottom at time point 25 in the figure. Unlike the Internet (see
5.21), the nodes’ movement among the shells over the time is pretty random.
New nodes could start in a high shell. A node which was in a very high shell
could suddenly fall into a very low shell. Relatively, there are a few more
nodes in the shell 1 and 2 than in other shells. But nodes are randomly
distributed in all shells over the whole time. The growth of the quantity of
the nodes is seasonal (decided by if the month is a consuming month,e.g. in
December the amount of new nodes is more than other months.)
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Reversed Rank of each Node over Months from Oct.2004 to Oct.2006
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Figure 5.13: Distribution of nodes with different degrees in shells

Figure 5.13 illustrates the degree and shell relationship of the dm
product-receipt-product network over the time. The = coordinate denotes
the time stamps. The y coordinate is a node’s degree ordered by its reversed
rank. Every node has an identical rank as described in 3.4.1. A node which
has the highest degree has rank 1. In this figure, for a better illustration,
we reverse the rank. It means that the node with the smaller degree has
smaller rank. The different colors here represent different shells (Since there
are too many shells, we use 26 different colors cyclically to represent differ-
ent shells). The red lines on the left of every pillars in the figure are the
degree boundaries. For example, the area from the bottom to the first red
line is for nodes with degree 1 and between the first and second line is for
nodes with degree 2 and so on. Unlike the Internet (see 5.24), the nodes
with different degrees are relatively average distributed in different shells.
And if the amount of nodes in the network grows, the number of nodes in
every shell increases. The growth of the quantity of the nodes in every shell
is also seasonal. The maximal shell in every month changes.

5.1.4 Rich Club Connectivity-Time

Table 5.1 lists the rich club connectivity of the node whose rank is within
the top 1% of all nodes. As it is said in 3.4.3, this metric tells us the
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connectivity inside a small-world group. The rich club connectivity is the
ratio of the actual amount of connections among nodes and the quantity
of links if these nodes were completely connected. The higher this value
is, the better these nodes are connected. We chose 1% of the nodes which
have the highest degree and calculated the rich club connectivity. As we can
see, the connectivity among these nodes is around 80% over the whole time
and always this high. It means most these 1% products are almost always
bought together. It implies again that the core (general meaning, not the
metric here) of the p-r-p network is stable and the customers have certain
shopping habits. They always buy this stuff together.

5.1.5 Time Series Statistics

Over the whole time, there are on the average (dynamic average a) 6260
nodes in the dm p-r-p network. From the start time to the end of the
observation the geometric average development rate is 99.97%. The average
amount of nodes in shell 1—10 maximal shell are 985 and 7 and the respective
geometric average development rates are 100.28% and 100%. The average
highest shell is 56 and the geometric average development rate for the highest
shell during the observation is 99.55%. There are average 5227 nodes in the
low degree (< 40) group and the geometric average development rate is
100.06%, meanwhile the respective values for the high degree (> 200) group
are 94 and 99.20% (see the complete statistics in appendix). Through the
statistic we can see the total number of nodes, the amount of nodes in each
shell, for each degree group changed little. The trade of the dm chemist
supermarket was stable during the observation.

5.1.6 Summary

In this section, we converted the dm trade information into a general network
(product-receipt-product network) and analyzed the network with metrics
degree, frequency, shellness (3.4.1). In the analysis, we found that the degree
distribution of nodes of the p-r-p network has a steady structure over time

Rich club connectivity ¢(r = 1%)
1-5 month 0.862599 | 0.848438 | 0.838987 | 0.829508 | 0.809040
6-10 month | 0.800000 | 0.851442 | 0.859191 | 0.848710 | 0.861749
11-15 month | 0.842938 | 0.831845 | 0.863942 | 0.796627 | 0.842406
15-20 month | 0.839767 | 0.825248 | 0.820895 | 0.777778 | 0.861111
21-25 month | 0.831250 | 0.856119 | 0.842262 | 0.847222 | 0.823413

Table 5.1: Rich club connectivity against rank r of p-r-p network
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(5.2). The trade of products is also stable. Some certain products are always
bought together (5.3). A popular product of a month wouldn’t get sold more
the next month (5.9). The customers have certain shopping habits. They
always buy a lot of things, which are used commonly in our daily life, and
the products that are durable or rarely used are always sold less (5.6). And
they also have some certain consuming season, such as December and July
are two best seller season meanwhile in February products are sold least
(5.1). There are 13% products, such as non free plastic bags and kitchen
paper, always stay in the maximal shell over time (5.10), which means they
are always sold a lot together with other popular products over the whole
time. The changes of the quantity of the nodes for each shell and each
degree are symmetrical (5.8, 5.11) over the whole time, which means if some
products are sold well, then there are some other products sold less. The
core products, e.g. daily used stuffs, are always bought together, since they
have a stable high rich club connectivity value (see table 5.1). It implies
again that the core of the p-r-p network is steady and the customers have
certain shopping habits. The nodes’ distribution (including the new added
nodes) in the shells is pretty chaotic (5.12): a node in a high shell could
suddenly fall into a low shell, because it’s sold less or a new added node
could be in a very high shell at the first time, since it’s popular. It depends
on the own feature of the product. We compared our visualized results of
the network with the statistic results from the database and we found that
our chosen metrics and approaches are suitable for analyzing an evolving
network concerning a node’s dynamics in the network over time.
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5.2 The Internet Topology at the AS Level

We observed the real Internet topology at the AS level every seven days
from Apr.1 2004 to Feb.28 2006. We calculated the degree, the frequency,
the shellness and the rich club connectivity of every node at each time point
to accomplish our study.

5.2.1 Overview

ght ©2005 UC Regents. all rights reserved.
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Figure 5.14: Internet topology at AS level

Here we will also firstly talk about what our chosen metrics represent in
our observation of the Internet topology at the AS level. Figure 5.14 ((CAI))
is a macroscopic snapshot of the Internet for two weeks: 4 April 2005 - 17
April 2005 from CAIDA. The nodes are ordered by its degree. A node with
high degree implies that there are a lot of other nodes connected to this
node. Such node can be a big provider. As the node AS 701 (UUNET) in
5.14, which has the highest degree. A node with high shellness means it
is in a node group, in which all nodes are well connected. Actually, most
nodes with a high shellness are backbone ASes, such as UUNET and AS 3356
(Level 3 Communications). A node with high shellness could also have a low
degree, e.g. AS 10310 (Yahoo) and AS 15169 (Google). Obviously, they are
not big providers and they offer information retrieve system, which a well
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connection is very important. Meanwhile, a node with high degree could
also have a low shellness, e.g. AS 8342 (company RTCOMM.RU), whose
degree is 152 but its shellness is only 5. It implies it has a lot of clients
(sub ASes), but its connection with the backbone ASes is weak. During our
observation, it develops very fast. It connects to more backbone ASes and
its shellness increased from 5 to 22. AS 721 is another example. It is an AS
of Department of Defense in USA. It also has a high degree (149) but very
low shellness (3). We assume, out of security reasons, it only connect to few
but important backbone ASes. It has a high degree because it has a lot of
sub ASes, which are inside the department.

5.2.2 Degree-Frequency-Time

Figure 5.15 is an illustration of the degree changes of every node in the real
Internet topology over the time. Each line represents the degree change

Degree Distribution of each Node over Weeks from Apr.2004 to Feb.2006
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Figure 5.15: Degree changes of every node in the real Internet network
topology over time

of a node. We can see that the maximal degree of a node is about 2,400
and most nodes have lower degree (under 500 and about 75% nodes have
the degree 1 and 2). It complies with the Power-Law. The degrees of all
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nodes decreased dramatically in about April and May in the year 2004. The
higher degree a node used to have, the more degree it lost in this period.
It’s actually a reflection of the preferential attachment theory proposed by
Barabasi (BA99). When a new node is added into the network. It always
tries to connect to a node with high degree. Once the system decreases and
the nodes with low degree lose the connection to the nodes with high degree,
it is obvious that the decrease rate of a node with high degree is bigger than
others. During these two years, the degrees of most nodes increased slightly
over time. One special node is the AS 174, whose degree developed from 429
to 1171. It’s a multinational Tier 1 Internet service provider ranked as the
largest Ethernet Service Provider, called Cogent. It offers different Internet
access or transport services. The node with the highest degree is AS 701,
which is also a provider.

Degree Difference Distribution of each Node over Weeks from Apr.2004 to Feb. 2006
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Figure 5.16: Degree changes of every node in the real Internet network
topology over time

Figure 5.16 shows, how much the degree of a node changes from one week
to the next week. The x coordinate indicates the step from one week to the
next week and the y coordinate indicates from one week to the next week,
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how many degrees of a node have changed. The line between the nodes
denotes the continuous changes through all months. Each line represents
the changes of a node. For example, the red line, whose increment and
decrease scope are over 200, is the degree changes of the AS 3246, which
is assigned to a network operator. As we can see, most nodes have small
degree changes (their degree differences are around zero). A few nodes have
relative big variations, such as AS 3246. But if it increases 200 degrees this
week, it will decrease 200 degree the next week. This kind of balance is the
cause of the slight overall increment of the degree (see Fig. 5.15).

Node Number of Degree Difference over Weeks from Apr.2004 to Feb.2006
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Figure 5.17: The amount of nodes with the same degree changes

Figure 5.17 is an illustration of the amount of the nodes which have the
same degree changes at each time step. The x coordinate is the time step
from one week to the next week and the y coordinate denotes, how many
nodes have the same degree changes. Each line in this figure is colored
to represent the degree changes. For instance, the pink line on the top
represents no degree change and the yellow below it represents that the
degree increased by one. It is obvious that over half of the nodes have
no degree change at all over the whole time and most nodes have small
degree changes (top 5 lines in the figure). Another interesting thing is that
there are approximately same (or similar) amount of nodes by decrease and
increase. For example, the yellow and light blue line around 800 in the
figure. Respectively, they present the quantity of the nodes whose degree
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increase by 1 (yellow) and decrease by 1 (light blue). The values for each
time step of two lines are very close. It is also true for the gray and blue
and the other lines too. Furthermore, the percentage of nodes of the relative
changes at each time step is very similar. These assure the stability of the
Internet topology.

Figure 5.18 illustrates the amount of the nodes (frequency) which have
the same degree. Each line in the figure denotes the frequency changes of a
node group, which has the same degree. The red line on the top is the degree
2 group and the black line around 6000 is the degree 1 group. It complies
with the Power-Law. The green and blue lines are the degree 3 and 4 group.
Nodes with low degree constitutes the majority of the network. As we can
see, most changes are in these four groups. The number of the nodes with
high degree stays almost the same over the time. Actually, these nodes are
the Tier 1 backbone ASes, their degrees change also few as time goes by. It
assures the stability of the Internet topology.

Frequency Distribution of each Degree over Weeks from Apr.2004 to Feh.2006
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5.2.3 Core-Degree-Time

Figure 5.19 shows us how much the shellness of a node changes from one
week to the next week. The z coordinate indicates the step from one week to
the next week and the y coordinate indicates from one week to the next week,
how many shellnesses of a node have changed. The line between the nodes
denotes the continuous changes through all weeks. Each line represents
the changes of a node. As we can see, most nodes have small shellness
changes (between —3 and 3). A few nodes have relatively big variations.
For example, the pink line, whose decrease scope is over 20 at time step
36, is the shellness change of the AS 9942, which is assigned to APNIC
(Asia Pacific Network Information Centre). Actually, from Apr. 2004 to
Nov. 2004 AS 9942 always stayed at the maximal shell and from then it fell
dramatically to the shell 5 and stayed there. Another example is the AS
25462, which is assigned to a network operator. Its shellness varied a lot
(increasingly and decreasingly) over the whole time. But it got a balance
because the amount of the increase changes and the decrease changes are
similar.

Core Difference Distribution of each Node over Weeks from Apr.2004 to Feb.2006
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Figure 5.19: Shellness changes of every node in the real Internet network
topology over time
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Figure 5.20 is an illustration of the amount of the nodes which have the
same shell changes at each time step. The x coordinate is the time step from
one week to the next week and the y coordinate denotes, how many nodes
have the same shell changes. Each line in this figure is colored to represent
the shell changes. For instance, the pink line on the top represents no
shellness change and the green and black one below it represents that the
shellness increased by one and decreased by one. As we can see, this figure
is similar to Fig. 5.16. Over half of the nodes have no shell change and most
of nodes have small shell changes over time. There are also line pairs in this
figure as in Fig. 5.16. For instance, the green and the black line, the gray
and blue line etc. Each line pair has approximate values of the quantity of
nodes, whose shellness increase and decrease. The percentage of nodes of
the relative changes at each time step is very similar. These are also factors
that keep the stability of the Internet topology.

Node Number of Core Difference over Weeks from Apr.2004 to Feb.2006
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Figure 5.20: The amount of nodes with same shellness changes

The following three figures tell us how nodes move among all shells over
time. Fig. 5.21 is for all nodes, Fig. 5.22 is for nodes over 17,000 in 5.21
and Fig. 5.23 is for nodes whose shellness is bigger than 7. The z coordinate
denotes time stamps. The figure is composed of 100 pillars. There is a pillar
at each time stamp. A pillar is filled with different color of short lines. Each
line represents a node. The colors of the line illustrate different shells. The
nodes in the first pillar are ordered increasingly by shells and illustrated by
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different colors. For example, black lines stand for the shell 1 and dark gray
ones stand for the shell 2 and so on. The rest 99 pillars are a little different
than the first one. The colors of these pillars denote in which shell a node
at the first time point was. And a node’s current shell is illustrated by the
shell tiers. A shell tier in our figures ends when the next shell, which the
color represents, in the pillar is smaller than the current shell represented
by the color. For instance, in the 100th pillar, the shell 1 starts with the
light gray color (new nodes) and ends before the next light gray color; the
shell 2 starts with the second light gray color and ends before the third light
gray color and so on. The shellness of every node of these pillars at a time
point is firstly ordered increasingly by its shellness and is then ordered by
its original shellness at the first time point. For example, if a node was in
the shell 1 at the first time point and is now in the shell 2 at the 100th time
point, then it is in the second black area in Fig. 5.21.

Nodes’ Movement among Core Shells over Weeks from Apr.2004 to Feb.2006
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Figure 5.21: Nodes’ movement among all shells

To sum up, Fig. 5.21 and Fig. 5.22 tell us how all nodes in the related
shells at the start point move to other shells as the time goes by. In Fig. 5.21
we can see, about 75 % of the nodes starting in shell 1 stay in shell 1 over
time. Most of the rest move into the shell 2 and only just few nodes move
to a higher shell. For the nodes starting with shell 2, 75% of them stay in
shell 2 . About half of the rest move into the shell 3 and half fall to the shell
1. Just very few nodes move to a higher shell. The behavior of the nodes
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in shell 3 is almost the same as the nodes in shell 2. For nodes which are
originally in shell 4, about half of them stay in shell 4, 25% of them go one
shell up, 25% of nodes fall one shell down and a few nodes go even higher
(such as into shell 5, 6) or lower (such as into shell 2). The movement of
the nodes which was firstly in shell 5, 6, 7 or 8 is similar (see Fig. 5.22).
Over 60% of nodes move 1 or 2 shells up. Most of the rest nodes stay in the
original shell and the others fall 1 or 2 shells down.

Fig. 5.23 illustrates another phenomenon. The star marks in the figure
are the shell boundaries. As we can see, the maximal shell over time is
mainly composed of nodes which were originally in the maximal shell at the
first time stamp. The nodes, which were in the shells from 25 to 16 and now
are in the maximal shell, are a tiny part of the maximal shell. Of course,
our figure is not a complete analysis, there could be an original new node
becoming a node in the maximal shell as time goes by. But if a new node
would finally move into maximal shell or a very high shells over time, it is
also decided by its feature. If the AS is a backbone AS, many other nodes
would connect to it as the time goes by and eventually it would become a
node in the maximal shell. Furthermore, the number of nodes in these high
shells doesn’t change much (always about 450 nodes), most changes are in
the lower shells, such as shell 1, 2 etc, because of the addition of the new
nodes. Therefore, we can say, generally, if a new node is added into the

Nodes’ Movement among Core Shells over Weeks from Apr.2004 to Feb.2006
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Internet, it is added into low shell area (shell 1, 2 etc.).

Nodes’ Movement among Core Shells (above Core 8) over Weeks from Apr.2004 to Feb.2006
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Figure 5.23: Nodes’ movement among all shells(above 8th shell)

Besides above mentioned points, we can also find some other phenomena.
First of all, in this about 2 years observation, the number of nodes in the
Internet at the AS level is a linear growth (except for the jitter in May.
2004). The growth of the quantity of the nodes in each shell is also quasi
linear. Secondly, the nodes in the shell 2 and 1 are the majority of the whole
Internet (over 70% of all nodes) and there are more nodes in the shell 2 than
in the shell 1.

Figure 5.24 illustrates the degree and shell relationship of the Internet
over time. The = coordinate denotes the time stamps. The y coordinate is
a node’s degree ordered by its reversed rank. Every node has an identical
rank as described in 3.4.1. A node which has the highest degree has rank
1. In this figure, for a better illustration, we reverse the rank. It means
that the node with the smaller degree has smaller rank. The different colors
here represent different shells. The white lines in the figure are the degree
boundaries. For example, the area from the bottom to the first white line
is for nodes with degree 1 and between the first and second line is for nodes
with degree 2 and so on. As we can see, as the degree grows, nodes are
distributed in a new higher shell, meanwhile they are also distributed in old
lower shells. For example, most nodes with degree 2 are distributed in shell
2. A few nodes with degree 2 are distributed in shell 1, these are the nodes
which connect to the nodes with degree 1. There are 75% nodes with degree
3 are distributed in shell 3, but also 25% nodes are distributed in shell 2. A
part of nodes with degree 4 are distributed in a new shell, shell 4, but the
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rest of them are also distributed in shells 2, 3. What is also interesting is
that as the time goes by, despite a lot of new nodes with different degrees
having been added into the Internet, the distribution proportion for different
degrees in a shell always stays the same. It is a factor assuring the stability
of the Internet topology. Moreover, in this figure we can also see that (as
described in Fig. 5.21, 5.22) the increment of the amount of the nodes is
linear.

Reversed Rank of each Node over Weeks from Apr.2004 to Feb.2006
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Figure 5.24: Distribution of nodes with different degrees in shells

Figure 5.25 are some figures about the percentage of the nodes, which
always stay in the maximal shell as time goes by. The x coordinate is the
time interval (every seven days a time point). For example, in Fig.(a) the
time interval is one (first week to second week, second to third and so on)
and in Fig.(b) the interval is two (first week to third week, second to fourth
and so on). Likewise, we can get a series figures with different time intervals.
These figures actually show us the overlap of nodes, which always stay in
the maximal core. For instance, in Fig.(a) in about half of the weeks, all
nodes which were originally in the maximal shell stayed in the maximal
shell. In Fig.(b) over the half of the time, the nodes which were originally in
the maximal shell stayed in the maximal shell. Fig.(c) is the average of all
the figures. The x coordinate denotes the general week interval. ’1’ means
the interval is ’every two weeks’ and '2’ means the interval is ’every three
weeks’. The y coordinate indicates the percentage of nodes, which stay in
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the maximal shell. For instance, after 4 weeks (start month is random), 94%
nodes still stay in the maximal shell. As we can see, over the whole time,
there are still 87% nodes which were originally in the maximal shell stayed

in the maximal shell.
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Figure 5.25: Percentage of nodes which stay in the maximal shell over time

5.2.4 Rich Club Connectivity-Time

Table 5.2 lists the rich club connectivity of the node whose rank is within 1%
of all nodes. This metric tells us the connection inside a small-world group.
It is the ratio of the actual amount of connections among nodes and the
quantity of links if these nodes are completely connected. The higher this
value is, the better these nodes are connected. We chose 1% of the nodes
which have the highest degree and calculated the rich club connectivity. We
can firstly find one interesting phenomenon: unlike the dm p-r-p network,
though these 1% nodes have the highest degree, the connections between
the nodes in this group is not much, since over the whole time the value
of the rich club connectivity is only about 13%. Secondly, from the start
(Apr.1 2004) of our observation data of the Internet topology to the end of
that year, the value of the rich club connectivity stayed at 13 — 14% (except
for the jitter in May 2004). It was about 12% in the whole year 2005. From
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Rich club connectivity ¢(r = 1%)
1-5 week 0.148407 | 0.146236 | 0.150488 | 0.215674 | 0.186742
6-10 week 0.188823 | 0.138442 | 0.142857 | 0.142270 | 0.137969
11-15 week | 0.138450 | 0.138704 | 0.141116 | 0.140481 | 0.140606
15-20 week | 0.143243 | 0.138610 | 0.140596 | 0.139718 | 0.139840
21-25 week | 0.139779 | 0.144739 | 0.142857 | 0.144238 | 0.145860
26-30 week | 0.147660 | 0.147066 | 0.145476 | 0.145535 | 0.144319
31-35 week | 0.142226 | 0.140935 | 0.140417 | 0.140118 | 0.133462
36-40 week | 0.132444 | 0.137060 | 0.136046 | 0.130827 | 0.134670
41-45 week | 0.130047 | 0.129953 | 0.125930 | 0.125873 | 0.125545
46-50 week | 0.126889 | 0.127915 | 0.122895 | 0.123925 | 0.123711
51-55 week | 0.123500 | 0.127518 | 0.127943 | 0.128938 | 0.129493
56-60 week | 0.127057 | 0.125212 | 0.126542 | 0.125171 | 0.125377
61-65 week | 0.122010 | 0.124229 | 0.123781 | 0.123590 | 0.122851
66-70 week | 0.120324 | 0.122860 | 0.122128 | 0.119917 | 0.121234
71-75 week | 0.119560 | 0.120009 | 0.120530 | 0.120163 | 0.119788
76-80 week | 0.121899 | 0.122166 | 0.119019 | 0.120399 | 0.120939
81-85 week | 0.120392 | 0.118077 | 0.117942 | 0.117626 | 0.117232
86-90 week | 0.116829 | 0.116175 | 0.115688 | 0.116362 | 0.115540
91-95 week | 0.114801 | 0.114540 | 0.112360 | 0.114040 | 0.112963
96-100 week | 0.112007 | 0.111239 | 0.111571 | 0.111402 | 0.109170

Table 5.2: Rich club connectivity against rank r of the Internet

then to the end (Feb. 2006) of our observation data it decreased by 1 too
(11%). We assume here that the value of the rich club connectivity (against
the rank of 1%) reduces by 1% every year. In the future, we can obtain
more data of the Internet topology to prove this assumption.

5.2.5 Time Series Statistics

Over the whole time, there are on the average (dynamic average @) 19510
nodes in the Internet. From the start time to the end of the observation
the geometric average development rate is 100.24%. The average amount of
nodes in the shell 1, 2 and the maximal shell are 6545, 9233 and 25 and the
respective geometric average development rates are 100.27%, 100.22% and
99.83%. The average highest shell is 25 and the geometric average develop-
ment rate for the highest shell during the observation is 99.96%. There are
average 17520 nodes in the low degree (< 5) group and the geometric av-
erage development rate is 100.24%, meanwhile the respective values for the
high degree (> 100) group are 67 and 100.19% (see the complete statistics
in the Appendix A-1). Through the statistic we can see the total number
of nodes, the amount of nodes in each shell, for each degree group increased
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slightly (about 0.02%). The amount of shells doesn’t increase during the
observation.

5.2.6 Summary

In this section, our goal is to find out how the Internet evolves over time.
For example, as the new nodes are added into the network and connections
are increasing, how the degree of each node changes? How the original nodes
in the network move to other shells as time goes by? How the new nodes are
added to different shells? Therefore, we observed and analyzed the Internet
at the AS level from Apr. 1, 2004 to Feb. 28, 2006 with the metrics we
chose: degree, frequency, shellness and rich club connectivity.

In our analysis, we found that the Internet topology has a steady struc-
ture. All the degree distribution are similar over the whole time. Nodes with
low degree (degree 1 and 2) constitutes the majority of the network (5.18).
Over half of nodes have no degree changes (5.17). Most of the rest have
small degree changes and these changes took place in the low degree groups
(5.16, 5.18). Certainly there are nodes whose degree changes a lot. These
are the nodes with high degree and most of them belong to the backbone
ASes. If the degree of a node changes a lot at a time point, it will adjust its
degree the next few steps (5.15). The changes of the quantity of the nodes
which has the same degree changes is quasi symmetrical the whole time,
which means if the degrees of some nodes increase, there is definitely an
approximately equal quantity of nodes, whose degree decrease (5.17). This
is the reason that the network topology doesn’t change much. Compared
with the first time point, there are altogether 6472 new nodes added into
the network and 97% of them are with low degree (< 5). Therefore, the
degrees of most nodes increase slightly. Besides, the number of the nodes
with high degree (backbone ASes) stay quasi the same over the whole time
(5.18).

The nodes in shell 2 and the shell 1 are the majority of the whole Internet
(over 70% of the nodes) and there are more nodes in shell 2 than in shell 1
(5.21). Most (over half) of nodes have small shellness changes. The nodes
which have bigger shellness changes are the ASes, such as operators, in the
backbone of the network (5.19). The changes of the amount of the nodes
for each shell is also quasi symmetrical over the whole time (5.20). It assure
that the shell topology of the Internet doesn’t change much as time goes by.
During the observation time, over half of the nodes stayed in the original
shell and the rest of them moved to the shell near their original shell (they go
1 —2 shells up or down)(5.21, 5.22, 5.23). There are few nodes which moved
dramatically among shells. The majority of the maximal shell is composed
of the nodes (87% of them) which are originally in the maximal shell at the
first time point. The small rest part is composed of the nodes moving from
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shell 25-16 over time (5.23). If a new node (compared with the first time
point) is added into the network, it participates firstly in the low shell. As
time goes by, it will stay in its shell or move to a higher shell according to
its feature of its own, for instance, if it is a backbone AS, it starts with low
shell and will eventually move into a very high shell (5.23). The quantity of
the nodes in the Internet at the AS level is a linear growth (except the jitter
in May. 2004). The growth of the amount of the nodes in each shell is also
quasi linear (5.21).

We also found some relationship between the degree of a node and the
shellness of it. Over the whole observation, a part of the nodes with degree
k are distributed in the shell k, meanwhile the other part of the nodes are
distributed in shells k—1, k—2, ---, 1. As time goes by, despite a lot of new
nodes with different degrees were added into the Internet, the distribution
proportion for different degrees in a shell always stayed the same (5.24).

Besides above mentioned points, we also found that the value of the rich
club connectivity decreased by 1 every year from the year 2004 to the year
2006 (see table 5.2). We assume that this value decreases by 1 every year
until it get some kind of balance. However we need more observation data
for this assumption in the future.






Chapter 6

Proposal of an Evolving
Model for the Internet at the
AS Level

In 5.2 we found some regularities about how the nodes move among the
shells over time. During the observation time, over half of the nodes stayed
in the original shell and the rest of them moved to a shell near their original
shell (they go 1 — 2 shells up or down). There are few nodes which moved
dramatically among shells. The majority of the maximal shell is composed
of the nodes (87% of them) which are originally in the maximal shell at the
first time point. The small rest part is composed of the nodes moving from
shell 25-16 over time. If a new node (compared with the first time point)
is added into the network, it participates firstly in the low shell. As time
goes by, it will stay in its shell or move to a higher shell according to its
feature of its own. The quantity of the nodes in the Internet at the AS level
is quasi a linear growth (except for the jitter in May. 2004). The growth of
the amount of the nodes in each shell is also quasi linear. In this chapter we
are trying to model some of regulations so that we can propose an evolving
model for the Internet at the AS level.

6.1 I.Attempt

In our first attempt we came up with the idea of the following matrix that
describes the above mentioned phenomena and it is referred to as the trans-
formation matrix M. There is such matrix for each time step (from one time
point to the next time point). The matrix is composed of 27 rows and 27
columns. Each entry in the matrix denotes how many nodes there are mov-
ing from one shell to another shell for a time step. For example, entry z2 3
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denotes the amount of the nodes moving from the shell 2 to the shell 3 and
entry xz denotes the quantity of the nodes leaving the Internet (from the
shell 3 to the shell 0). Since over half of the nodes stay in the original shell
and the rest move near their original shells, we focus on the x; ;, Ti+1.4, Tit2,i,
Tii+1, Tii+2 entries near the diagonal. Other entries are assigned 0. The
sum of a row x; , (n = 0...26), denotes the number of nodes moving from
the shell ¢ to other shells and the sum of a column z,, ; denotes the number
of nodes moving from other shells to the shell . Therefore, for a time step
the change of the quantity of nodes in the shell i is 236:0 Tip — 23620 T i-
With the value of the quantity of nodes in each shell at the first time point,
we can calculate how many nodes there will be in each shell at the second
time point.

Too To1 To2 0 0
T10 *11 Ti2 13 0
Too T2l T2 T3 T4

31 T32 X33 T34

0 0 x40 T43 Taa

As we can see, if we can predict the value of the matrix, M;,at time point
t , then we can calculate the changes of number of nodes in each shell at
each time point, adding them all to the number of nodes at the start point,
we can tell how is the Internet constructed at time point ¢.

nnnnnn Q-gper Nomal 0-Q ot

Theorecl Quanies Theorecl Quanes

(a) Residual quantile quantile plot for (b) Residual quantile quantile plot for
entry i1 entry xi2

Figure 6.1: Residual g-gplots for entry in M matrix

We observed the Internet topology every seven days from Apr. 2004 to
Feb. 2006. All together we have 100 time points and 99 time steps. For
each time step, we calculated the corresponding matrix in order to see how
every entry in the matrix changes over time. In our first attempt we tried
to obtain a linear model by curve fitting for each entry in the matrix over
time, so that we can predict the value of this entry. Fig. 6.1 is the residual
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quantile-quantile plot for the linear model for entry x1 1 and z12. A g-gplot
is a plot of the quantiles of the first data set against the quantiles of the
second data set. By a quantile, we mean the fraction (or percent) of points
below the given value. That is, the 0.2 (or 20%) quantile is the point at
which 20% percent of the data fall below and 80% fall above that value.
The g-gplot is used to test if the two data sets come from populations with
common distribution. As described in 3.5, if the nodes in the g-gplot falls
close to a straight line, the residuals are normal. Likewise, we calculated a
linear model for each entry in matrix M. Now we can calculate and predict
the matrix M at any time point. For instance, if we need to simulate the
Internet at the 101 time point starting from Apr. 2004, what we need to do
is as follows:

1. Calculating the corresponding matrix My, Ms, -+ , Mgg for each time
step
2. Calculating the matrix Mjgy according to the linear models

3. Calculating the changes of the amount of nodes in each shell for each
time step by 27216:0 Tim — 27216:0 Zni, (1 =0---26) in Mygpand then add
them together. It is then the whole changes after 100 time steps.

4. Adding the changes to each shell of the Internet at the start point, we

Xz | Xos X oon Xoze
X |Xn Xu oo X
X22 XZ‘ XE1 LER] XZ 26
Xn X33 Xa e X326
Xaea | Xosy3  Xogs 777 Kae e
XII’I
Matrix M for 99. time step
X X X X5 Xuoo . X2
X X Xp Xon Xu ... Xox ' Co *
KXoy "7 Xa626
X Xa X Xa Xas ... X326 ——  The value of xy; over time
. . . . . Matrix M for n. time step
. ——— The linear model of x,, over time
. Number of nodes moving into
Xwo Xoe1 Xz Xpsz  Xogs "7 X626 shell 2 for a time step
* Number of nodes moving from shell
Matrix M for 1. time step 2 to other shells for a time step

Figure 6.2: Illustration of the matrices
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simulate the Internet at the 101 time point.

The simulated node distribution in each shell is very similar to the real
Internet topology at the AS level for the first 100 time steps. However,
we found that after 200 time steps, there are negative values in the high
shell, such as shell 26, 24. Because the linear model for each entry in the
matrix is in the form of y = ax + b. The slope a could be negative, so the
predicted value could be negative. The total changes in each shell is the sum
of each change in the shell, hence it could also be negative then. Therefore,
we concluded that the linear model is not suitable for the transformation
matrices and the evolving model.

6.2 II.Attempt

We found in the first attempt that the linear model is not suitable for our
evolving model. In the second attempt we used the idea of nodes’ change
proportions instead of the linear model. We also proposed a change matrix
M, composed of 27 rows and 27 columns in this part. It is similar to the
matrix we proposed in the first attempt.

oo <Lo1 o2
10 Ti1 T12
M, = T20 T21 T22
T30 T31 T32

We observed again the nodes’ movement for a time step. Fig. 6.3 are
some example figures. As we can see, the percentage of nodes moving from
one shell to another always varied around an average value over time (e.g.
the figure shell 1 to shell 1 or shell 26 to shell 26). Therefore, we came up
with the idea of a matrix that describes the average proportion of nodes
moving from one shell to another and change the state with the matrix to
obtain the topology graph at the next time point.

6.2.1 Transformation Matrix

Firstly, we have a matrix M, where each entry describes how many nodes
moving from one shell to another shell at each time point, e.g. x15 denotes
the amount of nodes moving from shell one to shell two. Every entry in
matrix M), from row 1 to row 26 is calculated on the basis of matrix M:
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Shell 1to Shell 1 Shell 26 to Shell 26

00 02 04 06 08 10

Percentage of Nodes in Shell 1
Percentage of Nodes in Shell 26

Shell 1 to Shell 2 Shell 2 to Shell 1

0.014
I

0.010
L

0.006
L

Percentage of Nodes in Shell 1
Percentage of Nodes in Shell 2

0.014

0.010
L
L

0.004 0.006 0.008 0.010

Percentage of Nodes in Shell 1

Percentage of Nodes in Shell 1

0.006
L

Figure 6.3: Observation of proportion of nodes’ movement among all shells
for 70 time steps

x;j 1n matriz M

26 .

x; ; in matriz M, =
J M
k=0 Tik N matrix

(i=1---26,7=0---26)

The first row in matrix M), is calculated as follows:

. ) xo,; in matrizM )
roj in matriz My, = —55 - ey 1---26)
Y heo Tk in matriz

And
xo,0 in matriz M, =1

Zi‘io xik in matriz M (i # 0) is the amount of nodes moving from
shell 4 to all shells, which is actually the total amount of nodes in shell 4.
x;; in matriz M is the amount of nodes moving from shell 7 to the shell
J. Therefore, each entry z; ; in matriz M, describes the change proportion
moving from shell 7 to shell j of the total changes of nodes moving from shell
i to all shells (or total amount of nodes in the shell i) for each time step.
For instance, the Zzio x1 in matriz is the total changes of node moving
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from the shell 1 to all shells. The entry x;2 in matrix M, is the change
percentage (nodes moving from the shell 1 to the shell 2) of the total change
(nodes moving from the shell 1 to all shells). Furthermore, the first row in
the matrix denotes the new nodes’ proportion added into each shells. As we
can see in the above formula, the new nodes’ distribution is decided by the
scale of each shell, which means a shell with more nodes is getting more new
nodes. And the first column denotes the nodes dropped from each shells.

We observed the Internet topology every seven days from Apr. 2004 to
Feb. 2006. All together we have 100 time points and 99 time steps. For
each time step, there is a matrix M), and we found in the matrices each value
of x; ; , the change proportion, is close over the whole time. Therefore, we
decided to calculate the average value of each x;; over time. And then we
obtained an average transformation matrix (from all matrices for each time
step). We refer this average matrix as the universal transformation matrix
M,,.

Now we have a function f, that calculates the change of each shell for
each time step. For instance, the function f calculates how many nodes
moving from the shell i (i = 0- - - 26) to the shell 2 and then sum them up to
get the new state (new amount of nodes) of the shell 2. In order to simulate
the Internet at next time point, we only need the start state of the topology
and using function f calculate the new state at the next time point with
the transformation matrix M,. The theoretical runtime for Algorithm 4 is
O(t(s+1)?) +O(t(s+1)) C O(ts® +ts), where t is the requested time point
and s is the maximal shell. The (s+1)? in the first part is for the calculation
of the movement of nodes in function f and the (s + 1) in the second part
is for the sum process in function f.

Algorithm 4: To simulate the Internet topology at the AS level at
the requested time point
Data: Start state of an Internet topology, the time point of the
simulated Internet topology
Result: Simulated Internet topology at the according time point

1 for i — 1 to the request time point do

2 StartState — f(StartState, M,) ; /* function f changes the
start state to the next start with the transformation
matrix */

6.2.2 Refinement 1

In our analysis, we found that if there is a node that should fall to a lower
shell, the node which was in the lower shell has more probabilities to be
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picked to move to the lower shell. It means that the new state not only
depends on the present state but also the previous states. In order to include
this feature in our transformation matrix, we average the nodes’ state (or
nodes’ shellness) at every time point as follows: a node’s shellness at the
present time point is the average value of shellnesses of this node from the
present time point to the next 9 time points. We call the interval the average
window size (see the illustration in Fig 6.6).

Algorithm 5: To obtain the refined universal transformation matrix
M,

Data: Observed nodes’ shellness at each time point

Result: The refined universal transformation matrix ﬁp

1 foreach time t from 1 to 91 do

2 foreach node n do

3 n¢.shell < the shell of node n at time point t;
4 if ns.shell == 0 then

5 L ng.shell = 0;

6 else

7 ne.shell = avg({niy;.shellli = 0...9, ngpi.shell # 0}) ;
/* if a node’s shellness is not zero, it is
assigned the average of the next 10 shellness
including itself */

8 foreach time step t from 1 to 90 do
s;/* s is a matrix as s[a,b,t] with the number of nodes
in shell a at time point ¢ and in shell b at time point

t+1 %/
10 vs ; /* vs ia a matrix as wsa,t] with the number of nodes
in shell a at time point t */
11 foreach row r of m[ , ,t] do
12 if r == 0 then
13 foreach column ¢ of m[ , ,t] do
14 mr,c] — igfz’;] ; /* calculate the first row of
transformation matrix described in (6.2.1) */
15 else
16 foreach column ¢ of m[ , ,t] do
17 mr,c] — f}[;“[’f’g] ; /* calculate the remaining rows
of transformation matrix described in (6.2.1)
*/

18 M, « the average matrix of m along dimension ¢
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The main algorithm of the refined universal transformation matrix M,
is list in algorithm 5. In this case, our average window size is 9. The
average shellness of a node reflects the node’s location preference over time.
Indirectly, it reflects the phenomenon we mentioned above. Since the last
9 time points have no more enough data in a time interval to average, we
ignored this last 9 time points. Now we have average nodes’ states (or
shellnesses) at 91 time points. And then we can obtain all M, matrices for 90
time steps and the universal transformation matrix ﬁp as described in 6.2.1.
The theoretical runtime for Algorithm 5 is O(wnt;)+O(tn)+O(2t(s+1)?) C
O(wnty + nt + st), where t; is the time point, ¢ is the time step, s is the
maximal shell, n is the number of nodes and w is the average window size.
The O(wnty) part is for averaging every node’s shellness with the average
window size. The O(tn) part is for lines 11 and 12 in the algorithm to store
the nodes’ movement for a time step. And the O(2t(s + 1)?) is for the lines
from 13 to 20 in the algorithm, which calculate the transformation matrix.

Xij= Xij / Xk Xix (i,j, k=1..26)

Xo Xo Xe Xo X X o
Xij= Y Xij(,j=1..26,k=99) /99
Xo X Xe Xo Xe o oo Xiw (M) (In matrices M)
Xo Xo Xe Xo Xu - Xox |Xax Xo Xo Xe Xe Xu o .o X
Xo Xu Xo o X Xu o .. X | Xax Xo Xi Xo Xp o Xuo ... X
T S I g Xo Xa X Xn Xa ... X
Xae
X Xu Xo o Xn o Xu o ... X [OF Xo o Xa Xe Xno Xao oo Xox
Matrix M for 99.
* time step
X Xo Xo Xa X X
a0 Xao Xaor Xoer Xass Xaos 70 Xaoms
Xo Xy Xap Xy X X ||
- Matrix M for n.
sime step R —
Universal transformation matrix M,
Xuo X Xz Xass X U Xagns

Matrix M for 1.
time step

Figure 6.4: Illustration of the matrices

The following is the refined average universal transformation matrix.
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6.2.3 The Simulator and Evaluation of the Proposed Evolv-
ing Model

Algorithm 6: Internet topology simulator

Data: Start state of an Internet topology, the time point of the
simulated Internet topology
Result: Simulated Internet topology at the according time point

1 vsi + the node number in each shell at the start time point;

2 T < the universal transformation matrix;

3 round < the time point of the simulated Internet topology;

4 VS +— VS

5 foreach round t do

6 foreach row r in m do

7 if r == 0 then

8 foreach column c in m do

9 sr,c] < m[r,c] x vs[c] ; /* calculate the number
of new added nodes in each shell at a time
point */

10 else

11 foreach column c in m do

12 slr,c] « m[r,c] X vs[r] ; /* calculate the number
of nodes moving from shell r to shell c at a
time point */

13 foreach element e in vs do

14 sle, | ; /* e-th row in s */

15 s[,e] ; /* e-th column in s */

16 vsle] «— vsle] — sum(sle, |) + sum(s| ,e]) ; /* calculate the

new state of nodes as described in (6.2.1) */

In order to evaluate our evolving model for the Internet at the AS level,
we programmed a simulator to accomplish the task of simulating the Internet
topology. The simulator is actually a realization of the proposed evolving
model. We have a start state of the Internet topology, including the number
of nodes and how these nodes are distributed in each shells. And then we
change these states with our universal transformation matrix M, to get the
state of the topology at the next time point. Executing this repeatedly we
can obtain the simulated topology at any time point. The main idea of the
simulator is listed as follows. The theoretical runtime for Algorithm 6 is
O(t(s + 1)%) + O(2st(s + 1)) C O(s?t), where t is the time point and s is
the maximal shell. The (s + 1)? is for lines from 7 to 12 in the algorithm
to calculate a matrix of the change of the number of nodes from one shell
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moving to another shell. The O(2st(s + 1)) is for lines from 13 to 16 in
the algorithm, which calculate the changes of the amount of nodes in each
shell. To calculate the number of nodes in each shell at the requested time
point, it costs the CPU, for example, 0.38 seconds for 50 rounds in the
algorithm or 2.2 seconds for 500 rounds. To simulate each node’s shellness
at the requested time point, it costs the CPU, for instance, 2.6 secondes for
50 rounds or 98.7 seconds for 500 rounds.

Esti d Nodes’ Mo t among Core Shells over Weeks from Jul 2004 to Dec.2005

16000 20000
| |
Bevse sebEes

Node
10000
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Figure 6.5: simulated nodes’ movement among all shells for 90 time steps

Figure 6.5 is the node’s movement among shells of simulated Internet
topology starting from the original 15th time point, because there are some
jitters in the first 14 time points. The z coordinate denotes time stamps.
The figure is composed of 90 pillars. There is a pillar at each time stamp. A
pillar is filled with different color of short lines. Each line represents a node.
The colors of the line illustrate different shells. The nodes in the first pillar
are ordered increasingly by shells and illustrated by different colors. For
example, black lines stand for shell 1 and dark gray ones stand for shell 2
and so on. The rest pillars are a little different than the first one. The colors
of these pillars denote in which shell a node at the first time point was. And
a node’s current shell is illustrated by the shell tiers. A shell tier in our
figures ends when the next shell, which the color represents, in the pillar is
smaller than the current shell represented by the color. For instance, in the
75th pillar, the shell 1 starts with the light gray color (new nodes) and ends
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before the next light gray color; the shell 2 starts with the second light gray
color and ends before the third light gray color and so on. The shellness
of every node of these pillars at a time point is firstly ordered increasingly
by its shellness and is then ordered by its original shellness at the first time
point. For example, if a node was in the shell 1 at the first time point and
is now in the shell 2 at the 75th time point, then it is in the second black
area in Fig. 6.5. As we can see, it is very similar to the nodes’ movement
among shells of the real Internet in 5.21. The proportions of nodes with the
original shellness moving into other shells are almost the same as the real
Internet illustrated in 5.21.

As the result of the simulated Internet topology shows, this model for
the Internet at the AS level is successful. It can precisely simulate nodes’
movement among shells over time and simulate the Internet at the AS level
in the future, e.g. after 150 time steps or any other time steps. But we
should also notice that there are some residuals in the simulated topology
graphs using our simulator. Because in the simulating process, the nodes’
distribution by multiplying the universal transformation matrix could be
not integral and we have a function in our simulator to make them integral
somehow, which leads to deviations.

6.2.4 Refinement 2

A node’s shellness at time point 6/3/2004 = average shellness of the node in the time interval

6/3/2004 - 8/5/2004
average window size = 9

; |

412004 ' 12131/2004
6/3/2004 - 12/16/2004
average window size = 29

Figure 6.6: Illustration of average window size

In our experiments for the evaluation of our simulated Internet topology
compared with original one, we found the average window size (6.2.2) used
for calculating the universal transformation matrix M, also influences the
precision of the simulated topology. We found that the bigger the average
window size is, the more precise the simulated topology is (see Fig 6.6).
Figure 6.7 shows us in each shell how many percentages of nodes, compared
with the state at the start time point, stay at their own shell over time. For
example, in the real Internet and the normalized Internet at time point 20,



6.2 I1.Attempt 71

Shell 1 to Shell 1 Shell 4 to Shell 4
e 2 4
] B
s o real 2 983%% o real
B o window=9 B 2 ©0520%0, o window=9
8 oo 3 0000,
2 = 200000000000 window=29 z ° 000 200y » window=29
5 2900000000004, S o 000, 000
g 000000000, 290000000 g ° o *22900000000
£ < | 00000, 20000 £ oo, SO "00%‘%90%
g o 0000000, %0000, g < %%00000, 9530900000
14 e 3
g %%mmm% & 0oR00009000505000
< | o
° T T T T T T T ° T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time Time
Shell 26 to Shell 26 Nodes dropped from Shell 1
w )
3 s g
[ o real [ 0
g < g - o3
8 oo ° o window=9 3 o - wb‘;&ﬁo«#"’w
Z o o ° window=29 [ 536865
5 S 5 o088
g o o 3 7 6065
g g £ g | 000" 00000000] O real
H § o 505 000000000 o window=9
s o g 00 0000000 i
e ° & b 55000007 ) window=29
s | 8 | oo
° T T T =3 T T T T T T T
0 50 60 0 10 20 30 40 50 60
Time Time
Shell 1 to Shell 2 Shell 4 to Shell 3
8 4 S
°© 000 °
£ saco0a 0 £ .
s g 000 g S 0a00900000900000000000000000000
s 3 s 50000305055 b= 00" ) 3 6350500
° 4 000 600000000 o o 55006300050
g 000" g oS 0% 0008
g o 0000 g o
£ 2 o 000" £ o o real
g S 00 5000 o real g | 022500 o window=9
$ 9%00° o window=9 s ° oS5 ) window=29
g | aegw window=29 o | o8
© T T T T T T ° T T T T T T T

0 10 20 30 40 50 60 0 10 20 30 40 50 60

Time Time

Figure 6.7: Comparison between the real Internet topology and the simu-
lated topology with different average window size

80% nodes, which were in shell 1 at the first time point, are now staying at
shell 1 and 87% nodes, which were in shell 2 and now are staying at shell 2.
Different colors represent the real Internet topology at the AS level and the
simulated topology with different average window size. As we can see, for
instance, with bigger average window size, the simulation of the percentage
of nodes moving from the shell 4 to the shell 4 for a time step is more close
(more precise) to the real Internet topology. And it is also true for nodes
in all other shells. Because the bigger the average window size is, the more
representation the average value of the shell has, where a node prefers to
stay at. Through experiments, we found that if we set the average window
size to 29, the simulated topology graph is pretty precise.

6.2.5 Refinement 3

As we can see in Fig 6.7, after our two refinements, the simulated topology
graph is more closer to the real Internet topology. The essence of our refine-
ments is to reflect the nodes’ feature of the location preference over time,
namely, a node has higher probabilities to be picked to move back to its orig-
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inal shell. The two refinements improved the proposed algorithm. However,
there are still deviations by picking out the nodes moving from one shell
to another shell. In our algorithm, we simulate the Internet topology at a
certain time point by repeatedly calculating the new state of nodes (starting
from the start state) for the next time point with the universal transforma-
tion matrix Hp until the requested time point. In every calculation of the
new state, there will be deviations in picking out the nodes. Through the
repetition, the deviation is getting bigger. In order to address this problem,
we came up with the third refinement. We illustrated our idea in Fig. 6.8.

Previously, we calculated the average universal transformation matrix
for each step ﬁp, we call it now as the average universal transforma-
tion matrix with step 1 or ﬁl}. Meanwhile, we calculate 6 different
transformation for different steps. For example, we have the nodes state in
each shell at the first time point and at the 51th time point. Then we can
calculate a transformation matrix with step 50. Likewise, we can calculate
a transformation matrix with step 50 using the nodes state at the second
point and at the 52th time point, ---, at the 50th time point and at the
100th time point. By averaging these 50 transformation matrices with step
50, we obtain an average universal transformation matrix MJ0. Likewise,
we can obtain matrices Migg’, W, ﬁg, ﬁg. Together with the ﬁz}, we
can calculate or predict the Internet topology at any time point. For in-
stance, we would like to simulate the Internet topology at the 366th time
point starting from the observation start. We repeat algorithm 6.4 seven

[
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The state e Xim
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Figure 6.8: Illustration of the average universal transformation matrix Mg’o
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times with Mg’o to obtain the new state of nodes in each shell at the 351th
time point and once with MI}Q to get the new state of nodes at the 363th

time point and once with ﬁg’ to reach the time point we requested. If we
simulate it with the methods in refinements 1 and 2, we have to repeat the
algorithm 6.4 365 times with ﬁ;}' Compared with the new method, these
methods cause more deviations, since there are more repetitions (365 times
repetitions for old methods and 9 times repetitions for new method). The
theoretical runtime is as follows: for the chosen matrices that we need for
the algorithm, we only need to calculate them once and the according the-
oretical runtime is ((t —t1) + (t —t2) 4+ ... + (t —t)) - (n 4+ 2(s + 1)?) C
O((mt —t1 —ty — ... — tp) - (n + s?)), where t is the total amount of the
observation time points, t; (i is the chosen time point) is the chosen time
point for the average universal transformation matrix with steps, m is the
number of chosen time points and s is the maximal shell. The runtime for
the algorithm is O(R(s + 1)?) + O(R(s + 1)) C O(Rs? + s), where R is the
times of repetitions and s is the maximal shell.

6.3 III. Attempt

Gaussian distribution
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Figure 6.9: Illustration of matrices

All nodes states (or shellness) are averaged with window size 29. In the
modeling process of our second attempt, we also found that each row of
the transformation matrix for a time step MI} can be fitted into a Gaussian
distribution (see the illustration in Fig 6.9). One thing we would like to
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Figure 6.10: The example of distributions of the parameters a, b, ¢ for
different rows (shells)

mention, that addition to the R environment, we also use the tool Matlab
in this and the next attempt to accomplish the curve fitting process.

It means we can calculate the value of each entry in the row according
to the curve in Gaussian form, a x e~ ("% The curve is decided by three
parameters a, b and c¢. Furthermore, the Gaussian curve for a row evolves
over time. As we can see, if we can predict the value of parameters a, b and
¢ at the according time point, we can then calculate the row of the transfor-
mation matrix for the according time point and likewise for all other rows
in the transformation matrix too. So that we can obtain the transformation
matrix M¢ for the according time point and simulate the Internet topology

at the requested time point.

We calculated the Gaussian curves for a row over the whole time:

a; X e o 2, 1 =0---26 and we found approximately that over the time
the distribution of the parameter a is a two term exponential distribution.
The value of parameter b fluctuates around an average value. And the dis-
tribution of the parameter c¢ is a power series model distribution. Fig 6.10
is an example of distributions of the parameters a, b, ¢ for different rows
(shells). Every row of this figure is the distribution of the parameters a, b,
c for a shell.

Now we can tell the values of parameters a, b and ¢ for each row of
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the transformation matrix Mg at any time point and then calculate the
new state of nodes in each shell by NewState = f(StartState, M) (the
function f is the same function as in 6.4).

In this attempt, we tried to use a more mathematical way to simulate
the Internet topology. However, we found in our experiments, the nodes
percentage of each shell moving to all shells is not very close to the real
Internet topology, except for the percentage of the nodes staying at their
own shell for a time step, namely the value of entries z;; (i = 1---26) in the
transformation matrix. Because the value of other entries or the percentage
of changes, such as z2; (percentage of nodes in the shell 2 moving to the
shell 1), is very small compared with the value of z;; and any tiny difference
between the simulated curve and the real value of the real Internet would
cause the imprecision. You can also see this in 6.5.2.

6.4 IV. Attempt

In our research of Gaussian curve model we realized two things. Firstly, the
curving fitting for the values of x;; in the transformation matrix is precise
and successful. Secondly, too many mathematical constraints, such as Gaus-
sian curve, on the other entire, whose value is small, in the transformation
matrix is unsuccessful, because any tiny difference causes big imprecision.
Hence, we thought of an alternative way to simulate the Internet topology
using curve fitting with the refinement we used in attempt 2.

Fig. 6.11 is an illustration some idea of our model. We firstly calculated
average universal transformation matrices with step 4, M;; (i=1---55), de-
scribed in 6.2.5. Using curve fitting we found the distribution of the value of
each x;; (j=1---24) in M} (i =1---55) is a two term exponential distri-

bution, in the form of y = ae®® + ce® (a,c > 0 and b,d < 0). For example,
the distribution of the value of the entry z 2 in matrices m, ﬁg, e, MRS
is a two term exponential distribution. Overall we have 24 curves for entries
xi; (i = 1---24, the results for the curving fitting for entries 25 25, 226 26,
also known as the maximum shells 25 and 26, is not good, so we abandoned

them). And along these curves we can tell and predict the diagonal of any
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Figure 6.11: Illustration of the matrices

average universal transformation matrix.

Algorithm 7: To simulate the Internet topology at the AS level at
the requested time point

Data: Start state of an Internet topology, the time point of the
simulated Internet topology
Result: Simulated Internet topology at the according time point

1 NodesTempStatel «— NodesStartState ; /* The state here is
every node’s shellness */

for i « 2 to the request time point do

3 NodesTempState2 «— g(NodesTempStatel, ﬁl}) ; /* function
g changes the current nodes’ state to the next (new)
nodes’ state with the transformation matrix */

N

4 Calculate the average universal transformation matrix M}, ! with
NodesStartState and NodesTempState2;

5 Set the diagonal of Mé_l according to the fitted curves and adjust

the rest entries in the same row of W so that the sum of same
row equals 1; -
6 NodesTempStatel < g(NodesStartState, Mj™');

7 return NodesTempStatel
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Algorithm 7 is the main idea of our method. Now we use the func-
tion g and the average universal transformation matrix with step 1, Mpl,
to calculate the new state of nodes (every node’s shellness) at time point k.
Comparing the new state with the state at the first time point, we can obtain

the average universal transformation matrix with step k£ — 1, M;f_l. We set

the diagonal of M;f_l as the same of the diagonal calculated according to the
exponential curve and adjust other entries in the same row as the diagonal
entries in the matrix, in which, according to the original proportion of each
entry in the same row, we distribute the difference between the set value of
xi; (i =1---24) and the original value in the matrix so that the sum of each
row equals 1. For instance, if a row of the matrix is 0.1, 0.2, 0.3, 0.4 and
now we set the want to set the second entry to 0.1. Then overall we have
0.1 more. We distribute this 0.1 to all entries according to their original
proportions and the row should be 0.11, 0.12, 0.33, 0.44. We refer to this
process as the adjustment. We repeat the above calculation and adjustment
until we obtain the average universal transformation matrix which we want,
such as W for the new state of nodes at time point 101. Then we can tell
the new state of nodes at time point 101. The theoretical runtime for this
algorithm is O(nt) + O(t(s + 1)2) + O(nt) + O(nt) + O(t(s + 1)?) + O(t(s +
1)?2)+0(t(s+1)%) +O(nt) = O(4nt) + O(4t(s +1)?) C O(nt + s*t), where n
is the amount of nodes, ¢ is the time point and s is the maximal shell. The
two O(nt) parts are for the assignments in line 1 and line 6 in the Algorithm
7. The two O(t(s + 1)2) 4+ O(nt) parts are for the g function used in line 3
and 6. And the two O(t(s+1)?) parts are for the calculation of the matrices
and the process of the adjustment in the algorithm.

6.5 Evaluation of Different Simulation Methods

In this section we would compare all the methods that we mentioned above
simulating the Internet topology at the AS level concerning two aspects.

1. The precision of the amount of nodes in each shell simulated by our
model compared with the amount of nodes in each shell of the real
Internet topology

2. The dynamics of nodes in each shell, namely, the percentage of node
moving from one shell to another shell of simulated topology with the
real Internet.

6.5.1 Normalization of the observation data

If we only choose the real Internet topology at a time point, it is too special.
We cannot ensure that it is the common Internet topology. In addition, we
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also would like to focus on the common trend of a node’s shellness preference
of the real Internet topology. Therefore, before the comparison, we ”normal-
ized” our observation data of the Internet. We have the data information of
the Internet topology at 100 time points, and also for 99 time steps. Firstly,
we averaged each node’s state (shellness) with window size 29. It assures
us the common trend of each node’s shellness preference. For the 99 time
steps, we calculate the matrix M} (i = 1---55) described in 6.4, so that we
obtain the average percentages of nodes in one shell moving to all shells for
time points 1---55 (matrix E for time point 2, ﬁg for time step 3 and so
on).

6.5.2 Comparison of Different Simulation Methods
Comparison of the Amount of Nodes in Each Shell

We chose three methods which we think the best threes simulating the In-
ternet, the method in attempt 2 refinement 2 (6.2.4) (average window size
29 and average universal transformation matrix M,), the method in attempt
2 refinement 3 (6.2.5) (average universal transformation matrices with dif-
ferent steps M} (i = 1, 3, 6, 12, 25, 50))and the method in attempt 4 to
simulate the Internet topology at the AS level at time point 70 and 215. We
calculated the amount of nodes in each shell for every simulated topologies.
And we compared the amounts of nodes in each shell at time point 70 with
the ones of the real Internet and the normalized Internet at the time point
70. The time point 215 is in the middle of year 2008, we can prove the
precision of our models in some future work.

Figure 6.12 and 6.13 are the illustrations of the comparison between the
real Internet, the normalized Internet and the simulated Internet topology
at the time point 70 and 215. The x coordinate denotes shell 1 to shell 26
and the y coordinate illustrate the amount of nodes in the according shell.
You can also see the data table in Appendix A-2.1. As we can see in 6.12,
the amount of nodes in each shell is very close to the one of the real Internet
or the normalized Internet. According to our statistics, the deviations of the
number of nodes in each shell of simulated topology compared with the real
one are only about 5% for each shell. The nodes’ distribution in each shell of
the simulated topologies are also very similar to the real ones. However, we
should also notice that the nodes’ distribution in shell 25 and 26 is reverse.
It’s a difference between the simulated topologies. Actually, the amount of
nodes in the maximal shell should be more than the one in the max —1 shell.
However, in our observation, shell 26 does not exist all the time. Sometimes,
the maximal shell is shell 25. Therefore, in our average value, the amount
of nodes in shell 26 is less than the one in shell 25.
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Comparison of the Percentage of Nodes of a Certain Shell Moving
to Another Shell

We illustrated the comparison of amount of nodes in each shell in the last
part. In this part we will compare all our models (or methods) concerning
the nodes’ dynamics in each shell over time. Figures 6.14, 6.15, 6.16 are some
illustrations of comparisons of how nodes move among shells of the topologies
of the real Internet, the normalized Internet and the ones simulated with our
different methods. You can also find some example comparison figures in
Appendix A-2.2. The = coordinate denotes time points (from 15 time point
to 70 time point of our observations, because there are some jitters in the
first 15 time points). The y coordinate indicates the percentage of nodes in a
shell. It shows us, at a certain time point how many percentages of nodes in
a shell moving to another shell or staying at their own shell. The different
colors of lines in the figures denotes simulated topologies using different
methods, the real Internet and the normalized Internet. It is described as
follows:

Internet
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Figure 6.12: Comparison of amount of nodes in each shell at time point 70
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Figure 6.13: Comparison of amount of nodes in each shell at time point 215

1. Black line: the real Internet with average window size 29
2. Red line: the normalized (with average window size 29) Internet
3. Yellow line: the normalized (with average window size 9) Internet

4. Dark blue line: the simulated topology using method in attempt 2
with average window size 9

5. Green line: the simulated topology using method in attempt 2 with
average window size 29

6. Blue circles: the simulated topology using method in attempt 2 with
different average transformation matrices with steps

7. Pink line: the simulated topology using method in attempt 3

8. Lake blue line: the simulated topology using method in attempt 4

Fig. 6.14 shows us in each shell what percentages of nodes, compared
with the state at the start time point, stay at their own shell over time.
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For example, in the real Internet and the normalized Internet at time point
20, 80% nodes, which were in the shell 1 at the first time point, are now
staying at the shell 1 and 87% nodes , which were in the shell 2 and now
are staying at the shell 2. Fig. 6.15 illustrate the proportion of new nodes,
compared with the state at the start time point, added into each shell over
time. For instance, at time point 20, 10% nodes in the shell 1 are the new
added nodes (at the first time point) and 8% nodes of the shell 2 are the
new added nodes. Fig. 6.16 tells us the proportion nodes, which move one
shell down, in the present shell (also compared with the state at the start
time point). For example, 5% nodes of the shell 2 are the nodes moving
from the shell 1 at the start time point.

Apparently, the line which is more closer to the red (or the black) one
is the most precise method simulating the Internet topology in this part.
As we can see, no matter in which case, the green line is more closer to
our reference Internet data than the dark blue line. The values of the blue
circles are more precise than the green line. It proves again the effects of
refinements in the algorithm 2. The Gaussian model is OK in low shell area.
Sometimes it is more precise than other methods (see 6.14, the pink line is
almost identical with the red line in low shell area). But in the high shell
area above the shell 20 it is a little messy and imprecise. We can also see,
the lake blue line is very accurate in Fig 6.14, because in our model, we set
the diagonal of the matrix according the data of the normalized Internet.
Furthermore, the lake blue lines in other comparison figures are also very
close to the reference Internet data.

In our opinion, the model with the adjustment in attempt 4 is so far
the best in our proposed models. First of all, it very precisely distribute
the nodes, which stay at their own shell over time. As we already know,
the nodes stay at their own shell is a part of the whole nodes’ movement
(see 5.2.6. This model for all other situations, such as nodes moving one
shell higher or downer etc., is also accurate. Sometimes it might not be
as accurate as the model in attempt 2 using 6 average universal matrices
with different steps or the one using average universal matrices with average
window size 29, but they are only small differences and the big part (nodes
staying at their own shell) is very precise. In addition, it combines math-
ematical methods (curve fitting) with the real data information together.
Therefore, we think this model is our best model. The second best model,
from our point of view, should be the method in attempt 2 using 6 average
universal matrices with different steps. From all the figures, we can find it
is more precise than other left methods and it is simple. The third success-
ful model is the method in attempt 2 using average universal matrix with
average window size 29. The Gaussian model we proposed is not very suc-
cessful, but it tried to simulate the Internet more mathematically. Hence, it
is a good try-out.
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Figure 6.15: Comparison of the percentages of new nodes added into each
shell over time between the simulated topology and the normalized Internet
topology
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Comparison between the different Simulation Methodes and the real Internet, where the Nodes move to the 1 higher Shell
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Figure 6.16: Comparison of the percentages of nodes moving to one shell
higher over time between the simulated topology and the normalized Inter-
net topology
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6.6 Summary

In this chapter, basing on the data we researched in the last chapter, we
tried different ways to model the evolving Internet topology at the AS level.
We propose and evaluate four models to simulate the Internet topology and
three of them arerelatively successful : the adjustment model (6.4), the
model using different average universal matrices with different steps (6.2.5),
and the model using average universal matrix ﬁp with average window size
29. In our opinion, the adjustment model is so far the best method in our
proposed models, since in the comparison (6.5) it is precise and it com-
bines mathematical methods (curve fitting) with the real data information
together. We also proposed a Gaussian model that used a mathematic dis-
tribution to model the Internet topology. However, it is only precise in the
low shell area. but it tried to simulate the Internet more mathematically.
Hence, it is a good try-out.






Chapter 7

Conclusion

In this work, we observed two different network topologies according to some
popular metrics and analyzed them in an evolutionary way. We revealed
some regulations how these two networks evolve over time. We researched
the dm chemist supermarket and compared our visualized results with our
statistic results to ensure the feasibility of our approaches to analyze an
evolving network concerning a node’s dynamics in the network over time.
And then we applied our approaches to research the Internet topology at the
AS level. Furthermore, on the basis of our analysis, we proposed different
ways to model the Internet at the AS level by simulating its evolution over
time. In this chapter, we summarize our achievements and outline the work
that can be focused on in the future.

7.1 Achievements

We chose some different popular metrics (degree, frequency, core, rich club
connectivity etc.) and calculated these values of the dm receipt-product-
receipt network (every month from Oct. 2004 to Oct. 2006) and the Internet
topology at the AS level (every seven days from Apr. 2004 to Feb. 2006). We
analyzed these two network topologies with calculated values and observed
them, how they evolved over the whole time.

1. For the dm receipt-product-receipt network, we found that the degree
distribution of nodes of the p-r-p network has a steady structure over
time. The trade of products is also stable. Some certain products
are always bought together. There are 13% products, such as plastic
bags and kitchen paper, that always stay in the maximal shell over
time, which means they are always sold a lot over the whole time. A
popular product of a month wouldn’t get sold more the next month.
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Conclusion

The customers have certain shopping habits. They always buy a lot
of things, which are used commonly in our daily life, and the products
that are durable or rarely used are always sold less. And they also have
some certain consuming seasons, such as December and July are two
best seller seasons meanwhile in February products are sold least. The
core products, e.g. daily used stuffs, are always bought together, since
they have a stable high rich club connectivity value. It implies again
that the core of the p-r-p network is steady and the customers have
certain shopping habits. The nodes’ distributions over time (including
the new added nodes) are pretty chaotic: a node in a high shell could
suddenly fall into a low shell, because it’s sold less or a new added
node could be in a very high shell at the first time, since it’s popular.
It depends on the own feature of the product. We compared our
visualized results with our statistic results to ensure the feasibility of
our approaches to analyze an evolving network concerning a node’s
dynamics in the network over time.

. For the Internet topology at the AS level, we found that the Inter-

net topology has a steady structure. All the degree distributions are
similar over the whole time. Nodes with low degree (degree 1 and 2)
constitute the majority of the network. Over half of the nodes have no
degree changes at all. Most of the rest have small degree changes and
these changes took place in the low degree groups. Only a few ASes in
the backbone group have some dramatical degree changes. Compared
with the first time point, there are altogether 6472 new nodes added
into the network and 97% of them are with low degree (< 5). There-
fore, the degree of most nodes increase slightly. Besides, the number
of the nodes with high degree (backbone ASes) stay quasi the same
over the whole time.

The nodes in the shell 2 and the shell 1 are the majority of the whole
Internet (over 70% of the nodes) and there are more nodes in the shell
2 than in the shell 1. Most (over half) of the nodes have small shellness
changes. The nodes which have bigger shellness changes are the ASes,
such as operators, in the backbone of the network. Over half of the
nodes stayed in the original shell and the rest of them moved to a shell
near their original shell ( they go 1-2 shells up or down). Only a few
nodes moved dramatically among shells. The majority of the maximal
shell is composed of the nodes ( 87% of them) which are originally
in the maximal shell at the first time point. The small rest part is
composed of the nodes moving from shell 25-16 over time. If a new
node (compared with the first time point) is added into the network,
it participate firstly in the low shell. As time goes by, it will stay in
its shell or move to a higher shell according to its feature of its own,
for instance, if it is a backbone AS, it starts with low shell and will
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eventually move into a very high shell. The quantity of the nodes in
the Internet at the AS level is a linear growth (except the jitter in
May. 2004). The growth of the amount of the nodes in each shell is
also quasi linear.

We also found some relationship between the degree of a node and the
shellness of it. A part of the nodes with degree k are distributed in the
shell k, meanwhile the other part of the nodes are distributed in the
shell Kk —1, k—2,---, 1. As time goes by, despite a lot of new nodes
with different degrees were added into the Internet, the distribution
proportion for different degrees in a shell always stay quasi the same.

Besides above mentioned points, we also found that the value of the
rich club connectivity decreased by 1 every year from the year 2004 to
the year 2006. We assume that this value decreases by 1 every year
until it get some kind of balance. However we need more observation
data for this assumption in the future.

3. On the base of our observation, we tried different ways to model the
evolving Internet topology at the AS level. We proposed three rela-
tively successful evolving models for the Internet topology: the adjust-
ment model (6.4), the model using 6 average universal matrices with
different steps (6.2.5), ﬁ[}, ﬁg’, ﬁg, M}2, M25, M3° and the model us-
ing average universal matrix M, with average window size 29. In
our opinion, the adjustment model is so far the best method in our
proposed models, since in the comparison (6.5) it is precise and it
combines mathematical methods (curve fitting) with the real data in-
formation together. We also proposed a Gaussian model that used a
mathematic distribution to model the Internet topology. However, it
is only precise in the low shell area, but it tries to simulate the Internet
more mathematically. Hence, it is a good try-out.

7.2 Scope

7.2.1 Several points could be done in the future

This work has achieved some new analysis results in the research of modeling
the complex network. However, because of the limitd time, there is still much
work that could be done in the future.

1. In our observation we found that the value of rich club connectivity for
the Internet topology at the AS level decreased by 1% each year, but
we also need more observation data in the future for the assumption.



90 Conclusion

2. How the network topology evolves, such as the dm product-receipt-
product network and the Internet topology at the AS level, actually
depends on the own features of a node. For instance, in our work,
how is a product distributed in the p-r-p network is decided by its
popularity. If it is popular, then it is bought a lot with other products
and consequentially it has a high degree and is distributed in a high
shell. Or whether an AS has a high degree and is in a high shell, is
influenced by that if it is a backbone AS. In (DMO00) and (Bar00), such
a situation is also proposed. The different features of a node influence
the evolution of a complex network. In the future we can also research
different features of a node to model the network better.

3. We can combine the proposed evolving model for the Internet at the
AS level with the Core Generator from our institute to simulate the
Internet topology.

7.2.2 New Aspects for the Modeling of the Complex Net-
work

Although the history of the research on complex networks is not long, it is
becoming an important new subject. In the past few years, a lot of achieve-
ments have been reached in the modeling of complex networks. However,
there are still some other areas for the researchers to work on.

1. Directed network. The WWW network, the citation network and
many other important real networks are actually directed networks.
Except for some basic features, we know few about the features of the
directed network. In the directed network, it can not be assured that
all other nodes are reachable from one identified node, which leads
to that in the network there are some small groups depending on the
start nodes. Moreover, the indegree and the outdegree of a node in
the directed network is different. Most current models of the complex
network ignore this feature of the network. Hence, it is a challenge to
find an evolving model of directed network.

2. Accelerating network. In the current evolving models for complex
networks, the growth of the quantity of the nodes and edges is linear.
However some researches show us that the increment of the number of
edges in the WWW network, the Internet etc. is faster than the one of
nodes. Such networks are called the accelerating network (MG). To
analyze the influence of the accelerating increment on the feature of
the network topology is another aspect.

3. Self-similarity network. In the real system, lots of network topolo-
gies have the feature of self-similarity (SHMO05). What is the mecha-
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nism to generate the self-similarity structure? What are factors that
decide the self-similarity feature? This is also a new aspect to chal-
lenge.
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Appendix A

A-1 Tables of Time Series Statistics for the Inter-
net

A-1.1 dm p-r-p Network

The development of the amount of numbers in the dm network

dynamic average geometric average development rate
6260.333 0.9997087

The development of the maximal shell

dynamic average | geometric average development rate
56.95833 0.9955414

The development of the amount of nodes in each degree group

degree degree degree
1-40 41-200 201-max
dynamic average 5227 937 94

geometric average
development rate | 1.0006763 | 0.9948013 0.9920036
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The development of the amount of nodes in shells:
Shell 1-10, 14, 15, 24, 25, 34, 35, 44, 45, 54, 55, 62, 63

dynamic average 985 599 429 33
geometric average

development rate | 1.0028407 | 0.9997325 | 0.9981496 | 0.9995114
dynamic average 269 236 210 184
geometric average

development rate | 0.9962167 | 0.9993335 | 0.9942031 | 1.0042260
dynamic average 163 152 112 110
geometric average

development rate | 1.0015446 | 1.0064436 | 1.0048717 | 0.9992215
dynamic average 70 64 56 44
geometric average

development rate | 0.9982283 | 1.0030034 | 1.0343661 | 0.9991586
dynamic average 26 24 25 17
geometric average

development rate | 0.9966704 | 0.9825353 | 0.9930636 | 0.9066725
dynamic average 15 7

geometric average

development rate | 0.9484106 | 1.0000000

A-1.2 Internet Topology at the AS Level

The development of the amount of numbers in the Internet

dynamic average

geometric average development rate

19510.33

1.002451

The development of the maximal shell

dynamic average

geometric average development rate

25.42188

0.9995915




A-1 Tables of Time Series Statistics for the Internet

99

The development of the amount of nodes in each shell (Shell 1-26)

dynamic average 6545 9233 2158 635
geometric average

development rate | 1.0027759 | 1.0022657 | 1.0023326 | 1.0026799
dynamic average 254 133 95 75
geometric average

development rate | 1.0037421 | 1.0028527 | 1.0037600 | 1.0006095
dynamic average 66 50 33 23
geometric average

development rate | 1.0011876 | 0.9978243 | 1.0050318 | 1.0004253
dynamic average 23 19 14 13
geometric average

development rate | 1.0042325 | 0.9940745 | 0.9962269 | 1.0104556
dynamic average 13 9 9 10
geometric average

development rate | 0.9951161 | 1.0019010 | 0.9970078 | 1.0033227
dynamic average 10 7 7 12
geometric average

development rate | 0.9928057 | 1.0010981 | 1.0023271 | 0.9915884
dynamic average 27 25

geometric average

development rate | 1.0452490 | 0.9983640

The development of the amount of nodes in each degree group
degree degree degree degree
1-5 6-30 31-100 | 100-max
dynamic average 17520 1731 191 67
geometric average
development rate | 1.002475 | 1.002239 | 1.002315 | 1.001985




100

A-2 Comparison in the Evaluation

A-2.1 Comparison of Different Simulation Methods Con-
cerning the Amount of Nodes in Each Shell

Amount of nodes in each shell at time point 70

Internet | Normalized | Attempt2 | Attemptd | Attempt2
Internet refinement?2 refinement3

Shell 1 6878 6560 6581 6557 7351
Shell 2 9622 9905 9883 9900 10008
Shell 3 2209 2257 2253 2219 2197
Shell 4 666 648 654 672 635
Shell 5 267 272 279 275 272
Shell 6 147 162 155 151 154
Shell 7 93 101 103 97 98
Shell 8 81 79 82 83 83
Shell 9 73 69 70 73 68
Shell 10 54 63 55 58 58
Shell 11 37 25 29 30 27
Shell 12 24 28 26 28 25
Shell 13 30 25 27 26 25
Shell 14 15 19 20 20 19
Shell 15 12 16 11 11 12
Shell 16 16 11 14 13 14
Shell 17 7 13 13 12 13
Shell 18 14 9 9 8 10
Shell 19 9 8 9 8 9
Shell 20 14 10 12 11 10
Shell 21 9 9 11 11 10
Shell 22 4 4 6 7 5
Shell 23 16 7 7 7 7
Shell 24 13 12 14 16 16
Shell 25 6 16 39 41 39
Shell 26 46 46 16 17 17




A-2 Comparison in the Evaluation

101

Amount of nodes in each shell at time point 215
Attempt2 refinement2 | Attempt4d | Attempt2 refinement3
Shell 1 9726 9684 12753
Shell 2 13984 14028 15892
Shell 3 3137 3045 3532
Shell 4 903 904 801
Shell 5 411 406 345
Shell 6 240 234 221
Shell 7 161 143 135
Shell 8 124 116 100
Shell 9 102 101 85
Shell 10 77 89 75
Shell 11 38 42 35
Shell 12 32 39 29
Shell 13 32 30 27
Shell 14 21 27 19
Shell 15 10 14 11
Shell 16 13 13 14
Shell 17 11 10 13
Shell 18 8 4 7
Shell 19 8 5 7
Shell 20 10 8 9
Shell 21 10 6 8
Shell 22 5 5 5
Shell 23 7 9 7
Shell 24 17 23 19
Shell 25 47 51 51
Shell 26 20 30 21
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A-2.2 Comparison of Different Simulation Methods Con-
cerning Nodes’ Dynamics

Comparison between the different Simulation Methodes and the real Internet, where the Nodes move to the 1 lower Shell

< y <
<) o

N b
[=) [=}

Figure A.1: Comparison of the percentages of nodes moving one shell down
over time between the simulated topology and the normalized Internet topol-
ogy (the different color of lines are the same as described in 6.5.2)
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Comparison between the different Simulation Methodes and the real Internet, where the Nodes move to the 2 higher Shell

Figure A.2: Comparison of the percentages of nodes moving two shells higher
over time between the simulated topology and the normalized Internet topol-
ogy (the different color of lines are the same as described in 6.5.2)
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Figure A.3: Comparison of the percentages of nodes moving two shells down
over time between the simulated topology and the normalized Internet topol-
ogy (the different color of lines are the same as described in 6.5.2)
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Comparison of the dropped Nodes between the different Simulation Methodes and the real Internet
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Figure A.4: Comparison of the percentages of nodes dropped from the net-
work over time between the simulated topology and the normalized Internet
topology (the different color of lines are the same as described in 6.5.2)
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