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Zusammenfassung

In dieser Arbeit untersuchen wir das Problem der Schematisierung von Routen in einem
Straßennetzwerk. Ziel ist es für eine beliebige Route eine Ausgabe zu erzeugen, die eine
schematisierte Fassung der Route sowie Dekorationen (z. B. Verkehrsschilder) aufweist. Bisher
gibt es kaum Verfahren die es ermöglichen die Route mit verschiedenen Skalierungen der
Teilbereiche darzustellen. Eine Route zwischen zwei Städten beginnt gewöhnlich mit einem
kurzen Abschnitt in der Stadt beim Start. Es folgt ein längerer Abschnitt auf einer Autobahn
oder einer Bundesstraße. Nach dem Verlassen der Autobahn oder Bundesstraße folgt in der
Regel wieder ein kurzer Abschnitt, der innerhalb der Stadt des Zielortes liegt. Auf einer
gewöhnlichen Übersichtskarte einer Route wird überall der gleiche Maßstab verwendet. Das
ist allerdings für den Zweck einer Routenvisualisierung wenig von Vorteil, da das Erkennen
von Details im Start- und Zielbereich deutlich erschwert ist. Wir verwenden verschiedene
Skalierungen für verschiedene Bereiche. Das Ändern der Skalierungen führt zu neuen Proble-
men, die in dieser Diplomarbeit algorithmisch gelöst werden. Bisher gibt es nur einen Ansatz
der diese Probleme versucht algorithmisch zu lösen. Dabei werden Verfahren eingesetzt die
keinerlei Aussagen bezüglich Gütegarantien zulassen.

Die Ausgabe wird in mehreren Schritten erzeugt. Zunächst wird der Eingabe-Pfad in drei
Teile zerlegt. In einen sehr kurzen Präfix-teil, einen sehr kurzen Suffix- und in den restlichen
zentralen Pfad. Präfix- und Suffix-Pfad stellen dabei detailgetreu die Umgebung der Straßen
im Bereich des Starts und des Ziels der Route dar. Der zentrale Pfad wird dann zunächst
mit einem Algorithmus vereinfacht, damit die gesamte Größe der Instanz verringert wird.
Dieser, nun vereinfachte, Pfad wird dann in monotone Teilpfade zerteilt. Diese monotonen
Teilpfade werden mit einem von uns entwickelten Algorithmus schematisiert. Das heißt,
wir beschränken die zulässigen Kantenrichtungen und verändern gegebenenfalls die Länge
der Kanten. Dabei wird besonderer Wert darauf gelegt, gewisse Struktureigenschaften des
Pfads zu erhalten. Das bedeutet, ein Knoten der in einem Teilpfad im Norden eines anderen
Knotens des gleichen Teilpfads liegt darf nach der Schematisierung nicht im Süden dieses
Knotens liegen. Sind alle Teilpfade schematisiert, werden sie zusammengefügt. Wir stellen ein
Verfahren vor mit dem man Überschneidungen der Teilpfade beim Zusammenfügen vermei-
den kann. Abschließend werden Straßenschilder plaziert, die dem Benutzer bei Kreuzungen
anzeigen, welche Abfahrt zu nehmen ist.

Wir beschreiben den Schematisierungs-Algorithmus im Detail und zeigen seine Korrektheit.
Außerdem erläutern wir die Laufzeit. Es werden dann weitere Techniken erläutert, die es
ermöglichen, die Laufzeit des Algorithmus zu reduzieren.

Im vorletzten Kapitel beschreiben wir die Ergebnisse mehrerer Experimente mit unserem
Verfahren. Dabei nutzen wir das Straßennetz Deutschlands als Grundlage. Wir besprechen
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zunächst verschiedene messbare Eigenschaften unseres Verfahrens und analysieren dann die
reale Laufzeit des Schematisierungsalgorithmus. Anschließend zeigen wir, wie sich das Verändern
einiger Parameter auf die Ausgabe unseres Verfahrens auswirkt. Einige Beispiele der Ausgabe
unseres Algorithmus werden dargestellt.
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Dipl. Inf. Thomas Pajor deserve special consideration. They all helped me immensely by
offering support and good advice during the work on this thesis. In many long discussion
they helped me find solutions to the various problem encountered.

I want to thank my parents. Without them I would not be able to have come this far.
Also, I want to thank my siblings who both helped me throughout this thesis.

Finally, I want to thank the people who helped me with little things. For example, giving
helpful suggestions or were just there for me when I needed a little distraction.

Dankeschön!

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig angefertigt habe und nur
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Chapter 1
Introduction

In recent years personal navigation system gained an increased popularity. There are several
different manufacturers of hand held devices which guide users from their current location to
any destination they choose. Furthermore, there are many popular internet route planning
services, where it is possible to enter an origin and a destination between which the best path
is computed. The result is usually a large overview map where the complete route, as well as
other information is displayed. We call such a map a route map (or sometimes route sketch).
Automatically generated route maps have often the disadvantage that they are cluttered. As
an example, such an automatically generated route map is depicted in Figure 1.1 showing a
route from an origin address in Karlsruhe to a destination in Frankfurt. Besides the map,
additional textual route information is provided. The information given are, for example,
“Turn right to merge onto A5 toward Frankfurt” or “Turn left at B39”.

However, much of the information shown is unnecessary. For example names of towns as
well as roads which are not close to the planned route or details of the route that do not require
turning decisions by the driver could be omitted without losing important information. Since
these maps are clippings of traditional road maps a single scale is used to display the whole
route. This leads to the problem that small roads that are common at the origin and the
destination of the route, are scaled so much that it becomes very hard to make them out. A
route map provided by a human differs drastically from a route map generated by an internet
service (see Figure for an example 1.2). It lacks much information which is included in the
route map displayed by internet route planning services. A human omits unnecessary road.
The length and orientation of roads are skewed. However, the information provided by such
manually drawn of route sketches is sufficient to help travelling along the shown route. If we
look at route sketches provided by humans they generally share the following features:

• Only roads which are part of the route or have a common intersection with a road of
the path are shown.

• Roads are often depicted as straight lines. Much of the detailed geographic information
is omitted.

• The road lengths are often changed. Longer roads are shortened, while shorter roads
are lengthened relative to each other.

• The orientation of the roads is changed. The angles of the roads are only roughly similar
to those in reality.
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In this thesis we present an algorithmic approach for creating schematized route maps incor-
porating the previously shown features of manually drawn sketches.

There is a previous approach to automatically compute route sketches by Agrawala and
Stolte [AS01]. Their system uses simulated annealing, which, however, has the drawback that
no formal quality guarantees can be given.

On the other hand, Brandes and Pampel [BP09] showed that computing a schematized
path that satisfies certain consistency constraints is an NP-hard problem.

Our Contribution. We provide and illustrate a technique to schematize any given route
in a road network. The schematization process consists of several different steps which are
explained in the following chapters.

The main ingredient in this process is a schematization algorithm An algorithm which
takes as input a monotone path, a set of allowed directions and a minimum edge length. The
algorithm computes a schematized version of the path, where the length of every edge is at
least the provided minimum length and every edge is aligned to one of the allowed directions.
Special consideration are in place to enable us to ensure that certain structural properties of
the input path are maintained.

In order to apply this schematization algorithm to any given route, we describe a multi-step
process that first splits the route into three parts: a prefix, a central and a suffix path. The
central path itself is further split into a small number of monotone subpaths, each of which
is schematized according to the above mentioned algorithm. These paths are then glued
together and scaled so that the full route fits on a single sheet of paper. Finally decorations
such as road signs or street names are added along the route in order to assist the driver.

So the result is an automatic process which can transform any given route into a easy to
understand route map that fits on one single sheet of paper.

We have implemented our approach in C++. The average running time for any path is
about 50ms. The results of several different schematized paths have been evaluated an can
be found in the appendix.

Structure of the Thesis The Thesis is structured as follows.

Chapter 2. In this section we introduce some background about human cognition and how
humans deal with their spatial surroundings. This gives a guideline on how to alter the
depiction of a route so it is easier for humans to understand a route sketch.

Chapter 3. This section is devoted to previous work that is related to the topic we discuss
in this thesis.

Chapter 4. In this section we introduce notations and terms which are important throughout
the thesis.

Chapter 5. Here, we motivate all different stages of our route map design algorithm. The
route which we want to schematize is splitted into different parts. The central path is schema-
tized with the help of our schematization algorithm. This algorithm is the main part of our
route map design algorithm. We motivate the schematization algorithm and give details why
we chose our approach to solve the problem. Further, we give a description in pseudo code
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Figure 1.1: Generated Route Map by Google Maps (http://maps.google.de).
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Figure 1.2: Route map drawn by a human.
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and analyze its time complexity. A technique which can improve the running time of the
algorithm is introduced. After discussing the schematization algorithm, we explain how it
is used to schematized a given route and how the different parts of the route can be joined
together. Finally, we scale and fit the route to the size of a sheet of paper and explain how
to place street signs. These street signs get a position assigned which is chosen that no or at
least only very few street signs overlap each other or a route segment. A heuristic which is
able to achieve this is explained.

Chapter 6. In Chapter 6 we show results of several experiments that we conducted. There
are three parts. The first part deals with measurable results, among which we also evaluate
the running time of the algorithm.

The second part concerns aesthetic aspects. There are some parameters which can drasti-
cally change the shape of the schematized route. The same route is schematized with different
parameters and the results are compared.

Finally, we show three different route maps our route map design algorithm produced. One
route is a very short distance routes, one a medium length route and one a long route. The
results are shown and compared the original geographic drawing of the route.

Chapter 7. We conclude this thesis in Chapter 7 and state several problems that came up
during the work on this thesis and that motivate further research.
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Chapter 2
Human Cognition

The problem of finding an optimal route between two points in a road network has been
extensively studied and several results have been published. The fastest algorithms can
compute an optimal route in road networks of whole continents within a few milliseconds
[Dij59, DSSW09]. However, the question of visualizing the route on a single page in a clear
way is a non-trivial task. If, for example, a person queries one of the numerous internet
route planning services, he can normally see an overview of the route highlighted on a map.
Additional textual information may be provided to help the user to drive along this route.
The overview is generally not very helpful, besides conveying a certain “feeling” on the general
layout of the route. The information displayed on these kind of overviews is often too much,
thus, distracting the user from the essence of the route required for navigation. There are,
for example, many streets and highways which the person following the route will never
need to know about when driving along the route. Additionally, the streets are represented
geographically, which means that every change in direction will be displayed on the overview.
If the direction is only changed slightly it is not important for the user to know the precise
geographic information.

In this thesis the general idea is to reduce as much information as possible while preserving
necessary information which is essential for the user’s orientation.

2.1 Human Spatial Cognition

Because our schematized route maps are targeted at humans, we have to discuss how humans
process information. Here, we give a short introduction to several aspects of human cognition.

Self localisation. The first aspect we go into is self-localisation. Self-localisation is the
ability of humans to be able to identify one’s position in reality and find the corresponding
position on, for example, a map. In order to find one’s way when following a route one has
to know about the current position to make the right decisions at the right time. There
are different possibilities for humans to acquire knowledge about their current location. For
example, if someone is in a town he is unfamiliar with, there are often large maps which
depict the town as well as a marker which says “you are here” (Figure 2.1). This helps the
person immediately. However, such maps cannot be placed everywhere across the town. If
one is unsure about the current position humans search for features of their surrounding and
compare them to the features presented in the map. Meiling et al. describe this behaviour
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Figure 2.1: Example which show a person on is on a map (Generated with the help of Google Maps
(http://maps.google.de/)

[MHBB06]. If, for example, one is at a T-intersection one will look for T-intersections in
the map. Additionally, one will look for special properties (e. g., geographical) of the T-
intersection to find the corresponding T-intersection on the map. But these local cues are
not the only way to determine one’s position. Humans can also take the network structure
of the surrounding into account. This might be done to make sure that the correct position
on the map has been identified. For example, a person sees on the map, a roundabout comes
up, then this information can be used to validate or to find the position on the map.

Information Overload. The human brain has only limited capabilities. It is well known in
the neurosciences that the human brains has only limited capabilities and that the short-term
memory is very small [Mil56]. Much of the observed information is instantly forgotten. The
human brain is severely limited in managing and processing information in this respect. Thus,
it has to categorize information and decide what information to keep and what to forget. This
implies that if we want to convey certain information (in our case routes in road networks)
it is useful to remove redundant or irrelevant and distracting information. By doing that we
enable humans not only to focus on the important parts (given that these important parts
are still included), but we are also enabling them to acquire the provided information more
quickly. The brain needs less resources to extract the important information, thus, the time
needed for decisions is reduced.

Wayfinding Choremes. Klippel introduces the term choreme to describe “mental concep-
tualizations of primitive functional wayfinding and route direction elements”(pg. v, [Kli03]).
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He performed a user experiment to find out how changes of directions are categorized. In
one of the described experiments. The participants were asked to draw intersections where
the route takes, e. g., a “half left” turn, or a “right” turn. The results are, as described
by Klippel, that the participants used an underlying system to categorize the different turn
directions into a 45◦ scheme unknowingly. As a result of this study Klippel constructed from
the 8-direction model seven wayfinding choremes (Figure 2.2), called “sharp right”, ”right”,
”half right”, ”straight”, ”half left”, ”left” and ”sharp left”.

Mental Map. The mental map is a personal, internal representation of a visual depiction of
a relationship between items. This can be, for example a diagram as described in [MELS95].
However, it is also used as a representation of a geographical map or a route map (see
[Tve92, Bar02]). Unlike a real map, the mental map does not have a constant scale and
consists of, for example, landmarks or regions. The spatial information is often not well
modelled compared to Euclidean geometry. Turns are often remembered as right angles and
curved lines are often straightened.

The mental map is how humans keep maps in their mind. It seems useful to adhere to the
properties of mental maps in creating a schematized route. It will help the human brain to
understand the depicted relationship better without destroying the ability to find the correct
path.

This means we can remove curves in roads and simplify turning angles to emulate mental
maps. At the same time our goal is to maintain certain aspects of the original path. For
example, turning decisions have to be correct (i. e., if a left turn on the route map is depicted,
the driver has to take a left turn also in reality, too).

2.2 Path Simplification and Schematization

A simple way to reduce unnecessary information in a drawing of a path is to “straighten” it
so that little bumps are removed since this level of detail is not helpful for wayfinding. There
are several methods to reduce points of a given polygonal path ([DP73, Far88, Ram72] or
[BLR00]). Some of them are discussed in Chapter 3. An example of path simplification is
shown in Figure 2.2. Although this seem like a very useful idea, applying it aggressively might
yield unwanted results. It is also possible to use only certain angles for the edges of a path. A
combination of both is depicted in Figure 2.3. Although the necessary information regarding
the possible turning angles is included and correct from the drivers view at the intersection,
the general directions (north, east, south, west) are lost. This may lead to certain routes
where a town A which is north of another town B appears in the south of town B in the map.
This produces confusion for the user and must be avoided as much as possible.

Another possible method to remove information is to consider intersections. At these
points a decision has to take place. That means that at each intersection either the travelling
direction changes (and the user has to take a turn) or the user crosses the intersection. Most
intersections have in value three to five streets. For the driver it is not of utmost importance
if the next turn he must take has a 95◦ angle or a 85◦ angle. In fact, Klippel’s wayfinding
choremes indicate that only seven different directions are important as turning directions
(see Figure 2.2). This of course applies to both left and right. This implies that if the
visible angles are reduced to a 45◦ system, the map is simpler while still maintaining the
most important information. However, it is conceivable that there may be paths that are be
altered so drastically by this approach that the general directions (north, east, south, west)
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Figure 2.2: Example of path simplification

Figure 2.3: Example of path schematization which might change too much information

at some intersections may not be consistent with reality. If, however, the driver is instructed
to drive straight through the intersection this information may be omitted. This presumes
of course that the driver knows about this fact.

Another way of improving the readability of the map is to enhance it with other information
that is useful for either orientation or wayfinding. At first glance this may seem counter
intuitive because until now we only wanted to remove information. But consider a typical
route, where a person wants to drive from his home town to a certain street in another town.
The route will normally follow three simple steps. First, the person has to get out of his
own town. He will need several turns at some intersections. The roads – or to be precise
– the road segments he will use will generally be short. Second, if he has left his town he
will most of the time come to a highway and travel on this highway until he approaches the
destination. Third, he enter the destination town. There, he will again be travelling on short
road segments and may need to take several turns at intersections. Consider such a route
and how it looks if it has been straightened and the intersections have been simplified but the
map scale is consistent for the whole route. The route will have at the beginning and at the
end important information. However, it will be condensed to a relatively small part of the
map. Unlike the part where the driver travels on the highway. This will make up for a rather
large part of the map, but there will be very little important information for the driver. He
will only have to change directions (change the highway or leave it) sometimes. This leads
to the observation that the beginning and the end should be depicted larger relatively to
the middle part of the route. So we enhance information by lengthening some line segments.
Additionally, we use decorations, e. g., road signs (which may represent the already mentioned
important turning angles).
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(a) sharp left (b) left (c) half left (d) through (e) half right (f) right (g) sharp right

Figure 2.4: The seven wayfinding choremes
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Chapter 3
Previous Work

Introduction. The Topic of simplification and schematization of paths or polygons has been
a research subject for multiple scientists and is applied to multiple areas of real-life exam-
ples. In the following we present some selected research findings which were studied before
preparing this thesis. Some of them present important mechanisms for our route map design
algorithm. Others yielded inspiration for approaching certain problems which occurred while
devising our algorithm.

Metro Maps. Metro Maps are a prime target for simplification. A part of the simplification
process, as already indicated in the previous sections, is to enhance the readability of a path
by removing unnecessary points [HMdN06, NW06, SR04]. An example for an algorithm which
achieves just that is presented in [MG07]. Merrick and Gudmundsson present a technique
which computes simplified polygonal paths in O(|C|3n) time, where n is the number of vertices
in the original path and C is the set of restricted directions. The simplified path consists only
of directions which are included in C.

The general idea is to compute a boundary path and use this boundary path to construct
the path simplification P . The boundary path is a sequence of straight lines which stab
ε circles around the vertices of the path in the correct order. Merrick and Gudmundsson
discuss further possibilities of their algorithm. They show how to avoid high bend angles and
ensure a minimum edge length.

For metro maps this is a good approach. However, for our problem this technique has sev-
eral disadvantages. The algorithm does not change the scale of the path which we determined
as very important. Further, the orthogonal order is not necessarily maintained.

Schematizing Maps. Another approach is presented in [BLR00]. The authors use a tech-
nique called discrete curve evolution to reduce small and for the user unnecessary “bumps”
to smooth out a given path or a given shape. Every point of a path or shape is categorized
into three distinct classes. There are points which are fixed. Those points are not allowed to
be removed because they represent a certain geographic feature. A removal would deteriorate
the readability of the path. Further those points cannot be moved. The second class consists
of movable points. As the fixed points, they cannot be removed, however their position can
be changed. The last class consists of removable points. Obviously, they can be removed
from the path. Then, the proposed algorithm calculates for every point of the path a value
that represents its relevance. This is done with the help of a cost function, which depends
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on the length of the turn angle at that point and the length of the in- and outgoing edges.
The points are sorted according to their respective value and it is determined which category
they fit in. The algorithm then considers the point with the highest relevance in this sorted
list. If the point is a movable point it may be moved (that depends on several conditions).
If the point is a removable point it is removed. If the point is a fixed point it can neither be
moved nor removed. Then the next point in the sorted list is considered and the evaluation
continues again. If, however, there are only fix points inside the sorted list the algorithms
aborts. This may also happen if another abort criteria is met. This approach can simplify
and schematize paths as well as whole maps (e. g. subway maps).

This approach determines if points can be removed, moved or cannot be removed. This,
however, is for our goals unsuitable. The scale for the path remains the same and this
technique cannot guarantee that the orthogonal order is maintained.

Line Simplification. If only line simplification is desired, then one can use an idea presented
in [Ney99]. The basic idea is that, given a polygonal chain P in the plane, a set of orientations
C, and a constant ε the algorithm computes a polygonal chain Q that consists of the minimum
number of segments that have at most distance ε to P in the Frechet Metric (see [AG95,
God91] or [Ney99, p. 10]). However, this approach is very restrictive and may not be suitable
for many schematization algorithms. It confines the points to a certain area and does not
remove unnecessary “little bumps” to help readability. This can only be achieved if this
approach is combined with a path simplification technique (such as the mentioned discrete
curve evolution).

Path Simplification. Another path simplification method different from the discrete curve
evolution is the Douglas-Peucker algorithm. The original idea behind the Douglas-Peucker
algorithm has been introduced in [DP73] in 1973 by Douglas and Peucker. Independently the
algorithm has been suggested in 1972 by Ramer [Ram72] (thus, the algorithm is sometimes
called Ramer-Douglas-Peucker algorithm). The algorithm’s goal is to reduce the number of
points in any given polygonal path. Simply put, is takes as an input the polygonal path and
a parameter ε. It then draws a imaginary line between the starting and the end point of the
path. The point p with the largest distance to the line is considered. If the distance is larger
than ε p will remain a point of the path and the algorithm calls itself recursively with the
starting point and p as parameters and p and the end point as parameters. The worst case
running time is O(n2). The algorithm and improvements concerning the running time will
be discussed in detail in a later section.

Hardness of Preserving the Orthogonal Order. In the paper [BP09] Brandes and Pampel
discuss the hardness of preserving the orthogonal order when redrawing a given polygonal
path. If a two-dimensional polygonal path P = (v1, . . . , vn) is given and we want to redraw
this path then there is for every vertex in P a corresponding vertex in the new path P ′. We
denote the corresponding vertex to vi ∈ P as v′i. The x-coordinate of a vertex is denoted
with x(vi) and the y-coordinate likewise with y(vi). The orthogonal order is maintained if,
for any pair of vertices vi, vj ∈ P with x(vi) ≤ x(vj) the condition x(v′i) ≤ x(v′j) holds and
for any pair of vertices vi, vj ∈ P with y(vi) ≤ y(vj) the condition y(v′i) ≤ y(v′j).

They use MONOTONE 3-SAT which is known to be NP-hard (see [GJ79]) to prove two different
statements. The first one is that if you want to redraw a path rectilinear (i. e., only the
directions parallel to the x- or y-axis are used) the problem of deciding whether or not the
orthogonal order can be maintained is NP-hard. The second one is that if you do not restrict
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the edge directions in any way but use only a uniform length for the edges the problem if
deciding whether or not the orthogonal order can be maintained is NP-hard, too. Both proofs
rely on a construction of special paths. They are constructed so that if you were able to draw
the path rectilinearly or with uniform edge length in polynomial time MONOTONE 3-SAT could
be solved in polynomial time.

Rendering Effective Route Maps. A similar problem as the one studied in this thesis
is considered by Agrawala and Stolte [AS01]. Their general idea to solve the problem of
displaying an easy-to-use map of a route is similar to our solution (which will be discussed
in the following chapters). However, their approach is quite different to ours.

First, obviously, the travel route has to be computed. This is not part of their work but
there are many known algorithms which solve the problem of finding a shortest path in a road
network (see [Dij59, BD09, MSS+06] or [HSWW05]). Then, a shape simplification process is
applied. The goal of this process is to remove segments of the road while still maintaining
the overall shape of the route. The advantages of this approach is that this presents the
user with a cleaner looking route as well as smaller memory footprint. It also yields faster
processing times. Before removing segments of the path, for every vertex it is decided if
it can be removed or not. This is done to ensure that there are no false intersections, no
inconsistent path turns and no missing intersections. If a vertex would produce any conflict
of the ones mentioned above the vertex is marked as unremovable.

The next step in the approach is to determine the road layout. Agrawala and Stole use
simulated annealing (see [Fle95] for an introduction to this topic) to solve the problem. They
compute an initial road layout by stretching all roads that are below a certain minimum
length to exactly this length.

The perturb function which changes the road layout selects randomly a road ri and changes
its length by a random factor between 0.8 and 1.2. Further, the angle of the road is changed
by a random angle between +/− 5 degrees.

The score function which evaluates the quality for a given layout penalizes the following
things: i), roads that have become smaller than the minimum road length, ii), two roads
whose length orderings been swapped, iii), high difference of an angle of a road in reality and
in the current road layout, iv), false or missing intersections are heavily penalized. Finally,
with their approach it is possible that a destination which should appear to the north of the
origin may appear in the south. Or the origin and the destination can appear to be closer too
each other than they are in reality. To reduce this problem a vector between the origin and
the destination is computed. A score is calculated that weighs the distance and the different
angle between this vector in the original and the current road layout.

After the road layout has been determined, additional street labels and decorations are
used.

Because simulated annealing is used the presented approach is not a deterministic process.
This implies that it is impossible to guarantee certain quality properties of the resulting
route map, most critically the orthogonal order of the route is not considered. Basically all
objectives (road length, no false intersections, etc.) are target of the optimization, but it
cannot be ensured that they are fully satisfied.
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Chapter 4
Preliminaries

In this section present the notation and the introduce various terms needed for the description
of the algorithm presented in Chapter 5.

Coordinates. We denote the x-coordinate of any given vertex v with x(v). Accordingly, the
y-coordinate of any given vertex v is denoted by y(v).

Monotone path We say a path P = (v1, . . . , vn) is x-monotone if for all vi, i ∈ 2, . . . , n
x(vi) ≤ x(vi+1) holds, or if for all vi, i ∈ {2, . . . , n} x(vi) ≥ x(vi+1) holds.

Orthogonal Order. The concept of orthogonal order is explained in [BP09]. Preserving the
orthogonal order aims to maintain the ”mental map” a person has of a route.

Definition 4.0.1

Orthogonal order: Let P = {v1, . . . , vn} and P ′ = {v′1, . . . , v′n} be two polygonal paths
with n nodes each. We say that P and P ′ have the same orthogonal order if for any pair
i, j ∈ {1, . . . , n} x(vi) ≤ x(vj) if and only if x(v′i) ≤ x(v′j) (and the same holds for the
y-coordinates).

Basically it means that if we change the position of vertices of a path then a vertex v1 that
was to the left of a vertex v2 must not be to the right in the redrawn path.

Input of the Algorithm. The input of the schematization algorithm is a polygonal path P =
(v1, v2, . . . , vn) in the plane R2, where each vertex is a point vi = (x(vi), y(vi)), i = 1, . . . , n
and a set C of allowed directions. The allowed directions are represented as angles (see Figure
4.1 as reference for the angles). We assume that {0, d1, 90, d2, 180, d3, 270, d4} ⊂ C, where each
di is a diagonal direction in the i-th quadrant. In our implementations we use regular angles
that are either multiples of 30◦ or of 45◦ .

Note, for ease of description, we confine ourselves to x-monotone paths from left to right.
However, the algorithm explained in the following section is capable of handling any monotone
path. Further, we will assume that there are no two vertices of the path with the same
y-coordinate. If this should happen, any vertex can be moved slightly so that this does
not occur. Recall, we deal with real road networks. Hence, two nodes having the same
y-coordinates is very unlikely.
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90◦
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225◦ 315◦

Figure 4.1: This figure illustrates how the angles are aligned.

Output of the Algorithm. The output of our schematization algorithm is a schematized
polygonal path Q = (q1, q2 . . . , qm) with m ≤ n. Every vertex qi ∈ Q has a corresponding
vertex vj ∈ P . The path Q maintains the orthogonal order of the input path P .

Edges. Each pair of vertices (vi, vi+1) with vi, vi+1 ∈ P represents an edge of P .

Preferred direction. Each edge e has its preferred angle ω(e) ∈ C, from the set of allowed
edge directions. The preferred angle (or direction) is the angle which is included in C and
has the smallest difference to the original angle of the edge among all angles in C.

Cost. The cost c(e) for an edge e is 1, if it cannot be assigned its preferred angle. The cost
is 0 if the preferred angle of an edge can be assigned to it.

Grouping of Edges. We group all edges into two classes. The edges whose preferred angle is
0◦ (see Figure 4.1) (i. e., all edges whose preferred direction is horizontal) are called h-edges.
All other edges (i. e., all edges with a preferred angle that is not 0◦ ) are called v-edges since
their direction has a non-empty vertical component.

Further Notation Regarding Edges We say an edge e = (vi, vi+1) is enclosed by two points
vj , vk (without loss of generality y(vj) < y(vk)) if y(vj) ≤ y(vi), y(vi+1) ≤ y(vk) and y(vi) ≤
y(vi+1) ≤ y(vk). Similarly, a vertex v is enclosed by vj , vk if y(vj) ≤ y(v) ≤ y(vk).
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An edge e = (vi, vi+1) crosses a vertex v if the endpoints vi and vi+1 of e enclose v.

Horizontal Strips Given the position of all vertices vi of P , we divided the plane into n
horizontal strips s1, . . . , sn−1 from top to bottom by drawing a horizontal line through each
point vi. Let yl(sj) and yu(sj) be the lower and upper y-coordinate, respectively, that bound
sj . To each strip sj the algorithm assigns a symbolic height h(sj) ∈ {0, 1,−} with the
following meaning.

1. h(sj) = 0: The height of the strip is zero. Thus, yu(sj) = yl(sj) holds.

2. h(sj) = 1: The height of the strip is 1. Thus, yu(sj) > yl(sj) holds.

3. h(sj) = �: If the height of the strip is assigned �, the height is (at least at this point)
not important and can be either 0 or 1. However, this can change during the execution
of the algorithm.

A horizontal strip si affects an edge (vj , vj+1) ∈ P if yl(vj) ≤ y(si) and yu(si) ≤ y(vj+1) (or
vice versa if y(vj+1) ≤ y(vj)), that is (vj , vj+1) crosses si.

We say a horizontal strip s pushes an edge e vertical if h(s) = 1 and s affects e. This means
that e cannot be drawn horizontally.

A sequence of horizontal strips {si, . . . , sj} is identified by s[i, j]. The element with the
index l inside s[i, j] is denoted by sl[i, j].

Our schematization algorithm needs to store different strip height assignments. We user
superscript to distinguish two different horizontal strip height assignments with a and a
number. For example s1[1, n] and s2[1, n] are two different horizontal strip height assignments.

The algorithm will, in the end, assign each si a proper height instead of the symbolic height
h(si). We denote the true height of a strip si by r(si).

Ordering path vertices by y-coordinates. In the following, the y-order of all vertices in
P is important. Thus, we sort all vertices by decreasing y-coordinates and denote the i-th
vertex in this order by ui (i = 1, . . . , n). This means that we have for a vertex v ∈ P that
v = vj = ui if and only if v is the j-th vertex on the x-monotone path from left to right and
the i-th vertex in the sorted sequence of vertices from top to bottom. The set of all ui is
denoted by U .

We define a bijection µ : {1, . . . , n} 7→ {1, . . . , n} that maps the position i of a vertex vi
in P to the position of j of this vertex vi = uj in the sorted top-to-bottom sequence. The
inverse of the µ is denoted by µ−1. Thus vi = uµ(i). Note that yu(si) = y(ui) = y(vµ−1(i)).

Street Categories. Our algorithm deals with real road networks. In road networks are
several different road types. A road inside a small town differs from a highway. The algorithm
extracts the information from the underlying data set and assigns each road a certain category.
Highways have the highest category. Small roads inside towns have the lowest. In total there
are five different categories. Each road of the same category will later be drawn in the same
color.
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Chapter 5
Route Map Design Algorithm

In this section we introduce the main parts of our algorithm. It consists of several sequential
parts which are illustrated in Figure 5.1. A rough overview is given in Section 5.1.

5.1 Basic Idea

Our approach can be divided into six different stages.

1. The input path is split into 3 parts. A prefix-, a central- and a suffix path are generated.
The exact mechanisms are explained in Section 5.4

2. The Douglas-Peucker algorithm (in a slightly modified version) is applied to the central
path (see Section 5.2).

3. This simplified path is splitted into monotone subpaths (explained in Section 5.5 and
5.6).

4. All subpaths are then schematized with our schematization algorithm (see Section 5.3).

5. Then, all schematized paths, the prefix and suffix paths are combined (see Section 5.7.

6. Finally, the combined paths are fitted on a DIN A4 paper and decorations are placed
(see Section 5.8).

5.2 Path Simplification

The first step to reduce the complexity of the path is remove unnecessary vertices and to
maintain only essential vertices of the path. There are some restrictions as to which points
must not be removed. The details are explained later in this section. First, the general path
simplification algorithm used is explained and later a refinement concerning the running time
is discussed. Finally, we describe how to retain certain vertices.
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Path is splitted into three parts

Decoration

Path simplification

Combining all schematized subpaths

Route

Simplified Route

Schematization of monotone subpaths

Dividing path into monotone subpaths

Figure 5.1: Overview of the algorithm.

Douglas-Peucker Algorithm. The Douglas-Peucker algorithm (see Algorithm 1 for an illus-
tration) has already been introduced in Chapter 3 and its basis is [DP73]. The input of the
algorithm is a polygonal path P and a parameter ε is needed. This parameter is used to con-
trol the amount of simplification. Consider the path depicted in Figure 5.3. The algorithm
is called by DouglasPeucker(P, ε). The algorithm then creates a line l from start to end
(in Figure 5.4 shown as dotted line and an ε strip around l). All vertices outside of the ε strip
have a distance more than ε from l. In Figure 5.4 the algorithm determines that there are
two vertices vi and vj which are outside of the ε strip. The algorithm chooses the vertex with
the greater distance to l. In this case this is vi. We call this vertex splitting vertex. Then,
we recursively call DouglasPeucker(Pv1,vs, ε) and DouglasPeucker(Pvs,vn, ε). If during
the execution of a DouglasPeucker call there is no splitting vertex, the function returns the
start and end vertex. Otherwise the function calls itself with the appropriate parameters.
Finally, the algorithm returns a list of vertices which consists of the start and end vertices
and all splitting vertices. The result for the example is depicted in Figure 5.6. Notice that
all vertices but v1, vn and vs have been removed. In the worst case scenario the algorithm is
called O(n) times recursively. During each iteration the calculation of the splitting vertices
takes O(n) time. Thus, the algorithms worst case running time is in O(n2). This is, for
example, the case if ε is chosen to be 0. Then, the result is the original path and no vertices
are omitted.
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Input Path

Extracting Pre- and Suffix Path

Path Simplification

Dividing path into monotone subpaths

Level 3Level 2 Level 4Level 1 Level 5

Central PathLevel 1 Level 5

Level 3Level 2 Level 4Level 1

Level 5

Schematization of Level 2, 3 and 4 Paths

Combining all schematized paths

Figure 5.2: Each step of the route sketch algorithm is displayed.
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Algorithm 1: DouglasPeucker
Input: embedded x-monotone path P = (v1, . . . , vn) with coordinates (x(vi), y(vi))

for i = 1, . . . , n, ε
Output: Simplified path Q = (q1, . . . , qm)
n = |P |1

max dist = 02

max dist index = -13

Create line l through v1 and vn4

for i← 2 to n− 1 do5

disti = Distance l to vi6

if disti > max dist then7

max dist index = i8

max dist = disti9

if max dist > ε then10

Divide Path P11

P1 = (v1, . . . , vmax dist index)12

P2 = (vmax dist index, . . . , vn)13

sequence se1 = DouglasPeucker(P1, ε)14

sequence se2 = DouglasPeucker(P2, ε)15

return se1 + se216

else17

return (v1, vn)18

Improving Running time. As already mentioned, the Douglas-Peucker algorithm has a worst
case running time of O(n2). In [HS92] Hershberger and Snoeyink propose an improvement
to the Douglas-Peucker algorithm which change the worst case running time to O(n log n).
The idea is to maintain a hull data structure (similar to that proposed by Dopkins et al. in
[DGHS93]). This structural information is then exploited so that the next splitting vertex
can be found in O(log n). It is also shown that this structural information can be maintained
without deteriorating the running time while performing at most n splits. Thus, a worst case
running time of O(n log n) is achieved.

Restrictions. In the introduction to this section it was hinted that there should be some
restrictions as to which points are removed. The most obvious points which must never be
removed are the ones at intersections where the driver has to take a turn. We call these
vertices decision points. Further, we do not want to remove vertices where a street category
change occurs. For example, if the driver changes from a main road onto a highway. Even
though the road may not change its direction drastically, it is helpful to know that there
is a change in the road category. vertices which are at a highway junction are important,
too, if the driver needs to drive onto another highway. A special case are roundabouts. To
the algorithm they appear as a sequence of multiple intersections in a very short distance.
However, to the driver it is obvious that he drives onto a roundabout and the driver needs to
know which exit to take. It is not important to illustrate every possible intersection but it is
sufficient to keep only one vertex of the roundabout. All other vertices of that roundabout
can be removed. The information which exit to take is displayed with the help of a road sign.
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v1

vn

vi

vj

Figure 5.3: Douglas-Peucker algorithm: Step 1. The original Path.

ε

ε

v1

vn

vi

vj

Figure 5.4: Douglas-Peucker algorithm: Step 2. Line Through v1 and v2 and the ε strips are drawn.
The algorithm has identified the splitting vertex vi and it is called recursively with two
subpaths. One subpath begins at v1 and ends at vi. The other begins at vi and ends at
vn.

If this were the only important points to keep, the resulting path might have inconsistent
turn directions. An example when something like this can happen is shown in Figure 5.7(a).
Although the driver has to take a left turn, the simplification produces a path which implies
that at this intersection the driver has to take a right turn. This is undesirable and can be
avoided. The technique used to identify points which must not be removed is based on ideas
proposed in [AS01]. Assume that we have already determined all intersections. In Figure
5.7(a) we can see a path with intersections marked by a small dot. All vertices which are not
intersections are marked with an x. We now want to determine the vertices which are marked
with an x and can be removed without causing inconsistent turn directions. We now consider
the vertices between two consecutive intersections vi and vj . We define a line l1 through vi−1

and vi. The line l1 divides the plane into two half planes. We check if vi+1 and vj are in the
same half plane. If this is the case the turn directions are consistent. If this is not the case
we mark vi+1 as unremovable. Then, a line l2 through vj and vj+1 is defined. The line l2
divides the plane into two half planes. We check whether vj−1 and vi are in the same half
plane. If this is note the case, we mark vj−1 as unremovable. Otherwise, no adjustments
are necessary. The result is depicted in Figure 5.7(b). The same procedure is done from the
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ε

ε

v1

vn

vi

vj

Figure 5.5: Douglas-Peucker algorithm: Step 3. The algorithm has been called again with two
subpaths. Again, the ε strips are drawn. There are no splitting nodes left.

vi

v1

vn

Figure 5.6: Douglas-Peucker algorithm: Step 4. The resulting path after the Douglas-Peucker algo-
rithm has been applied. Note that all nodes except the first, the last and the splitting
vertex have been removed.

opposite direction.

5.3 Schematization Algorithm

In the following we describe our schematization algorithm. First, we describe what our
algorithm aims to achieve. We motivate briefly why the problem can become quite complex
and naive approach may fail to address certain cases. Finally, we provide the schematization
algorithm in pseudo code and explain the details. The algorithm devised is able to solve the
problem given in the following.

Problem 5.3.1

Given a path P = (v1, v2, . . . , vn) in the plane R2. Find a schematized path Q =
(q1, q2, . . . , qn) such that the orthogonal order is maintained and the number of edges
which cannot be assigned their preferred direction is minimal.
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(a) Simplification maintaining consistent turn directions

vi

vi−1

vj vj+1

vi+1

vj−1

vi

vi−1

vj vj+1

vi+1

vj−1

(b) Naive simplification

Figure 5.7: On the left side of the upper figure there is a path depicted which is to be simplified.
The vertices marked with a black circle represent decision points. Vertices marked with
an x depict vertices that might be removed.

5.3.1 Objective

Maintaining the orthogonal order. The goal of our schematization algorithm is to preserve
the orthogonal order (see Definition 4.0.1 on page 19) of all vertices of the path. The orthog-
onal order of a path P = {v1, . . . , vn} is maintained in a new path Q = {q1, . . . , qn} if the
following holds. Let vi, vj ∈ P with y(vi) ≤ y(vj) then for the nodes qi, qj ∈ Q the expression
y(qi) ≤ y(qj) holds true. The same condition must hold for the x-coordinates. If one of
the conditions for any node pairs does not hold, the redrawing of P to Q has violated the
orthogonal order. Loosely spoken, this means if one considers two vertices and places one
vertex in the point of origin, the other vertex is in one of the four quadrants (see Figure 5.8).
If, in the redrawn path Q, the corresponding vertex is in the same quadrant the orthogonal
order holds for these two vertices.

Brandes and Pampel [BP09] proved that the problem of drawing a path rectilinearly while
maintaining the orthogonal order is NP hard. The same holds true if we allow all edge
directions but restrict ourselves to uniform edge lengths.

The schematization algorithm we present is suited for monotone paths. We exploit certain
properties of monotone paths to ensure minimal cost while maintaining the orthogonal order.
To ease the description, we confine ourselves to an x-monotone path P with the start vertex
v1 on the left and the end vertex vn on the right. The algorithm takes as input a monotone
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vi

vj

Figure 5.8: Two vertices vi and vj are shown. The orthogonal order is maintained if vj is in the
upper right, gray area (according to vi).

path and a set of angles. This set includes all allowed angles (or directions) an edge can be
aligned to. Further, We assume that {0, d1, 90, d2, 180, d3, 270, d4} ⊂ C (see Figure 4.1). This
basically means that in addition to the horizontal direction, there is at least one direction to
the upper right and lower right quadrant.

Minimizing Path length. We want to ensure that the total path length is as small as
possible.

Combined. We consider two different optimization criteria:

• Minimizing the number of edges that are not assigned their preferred direction.

• Minimizing the total path length.

If only the path length is to be minimized, the solution is simple. A feasible length-minimal
path would consist of horizontal edges only. This is, of course, nothing but a straight line from
left to right. This is undesirable and in practice violates the ”mental map” of the user (see
[MELS95] for an overview) because it alters the path very drastically. Thus, the main goal
is to minimize the number of edges that cannot be assigned their preferred angles without
violating the orthogonal order. An example when this can happen is depicted in Figure 5.10.
On vertex is connected by both a v- and an h-edge. In this special case not both of them can
be assigned their preferred direction without violating the orthogonal order.
Lemma 5.3.1

For any given x-monotone path P setting the y-coordinates of all vertices to the same
value does not violate the orthogonal order.

Proof : Assume that there are two vertices v1, v2 ∈ P and their corresponding vertices v′1, v
′
2 with

the same y-coordinate. The orthogonal order would be violated if x(v1) ≤ x(v2) and x(v′1) > x(v′2)
(or the other way around). Because the y-coordinates are the same, a violation of the orthogonal
order cannot happen here. However, we did not change the x-coordinate of any vertex. This
means that the orthogonal order is preserved
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30◦

60◦

90◦

0◦
edge

330◦

300◦

270◦

Figure 5.9: An example of restricted angles is depicted. The set of angles C45 = {0◦ , 30◦ , . . . , 360◦ }
is used.The blue edge represents a path edge. The angle depicted in green is the preferred
angle of the blue edge.

5.3.2 A First Naive Approach

We show an example that illustrates why a simple greedy algorithm based on local decisions
can be arbitrarily bad. Consider the example depicted in Figure 5.11(a). There are three
edges of an x-monotone path.

Note that we can always connect edges to an x-monotone path, given that no two edges
not share same x-coordinates. If unconnected edges that do not share (not even partially)
the same x-coordinates are connected by a straight edge that connects always the two closes
vertices of an edge (ties can be solved arbitrarily but no vertex can have degree 3 or more),
the result is an x-monotone path. However, this technique can influence the minimum cost for
the optimal solution. It is possible to connect unconnected edges in a certain way that does
not influence the minimum cost for these edges. Instead of connecting the unconnected edges
directly, we insert an additional vertex for two vertices we want to connect. This vertex is
placed very high (i. e., above the highest horizontal strip which affects any of the unconnected
edges) or very low (i. e., below the lowest horizontal strip which affects the unconnected
edges). Which one of the solutions chosen is irrelevant. Then, two edges that connect each
edge with the newly added vertex are inserted. Both edges are marked as v-edges. This
means that we can set any horizontal strip above the ones that affect the unconnected edges
to height 1. This enables us to assign the newly added edges their preferred direction.

Suppose we want to connect edge ei = (vi, vi+1) and edge ej = (vj , vj+1). Without loss of
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h-edge
v-edge

v-edge

v-edge

Figure 5.10: Shown are four edges. The h-edge is depicted in green and the v-edges are depicted in
blue. This example cannot be solved with cost 0. Either the h-edge gets is preferred an-
gle assigned or the leftmost v-edge. Assigning both edges their preferred angle violates
the orthogonal order.

generality we assume that x(vi) < x(vi+1) < x(vj) < x(vj+1). If we used the first technique
we would simply insert edge ek = (vi+1, vj). The second technique would need us to add
vertex va and the two edges ea1 = (vi+1, va) and ea2 = (va, vj).

The edges e1 and e3 are h-edges and the edge e2 is a v-edge. If we would only consider
the edges e1 and e2 we can assign strip height values which would yield cost 0. The same
holds, if we consider the edges e2 and e3 for any pair of edges there is a solution with cost 0.
However, if we consider all three edges the situation becomes more problematic. If we want
to assign e1 its preferred (horizontal) direction, the horizontal strip heights of s1, s2 and s3

must be set to 0. This “drags” the upper terminal vertex of e2 to the same height as the edge
e1. If we want to assign e2 its preferred direction the height of s4 and/or s5 have to be set to
1. This, however, pushes e3 vertical and the result would be a cost of 1, see Figure 5.11(b).
If we want both e1 and e3 to be assigned their preferred direction, all horizontal strip heights
have to be set to 0, which again, yields cost 1 and is shown in Figure 5.11(c).

If we want to assign e1 its preferred direction we have to either assign either e2 or e3 a
direction which is not its preferred direction. However, this is a conflict directly caused by
assigning e1 or e3 their preferred direction. This occurs because the edges e2 and e3 are
entangled in this special case. One can imagine that these entanglements can become quite
complex. A local decision to set a horizontal strip height to a certain value can lead to very
high cost, simply because we chose to set a horizontal strip height to a certain value. Consider
the example shown in Figure 5.12(a), which is very similar to that in Figure 5.11(a). The
edge e1 is a h-edge. The edges e2 to e4 are v-edges and the edges e5 to e7 are h-edges. If we
set the heights of the horizontal strips which affect e1 to 0 (see Figure 5.12(b)), we can assign
e1 its preferred direction. The strip height assignment does not directly lead to problems
with the edges e2 to e4 or e5 to e7. However, as already explained in the previous example,
there is a conflict. We can either assign all v-edges or all h-edges their preferred direction
but not both (without violating the orthogonal order). This is done by setting the height of
s8 to 1 (to push the v-edges open) or by setting all horizontal strip heights to 0 (to set all
edges horizontally). Because we decided to set the horizontal strip heights which affect e1 to
0 we now have cost 3. The minimum cost, however, is 1, for example, by assigning h(s6) = 1,
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s2

s3

s5

s4

(a) Three edges of an x-monotone input path.

e1

e2 e3
s4

s1 − s3

s5

(b) The result of assigning h(s1) = h(s2) = h(s3) = 0 and h(s4) = h(s5) = 1 is shown
above. We cannot assign e3 its preferred direction without violating the orthogonal
order.

e1 e2 e3s1 − s5

(c) All horizontal strip heights are set to 0.

Figure 5.11: Shown are three edges of an x-monotone path. In Subfigure (a) the original layout of the
edges is shown. In Subfigures (b) and (c) different horizontal strip height assignments
are shown.

which pushes the v-edges – as well as e1 – vertical (see Figure 5.12(c)).

5.3.3 The Schematization Algorithm

Input of the Algorithm. The input of the schematization algorithm is a polygonal path P =
(v1, v2, . . . , vn) in the plane R2, where each vertex is a point vi = (x(vi), y(vi)), i = 1, . . . , n
and a set C of allowed directions. The allowed directions are represented as angles (see Figure
4.1 as reference for the angles). We assume that {0, d1, 90, d2, 180, d3, 270, d4} ⊂ C, where each
di is a diagonal direction in the i-th quadrant.

Output of the Algorithm. The output of our schematization algorithm is a schematized
polygonal path Q = (q1, q2 . . . , qm) with m ≤ n. Every vertex qi ∈ Q has a corresponding
vertex vj ∈ P . The path Q maintains the orthogonal order of the input path P .

Lemma 5.3.2

By determining non-negative values for all horizontal strips si of an x-monotone path it
is possible to assign each edge e in the schematized path P ′ either ω(e) or another angle
contained in C.

Proof : After all si have been assigned a value for r(si) which is at least 0 all y-coordinates can
easily be determined. We can simply traverse from the bottommost vertex to the topmost. The
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e1
s4 − s6

s7

s8 − s10

s1 − s3

s11 − s13

e2 e3 e4

e5 e7e6

(a) Edges of an x-monotone path are depicted. Note that we grouped some horizontal strips.

e1s1 − s7

s11 − s13

s8 − s10

e2 e3 e4 e5 e7e6

(b) Assigning h(s1) to h(s7) the value 0, one of h(s8) to h(s10) and one of h(s11) to h(s13) the value
1 yields the results shown above. Here, e5, e6 and e7 each produce cost 1. Thus, the total cost is 3.

s1 − s5
s6

s7 − s13

e2 e3 e4

e5 e7e6

e1

(c) Only h(s6) gets assigned the value 1, all other horizontal strips have height 0. The total cost is 1.

Figure 5.12: In Subfigure (a) seven edges of an x-monotone path are shown. In Subfigures (a) and
(a) different height assignments for the horizontal strips are shown. In all subfigures
Seven are the h-eges colored in green and the v-edges are colored in blue.

lowest vertex gets assigned a fixed value for its y-coordinate (e. g.,0). Then, the next higher
vertex’ y-coordinate is r(si) + y(v′i+1). This step is repeated until all y-coordinates have been
determined.

The x-coordinates can be established by traversing from left to right. The leftmost vertex has
0 as value for its x-coordinate. For the right neighbour one of the following holds true:

• Both vertices share the same y-coordinate. An arbitrary value larger than 0 can be chosen
(Recall, the angle 0◦ is in C included).

• The vertex to the right has a higher y-coordinate. A direction to the upper right is included
in C. Thus, through simple arithmetic the x-distance can be determined.

• The vertex to the right has a higher y-coordinate. A direction to the lower right is included
in C. Thus, through simple arithmetic the x-distance can be determined.

Explanation of the Schematization Algorithm. First, the vertices of the input path P are
ordered by their y-coordinates in descending order. (The result is the sequence of vertices
U = (u1, . . . , un).)

The core part of our algorithm is based on dynamic programming (see [Bel03, CLRS01,
DL77] for an overview of the subject). See Algorithm 2 for an illustration in pseudo code.
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s1

s2

s3

s4

s5

v1 = u4

v2 = u1

v3 = u5

v4 = u3

v5 = u2

v6 = u6

Figure 5.13: This figure shows an x-monotone path consisting of nodes v1 to v6. Furthermore, the
horizontal strips s1 to s5 are depicted.

In Appendix A is a more detailed implementation of this algorithm is given. The basic
idea is to recursively compare cost-minimal solutions based on combining two cost-minimal
sub-solutions. Starting with the solutions for each strip si (i = 1, . . . , n − 1) we determine
and store solutions for all sets of consecutive strips s[i, j], 1 ≤ i < j ≤ n − 1. We denote
the minimum cost for the sub-instance between the vertices ui and uj by OPT (i, j). It is
important to note that while determining OPT (i, j) for any i, j we only consider the edges
e = ua, ub that satisfy i ≤ a < b ≤ j or i ≤ b < a ≤ j. In other words, edges with only one
vertex between ui and uj are not considered.

We first determine OPT (i, i+ 1) for i ∈ {1, . . . , n− 1} and the best horizontal strip height
assignment for si. The minimum cost is always 0. There are three cases to consider:

1. Vertices ui and ui+1 are not connected by an edge. Then, we assign h(si) = � and
defer the decision to a later point.

2. Vertices ui and ui+1 are not connected by an h-edge. We assign h(si) = 0.

3. Vertices ui and ui+1 are not connected by a v-edge. We assign h(si) = 1.

If we want to calculate OPT (i, j) and i+ 1 6= j there exists at least one k with i < k < j.
We call uk the separating vertex. Let s[i, j]0 indicate that all horizontal strips sl with i ≤ l ≤ j
and h(sl) = 0. We define OPT (i, j) to be

OPT (i, j) = min
i<k<j

{min{OPT (i, k) +OPT (k, j) + c(i, k, j), cost(s[i, j − 1]0}}

where c(i, k, j) is the minimum cost for all edges that cross uk and that are enclosed by ui
and uj .

After all OPT (i, i + 1) have been calculated, the remaining OPT (i, j) have to be deter-
mined. This is done inside the two nested for loops (see ll. 6-7 of Algorithm 2)

Let k be any integer with i < k < j while determining any OPT (i, j). The algorithm
constructs from two sub-solutions a new solution. This is done by the merging operation
which is given in pseudo code in Algorithm 3. The algorithm first discovers the upper limit
ul and the lower limit ll. The upper limit ul is the smallest horizontal strip index with
ul ∈ {i, . . . , k − 1} so that ∀l,ul≤l≤k−1h(sl) 6= 1. Analogously, the lower limit ll is highest
horizontal strip index with ll ∈ {k, . . . , j − 1}so that ∀l,k≤l≤llh(sl) 6= 1.
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Algorithm 2: Schematization Algorithm
Input: embedded x-monotone path P = (v1, . . . , vn) with coordinates (x(vi), y(vi))

for i = 1, . . . , n
Data: table OPT(·, ·), table C(·, ·, ·)
Output: strip height assignments h(si) ∈ {0, 1,�} for i = 1, . . . , n− 1
sort nodes of P in decreasing y-order as a sequence U = (u1, . . . , un)1

label each edge ei = (vi, vi+1) of P as either h-edge or v-edge depending on its slope2

for i = 1, . . . , n− 1 do3

OPT(i, i+ 1)← 04

h(si,ji )←


0 if (ui, ui+1) is h-edge of P
1 if (ui, ui+1) is v-edge of P
� else5

for l = 2, . . . , n− 1 do6

for i = 1, . . . , n− l do7

j ← i+ l8

OPT(i, j)← mini<k<j{OPT(i, k) + OPT(k, j) + c(i, k, j)}9

update all strip heights h(si,jl ) for l = i, . . . , j − 110

for i = 1, . . . , n− 1 do11

h(si)← h(s1,n
i , 1, n)12

First, the algorithm determines the minimum cost if exactly one horizontal strip height
above and exactly one horizontal strip height below the separating vertex uk is set to 1 while
all horizontal strip heights between sp and sq (yellow area in Figure 5.17) are set to 0. The
heights of the remaining horizontal strips (green area in Figure 5.17) are not altered. Let
sp, Iq with (ul ≤ p < k ≤ q ≤ ll) be the horizontal strip heights that are set to 1. The
following edges produce cost of 1(c.f. Figure 5.17).:

• All h-edges which have exactly one terminal vertex above up.

• All v-edges which have both terminal vertices between up and uq.

• All h-edges which have on terminal vertex below up and one terminal vertex below uq.

The process is repeated for every k which satisfies i < k < j. The minimal costs among
all minimum costs is chosen as well as its corresponding horizontal strip height assignment
for OPT (i, j). We call the operation that determines the horizontal strip heights of the uk
crossing edges with already determined s[i, k] and s[k, j] the merging operation. If there are
multiple possible horizontal strip height assignments that all produce the minimum cost any
of them can be chosen arbitrarily.

Then, the algorithm determines the minimum costs if all horizontal strips heights between
sk and sll are set to zero and only one horizontal strip height above uk (i. e., one of the
horizontal strip sul to sk−1) is set to 1. All sv with p < v < k are set to zero. The heights
of all horizontal strips above sp remain the same. Let sp with (ul ≤ p < k) be the horizontal
strip height that is set to one. The following edges each produce cost 1 (see Figure 5.15).
Note that every edge has to be a uk crossing edge. Otherwise the edge would have already
been considered either by OPT (i, k) or OPT (k, j):
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• All h-edges with exactly one terminal vertex above ul and one terminal vertex below
up (i. e., below uk, because the edge has to be uk crossing).

• All v-edges with both terminal vertices below up and above ull.

Then, the algorithm calculates the minimum cost if all horizontal strip heights above the
separating vertex uk are set to zero only one horizontal strip below uk is set to one. All sv
with k < v < q are set to zero. The heights of all horizontal strips below sp remain the same.
Let sq with (k ≤ q ≤ ll) be the horizontal strip height that is set to one. The following edges
produce cost of 1 (c.f. Figure 5.16).:

• All h-edges with exactly one terminal vertex below uq and one terminal vertex below
uq.

• All v-edges with both terminal vertices above uq (one of them needs to be above uk
and one below uk).

The algorithm then calculates the cost if all horizontal strips between the upper and lower
limit have height 0.

Finally, the algorithm calculates the cost if all horizontal strips are which are between ui
and uj are set to 0. The cost equals the number of v-edges which lie completely between
ui and uj . If all horizontal strips are set to 0 the edge must be drawn horizontal and this
produces cost of 1 for each v-edge. The h-edges can be drawn horizontal without producing
any cost. Note that this can only happen if every horizontal strip sl, i ≤ l < j affects at least
one h-edge.

If there are multiple optimal solutions which produce each the same cost, then the solution
which sets to horizontal strip heights to one is preferred other a solution where only one
horizontal strip height is set to one. The least preferred solution is the solution where all
horizontal strip heights are set to 0. If there are multiple solutions of the same type the
solution is preferred which places the horizontal strips with height 1 closer to the separating
vertex is preferred. This distinction ensures that if there is a horizontal strip sl with h(sl) = 0
there is a h-edge which is affected by sl an can be drawn horizontally.

This technique is repeated until OPT (1, n) has been determined. The algorithm stops and
the optimal horizontal strip heights are returned.

Correctness. After describing the algorithm in detail we prove its correctness. In particular
the orthogonal order is not violated and the cost of the solution is minimum over all possible
horizontal strip height assignments. It is easy to see that by assigning a non-negative height
to each strip the y-order of the nodes of P does not change. Since we draw P in an x-
monotone manner this implies that the orthogonal order of all nodes is preserved. The proof
that the algorithm produces a horizontal strip height assignment of minimal cost is more
difficult. We have to prove that the merging operation computes a minimum-cost solution.
does indeed choose the minimum cost. For that, we have to prove that there is no possibility
that the cost of OPT (1, n) is not optimal, because we have set a horizontal strip height during
the computation of OPT (i, j) to a value which turns later out to be the wrong choice for
OPT (1, n). An example is given in Figure 5.18.
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Algorithm 3: Merge Operation
Input: Horizontal strip heights s[i, j]
Output: Altered horizontal strip heights s′[i, j], minimum cost min
for k ← i+ 1, . . . , j − 1 do1

Determine upper and lower limit ul and ll2

min =∞3

for u← k − 1, . . . , ul do4

for l← k, . . . , ll do5

s′[i, j] = s[i, j]6

h(s′u) = 17

h(s′l) = 18

for z ← u+ 1, . . . , l − 1 do9

h(s′z) = 010

C = Calculate cost(s′[i, j])11

if c > min then12

min = c13

c = Calculate cost(s′[i, j]0)14

if c > min then15

min = c16

Lemma 5.3.3

For any given x-monotone path P assigning each h(si) a non negative value does not
violate the orthogonal order.

Proof : Let P ′ the path which results if horizontal strips are all equal to or larger than zero (i.
e.,we change the y-coordinates of the vertices in P and the result is P ′). Assume that there are
two vertices v1, v2 ∈ P and their corresponding vertices v′1, v

′
2 in P ′. Further, these two vertices

violate the orthogonal order in P ′. Because we did not change the x-coordinates this means
that w.l.o.g. y(v1) ≤ y(v2) and y(v′1) > y(v′2) hold true. But if v1 is above v2 then there has
to be at least one horizontal strip between v1 and v2. Even if all of them are set to zero the
orthogonal order would not be violated. If only one horizontal strip has a height larger than
0, y(v1′) < y(v′2) would hold true. Obviously, only horizontal strips with a negative height can
result in a violation of the orthogonal order.

We show that the merging operation determines for any OPT (i, j) and any k, i < k < j
the best horizontal strip heights (i. e.,yielding minimal costs) for all uk crossing edges.
Lemma 5.3.4

The operation for computing c(i, k, j) for all i < k < j calculates a height assignment for
all horizontal strips between sul and sll with minimum cost.

Proof : Let i < k < j be the indices of three nodes of P and suppose we want to compute c(i, k, j)
in order to determine OPT (i, j). We need to show that c(i, k, j) is indeed the minimum cost of
all edges that cross uk. For sake of contradiction suppose there is a height assignment with cost
cmin < c(i, k, j).

Consider what the operation does to determine the minimum cost. First, it tests what the
cost is if all horizontal strip heights between sul and sll are set to 0. Then, it determines the
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Figure 5.14: This figure shows an example of nodes of the path P (we use the alternative notation
of the nodes from the ordered sequence U .) Here, h(sa) = h(sz) = 1. The upper limit
is b and the lower limit is sy. The blue edge is a uk crossing edge.

minimum cost if only one horizontal strip height above uk from sk−1 to sul is set to 1 and all
below uk are set to 0. The operation then, calculates the minimum cost if one horizontal strip
height of the horizontal strips between sk and sll is set to 1 and all other horizontal strips are
set to 0. Finally, it calculates the minimum costs if one horizontal strip height between sul and
sk−1 and one between sk and sll is set to 1 and all others are set to 0. This means that any
horizontal strip height assignment that is not considered by the merging operation has to set at
least two horizontal strips heights between sul and sk−1 or sk and sll to one. We now prove that
this cannot yield lower cost. Thus, the assumption is wrong and the merging operation does
indeed determine the minimum cost.

There is a horizontal strip height assignment that sets at least two horizontal strip heights
between sul and sk−1 to one. Further, let there be zero or more horizontal strip heights set to
one between sk and sll. Let sd be the first horizontal strip above uk with a height that is set to
one. Let se be any other horizontal strip above sd which height has been set to one (see Figure
5.19 for an illustration).

• First, let’s assume that there is no horizontal strip between sk and sll set to one. Recall
how the cost is determined (see Section 5.3.3). Note that the cost consists of the number
of h-edges with one terminal vertex above sd and one below uk. This means that the value
of se has no influence on the costs produced by h-edges, because the horizontal strip sd

already pushes the h-edges vertical. Further, costs are produced by v-edges that have one
terminal point below sd and one below uk. These are the same cost as described in (see
Section 5.3.3). This cost is not influence by horizontal strips above sd.

• Second, lets now assume that there is at least one horizontal strip between sk and sll with
a height set to 1. Let this horizontal strip be called sf . The costs are caused by all h-edges
which have either one terminal vertex above sd and one below uk or one terminal vertex
above uk and one below sf . Additionally, every v-edge that has both terminal vertices
below ud and above uf+1 produces cost of 1. As we see again, the horizontal strip se is
completely irrelevant. If any h-edge is pushed open by se it is already pushed open by
sd (recall, all edges the merging operation considers have to be uk crossing). Further, the
horizontal strip height of se has no influence on the cost of the v-edges which are set to the
horizontal direction.

The proof for the case that there are at least two horizontal strips between sk and sll with
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Figure 5.15: This figure illustrates how the cost is determined for OPT (i, j) if exactly one horizontal
strip above the separating vertex uk is set to height 1. All horizontal strips in the yellow
area have height 0, all horizontal strips in the green area remain untouched. Further,
all horizontal strips between uk and uz are set to 0.

heights set to 1 and zero or more horizontal strip heights between sk−1 and sul that are set to 1
follows from a symmetric argument. This means that c(i, k, j) indeed equals the minimum cost
attainable by setting the horizontal strip heights between sul and sll.

The following lemma helps us prove the correctness of the algorithm.

Lemma 5.3.5

Assigning the value h(si) = 1 to any si, 1 < i < n determines for all edges that cross si
if they produce cost or not.

Proof : Each si crossing h-edge is pushed vertical, and hence produces cost of 1. All crossing
v-edges can be assigned their preferred direction. Thus, no v-edge that crosses si produces cost.

Now that we have proven that the c(i, k, j) operation calculates the minimum cost for any
OPT (i, j) and a given k, i < k < j we have to prove that the algorithm correctly calculates
OPT (1, n). Recall that the merging operation only computes c(i, k, j), the minimum cost for
the uk crossing edges. It does not compute the minimum cost for the remaining edges.

Theorem 5.3.1

The presented schematization algorithm (Algorithm 2) determines a horizontal strip
height assignment that produces minimal cost among all possible horizontal strip height
assignments.

Proof : We prove the theorem by induction.

Induction hypothesis: We maintain the invariant that if for any si the value h(si) = 0 there
has to be at least one h-edge e that is affected by si and is drawn horizontally, i. e.,with cost 0.
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Figure 5.16: This figure illustrates how the cost is determined for OPT (i, j) if exactly one horizontal
strip below the separating vertex uk is set to height 1. All horizontal strips in the yellow
area have height 0, all horizontal strips between ub and uk have height 0, too.

Begin of induction: OPT (i, j) is the minimum cost solution for j = i+ 1 and 1 ≤ i < n.
There are only three cases which have to be evaluated (see ll. 3-5 in Algorithm 2):
1. The vertices ui and ui+1 are vertices of the same h-edge. The horizontal strip height is set

to 0 and the minimum cost is 0.
2. The vertices ui and ui+1 are vertices of the same v-edge. The horizontal strip height is set

to 1 and the minimum cost is 0.
3. The vertices ui and ui+1 are not part of the same edge. The horizontal strip height is set

to � and the minimum cost is 0.
Obviously, the minimum cost of any OPT (i, i+1) is 0. The algorithm does calculate the minimum
cost of OPT (i, i + 1) correctly. Only in one case h(si) is set to 0. This happens only if ui and
ui+1 are part of the same h-edge and thus the invariant holds.

Induction step: Let i < j and j − i = k. We may assume by the induction hypothesis that
OPT (a, b) for any a < b, b−a < k has been computed correctly and that for all si with h(si) = 0
the invariant holds.

Let L = {L1, . . . , Ll} be the set of optimal solutions for OPT (i, j). Let sg[i, j] be the horizontal
strip height assignment of Lg. Let MaxOne(Lg) = max{f | h(sg

f [i, j]) = 1, i ≤ f ≤ j}. Further,
let cost(sg[i, j]) be the cost produced by the horizontal strip height assignment. Note that
for any k, i < k < j and for any Lg ∈ L the following holds by the induction hypothesis:
OPT (i, k) ≤ cost(sg[i, k]) and OPT (k, j) ≤ cost(sg[k, j]). Note that during the proof we make
no distinction between the directed edge (ui, uj) and (uj , ui).

Case 1: The set L contains a single solution that is setting the heights of all horizontal
strips to 0. Our algorithm checks the cost if all horizontal strips are set to 0. This cost is
considered and for a solution, where that is the optimal solution the algorithm will find it.

In the following, let Lz = arg max{MaxOne(Lg) | Lg ∈ L}.

Case 2: There is at least one solution in L that contains a horizontal strip set to
height 1. In this case we choose the solution Lz ∈ L that has among all horizontal strip height
assignments the one with the largest index k for which h(sk) = 1.
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Figure 5.17: This figure illustrates how the cost is determined for OPT (i, j) if exactly one horizontal
strip above the separating vertex uk and exactly one below uk is set to height 1. All
horizontal strips in the yellow area have height 0, all horizontal strips in the green area
remain untouched.

Case 2a: strip sk is the bottommost horizontal strip sj−1 in OPT (i, j). We consider
the case that uj−1 is the separating vertex. Due to our induction hypothesis OPT (i, k) and
OPT (k, j) have already been determined and produce minimum cost.

We distinguish three cases. If in OPT (j − 1, j) the algorithm assigned h(sj−1) = 0, this
implies that there is a h-edge e = (uj , uj−1). The solution Lz pushes this edge vertical and hence
produces cost of 1. However, Lz might push this edge vertical in order to push another v-edge
(ul, uj) vertical, too. This produces at least the same cost as our solution (Recall OPT (i, j − 1)
has already been determined to be optimal).

If our algorithm assigns h(sj−1) the value 1 there is a v-edge e = (uj , uj−1). BecauseOPT (i, j−
1) is an optimal solution and one optimal solution Lz has h(sj−1) = 1, our solution is optimal,
too.

If our algorithm assigns h(sj−1) the value � there is no edge (uj , uj−1). Our algorithm will
consider the cost produced by setting h(sj−1) = 1. Because OPT (i, j − 1) is optimal and one
optimal solution has set h(sj−1) = 1, an optimal solution is determined by our algorithm.

Case 2b: Strip sk is not the bottommost horizontal strip in OPT (i, j). We consider
the case that uk+1 is the separating vertex. Due to our induction hypothesis OPT (i, k + 1) and
OPT (k + 1, j) have already been determined and produce minimum cost.

One optimal solution has determined h(sk) to be 1. Our algorithm assigns h(sk) the
value 1 or �. We proved in Lemma 5.3.5 that for all sk crossing edges the cost are fixed if
h(sk) = 1. Note that the cost of the optimal solution Lz can be decomposed into the cost for all
edges enclosed by ui and uk, the cost for all edges enclosed by uk+1 and uj , and the cost of all
edges crossing sk. Hence any solution that is optimal for the edges enclosed by ui and uk, as well
as, for those enclosed by uk+1 and uj is optimal for the whole instance if we set h(sk) = 1. We
show that our algorithm considers this case. This is the case if it has already assigned h(sk) = 1
in OPT (i, k+ 1) or it has assigned h(sk) = � and sets h(sk) = 1 during the merging step. Thus,
we now only consider cases where our algorithm has determined that h(sk) = 0. This occurs
only if there is an h-edge incident to uk+1 which is affected by sk and can be drawn horizontally
if h(sk) = 0 (see invariant).
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Figure 5.18: The green edges are h-edges and the blue edge is a v-edge. The vertex uk is the
separating vertex. If the v-edge is assigned its preferred direction the cost is very high
because the h-edges are pushed open.

Vertex uk+1 is incident to a single edge e. This edge has to be the aforementioned h-edge.
In the optimal solution Lz the value of h(sk) is 1. However, if we would change in Lz the value
of h(sk+1) from 0 to 1 the same cost would be produced. Every h-edge that is pushed vertical by
h(sk+1) is already pushed vertical by h(sk). Every v-edge pushed vertical by h(sk) is also pushed
vertical by h(sk+1). Thus, there exists a solution L∗z with MaxOne(L∗z) > MaxOne(Lz). This
is a contradiction to our initial assumption.

Vertex uk+1 is incident to two edges e1 and e2 that both have uk+1 as their lower
endpoint. All edges that are pushed vertical by h(sk) are also pushed vertical if h(sk+1) = 1
is chosen and there is no edge (uc, uk+1) with y(uc) < y(uk+1) since the degree of each vertex is
at most two. Hence, this does not increase the cost of the solution. Thus, there exists a solution
L∗z with MaxOne(L∗z) > MaxOne(Lz). This is a contradiction to our initial assumption.

Vertex uk+1 is connected by two edges e1 and e2, one of which has uk+1 as their
lower and the other as upper endpoint. Let e1 = (ua, uk+1) and e2 = (ub, uk+1), where
i ≤ a < k + 1 < b ≤ j. If e2 is a v-edge setting h(sk+1) = 1 pushes all those edges vertical that
cross uk. These edges are already pushed vertical due to h(sk) = 1. Furthermore, this solution
reduces the cost by one which contradicts the optimality of Lz.

If e2 is an h-edge we know that it produces no cost in solution Lz. In our solution the h-edge e1
produces no cost (see invariant). Otherwise h(sk) would not have been set to 0 by our algorithm.
Consider the height assignment in Lz. If we change h(sk) to 0 and h(sk+1) to 1 the same uk+1

crossing edges are pushed vertical. Further, e2 is pushed vertical, producing cost of 1. However,
now we could produce a solution L∗z that consists of the solution produced by OPT (i, k + 1),
combined with h(sk+1) = 1 and sz[k + 2, j]. The solution produces cost 1 for edge e2 but edge
e1 is drawn horizontally, thus saving cost 1. Hence, this solution produces the same cost as Lz

but with MaxOne(L∗z) > MaxOne(Lz). This is a contradiction to our initial assumption. We
were able to show that in any case our algorithm either is able to determine an optimal solution
for any OPT (i, j).
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Figure 5.19: This figure illustrates that setting h(se) and h(sd) both to 1 cannot decrease the cost.
Neither for the (green) h-edge nor for the blue v − edge.

Time complexity. In the following we discuss the running time of algorithm 2.
Lemma 5.3.6

Let n be the number of vertices of the x-monotone input path P . The asymptotic time
complexity of Algorithm 2 is in O(n6) and requires O(n3) space.

Proof : In the beginning the algorithm sorts the vertices of path P in ascending order. This can
be done in O(n log n). It calculates the values for every OPT (i, j). These are O(n2) values.
For each we consider O(n) possible values k to determine the splitting vertex vk. During each
merging step it calculates

1. The cost if all horizontal strip heights are set to 0 (O(n)).
2. The cost if one horizontal strip height above the separating vertex uk is set to one 1 and

all other are set to 0 (O(n)).
3. The cost if one horizontal strip height below the separating vertex uk is set to one 1 and

all other are set to 0 (O(n)).
4. The cost if exactly one horizontal strip height above and one below is set to 1 and all

horizontal strip heights between them are set to 0. This alone areO(n2) iterations. However,
to calculate the cost we have to determine which edges are uk crossing and which one of
those produce costs. This takes another O(n) for each iteration. Yielding a running time
of this part of the algorithm of O(n3).

Unfortunately, we have to repeat the steps 2-4 for every OPT (i, j) yielding O(n2) running time.
We have to calculate for every k with i < k < j the costs yielding another O(n) iterations.
Determining the cost is dominated by step 4 which lies on O(n3). Thus, we have a total running
time of O(n6).

Because we store for each OPT (i, j) the optimal horizontal strip height assignment we need
storage of O(n3).
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(a) This figure shows three vertices and the two
edges e1 and e2 that connect them.
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(b) The edges from Subfigure (a) are transformed
into points.
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(c) A range query for all edges between y-
coordinates 2 and 5 is carried out. All points
on inside and on the rectangle with corner nodes
{(2, 2), (2, 5), (5, 5), (5, 2)} are returned.

Figure 5.20: This figures show how to use a range tree to determine how many edges are between
to given y-coordinates.
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Running time Improvement. Unfortunately, the running time of the Algorithm 2 is quite
high. But optimizations are somewhat limited if we do not change the algorithm drastically.
We need at least O(n2) for every OPT (i, j) iteration and additionally O(n) for every k with
i < k < j. Thus, the only way to significantly reduce the algorithms running time is by
reducing the time needed for calculating the minimum cost in step 4. If we look at the
algorithm 2 we see that it calls Algorithm 11 O(n2) times. The main problem is to determine
which edges to consider. For that we can use range trees (see [GO97]). The traditional use
of range trees is to extract a set of vertices in a plane that all lie in the same rectangle. The
construction of a range tree can be done in O(n log n) time and for a given rectangle region
we can extract all vertices in this rectangle in O(log n). We need O(n log n) storage for a
range tree that stores n vertices.

For our purpose we build two different range trees. One of them stores the h-edges and
one stores the v-edges. An edge is inserted as point with the x-coordinate set to the value
of one terminal vertices y-coordinate. And the y-coordinate is set to the value of the other
terminal vertices y coordinate. Thus, we simply identify an edge by its two y-coordinates. In
Figure 5.3.3 an example is shown which illustrates how range trees can be used for storing
the edges. During the execution of the Algorithm 3 it needs to know how many v-edges are
not pushed vertical and how many h-edges are pushed vertical to determine the cost. To do
that we build the two range trees as described during the merging operation for each value
of k. However, we only insert uk crossing edges. The construction cost is O(n · (n log n)),
because we have to look at at most n vertices to determine the h- and v-edges. During each
iteration of algorithm 11 we can now very easily determine the costs. We simply have to
calculate how many h-edges are between i and j and how many h-edges are between the
upper horizontal strip with height set to 1 and the lower horizontal strip with height set to
1 for an illustration). Both operations are possible in O(log n). We have to do the same
thing for the v-edges. But we only need to identify the number of v-edges which lie between
the upper horizontal strip with the height 1 and the lower horizontal strip with height 1.
This operation is in O(log n) too. With this operation we are able to reduce the asymptotic
running time to O(n5 log n). A more detailed analysis may yield a lower asymptotic running
time.

There is another idea to improve the running time of the algorithm which unfortunately
does not improve the asymptotic running time without. Under certain conditions the com-
plicated schematization Algorithm 2 need not be applied to all nodes. An algorithm which
uses the schematization algorithm does not necessarily need to compute OPT (1, n) but only
parts. The general idea is that if there are consecutive horizontal strips which can only affect
v-edges, the horizontal strip heights of those can be set to 1. If there is a horizontal strip
which affects at least one h-edge the schematization Algorithm 2 has to be called. This idea
is shown in Algorithm 4. It is obvious that the asymptotic running time cannot be improved
because we can not guarantee that the algorithm ever can use this idea. However, there
might be cases where this can yield a decrease in necessary computing time.

Calculating the true horizontal strip height values. After Algorithm 2 has been completed
we have a set of intervals with a height of either 0 or 1. Recall that the height of 1 only
symbolizes that the height is larger than 0. Every horizontal strip height with height 1 can be
set to any positive value and every horizontal strip with height 0 remains at height 0. We only
have to determine the height of those horizontal strips which are set to 1. As stated above
in Section 5.3.1 we not only want a minimum number of edges which cannot be assigned
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Algorithm 4: SchemSmallImprovment
Input: embedded x-monotone path P = (v1, . . . , vn) with coordinates (x(vi), y(vi))

for i = 1, . . . , n
Data: table OPT(·, ·), table C(·, ·, ·)
Output: strip height assignments h(si) ∈ {0, 1,�} for i = 1, . . . , n− 1
U ← sort(P )1

n← |P |2

start ← 03

end ← -14

for i ← 1 to n do5

if ui and its left or right neighbour form a h-edge then6

end ← i7

set all horizontal strip heights between sstart and send to 18

hcount ← 19

while hcount > 0 do10

i++11

if ui and its left neighbor ul form a h-edge then12

if ul is above ui then13

hcount−−14

else15

hcount++16

if ui and its right neighbor ur form a h-edge then17

if ur is above ui then18

hcount−−19

else20

hcount++21

Schematize vertices between uend and ui with Algorithm 222

start ← end23

if start 6= i then24

set all horizontal strip heights between sstart and si to 125
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e

si

si−1

si+1

si+2si+2

Figure 5.21: If we want to minimize the total path length (the complete path is highlighted in blue)
we have to consider the horizontal strip heights differently. Consider the horizontal
strip depicted in red. Its horizontal strip height influences three different horizontal
strip heights.

their preferred direction but the resulting path length should be minimal. We formulate this
problem as a linear programming (LP) problem. The theory behind linear programming has
been widely studied and analysed. For an introduction see [CLRS01]. For more details and
examples see [Sch98, AF98] and [dBvKOS00].

First, we illustrate how to formulate an LP with the goal that every edge in the schematized
path has at least the length of its corresponding edge in the input path. At the same time
the overall path length is to be minimized. Later we show how to change one part of the LP1

to introduce a minimum path length.
There may be one or several horizontal strips between the two vertices of any edge.
The path length that is to be minimized is calculated by calculating the total sum for all

edges of the true horizontal strip heights that affect the edge. In the first formulation we
determine the original edge length and determine the height all horizontal strips have to have
so that the edge in the schematized path has at least this length.

In the following let e′ = (v′i, v
′
i+1) be an edge in a schematized path. Let e = (vi, vi+1) be

the corresponding edge in the original path. Further, let αe′ be the preferred angle assigned
to e′. The following notations are important:

∆e =
√

(y(vi)− y(vi+1))2 + (x(vi)− x(vi+1))2 = ‖vivi+1‖

∆x′e = cosαe′ ·∆e

∆y′e = sinαe′ ·∆e

We denote the true (i. e., non-symbolic) height of a horizontal strip si by r(si).
The aim of the LP is to

minimize
∑

e′=(v′i,v
′
i+1)∈P ′

∑
sj affects e′

r(sj)

1To solve out LP we used the open source library lpsolve (see http://sourceforge.net/projects/lpsolve/).
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subject to ∑
sj affects e′,h(sj)6=0

r(sj) ≥ ∆ye′ ∀e′=(v′i,v
′
i+1)∈P ′

We cannot simply subject the constraints to minimize the sum of all interval heights.
This does not equal the path length. Consider the example depicted in Figure 5.21. Only
minimizing the total height of all strips does not yield a minimum path length. In the
example mentioned, the horizontal strip si affects multiple edges. Thus, we have to minimize
the horizontal strip heights according to the edges it affects. We have to “travel” along the
edges and add up the length of each edge. The length of each edge is influenced by the height
of the horizontal strips which affect the edge and by its preferred direction. If we travel from
the leftmost to the rightmost vertex we can determine the length of any edge by calculating
the sin(α), where α is the angle of the direction of the edge. The length of the hypotenuse is
the the sum of the horizontal strip heights divided by sin(α).

If we want to introduce a minimum edge length min length the ∆e changes to

∆e = min{
√

(y(vi)− y(vi+1))2 + (x(vi)− x(vi+1))2,min length}

The remaining formulation of the LP stays the same. With this little addition we ensured
that every segment of the path has at least a certain length. Because in the final output
we scale the complete path so that it fits unto one DIN A4 sheet of paper other edges are
possibly shortened (e. g.,segments of highways are prime candidates).

Finding the actual coordinates. After the true heights of each horizontal strip has been
determined we need to join the vertices to a path. The calculation of the horizontal strip
heights has been done either by Algorithm 2 for the horizontal strip heights which are set to
0 or by solving the previously explained LP. Joining the vertex to a path is fairly easy as all
the relative y-coordinates of all vertices are already fixed by the height of all horizontal strips.
Recall, we deal only with x-monotone paths. This means that we can set the x-coordinates
very easily. The joining process is illustrated in Algorithm 5.

The basic idea is to first sort the vertices of the path P again in descending order by their
y-coordinates. Then, for every vertex the y-coordinate is determined in O(n) by traversing
from bottom to top. The smallest y-coordinate starts at some fixed value. Finally, the x-
coordinates are determined by visiting each vertex from left to right. An example how to
determine the x-coordinate is shown in Figures 5.22(b).

The running time of the algorithm is dominated by sorting the vertices by their y-coordinate
in descending order. Determining the x- and y-coordinates each is possible in O(n) time.
Thus, the total running time is in O(n log n).

Slight Modification. We presented an algorithm that is able to set the horizontal strip
heights to an appropriate value that does not violate the orthogonal order. Further, we
illustrated how the absolute x- and y-coordinates can be determined. However, the algorithm
in its current form can lead to results which are undesirable. An example is shown in Figure
5.23. Such a result can happen if only few horizontal strip heights are set to one by the main
Algorithm 2. In the introduction we established the rule that any horizontal strip height set to
1 implies that the horizontal strip height has to be larger than 0. We can now relax this rule.
We now say that any horizontal strip height which is set to 0 by Algorithm 2 stays at height 0.
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(a) This figure shows a simple x-monotone path.
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(b) It is illustrate how the x-coordinates are determined.
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(c) The remaining x-coordinates are calculated.

Figure 5.22: This figure shows how to calculate the x-coordinates of all vertices in the schematized
path. Given that each edge has an assigned angle and all actual horizontal strip heights
have been determined.

Any other horizontal strip height can be 0 or larger. As we already showed, any horizontal
strip height set to any value equal or larger than 0 cannot lead to a violation of the orthogonal
order (see Lemma 5.3.3). We change the horizontal strip heights determined by Algorithm 2
so that any horizontal strip height which does not change the produced cost is set to 1. The
process to do that is fairly easy. The idea is to check for any horizontal strip whether its
height is 0 and if a h-edge would be pushed open if the horizontal strip height would change
to 1. If that is not the case the horizontal strip height is set to 1. This procedure cannot
lead to a higher minimum cost. It only introduces more options for the LP to determine
the optimal solution. In Figure 5.23 one example is shown. On the left side is a polygonal
path. On the right side the result of the schematization process is depicted. All edges have
been assigned their preferred direction while maintaining the orthogonal order. However, the
result is unfavorable. All vertices above yu(si) are placed at the same y-coordinate. And all
vertices below yl(si) are set to the same y-coordinate. Depending on the configuration of the
formulated LP the resulting path may become very large.
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Algorithm 5: JoinNodes
Input: Precomputed list of horizontal strip heights and x-monotone path P
Output: Coordinates for each vertex of P .
U = sort(P );1

n = |U |2

index = µ−1(n);3

y(vindex) = 0;4

prev index = index;5

for i← n− 1 down to 1 do6

index = µ−1(i);7

y(vindex) = r(i) + y(vprev index);8

prev index = index;9

x(v1) = 0;10

for i← 2 to n do11

x(vi) = x(vi−1) + cos(α) · |y(vi)− y(vi+1)|;12

The algorithms running time is in O(n).

5.4 Level-1 and Level-5

Basic Principle. The vertices and edges of Level 1 are determined by a simple principle.
The basic assumption about Level 1 is that right at the beginning the route takes numerous
turns and the edges are very short. This leads to the conclusion that a schematized version
of this part of the path may be unnecessary and may yield no better readability compared
to the geographically correct version. The algorithm constructs a path beginning with the
start vertex of the route. It travels along the path until one of the following conditions has
been met:

1. The maximum category has been reached.

2. The maximum distance has been reached. Tests have shown that 15 km is a good
maximum distance.

3. The path has reached a long street with no turning points.

All of these require that a certain minimum distance has been reached.

Enriching Information. The general idea behind the enrichment process is to add vertices
and edges which help the user orientate himself and find the correct route. The edges are not
altered however some vertices and edges are omitted. The result of this process is that all
edges in the set generated are either part of the path or directly at an intersection or close
to an intersection.

After the end vertex of the Level 1 subpath has been determined the algorithm visits each
intersection on this subpath and starts a simple depth search first (DFS)(see [CLRS01] for
an explanation). However, the DFS terminates if the edge has a category which is too low or
the edge is too far away.
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input path schematized path

si

Figure 5.23: To the left is a polygonal x-monotone path. This path is to be simplified with our
schematization algorithm. The result of the schematization process is depicted on the
right (there are more than one possible valid solutions). Every edge has its preferred
direction assigned. Only the horizontal strip si has been assigned the height of 1. All
other horizontal strips have height 0.

5.5 Level-3

Finding the monotone subpath in the central path. As already explained in the introduc-
tion and based on the observation mentioned in [MHBB06] normally a route consists of 3-5
major parts. In most cases there is a long path on a highway that makes up a large part of
the total route. In this section the goal is to describe how to extract this part. The idea is
very simple and straightforward. First the algorithm calculates the total length of the path
after Level 1 and 5 have been removed and the Douglas-Peucker algorithm (see Chapter 5.2)
has been applied to it. The total length is then divided by two and the vertex nearest to that
distance is chosen as start vertex. Beginning from this vertex the algorithm searches in
both directions. It tests for a y- or x-monotony separately and stops if the next vertex would
destroy the current monotonicity property or the street category reached is too low. After
both y- and x-monotone subpaths have been extracted the longer is chosen. The schemati-
zation algorithm described in Chapter 5.3 is applied. The resulting path is still monotone
and the orthogonal order is maintained. If the number of vertices of the given path is n,
the algorithm which extracts the longest monotone subpath has a worst case running time of
O(n).

5.6 Level-2 and Level-4

Introduction. After removing the Level-3 path the central path is split into at most two
subpaths. We denote them as Level-2 and Level-4.

Finding large monotone subpaths. It is possible that the path in Level-2 or -4 is not x- or
y-monotone. Then, the algorithm acts greedily. It calculates the longest monotone subpath
beginning from one end vertex of Level 3. If this path does not cover all vertices of Level-2, a
second monotone subpath is determined beginning with the end vertex of the first subpath.
This process is repeatedly applied until Level-2 has been split into a set of monotone subpaths.
This is also applied to Level-4 beginning with the other end vertex of the Level-3 path.
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Note that it may be the case that there are neither a Level-2 nor a Level-4. This can only
happen if longest monotone subpath of Level-3 ends at end of Level 1 (or at the beginning
of Level 5).

Schematizing. After the set of monotone subpaths has be determined the schematizing
algorithm described in Chapter 5.3 is applied to each monotone subpath separately. The
result is a set of schematized monotone subpaths. Note that the path has no unique scale.
This is, of course, a side effect which is caused by the value of the minimum edge length. It
is obvious that in Level-2 and -4 the edges are a lot shorter than in Level-3 where mainly
only highways are being used. Whereas in Level-2 and Level-4 smaller streets will be part of
the route leading to smaller edges. This may lead to problems where a Level-2 (or Level 4)
monotone subpath may create a false intersection with another monotone subpath of Level-2
(or Level-4). Further, it is possible that false intersections with Level-3 are created. This
may irritate the user and must be avoided (see Chapter 5.7).

5.7 Combining all Parts

As mentioned in the previous sections we combine the schematized paths of all different levels.
This results in several different and independent sub paths. Further, we changed the scale
of these paths by introducing the minimum length and by restricting the directions to very
few. Due to the way we discover the different Level-2 and Level-4 parts and the different
scale it can happen that the different Level-2 paths overlap each other. This can lead to
false intersections and may irritate the user. An example can be seen in Figures 5.24(b) and
5.24(c). We solve some conflicts by inserting small additional edges. If the schematized path
overlap over Level 1 or Level 5 we move this part to a nearby location.

5.7.1 Avoiding False Intersection

It is undesirable to introduce intersection of path segments where in reality there none. We
call these intersections false intersections. This can happen due to multiple reasons. We
restrict the direction of all edges, we change the minimum length and we alter the scale
of the path. Note that a false intersection can only occur between to separate monotone
paths. It is impossible that a monotone path produces a false (or even any) intersection. For
avoiding false intersections we actually consider the rectangles which enclose the monotone
paths. However, to detect we test if line segments overlap each other.

Two sequential monotone paths. A simple example is shown in figure 5.24(b). There,
we can see two monotone paths which are connected by one vertex. The blue path is y-
monotone and the green path is x-monotone. The intersection between the green and the
blue line segment is a false intersection. To solve this problem we introduce an additional
edge between two sequential monotone paths. This edge has length 0 and its direction is
the same as the direction of the path (i. e.,if it is an x-monotone path from left to right the
direction is horizontal to the right, if its a y-monotone path from bottom to top the direction
is vertical from bottom to top, etc.) or the direction is orthogonal to that of the path. We
solve the problem by increasing the length of this edge. To simplify things we increase the
length of the edge so that the rectangles that enclose the monotone paths do not overlap
each other. This is shown in figure 5.24(c). The edge which is highlighted in red is the newly
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(a) An example of two subsequent not con-
flicting subpaths.

(b) An example of two subsequent conflicting
subpaths

(c) Illustration how to resolve conflicts by
adding one edge (highlighted in red).

Figure 5.24: Conflict resolving of two subsequent monotone subpaths.

introduced edge which with initial length 0. We increased the length so that the rectangles
do not overlap. In the following we only consider the enclosing rectangles for our problem
and not individual paths.

First, we prove that a monotone path can only have an intersection with another path.

Lemma 5.7.1

Any x- or y-monotone path does not self intersect.

Proof : Let P be a monotone path. Without loss of generality we assume its an x-monotone path
from left to right (the general idea of this proof is for all monotone paths the same). Thus, for
every vi ∈ P the following holds:

∀vi, vj ∈ P, i < j : x(vi) ≤ x(vj)

An intersection would require that there is at least one vi ∈ P with a smaller x-coordinate than
its left neighbor (i. e.,x(vi) < x(vi−1)). Even if all x-coordinates of all vi ∈ P are the same
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this only yields a straight vertical line. No intersections are possible (this would be of course
a y-monotone path). If there is a vi ∈ P with x(vi) < x(vi−1) it would follow that P is not
x-monotone from left to right.

Now, we prove that two sequential monotone paths cannot produce an intersection.

Lemma 5.7.2

Two different monotone paths can only have an intersection if their bounding boxes
overlap.

Proof : The paths are within their enclosing rectangles. If the enclosing rectangles do not overlap
each other it is impossible that any two edges create an intersection.

Finally, we prove that two sequential monotone paths can be made conflict free if we insert
a new edge of certain length.

Lemma 5.7.3

We can connect two monotone paths of different orientation by inserting between them
an additional edge of a certain length.

Proof : As already proven in lemma 5.7.1 we know that two sequential monotone paths can only
have an intersection if they have a different monotony. Thus, we only consider this case. We can
choose to resolve the conflict (i. e. the intersection) with two different edges.

Let P1, P2 be two paths. Without loss of generality we assume that P1 is an x-monotone path
from left to right and P2 is an y-monotone path. Further, let the last vertex of P1 be equal to
the first vertex of P2 and if we draw the vertices of both paths and connect them via edges the
resulting drawing shows at least one intersection. As we already know this intersection is caused
by an edge of P1 and an edge of P2 (see lemma 5.7.1).

Case 1: The first edge in P2 has a non horizontal direction, or it is a horizontal edge but the
orientation of edge is from left to right and not from right to left.

We resolve the conflict by adding a dummy edge between the two monotone paths. This edge
is horizontal and its orientation is from left to right. The length of the edge is chosen so that the
rectangles which enclose both paths do not overlap. As proven in 5.7.2 there can be no further
intersection caused by these two paths.

Case 2: The first edge in P2 is a horizontal edge with orientation from right to left.

We cannot solve this problem the same way as we in case 1, because we would introduce an
new intersection that is caused by the dummy edge and the first edge of P2. Both edges would be
drawn on top of each other. Thus, we introduce another dummy edge with a different orientation.
To determine which orientation we determine the first y-monotone path Py after P1. Note, this
can be P2 but it can not be guaranteed. We determine the general orientation of Px (i. e.,top to
bottom or bottom to top). The new dummy edge gets this orientation assigned. The length is
chosen so that the two rectangles that enclose P1 and P2 do not overlap.

At least one case is always possible. Sometimes both cases can be possible and one might
chose the case which yields a smaller dummy edge. We have shown a technique to connect two
monotone paths so that they do not create an intersection. The proof for a different combination
of monotone paths follows analogously.
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Multiple paths. We have shown in Lemma 5.7.3 that we can connect two consecutive mono-
tone paths so that there are no intersections. However, as there are potentially many mono-
tone paths that we wish to connect there is a possibility that two non-adjacent monotone
paths cause an intersection. An example is shown in Figure 5.24(b), where the insertion of
a y-monotone. In this figure we only show the enclosing rectangles and not the monotone
paths themselves. We illustrate a technique to resolve the conflict (i. e.,intersection). See
Figure 5.25 for an illustration. When we append monotone paths (with the technique shown
above to resolve immediate conflicts) and encounter a conflict we calculate how much the
newly appended monotone path has to be moved in y-direction or x-direction to resolve the
conflict. Our description deals with vertically resolving conflicts. The same technique works
horizontally in an analogous way. In Figure 5.25 there is a horizontal dashed blue line which
indicates where the appended monotone path has to end so that there is no conflict. After
we know this line we determine the edges which are intersect the line. Note, there has to
be at least one edge the line that is intersected. Otherwise the conflicting monotone paths
would not be connected. Further, we do not consider edges of the newly appended monotone
path. These edges remain untouched.

There are three cases to distinguish:

1. The line intersects an edge of a y-monotone path. The direction of the edge has a
vertical component.

2. The line intersect one (or more) consecutive edge(s) of a y-monotone path. The direction
of the edge(s) is horizontal.

3. The line intersects one or more edges of an x-monotone path.

In the following we present a technique which acts for every case differently. The result is
that the conflict has been resolved and the last appended monotone path does not produce
a conflict (and no new conflict has been introduced).

Case 1: We know the line intersects an edge of a y-monotone path. We know that this edge
is non horizontal. This means we can create two new dummy vertices along this edge and
add between those vertices a new edge. This edge will be vertical and the length of this edge
will be the y-distance we calculated earlier to resolve the conflict.

Case 2: We again introduce two new vertices and an edge. They are added to one of the
edges which are intersected by the line. The new edge connects the two vertices and is vertical
(as in case 1). The length of this edge equals the earlier calculated y-distance that is enough
to resolve the conflict. However, special consideration has to be taken so that the orthogonal
order inside this monotone path is not violated. The schematized path has set both vertices
to the same y-coordinate. We can not choose freely which vertex is moved down or up. The
orthogonal order is maintained if we follow the path in its direction and move the vertex
which is later in the path by the appropriate y-distance.

Case 3: Suppose, the x-monotone path Pk, which is intersected by the line, is not the first
monotone subpath of P . This implies that there is another monotone subpath preceding Pk.
Between this previous path Pk−1 and Pk there might be a dummy edge (see the problem of
combining two sequential monotone paths). If there is no vertical dummy edge we add a
vertical dummy edge. Otherwise we pick the existing vertical dummy edge. We add to the
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P1

P2

∆y

Figure 5.25: This figure shows the enclosing rectangles of multiple monotone paths. The path P1

and P2 produce a conflict. We can solve it by moving the path P2 by ∆y down.

P2

inserted edge∆y

P1

Figure 5.26: Here, we inserted an edge of length ∆y into the path which is intersected by the
dashed, blue line. Thus, moving all paths down. The conflict between P1 and P2 has
been resolved.

length of the dummy edge the y-difference we need to resolve the conflict. Thus, we “push”
the whole path below or above the line.

If the x-monotone path is the first monotone path P1 of P this means both conflicting paths
are appended after the this path. Thus, changing the position of this path does not change
the relative positions of the conflicting paths and we cannot resolve the conflict. However, to
avoid possible conflicts we have to push this path down by the y-difference.

If we know how much x-distance is needed to resolve the conflict we can apply the basically
same technique as above. An example is shown in figure 5.27 and figure 5.28. Note that it is
possible that both changing the x- or the y-distance leads to resolving the conflict (see figure
5.29). Resolving the conflicts by moving the monotone subpaths in y-direction is always
possible. We move all monotone subpaths below the dashed, blue line by the same amount of
∆y downward. However, resolving conflicts by moving the monotone subpaths in x-direction
does not necessarily resolve the conflicts. The problem here is that we push the monotone
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P1

P2

∆x

Figure 5.27: This figure shows the same conflict as shown in figure 5.25. However, this time it is
shown how to solve the conflict by moving the path P2 to the right.

P1

P2

∆x

Figure 5.28: The conflict has been resolved. An edge of length ∆x has been inserted into one path.
This pushed the path P2 to the right.

subpaths in one direction until the conflict we wished to solve has been resolved. However,
we do not necessarily move all monotone subpaths in this direction so that no new conflict
can occur. As can be seen in Figure 5.30. But this is easily detectable. We only need to
ensure that the position we want to move the new appended monotone subpath is not already
occupied by another monotone subpath which itself is not moved by our technique (i. e.,there
are no monotone subpaths preceding it that are intersected by the dashed, blue line).

Lemma 5.7.4

The technique described above is able to resolve conflicts of two non-sequential monotone
paths. Further, it introduces no new conflicts.

Proof : The basic idea is to increase the length of certain edges so that the newly appended path
does not produce a conflict. First, we prove that the conflict will be resolved by this method.
Second, we prove that there can be no new conflicts caused by this method.
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P1

P2

∆x

∆y

Figure 5.29: This figure illustrates another example where the conflict can either be solved by moving
one of the conflicting paths by a ∆y or a ∆x.

Conflict resolving. We restrict our proof to the case shown in figure 5.25. The proof for the
remaining cases follows analogously. Let there be a conflict between two monotone paths P1 and
P2 which are not directly connected. Let P1 be an x-monotone path and P2 a newly appended y-
monotone path (see Figure 5.25). Let miny (P1) be the smallest y-coordinate among all points of
P1. Let maxy (P2) be the largest y-coordinate among all points of P2. If P1 is pushed downward
in y direction by the difference ∆y = maxy (P2)−miny (P1) the bounding boxes of P1 and P2 do
not overlap. Thus, the conflict has been resolved.

We create a line l which is parallel to the x-axis and has the y-coordinate miny (P1). This
line intersects at least one monotone path Pi strictly between P1 and P2 (otherwise P1 and P2

would not be connected). In every path Pi which is intersected by the line we insert a new edge
into the edge which is intersected. The mechanism has been described above. The length of this
new edge is ∆y. If Pi is y-monotone, the path has increased its height by ∆y. By increasing
this height, P2 gets pushed downward by ∆y since its position depends on the coordinates of
the last node pi. Suppose, there is no such Pi but only x-monotone paths which are between P1

and P2. Then because of the increased length of the dummy edge (see case 3), the path P2 is
again pushed down by ∆y. This is enough to resolve the conflict because the enclosing rectangles
cannot overlap.

No new conflicts. We have to prove that this technique does not introduce new conflicts.
Conflicts could be possible if the enclosing rectangles of paths would overlap after we have
resolved a conflict. In cases 1 and 2 we described how to increase the height of y-monotone
paths. This was done by inserting a vertical edge. This does not increase the width of the path.
Because we changed all y-monotone paths and all x-monotone paths which are intersected be the
line so that they have all either an increased height or are pushed down by ∆y there cannot be
an new conflict.

We could show that we could resolve conflicts of two monotone paths and we do not intro-
duce new conflicts. Thus, we presented a method to append monotone paths without any false
intersections.
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P1

P2

Figure 5.30: This figure illustrates that it is not always possible to resolve the conflict by moving
one of the conflicting paths by an appropriate ∆x. Here, moving P2 to the left cannot
resolve the conflict.

(a) (b) (c) (d) (e) (f) (g)

Figure 5.31: The shown figures are the street signs which indicate the turn direction at intersections.

5.8 Decoration

This section explains how additional decoration is placed to enrich the information provided
by the route sketch.

5.8.1 Street Signs

It was already explained we use several labels to enrich the information given to the user.
We use seven different signs to indicate the change in direction at intersections. At some
intersections these signs are omitted. For example, if the user has to follow a street and
simply has to drive through an intersection. The seven different signs are shown in 5.8.1
and are based on the wayfinding choremes defined by Klippel [Kli03]. These seven directions
proved to be sufficient for the participants of a study to describe the change of direction one
has to take at an intersection.

Further, we use a sign for roundabouts. On this sign all different exit streets of the round-
about are shown. They are not aligned to the restricted directions of the main algorithm,
but rather are based on the original directions of the road network. The entry and exit road
are highlighted on the sign to help the user find the right exit (see Figure reffig:streetsign1).

We use one street sign indicating the beginning of a highway and one to indicate the end
of a highway. If the route changes from one highway to another it is indicated by another
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(a)

A 10

(b) (c) (d) (e)

Figure 5.32: The five figures above show some street signs used in our route sketch design algorithm.
Figure (a) indicates a roundabout, (b) shows a highway name, (c) denotes the begin of
a highway, (d) denotes the end of a highway, and (e) indicates a highway intersection.

sign (see Figures 5.32(c) – 5.32(e))
Finally, we use signs to indicate highway names (e. g., “A 10”, see Figure 5.32(b) ) the

user has to take. They are simply placed on the highway itself.

Overlapping Street Signs. It is undesirable that two signs overlap each other or that a sign
overlaps other a road. This is to be avoided. One typical variant of the label placement
problem is as follows; Given are n points. The goal is to assigning each point one axis-aligned
rectangle in a way that the point is located on one corner of the rectangles. All rectangles
have the same size. The size of the rectangles is to be maximized. In [FW91] Forman and
Wagner could show that this problem is NP complete. However, our problem is slightly
different. We align the signs to the streets of the graph. This effectively means that we might
have to deal with rotated rectangles.

The algorithm we use is based on the algorithms introduced in [Yam07] which themselves
are partly based on [SVA00]. Further, we have two possible positions for the street sign.
One on the right and one on the left side of the street. The right side is the preferred side
meaning, if both sides are possible the algorithm will choose the right side. The sign is placed
with a certain distance to the road. All signs have the same size and the objective is not to
find the largest possible size but a solution that minimizes the number of overlaps.

The Conflict Graph. The first thing that the algorithm does is to construct a conflict graph.
First, we determine the possible positions for all street signs. If one position will overlap a
street the position is not considered at all. After all possible positions for the street signs
have been determined we test for conflicts among them. A conflict occurs if any two shapes
overlap each other. If our shapes would be axis-aligned rectangles of equal size the calculation
of conflicts would be very easy. We simply would test if any corner point of a rectangle is
“inside” another rectangle. Let the number of possible positions be n. The algorithm would
take in a naive form O(n2) time.

Unfortunately the rectangles are not necessarily axis-aligned but they are of equal size.
Determining if a conflict occurs is not very hard. For any two rotated rectangles we can
make a rough assessment if they are even able to produce a conflict. For that we determine
the minimum and maximum x- and y-coordinates of one rectangle. If no corner point of
the other rectangle lies between the minimum and maximum x- and y-coordinates a conflict
cannot happen. Note, this can only be guaranteed if all signs have the same size and shape.
The former assessment is only a necessary condition for a conflict but not a sufficient one (see
Figure 5.33(a)). So for those pairs we can test if a conflict actually occurs if we consider the
edges of both rotated rectangles. If any two edges cross each other a conflict between those
two rectangles has been shown (see Figure 5.33(b)). Again we are able to utilize range trees.
This time in the more traditional sense. We insert all corner vertices of all shapes into a range
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tree. After this is done we can extract for any rectangle the vertices (and thus the candidates)
for a conflict. Let n be the number of rectangles. The construction of the range tree can be
done in O(n log n) time. The extraction of the points can be done in O(log n+k) where k is the
number of extracted points. We have to test n different rectangles for a conflict. Determining
the candidates for conflicts can be done in O(log n + k). Testing for crossing of two edges
can be done in O(1) time. The total running time is O(n log n) +O(n) · (O(log n+ k) ·O(1)).
This means that the total running time is not dominated by the construction of but by
the determination of the conflicts of each rectangle. In a worst case scenario during each
extraction of the possible candidates for a conflict we get all n possible rectangles. This
would mean the total running time is in O(n log n + k), where k is the total number of
conflicts.

For every rectangle we store the number of conflicts it produces and with which rectangles
these conflicts appear and which point the conflict belongs two (recall, we only need one
position for each point). The idea is to reformulate this problem into Maximum Independent
Set. This problem is NP-hard [GJ79]. We use a greedy heuristic that always selects the label
position with the fewest conflicts. This technique enables us to create a maximum-inclusion
independent set [SVA00].

We use this information to build a conflict graph. One vertex for each label position and
an edge for each conflict and between any pairs of rectangles for the same point. The goal
now is to find a maximum independent set in this graph. This corresponds to a conflict-
free labelling with a maximum number of labels. An entry with value 1 indicates a conflict
between each rectangles. An entry with value 0 indicates no conflict. A rectangle cannot
produce conflict with itself (i. e. the diagonal from the upper left to the lower right of the
matrix is filled with entries of value 0). The rectangles are now vertices inside the conflict
graph. We determine the vertex with the smallest degree (i. e.,the least conflicts). The
vertex and all adjacent vertices to it are removed (i. e.,all rectangles which produce a conflict
with the chosen rectangle). If there is a vertex left belonging to the point it is removed too.
The chosen rectangle for the point is saved and the process is repeated. Unfortunately, the
illustrated process may lead to several points without any assigned rectangle for the street
sign. For this case we choose the preferred rectangle and accept that this leads to a street
sign that overlaps another street sign.

To implement this algorithm we use a binary heap (see [CLRS01] or [ASSS86] for an
introduction). In this binary heap we store each vertex. The key in this binary heap is
the degree of each vertex. Given that we initially know the degree of each vertex (i. e.,the
number of conflicts) the binary heap can be constructed in O(n log n) where n is the number
of vertices in the conflict graph (which is the same as the number of rectangles). To ensure
that the right side of the street is a favorable position for the street sign we add a small
constant ε ∈ (0, 1) to the key corresponding the position to the left side of the road.

Each extractMin needs O(log n) time. During each extractMin operation we have have
to do at most n updateKey operation which yield time of O(n log n). We have to do at most
n extractMin operations which need time of n · O(n log n) = O(n2 log n). Thus, the total
running time of the algorithm is not dominated by the part which calculates the conflicts.
The initial conflicts can be determined in O(n log n + k) time but the total running time
remains at O(n2 log n). Algorithm 6 summarizes the above.
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r2

r1

(a) No conflict.

r2

r1

(b) A conflict occurs

Figure 5.33: Depicted are two rotated rectangles. In Subfigure (a) the rectangle r2 satisfies the
necessary conditions for a conflict. However, the algorithm determines that there is no
conflict. In Subfigure (b) a conflict is shown.

Algorithm 6: Maximum non conflict labelling algorithm
Construct conflict graph;1

Create Binary Heap b;2

Insert all vertices with their degree as key into b;3

Create set S := ∅;4

while b not empty do5

n = b.extractMin();6

insert n into S;7

determine the point p the vertex n belongs to;8

remove all vertex conflicting with n from b;9

remove all vertices belonging to the same point as n;10

call the updateKey() function for all vertices conflicting with vertices belonging11

to p;
return S;12

5.8.2 Magnifier

We presented a technique to eliminate false intersections of monotone subpaths. However, we
chose to deal with conflicts of Level-2 and Level-4 and either Level 1 or Level 5 differentially.
Recall that Level 1 and Level 5 are both not schematized. They remain in their original
representation. Hence, the technique provided (inserting a dummy edge) is not suitable.

Our idea is to move the Level 1 or Level 5 area (the shape is a rectangle) to another,
close location. Of course the new location must not introduce new intersections. There are
some ideas on how to maintain the free space. That is the area of the picture where nothing
is drawn. An interesting proposition is explained in [BJ97]. In their paper Bernard and
Jacquenet explain a method on how to calculate the free space of an area when rectangles
are inserted into it. The general idea is the following:

• Maintain a set LFRSet which contains the largest free rectangles.

• Maintain sets NewSet and RemoveSet. Initialize both of them with ∅.
• Initialize LFRSet with the rectangle that spans the drawing area.
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• After inserting a rectangle. Look at all sides of this rectangle and determine the rect-
angles of LFRSet which are affected by the new rectangle. Insert those rectangles into
RemoveSet. Determine how those rectangles are affected by the new rectangle and
calculate new free rectangles. Insert those new rectangles into NewSet.

• LFRSet = LFRSet \ RemoveSet

• LFRSet = LFRSet ∪ NewSet

After each iteration LFRSet contains the largest free rectangles.
Unfortunately, our problem differs a bit from the description above. As we do not simply

insert rectangles. We have a polygonal path and street signs (rectangles which are potentially
rotated by any degree contained in C). A simple idea is to subdivide the drawing area
into squares. To maintain the street signs we simply insert a rectangle for each sign which
completely encloses this sign, similarly to the dashed square in figure 5.33(a). Inserting
the path is a little bit more tricky. We could simply insert rectangles which enclose line
segments. However, this may block areas that are too large (see figure 5.34). Thus, we use
an underlying grid of squares with a fixed size. Then, for every segment of the path we
determine the squares of the grid that are intersected by the segments. Those squares are
used as blocked rectangles in the algorithm of Bernard and Jacquenet. This significantly
reduces the blocked area. Although this approach does not necessarily yield optimal results
(i. e.,all free pixels) this not necessary. The free area we “lose” is very close to the path or
the street signs. This area is not a good candidate anyway because the route becomes too
cluttered if everything is drawn very close to each other.

If any part of the central path intersects the drawings of Level-1 or Level-5 we determine
an area that is close to the original position and included in the free space. This is where
we draw the Level-1 or Level-5 rectangle. We indicate its original position by connector lines
and a small rectangle.

63



blocked region

Figure 5.34: The figure shows a path and its enclosing rectangle. However, if we would use this
rectangle to mark an area as blocked we would waste much space. It is much more
useful to use only the small dotted squares to block regions for drawing.
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Chapter 6
Experiments

Introduction. In the following we will present experimental results of our schematization
and route map design algorithm. The first section is devoted to analyzing measurable criteria
of our approaches. These results helps us to evaluate certain assumptions we made in the
previous sections. Although our goal is mainly an aesthetic one we still want to determine
if our algorithm has a reasonable running time. This is discussed in the later part of this
section. In the section section, we present case studies of certain examples and show how
changing some parameters of our algorithm change the visual representation. Finally, we
present some examples.

All results are based on the road network of Germany consisting of 5,137,911 and 11,184,562
edges. The data these findings are based upon is kindly provided by the PTV AG1. All
experiments are conducted on an Intel(R) Xeon(R) E5430 CPU clocked at 2.66GHz with 32
GB of main memory. The program was written in C++ and compiled with GCC 4.3.1. and
optimization parameter -O3.

6.1 Experimental Evaluation

All following results in this section are based on 10,000 randomly chosen origin and destination
vertices from the road network of Germany. The shortest paths were computed with Dijkstras
algorithm [Dij59]. If not explicitly stated otherwise the value for ε is 100,000, the value for
the minimum length is 150,000 and the set C30 = {0◦ , 30◦ , . . . , 360◦} ist used as set of allowed
directions.

Prefix and Suffix Path. The first part of our algorithm extracts a pre- and a suffix path. We
introduced certain criteria how many vertices can be part of these paths. This is explained
in Chapter 5.4. Table 6.1 shows the percentage the pre- and suffix make up make of the total
path length. As we can see they tend to be very small. In fact, there is no pre- or suffix path
that makes up for even 4% of the road in all tested examples. Thus, the chosen parameters
for determining the pre- and suffix path lead to very small pre- and suffix paths.

1(see http://www.ptvag.com/)
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Table 6.1: This table shows the length of the pre- and suffix path of the total path. The vast
majority of all examples make up for less than 0.2% of the total path length.

Total length [%] [0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) > 0.5
Prefix Path – Frequency 70.59% 22.59% 4.29% 1.57% 0.45% 0.51%
Suffix Path – Frequency 39.00 % 39.02 % 12.53 % 4.74 % 2.05 % 2.65 %

Table 6.2: This table depicts the length of the Level-3 path in relation to the total path length.

Length of Level-3 Path [%] [0, 20] (20, 40] (40, 60] (60, 80] (80, 100]
Frequency 15.05% 27.41% 24.97% 19.28% 13.29%

6.1.1 Central Path

Douglas-Peucker Algorithm. As the Douglas-Peucker algorithm plays an important role in
our algorithm we discuss how many vertices the algorithm removes. Keep in mind that we
have to use a modified version of the Douglas-Peucker algorithm to ensure consistent turn
directions (c.f. Chapter 5.2 for an explanation). As explained, the parameter ε influences the
number of vertices removed. In Figure 6.2 we show how many vertices are removed by the
Douglas-Peucker algorithm depending on the ε parameter. The whisker plot shows that there
is a noticeable difference between the results for the first four values for ε. However, after the
value of ε has been increased to 100,000 only a very small increase in removed vertices can
be seen. The mean number of removed nodes is for every tested value of ε always above 85%
of all nodes. The Douglas-Peucker algorithm in its pure form would at some point remove
all but two nodes of every path. However, we placed certain restriction as to which vertices
must not be removed. This is why the percentage of removed nodes cannot grow beyond a
certain threshold as the value for ε is increased.

Figure 6.1 shows how many vertices the Douglas-Peucker algorithm is able to remove. In
the vast majority of tested examples, the algorithm removes more than 80% of all vertices.

Level-3 Path. The main part of our approach is the schematization algorithm developed in
this thesis. It determines the height of the horizontal strips and thus the position of all vertices
of the new schematized path. The algorithm is applied to Level-3 path. First, we discuss
some facts about the central part of the path. In Table 6.2 we report the average length of
the Level-3 path. This is, of course, done in respect to the length of the total path. We can
see an almost even distribution for the length of the Level-3 path. It is conceivable that a
Level-3 path is shorter (in relaion to the total length) if the total length is large. However,
if the total length of the central path is short, the Level-3 path is generally longer compared
to the total path length. Recall that the experiments are based on randomly selected origin
and destination vertices in the road network. Hence, there should be an even distribution of
long and short paths and this explains the even distribution of Leve-3 lengths.

Level-2 and Level-4. After the algorithm has determined Level-1, Level-5, and Level-3
and has schematized Level-3 the remaining part of the path is divided into several different
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Figure 6.1: This figure illustrates how many vertices are removed by Douglas-Peucker algorithm.
We set the ε parameter to a value of 15,000. For the vast majority of the tested routes,
the algorithm removes more than 80% of all vertices of the path.

monotone subpaths. In Table 6.1.1 we show the average number of monotone paths of Level-2
and Level-4. The length of Level-2 and Level-4 related to the total path length is shown in
Figures 6.3. It is noticeable that the path length of Level-2 and Level-4 is generally very short.
This is not unexpected because the main part is already covered by Level-3. If, however, the
central path is long, the Level-2 and Level-4 paths make up for more of the total path length.

Finally, we show in Table 6.4 the minimum cost of the schematization of each monotone
sub path of Level-2 and Level-4. Although the monotone subpaths of Level-2 and Level-4 are
generally shorter compared to the Level-3 path they produce (in average) higher cost. This
is due to the different geographical aspects of many Level-2 or Level-4 paths. On a highway
sudden turns occur rarely. In Level-2 and Level-4 paths these are more likely. This makes
conflicts which are caused by vertex of the path that shares a v-edge and an h-edge more
likely. However, the total cost for all monotone subpaths in Level-2 or Level-4 is low, i. e., in
most cases at most 5.
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Figure 6.2: This figure illustrates the percentage of removed vertices by the Douglas-Peucker algo-

rithm for different values for ε.

6.1.2 Schematization Algorithm

In Table 6.4 the minimum cost determined by the algorithm is displayed for Level-2, -3 and
-4. We can see that the minimum cost is in most cases very low, i. e., 5 or less. For about
every second example for Level-2, Level-3 and Level-4 path the minimum cost is 0. These
results are encouraging. Only very few edges cannot be assigned their preferred direction.

Orthogonal Order. Another part we place particular concern is the orthogonal order (c.f.
Definition 4.0.1). The orthogonal order in a schematized monotone subpath is maintained
by our algorithm. However, because we change the minimum length and the directions of
the paths in Level-2 and Level-4, we cannot guarantee that the orthogonal order between
the different Levels is respected. We can also not guarantee that the orthogonal order is
maintained inside Level-2 or Level-4, respectively. In Table 6.5 we illustrate how many pairs
of vertices violate the orthogonal order after our algorithm has schematized all parts of the
path. Because the number of vertices varies between different paths, we measure the number
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Table 6.3: This table shows the number of monotone subpaths in Level-2 and Level-4. In about two
thirds of all examples the number of monotone subpaths inside Level-2 and Level-4 does
not exceed 4. Only in a very few cases the number of monotone sub paths is larger than
10.

# monotone paths 0 1-2 3-4 5-6 7-8 9-10 > 10
Frequency 20.05% 47.94% 21.87% 7.24% 2.06 % 0.58% 0.27%
Frequency 12.36% 48.83 % 27.14 % 8.28 % 2.09 % 0.81% 0.49%

Table 6.4: This table depicts the relative frequency of minimum cost determined by the schemati-
zation algorithm.

Minimum Cost 0 1 2 3 4 5 > 5
Level-2 57.44 % 24.55 % 10.51 % 4.07 % 1.93 % 0.87 % 0.64%
Level-3 53.32 % 28.78 % 10.23 % 4.48 % 1.71 % 0.66 % 0.82%
Level-4 56.76 % 24.90 % 10.47 % 4.29 % 1.72 % 0.98 % 0.88%

of orthogonal order violations in relation to the total number of vertex pairs. Although we
cannot guarantee that the orthogonal order between the monotone subpaths is maintained,
in about half of all tested paths the orthogonal order is violated only by very few vertex
pairs. In most cases less than 25% of all vertex pairs are violating the orthognal order and in
very few cases more than 50% of all vertex pairs violate the orthogonal order. The fact that
violations of the orthogonal order do not occur very often is partly based on the fact that
within one schematized monotone path there cannot be any violations due to the algorithm.

6.1.3 Combining the Monotone Subpaths

Resolving Conflicts. Because we restrict the edge direction and enforce a certain minimum
length on the edges the we cannot ensure that different parts of the schematized path do
not overlap. In Chapter 5.7.1 we explained how conflicts between the different schematized
subpaths can be resolved. However, we show in Table 6.6 how often this is necessary. Al-
though, theoretically this is poses a quite complex problem, the results presented here show
that these conflicts in generally only very few schematized routes. Further, the experiments
indicate that of all conflicts that arose, about 35,9 % of are between two monotone paths
that follow each other. Resolving these conflicts by adding an additional edge as explained
in Chapter 5.7.1 is easy.

Unfortunately, there are conflicts between the central and paths of Level-2 and 4 with the
prefix and suffix path. These conflicts are fairly common. The prefix path has conflicts in
47.6% of all cases. The results for the suffix path are very similar. In about 52.2% of all
paths tested a conflict arose.

Table 6.5: This table reports how many vertex pairs violate the orthogonal order. Considered are
all vertices from Level-2, -3, and -4.

vertex pairs 0% (0%, 5%) [5%, 10%) [10%, 25%) [25%, 50%) [50%, 100%]
violating o.o.

Frequency 3.87 % 48.24 % 21.25 % 19.17 % 7.35 % 0.12 %
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Figure 6.3: This figure reports the length of all monotone subpaths of Level-2 and Level-4. The
length is given as percentage of the whole central path.

6.1.4 Decoration

Street Signs. The last step of our algorithm places decorations on the path. We want to
ensure that the street signs we add do not overlap each other or overlap with the path itself.
However, we cannot guarantee that this is always possible. In Table 6.7 we show how many
conflicts between street signs occur on the paths we tested. This table also illustrates how
many conflicts between street signs and road segments occur.

The total number of street signs which overlap each other is fairly small. In all experiments
192,262 street signs were placed. Only 3,963 of them were placed so that they overlap another
street sign. This means only about 2.06% of all street signs overlap another street sign. Of
all 192,262 street signs only 4,471 (2.33%) are drawn upon a road segment. These results
indicate that the heuristic in place does perform very well. However, a refinement of this
part may yield even better results.
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Table 6.6: This table shows how many conflicts (i. e.,false intersection) were produced by the algo-
rithm. Most of the paths tested produced no conflict. Only few produce more than 3
conflicts. Conflicts of the central path with the pre- and suffix path are not considered in
this analysis.

Number of “false intersection” 0 1 2 3 4 > 4
Frequency 68.03 % 14.44 % 7.25 % 4.54 % 3.87 % 1.87%

Table 6.7: This figure reports how many conflicts c between a street signs occur and how many
street signs have be drawn on top of a road.

#Conflicts c in one path 0 (0, 5] [6, 10] [11, 15] > 15
Street Signs overlap each other 83.75 % 14.69 % 1.12 % 0.33 % 0.11%
Street Signs overlap a route segment 70.66 % 28.71 % 0.60 % 0.01 % 0.01 %

6.1.5 Running Time Analysis

As noted before, the schematization algorithm (c.f. Algorithm 2) is applied to the central path.
In Figure 6.4 we illustrate a correlation between the number of vertices and the running time
of the algorithm. Recall that the algorithms time complexity is O(n6) where n is the number
of vertices. In the figure one black circle represents one run of the algorithm. The red curve
shows a function of the for f(n) = a + b · n6. The coefficient b is very small. It is about
1.302 · 10−10. Further, we can see that the function increases more sharply than the plotted
experimental results indicate. This hints that a deeper, better analysis of the complexity of
the schematization algorithm may yield a better upper bound. The gap between 45 and 80
vertices seems to be an coincidence. The figure shown is based upon 10,000 shortest path
queries with source and target vertex selected uniformly at random.

In Figure 6.5 the results of the schematization algorithm with randomly generated mono-
tone paths is depicted. We tested paths with lengths ranging from 10 vertices to 750 vertices,
increasing the length of path by 10 vertices in each step. For every different path length
multiple paths were generated.

The Figure 6.6 reports the total running time of our route sketch algorithm. The vast
majority of the examples take less than 50ms on the computer which was used for evaluating.
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Figure 6.4: This figure reports the running time of the schematization algorithm in milliseconds
according to the number of vertices on the Level-3 path. One black circle represents
one run of the algorithm. The red curve shows a function which is in the form of
f(n) = a+ b · n6.
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Figure 6.5: This figure shows how much time the schematization algorithm needs depending on the
number of input vertices of the path. Tested were artificially generated monotone paths.
Every black circle in the figure represents one run of the algorithm. The blue line is a
function in of the form f(n) = a+ b · n6.
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Figure 6.6: This figure shows the total running time of our implemented route map design algorithm.
For the majority of the cases the total running time is below 50 ms.
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Figure 6.7: The colors for the categories are shown from left to right in decreasing order.

6.2 Case Studies

In the following we present some results regarding the visual representation of our route map
sketch algorithm. Some parameters which can change the output of our route map sketch
algorithm are changed and the created sketch is shown and discussed. The colors of the road
identify its category. The higher the category is the more important the road is.

In the previous part of the experiments we discussed the possibility of changing the pa-
rameter ε for the Douglas-Peucker algorithm. Not only does that change the size of the input
for the schematization algorithm but it also changes the appearance of the path. In Figure
6.8 we show a path which we chose to schematize. In Figure 6.10 we show the same path
schematized with 10,000 as value for the parameter ε for the Douglas-Peucker algorithm. It
is obvious that far less vertices have been removed. The highway ”A4” has far more seg-
ments than depicted in Figure 6.9. A higher value for ε seems to be justified, because these
additional road segments do not add value for the user.

Recall that we cannot remove all vertices of the path. There are certain vertices which
the algorithm keep. These are either decision points or vertices that are necessary to avoid
inconsistent turn directions. Thus, after the parameter has reached a certain value all vertices
which can be removed are removed. All ε values above this threshold cannot change the
resulting path. This can be observed by comparing Figure 6.9 where the value for ε is
100,000 with Figure 6.11 where the value for ε is 1,000,000. A difference in both figures is
hardly noticeable.

The appearance of the schematization relies heavily on the set of allowed directions C.
Although Klippel [Kli03] could show that C45 = {0◦ , 45◦ , 90◦ , . . . , 315◦ , 360◦ } of directions
is sufficient for most people, we chose to use C30 = {0◦ , 30◦ , 60◦ , . . . , 330◦ , 360◦ } as set of
allowed directions for our approach.

In Figure 6.8 we show a path we chose to schematize. In Figure 6.9 we depict the schema-
tization of the path with the set C30. In Figure 6.12 the same path is schematized, however,
the set C45 of allowed directions is used. The difference that can be seen is noticeable. The
lesser allowed directions the more skewed the schematized path is. We can see that the lesser
allowed directions lead to a far more artificial appearing route. The use of C30 instead of
C45 for our evaluation does only increase the route complexity a little but it is closer to the
geographical shape of the route.

However, the minimum costs produced by our schematization algorithm is in both instances
the same. This is due to the fact that we only deal with monotone paths and. This lets us
group the edges into two different sets: h- and v-edges. The number of different vertical
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Figure 6.8: This figure depicts a route from the city of Karlsruhe to Gronau (Westf.). The distance of
the route is about 450km. The route is highlighted with different colours corresponding
to the street category. The streets depicted in grey are a caterpillar that surrounds the
original route. Because everywhere the same scale is used to depict the route details at
the beginning and at the end are hard to identify.
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Figure 6.9: In this figure we show the same route as in Figure 6.8 but simplified with our route
map design algorithm. The used set of allowed directions is C = {0◦ , 30◦ , ..., 360◦ }, the
parameter ε for the Douglas-Peucker algorithm is 100,000.
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Figure 6.10: In this figure we show the same route as in Figure 6.8 but simplified with our route
map design algorithm. The used set of allowed directions is C = {0◦ , 30◦ , ..., 360◦ },
the parameter ε for the Douglas-Peucker algorithm is 15,000.
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Figure 6.11: In this figure we show the same route as in Figure 6.8 but simplified with our route
map design algorithm. The used set of allowed directions is C = {0◦ , 30◦ , ..., 360◦ },
the parameter ε for the Douglas-Peucker algorithm is 1,000,000.
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directions in C does not influence the minimum cost. Thus, the results for the minimum cost
do not differ.

Another parameter which influences the appearance of the path is the minimum edge
length. We again schematize the path from Figure 6.8. In Figure 6.13 we schematized the
same path with 100,000 as ε parameter for the Douglas-Peucker Algorithm. The set C30 is
used as set of allowed directions. Instead of 50,000 we chose as minimum edge length the
value 150,000. Because the size of the street signs depends on the minimum length, smaller
minimum edge lengths lead to smaller street signs. The street signs can become very small
and hard to read. Another parameter which we can alter is the minimum edge length. If
it is small some edges stay very small. They may become very small and hardly noticeable.
However, if the minimum edge length is very high very small edges appear very long. This
may be irritating because path segments that are indeed very long and path segments that
are very short might appear to be the same length. The depicted schematized paths illustrate
this. Figure 6.13 shows an example where the minimum edge length is small compared to
Figure 6.9 which has a larger minimum edge length. The higher minimum edge length is
preferable. The streets leading to the destination are far better visible and the street signs
are drawn larger.
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Figure 6.12: In this figure we show the same route as in Figure 6.8 but simplified with our route map
design algorithm. The used set of allowed directions is C = {0◦ , 45◦ , 90◦ , ..., 360◦ },
the parameter ε for the Douglas-Peucker algorithm is 100,000.
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Figure 6.13: In this figure we show the same route as in Figure 6.8 but simplified with our route
map design algorithm. The used set of allowed directions is C3′, the parameter ε for
the Douglas-Peucker algorithm is 100,000. The minimum edge length is smaller than
in Figure 6.8.
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Chapter 7
Conclusion

In this thesis we could demonstrate how to schematize a given path in a road network. We
motivated and introduced a schematization algorithm that is able to maintain the orthogonal
order of an input path while minimizing the number of edges which cannot be assigned their
preferred direction. This schematization algorithm restricts the edge direction of monotone
paths to a given set of allowed directions and ensures that a minimum edge length is main-
tained. The analysis of the worst case running time that it depends only on the number of
input vertices of the path and in no way on the number of allowed directions. We showed
how to maintain the orthogonal order while schematizing a monotone path. Maintaining the
orthogonal order was motivated by the way people have a mental picture of maps (c.f. mental
maps).

Further, we were able to show how to use this schematization algorithm to schematize sub-
sequent monotone paths of any given path. We illustrated how to resolve conflicts (i. e.,false
intersections) of the schematized monotone paths with a very simple mechanism after they
were attached to each other. This does no longer guarantee to preserve the orthogonal order
of the full path, but our experiments showed that orthogonal order can can be maintained
throughout the path with only very few excpetions. If violations occur they tend to affect
only a small part of the node pairs. Finally, we showed how to place some street signs on the
schematized path.

An evaluation of the devised algorithms is presented. We discussed several objective criteria
for quality of the algorithm and presented a analysis of its time complexity.

7.1 Outlook

Multiple Paths. We could demonstrate how to schematize effectively a single path. In
the future, it is desirable to devise an algorithm that is able to display multiple different
schematized routes. The algorithms devised in this thesis can be a basis for this approach.
However, all problems we dealt with in here can be more difficult to overcome when multiple
paths are schematized. False intersections between path segments can happen, and avoiding
them can become quite difficult. It is reasonable to assume that different paths from a given
origin to a destination have some common edges. An algorithm which schematizes multiple
paths has to be able to maintain true intersection. That is, intersections of the multiple
paths. The solution presented to resolve conflicts of monotone paths will most likely need
some modification.
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Computing simple routes. The techniques in this thesis can be used to schmeatize any path.
A different approach is to take one step backwards and to compute right from the beginning
a route that has a low description complexity instead of being necessarily a shortest route.
The hope is that such a route will be easier to follow and yield nicer schematizations.

If there is a path which is not considerable longer (perhaps only a certain percentage) but
consists of only very little turns, this path may be much more favourable by a driver as he as
much less decision points. Although the overall travel time might be a bit higher it is much
more comfortable to drive such a route.

Decoration. The general route map mechanism we provided places several street signs as
decorations. The method we used to place the street signs is a heuristic which proved, through
experiments, to be fairly good. However, there are possibilities for improvement. The street
signs could be placed via a sliding mechanism. So that there are no fixed positions for them,
but they can slide along the edges of the path. Further, the size of the street signs should be
maximized (but not overstep a certain upper limit) to enhance readability. But, on the same
time the conflicts should not increase.

Another angle where improvements are possible is the placement of the pre- and suffix
path (Level 1 and Level 5) if a conflict arises. A efficient data structure could be devised to
answer queries for free space.

Although we enriched the information of our generated route maps, it may be useful to
add further symbols or information to help the user. For example, it might be helpful to
display distance information.

Positioning and displaying streetnames might also be helpful for finding the destination.
However, efficiently placing streetnames is a difficult problem.

More efficient Schematization Algorithm. The schematization algorithm we provided has
a time complexity of O(n6). Although we showed how to reduce the asymptotic running time
to O(n5 log n), this is still a considerable high running time. It is desirable to try and find
another algorithm which is able to maintain the orthogonal order for monotone paths that
has a lower asymptotic running time.
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Appendix A
Schematization Algorithm

The following algorithms illustrate a more detailed version of the schematization algorithm.

Algorithm 7: calcOPT
for i← 1 to n− 1 do1

if {ui, ui+1} h-edge then2

h(si) = 0;3

else if {ui, ui+1} v-edge then4

h(si) = 1;5

else6

h(si) = �;7

Algorithm 8: calcNmbV Edges
Data: Index i (upper bound), index j (lower bound)
vCounter = 0;1

for l← i to j do2

index = µ−1(l);3

if (y(ui) ≥ y(vindex) > y(vindex−1) ≥ y(uj)) then4

if {vindex, vindex+1} v-edge then5

vCounter++;6

if (y(ui) ≥ y(vindex) > y(vindex+1) ≥ y(vj)) then7

if {vindex−1, vindex} v-edge then8

vCounter++;9

return vCounter;10
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Algorithm 9: cost OneUpperStrip
Data: horizontal strip index z with height set to 1
cost = 0;1

for l← i to z do2

index = µ−1(l);3

if {vindex−1, vindex} is uk crossing h-edge then4

cost++;5

if {vindex, vindex+1} is uk crossing h-edge then6

cost++;7

for l← z + 1 to k − 1 do8

index = µ−1(l);9

if {vindex−1, vindex−1} is uk crossing v-edge then10

cost++;11

if {vindex, vindex+1} is uk crossing v-edge then12

cost++;13

return cost;14

Algorithm 10: cost OneLowerStrip
Data: horizontal strip index z with height set to 1
cost = 0;1

for l← k + 1 to z do2

index = µ−1(l);3

if {vindex−1, vindex} is uk crossing v-edge then4

cost++;5

if {vindex, vindex+1} is uk crossing v-edge then6

cost++;7

for l← z + 1 to j do8

index = µ−1(l);9

if {vindex−1, vindex} is uk crossing h-edge then10

cost++;11

if {vindex, vindex+1} is uk crossing h-edge then12

cost++;13

return cost;14
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Algorithm 11: cost UpperLowerStrip
Data: horizontal strip indeces q, p with height set to 1
cost = 0;1

for l← i to q do2

index = µ−1(l);3

if {vindex−1, vindex} is uk crossing h-edge then4

cost++;5

if {vindex, vindex+1} is uk crossing h-edge then6

cost++;7

for l← q + 1 to k − 1 do8

index = µ−1(l);9

if {vindex−1, vindex} is uk crossing v-edge and y(vindex−1) ≥ y(up) then10

cost++;11

if {vindex, vindex+1} is uk crossing v-edge and y(vindex+1) ≥ y(up) then12

cost++;13

if {vindex−1, vindex} is uk crossing h-edge and y(vindex−1) < y(up) then14

cost++;15

if {vindex, vindex+1} is uk crossing h-edge and y(vindex+1) < y(up then16

cost++;17

return cost;18
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Algorithm 12: Schematization Algorithm
U = sort(P);1

n = |P |;2

for i← 1 to n− 1 do3

Decide for all edges (vi, vi+1) if it is a h-edge or a v-edge;4

calcOPT(i, i+ 1);5

for i2← 2 to n− 1 do6

for i← 0 to n− i2− 1 do7

j = i+ i2;8

min cost = ∞9

for k ← i+ 1 to j do10

opt cost = OPT(i, k) + OPT(k, j);11

load horizontal strip heights s[i, k] and s[k, j];12

join horizontal strip heights s[i, j] = s[i, k] ∪ s[k, j];13

ul = k;14

ll = k - 1;15

for l← k − 1 to i do16

if sl[i, k] == 1 then17

ul = l − 1;18

break;19

for l← k to j do20

if sl[k, j] == 1 then21

ll = l − 1;22

break;23

for q ← k to ll do24

if sq[i, j] 6= − then continue;25

for p← k − 1 down to ul do26

if sp[i.j] 6= − then continue;27

cost = cost UpperLowerStrip(q, p) + opt cost;28

if min cost > costl0 then29

min cost = costl0;30

for l← k − 1 down to ul do31

costu = cost UpperStrip(l) + opt cost;32

if min cost > costu then33

min cost = costu;34

for l← k to ll do35

costl = cost LowerStrip(l) + opt cost;36

if min cost > costl then37

min cost = costl;38

min cost = calcNmbV Edges(ul, ll);39

min cost = calcNmbV Edges(i, j);40

Save min cost as OPT (i, j) and the corresponding horizontal strip41

height assignment s[i, j];
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Appendix B
Examples

In the following we present some chosen examples to illustrate what our algorithm is capable
of producing. For every path we schematized there is the original, unaltered path (i. e., the
input path for our algorithm) with its original edge lengths and directions displayed.

Figure B.1: Route of about 25km length.
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Figure B.2: In its schematized form the central path consists of 89 vertices.The value for the mini-
mum length parameter is 150,000, the value for ε is 100,000.
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Figure B.3: Route of about 6km length.
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Figure B.4: In its schematized form the central path consists of 80 vertices.The value for the mini-
mum length parameter is 150,000, the value for ε is 100,000.
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Figure B.5: Route of about 6km length.
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Figure B.6: In its schematized form the central path consists of 31 vertices. The value for the
minimum length parameter is 150,000, the value for ε is 100,000.
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Figure B.7: Route of about 20km length.
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Figure B.8: In its schematized form the central path consists of 94 vertices. The value for the
minimum length parameter is 150,000, the value for ε is 100,000.
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Figure B.9: Route of about 13km length.
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Figure B.10: In its schematized form the central path consists of 60 vertices. The value for the
minimum length parameter is 150,000, the value for ε is 100,000.
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Figure B.11: Route of about 17,5km length.
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Figure B.12: In its schematized form the central path consists of 71 vertices. The value for the
minimum length parameter is 150,000, the value for ε is 100,000.
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Figure B.13: In this figure a short route is shown from Karlsruhe to Wiesloch. Additional to the
route some roads which cross the route segments are displayed. This is the same route
which is displayed in Chapter 1.
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Figure B.14: This figure shows the schematized route from Karlsruhe to Wiesloch (see B.13) pro-
duced by our route map design algorithm.
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