
Efficient Calculation and Visualisation
of Range Polygons

Bachelor Thesis of

Sven Zühlsdorf

At the Department of Informatics
Institute of Theoretical Computer Science

Reviewers: Prof. Dr. Dorothea Wagner
Prof. Dr. Peter Sanders

Advisors: Moritz Baum, M.Sc.
Dipl.-Inform. Andreas Gemsa

Time Period: 1st February 2013 – 31st May 2013

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, 31st May 2013

iii

Abstract

This bachelor thesis focuses on determining and visualizing the reachable vertices of
a graph. A vertex is considered reachable if its distance from a given source vertex is
smaller than or equal to given a maximal range. To formalize the problem we intro-
duce the RangePolygon problem, which is solved by a set of polygons delimiting
the area containing reachable vertices. To enforce an accurate representation we also
define the boundary of the reachable area. We solve the problem in two steps by first
determining the boundary from the given inputs and then using the boundary to cre-
ate a visualization. For the routing part of the problem we adapt Dijkstra’s algorithm
to return the boundary and introduce Customizable Route Planning [DGPW11] as
a speedup technique. For visualization we develop and present exact solutions and
a conservative heuristic to generate range polygons from the boundary. We then
show that our approaches are faster and generate less complex polygons than Alpha
Shapes [EKS83], an algorithm used for surface reconstruction.

Deutsche Zusammenfassung

Diese Bachelorarbeit befasst sich mit der Bestimmung und visuellen Darstellung von
erreichbaren Knoten eines Graphens. Ein Knoten ist erreichbar wenn seine Entfer-
nung zu einem bestimmen Startknoten eine bestimmte Distanz nicht überschreitet.
Um das Problem zu formalisieren führen wir das RangePolygon Problem ein. Die
Lösung für deses Problem ist eine Menge an Polygonen, die die erreichbaren von
den unerreichbaren Knoten trennt. Wir definieren zusätzlich die Grenze des erreich-
baren Bereiches um eine genaue Darstellung der Reichweitenpolygone zu erzwingen.
Wir lösen das Problem in zwei Schritten: Zuerst bestimmen wir die Grenze aus
den Eingabedaten, und anschließend eine visuelle Darstellung mit Hilfe der Grenze.
Zur Bestimmung der Grenze passen wir Dijkstras Algorithmus an unsere Problem-
stellung an und stellen Customizable Route Planning [DGPW11] als eine mögliche
Beschleunigungstechnik vor. Für die Darstellung entwerfen wir Algorithmen zur
exakten Wiedergabe der Grenze, sowie eine Heuristik es erlaubt erreichbare Fläche
als unerreichbar zu makieren, aber nicht unerreichbare Fläche als erreichbar. An-
schließend vergleichen wir unsere Algorithmen mit Alpha Shapes [EKS83], einem Al-
gorithmus zur Oberflächenrekonstruktion, und kommen zu dem Schluss, dass unsere
Algorithmen sowohl schneller sind, als auch weniger komplexe Polygone berechnen.

v

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Computational Geometry . 3
2.2 Graphs . 3
2.3 Dijkstra’s Algorithm . 5

3 Problem Statement 7

4 Determining the Boundary 11
4.1 Precalculations . 11
4.2 Basic Routing Algorithm . 11
4.3 Acceleration . 13

4.3.1 Basic CRP . 13
4.3.2 Our Adaptations . 14

5 Visualization 17
5.1 Basic Approach . 17
5.2 Stabbing . 18
5.3 Merging . 19
5.4 Alpha Shapes . 22

6 Experiments 23

7 Conclusion 29

Bibliography 31

vii

1. Introduction

During route planning we might not always be interested in the shortest path to a given
target, but instead want to know which area can be reached within a certain range. For
example, drivers of electric cars must plan their routes according to available charging
stations along the way, due to the limited range of electric cars. Displaying the area that
can be reached with the current battery charge on a map would visually aid the driver while
planning a trip. While driving, displaying the remaining range on a navigation system’s
map could also increase the feeling of security as the driver knows where they will run out
of fuel and thus can plan accordingly. In theory, running out of fuel is also a problem for
other cars, however, gas stations are frequent enough to not require additional planning.

We introduce the RangePolygon problem that, given a source vertex and a maximum
range, is solved by a set of polygons enclosing the reachable area. These polygons can
then be displayed on a map and might be interpreted as isolines consisting of points with
a distance to the source vertex that is equal to the maximum range. Usually isoline are
used in geographic contexts as [VK96] shows.

For finding a shortest path between Dijkstra’s algorithm [Dij59] is often used. Several
speedup techniques for Dijkstra’s algorithm exist: A*, Landmarks, Contraction Hierar-
chies to name a few. Short descriptions and comparisons between them can be found in
[DSSW09]. However, most of them were designed for one-to-one queries and adaptation to
one-to-all queries is difficult. Customizable Route Planning (CRP) [DGPW11] is a speedup
technique which not only can be adapted to one-to-all queries but also supports multiple
metrics. Customization to a specific metric only requires few seconds for precalculations.
Another speedup technique for one-to-all queries is PHAST [DGNW12]. However PHAST
is based on Contraction Hierarchies and therefore can not be adapted to arbitrary metrics
quickly [DSSW09].

Our basic visualization approach is based on the same idea as marching cubes [LC87].
Given the eight points of a cube and a marking indicating whether the points are inside
or outside of a volume, marching cubes visualize the course of the border of that volume
within the cube. The line stabbing problem requires a set of lines to be intersected by a
chain of line segments in a specified order. Several different versions of this problem are
presented in [GHMS93]. They also show that minimizing the number of line segments in
the chain is NP-hard. Alpha Shapes [EKS83] reconstruct a surface or shape from a given
point set, which can be used for various purposes like simply visualizing or determining
groups in the point set.

1

1. Introduction

We now give the outline of this work. In Chapter 2 we introduce the basic notation and
algorithms used in this work. In Chapter 3 we give a formal definition of the problems
discussed in this work. We note that the problems can be easily split into two parts and
introduce and adapt algorithms to solve the two subproblems in the following two chapters.
Chapter 4 covers the routing part of the problems. We first adapt Dijkstra’s algorithm
to our problem and then introduce Customizable Route Planning as speedup technique.
While other speedup techniques adaptable to our use case, like PHAST, exist, we prefer
CRP because it works well with any metric. In Chapter 5 we use the results of the routing
part to generate a visualization. Our basic visualization approach is based on the same
idea as marching cubes. For an improved version of our approach we try to reduce the
number of line segments closing the reachable area, while staying in a specific boundary.
In Chapter 6 we then compare the algorithms developed in the previous chapters with each
other. The visualization algorithms are additionally compared to Alpha Shapes and the
convex hull. Finally, in Chapter 7, we summarize our results and give an outlook posing
open questions for further work.

2

2. Preliminaries

In this chapter we establish basic terms used in this work with definitions similar to those
found in literature. Derivations from these definitions in the following chapters will be
motivated and explained when first needed.

2.1 Computational Geometry

A polygon is a sequence of points (p1, . . . , pn) in the plane, which form a sequence of
straight line segments ((p1, p2), (p2, p3), · · · , (pn, p1)). We call a polygon simple if and only
if no two of its line segments intersect.

The convex hull CH(S) of a set S of points in the plane is the smallest simple polygon for
which all line straight segments (u, v), u, v ∈ S lie inside or on the boundary of CH(S).
The convex hull can be computed in O(|S| log h) time, where h is the number of points
|CH(S)| of the convex hull, as shown by [KS86].

Given a set S of points in the plane and a parameter α, Alpha Shapes [EKS83] create
polygons representing the outline or shape of the point set. In the 2D plane, the area
outside of every circle with radius

√
α not enclosing any points of S is considered to be

inside the Alpha Shape. Circular arcs in the resulting outline are then replaced by straight
line segments. An informal description for the three dimensional case is found at [CGA]:
”Imagine a huge mass of ice-cream making up the space R3 and containing the points
as ”hard” chocolate pieces. Using one of these sphere-formed ice-cream spoons we carve
out all parts of the ice-cream block we can reach without bumping into chocolate pieces,
thereby even carving out holes in the inside (e.g. parts not reachable by simply moving
the spoon from the outside). We will eventually end up with a (not necessarily convex)
object bounded by caps, arcs and points. If we now straighten all ”round” faces to triangles
and line segments, we have an intuitive description of what is called the α-shape of S.”
Depending on the value of α the result ranges from the initial point set (α → 0) to the
convex hull of S (α→∞).

2.2 Graphs

We define a graph G = (V,E) as a tuple of a set of vertices V and a set of edges E. We call
the number of vertices n = |V | and the number of edges m = |E|. An edge is a pair of two
different vertices e = (u, v);u 6= v;u, v ∈ V . The vertex u is the source of the edge, while

3

2. Preliminaries

x

u

v

y

e

(a)

x

u

v

y
e'

e''
w

(b)

Figure 2.1: Planarization of intersecting edges by inserting vertices. (a): original graph,
(b): its planarization

v is the target. If the order of vertices in an edge does not matter, i.e., (u, v) and (v, u)
are indistinguishable from each other, we call this edge undirected and write it as {u, v}.
A graph containing only undirected edges is a undirected graph, otherwise it is directed.
A function ω(e) : E → R+

0 associating a non-negative weight to each edge e ∈ E is called
a weight function. A sequence of vertices (v1, v2, · · · , vn−1, vn) with (v1, v2), . . . , (vn−1, vn)
being edges of G is called a path from v1 to vn. If a weight functions exists, the sum of
all edge weights

∑n−1
i=1 ω(vi, vi+1) of the path is its length. A shortest path from s to t is a

path with minimal length among all paths from s to t. The length of a shortest path from
s to t is the distance d(s, t) from s to t. If no path from s to t exists the distance d(s, t)
is infinity. A graph is strongly connected, if and only if for each vertex there exists a path
to every other vertex of the graph.

A directed graph is acyclic if and only if for each vertex u the only path from u to itself
is the trivial path (u). A (rooted, directed) tree is an acyclic graph in which exactly one
vertex r, the root, has exactly one path to all other vertices. The shortest path tree T of a
graph G from s is a tree with root s. It includes all vertices to which a path from s exists.
All paths in T , especially those starting from s, are shortest paths in G.

A planar graph is a graph which can be embedded in the plane without crossing edges.
Graphs with a non-planar embedding can be planarized by adding additional vertices. For
each point at which edges intersect, an additional vertex w is created and edges e = (u, v)
intersecting w are split into e′ = (u,w) and e′′ = (w, v), see Figure 2.1 for an example.
This results in a planar graph Gplanar = (Vplanar, Eplanar) with Vplanar being a superset
of V . Note that planarization introduces additional paths: In Figure 2.1(b) the path
(u,w, y) has no equivalent in the original graph depicted in Figure 2.1(a). The areas
enclosed by edges of a planar graph are called faces. A triangulated graph is an embedded
planar graph in which all faces are triangles. In our work this includes the outer face.
We assume the existence of an infinite vertex which is connected to all vertices of the
convex hull. The Delaunay triangulation is a special triangulation in which no vertices lie
inside the circumcircle of any face. For a given point set V the Delaunay triangulation
can be computed in O(|V | log |V |) time, as shown by [LS80]. The constrained Delaunay
triangulation is an adaption of the Delaunay triangulation in which a given set E of edges
must be present. It behaves like the Delaunay triangulation but since E can be chosen
in a way causing the Delaunay triangulation to always violate the circumcircle property,
the property is relaxed: Vertices inside the circumcircle of each face are allowed if the
line between the vertex and the center of the circumcircle intersects an edge e ∈ E. The
constrained Delaunay triangulation can also be constructed in O(|V | log |V |) time as shown
in [Che89]. A function translating a path (u, v, w) into a boolean, indicating whether a
turn from (u, v) to (v, w) at vertex v is allowed, is called a turning restrictions function.

4

2.3. Dijkstra’s Algorithm

A subgraph of a graph G is a graph G′ = (V ′, E′) containing a subset V ′ ⊆ V of V and
a subset E′ ⊆ E of E which only contains edges connecting vertices in V ′. A subgraph
induced by a set of vertices V ′ ⊆ V is a graph G′ = (V ′, E′) containing all vertices of V ′

and all edges e = (u, v) ∈ E with u, v ∈ V ′ connecting vertices of V ′.

A partition of a graph G is a division of its vertices V among a given number k of sets
V1, . . . , Vk called cells. These cells include all vertices of G (

⋃k
i=1 Vi = V) and each vertex

is only assigned to one cell (
⋂k

i=1 Vi = ∅). Edges (u, v) connecting vertices of different
cells (u ∈ Vi, v ∈ Vj , i 6= j) are called cut edges. Vertices adjacent to cut edges are
boundary vertices of a cell. By recursively partitioning the cells of a partition, a multi
level partition can be obtained: Given a graph G, the number of levels ` and the number
of cells k1, . . . , k` for each level, G is partitioned into k` cells V `

1 , · · · , V `
k`

. This partition
is the level-` partition, the original graph is assumed to have level 0. The partitions for
the levels between are obtained by partitioning the subgraphs Gi+1

j induced by V i+1
j into

a total of ki cells V i
1 , · · · , V i

ki
. The cell V i

g , 0 < g < ki is a subcell of V i+1
j , 0 < j < ki+1 if

and only if V i
g is a subset of vi+1

j .

2.3 Dijkstra’s Algorithm

Routing on a graph can be done using Dijkstra’s algorithm [Dij59] (Algorithm 2.1). Given
a graph G, a start vertex s and a weight function ω, the algorithm returns a shortest path
tree rooted at s. For each vertex v the algorithm stores the tentative distance dist(v)
from s to v and its predecessor pred(v) in the shortest path tree. The tentative distance
is the length of the shortest path from s to v Dijkstra’s algorithm has found yet and
may not be equal to the actual distance d(s, v). The algorithm also manages a priority
queue Q in which discovered vertices for which their tentative distance may not yet equal
the actual distance are stored with the key being their tentative distance. Initially the
tentative distances of all vertices are set to infinity and their predecessor is set to null.
The distance of s is set to 0 and s is inserted into Q with key 0. Then, as long as Q is not
empty, the vertex u with the smallest key is settled. Settling a vertex v means extracting
it from Q. Its tentative distance dist(u) from s will no longer change and is equal to the
distance d(s, u) from s to u. Also all adjacent edges (u, v) are relaxed. This means that if
the tentative distance dist(v) is greater than dist(u) + ω(u, v) it is set to dist(u) + ω(u, v)
and the predecessor pred(v) is set to u. If v is already in Q its key is decreased to
dist(v), otherwise v is inserted into Q with key dist(v) and v is now considered discovered.
Dijkstra’s algorithms runs in O(|V | log |V |+ |E|) time if using Fibonacci heaps as priority
queue [CLRS01]. By inserting edges into Q and keeping distances and predecessors for
edges instead of vertices the algorithm can be adapted to edge based Dijkstra which runs
in O(|E| log |E|+ |P3(G)|) time, where P3(G) is set of all paths containing three vertices.
The runtime can be trivially deduced from [Vol08] and [Win02].

5

2. Preliminaries

Algorithm 2.1: Dijkstra

Input: Graph G = (V,E), weight function ω, source node s
Data: Priority queue Q
Output: Distances d(v) for all v ∈ V , shortest-path tree of s given by pred(·)
// Initialization

1 forall v ∈ V do
2 d(v)←∞
3 pred(v)← null

4 Q.insert(s, 0)
5 d(s)← 0

// Main loop

6 while Q is not empty do
7 u← Q.deleteMin()
8 forall (u, v) ∈ E do
9 if d(u) + ω(u, v) < d(v) then

10 d(v)← d(u) + ω(u, v)
11 pred(v)← u
12 if Q.contains(v) then
13 Q.decreaseKey(v, d(v))

14 else
15 Q.insert(v, d(v))

6

3. Problem Statement

The goal of our work is, given a start point and a range, a maximal distance from a
starting point, to provide a visual indication on a map which area can be reached without
exceeding the range. The boundary of this area typically is simple polygon, but due to
geographical or traffic-related circumstances the area might enclose other, unreachable
areas. In this case multiple polygons are required to draw the boundary of the reachable
area. We require the graph to be strongly connected as vertices in other components than
the starting vertex will always be unreachable. A formal definition of the problem is as
follows.

Problem 1. RangePolygon: Given a strongly connected graph G = (V,E), an embed-
ding of G into the plane, a start vertex s ∈ V , a weight function ω and a range r ∈ R+.
Compute a connected area A, delimited by a set of polygons P , that contains exactly those
vertices v ∈ V that are reachable, i.e., whose distance d(s, v) from s is smaller or equal
to r.

A simple solution to this problem is to have a large polygon enclosing all vertices of V
and several small polygons surrounding vertices v with a distance d(s, v) greater than r, as
illustrated in Figure 3.1. Since the goal of this work is visual representation of the reachable
area, such a solution is irritating at best. To force the area to more closely resemble the
area that is actually reachable, we now introduce the boundary of the reachable area.

Given a triangulated graph G = (V,E) and a subset S ⊆ V of reachable vertices, an edge
(u, v) ∈ E is called boundary edge if and only if it connects a reachable vertex u ∈ S with
an unreachable vertex v ∈ V \S. All boundary edges intersect the cut between S and V \S.
Faces adjacent to a boundary edge are boundary faces. Edges of a boundary face that are
not boundary edges are part of the outer border if they connect two unreachable vertices,
or part of the inner border if they connect two reachable vertices. We call the subgraph
containing all boundary faces and their adjacent vertices and edges the boundary.

Lemma 3.1. Each boundary face is delimited by exactly two boundary edges and exactly
one edge that is part of either the inner or the outer border.

Proof. Since every face of a triangulation has three adjacent vertices, there are four cases
based on the number of vertices reached: If none or all three of the vertices are reached
this face is not part of the boundary. If one vertex is reachable the edges connecting it
with the other two vertices of this face are boundary edges while the edge connecting

7

3. Problem Statement

(a) (b)

Figure 3.1: Trivial solutions for RangePolygon: Filled vertices are reachable, unfilled
ones not. The gray area represents the reachable area A of RangePoly-
gon. (a): Everything is marked as reachable except small areas surrounding
unreachable vertices. (b): Only a small shape connecting all reached vertices.

(a) (b) (c) (d)

Figure 3.2: Classification of edges adjacent to boundary faces based on the number of
reachable vertices. Filled vertices are reachable. (a): No reachable vertex,
face outside the boundary. (b), (c): One or two reachable vertices, face is a
boundary face; blue edges are boundary edges, green edges belong to the inner
border and red edges to the outer border. (d): All Vertices reachable, face
inside the boundary.

the unreachable vertices is part of the outer border. If two vertices are reachable the
edge between them is part of the inner border and the edges connecting them with the
unreachable vertex of this face are boundary edges. This is illustrated in Figure 3.2.

Marching cubes share a similar idea [LC87]. The main differences are that we operate in
2D instead of 3D, our vertices are not arranged in a grid-like pattern, and we have no
ambiguity about the course of the boundary since our faces are triangles.

Recall that the reachable area may enclose unreachable vertices. Due to these ”holes” the
boundary may not be a single shape but form multiple ring-like shapes and some border
edges may be shared by two boundary faces, as seen in Figure 3.3.

Using the definition of the boundary we can refine our problem to forbid solutions like the
ones shown in Figure 3.1.

Problem 2. RefinedRangePolygon: Given a triangulated graph G = (V,E), a start
vertex s ∈ V , a weight function ω, and a range r ∈ R+, compute a connected area A,
delimited by a set of polygons P , that has the following properties. The area A includes a
vertex v ∈ V if and only if its distance d(s, v) from s is smaller or equal to r. Additionally,
each boundary edge must intersect exactly one line segment of one polygon of P , while no
polygon may intersect edges of the inner or outer border.

8

s

Figure 3.3: Reachable area enclosing a hole and boundary faces sharing the same border
edge. Assume the source node is somewhere to the right of the shown part of
the graph. Filled vertices are reachable, filled faces are boundary faces. Edge
colors are the same as in 3.2(b): Blue edges are boundary edges, green edges
are part of the inner border and red edges belong to the outer border.

We consider a solution for RefinedRangePolygon which uses less line segments of
higher quality In cases where exact representation of the boundary is not required it may
be permissible to allow errors in the visualization to reduce the number of line segments
needed to draw P . Thus we formulate a weaker variant of RefinedRangePolygon
allowing errors to achieve a more appealing visualization:

Problem 3. RelaxedRangePolygon: Given a triangulated graph G = (V,E), a start
vertex s ∈ V , a weight function ω, and a range r ∈ R+, compute a connected area A
delimited by a set of polygons P . The number of line segments needed to draw P , the
amount of unreachable area included in A and the amount of reachable area not included
in A must be minimized.

Weighting these criteria against each other depends on the circumstances of a query, e.g.,
a query like ”Where can I get in about one hour?” may allow moderate errors on both sides
of the boundary. However if the range polygons are for electric cars marking a charging
station as reachable that actually is too far away might cause the car to run out of fuel.

The RefinedRangePolygon problem can be split into two smaller problems: First
determining the boundary, which is covered in Chapter 4 and second using the boundary
to create the range polygons, which is covered in Chapter 5.

9

4. Determining the Boundary

In this chapter we address the first subproblem of RefinedRangePolygon, determining
the boundary.

4.1 Precalculations

In Chapter 3 we defined the boundary as a subgraph containing all boundary faces with
their adjacent vertices and edges. Since the boundary is defined on a triangulation of
the original graph, we first requires a planarization. For road networks the geographical
coordinates of the vertices are an obvious choice for a (possibly non-planar) embedding.
Because the planarization introduces additional paths, it seems preferable to route on the
original graph and then determine the boundary on the triangulated graph. Translating
between the vertices of the original and the triangulated graph poses problems as the
reachability of vertices v added by the planarization cannot be trivially tested. A vertex v
is only reachable if for at least one edge (u, v) the distance d(u) + ω(u, v) is smaller than
the range r. Instead we express the additional paths as turning restrictions, which are a
natural occurrence in road networks anyway.

4.2 Basic Routing Algorithm

Since determining the boundary is a routing based problem, our first approach is using
Dijkstra’s algorithm. A vertex v is reachable if and only if the distance d(s, v) from the start
vertex s to v is less or equal to the maximum range r. However, Dijkstra’s algorithm does
not handle turning restrictions. For example, on an intersection with left turns forbidden
an alternative is going straight followed by three right turns and finally going straight
again. This crosses the intersection twice which would translate to settling a vertex twice
while running Dijkstra’s algorithm. The edge based version of Dijkstra’s algorithm avoids
this problem while also making implementation of turning restrictions trivial [GV11].

We can reduce the size of the data structures kept by our version since we only care
whether vertices are reachable or not. Compared to Dijkstra’s algorithm we neither need
the distance dist(s, ·) nor the predecessor pred(·) of a vertex. Note that by not storing the
predecessor we can no longer construct a shortest path tree. The result is the following
algorithm. For a pseudo-code description see Algorithm 4.1.

For each vertex we keep information whether we found the vertex to be reachable, for
each edge we store if we already relaxed it and if it is currently part of the boundary.

11

4. Determining the Boundary

Algorithm 4.1: Adapted Dijkstra

Input: Graph G = (V,E), source node s, weight function ω, turning restrictions
function R, maximum range r

Data: Priority queue Q
Output: Reachability reachable(v) for all v ∈ V , Boundary onBoundary(e) for all

e ∈ E
// Initialization

1 forall v ∈ V do
2 reachable(v)← false

3 forall (u, v) ∈ E do
4 relaxed((u, v)) ← false

5 onBoundary((u, v)) ← false

6 reachable(s)← true

7 forall (s, v) ∈ E do
8 Q.insert((s, v), ω(s, v))
9 relaxed((s, v)) ← true

10 onBoundary((s, v)) ← true

// Main loop

11 while Q is not empty do
12 k ← Q.minKey()
13 if k > r then
14 break

15 (u, v)← Q.deleteMin()
16 reachable(v)← true

17 forall (v, w) ∈ E do
18 if relaxed((v, w)) = false and R.isRestricted(u, v, w) = false then
19 Q.insert((v, w), k + ω(v, w))
20 relaxed((v, w)) ← true

21 onBoundary((w, v)) ← false

22 if reachable(w) = false then
23 onBoundary((v, w)) ← true

24 return reachable, onBoundary

We also manage a priority queue Q containing edges (u, v) with the tentative distance
dist(s, u) + ω(u, v) at the end of the edge as key. The edges inside Q were relaxed by the
algorithm, but are not yet settled. Initially, we mark every vertex besides the start vertex
s as not reachable and every edge as not relaxed.

All edges (s, v) are inserted into the priority queue Q with their weight ω(s, v) as key and
marked as relaxed. They are also marked to be part of the boundary. Now, as long as Q is
not empty, the edge (u, v) with the smallest key k is removed from Q. If k is greater than
the maximum range r, we end the algorithm and return the vertices marked as reachable
and the edges marked as being on the boundary. Otherwise the edge is settled: The vertex
v is marked as reachable and all edges (v, w) that are not marked as relaxed yet and for
which the turn (u, v, w) is allowed are inserted into Q with k+ω(v, w) as key and marked
as relaxed. Also, all edges (v, w) for which w is not marked as reachable are marked to be
on the boundary, while for all edges (w, v) this mark is cleared.

12

4.3. Acceleration

Lemma 4.1. Once an edge (u, v) ∈ E is settled, all edges (v, w) ∈ E which were not
relaxed yet and for which the turn (u, v, w) is allowed are preceded by (u, v) in a shortest
path from s containing (v, w).

Proof. We show this by induction. The first edge settled is the edge (s, v) with the lowest
weight. Since there is no shorter outgoing edge from s, (s, v) is a shortest path from s to
v. Assuming there is a path (s, . . . , v, w) which is shorter than (s, v, w), there must be a
path from s to v shorter than (s, v). This is a direct contradiction to (s, v) being a shortest
path.

It remains to show that when settling (u, v) and the above conditions are met, (u, v) is the
first valid predecessor for (v, w). If v was not yet reached (u, v) must be on a shortest path
from s to v. Assume there is a path (s, . . . , w, x, . . . , v) that is shorter than (s, . . . , u, v).
One edge of (s, . . . , w, x, . . . , v) must be in the priority queue, since initially all edges (s, ·)
are inserted into the queue and v was not reached yet. We call this edge (w, x). Since (u, v)
is removed earlier from Q than (w, x), the path (s, . . . , u, v) is not longer than (s, . . . , w, x).
Combining both inequalities leads to (s, . . . , w, x, . . . , v) being shorter than (s, . . . , w, x) or
(x, . . . , v) being shorter than the empty path. This contradicts the assumption Thus (u, v)
is part of a shortest path from s to v, v is now marked as reachable, boundary markings of
incident edges are updated and (u, v) is the predecessor for any edge (v, w) that was not
relaxed yet and for which the turn (u, v, w) is allowed. Otherwise, if v was already reached,
for all edges (v, w) which are not yet relaxed and for which the turn (u, v, w) is allowed,
the turn (u′, v, w) is forbidden for all edges (u′, v) reaching v earlier, since otherwise one of
those edges would have relaxed (v, w). Thus if there is a shortest path from s to another
vertex t containing (v, w), there is a path from s to t of equal length that contains (u, v)
immediately before (v, w).

Theorem 4.2. After the algorithm terminates all vertices and edges are correctly marked
as reachable or being on the boundary.

Proof. Directly follows from Lemma 4.1.

4.3 Acceleration

As running our version of Dijkstra’s algorithm turned out to be significantly slower than
the visualization (see Chapter 6), we decided to use Customizable Route Planning (CRP)
[DGPW11] as speedup technique. While other speedup techniques adaptable to our use
case, like PHAST, exist, we prefer CRP because it works well with any metric. CRP
was designed with three goals: It should allow fast customization to previously unknown
metrics, the space required to store metric dependent information must be small and it
must still allow real-time queries. All three goals must hold true for any metric. This is
achieved by splitting the work into three steps: First, metric-independent precalculations,
which may require some days, second, metric-dependent precalculations, which may take
a few seconds, and third, answering the actual queries, which must be fast enough for
interactive programs.

4.3.1 Basic CRP

The metric-independent precalculations consists of creating a multi level partition of the
graph. This partition should minimize the number of cut edges, while keeping the number
of vertices in each cell balanced. The time required for the later steps heavily depends on
the number of cut edges created by the partition.

13

4. Determining the Boundary

During the metric dependent precalculations, for each cell of the partition the distances
between all vertices having edges leaving the cell, called cell boundary vertices, are cal-
culated. Starting with lowest level of the multi level partition, for each cell we calculate
the distance between all cell boundary vertices by running many-to-many queries on the
subgraph induced by the vertices of the cell using Dijkstra’s algorithm. Between each pair
of cell boundary vertices we then insert shortcut edges using their distance as weight. For
a specific level the overlay graph is the graph containing all boundary edges of all cells of
that level and the cut and shortcut edges connecting them. For cells of higher levels the
many-to-many queries are run using only the overlay graph of the level below.

One-to-one queries, from source vertex s to target vertex t, are answered by using a
bidirectional variant of Dijkstra’s Algorithm. Once boundary vertices are encountered the
algorithm increases the level it is operating on to the highest level this vertex is a boundary
vertex for, but not beyond the lowest level for which start and target vertex reside in the
same cell. It then continues on the overlay graph of that level. When the first vertex v
is settled by both, the forward and the backward search, the query is finished and the
distance d(s, t) between s and t is d(s, v) + d(v, t).

4.3.2 Our Adaptations

For our range queries we need to make some adaptations: During the metric-independent
precalculations edges added by the triangulation are ignored since they do not help routing,
but significantly increase the number of cut edges. As stated above, keeping the number
of cut edges low is required for fast queries.

Since our range queries have no target vertex, we cannot use a bidirectional version of
Dijkstra’s algorithm and instead use the original one. Whenever we encounter a boundary
vertex v while running Dijkstra’s algorithm, we always try to continue using the overlay
graph of the highest level v is a cell boundary vertex for. However, as long as we find at
least one shortcut edge for the current level adjacent to v that cannot be traversed with
the remaining range, we descend to the overlay graph of the next lower level and retry.
If all adjacent shortcut edges of the cell are traversable we mark this cell as completed.
This serves two purposes: First descending from completed cells is unnecessary as we
already know all vertices within to be reachable. Second during visualization we might
encounter vertices that are marked unreachable because CRP found a cell they are in to be
completely reachable. This happens if edges added by the triangulation connect vertices
of different cells of which at least one is not a boundary vertex. Since we are ignoring
these edges when creating the partition this is a common occurrence.

In Chapter 3 we noted that the reachable area may enclose unreachable vertices. If for
a cell boundary vertex of a cell containing such ”hole” all shortcut edges are traversable,
our adaptation of CRP would incorrectly mark the cell as completed and not find that
hole. To compensate we compute the diameter of each cell during the metric-dependent
precalculations and revise the condition causing us to descend: Instead of descending if
some shortcut edges are not traversable, we now descend if the cells diameter is greater
than the remaining range.

Marking the edges of the boundary in a similar way to our adaption of Dijkstra’s algorithm
does not work, because it only marks settled vertices as reachable. CRP however tries not
to explore all vertices and thus only boundary vertices and regions where we descended on
the original graph would be marked reachable. Instead we mark an edge (u, v) to be part
of the boundary only if the following three conditions are met:

• The edge (u, v) must be part of the original graph (i.e. not a shortcut edge),

• the edge can not be traversed, and

14

4.3. Acceleration

• the vertex v is neither marked as reachable nor one of the cells v is in is completed.

This might not find all boundary edges, but at least one per unreachable area. Due to the
original graph being strongly connected for each unreachable area there must be at least
one edge e not added by the triangulation connecting a reachable vertex u with a vertex
v of the unreachable area. If e is not a cut edge, it will force our adaptation of CRP to
descend to the original graph since the diameter of the cells containing u (or v) are greater
than the remaining range. In either case we will settle u and while doing so relax e, which
will mark e as being on the boundary since it cannot be traversed as its weight is greater
than the remaining range. In Chapter 5 we will show that finding a single boundary edge
per unreachable area suffices to determine a correct solution.

15

5. Visualization

In this chapter we address the second subproblem of RefinedRangePolygon. Given
the boundary create a visual representation of it.

The goal for the visualization is to quickly convert the boundary into a set of polygons
solving the RefinedRangePolygon problem. First we split the boundary into several
”tubes”. Each tube contains the information required to create a single polygon for the
final solution. Starting from a face adjacent to an arbitrary boundary edge, we store the
coordinates of the vertices of the boundary edge we picked and whether they are reachable
into the tube. We then traverse the triangulation crossing only boundary edges. For
each face encountered we store the coordinates of the vertex not shared with the previous
face and whether it is reachable into the tube. All boundary edges encountered while
doing this are marked as not being on the boundary to prevent converting the same part
of the boundary multiple times. From this we can deduce that it suffices to only mark
one edge as being on the boundary to find the corresponding tube. The time required
to gather the tubes depends on the time required to find an arbitrary marked edge and
to clear that marking on random edges and lies in O(t · O(FindMarkedEdge) + b ·
O(ClearMarking)), where t is the number of tubes and b the number of boundary
edges.

5.1 Basic Approach

Our basic approach is similar to marching cubes: For each boundary face we use the
coordinates used for embedding to calculate the middle points of the two boundary edges
(the blue edges in Figure 3.2) and draw a line between them. While iterating over the
points of a tube we save the last point we encountered on each side of the boundary as bin
and bout. Initially these are the first two points in the tube, which are guaranteed to lie on
different sides of the boundary. We then iterate over the points in the tube, starting with
the third. We will call the point we are currently considering p. Assuming p is reachable,
we draw a line segment between the middle points of (bin, bout) and (p, bout), and then
replace bin by p. If, when calculating middle points, one of the points happens to be the
infinite vertex, which has no defined coordinates, we use the point that is not the infinite
vertex as middle point. If p is not reachable we do the same, but replacing occurrences
of bin with bout and vice versa. A demonstration for both cases can be seen in Figure
5.1. We then continue with the next point until we reach the first two points of the tube
again and close the polygon. An example is shown in Figure 5.2(a). This basic approach

17

5. Visualization

p

b bin out

(a) Vertex p is
reachable

p

b bin out

(b) Vertex p is not
reachable

Figure 5.1: Demonstration showing the line segment drawn (thick line), depending on
whether the vertex p is reachable. Filled vertices are reachable. Blue edges are
boundary edges, green edges are part of the inner border, red ones belong to
the outer border.

generates one line segment per boundary edge and takes O(b) time where b is the number
of boundary edges.

5.2 Stabbing

The basic approach tends to create zigzag lines due to always using the middle points of
boundary edges, as shown in Figure 5.2(a). Most of these zigzag lines could be replaced by
fewer straight lines intersecting multiple boundary edges, which reduces drawing complex-
ity. This caused us to improve our basic approach: Instead of simply connecting middle
points, we now try to minimize the number of line segments of the polygon. We try to
greedily expand the current line segment until we can no longer do so without violating
RefinedRangePolygon.

Besides bin and bout, we now also save the start point s of the current line segment and a
cone c originating from s. Initially bin and bout are the first two points in the tube and s
is their middle point. The cone c contains the semicircle originating from s and delimited
by the lines cin = (s, bin) and cout = (s, bout) that includes the third point of the tube.
We iterate over the points in the tube, starting with the third, and call the the currently
considered point p. From now on we will assume p is reachable, if p is not reachable the
same algorithm applies, but with occurrences of the indices ”in” and ”out” swapped. First
we check the position of p compared to c. There are three cases, which are illustrated in
Figure 5.3. If p is inside the cone c, cin is updated to (s, p). This makes the cone smaller,
which is done because the line segments excluded by updating cin do not intersect the
current boundary edge (p, bout). If p lies outside of c and both lie on different sides of cin,
we do nothing. Expanding the cone would allow line segments which do not intersect all
previously encountered boundary edges. If p lies outside of c and both lie on the same
side of cin, updating cin would cause the order of the lines delimiting c to swap. This
means we cannot draw a straight line from s to any point of the boundary edge (p, bout)
without violating RefinedRangePolygon. Therefore we draw a line from s to the last
boundary edge and set up a new starting point and cone. This is done by calculating
the intersection point q of cout and (bin, bout), drawing a line from s to q and setting s
to q. Drawing the first line for each tube is skipped to allow removing or optimizing the
placement of the first starting point. The cone c is updated to the new starting point by
setting its delimiting lines to cin = (s, p) and cout = (s, bout). The boundary edge (p, bout)
is considered to be on the inside of c. In the degenerate case, i.e., when s equals bout, cout is
set to (s, bin) and the edge (bin, p) is considered to be outside of c. In any case, independent
of the position of p, bin is replaced by p and the iteration continues with the next point.
We stop iterating over the tube when we reach the starting point of the first drawn line
segment again. Algorithm 5.1 is a pseudo-code representation of the described algorithm.

18

5.3. Merging

(a) Basic approach (b) Stabbing

(c) Merging

Figure 5.2: Example outputs of different versions of our approach. The source vertex for
the query is assumed to be on the right of the shown part of the graph. Filled
vertices are reachable, filled faces are boundary faces. Colored edges are also
part of the boundary: Blue edges are boundary edges, green edges are part of
the inner border, red ones belong to the outer border. Thick lines represent
line segments generated by the different versions.

The stabbing approach also requires O(b) time, but has a higher constant compared to the
basic approach due to geometric computations. An example is shown in Figure 5.2(b).

5.3 Merging

While using the stabbing approach is a huge improvement over the basic one, it still is an
exact representation of the boundary, and as such replicates every feature of it. Motor-
way intersections that are only partially reachable typically cause the stabbing approach
produces many short lines. Roads causing an outward ”spike” are another example where
the visualization can be improved by allowing errors. Therefore we allowed errors, and as
result no longer solve RefinedRangePolygon but RelaxedRangePolygon. We first
generate an exact solution using the stabbing approach. Then we iterate over all generated
polygons recursively merging adjacent lines if their uncommon endpoints are closer than
a given distance d and we do not mark unreachable area as reachable. For distance based
queries we choose d = r/10. As we forbid including unreachable area this is a conservative
solution for RelaxedRangePolygon.

While this improves the visualization in the mentioned cases, we noticed the outer polygon
intersecting polygons created for holes near the outer polygon, which definitely is undesir-
able. To amend this we also decided to merge hole polygons into the outer polygon if they
are close enough to possibly intersect. Before merging line segments as described above,
we find pairs (p, q) of points of the outer polygon and a hole polygon whose distance is less
than d/2. The hole polygon is then merged into the outer one by splitting both polygons
at p and q, and inserting two lines (p, q) and (q, p) connecting both polygons. As the hole
polygon is now part of the outer polygon we check the remaining hole polygons for points
near the new part of the outer polygon and recursively merge them if required. We chose
the distance d/2 because any point lying on a line segment between two points, which are

19

5. Visualization

Algorithm 5.1: Stabbing

Input: Tube T
Data: Cone c, delimited by lines cin and cout, current start point s, current point

p, last encountered points on each side bin and bout
Output: Range polygon P for tube T

// Initialization

1 P← ()
2 if T(1) is reachable then
3 bin ← T(1)
4 bout ← T(2)

5 else
6 bin ← T(2)
7 bout ← T(1)

8 s← midpoint(bin, bout)
9 cin ← (s, bin)

10 cout ← (s, bout)
11 firstLine← null

// Main loop

12 for i← 3, true, i← i+ 1 mod |T| do
13 p← T(i)
14 if firstLine = (p, bout) then
15 P← P ∪ (P(1))
16 break

17 if p is reachable then
18 if p inside c then
19 cin ← (s, p)

20 else if p and c same side of cin then
21 q ← intersect(cout, (bin, bout))
22 if firstLine = null then
23 firstLine← (bin, bout)

24 P← P ∪ (q)
25 s← q
26 cin ← (q, p)
27 cout ← (q, bout)

// (p, bout) is inside c
28 if q = bout then
29 cout ← (q, bin)

// (p, bin) is outside c

30 else
// Same as the if part, but with occurrences of the indices

"in" and "out" swapped.

31 return P

20

5.3. Merging

s p

b

b

in

out

cout

inc

(a)

s

pb

b

in

out

inc

outc

(b)

s

p

b

b

in

out

q

inc

outc

(c)

Figure 5.3: Updating the cone dependent on the position of p, assuming p is reachable. The
non-dashed lines originating from s represent the lines cin and cout delimiting
the current cone, the dashed line (s, p) is the currently considered update to
the cone. The filled area represents the area inside the updated cone. The
colored lines carry the same meaning as in earlier figures: Blue lines represent
boundary edges, while green lines are edges of the inner border.
(a): The point p is inside the cone and the delimiting line cin is updated to
(s, p).
(b): The point p is outside of the cone, but p and the cone lie on different
sides of cin. Updating the cone would make it larger, which would allow lines
that do not intersect all previously encountered boundary edges. Therefore the
cone is not updated.
(c): The point p is outside of the cone and p and the cone lie on the same
side of cin. Note that the boundary edge (p, bout) has no point inside the cone.
Enlarging the cone is not an option for the same reason as in (b). Therefore
we calculate the intersection point q of cout and (bin, bout), draw the (thick) line
segment (s, q) and update the cone to the new starting point.

21

5. Visualization

a distance d apart, cannot be further away from the closest endpoint.As we are calculating
the distance between all points of the outer polygon and all points of all hole polygons,
the time required is quadratic in the number of line segments generated by stabbing. In
the worst case (when generating one line segment for each boundary edge) the total time
required is O(b2). An example can be seen in Figure 5.2(c).

5.4 Alpha Shapes

We will compare our approach with the Alpha Shape [EKS83] of all reached vertices.
Alpha Shapes do not use the boundary but reconstruct the surface of a point set only
using the parameter α. The parameter α is chosen to be the smallest value that results
in a single shape (possibly with holes). Having multiple shapes would be interpreted as
vertices in one shape not being reachable from the other. On the other hand a small α is
desired to keep the inclusion of unreached vertices low.

22

6. Experiments

All experiments were run on a server with two Intel Xeon E5-2670 for a total of 16 cores
clocked at 2.6GHz. The experiments only used a single core. The server has 64GiB of RAM
and runs openSUSE 12.2. Our programs were compiled using GCC version 4.7.1 with full
optimizations and disabled assertions (i.e. -O3 -DNDEBUG). The road network used was the
German road network which was provided by the PTV AG. It has 4692092 vertices and
10806191 edges. After planarization the graph has 4745133 vertices and 11423669 edges.
17047117 additional edges were added by the triangulation.

For the precalculations we used a slower machine with four AMD Opteron 6172, a total of
48 cores clocked at 2.1GHz. This machine has 256GiB of RAM and also uses openSUSE
12.2 as operating system. The precalculations were split into two parts. Parsing and
triangulating the map data only used a single core and took about 12 minutes for the
German road network. For constructing a partition for CRP we used Buffoon [SS12],
which took 28.5 hours and used 16 cores. The created partition has four levels. The
highest level has 32 cells and the lower levels have 16 times the number of cells of the level
directly above. The metric-dependent precalculations for CRP took less than a second.

Using the Euclidean distance in meters as metric, we ran queries for ranges ranging from
50km to 500km in 50km increments. For each range we chose 1000 start vertices uniformly
at random and measured the time required to determine the boundary with our adaptations
of Dijkstra’s algorithm and CRP. Due to a bug in our adaptation of CRP, CRP sometimes
incorrectly marked a few additional vertices as reachable, resulting in a slightly larger
boundary compared to the one produced by Dijkstra’s algorithm. Since these errors were
small and we do not expect the runtime of a correct implementation to significantly change,
we still present the time CRP used. We also measured the time needed to calculate and
visualize the range polygons and the number of line segments produced by each version of
our approach. For comparison we include Alpha Shapes and the convex hull. The results
for the visualization are based on the boundary calculated by our adaptation of Dijkstra’s
algorithm.

Table 6.1 shows the average time used by our adaptations of Dijkstra’s algorithm and CRP
for each range. The speedups of CRP compared to Dijkstra’s algorithm are significantly
smaller than those achieved by one-to-one queries. This can be explained by CRP having
to explore more vertices for range queries compared to one-to-one queries, where start and
target are a given distance apart, whereas the work done by Dijkstra’s algorithm is the
same in both cases. The speedup of CRP increases as the range increases, since higher

23

6. Experiments

Range Dijkstra CRP

50 km 118 ms 71.7 ms
100 km 331 ms 110 ms
150 km 680 ms 167 ms
200 km 1.11 s 256 ms
250 km 1.65 s 357 ms
300 km 2.07 s 450 ms
350 km 2.84 s 550 ms
400 km 3.16 s 618 ms
450 km 3.72 s 675 ms
500 km 4.21 s 711 ms

Table 6.1: Average time required to determine the boundary.

levels of the multi-level partition can be used and bigger parts of the graph can be ”skipped
over”. However a maximal speedup of 6 is very slow compared to speedups of ”more than
3000” [DGPW11] for one-to-one queries.

Table 6.2 shows average time required to run the visualization algorithms and Table 6.3 the
average number of lines they generate. While the basic approach is by far the fastest visu-
alization algorithm, it also produces one line per boundary edge. The stabbing approach
reduces the number of line segments by about 90% but takes significantly longer. The time
increase is caused by using CGAL’s exact construction kernel, which uses an exact number
representation for which arithmetic operations are slower. The inaccuracies of the inexact
construction kernel, which uses doubles as internal number representation, would be ac-
ceptable for our work, but the stabbing approach tends to place polygon points on or very
close to vertices of the boundary, causing geometric tests to frequently fail due to floating
point errors. Using the merging approach reduces the number of line segments by another
66%. For small ranges the time increase caused by merging polygons is insignificant, for
larger ranges the quadratic behavior becomes more apparent. For ranges above 400km the
time required and (excluding the merging approach) the average number of line segments
decreases. This happens because the border of the map is more frequently encountered,
which causes edges adjacent to the infinite vertex of the triangulation to become boundary
edges. As there is only one such edge per vertex in the convex hull, the number of edges
on a section of outside of the convex hull is typically less than on an equally long section in
the interior of the graph. With ranges of 450km and above, picking a vertex in the middle
of Germany as start vertex range queries can cover the whole map. In that case only the
edges adjacent to the infinite vertex are boundary edges causing the range polygon to be
similar to the convex hull.

The construction of Alpha Shapes is slow because they require a triangulation of the point
set. Reusing the triangulation calculated for the original graph is impractical as copying
the triangulation and then locating and removing the points not in the alpha shape point
set would take longer than just recalculating the triangulation unless almost all vertices
are reachable.

A comparison between all versions of our approach, Alpha Shapes and the convex hull can
be seen in Figure 6.1. While the area enclosed by all algorithms are similar, the created
polygons are very different. The zigzag lines created by our basic approach are clearly
visible 6.1(a). The part covering France however uses only a few, relatively long lines.
This happens because, since we used the German road network, the graph contains no
vertices outside of Germany and we can only encounter edges added by the triangulation,
resulting in a sparse graph with large faces. Remember that the basic approach creates

24

Range Basic Stabbing Merging Alpha Shapes

50 km 357 µs 14.1 ms 15.5 ms 1.83 s
100 km 677 µs 26.9 ms 33.5 ms 8.71 s
150 km 862 µs 34.4 ms 45.3 ms 19.5 s
200 km 1.02 ms 39.0 ms 54.1 ms 34.7 s
250 km 1.04 ms 43.7 ms 64.3 ms -
300 km 1.16 ms 46.7 ms 77.3 ms -
350 km 1.50 ms 52.1 ms 98.6 ms -
400 km 1.40 ms 59.6 ms 122 ms -
450 km 1.37 ms 58.1 ms 116 ms -
500 km 1.33 ms 52.9 ms 98.3 ms -

Table 6.2: Average time required for the visualization algorithms. The time required to
calculate the convex hull is not included because Alpha Shapes were used to
generate the convex hull. Both were not measured beyond the 200km range due
to time constraints.

Range Basic Stabbing Merging Alpha Shapes Convex hull

50 km 2642 241 106 498 33
100 km 5084 464 131 735 40
150 km 6530 598 143 926 43
200 km 7415 675 158 1160 44
250 km 8301 761 172 - -
300 km 8686 803 210 - -
350 km 9526 874 272 - -
400 km 10276 988 390 - -
450 km 9973 961 411 - -
500 km 9006 859 402 - -

Table 6.3: Average number of lines generated for the visualization algorithms. For ranges
greater than 200km range Alpha shapes and convex hull were not generated due
to time constraints.

25

6. Experiments

one line segment per boundary face encountered. The stabbing approach 6.1(b) is able to
replace most zigzag lines with straight lines, significantly reducing the complexity of the
polygons, resulting in a more appealing visualization. The merging approach 6.1(c) looks
similar to the stabbing approach, but removes some ”spikes” (e.g., at the northern end of
the A5, near the top right of the images) at the cost of marking some reachable areas as
unreachable. Using the convex hull 6.1(e) in this case creates a smooth looking, but still
accurate result. It marks unreachable areas as reachable however. Alpha Shapes produce
the most different result 6.1(d), since it, like the convex hull, only uses the set of reachable
vertices, but not the boundary. The outer polygon has some inward ”dents” and there are
some holes, which can not be found in the other visualizations. These dents and holes are
created because there are no reachable vertices within them, but Alpha Shapes depend
on vertices being close to each other (less than 2

√
α apart) to not create a hole between

them. As result, sparse regions of the graph tend to be marked as unreachable by Alpha
Shapes. In Figure 6.2 the merging approach marks a relativly large area as unreachable
due to merging the hole in the lower part of the image. The query causing this result has
a range of about 100km and the excluded area has a width of about 4km. In Figure 6.3
the convex hull create a large error, since it is not aware of the geographic setting of the
query. The algorithms not shown in the last two figures behave in the same way as shown
in Figure 6.1 and show no special proterties, the stabbing algorithm is shown as a correct
solution to compare to.

26

(a) Basic approach (b) Stabbing

(c) Merging (d) Alpha Shapes

(e) Convex Hull

Figure 6.1: A comparison between all versions of our approach, Alpha Shapes and the
convex hull. The A marker indicates the starting point.

27

6. Experiments

(a) Stabbing (b) Merging

Figure 6.2: A comparison demonstrating an error created by the merging approach.

(a) Stabbing (b) Convex Hull

Figure 6.3: A comparison demonstrating an error created by the convex hull.

28

7. Conclusion

In this work, we first introduced the RangePolygon problem and defined the boundary.
We then developed a solution for both subproblems. To determine the boundary of the
reachable vertices within a given range of a given source vertex, we adapted Dijkstra’s
algorithm to this problem and used CRP as speedup technique. To create a visual rep-
resentation of the boundary, we developed an algorithm related to marching cubes. To
reduce the number of line segments generated we then replaced it by a line stabbing ap-
proach. We also introduced a relaxed version of the problem, RelaxedRangePolygon,
and created a conservative visualization algorithm for it, which is based on the stabbing
approach. Finally we compared the different algorithms with Alpha Shapes and the convex
hull. As result we find, depending on whether exactness is required, the stabbing or the
merging approach to create the best result. Both out-perform Alpha Shapes in terms of
computation time required and number of line segments generated. The basic approach is
much faster, but generates too many line segments.

Finally we raise some questions, defining areas for future work. We observed the speedup
of using CRP instead of Dijkstra’s algorithm for range queries to be very small compared
the speedup during one-to-one queries. This raises the question if there are speedup
techniques which make use of the fact that only the reachability of a vertex must be
determined. Remember that neither the actual distance of a vertex from the start vertex
nor the shortest path tree is needed.

Our implementation of the stabbing approach currently requires computations to be per-
formed exact, due to errors introduced by normal floating point arithmetic. Identifying
and avoiding the cases where standard floating point arithmetic fails could improve the
runtime of the stabbing algorithm significantly. In [GHMS93] it is shown that minimiz-
ing the number of line segments for similar stabbing algorithms is NP-hard. We expect
our version to be NP-hard as well. Can it be guaranteed that our version is never worse
than a constant factor compared to the optimal solution, i.e., the solution with the min-
imal number of line segments? Are there other stabbing algorithms producing less line
segments?

Can the RefinedRangePolygon problem be efficiently solved in dynamic use cases?
Given the inputs for the RefinedRangePolygon and a path whose first vertex is the
source vertex, are there algorithms to calculate the range polygons for all vertices along
the path that can reuse information gained from an earlier vertices? What if the path is
not known a-priori?

29

Bibliography

[CGA] CGAL Documentation, 2D Alpha Shapes. http://www.cgal.org/Manual/

latest/doc_html/cgal_manual/Alpha_shapes_2/Chapter_main.html. Ac-
cessed: 2013-05-30.

[Che89] L Paul Chew. Constrained delaunay triangulations. Algorithmica, 4(1-4):97–
108, 1989.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, 2nd edition, 2001.

[DGNW12] Daniel Delling, Andrew V. Goldberg, Andreas Nowatzyk, and Renato F. Wer-
neck. PHAST: Hardware-accelerated shortest path trees. Journal of Parallel
and Distributed Computing, 2012.

[DGPW11] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck.
Customizable Route Planning. In Pardalos and Rebennack [PR11], pages
376–387.

[Dij59] Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs.
Numerische Mathematik, 1:269–271, 1959.

[DSSW09] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. Engi-
neering Route Planning Algorithms. In Jürgen Lerner, Dorothea Wagner, and
Katharina A. Zweig, editors, Algorithmics of Large and Complex Networks,
volume 5515 of Lecture Notes in Computer Science, pages 117–139. Springer,
2009.

[EKS83] Herbert Edelsbrunner, David Kirkpatrick, and Raimund Seidel. On the shape
of a set of points in the plane. Information Theory, IEEE Transactions on,
29(4):551–559, 1983.

[GHMS93] Leonidas J Guibas, John E Hershberger, Joseph SB Mitchell, and Jack Scott
Snoeyink. Approximating polygons and subdivisions with minimum-link
paths. International Journal of Computational Geometry & Applications,
3(04):383–415, 1993.

[GV11] Robert Geisberger and Christian Vetter. Efficient Routing in Road Networks
with Turn Costs. In Pardalos and Rebennack [PR11], pages 100–111.

[KS86] David G Kirkpatrick and Raimund Seidel. The ultimate planar convex hull
algorithm? SIAM journal on computing, 15(1):287–299, 1986.

[LC87] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution
3d surface construction algorithm. In ACM Siggraph Computer Graphics,
volume 21, pages 163–169. ACM, 1987.

[LS80] Der-Tsai Lee and Bruce J Schachter. Two algorithms for constructing a delau-
nay triangulation. International Journal of Computer & Information Sciences,
9(3):219–242, 1980.

31

http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Alpha_shapes_2/Chapter_main.html
http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Alpha_shapes_2/Chapter_main.html

Bibliography

[PR11] Panos M. Pardalos and Steffen Rebennack, editors. Proceedings of the 10th
International Symposium on Experimental Algorithms (SEA’11), volume 6630
of Lecture Notes in Computer Science. Springer, 2011.

[SS12] Peter Sanders and Christian Schulz. Distributed Evolutionary Graph Parti-
tioning. In Proceedings of the 14th Meeting on Algorithm Engineering and
Experiments (ALENEX’12), pages 16–29. SIAM, 2012.

[VK96] Marc Van Kreveld. Efficient methods for isoline extraction from a tin. Inter-
national Journal of Geographical Information Systems, 10(5):523–540, 1996.

[Vol08] Lars Volker. Route Planning in Road Networks with Turn Costs, 2008. Stu-
dent Research Project. http://algo2.iti.uni-karlsruhe.de/documents/
routeplanning/volker_sa.pdf.

[Win02] Stephan Winter. Modeling Costs of Turns in Route Planning. GeoInformatica,
6(4):345–361, 2002.

32

http://algo2.iti.uni-karlsruhe.de/documents/routeplanning/volker_sa.pdf
http://algo2.iti.uni-karlsruhe.de/documents/routeplanning/volker_sa.pdf

	Contents
	1 Introduction
	2 Preliminaries
	2.1 Computational Geometry
	2.2 Graphs
	2.3 Dijkstra's Algorithm

	3 Problem Statement
	4 Determining the Boundary
	4.1 Precalculations
	4.2 Basic Routing Algorithm
	4.3 Acceleration
	4.3.1 Basic CRP
	4.3.2 Our Adaptations

	5 Visualization
	5.1 Basic Approach
	5.2 Stabbing
	5.3 Merging
	5.4 Alpha Shapes

	6 Experiments
	7 Conclusion
	Bibliography

