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Abstract

This bachelor thesis focuses on the integration of turn costs in route planning for
electric vehicles. First the information provided by the PHEM [HRZL09] data is used
to create consumption values for turn costs. An accordingly appropriate matching
principle is described to link costs of brake or acceleration maneuvers extracted from
this data to turns in graphs representing road networks. Next two types of graph
extensions that can hold these values are presented, along with the corresponding
methods required to generate them from graphs without turn costs. Further the
alterations required by the Dijkstra routing algorithm [Dij59] to process these graph
types are presented. The resulting optimal path computation algorithms, along with
their different graph types, are then compared to each other in a series of experiments.
Lastly a case study is used to show the various differences in routing with turn costs.

Deutsche Zusammenfassung

Diese Bachelorarbeit befasst sich mit der Integration von Wendekosten in der Routen-
planung für Elektrofahrzeuge. Als erstes werden die von PHEM [HRZL09] bereit-
gestellten Daten genutzt um Verbrauchswerte für Wendekosten zu erstellen. Ein
entsprechend angemessenes Prinzip wird beschrieben, um die Kosten für Brems- und
Beschleuningungsvorgänge, die aus diesen Daten gewonnen werden, auf Abbiegungen
in Graphen, die Straßen Netzwerke repräsentieren, abzubilden. Danach werden zwei
Arten von Graphen Erweiterungen die diese Werte speichern können vorgestellt,
zusammen mit den entsprechenden Methoden die dazu benötigt werden um diese
Größen für Graphen ohne Wendekosten zu generieren. Des Weiteren werden die
Änderungen, die für den Dijkstra [Dij59] Algorithmus für Routenplanung erforderlich
sind, um diese Graphen Typen zu bearbeiten, vorgestellt. Die resultierenden Algo-
rithmen, zusammen mit ihren passenden Graphen Typen, werden dann in einer Reihe
von Experimenten miteinander verglichen. Als letztes wird eine Fallstudie durchge-
führt, die die unterschiedlichen Veränderungen von Routenplanung mit Wendekosten
aufweist.
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1. Introduction

Our consumer society is nearing a critical event as the fuel prices keep rising and the
natural resources required for transportation rapidly near their end. At some point fuel
based vehicles will inevitably be put to rest and a successor will be necessary to uphold the
current standard of supply many countries have grown accustomed to. Although means
of transportation such as trains and ships prove to be a more cost efficient choice for
certain jobs, and some of these already run on renewable energy sources, road vehicles
will never be completely replaceable. Among the alternatives to gasoline and the various
other materials that currently power most of the motor vehicles worldwide electric energy
is one of the few which are currently in real life use. However, electric vehicles and electric
vehicle routing both still present some space for enhancement before they can effectively
take over the needs and wants of users around the globe. The main limit they present is
the distance which can be driven before a recharge must occur. The main course of action
is to improve the battery lifetime, or optimize the estimation of the current energy level
available. Depending on which routes are taken, what the weather and traffic conditions
are present or what the average speed is certain destinations might be reached under the
right conditions, while disregarding these aspects might lead to an empty battery just a
few street corners away from the next charging station. More than anything an accurate
estimate of the toll each journey will have on the battery, and whether or not these are too
high, is crucial. Lots of factors have their influence on this, one of which has yet to take its
place in every route planer. Most of these use the average consumption each portion of a
road has to calculate the total cost of a journey while ignoring those that appear during the
process of turning from one street to the next. These might not seem like much but added
up they can make a significant difference. Since every intersection presents a multitude of
different turns their individual toll can not be generalized. Hence a different approach is
necessary to implement this feature. This thesis describes such an approach.

Related Work

The grounds on which optimal routing is conceived are tied to finding the most efficient
path between two points within a graph. The commonly used solution for this problem is
delivered by Dijkstra [Dij59]. Routing works differently depending on what values need
to be optimised. When routing for electric vehicles the general concept changes since
the shortest path is no longer decisive, but rather the one which minimizes the battery
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1. Introduction

consumption. The resulting energy-optimal routing, along with the battery constraints that
are given by electric vehicles, are described by Baum et. al [BDPW13]. This type of routing
can provide negative values, as demonstrated by Artmeier et. al [AHLS10], which can lead
to negative cycles. Having such cycles at work in a graph keeps algorithms like Dijkstra’s
from terminating. Methods for finding these, or proving that none exist for a specific graph
are presented by Cherkassky et. al [CGG+10]. On graphs free of negative cycles virtually
removing the remaining negative values can be achieved by applying potentials shifting, a
technique granted by Johnson [Joh77]. While turns do not affect shortest paths they have
an impact on the battery life in electric vehicles, and are hence relevant to energy-optimal
routing. The concept of turns within a road graph, as well as the Customizable Route
Planning speedup technique, is depicted by Delling et. al [DGPW13]. The method for
adding turn costs for each intersection to a graph by storing these in different of tables is
described by Geisberger et. al [GV11]. This model uses the edge-based Dijkstra algorithm,
which is analysed by Volker [Vol08] and Winter [Win02]. The latter of the two previously
mentioned also presents the alternative to turn cost lists, which is based on expanding the
graph and adding virtual nodes and edges to accommodate turn costs.

Outline

Preliminary notions regarding graphs and routing, along with speed-up techniques, electric
vehicles and a description of the source used to generate turn costs are covered by Chapter
2. Chapter 3 covers the concept of turns, turn costs and the method with which they are
generated and matched to intersections. Chapter 4 begins by illustrating storage methods
related to the two types of graphs with turn costs regarded in this thesis, together with
the removal of negative cycles. Next it depicts the alterations to the Dijkstra optimal path
algorithm to process turn cost, along with the issues that arise with them and the changes
made to the corresponding speed-up techniques. Various experiments with the resulting
graph types and algorithms on country scale road networks are shown in Chapter 5, and
Chapter 6 presents a case study. Chapter 7 covers the conclusions drawn from this thesis
as well as future work suggestions.
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2. Preliminaries

This chapter covers basic concepts on which this thesis is built upon. It provides an
introduction to graphs, paths and optimal path calculation, including basic notions regarding
electric vehicles.

2.1 Graphs

Among a great variety of uses graphs can represent the basic structure of a street network.
The following properties are generally required by such graphs. A graph G = (V,E) is
composed of a finite set of vertices, or nodes V , and one of edges E. Pairs of vertices
u, v ∈ V can be connected by directed edges e = (u, v) ∈ E. Such edges can represent one
way streets, or situations where a graph G contains (u, v), but does not contain (v, u). In
this case they represent intersections and streets. Two nodes u and v connected by any
edge are neighbours, or adjacent. In order to compare routes with each other every edge e
is associated with a weight c : E → R, resulting in weighted edges. Directed and weighted
edges (u, v) and (v, u) can have different weights. Any two vertices are connected if a path
between these two exists. If each vertex can be reached by all others then it is a connected
graph. Each vertex v ∈ V defines:

inc(v) = |(u|(u, v) ∈ E)|

out(v) = |(u|(v, u) ∈ E)|

tot(v) = |(u|(u, v) ∈ E ∨ (v, u) ∈ E)|

These represent the number vertices with incident and outgoing Edges to and from v,
as well as the total number of adjacent vertices. The inequality tot(v) ≤ inc(v) + out(v)
applies. A pair of edges (u, v), (v, w) ∈ E are consecutive. As described in the next section
graphs must not contain negative cycles, even though they may contain negative weights.
Additional information regarding the real life situation of the intersections and streets
represented by G are required. Each node is associated with its corresponding geographic
height and coordinates, and each edge records length, road type and average driving speed.
The weight of an edge, as recorded in a graph, must not necessarily be its length, but it
will most likely depend on it.
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2. Preliminaries

2.2 Paths
Within a graph G = (V,E) a succession of n ∈ N, n ≥ 2 nodes P = (v1, . . . , vn) with
∀i ∈ {0, . . . , n− 1} : (vi, vi+1) ∈ E constitutes a path. All such paths contain one or more
subpaths S = (vi, . . . , vj) with 1 ≤ i < j ≤ n. These are formally described by S ⊆ P . A
paths that fulfills the quality P = (v1, v2, . . . , vn−1v1) is called cycle. If a weight function c
is presented with the graph then the total weight of a path is defined as

c(P ) =
n−1∑
i=1

c(vi, vi+1)

Cycles with c(P ) < 0 are negative cycles. The different paths connecting two vertices
v, w ∈ V can be compared to each other, and an optimal path P ∗ = (v∗, . . . , w∗) with
∀P = (v, . . . , w), P 6= P ∗ : c(P ∗) ≤ c(P ) can be calculated. Such paths are free of any type
of cycles, or acyclic. The weight function c may represent the length of the edges within a
graph, that leads to paths of minimum length, or it may represent the energy cost that
each edge requires in order to be traversed, resulting in energy optimal paths. In the latter
case c can contain negative values.

2.3 Optimal Path Calculation
With all the concepts necessary to understand optimal paths covered a way to calculate
them in an efficient manner is now required. To do this the probably most well known
and wide spread solution for such purposes, as depicted by Algorithm 2.1, which was first
described by Dijkstra in 1959, is used ([Dij59]). The Dijkstra routing algorithm requires a
connected, weighted graph free of negative cycles. For a given starting vertex it calculates
the optimal path and its weight to any other node. A priority queue data structure is
required to keep track of the vertices currently being processed. This is a type of queue in
which keys can be inserted and that always removes the minimal entry when prompted. A
vertex id will also be linked to each value. Since every node must only be in the queue at
most once an update function must also be available.

At the beginning the starting node s ∈ V is picked. Then the initialization consists in
creating labels for all vertices in the graph, each containing the minimal distance or weight
d(v), which is set to infinity, and a pointer to the previous node along the path pred(v),
that will be set to null. Finally s and d(s) = 0 are added to the queue and run the main loop.

On each iteration the loop checks for the next value in the priority queue, and stops
if it is empty. If not, then it returns the vertex u with the smallest weight d(u) among the
ones currently processed. All its outgoing edges (u, v) ∈ E are retrieved and the nodes
which have a higher weight d(v) than d(u) + c(u, v) are sought. Those that are found are
eligible for further processing and get added, or update their new value to the queue, as
appropriate. Each one also has its predecessor set to u in order to accommodate the path
output. d(v) can have a different value than infinity at this point, which would just mean
that a path to v had already been found, but was not optimal. After the loop halts the
minimum weight and optimal path for any vertex can be retrieved. This is done by adding
the chosen target node to a vector and then sequentially adding the parent of the last entry
of the vector to it until this entry is the starting node. Reversing this vector provides the
optimal path.
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2.3. Optimal Path Calculation

Algorithm 2.1: Dijkstra
Input: Graph G = (V,E, c), source node s
Data: Priority queue Q
Output: Distances d(v) for all v ∈ V , shortest-path tree of s given by pred(·)
// Initialization

1 forall v ∈ V do
2 d(v)←∞
3 pred(v)← null

4 Q.insert(s, 0)
5 d(s)← 0

// Main loop
6 while Q is not empty do
7 u← Q.deleteMin()
8 forall (u, v) ∈ E do
9 if d(u) + c(u, v) < d(v) then

10 d(v)← d(u) + c(u, v)
11 pred(v)← u
12 if Q.contains(v) then
13 Q.decreaseKey(v, d(v))
14 else
15 Q.insert(v, d(v))

Stopping Criterion

Graphs that do not contain negative weights can halt at a chosen destination vertex t
as soon as it is removed from the queue, having the optimal weight is given by d(t). If
negative weights are present a different approach is necessary. Otherwise, after reaching
the destination node for the first time other nodes present in the queue might be able to
reach this destination by traversing a negative edge, which can result in a lower destination
distance. In this case halting after having found the optimal result with certainty can be
achieved by using a stopping criterion.

Before running the algorithm the path of minimum weight is calculated. This is found
by running an altered version of Dijkstra from each node within the graph separately,
only traversing edges which lead to a negative weight, and storing the minimum of all
these weights. Once this is done the global minimal weight is acquired. After this the
algorithm can be launched. Every time the target vertex is reached the distance it records
is compared to a global tentative distance, that will be initially set to infinity. When a
lower distance is found, then the tentative distance takes its value and the loop goes on,
running up to the point where the next value that is retrieved from the queue is higher
than the sum of the current tentative distance and the minimal weight. Therefore none of
the vertices remaining in the queue can reach a distance lower than the tentative distance
since no further path can reduce their current one by more than the global minimum.
At this point it is safe to stop the algorithm, knowing that the optimal path and distance
have been calculated for the given source and target vertices.
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2. Preliminaries

Vertex Potentials

The Dijkstra Algorithm in its current form will search through a graph having the weight
of each path as the single relevant factor. This means that all paths in the opposite
direction or up hill will be treated equally. Adding a type of preference to each node in
order to minimize the search space can be realized by using vertex potentials, based on
the descriptions of Johnson [Joh77]. Each vertex is given such a potential, which only
influences its position in the queue. Hence the potential value is added to its current
weight prior to adding to the queue, and removed from the value returned by the queue
prior to processing. Vertex potentials have no impact on the result of the Dijkstra algo-
rithm. Using them on graphs with negative weights removes the need of a stopping criterion.

There are various types of potentials that can be used. This thesis applies query in-
duced potentials. Similar to calculating the path of minimum length, these potentials are
generated by setting the initial distance for all nodes within a graph to zero, adding all of
those that have negative edges to the queue and launching the algorithm. The absolute
value of the resulting weight, that is each vertex’s individual minimal path and initially
at most zero, represents its potential and is stored. This way the vertices that have less
space to be eventually reached more efficiently are processed earlier. Once the target node
is removed from the queue all other weights that are still waiting to be handled, even after
traversing the local minimal path that set the potential for our destination, would present
a higher weight than the one currently processed. The algorithm can safely be halted at
this point, and after removing the potential value the optimal path and weight that were
pursued are available.
An alternative is height induced potentials, that favors paths down hill or at the same
altitude.

Electric Vehicle Routing

Electric vehicles run, opposed to fuel vehicles, on electric energy, and not on some sort of
propellant. Next to advantages like Eco-friendliness and lower travel costs per km these
vehicles, or more precisely the batteries they run on, are able to regain a substantial amount
of energy when the brakes are put on. This means that some maneuvers can have negative
costs. According to Baum et. al [BDPW13] batteries present certain constraints. This
means that there is a minimum and maximum of energy that they can store, and they will
not go under or over these values. This calls for an alteration to the routing algorithm.
Each search will be initiated for a certain battery capacity and current charge. Whenever
an edge weight is subtracted from the current charge the resulting vertex distance is reduced
to the maximum battery capacity if it rises above it and set to infinity, should it drop
below zero, since it would mean that the battery was empty before the node was reached.

Figure 2.1 illustrates the result of adding or subtracting energy from the battery, de-
pending on its current charge. M represents the upper bound of the battery capacity.
Attempting to apply more costs than the current charge is not allowed, causing the function
to return infinity. Charging the battery further than the capacity is also interdicted, leaving
the battery at the maximum capacity instead.
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2.4. Negative Cycle Detection

Figure 2.1: Battery constraints, taken from Baum et. al [BDPW13]

Edge-Based Dijkstra Algorithm

Certain routing approaches can cause vertices to no longer have unique parents. While
this may be the case every edge handled when routing will still have its definite shortest
path. As such routing is still possible, but must be done in a different manner. This effect
is handled by modifying the Dijkstra Algorithm to manage edges rather than vertices,
based on the work of Volker [Vol08] and Winter [Win02]. Edge labels are used, and are
initialized as they would be for nodes. For a starting vertex all its outgoing edges are
added to the queue, with their weights set as their current distances. When an edge is
removed from the queue the node it points to is used to find further outgoing edges for
processing. The increase in distance is managed the same way as before, with the difference
that newly reached vertices do not have their labels edited or parents set, but the edges
that point to them instead. Parent pointers also refer to the previous edge, and not vertex.
In this manner, on any node, all outgoing edges can set their individual previous edge as a
parent. Further alterations made to incorporate turn costs are described in Section 4.4.
The stopping criterion and global minimal weight is computed and applied the same way as
to the original version of the algorithm. Query induced vertex potentials however can not
be used, and a variance to these, based on edges, is required. This is however not covered
in this thesis.

2.4 Negative Cycle Detection
Graphs with negative cycles keep optimal path algorithms from halting, since the iteration
loop will endlessly traverse such a cycle once it reaches one. This is solved with yet another
alteration of Dijkstra’s algorithm, provided by Cherkassky et. al [CGG+10]. All vertex
label distances are initially set to zero, and a search is launched from each node in turn,
like when computing the query induced vertex potentials. On each run where the start
vertex is pulled from the queue and presents a new distance lower than zero a negative
cycle has been found. This has to be removed, and the search must be repeated for the
same vertex until it terminates without finding any further negative cycles. Once all nodes
have been processed the graph is prepared for use in routing. The turn cost vector graph
requires an alteration to this method, which is described in Section 4.3.2.
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3. Turn Cost Modelling

This chapter depicts the turn cost model. It defines turns, turn costs and describes the
parameters according to which they are differentiated as well as the method used to match
them.

3.1 Turns and Turn Costs
Within a graph G = (V,E) or along a path P ∈ G a turn t(e1, e2) with e1, e2 ∈ E
presents a distinct way to traverse a vertex v ∈ V . For it to be a valid turn e1 must
be an incoming and e2 an outgoing edge. Turns around t(e = (u, v), f = (v, u)) are also
valid. Each vertex v presents inc(v) ∗ out(v) possible turns. This signals the fact that the
total number of turns can be multiple times higher than the number of nodes within a graph.

A turn generally consists of two maneuvers: the first is generally a brake maneuver,
that will be completed when in the center of the intersection, and an acceleration maneuver
afterwards. When turning in certain situations, like up or down hill, the type of the two
maneuvers may switch, change, and one or both may even become null. Two different
consumption values result, one for each maneuver, and since depending on the case one of
the two may be negative they cannot simply added to one single value since the battery
constraints might not be respected. For example a turn t(e = (u, v), f = (v, w)) may have
positive deceleration and negative acceleration costs. This situation will occur when a
vertex is on a hill, making e an up hill and f a down hill ride. Considering a case where
the deceleration costs are too high for the current battery life the vehicle will not reach the
top of the hill at vertex v. Adding both costs to a single unit could cause this fact to be
ignored. Hence, in order to ensure that the battery constraints are not violated, the two
costs per turn must be stored separately.

Two different intersections, presenting all the possible turns that traverse them, and
are highlighted by green color, are shown in Figure 3.1. The intersection on the right
displays turns at different angles. These present higher to lower costs from left to right,
as will be explained in the next section. A more common occurrence in road networks is
represented by the other intersection, which also contains a turn around.
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3. Turn Cost Modelling

Figure 3.1: Illustration emphasizing all the turns (green) possible for two different
intersections

3.2 Turn Cost Parameters and Matching
The real world street networks contain a large variety of distinct turn situations, for which
different costs must be available. Each maneuver depends on certain parameters. These
are given by values within the graph or gained by combining them for pairs of maneuvers
that make up a turn.

Parameters

Since the two costs of a turn can not be added together the turn is split into the maneuvers
that constitute it, which are then regarded separately. Each maneuver will offer a con-
sumption value and travel distance as a result, which will depend on a combination of start
speed, target speed, slope and service level (as described by Section 4.1.1). The two speed
values are what the vehicle is travelling at the beginning and the end of the maneuver, the
slope describes the inclination of the road and the service level the traffic situation. While
it is clear that driving faster, slower, up or down hill has an impact on the consumption
the latter of the four parameters remains to be justified. After observing the consumption
matrix (Section 4.1.2) it became apparent that each of the service levels generally comes
with its own range of allowed speeds. This occurs ’naturally’, since each type of street is
made to sustain a certain amount of traffic at a resulting average speed. There can not be
roads with high average speeds such as 100km/h and stop and go traffic. However, roads
with average speeds of 30km/h and freeflow traffic may exist. Such roads are less likely
to represent the most common occurrence in a real-life street network , and saturated or
heavy traffic might present a more appropriate choice. Setting the service level according
to the average speed of a street ensures that the consumption values for different speeds
and slopes lie within the more likely case of traffic situation. Hence adding it as a further

10



3.2. Turn Cost Parameters and Matching

parameter proved to be an adequate choice.

These four parameters are gained by evaluations based on the coordinates and geographic
heights of the vertices involved, the length and street type of the edges on which the turn
is carried out as well as the number and road types of the edges incident to the center of
the turn. The source of the resulting consumption and distance values, together with the
method with which they are generated, is described in Section 4.1.2.

Matching

The matching process consists on one hand in evaluating the individual parameters for each
maneuver and on the other hand in determining their common parameter, the transition
speed.

First the difference between the heights of two nodes divided by the length of their
connecting edge is calculated. This defines the angle at which the road is tilt, or the slope.
Should both nodes present the same height their slope is automatically set to zero.
With the vertex coordinates composing three points in a two-dimensional plane the angle
between the roads can be retrieved with one of the many formulas available, like for
example the law of cosines. Regardless of the right of way, that will be described later
on, this angle is used to calculate the transition speed. Depending on how sharp the
turn is a brake maneuver or a full stop may or may not be required. This angle can be
interpreted in a number of different manners. The interpretation used in our experiments
is described in Chapter 5, together with the service level setting. After this the aver-
age edge speed is used to determine the starting and target speed for the primary and
secondary maneuver respectively. The two remaining speed values are identical as they
represent the transition speed over the intersection, where one maneuver ends and the
other begins. Finally the right of way is estimated by comparing the road types of all the
remaining edges incident to the intersection to the one that is involved in the turn. If the
involved edge has the highest rank among all then the previously calculated transition
speed is kept. If it is outranked by another edge a full stop is automatically selected instead.

Should there be no higher ranked edge, but n further incoming roads of the same rank,
then the resulting values would be given by combining two different cases. First a brake
to zero and a maneuver to the previous transition speed are calculated separately. The
resulting consumptions are c0, ct and their distances are given by d0, dt respectively. The
final values for this turn are then defined as:

c = n ∗ c0 + ct

n+ 1

d = n ∗ d0 + dt

n+ 1

Using these principles turn costs are matched to the majority of intersections within a
graph. A few exceptions remain however. These are handled in Section 4.3.1

11
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The following chapter covers the algorithms and data structures used to bring turns into
routing for electric vehicles. It begins by describing the source of the consumption values,
along with the method used to generate them and bringing them in a simpler form. Next
the storing concepts of graphs, as well as storage methods for turn costs regarded in this
thesis are depicted. Then the process of adding turn costs to graphs is shown, along with
the alterations to negative cycle removal. Finally the individual adjustments of Dijkstra’s
algorithm on the two turn cost graph models are presented.

4.1 Turn Cost Consumption Matrix
Graphs that represent road networks contain a number of distinct turn situations. Each of
their composing maneuvers calls for adequate costs, depending on the parameters described
in Section 3.2. The turn cost consumption matrix represents the origin of consumption
values used to implement turns in graphs. This section covers the source for real-world
consumption values as well as the method used to process them into entries for the
consumption matrix.

4.1.1 PHEM Data
PHEM is the abbreviation for Personal Car and Heavy Duty Emission Model [HRZL09].
The PHEM data offers a large number of driving cycles, each of which presents a simulated
drive that records a great variety of information such as current battery consumption,
traveled distance, speed, acceleration and current slope for every passing second. During
such drives sensible break and acceleration maneuvers are undertaken. These maneuvers
are generally at reasonable acceleration and deceleration paces aiming to mimic a ’normal’
driving style. Driving cycles are available for most combinations of slopes, seasons, street
types and service levels, the latter of which describe the traffic situation, and individually
take a value among Freeflow, Heavy, Saturated and Stop and Go. While certain information
further differentiates these cycles it is not regarded since the costs for a turn maneuver
should either not be altered by them when the previous parameters are given or the graph
can not distinguish between the new cases. For example the speed limit does not affect
the consumption matrix, since the average speeds used are already within this limit. Data
concerning whether or not a street is in an urban or rural area is then disregarded since
no such knowledge is used within the graph used for the experiments. The information
provided by these cycles presents the source of the turn cost values that are used in this
thesis.
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4. Algorithms and Data Structures

4.1.2 Generating Entries
All the driving cycles available within the PHEM data are different and each one covers
a very unique situation. They are used to provide a single consumption value for every
combination of the parameters presented in the previous section. The resulting consumption
matrix is described by the following function:

M(s1, s2, serv, grad) = (cons, dist)

This function returns the costs for a maneuver starting with the speed s1 and ending with
s2. Speeds are taken in multiples of 10 km/h and range between [0, 15]. serv is the service
level of the street, and grad represents the gradient or slope of the road. The result is then
a tuple consisting of the consumption cons in kWs and the distance dist in km that such
a maneuver will require. A concrete example M(0, 5, 2, 0) represents the acceleration from
0 to 50 km/h on a flat road with saturated traffic, which can generally occur in a city.

The consumption matrix is calculated for a specific season, or alternatively for a gen-
eral setting without auxiliary influences. Within the selected setting all cycles are viewed
separately by sequentially passing through them line by line, gathering information from
each corresponding second. Each cycle is given for a certain service level, leaving only the
start and target speed as well as the slope to be set. While cycles are also bound to a slope
this can still vary for certain portions of the simulated drive.

Traversing through a cycle every passing second provides lots of different values, of which
the total travel distance, current speed, current consumption and slope are used. Processing
them is done as depicted in Algorithm 4.1. It basically works in two states on each line:
resetting the current values or continuing to work with them. This reset, which is always
done on the first loop, stores the read speed as s1, the consumption as cons, and the
distance as dist. reset indicates whether or not one was applied in the previous loop run.
Even though the driving cycle is made for a specific slope it appears this still varies between
its intended value and zero throughout the file. Because of this, on each value reset, the
currently read gradient is stored and the currently stored values will only be used as long
as it remains the same. Additionally, if no reset was just made, the speed that is being
processed must be going in the right direction, and the difference to the prior one must
be larger than a certain constraint (for example 0.05). This constraint ε is used to keep
the loop from processing bad entries that appear when the vehicle is only maintaining its
current speed at the beginning or end of maneuvers. The direction dir is defined right
after each reset as {−1, 1} respectively for brake and acceleration maneuvers and used as a
factor for the difference between this new speed and the previous one. When continuing to
work with the current values s2 stores the latest speed, the new consumption is added to
cons, and the travelled distance since the last reset is saved as distout. Along with serv
both values and all four parameters required for an entry in M are now found, and so
these are passed to another method. Working with the PHEM data has shown that two
consecutively read speeds can present gaps of more than 10km/h between them. Due to
this cycle portions as short as 2 lines, or seconds, are accepted. Since, at this point, it is
not possible to decide if the best run was found for a certain entry the algorithm will run a
method to check the found values on every non-resetting loop.
When trying to fill an entry it might already contain a value previously inserted. Due to
this it is required to compare the competing values, and decide which is more appropriate.
The correct spot is attributed to each speed by rounding it to the nearest multiple of
10km/h. This means a maneuver from 14km/h to 16km/h would be associated to 1 and 2.
This is a very poor result that can be ranked with the help of a function called adequacy:

adqc = (spots1 − spots2) ∗ 10
s1 − s2
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Algorithm 4.1: Fill Matrix
Input: Line of Driving Cycle, ε > 0, serv
Output: New values for the Consumption Matrix
// Initialization

1 reset← false
2 dir ← 0
3 grad← 0

// Main loop
4 while not end of file do
5 sin ← read()
6 distin ← read()
7 consin ← read()
8 gradin ← read()
9 if (grad = gradin) ∧ ((reset = true) ∨ ((sin − s2) ∗ dir > ε)) then

10 if reset = true then
11 if s1 < sin then
12 dir ← 1
13 else
14 dir ← −1

15 reset← false
16 s2 ← sin

17 cons← cons+ consin

18 distout ← distin − dist
19 checkEntry(s1, s2, grad, serv, cons, distout)
20 else
21 reset← true
22 s1 ← sin

23 grad← gradin

24 cons← consin

25 dist← distin

Only cases where spots1 6= spots2 are allowed. The optimal adqc would have the value
1, while the one for the previously described case is at 5, and for 6km/h to 24km/h
at ca. 0.55. This efficiently favours maneuvers that have a more appropriate difference
between the two speeds, but will also regard the maneuver 14km/h to 24km/h as optimal.
Limiting the sum of the absolute differences between each speed and the multiple of its
spot to a small value (for example 2km/h) solves this issue. Furthermore adqc ∈ [0.9; 1.1]
is set as a backup, to ensure that no highly inconvenient values are used to fill an entry.
This however seems to not reduce the number of overall filled entries. The consumption
and distance values are then multiplied with their adqc before used for comparison or stored.

The new total distance of a maneuver proved to be of vital importance. Namely, if
this distance is too high, several edges can have consumption values attributed to them
that are not long enough to accommodate such a maneuver. No edge may have costs
attributed to it for maneuvers longer than half of its length. If the shape of a graph inside
a city is considered, with a high number of very short edges, long distances for a turn
maneuver represent an actual problem. When filling obvious cases, where the entry has
not yet been filled at all, or has a worse adequacy and higher distance, the new values are
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used. The other cases seem to be handled best when taking the lowest distance within
a tolerated (for example 5%) adequacy margin. Using this approach leads to satisfying
results, where certain maneuvers even present perfectly identical distances for several
entries. This characteristic will be utilized in a moment.

As such, after processing all the given cycles, a high number of the consumption ma-
trix can be filled. Several entries are however still empty. This happens mainly due to the
fact that many entries are either not allowed on certain service levels, or generally don’t
occur, like for example a brake maneuver from 140km/h to 130km/h. Even though a few
values that are later required can not be filled with the help of the PHEM data directly,
using the ones found cover most of the real life situations, and these have turned out to be
various enough to be used to estimate the missing cases. More information on this subject
is given in Section 4.3.1

With the driving cycles processed the matrix still presented a few inconvenient entries,
mainly due to very high distances. Several post-processing procedures were used to remove
the most inconvenient of these. Visualising the matrix and manually looking for features
led to realising that for the same speeds and service levels many entries have shown close
to identical distances on different slopes, as mentioned before. The higher slopes however
would sometimes provide far higher distance values. This occurs when a value is falsely
entered by unifying two maneuvers. Such scenarios appear when only short breaks between
maneuvers are undertaken, and the current speed, while still close to a certain number,
constantly grows by a small amount during the pause. To remove these unwanted entries
all possible combinations are traversed and the number of similar distances for the diverse
slopes is counted. If more than three distances are almost the same, but not all, then
entries of the ones that fall out of line are removed.

Another type of unusable values appeared for certain situations where the lowest or
highest target speed would be the same for all gradients in the same service level, except
for a single one that would contain a further entry. While this is a correct value it appears
to be a drive simulation that has simply went a little further than expected over a rather
inconveniently long period of time. Even a few extra seconds cause far higher distance
values to arise, that simply can’t be used for the turn cost model. These are handled by
iterating over all slope combinations for specific service levels, start and target speeds and,
if only a single value is found, removing it.

At this point the matrix no longer contains values with inconvenient maneuver lengths, but
presents gaps in spaces where these should not arise. As described earlier these are caused
by strong acceleration or brake maneuvers, where more than 10km/h are gained or lost in
one second. The holes can be filled with the help of a spline. The one used in this work
was kindly provided by Kluge1. Such a spline is a type of interpolation that determines the
position of the missing spots by calculating the most flat function that would run through
all the other points it contains. The parameters used are the consumption and the distance.
For our experiments the spline is only used when it can be given at least 4 points. This
particular version also linearly extrapolates the outer ends, which is used to fill another
two entries in both directions, as long as these are within the accepted bounds. With this
the consumption matrix is completed.

1http://kluge.in-chemnitz.de/opensource/spline/ as seen on the 31.07.2014
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Further Attempts

Next to all the methods and functions used to create the final consumption matrix some
approaches that were undertaken proved to not be acceptable. Their main objective was
to fill missing entries. One idea was to accept two maneuvers that only had a short pause
between them as one. While similar to what was described earlier as an unwanted result,
far more cases presented themselves when actually looking for them, several of which
displayed sensible entries. Unfortunately these were still inconvenient, and were sorted out
by the restrictions described previously. Alternatively winning an entry by summing up
two maneuvers that would compose it brought lower distances, but not sufficiently.

A further procedure that did not satisfy was using a linear interpolation method to
fill in the blanks. This caused wild fluctuations between the results as the consumption
values are not directly proportional to their distances, which in turn do not have the same
spacings between each other. Attempting to fill all the missing entries would even cause
negative distance values to appear. These methods were then ruled out and removed from
usage, keeping the consumption matrix safe from new inconvenient values.

4.2 Storage Concepts
Following the calculation of turn costs the need to store these presents itself. Saving the
values for all possible combinations of turns within each vertex has proved to be rather
inefficient and presented the request for improvement. Two graph models that provide an
alternative way to accommodate turn costs for every possible turn are presented.

4.2.1 Vertex and Edge Storage

The information regarding which nodes are connected to each other is stored with the
help of an adjacency array. Each node will have two pointers delimiting the portion
of its outgoing edges in this array. While this method is used due to its lower storage
requirements directed graphs face a disadvantage. When looking at a node it can not easily
be inquired which vertices have edges pointing at them. To bypass this issue all edges are
added a direction flag and for each currently existing one a backward edge is annexed to the
graph. Such an edge will connect the same two vertices, but in the opposite direction. The
resulting bidirected graph can still navigate in a single direction whilst using the direction
flags to avoid irrelevant edges. Graphs without this extension are referred to as unidirected
graphs.

4.2.2 Expanded Graph

One option to store turn costs within a graph is with the help of the expanded graph, based
on the descriptions of Winter [Win02]. As the name suggests the thought behind this
approach is to add further vertices and edges to a graph G = (V,E), where the edges will
contain the turn costs as weights. The graph remains unidirected. Several new edges and
vertices are added to maintain the battery constraints and to keep the different possible
turns separate. To achieve this new components have to be added to the graph in a
manner that keeps every single turn maneuver separate from another. Figure 4.1 depicts
the expansion of a single vertex.

Vertex i is initially split in inc(v) + out(v) new vertices. Each of these vertices is connected
to a single incoming or outgoing edge. When edges in both directions (i, j), (j, i) ∈ E are
given then i presents two new nodes, ij and ji, one for each of these edges. Like this
turns around can remain correct maneuvers. Next, for each turn, or for each pair of new
nodes, where one connects an incoming edge and the other an outgoing one, another one is
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Figure 4.1: Expansion of the vertex i

created. In this manner jik is made for ji and ik. Two edges will then be added to connect
this node with his ’parents’, maintaining the direction of travel. The first of the described
edges will have its weight set to the cost of the first maneuver for the turn in question, and
the latter will present those for the second maneuver. Removing or combining any of the
new vertices would either cause the battery constraints to not be respected or new routes,
that should not be allowed, to become available. For instance unifying j and ij grants the
option to ignore the turn costs when turning around. Removing kij and merging the two
turn cost edges would cause the turn from k over i to j to disrespect the battery constraints.

When traversing the expanded graph it is not possible to differentiate between which
vertices and edges where previously in the graph, and which ones have been added during
the expansion. Further the graph can not directly match its current nodes to the ones
in the original graph. This issue is solved by extending the graph, adding a vector that
contains the pairs of nodes that connect every edge in the original version for both graph
types. This way the edges that have not appeared due to the expansion can be matched to
each other.

Lastly most vertices from the original graph are split into several different ones, de-
pending on the number of outgoing edges. Due to this the majority of these new vertices
can not be used as the single start for a Dijkstra optimal path search, since it will only
contain one of the possibly multiple edges that would depart from the original node. Solving
this requires altering the search algorithm and storing a matrix file that matches each
pair of adjacent vertices from the original graph to their counterparts in the expanded
one. This matrix will be refered to as the edge association matrix. Section 4.4 covers the
corresponding Dijkstra alterations.

18



4.2. Storage Concepts

Entries

Values

v1 v2 v3

Figure 4.2: Storage of the consumption values in the turn cost vector graph.

4.2.3 Turn Cost Vector Graph

The idea of this graph G = (V,E), similar to the concept of Geisberger et. al [GV11], is
based on the premise that only a limited number of different intersections exist, so that
several distinct ones hold an identical set of values for turn costs.

A single vector that holds the consumption values for an entire graph is used. Every
distinct type of intersection will have its matching turn costs grouped together within this
vector, similar to the adjacency array used for storing vertices and edges in a graph. A
structure is used to define the entry for a specific intersection. It contains a pointer to the
corresponding starting index in the vector of consumption values and its length, which is
2 ∗ inc(v) ∗ out(v). This length is given since every pair of incoming and outgoing edges
presents two consumption values, one for the primary and one for the secondary maneuver.
All vertices v ∈ V are given a pointer to their entry, multiple of which can point at the
same one, meaning that these represent identical intersections. The entry structures are
also stored as a vector. Figure 4.2 illustrates this storage mechanism. The red and green
entries represent intersections with one incoming edge, and two or three outgoing edges
respectively.

This approach leads to a decrease in storage requirement as opposed to the expanded graph,
and becomes more efficient the larger the graph due to the limited number of real-world
intersection types. The result will henceforth be reffered to as a turn cost vector graph.
With the consumption values available to all vertices within the graph the final requirement
is matching these to their corresponding turns. Two index values, one for the incoming and
one for the outgoing edge, must be provided by a vertex in order to retrieve the correct
pair of consumption values.
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The issue that presents itself is that, while the vertices of this unidirected graph can set an
index for each outgoing edges with the help of their positions in the adjacency array, they
can not do the same for incoming edges. This is due to the fact that the vertices in this
type of graph have no direct access to their incoming edges, or the vertices that these start
from. Overcoming this obstacle is done by adding all the backward edges, and making the
graph bidirected. While the number of edges within the graph doubles every vertex can
now access its incoming edge with the help of the adjacency array, and can set an index
depending on their position. With the two indexes available the correct position for the
two consumption values of each turn can be read.

Alternative Approach

As a variation a version of the graph was made where the vector of turn costs would
contain every distinct consumption value only once. This meant that each vertex then
contained a vector of pointers, as opposed to just one pointer, and the turn cost vector
would only contain a vector of unique values, as opposed to one with every occurring value
combination. Entry structures were hence no longer necessary. This attempt proved to be
less efficient on graphs representing street networks the size of countries and was no longer
tended to.

4.3 Graph Extension
This section covers the manner in which a graph is extended by turn costs taken from the
consumption matrix. The challenges that present themselves in this process are described,
along with the individual approach used to edit the two different types of turn cost graphs.
Additionally the adjusted cycle removal method applied to each graph after extension is
presented.

4.3.1 Integrating Turn Costs
Routing with turn costs requires the graph in use to contain consumption values for every
possible turn. These are acquired by iterating over every vertex within a graph, evaluating
all turn situations, and annexing the consumption values.

For the two maneuvers involved in a turn each is tied to the edge it is executed on.
Since the consumption value of such a maneuver also covers the energy required to travel
its distance it can not be processed as is, since it would cause the normal traversing costs
for the maneuver distance to be regarded twice. This is dealt with by subtracting a reduced
part of the weight of the edge in question, depending on the ratio between the length of
the maneuver to that of the edge. The new resulting values are used as the final version of
turn costs when routing, and can now be added to the graph.

This approach leads to a minor number of routes being omitted. These appear when
the vehicle does not have enough battery capacity left to fully traverse an edge, but would
be able to reach it if the costs for a brake maneuver are regarded earlier. Removing this
issue can be achieved by reducing the weight of edges, and not subtracting their value from
turn costs. However, since every turn maneuver presents its own length, this reduction can
not be done universally. Alternatively each edge would require to have its weight reduced
to accommodate the turns with the longest distances in both directions, and four turn
costs must be processed per turn, the two new ones simply being the corresponding weight
of the edges that was reduced more than necessary for each specific turn. This approach
is not dealt with in this thesis, making the turn cost routing model currently regarded a
choice that heuristically neglects very few situations for the added benefit of halving the
number of turn cost values stored within an according graph.
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Turn Cost Vector Graph

Each intersection is processed, turn by turn. Incoming edges are paired with outgoing
ones in the order in which these are stored on the adjacency array for the current vertex,
and the consumption values retrieved for each case are stored in a vector. This order is
maintained for the pairs of turn costs, making it possible to inquire the correct entry when
routing. The resulting vector must then be annexed to the graph.

The basic approach lies in adding a new entry by traversing all the current ones within
the graph, checking for an identical one. Should such an entry be found then its index is
retrieved. If not then the new unique entry is added to the back of the vector, gaining
its corresponding entry structure. However, when routing on road networks the size of
countries, quite a few different types of intersections present themselves, leading to a large
vector, that would need to be traversed after each vertex evaluation. This method proves to
be naive and presents an inconveniently high run-time, even in preprocessing circumstances.
As an alternative the graph is created without comparing entries, and compressed once
all nodes have been handled. This is achieved by creating entirely new vectors for entry
structures and consumption values. The initial entry vector is traversed sequentially, and
every entry that is found is compared all the entries further back in the vector, setting
them to null should they be identical. The part of the consumption vector as well as the
corresponding entry structure are then copied to the new vectors. Each vertex has its entry
index updated accordingly throughout the process. With this the turn cost vector graph is
complete.

Expanded Graph

Considering that the graph type regarded in this work uses an adjacency array to store
edges actually expanding it is rather inconvenient. A more elegant procedure is to create
an entirely new graph from the bidirected version of the source graph. Sequentially, each
vertex is split in the manner described earlier, all incoming and outgoing edges are used to
fill the edge association matrix, as well as to provide turn costs, that are then stored as
new edges connecting the nodes that have been currently created. When viewing a vertex
that has an outgoing edge pointing to one with a lower id the association matrix is used
to indicate which new pair of vertices this edge must be copied to. After iterating over
all nodes within the original graph the expanded version is complete, together with its
association matrix.

Inappropriate and Missing Matches

The matching principles described in Section 3.2 cover the majority of possible turns for
graphs based on road networks. A few exceptions arise however. These appear in two cases:
when the entry itself in the matrix has not been filled and when the distance of the edge is
too short to accommodate the maneuver that has been matched to it.

Missing matrix entries appear when particular situations arise, which begin and end
at odd speed choices. The most frequent case is for maneuvers with a minimal change in
speed, like for instance a turn from a street with 30km/h average speed to one with 40km/h.
These situations are handled by raising serv to the next level, like from Stop and Go to
Heavy in this particular case. The remaining blanks appear in the opposite case, where high
differences between the two speed values exist, like for example when mounting a highway.
Raising the transition speed to a more realistic value, bit by bit up to the arithmetic mean
of the two speeds, until an existing entry is found in the consumption matrix solves this issue.
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Maneuvers with distances higher than half of an edge’s length appear when attempt-
ing to do a full stop in situations where this is not entirely possible. Similarly to the
previous description the transition speed is raised bit by bit, up to the according mean,
and the first result found is taken. In very few cases this does not provide a result. Then
the only remaining course of action is to find the transition speed with the minimal length
difference over the accepted bound for both edges involved in a turn, and scaling the
consumption value down, according to the ration between half of the edges length and its
corresponding maneuver distance.

4.3.2 Negative Cycle Removal

Adding turn costs to a graph which contains weights that are not naive and already account
for turn penalties to some extent can cause a small number of negative cycles to arise.
Should these appear they have to be removed in order to ensure that the routing algorithm
will always terminate, and for that need to be found first. Running an altered version of
Dijkstra’s algorithm, as described in Section 2.4 helps find these cycles. The alterations are
applied to the versions of the routing algorithm described in the next chapter, depending
on the graph type in use.

Once a cycle has been found the absolute value of the resulting negative weight is divided
by the total number of traversed vertices in the expanded model, and by three times the
number in the turn cost vector model. When the two turn cost graphs are based on the
same initial graph then these values will be identical for the same cycles. The cycle is
removed by adding this amount, plus a small further penalty (for example 5mWh), to the
weight of every edge along it, as well as updating the according pair of consumption costs
for each involved turn. After this, when traversing the cycle, a distance barely above zero
will be reached, and no negative value. After handling a cycle the removal algorithm can
be commenced until all vertices have been treated, leading to graphs with turn costs free
of negative cycles.

4.4 Dijkstra Adjustment
Altering the graphs to accommodate turn costs has an impact on the routing algorithm.
Each of the graph variations call for their own adjustment, regarding the input and halting
method as well as the loop iterations. The resulting mechanism handles turn cost on every
turn throughout the graph, with the premise that the vehicle travel at the corresponding
average speeds when starting and finishing the traversal of a path.

Expanded Graph

Routing on the expanded graph is bound to its corresponding association matrix. Only
vertices presented as starting points of edges that also exist in the original version of the
graph are allowed as starting points. Consequently, only those in which such edges end
may be set as destinations. Otherwise it would be possible for routing to begin or end
in the middle of turn maneuvers. Furthermore, when initializing the queue by adding an
origin vertex, all the vertices that have been created from the same node, representing its
connection to outgoing edges, must also be added to the queue. Each of these vertices o has
given d(o) = 0 set, after which the iteration may begin. In the same sense a group of nodes
that connect the incident edges of a node in the original graph are all valid destinations.
Whenever one of these is reached the tentative destination distance is updated. After the
routing algorithm terminates the optimal path is retrieved by starting the reverse search
from the destination vertex with the lowest distance, and halted once one of the source
vertices is reached. As such routing can correctly be undertaken on the expanded model.
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Calculating the query induced potentials is done in the same manner as on the original
graph. The stopping criterion is run in the same way as well, with the restriction that only
vertices that represent connections to outgoing edges in the original graph are added to
the query prior to the search, and the lowest distance is taken from one of the nodes that
connects an incoming edge from the graph without turn costs.

Turn Cost Vector Graph

When routing on the turn costs vector graph vertices no longer have unique parents. This
is due to the cost of traversing an edge onto the next node depending on which previous
edge was traversed. All outgoing edges of a vertex can hence have individual parent edges.
This effect is handled by using the edge-based version of the Dijkstra algorithm. As such
the correct path can always be retrieved after the algorithm terminates.

The turn cost vector graph must now be altered to process the turn costs on each loop.
When an edge is extracted from the queue it is used to retrieve the node it points to. As
such, when iterating over all the outgoing edges of this vertex, a second edge to pair the
one retrieved from the queue is available, and the necessary turn costs can not be looked up.
Calculating the new distance is done by adding the costs of the first maneuver, then the
second, and finally the edge weight to the distance that was retrieved from the queue, each
processed separately, in order to not violate the battery constraints. This way routing on
the turn cost vector graph is achieved and presents for matching sources and destinations
the same resulting distance and paths as the expanded graph. While the stopping criterion
is calculated in the same manner as described earlier the query induced vertex potentials
require an alteration that has not been covered in this thesis.
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The following chapter covers the experimental part of this thesis. It begins by describing
the actual changes that are made to the graphs in order to accommodate turn costs. Next
it presents the general impact of turn costs on routing with the Dijkstra algorithm. Finally
the average results for routing on multiple queries are provided. These query experiments
are aimed at evaluating the storage and run-time increase caused by processing turn costs
in routing.

The server used in these experiments, as well as for preprocessing purposes, runs on
Intel Xeon E5430 with a total of 8 cores, clocked at 2.66GHz, and with 32GiB of RAM. A
single core was used for all queries. The server runs on openSUSE 12.2, and the compiler
used is GCC version 4.7.1, with -O3 optimizations. The road network used was that of
Germany, which was provided by the PTV AG. Attributing weights to the edges within the
graph is done based on the information given by the PHEM data, as described by Baum
et. al [BDPW13]. Height information for the vertices stored within the graph is obtained
from the freely available NASA Shuttle Radar Topography Mission1 data.

Various Settings

The interpretation of the angle between two streets involved in a turn and the definition
of the service level can be done in various ways. In our experiments Freeflow applies to
speeds of 100km/h and above, which generally represent highways. Then Saturated ranges
down to 51km/h, depicting most of the remaining traffic situation outside of cities and
towns, and some urban cases. Heavy is used for the remaining speeds above 30km/h, which
apply to general traffic inside towns and cities. Lastly Stop and Go is used for the leftover
streets with very low average speeds. For any turn, should the road only curve less than 30
degrees in either direction, the lower of the average speeds from the edges involved in it is
set as the transition speed. Otherwise, as long as the road does not curve more than 90
degrees a fixed value for traversing turns is used, 30 km/h in our case. All turns on roads
that curve more than 90 degrees have a transition speed of 0 km/h, and represent a full
stop. This matching method resulted in a total of 11% full stop situations on the entire
graph of Germany.

1http://www2.jpl.nasa.gov/srtm/
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Storage

Adding the turn costs to a graph by either expanding it or storing these as a turn cost
vector with respective vertex pointers provides the first analytic results. As seen in Table
5.1 the new storage size of the routing graph for Germany are less than triple for the turn
cost vector model, but more than nine fold for the expanded version. While the turn cost
vector graph contains the same amount of vertices and just double the number of edges
the major part of the size increase is tied to the actual vector of turn costs and the extra
pointers in each vertex. Among the 4, 692, 091 vertices there are only 2, 947, 002 unique
intersections, leading to a vector compression of over 37%. The expanded graph stores
all the turn values on new edges, connecting new vertices that virtually split up every
intersection. These are matched to the original vertices with help of the association vector,
that makes up around 11% of the graph’s size, roughly the size of the original graph. While
this is a considerable amount of storage space the main size increase of the graph is solely
due to it containing more than ten times the vertices and six times the edges, compared to
before the expansion.

Original Turn Cost Vector Expanded
Size (MB) 349.9 808.8 3,330
# Vertices 4,692,091 4,692,091 50,144,841
# Edges 10,805,429 21,610,858 67,873,395

Table 5.1: Size values regarding the different versions of the Germany graph.

Distance Increase

The following test results will be presented for the original and expanded graphs. The actual
routes and necessary battery energy levels resulting from specific queries will be identical
to the results of routing on the turn cost vector graph. All of the routing experiments have
been performed on 1000 independent queries with randomly selected origin and destination
vertices. Each presented a restricted battery capacity: either 16, 85 or 1000 kWh, and were
started at full charge. The third range used for the queries is far higher than the necessity
for any optimal route withing Germany and is mainly chosen to ensure a group of queries
where absolutely every two distinct pair of vertices can reach each other.

The only prerequisite of these queries was that the destination vertex always lie within the
chosen capacity for both graph types. Such pairs of vertices can be found by running a
Dijkstra search on one of the graphs, without using any stopping criterion or potentials,
from an arbitrary source vertex. After the search has finished a vertex is picked uniformly
at random and, should this not coincidentally be the origin vertex, it is accepted as the
destination vertex if it has been reached in the previous Dijkstra run and can also be
reached by a search on the other graph type. If this is not the case then the process is
repeated until a fitting pick is found. Since the expanded graph generally presents higher
route distances due to turn cost penalties it has been used as the primary search graph. At
first all three capacities were used to run queries on both graphs with no stopping criterion
and using dummy potentials. Since the same queries of each capacity will be used for the
experiments using stopping criterion and query induced potentials the resulting average
consumption differences remain identical.
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As seen in Table 5.2 the turn cost model has a stable increase in the average energy
requirements depending on the battery life. The test with the longest range has a similar
rise to the next lower one due to the limited size of the graph, meaning that only a part
of the maximum energy available is required to reach any vertex from any other vertex.
The higher value was expected since the consumption values of all edges are based on their
average speeds, which already regard some penalties for turns. To reduce the variance to
null these penalties would have to be removed from every edge.

Query Range Original Turn Cost Increase
16 kWh 9,830 kWh 10,277 kWh 4.55%
85 kWh 42,868 kWh 49,288 kWh 14.98%
1000 kWh 54,972 kWh 63,352 kWh 15.24%

Table 5.2: Increase in the average optimal distance in.

Performance

The following tables provide information regarding the average results of running 1000
queries for the three different ranges on each of the graph types containing turn costs, as
well as the original model. Table 5.3 represents the experiments that are run without the
use of any speed-up techniques. This means that for every query the full range of the
battery capacity was traversed in every possible direction before halting. For the highest
range the average run-time on the original graph is slightly less than three times lower
compared to the turn cost vector model (TCV), and around six times lower than that of
the expanded graph. This average time also grows faster, the higher the battery capacity,
on the graphs with turn costs, compared to that without. While queries on the expanded
graph processes far more vertices and edges than the other two those on the turn cost
vector model actually regards less edges than the original one on average for the shortest
range. This advantage however is neutralized, the higher the range, and as compensation
routing on the turn cost vector graph scans far more vertices. This result occurs due to
the fact that routing on this model runs on the edge-based version of Dijkstra’s algorithm.
Hence edges are pulled from the query, and not vertices, due to which comparing these
values can not quite give a definite insight.

Original TCV Expanded
Time (ms)

16 kWh 74.690 171.800 325.255
85 kWh 955.843 2,654.550 5,035.560

1000 kWh 1,128.070 3,593.050 6,815.000
Vertiex scans

16 kWh 339,368 1,686,786 2,969,802
85 kWh 4,106,189 23,335,384 41,151,430

1000 kWh 4,853,582 31,628,568 55,800,160
Edge scans

16 kWh 784,709 636,589 4,016,594
85 kWh 9,488,365 8,817,054 55,644,841

1000 kWh 11,209,766 11,958,900 75,443,406

Table 5.3: Average results for queries without speed-up techniques.
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5. Experiments

Table 5.4 depicts the results for the same queries on the given ranges, with the added
feature that the stopping criterion was used. The average run-time is roughly halved on all
three graph types. As the advantage in average edge scans is lost on the turn cost vector
model it still remains relatively close to the result provided by the queries on the original
graph. Overall around half of the scans are done for both edges and vertices on all three
graph types, indicating that the stopping criterion provides a similar amount of speed
increase among the three different types of graphs.

Original TCV Expanded
Time (ms)

16 kWh 27.880 86.527 160.801
85 kWh 410.625 1,329.130 2,448.658

1000 kWh 553.692 1,780.910 3,315.150
Vertex scans

16 kWh 129,275 866,370 1,529,208
85 kWh 1,770,085 11,621,239 20,491,263

1000 kWh 2,392,027 15,718,746 27,720,759
Edge scans

16 kWh 298,532 327,410 2,067,631
85 kWh 4,093,865 4,388,167 27,712,343

1000 kWh 5,530,565 5,937,293 37,486,692

Table 5.4: Average results for queries using the stopping criterion.

Query induced vertex potentials provide the method used in Table 5.5 to reduce the average
duration of the various queries. As the turn cost vector graph requires an alternate version
of these potentials it is not part of this experiment. The potential computation requires
5841.06 ms on the original graph and 36820.40 ms on the expanded one. Compared to
the stopping criterion a further 10% increase in speed is acquired by the queries on the
original model, and 24 % by those on the expanded one. This slightly more significant
increase in speed, along with a more relevant drop in vertex and edge scans, as compared
to routing on the original graph arises due to the fact that query induced potentials have a
more compelling effect the higher the number of vertices and edges within a graph. The
ratio between the vertex scans on the two graph models is nearing the one that is given by
the total number of vertices within the entire graph. As this type of potentials presents a
benefit to the expanded graph it does not necessarily do the same for the turn cost vector
graph (when altered to the appropriate form). Another possible cause for the drop in
average run-time relates to the fact that the nodes that represent parts of turns are also
granted potentials. This leads to the fact that not all turns must be processed for a certain
vertex immediately when routing, leaving the turns with less convenient potentials for later
processing.
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Original Expanded
Time (ms)

16 kWh 25.841 135.088
85 kWh 373.495 1,982.220

1000 kWh 502.953 2,674.530
Vertex scans

16 kWh 126,303 1,392,536
85 kWh 1,709,776 18,336,143

1000 kWh 2,310,138 24,793,938
Edge scans

16 kWh 290,390 1,885,048
85 kWh 3,940,798 24,825,530

1000 kWh 5,323,375 33,566,312

Table 5.5: Average results for queries using query induced vertex potentials.

In summary turn costs require extra storage, and the turn cost vector model best compresses
these. While turn maneuver values do not contain the cost for travelling the distance they
are performed on a slight increase in average total consumption is present, and increases
with the length of the route. Queries run on both turn cost model approaches longer
and scan more vertices and edges than those on the original graph. Using a stopping
criterion presents a uniform benefit on all graphs types. Expanded graph queries gain a
higher benefit form query induced vertex potentials due to the higher number of nodes and
possibility to add potentials to specific turns. The actual effect of the selected settings for
turn cost matching is described in the following chapter.
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6. Case Study

Efficient routes delivered by the turn cost model will, in most cases, be different to those
from the original one. There can only be speculations to the concrete change in behaviour
without visualising the different routes. Certain characteristics of these changes have
become apparent in the following case study.

The figures presented in the final part of this chapter represent optimal routes for the
same source and destination vertices within Germany. Yellow routes represent the optimal
results that are provided by the Dijkstra Algorithm on both graphs. The orange and green
paths that split from the yellow ones present the alternative subpaths that are calculated
by the same algorithm on the original and expanded graph respectively. Source vertices
are denoted with an S, and target ones with a T . Figures that contain only a portion of
the route have T indicate the direction of the target.
While observing a larger number of routes on rural areas it directly becomes apparent that
while highways or other forms of roads with high average speeds of travel are generally the
quickest they do not necessarily represent the most energy efficient choice. The obvious
cause is that higher speeds commonly imply higher energy consumption. Driving on a
street with less speed than the average was not regarded as an option since this would
only be realistic on a traffic-free setting, and can otherwise cause dangerous situations.
A result of this premise is that energy optimal routes will often favour roads with lower
average speeds than highways or similar types of streets. This applies to efficient routes
with turn costs as well, but does not imply that the two models follow the same paths
between different towns.
As seen in Figure 6.1 both graph types can provide roughly the same route even on fairly
long distances. Figure 6.2 on the other hand presents a case where the two routes split
away from each other for their largest parts. A closer look at them revealed that, given
the option, the turn cost model will sacrifice a few extra kilometers to traverse a path
that contains as few inconvenient turn situations as possible. Such situations range among
towns that do not provide the option to traverse on the outskirts or intersections with
other major roads. The turn cost model generally prefers the routes that contain a lower
number of intersections, or with the main part of the intersections being with roads of
lower rank than the one currently being traversed.
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6. Case Study

Figure 6.1: From the borders between Germany, Poland and the Czech Republic towards
the north end of Germany. (50.956389, 14.722592) to (53.775122, 11.285350)

Figure 6.2: Münster to Obersulm. (49.496989, 11.755372) to (49.132533, 9.357025)
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Figure 6.3: From east of Nuremberg towards the north side of town.
(49.475575, 11.071019) to (49.475575, 11.071019)

In Figure 6.3 the route provided by the original model traverses the path that would be
the general choice when entering the city of Nuremberg. This however is an urban area
and while the most intersections encountered will be with roads with lower rank some will
always be of equal, or in some cases even higher rank. When considering the turn costs the
optimal alternative is to leave the urban roads and travel on the outskirts of town as far as
it makes sense. The turn cost model’s result splits away from the city street and mounts
the national highway B14, that has the clear advantage considering the situation of the
intersections and is hence picked for the most energy efficient route with turn costs.
A road with the same rank as the ones on the intersections encountered along the path
does not present any special advantages, and if this road should enter an intersection with
a street of greater rank then it will generally be at a disadvantage. Neither of these cases
presents a favorable choice when regarding turn costs. Hence, for traversing a moderately
large city, the preference of the turn cost model lies in following the road that outranks
the others in terms of street type. Should this not be an option the next best choice is to
minimize the number of encounter with higher rank roads and take paths that intersect
with streets of at least the same rank. Unlike smaller towns cities generally present a few
alternative routes, making the choice possible.
In Figure 6.4 the Dijkstra Algorithm run on the original graph advises to leave a higher
rank road and follow an urban path that ends back in the same road. The advantage lies in
evading the intersection with a highway. While some energy might be spared this way the
route does not account for the intersection with and turn to another road of the same rank
or the full stop necessary when rejoining the road of greater rank. Using the expanded
graph to calculate the same route deems the intersection with the highway less energy
consuming and advises to not leave the route and traverse the urban area.
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6. Case Study

�

Figure 6.4: Passing through Karlsruhe. (48.957697, 8.475514) to (49.086464, 8.396597)

Figure 6.5: From north of Berlin to the east side of town.
(52.647803, 13.380408) to (52.513492, 13.520236)
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The final case has shown that interesting path choices are tied to routing on very large
cities. Taking a city the size of a capital it becomes obvious that the highways or national
highways are the optimal way to get from one side to the other. However, when the
destination of the route is somewhere within the city, different options arise depending
on the case. In the example of Figure 6.5 the path enters the capital of Germany from
the north and tries to reach its destination on the east side. Since Berlin is very large
travelling on the outskirts in the rural area is not an option for an energy efficient route.
The path given by the original model is fairly direct and goes through the urban part of
the city, encountering a high number of intersections with other urban streets of the same
rank. This results in multiple turn cost penalties, that are not calculated when using the
original graph. Applying the Dijkstra Algorithm on the expanded graph reveals a route
more considerate to the battery life that advises to mount the highways and use these to
reach the destination, avoiding the penalties that would have applied when traversing the
other route.

As a summary the turn cost model, when possible, returns routes with fewer intersections
in total, or with less that are inconvenient, at the expense of slightly higher travel distances.
The alternative with the fewest meetings with other roads of the same rank or higher are
preferred. Longer travels avoid as many towns as possible, and short travels within a city
avoid urban areas when possible. These routes can vary from the results given by the
original model, although this must not occur as a rule.
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7. Conclusion

In this thesis different methods to implement turn costs into routing for electric vehicles
are viewed. It consists in gaining consumption values for turn costs, adding these to a
manner of graph that can accommodate them, and finding compatible routing algorithms
and speed-up techniques.
The PHEM data proved to present a feasible source of information for consumption values
used in various turn maneuvers. While most of the maneuvers existing in road networks
are covered some of these were not represented within this data. Differentiating maneuver
costs by regarding speeds, slopes and service levels provided satisfying results, as shown in
the case study. While some negative cycles arise due to this approach they constitute only
a small number of situations.
Expanding the graph, or storing consumption values as a vector both consist in valid
approaches to routing with turn costs. The expanded graph can be regarded as a rather
naive approach, and provides less advantages than the turn cost vector graph. This applies
to the storage situation as well as the results obtained when routing. The edge-based
version of Dijkstra’s algorithm is necessary to maintain a correct result on the turn cost
vector model. Using a stopping criterion brings forth very similar benefits to graphs with
turn costs and to graphs without these. Finally, query induced vertex potentials present a
higher advantage to outing on the expanded graph as opposed to the original one.

Outlook
This thesis presents several directions in which further work can be undertaken. Attempts
can be made to win even more consumption values from the PHEM data, and different
heuristics can be used to select an appropriate result among the multiple ones available for
the same situations. Further parameters can be matched to turns, and the service level can
be given a different impact. The turn cost vector graph still contains a number of identical
intersections, that are not regarded as equal due to a different edge indexing. Reordering
the edges in the graph can result in a further compression of the number of entries that
appear in this type of graph when creating it.
The query induced vertex potentials can be modified to work with the edge-based Dijkstra
algorithm. Other types of vertex potentials can be altered and applied to routing with
turn costs, as well as compared to each other. Finally further speed-up techniques, like
Customizable Route Planning [DGPW13], or even Contraction Hierarchies [GSSD08], can
be adapted to work with the turn cost graph models, and the result can be tested, to find
if routing with turn costs can be brought to a form where it is efficient enough to take its
place in all types of route planning software and hardware.
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