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Deutsche Zusammenfassung

Kartogramme sind zu einem Gewichtsvektor proportionale Zeichnungen von Landkarten
bei denen die Flächeninhalte der Länder genau den vorgegebenen Gewichten entsprechen.
Neben der Proportionalität spielt bei der Generierung von Kartogrammen die Qualität
der Darstellung – und damit die Lesbarkeit – eine entscheidende Rolle. Die Länder dür-
fen nicht zu stark deformiert oder verschoben werden, damit die ursprünglichen Konturen
sichtbar bleiben und die einzelnen Länder aufgrund ihrer Form schnell wiedererkannt wer-
den können.

In dieser Arbeit untersuchen wir einen Ansatz zur Erstellung von Kartogrammen durch
Krümmung von Ländergrenzen. Genauer erlauben wir die Ersetzung von geraden Kan-
ten durch Kreisbögen, was offensichtlich einen Flächentransfer zwischen den beteiligten
Ländern bewirkt. Die Regionen in den auf diese Weise generierten Kartogrammen bekom-
men durch die geschwungenen Konturen dann eine wolkenähnliche beziehungsweise flock-
enähnliche Form je nachdem, ob sie ihre Fläche vergrößern oder verringern. Neben einer
formalen Definition mehrerer Problemvarianten und dem Nachweis der NP -Schwere all
dieser Varianten schlagen wir verschiedene Relaxierungen der Bedingungen an ein kor-
rektes Kartogramm vor mit dem Ziel, das Problem unter diesen vereinfachten Bedingun-
gen effizient lösen zu können. Hauptansatzpunkt hierbei sind die Lockerung der strikten
Flächenbedingung sowie die Lockerung der Knotenbedingungen. Abschließend stellen wir
eine Umsetzung dieser Relaxierungen als Heuristik vor, die auf der Berechnung von maxi-
malen Netzwerkflüssen basiert. Diese Heuristik wurde implementiert und eine Bewertung
anhand der resultierenden Kartogramme vorgenommen.

Abstract

Cartograms are proportional drawings of maps where the areas of all countries correspond
to prescribed weights. Besides the property of being a proportional representation it is
essential for the quality of a cartogram that the countries are not too badly deformed. A
good clarity can only be achieved if all countries can easily be identified by the reader
due to the fact that their principal topological properties have been carried over from the
original map to the cartogram.

In this thesis we investigate an approach to generate cartograms based on a deformation
of borders between different countries. In particular, we allow to replace straight line
segments with circular arcs in order to transfer area from one country to another. The
countries in the resulting cartograms look thus a bit like clouds or flakes, depending on
whether the edges were bent outwards or inwards. We introduce several problem variants
and show that they are all NP -hard. Then we propose some relaxations aiming to simplify
the problem so that it can be resolved efficiently. First a relaxation of the area constraint is
considered where a deviation of the attained area from the prescribed area can be tolerated.
Then we suggest relaxations of the vertex-related constraints. A heuristic based on the
area relaxation and using a max-flow algorithm is then presented. This heuristic has been
implemented and an evaluation has been conducted by showcasing some visual output
from the implementation.
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1. Introduction

Automated computational approaches for the visualization of geographic data are becom-
ing increasingly important as modern information systems and the Internet evolve. Car-
tographers have made a lot of effort in order to represent and manipulate geo-information
digitally. Digital maps can now be found anywhere where a few decades ago people used
paper maps or atlases. It is not only the fact that they are digital and therefore more
easily handleable which accounts for their success but also the possibility to provide them
with features which make our lives more convenient. Algorithms that run on digital maps
or other geographic data are today crucial in many fields, e.g. communications, route-
planing, meteorology, aviation, sea-navigation, logistics, astrology etc. Digital maps and
their manipulation have become indispensable and a huge amount of applications rely on
elaborated algorithms which operate in real-time and provide the user with any kind of
information one could think of.

In this context the schematization and redrawing of maps plays a significant role when
regarding various fields of application. Maps are redrawn in order to simplify the original
map or in order to augment the geographic information available in the original map, i.e.
contours of countries and borders, with related data. One example of such an augmentation
is the insertion of labels in a map in order to tag certain places. Also the plotting of isolines
is such an augmentation used in meteorology to represent some data (e.g. air pressure) in
a simple digital map. The same holds for relief shading performed by geologists aiming to
represent altitudes in a map.

All these redrawings have in common that an abstraction from the precise geographic map
is made and the focus is shifted onto associated data which is in some way incorporated
into the map. This abstraction however always preserves the basic characteristics of the
original map so that the latter can still easily be recognized. When looking at the map
the user can concentrate on the added data which has been visualized without spending
any time on reading or understanding the basic contours of the map.

One specific kind of these redrawings are cartograms. A cartogram is a map in which the
sizes of all countries are proportional to given quantities associated with every country,
most often statistical data. Given a map and a vector which supplies a weight for every
country in the map we look for a transformation of the map where all areas are equal to
the weights and by applying this transformation we want to deform the map as little as
possible. A good cartogram will give a very quick overview over the represented quantities
and at the same time it will resemble the initial map sufficiently well so that one can
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identify the different regions without difficulty. The convenience of cartograms lies thus in
the fact that the distribution of the illustrated data can be studied comfortably with a quick
glance. For instance one can compare the values of two countries by simply comparing
their sizes in the map. Or one can find the country with the biggest value by roughly
scanning over the map. The order of the countries according to the given data and rough
proportions between the countries can be deduced easily. Nevertheless, it is obvious that
a cartogram alone will never be as accurate as the set of numeric values itself. A good
extension of a cartogram is thus to print the set of values next to it or to incorporate the
values directly into the map, i.e. to print them as labels in the map. The fundamental
advantage of cartograms over most other cartographic quantity illustration techniques is
their simplicity and compactness.

The most primitive related quantity illustration technique is a simple table with two
columns where every region is mapped to a value. The main advantage of tables over
cartograms is that one can look up exact values and compare regions on a more precise
level. In all other respects mentioned in the last paragraph a cartogram is superior to
a table. Tables do not attain a comparable clarity because they do not make use of the
potential that visual illustration has with respect to perceptibility by the human eye as
opposed to numeric illustration.

A first approach to visualize the data from a table is to use a choropleth map. In a
choropleth map the set of values is divided into intervals of a certain granularity and then
regions are shaded with a color according to the interval which their value belongs to. The
topology of the map is not modified. This method is suitable for certain purposes since it
groups the regions in the map and one can quickly view the zones in the map where regions
belonging to the same group are clustered. However, depending on the granularity this
method is not very precise and besides it has the major drawback that a fast comparison
between the values of different regions is hardly possible since the intervals might span
quite a large range of values.

This problem of choropleth maps can be remedied partly by relating the color tone directly
to the given values with a code, e.g. by providing some appropriate function. Then the
coloring of the map can be adapted to reveal more nuance as opposed to the discrete
shading performed in choropleth maps. That way the proportions are better and more
quickly perceivable because one can estimate the value of a point or region by evaluating
the tone of its color. This kind of drawing where regions in the map are colored with
smoother transitions between them is called a heat map. Nevertheless, a heat map still
does not provide a true proportional representation of the given quantities and it can
be quite cumbersome to compare two given points in the map by retrieving the values
associated to their color via the shading function.

An illustration of the difference between a choropleth map and a heat map is depicted
in Figure 1.1. Both graphics are part of a study of Mark Newman visualizing the results
of the 2008 US presidential elections [new]. The left Figure 1.1a is a simple choropleth
map where the range of values between 0% and 100% has been divided into two intervals
signifying whether Democrats (blue) or Republicans (red) have won the vote in that state.
The information provided in this image is quite poor because one can not see whether
the vote has been close or not in the different states. The heat map in Figure 1.1b is
richer in information since the color tone per county is related immediately to the precise
percentage of the vote. For instance we can now conclude that in Arizona which is pretty
much violet in its overall color tone the win of Republicans was a lot closer (McCain 8.8%
in front of Obama) than in Utah which is dominated by strong red (McCain 27.6% in front
of Obama). One principal deficiency of both shading methods is that colors are not very
appropriate to visualize quantities. The relation between colors and quantities is always
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(a) Choropleth Map (b) Heat Map

Figure 1.1: Shading methods (graphics reproduced from [new])

an artificial one and a calculation is necessary in order to link a color to a value and vice
versa. Also the two images in Figure 1.1 can be very misleading because most large US
states in the west are sparsely populated while the states that are smaller in area in the
east are densely populated but in the shading methods this distribution is not taken into
account. The maps would be more meaningful if states were proportional in size to their
population.

A more sophisticated method which takes quantities as sizes of the modeled objects into
account is proportional contact representation, where regions of the map are represented as
geometric objects which touch if the corresponding regions are adjacent in the map. These
objects can be line segments, circles, triangles or other simple geometric objects. Hence,
the only structure from the map that is preserved in the representation is the adjacency
information given by the dual graph. Different classes of contact representation exist, for
instance contact may be defined as point contact or as contact along an actual border or
one could ask for a hole-free contact representation. Now, if the objects have sizes which
comply with prescribed weights, then the contact representation is called proportional.

There are several results for contact representation and for proportional contact represen-
tation: In 1936 Koebe showed that any planar graph has a contact representation with
circles if not considering weights [Koe36]. De Fraysseix et al. showed that the same can
be done with triangles [dFdMR94]. Note that in both cases the restriction was made on
point contact. Many applications however do require side contact, i.e. the objects must
touch along a non-trivial border, since this requirement leads to more compelling results.
Gansner et al. showed that any planar graph has a side contact representation with 6-sided
polygons and that this is sometimes necessary [GHKK10].

Proportional contact representations which also take the quantities into account and model
them as areas of the contact objects include Alam et al., see [ABF+11]. They give upper
bounds on the complexity of the objects, i.e. the number of bends per object, in a hole-free
proportional contact representation with rectilinear polygons for certain graph types. For
maximal planar graphs they describe a linear-time algorithm using 10-sided rectilinear
polygons and for planar 3-trees they give an algorithm that cuts the complexity of the
polygons down to 8 and still runs in O(n) time. In the latter case they even show that
the achieved complexity is optimal. Furthermore, they prove that only 6-sided polygons
are necessary for maximal outer-planar graphs. Note that rectilinear representations are
particularly interesting because they play a role in VLSI design.

Proportional contact representation is a good way to show quantities over a map if the
visualization of the quantities is more important than the shape of the countries in the
initial map of which only adjacencies are kept by performing the contact representation
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on the map’s dual graph. In many applications, especially in statistical illustrations in
newspapers or books, this lack of resemblance between map and representation can not be
tolerated. A method is needed that represents the weights proportionally and at the same
time preserves the main topographic properties of the original map.

A way to rectify this deficiency of not even providing a roughly correct visualization of
the map which all methods discussed so far have is to use proportional symbol maps. In
a proportional symbol map geometric objects – in the majority of cases disks or squares
– which are scaled to a size proportional to the prescribed weights are placed on the map
while the map itself remains unchanged in its boundaries. In general, objects can be placed
at any point in the map where data was collected (true point data), but if the objects are
located in such a way that they aggregate the data for one entire region than we talk
of conceptual point data and this comes close to the idea of a value-by-area map. The
fact that in general objects are allowed to overlap in proportional symbol maps raises the
question what the best positioning of the objects is such that their sizes can be estimated
as good as possible. Clearly, a long visible border of an object benefits its recognizability
and thereby the suitability for quick estimates. Cabello et al. address the problem of
how to arrange the objects in order to maximize the amount of visible border [CHvKS10].
Most of the problems that they consider turn out to be NP -hard. Proportional symbol
maps are a good technique to enhance a map with weights per country, especially if the
layout of the map and structure of the weights allow for an easily readable positioning of
the symbols with a small amount of overlap. However, this method suffers from a quickly
growing complexity, for instance if many small countries occur in a zone of the map which
implies that many symbols have to be arranged on a limited space.

It can thus be said that a well drawn cartogram is an advantageous way to visualize
quantities in a geographic map when the user or application demands for an easily readable,
aesthetic representation of the quantities in the map. Cartograms take both topology of
the map and given quantities into account whereas the other methods which were discussed
above all attempt to provide correct visualization of at most one of the two criteria (tables,
choropleth maps, heat maps and proportional contact representation) or work with objects
that must separately be added into the map (proportional symbol maps).

However, obviously there is a trade-off to be made in cartograms: If the data varies a
lot from the actual geographic proportions, then we can not establish the correct areas
while keeping the shapes of all regions close to their initial shapes. These two criteria
mutually affect each other. It depends on the purpose of the visualization whether one or
the other criterion is prioritized. Only a method that neatly balances between distortions
of the two factors can lead to a satisfying cartogram. If a cartogram algorithm does not at
all preserve the topology of the initial map then it is no more than proportional contact
representation and if on the contrary it requires the output to be too close to the input
than it might be unable to find cartograms for certain unfavorable weight distributions.

1.1 Related work

Different cartogram models have been proposed. A well studied one is the rectangular
cartogram. In a rectangular cartogram all countries and their values are represented by
rectangles of the right size. The pioneer in this field was Erwin Raisz who published his
work in 1934, see [Rai34]. At this early stage Raisz was already conscious about what
distinguishes a proportional map from a proportional (contact) representation:

“It should be emphasized that the statistical cartogram is not a map. Although
it has roughly the proportions of the country and retains as far as possible the
relative locations of the various regions, the cartogram is purely a geometrical
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design to visualize certain statistical facts and to work out certain problems of
distribution.” ([Rai34])

So, Raisz argues that his cartograms are not really maps, since the boundaries of regions
are approximated by rectangles which are too primitive geometrical objects for the purpose
of illustrating a geographic map. Nevertheless – and this is essential – Raisz’ cartograms
despite their radical abstraction are more than proportional contact representation as
they take the layout of countries into account, i.e. where a country lies with respect to its
neighbors. This is stronger than simply producing a representation from the dual graph.
This fact of considering the original map’s properties beyond the dual graph is the step
that brings us from proportional contact representation to cartograms.

Van Kreveld and Speckmann were the first to give automated methods to produce rect-
angular cartograms [vKS07]. However there is no guarantee for correct areas and correct
adjacencies. Further work in the field of rectangular cartograms was done by Heilmann et
al. where correct areas are achieved but the strict constraint on the adjacencies is dropped
as well [HKPS04]. Eppstein et al. studied area-universal rectangular layouts [EMSV09].
They answer the questions for which kind of rectangular layouts all area-assignments can
be achieved with combinatorially equivalent layouts. De Berg et al. investigated car-
tograms for maps with an internally triangulated plane dual graph by using rectilinear
polygons having a complexity of at most 40 [dBMS09]. Biedl and Vélazquez improved this
bound to 12 [BV11].

More general cartograms without any limitation to a rectangular or rectilinear shape of
the regions have also been studied in the cartography community. Tobler presented an
early automated method to draw cartograms, see [Tob86]. He describes the problem
mathematically as a minimization problem which is subject to boundary constraints and
partial differential equations. Based on an iterative approach he then obtains approxima-
tions which can have big cartographic errors, thus the name “pseudo cartogram”. Also
in Tobler’s approach there is the issue of very costly computations which slow down the
algorithm.

Dougenik et al. introduce a method based on force fields where the map is divided into cells
and every cell has a force related to its data value which affects the other cells [DCN85].

Keim et al. describe the distance of the cartogram from the original map with a metric
based on Fourier transformation and then perform a scanline algorithm on the map which
repositions the edges according to this metric [KNP04]. They obtain pretty appealing
results with a significant cartographic error for only very few regions in their experiments.

Welzl, Edelsbrunner and Waupotitsch focus on combinatorial resolution approaches for
cartograms [WEW97]. They define the generation of a sequence of homeomorphic defor-
mations which produces the cartogram and the effect on the area distortion of which can
be prescribed. They also discuss how quality of cartograms can be assessed with local
distance distortion measures.

Dorling presents a grid and cell based approach where regions try to acquire new cells or
get rid of cells until an equilibrium has been achieved, i.e. each region has attained the
desired amount of cells, see [Dor96]. In some cases this technique leads to big distortions
of the regions’ shapes which reduces the readability significantly.

Kocmoud and House propose another method which is a mix of Dorling’s method and the
approach of Edelsbrunner et al. [HK98].

Gastner and Newman present a cartogram model which relies on elementary physics
[GN04]. They express the desired balancing of the regions’ weights as an iterative dif-
fusion process where quantities are flowing from one country to another until a balanced
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Figure 1.2: A population cartogram augmented with a color code (graphic reproduced from
[new])

distribution is reached, i.e. the density is the same everywhere. The cartograms produced
this way are well readable, compact and have no cartographic error. Plus the computation
is not very costly. Nevertheless, the method does allow to control the deformation of single
regions. If there is a big discrepancy between the weight and the initial area of a region,
no trade-off will be made and the region will probably not at all look alike in the resulting
cartogram. In many cases it could be desirable though to accept a certain cartographic in
favor of a more accurate geographic representation.

Recall that earlier we identified one major deficiency of methods that do not model quan-
tities as areas in the map which was the fact that the resulting maps can be very delusive
since human visual perception is best adapted to deducing quantities from sizes and not
from colors for example. The two maps for the 2008 US presidential elections in Fig-
ure 1.1 were therefore not satisfactory as the amount of red and blue in the map does
not at all match the actual outcome of the election. Figure 1.2 illustrates the power of
cartograms. A population cartogram generated with Gastner and Newman’s algorithm
has been shaded with the same code as the heat map in Figure 1.1b and the outcome of
the election is therefore represented proportionally to the population. Practically we can
now see that blue and red are quite balanced in the map with blue predominating slightly
and we conclude that the vote must have been close but Democrats prevailed (end result:
Democrats 52.9% – Republicans 45.7%).

Frequent applications of cartograms are illustrations of population distribution or statis-
tical variables like GDP. Cartograms are discovered as a useful cartographic tool by more
and more users, especially by newspapers and journals, but also by public authorities for
instance. New computational cartogram generation methods which are efficient and pro-
duce high-quality maps are therefore much in demand. All of the methods presented here
have significant weaknesses and therefore researchers continue to explore new approaches.
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1.2 Overview

In this thesis we study a new cartogram generation approach which is based on an action of
bending the border between different countries in order to transfer area. Borders consisting
of straight line segments are thus replaced with curved segments. Here we limit ourselves
to circular arcs because this is a kind of curve which is easy to control and still provides
a good ability to shift a big amount of area from one region to another. The overall
goal is to obtain maps with smoothly curved interior and exterior borders where the
countries possibly look a bit like clouds if the edges are bent outwards and like flakes if the
edges are bent inwards. Such a cartogram allows to quickly identify the countries which
increased their area and those which decreased their area due to the distinctive shape of
inflated (clouds) and deflated (flakes) regions. This holds in particular when imposing the
additional requi rement that increasing regions can only use outwards bent circular arcs
and vice versa. This requirement is called normal-bending and will be explained more in
detail later in this thesis.

A manually drawn exemplary cartogram is shown in Figure 1.3. Inflated and deflated
regions can easily be distinguished and the fact of having longer borders as opposed to a
drawing with straight segments emphasizes the existing adjacencies in the map.

Figure 1.3: A hand drawn circular-arc cartogram

After the introduction to the topic of our work in this chapter the next Chapter 2 will
acquaint the reader with notations, algorithms and concepts from graph theory and car-
tography which will be relevant in this thesis.

In Chapter 3 the problem at hand will be stated formally and a short overview over positive
and negative problem instances in the case of single polygons will be given. We investi-
gate the questions for which polygons any positive weight can be attained by replacing
straight segments with circular arcs and which combinations of polygons and weights are
not feasible. Then in the main Section 3.3 of this chapter complexity results for different
variants of the problem will be derived. All studied variants are proven to be NP -hard.
The reductions are based upon each other, so it is recommended to read them one after
another.

Some possible relaxations are discussed in Chapter 4. These relaxations drop certain
requirements which are imposed on a solution of an instance with the aim to render the
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problem efficiently solvable. We treat possible relaxations of the area constraint as well as
relaxations of constraints that are related to vertex positions in the map.

A heuristic which uses the relaxations from Chapter 4 and which is based on a max-flow
algorithm is then presented in Chapter 5. The chapter ends with an evaluation of this
heuristic through a case study which discusses the visual output of an implementation.
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2. Preliminaries

In this chapter a short overview will be given over the theoretic fundamentals and algo-
rithms from graph theory and computational geometry which are used in this thesis.

Graph A graph G = (V,E) consists of a set of vertices V and a set of edges E. Edges
are unordered pairs of vertices {u, v} representing a link between u and v. Two vertices
that have a link are said to be adjacent. The degree of a vertex is the number of vertices
adjacent to it. A graph is simple if no loops (edges {v, v}) and no multiple edges occur.
Graphs will always be assumed to be simple in this thesis. In a graph the cardinalities of
V and E are denoted n and m respectively.

Topological embedding of a graph A topological embedding or a plane drawing of a
graph is a mapping of its vertices to points in the Euclidean plane and of its edges to
curves such that none of the curves intersect in their interior and the endpoints of a curve
are exactly the two points associated with the vertices of the corresponding edge. A curve
does not contain any points associated with vertices other than its two endpoints.

Combinatorial embedding of a graph A combinatorial embedding of a graph consists
of the definition of a cyclic order of all incident edges around any vertex of the graph. Such
a cyclic order is sometimes also called rotation system. A combinatorial embedding can
be viewed as an equivalence class of topological embeddings.

Planar graph A planar graph is a graph that can be topologically embedded, i.e. a graph
that can be drawn in the plane such that none of its edges cross.

Plane graph A plane graph is a planar graph with a given topological embedding (a
given drawing of the graph). The connected pieces of the plane that are bounded by the
edges of a plane graph are called interior faces (or simply faces). The piece of the plane
unbounded by a plane graph is called the outer-face.

Planar straight-line graph A planar straight-line graph is an embedding of a planar
graph such that the edges of the graph are mapped to straight line segments. Fáry showed
that every planar graph has an embedding as planar straight-line graph [Fár48].
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Polygonal subdivision of the plane A planar straight-line graph without vertices of
degree 1 is called a polygonal subdivision as it subdivides the plane into disjoint regions
or faces. Polygonal subdivisions are a common term in computational geometry used to
represent geographical maps. The edges E of a polygonal subdivision are the straight line
segments of the graph and the vertices V are all endpoints of edges. The cardinalities of
V and E are denoted by n and m. The bounded pieces of a polygonal subdivision are its
regions or sometimes countries. Every region of a polygonal subdivision is thus a polygon.
Regions can also be labeled as lakes which means that they are not true administrative
entities like countries, states or counties. The piece of the plane unbounded by a polygonal
subdivision is called the sea.

Dual graph The dual graph GD of a plane graph G has a vertex associated to each face
of G and an edge if the two faces corresponding to the vertices have a common border
in G. If two faces share several common borders that are disjoint, then one edge in the
dual graph represents all of these borders. A dual graph does thus not contain multiple
edges. Plane graphs with the same combinatorial embedding have the same dual graph.
The dual graph can be defined likewise for polygonal subdivisions.

Directed graph Like a graph a directed graph G is defined as a pair of vertices and
edges (V,E), except that in a directed graph an edge e is an ordered pair of two vertices
e = (u, v), meaning that e is an edge directed from u to v. For an edge (u, v) we say that
(v, u) is its reverse edge.

Directed path A directed path p in a directed graph is a sequence of vertices (v1, . . . , vl)
with (vi, vi+1) ∈ E for 1 ≤ i ≤ l − 1. We say that p is a path from v1 to vl and its length
is l − 1.

Flow network A flow network is a directed graph G with two designated vertices s and
t, called the source and the sink of the network, and a capacity function c : E 7→ R+

0 which
assigns non-negative capacities to the edges of G. For any edge (u, v) in E the reverse
edge (v, u) must be in E as well. A valid flow in such a network is an assignment of real
numbers to the edges f : E 7→ R which has the following properties:

f(u, v) ≤ c(u, v) ∀(u, v) ∈ E (capacity constraint)

f(u, v) = −f(v, u) ∀(u, v) ∈ E (skew symmetry)∑
(u,v)∈E

f(u, v) = 0 ∀u ∈ V/{s, t} (flow conservation)

The value of a flow is |f | =
∑

(s,v)∈E
f(s, v). Given a flow f the residual capacity cf of an

edge in a flow network G is defined as cf (u, v) = c(u, v) − f(u, v). The residual network
of a flow network G is Gf = (G, s, t, cf ). An edge is saturated if its residual capacity is 0.
We call an augmenting path in G a directed path from s to t with all edges on the path
non-saturated.

Maximum flow problem The maximum flow problem in a flow network G is to find
a valid flow f of maximum value. There are several algorithms for the maximum flow
problem. The first one is the algorithm of Ford-Fulkerson which finds augmenting paths
and pushes more flow over the unsaturated edges, see [FF56]. Their method can however
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not be guaranteed to terminate unless all capacities are integer. Numerous variations
have been proposed that improve the method of Ford-Fulkerson and the runtime of which
can be polynomially bounded, for instance the algorithm of Edmonds-Karp which can be
implemented with a runtime of O(nm2), see [CLRS09]. A different approach is the Push-
and-Relabel algorithm by Goldberg and Tarjan which runs in O(n2m) time, see [GT86].

One particular variation of augmenting-path algorithms is the one of Boykov and Kol-
mogorov [BK04]. While their method does not have a polynomial runtime bound (O(mn2|C|))
because it depends on the cost of a minimum cut C (similar to Ford-Fulkerson), they show
that in practice it performs very fast and in fact better than other standard algorithms.

The algorithm of Boykov and Kolmogorov builds up one source search tree S and one sink
search tree T . Vertices are labeled if they belong to either one of these two search trees.
Vertices that do not belong to S or T are said to be free. In S and T all edges directed
towards the sink are non-saturated. It always hold that S and T do not overlap: S∩T = ∅.
Vertices are tagged as active or passive throughout the execution of the algorithm. Only
vertices belonging to a search tree can be active (free vertices are always passive). During
execution the algorithm iterates over three phases:

1. grow-phase
Active vertices can acquire new free vertices to their search three that are adjacent via
a non-saturated edge. After exploration of all neighbors the current vertex becomes
passive. The set of active vertices is treated iteratively as a whole independent of
the two search trees. If no more active vertices are left, this phase terminates and
the current flow is optimal. The phase also terminates if acquisition of a vertex from
the opposite search tree would have been possible. In that case an augmenting path
from source to sink was found.

2. augment-phase
In this phase the bottleneck capacity on the found augmenting path from phase 1
is added to the flow on this path. The search trees possibly collapse into forests
because edges become saturated.

3. adopt-phase
The search trees are restored in this phase: The vertices that were cut from their
search trees because of the flow augmentation can be reconnected to the search tree
by non-saturated edges (they are thus assigned a new parent). If such an edge does
not exist the disconnected vertex can be marked as free in order to be newly assigned
in the next phase.

The advantage of this algorithm is that it is adapted to work with positive flows on an edge
and its reverse edge at the same time. The skew-symmetry constraint from the definition
of valid flows can thus be dropped when using this method.

Transshipment problem The transshipment problem is also a network flow problem.
The particularity here is that any vertex can be a source or sink whereas in a normal
network flow all vertices are just transferring flow except the two designated source and
the sink vertices which can have a surplus or loss of flow. More formally we define the
problem as follows: G is a directed graph with a capacity function c : E 7→ R+

0 assigning
non-negative real numbers to the edges. Additionally, costs p : E 7→ R+

0 are assigned to
the edges. Vertices are weighted with a function b : V 7→ R which describes whether a
vertex has a demand (b negative) or supply (b positive) or whether it is a transfer node (b
equal to 0). In a valid flow f for the transshipment problem the two following conditions
hold:
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f(u, v) ≤ c(u, v) ∀(u, v) ∈ E (capacity constraint)∑
(u,v)∈E

f(u, v) = b(u) ∀u ∈ V (demand-supply balance)

So, the first condition from the definition of Network flows holds (capacity constraint),
the second does not (skew symmetry) and instead of the third condition a demand-supply
balance constraint is introduced which allows for several sinks and sources. All sources
and sinks have to satisfy their demand, or reduce their supply to 0 respectively. The goal
is to find a valid flow which minimizes the total cost∑

(u,v)∈E

f(u, v)p(u, v)

This kind of problem is closely related to other network flow problems.

Straight Skeleton Evolution The straight skeleton of a simple, closed polygon consist-
ing of straight line segments exclusively is constructed by inwards offsetting the edges of
the polygon simultaneously at a constant speed. During this action of offsetting the ver-
tices of the input polygon are traced until two traces intersect. Upon an intersection the
polygon is split into two which means that the bisector between the two intersecting traces
is the new trace to be followed. At the end of this tracing process a partitioning of the
original polygon into several regions will be obtained. Each of these regions corresponds
to exactly one contour edge of the initial polygon. Methods exist for the computation of
straight skeletons which run in O(n2 log(n)) time, see Aichholzer et al. [AAH+07].

Bipartition Bipartition is a NP -complete decision problem (see [GJ79]): Given a set of
positive integers S = {x1, . . . , xn} is there a subset S′ of S such that all integers in S′ sum
up to the same value as all integer not in S′?

Subset sum Subset sum is a NP -complete decision problem (see [GJ79]): Given a set of
positive integers S = {x1, . . . , xn} and a positive integer K is there a subset S′ of S such
that all integers in S′ sum up to K?

12



3. Circular-arc Cartograms

Starting from a map given as a polygonal subdivision we want to find a transformation
such that the transformed map is a cartogram with respect to a given weight vector. The
only operation allowed in this transformation is the substitution of straight segments with
circular arcs.

In this chapter we will define the problem at hand formally and give some results concerning
possible bending configurations for the case where the underlying map is a single polygon.
We then treat several variants of the problem which differ in the constraints they impose
on a resulting cartogram in order to be valid.

Note that the words ’map’ and ’subdivision’ will be used interchangeably in the remainder
of this thesis. When talking about geometric properties and operations the expression
’subdivision’ will be used preferably whereas the same object might be called ’map’ (or
’cartogram’ which is the transformed map) in a context where for example visual properties
of the output are pointed out. In Section 4.2.1 we also identify a map or subdivision with
a plane graph which is equivalent.

3.1 Problem Statement

Given a polygonal subdivision of the plane S which can be viewed as the set of straight
edges that it consists of we define a circular arc configuration as an assignment of a point
Ce lying on the perpendicular line through e’s midpoint and of a directed normal vector
de being perpendicular to e to each edge e of S. This assignment uniquely defines a
circular arc through e’s endpoints for each e where Ce is the center of the circular arc
and de gives the direction into which e is bent. If all edges in S have been associated
with a circular arc in this way we talk of a circular-arc configuration (sometimes also
called bending configuration in this thesis). If additionally none of the circular arcs in
such a configuration intersect or introduce new adjacencies we say that the configuration
is valid. Obviously there is an infinite number of valid circular-arc configurations for any
subdivision. See Figure 3.1 for an illustration of an assignment of a center Ce and direction
de to edge e.

With this definition of a circular-arc configuration we can then specify the problem which
underlies the rest of this chapter:
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de

Ce

e

Figure 3.1: Circular arc configuration at e by choosing Ce and de

Problem 3.1.1 (Circular-arc Cartogram) Given a polygonal subdivision of the plane
S and weights t that are assigned to the regions of S. Does a valid circular-arc configuration
S′ exist where all areas of the regions comply with the vector t?

This is the Circular-arc Cartogram problem (CAC) in the general setting. Several variants
will be defined later by introducing further going restrictions on what we consider a valid
configuration.

3.2 Single Polygon Bending Configurations

This section contains results for possible bending configurations of single polygons which
give detailed evidence that positive as well as negative instances exist for the problem at
hand. We will see that it is not even necessary to consider more complex subdivisions
with more than one region in order to give weights that can not be realized as areas in a
cartogram. Interesting questions for single polygon bending configurations include:

• Are there polygons for which any target area can be achieved with valid bending
configurations?

• Is there a classification of these polygons?

• Which polygons admit target values (weights) that cannot be realized?

14



(ii) (iii)(i)

αα α

Figure 3.2: Configuration with 120◦ ≥ α > 60◦

3.2.1 Feasible Instances for any Weight

Theorem 3.2.1 For polygons that admit a circumscribing circle any target area can be
achieved with valid bending configurations.

Proof In order to give an intuition consider an equilateral triangle T with side length l.
Its area is AT and its height is hT . We will first show that we can shrink this region to an
arbitrarily small sickle by bending the edges.

We are allowed to bend all the edges, but must observe the rule that no intersections can
be introduced. Let α be the angle between the tangent of the arc replacing the lower side
segment and the original straight segment at one of the two endvertices. In the following
A(s, α) denotes the area under a circular arc with segment length s and angle α between
the tangent of the arc at one of the vertices and the segment. Consider what happens
if α > 60◦, so the lower edge is bent inwards and the created arc exceeds the original
boundaries of the triangle. The two other edges need to be bent outwards in order to
avoid intersections. As we want the decrease to be maximal, the two other edges will be
bent as little as possible. See Figure 3.2 for an illustration of several bending configurations
where this idea is applied.

Note that the height of the circular arc created from the lower edge is bounded by hT
as this is the point where the arc would touch the upper point of T which is immovable.
We deduce a bound for the angle of α ≤ 120◦. The angles at the tangents for the arcs
of the two other edges are α − 60◦. So they have the same tangent as the lower arc at
their common bottom vertex. That way intersections are avoided. The area of the object
that we obtain is AT + 2A(l, α − 60◦) − A(l, α). This area function tends towards its
minimum at α = 120◦ where the value is 0. In fact for this angle the circular arc is part
of a circumscribing circle of the triangle and we can approach this circle as close as we
want to with circular arcs emerging from the other two edges. So we can get an arbitrarily
small target area with this configuration.

Making the area arbitrarily big is very easy for this polygon: We simply take one edge and
bend it outwards as far as required (no intersections will occur).

This result can be extended to all convex polygons with cocircular points. The proof is
in brief words: For these Polygons we can obtain a circumscribing circle C which can be
approached with circular arcs arbitrarily close making the area 0. �

3.2.2 Effect of Imposing Normal Bendings

Theorem 3.2.1 only holds if we allow bending edges outwards for a region that wants to
decrease its area which is rather unnatural. If we disallow this we can prove that for the
polygons used above not any target area can be attained.
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Figure 3.3: Circular arcs always leave an empty space when only allowed to be bent inwards

Normal bending We say that a valid bending configuration respects the normal bending
condition if edges are bent outwards exclusively for regions which want to increase their
area and if edges are bent inwards exclusively for regions which want to decrease their
area.

Theorem 3.2.2 Under the normal bending condition certain target areas can not be a-
chieved for polygons that admit a circumscribing circle.

Proof Consider again an equilateral triangle with side length l. If we let its target area
tend towards 0 no possible bending configuration of its edges that respects the normal
bending condition can attain this value. See Figure 3.3 for an illustration. The ciruclar-
arcs are all bent into the polygon maximally but there is no way to subtract the remaining
are in the middle. �

3.2.3 Infeasible Instances

Theorem 3.2.3 Polygons exist for which certain target values cannot be realized with
circular arcs in the general setting (ignoring the normal bending condition).

Proof A necessary condition for arbitrarily big area modifications of single polygons with
edge bending is that there is at least one edge that separates the plane into two half-planes.
One half-plane that contains all of the polygon’s vertices and another one that is empty,
i.e. that does not contain any vertices. If this is the case a circular arc can be expanded in
the empty half-plane as far as required to attain any area. We can modify the equilateral
triangle very easily in order to violate this condition: We insert small spikes in the middle
of each of the three triangle edges. Every edge now has a blocking vertex that prevents it
from admitting arbitrarily big circular arcs. See Figure 3.4, we distinguish shorter edges
(type f) and longer edges (type e). Edges of type e get blocked by the upper spike vertex
and edges of type f get blocked by one of the corners of the initial triangle.

So we have found a class of polygons with an upper bound on their area-increase. �
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e

f

Figure 3.4: No edge has an empty half-plane on one of its sides

The overall result from this section can be summed up as follows:

Theorem 3.2.4 The polygons for which any area in the range [0,∞) can be achieved with
a valid bending configuration are exactly the polygons that admit a circumscribing circle.

The first implication was proven in Theorem 3.2.1. It is trivial to see that if a polygon
does not admit a circumscribing circle then an arbitrarily small area can not be achieved
with circular arcs.

3.3 Complexity of Several CAC Variants

As defined in Definition 3.1.1 the problem Circular-arc Cartogram (CAC) deals with the
question whether a cartogram can be obtained from a polygonal subdivision by replacing
straight line edges with circular arcs in order to achieve desired areas in each region. In
the preceding Section 3.2 positive and negative instances for this problem were presented
and a classification of single polygons with respect to their resolvability was given.

In the following we present complexity results for different CAC decision problems. We
will presume the real-RAM model of computation for this chapter which was introduced by
Shamos and Preparata in 1985, see [PS85]. This model is used above all by computational
geometers, for instance when dealing with algorithms or computability results that involve
real numbers which need to be handled as continuous entities or that involve operations
like square roots or trigonometric functions. Brattka and Hertling presented a real-RAM
model which allows to use the computational power of Turing machines on real numbers,
see [BH98].

3.3.1 Parameterized Version

In Circular-Arc Cartogram with Parameter (CACP ) we consider the following variant of
CAC:
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Problem 3.3.1 (Circular-arc Cartogram with Parameter) For a given polygonal sub-
division S with target values ti (positive real numbers) for each region Ri of S and an
integer k decide if S admits a valid bending configuration where all areas of the deformed
regions comply with the vector t. In addition this bending configuration can bend at most
k edges.

For certain subdivisions and target vectors the answer is ’no’ and such a cartogram does
not exist (for any k, even for k = m). Evidence of this is given in Section 3.2.

In the remainder of this thesis the target area vector t will often be given implicitly by
providing the target area change vector ∆t. Let Ai denote the initial area of the i-th region
in the subdivision. Then t can be obtained as follows: ti = Ai + ∆ti.

Theorem 3.3.1 CACP is NP-hard

Proof Consider the following reduction of Bipartition to the problem in question.

Let I = (x1, . . . , xn) with all xi integer be an instance of Bipartition. From I we construct
an instance ICACP of CACP as follows:

• subdivision: One rectangle Ri per xi (height hi =
√

2xi
π + ε and width wi = 2

√
2xi
π ).

All these rectangles touch alternately at an upper or lower vertex and are enclosed
from above by one region (named R0) and one from below (Rn+1). We will specify
the exact value of ε later.

• target values (implied by desired area changes ∆t per region):

∆ti = −xi, for i = 1 . . . n

∆t0 = ∆tn+1 = 1
2

∑
1≤i≤n

xi

• parameter k = n

The construction of an instance of CACP is illustrated in Figure 3.5 along with a valid
bending configuration (dashed circular arcs). The total area of the two shaded circular
segments equals the total area of all four non-shaded circular segments.

We show that I has a solution if and only if ICACP has a solution.

⇐ Let first ICACP be a positive instance of CACP . Hence, a valid bending configuration
C exists where all regions Ri in the subdivision attain their desired area increase or
decrease. We analyze the configurations C and construct a solution for I from it.

All rectangles Ri with i = 1 . . . n want to decrease their area, so we need at least one
circular arc bent inwards for each one of those. As we can only use n arcs for these n
regions, we are obliged to use exactly one arc per region (none of the rectangles share
any edges). Bending the right or left edge of Ri until it gets blocked leads to an area

decrease of

(
hi
2

)2
π

2 as the resulting circular segment is a half circle with radius hi
2 .

We can now set ε = 2
π and obtain

(
hi
2

)2
π

2 = xi
4 + επ

8 = xi+1
4 < xi, for xi ≥ 1. Using

the upper or lower edge of Ri results in a half-circle of radius wi
2 and therefore leads

to an area decrease of exactly xi being subtracted from region Ri and being added

either to R0 or to Rn+1. The height of this circular arc is always
√

2xi
π < hi, so
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xi

Rn+1

∆tn+1 = 1
2

∑
1≤i≤n

xi

Figure 3.5: Construction of the subdivision for CACP

the circular arc does not touch the opposite edge and the region remains contiguous.
So, for all Ri either the upper or lower edge is bent until it gets blocked by the left
and right edge, always leaving a gap that keeps the region contiguous. If the target
area of R0 can be met we can deduce a subset of the xi where xi is in the subset
if and only if the top edge of Ri is bent. All xi in this subset sum up to 1

2

∑
1≤i≤n

xi

as no additional circular arcs can change the area of R0 since we already used the
maximum of n arcs. Equally all xi not in this subset sum up to 1

2

∑
1≤i≤n

xi. The

bending configuration C implies thus a solution for I.

⇒ A solution for I, i.e. a subset of {x1 . . . xn} with total value 1
2

∑
1≤i≤n

xi, can be trans-

lated into a solution for ICACP where the lower edge of Ri is fully bent inwards if
xi is in the subset and the upper edge of Ri is fully bent inwards otherwise. It can
easily be checked that this configuration satisfies all requirements. �

Remark: In this construction only horizontal and vertical edges have been used for the
construction of the subdivision. That means that already the special case of CACP where
all edges need to be rectilinear is NP -hard.

3.3.2 Requiring the Stable Sea Property

We have shown that the general CACP is NP -hard. One case of CACP with particular
interest is the case were k is fixed to the total number of edges in the original polygonal
subdivision. This allows us to bend any edge in the subdivision whereas for example in
the reduction above with the right choice of k we only could bend one edge per interior
region. Abandoning the parameter k leads thus to the initial CAC problem and comes
closer to the natural question of constructing the cartogram. So let us study CAC with a
specific restriction on valid bendings now. The problem formulation underlying Circular-
Arc Cartogram with Stable Sea (CACSS) is the following:

Problem 3.3.2 (Circular-Arc Cartogram with Stable Sea) For a given polygonal
subdivision S with target values ti (positive real numbers) for each region of S decide
if S admits a valid bending configuration where all areas of the deformed regions comply
with the vector t. In addition in a valid bending configuration edges neighboring the sea or
lakes cannot at all be bent. We call this requirement the stable sea property.
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∆ti = −xi

Rn+1

∆tn+1 = 1
2

∑
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xi

∆t0 = 1
2

∑
1≤i≤n

xi

R0

Figure 3.6: Construction of the subdivision for CACSS

The stable sea property can be advantageous in situations where one needs to obtain
cartograms with no deformations of the global shape in order to guarantee quick recog-
nizability of the map as a whole. Many recent cartogram generation approaches do not
consider this a crucial aspect of quality and the maps they produce may have an outline
that does not at all resemble the original one.

Theorem 3.3.2 CACSS is NP-hard

Proof In the case where we require the stable sea property instead of a parameter k we
will have to use a different reduction. The problem with the previous reduction here is
that since any edge might be bent, infinitely many configurations exist that lead to the
desired area decrease. We will use the same principle for the proof as before but simplify
the argumentation by going back to even less complex objects than rectangles, namely
equilateral triangles.

Let I = (x1, . . . , xn) with all xi integer be an instance of Bipartition. We construct an
instance ICACSS of CACSS from I consisting of a polygonal subdivision and a target
weight vector as follows:

In this construction again we will have one region Ri for each xi, this time with the form
of an equilateral triangle with side length si =

√
xi
c where c is a constant the value of

which we will determine later. These triangles are arranged in a horizontal chain in pairs
of two triangles that touch at one vertex. Additional lakes with suitable dimensions that
separate the pairs of triangles and always border one entire edge of their right and left
neighboring triangle will be added. Again the region on top is called R0 and its target
area increase is ∆t0 =

∑
xi

2 , equally for Rn+1. The target area decrease of triangle Ri is
∆ti = −xi.

Figure 3.6 depicts an example of a subdivision created with this transformation. The sea
and the lakes in the subdivision are marked as shaded areas in the image.

It remains to show that the given weights are feasible in the subdivision if and only if the
instance of Bipartition has a solution:

⇐ Let ICACSS be positive and let C be a solution, i.e. a valid bending configuration.
We show how a solution for I can be obtained from C.

In C all areas match the target areas and additionally the stable sea property is
respected which means that no sea or lake edges are curved (the radius of the circular
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Figure 3.7: Bending of the two edges at triangle Ri

arc is +∞). Hence, we know that for Ri the decrease has been achieved exclusively
by using two edges, one bordering R0 and one bordering Rn+1. This is because of
our construction which places a lake or sea region next to one edge of each triangle
which then cannot be bent because of the stable sea property. The angle between
the two edges which can still be bent, let us call them e1 and e2, is initially 60◦. We
denote Ae1+e2(α) the area that is subtracted from Ri when e1 is bent to a circular
arc whose tangent at the common vertex of e1 and e2 encloses an angle of α with the
straight line e1 and e2 is bent as far as possible until becoming tangent to the arc
from e1. The implied angle of the tangent of e2’s circular arc with e2 at the same
vertex is 60◦ − α.

See Figure 3.7 for an illustration of the circular arcs and corresponding circular
segments at Ri. The central angles of the circular segments can be given as

Θ1 = π − 2(
π

2
− α) = 2α

and
Θ2 = π − 2(

π

2
− (60◦ − α)) = 120◦ − 2α = 120◦ −Θ1.

The height of the circular segment j (j = 1, 2) can be calculated with the formula

hj =
si
2

tan

(
Θj

4

)
.
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The radius is given as

rj =
4hj

2 + si
2

8hj
.

And finally the area of the circular-segment can be obtained from

Aj =
rj

2

2
(Θj − sin(Θj)).

We can now write Ae1+e2(α) as

Ae1+e2(α) =
r1

2

2
(Θ1 − sin(Θ1)) +

r2
2

2
(Θ2 − sin(Θ2))

We want to find the maximum of this function for α ∈ [0◦, 60◦]. Bending e1 more
than 60◦ is not possible because intersections would be introduced since the vertical
edge of the triangle is fixed and bending with a negative angle, which implies bending
outwards, cannot lead to a maximum decrease as e2 is blocked anyways by the vertical
fixed edge when α = 0◦. On the given interval the two maxima are at α = 0◦ and
α = 60◦. We calculate the value for α = 60◦, which implies Θ1 = 120◦. The second
term nullifies straightaway:

Ae1+e2(60◦) =
r1

2

2
· (Θ1 − sin(Θ1)) + 0

=

(
4h1

2+si
2

8h1

)2

2
· (Θ1 − sin(Θ1))

=

(
4
(

si
2

tan(
Θ1
4

)
)2

+si
2

8
si
2

tan(
Θ1
4

)

)2

2
· (Θ1 − sin(Θ1))

= si
2 ·

(tan4(Θ1
4 ) + 2tan2(Θ1

4 ) + 1) · (Θ1 − sin(Θ1))

32 tan2(Θ1
4 )

We set the constant c =
(tan4(

Θ1
4

)+2tan2(
Θ1
4

)+1)·(Θ1−sin(Θ1))

32 tan2(
Θ1
4

)
= 0.20478283. This is a

constant term since we fixed α and thereby also Θ1. So, the maximum area decrease
of the equilateral triangle depends quadratically on the side length si multiplied with
a constant factor. This is the property that we can exploit now, because due to our
choice of si and c we get:

Ae1+e2(60◦) = si
2 · c =

√
xi
c

2

· c = xi

Hence, the only way to achieve ∆ti = −xi is to choose an angle of α = 0◦ or α = 60◦

which corresponds to bending either e1 fully or e2 fully. No other combination of
bendings of e1 and e2 will attain ∆ti. So, as in the previous proof, if the target area
of R0 can be met we can deduce a subset of the xi where xi is in the subset if and
only if the edge of Ri which neighbors R0 is bent. All xi in this subset sum up to
1
2

∑
1≤i≤n

xi because no area can be added or subtracted from R0 via the other edges

thanks to the stable sea property. Equally all other xi must sum up to 1
2

∑
1≤i≤n

xi.

The instance I has thus a solution.
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⇒ The inverse proof direction (positive I ⇒ positive ICACSS) can be shown easily,
similar to the proof for CACP in Section 3.3.1. �

Note that CACSS is rather limited, since the sea and lakes cannot at all be deformed. It
might be acceptable though in practice to change the exact form of the sea and lakes in
order to obtain a correct cartogram. Therefore, we next present a more natural variant of
CAC where this is allowed.

3.3.3 Limitation to Normal Bending Configurations

Circular-Arc Cartogram with Normal Bending (CACNB) is another attempt to simplify
the Circular-Arc Cartogram problem by reducing the infinite set of valid circular-arc con-
figurations with the introduction of a reasonable restriction. This time we impose that a
valid bending configuration obeys the normal bending condition as defined in Section 3.2.2.

Problem 3.3.3 (Circular-Arc Cartogram with Normal Bending) For a given polyg-
onal subdivision S with target values ti (positive real numbers) for each region of S decide
if S admits a valid bending configuration where all areas of the deformed regions comply
with the vector t and where the normal bending condition is respected. The bending of
edges is thus limited in a natural way: Regions demanding a decrease of their area can
only use inwards bent edges and regions demanding an increase of their area can only use
outwards bent edges.

When imposing this requirement it will be deducible straightaway from the shape of the
countries in the resulting cartogram if they have increased or decreased their area. Coun-
tries are inflated or deflated as a whole depending on whether they want to grow or shrink
and it is not possible to use a country in order to transfer area to another country by
gaining area with one edge and transporting it to a neighbor with another. Contrary to
CACSS however modifications of the outer shape of the subdivision will be accepted.

Theorem 3.3.3 CACNB is NP-hard

Proof For the polynomial time reduction we use Bipartition again and this time we require
that

∑
xi

2 is integer. Bipartition remains NP -hard in this setting because the answer is
always ’no’ if the condition does not hold.

For the reduction we only need a slight modification to the previous construction of the
subdivision used for CACSS. The goal is again to have triangles where only two edges are
candidates for being bent. However, in this case here we do not have the possibility to use
lakes and say that all edges belonging to a lake or to the sea cannot be bent. Instead we can
exploit the normal bending property in order to simulate lakes with a certain trick: The
edges that we want to fix will border two regions both of which demand an area decrease.
Consequently it is not possible to bend the corresponding edge in either direction and we
can apply the same reasoning as before.

The construction of an instance ICACNB will be exactly the one we used before except
that all lakes are replaced with auxiliary regions called Ai. So in the horizontal chain after
a pair of triangles there will be a region Ai which serves as a buffer between two triangles
and shares exactly the left and right edge with these triangles. The form of Ai is thus
trapezoidal. The exact number of auxiliary regions between triangles is given by m = bn2 c.
Additionally one or two (depending on the parity of n) auxiliary regions A0 and Am+1 will
serve as buffer between R1 and the sea and between Rn and the sea.
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∆ti = −xi
A1 A2A0 A3

R0

Rn+1

Figure 3.8: Construction of the subdivision for CACNB and a valid configuration (dashed
arcs)

Figure 3.8 depicts an example of this construction. The dashed circular arcs illustrate a
possible valid bending configuration which satisfies all weights.

By giving negative target area changes to the Ai for 1 ≤ i ≤ m and to the Ri for 1 ≤ i ≤ n
we can then conclude that every Ri has one edge that cannot be bent, namely the one that
it shares with its adjacent auxiliary region. However, the target values have to be chosen
carefully so that they affect the area change of R0 and Rn+1 only very slightly. We want
this disturbance to be sufficiently small in order to still be capable of deducing a unique
assignment of the xi to one of two subsets. So, the effect that the area change of the Ai
has on the area change of R0 and Rn+1 should only be a tiny noise which we can clearly
distinguish from the area change emerging from the Ri for 1 ≤ i ≤ n.

We set the following target area change values ∆t and will see later that they are suitable
for our goal:

• ∆tRi = −xi for i = 1 . . . n

• ∆tAi = − 1
n for i = 1 . . .m

• ∆tR0 = ∆tRn+1 = 1
2

( ∑
1≤i≤n

∆tRi +
∑

1≤i≤m
∆tAi

)
• ∆tA0 = −0.1 (= ∆tAm+1 , if existing)

We can now show that the instance of Bipartition has a solution if and only the derived
instance of CACNB has a solution.

⇐ Let first ICACNB be positive. Thus a valid bending configuration C exists. In C
each triangle Ri has one edge that cannot be bent since all Ri and Ai demand an
area-decrease which disallows bending the common borders inwards. In fact this
mechanism is the only purpose of the Ai. Therefore (reasoning as in the proof of
Theorem 3.3.2) only a full bending of either the upper or the lower triangle edge
can satisfy Ri

′
s area-demand. The total increase demanded by R0 and Rn+1 has

the same value as the total decrease demanded by the Ri (i = 1 . . . n) and the Ai
(i = 1 . . .m) together and also only R0 and Rn+1 can absorb the area removed from
Ri (i = 1 . . . n) and Ai (i = 1 . . .m). So the six edges of R0 and Rn+1 bordering the
sea cannot be bent in a valid configuration, since that would increase the area of R0

or Rn+1 and could not be compensated by any other edge.
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Furthermore we have ∑
1≤i≤m

∆tAi =
m

n
< 1.

This auxiliary decrease or noise caused by the Ai (i = 1 . . .m) will be absorbed by
R0 and Rn+1 and is a non-integer value between 0 and 1. Therefore the integer part
of ∆tR0 must be 1

2

∑
1≤i≤n

∆tRi , which is integer according to our requirement placed

on the Bipartition instance. This integer part can only come from the Ri whose
upper edges are bent downwards. The same holds for Rn+1. As before the set of all
xi where Ri’s upper edge was used for bending in C is a solution for I.

⇒ The inverse equivalence direction can be established easily: For a given partition of
I in two sets of equal total value we bend the upper edges of Ri where xi belongs to
the first set and we bend the lower edges of Ri where xi belongs to the second set.
Then for each Ai we bend the upper and lower edge simultaneously until attaining
the desired area decrease of 1

n in order to partition the absorption of the decrease
from the Ai equally between R0 and Rn+1. The decrease of A0 and An+1 can be
achieved no matter how with the three edges bordering the sea. We have attained
all target areas without introducing any intersections or modifying the adjacencies.
So the subdivision has a valid configuration and ICACNB is thus a positive instance.

Note that of course in the construction we have to choose suitable dimensions for the Ai
in order to realize their area decrease. But this is always possible as their width can be
made arbitrarily big. �

3.3.4 The Unrestricted CAC Problem

CAC is the the problem where all previous constraints we imposed (like stable sea or
normal bending) are omitted. Circular arcs can then be created on any edge and anyhow
as long as no intersections occur. This problem was already introduced as Problem 3.1.1.
It is equivalent to CACP when choosing k = n where n is the number of edges in the
subdivision.

Theorem 3.3.4 CAC is NP-hard

Proof We use Subset sum for the polynomial time reduction. Let I = (x1, . . . , xn,K)
with all xi and K integer be a Subset sum instance. We can assume that n ≥ 2, otherwise
the answer is trivial. We transform I into I ′ = (x′1, . . . , x

′
n,K

′) with x′i = (n + 1)xi and
K ′ = (n + 1)K. Clearly I ′ is a positive instance if and only if I is positive. For a given
solution of I ′ or I we simply factor out or multiply by (n+ 1) and obtain a solution for I
respectively I ′.

The construction of the subdivision from I ′ builds on the construction used for CACP in
Section 3.3.1, except that here we introduce gaps between the rectangles: Between two Ri
we add a horizontal line that connects two of their upper vertices. The length of this line
is not important, we can simply set it to 1.

The dimensions of Ri (for 1 ≤ i ≤ n) are hi =

√
2x′i
π (height) and wi = 2

√
2x′i
π (width). The

target area decrease is chosen to be ∆ti = −x′i. The Ri with 1 ≤ i ≤ n are enclosed from
the top by R0 which has target area increase ∆t0 = K ′. Concerning the dimensions of R0

we only impose that its height is smaller than its width. Until this point the construction
is pretty much like the one used for CACP , except the introduction of gaps and the
rectangles being vertically aligned along their upper horizontal edge. All the components
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Figure 3.9: Construction of the basic skeleton of the subdivision
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Figure 3.10: Arbitrary deformations can achieve desired area decrease of Ri

of the subdivision described until now form its basic skeleton an example of which is
depicted in Figure 3.9. From now on we denote the upper, lower, right and left edge of Ri
by ui, bi, ri, li respectively.

If we left the construction like this we would not be able to draw any relevant conclusions
from valid bending configurations because all we know about a configuration is that the
bending of the four surrounding edges of Ri must lead to the desired area decrease. How-
ever, the distribution of this shrinkage among ui, bi, ri and li is uncontrollable. For example
we might obtain some kind of sickle or hammer (or even worse shapes) with correct areas
as depicted in Figure 3.10.

In order to remedy this arbitrariness we will add two kinds of gadgets. Let us define the
set E to contain all 4n + 3 + (n − 1) edges that occur in the construction so far, i.e. all
ui, bi, ri and li, the upper, right and left edge of R0 and the connectors between Ri and
Ri+1. For every edge e ∈ E , except the ui and bi, we introduce a new vertex on both sides
of e which is centered with regard to e and connected to the two end-vertices of e. This
implies two new regions with a triangle shape which enclose e from both sides. These new
regions all demand no area change (∆tR = 0).

The purpose of the two new vertices around e is to block e when being bent in either
direction, let us call these vertices ’blocking vertices’. We can guarantee that e can only
swing in a certain interval limited by the blocking vertices. By choosing the distance of
the blocking vertices to their associated edges sufficiently small we can later categorize
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Figure 3.11: Construction with additional blocking vertices

the set of all Ri in a valid bending configuration in exactly two disjoint subsets which will
enable the assignment of all xi to one of two subsets with equal total value.

For Ri we denote εi the distance of the two inner blocking vertices from their associated
edges, i.e. the vertex lying on the left side of ri and the vertex lying on the right side of
li. The distance of the two outer blocking vertices, i.e. the vertex lying on the right side
of ri and the vertex lying on the left side of li, is δi. All other blocking vertices that do
not belong to an edge of Ri with 1 ≤ i ≤ n have a distance of λ to their associated edge.
An example of this extended but still not final construction is depicted in Figure 3.11.
The positions of blocking vertices are highlighted with red circles and the distances are
indicated.

It remains to limit the bending of all ui and bi which have not yet been supplied with
blocking vertices. The same gadget as before cannot be used here because isolating ui or
bi from the sea, respectively from R0, with triangle regions would limit the amount of area
change that we can send over ui or bi too much. Any area change realized with ui would
also have to be realized with the two isolating triangle edges since the target area change
of the triangles is 0. However, their capacity for bending is too restricted to achieve a
change of ∆ti which is sometimes necessary, because they are shorter than ui or bi and
block each other at their common angle. It is therefore necessary not to isolate ui and bi.
Consequently we have to think of a different technique.

It is important that the ui and bi do not become isolated from R0 respectively from the
sea but at the same time there must be a vertex of the subdivision that blocks them at
some point. For this purpose we will create 2n peninsulas of triangle form, one for each ui
and one for each bi. The peninsula belonging to ui has one vertex vertex centered above
ui with distance δi. The peninsula belonging to bi has one vertex vertex centered below bi
with distance δi. The two other vertices of the peninsulas may be chosen in many different
ways. For example we could use the existing vertices of the blocking triangles or we could
introduce new vertices connected to the rest of the subdivision. Again these peninsulas
have target area change ∆t = 0 See Figure 3.12 for an illustration of the details at Ri. All
vertices with blocking function are highlighted in red and their distance to the associated
edge is given as well.

Now, it only remains to set the values of εi, δi and λ sufficiently small.

At first let us look at region Ri, which wants to shrink by ∆ti = −(n+1)xi ≤ −3 (we have
xi ≥ 1 and n ≥ 2). For a given bending configuration C we call bending zone of an edge e
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Figure 3.12: Details at Ri, in particular the two peninsulas blocking ui and bi

the zone that is enclosed by the circular arc replacing e and the original straight segment
e itself. Then we can define ∆Aui (respectively ∆Abi ,∆Ari ,∆Ali) to be the realized area
change (positive or negative) in the bending-zone of ui given by the symmetric difference
of C and the initial subdivision S in that zone. Note that the realized area change in the
bending zone of an edge can depend on several circular arcs and not only on the single one
emerging from that particular edge. This is because circular arcs can lie in the bending
zone of other edges. In a valid bending configuration where all target areas are matched
it holds for every Ri that the achieved area change is the sum of the area changes in the
bending zones of its edges:

∆ti = ∆Aui + ∆Abi + ∆Ari + ∆Ali

With certain values of εi and δi we can claim that in the resulting setting either ∆Aui or
∆Abi must contribute the most significant part to the area decrease ∆ti. More precisely we
will achieve that either ∆Aui or ∆Abi lies in the interval (∆ti− 1

4 ,∆ti+
1
4). The remaining

difference to ∆ti will be contributed by ∆Aui ,∆Ali and ∆Ari (or by ∆Abi ,∆Ali and
∆Ari).

We set εi = 0.01hi . This will help us to guarantee the lower interval value of ∆ti − 1
4 . We

denote by Ae(h) the area of the circular segment created by bending edge e of length s
until the circular arc reaches a particular height h:

Ae(h) =
0.5 arctan (2h

s )(4h2 + s2)2 + hs(4h2 − s2)

16h2

In a valid bending configuration ui or bi must be bent inwards more than hi
2 . Otherwise

the bending configuration would not attain ti even if we bend all remaining edges inwards
as far as possible:

Ari(εi) +Ali(εi) +Aui(
hi
2

) +Abi(
hi
2

) < |∆ti|

So without loss of generality let ui be bent inwards more than hi
2 in the following. What

is the minimum height h of the circular arc replacing ui that enables finding a valid
configuration? First note that if h is minimum, the circular arc of bi must be bent as far
as possible towards the circular arc of ui, i.e. its height must be hi − h. If this was not

28



bi

li

εi
hi

δi

εi

δi

hi − h

h

δi

wi

ui

ri

δi

Figure 3.13: Possible circular-arc configuration for Ri

the case, we could reduce h by simultaneously bending ui and bi upwards with the right
speed. See Figure 3.13 for an illustration.The blocking vertices are the red squares and
the associated triangle edges are omitted in this image for a better readability.

Also note that h ≤ hi as the simple half circle under ui and no bendings at all at the other
edges meets all requirements:

Aui(hi) +Ari(0) +Ali(0) +Abi(0) = |∆ti|

So we are searching for h ∈ (hi2 , hi]. The difference of Aui(h) + Abi(hi − h) to ∆ti can
only be compensated by the decrease from bending ri and li. The maximum capacity for
compensation by ri (or li) until it intersects its inner blocking vertex is:

Ali(εi) = Ari(εi)

=
0.5 arctan

(
2·0.01hi
hi

)
(4 · 0.012hi + h2

i )
2 + 0.01hihi(4 · 0.012hi − h2

i )

16 · 0.012hi

So ∆ti− (Ali(εi) +Ari(εi)) is the minimum area decrease that has to be done with ui and

bi. For a choice of h∗ = hi · 0.9(0.5hi ) this area decrease cannot be achieved. Therefore
h > h∗. At the same time we have Aui(h

∗) ≥ ∆ti − 1
4 . Plus Aui(h) is monotonously

increasing on the interval (hi2 , hi], which means that Aui(h) ≥ ∆ti − 1
4 This concludes the

proof of: ∆Aui ≥ ∆ti − 1
4 in a valid configuration (respectively ∆Abi).

Guaranteeing the upper interval value of ∆ti + 1
4 is more easy. We need to ensure that

by bending any three edges of Ri outwards one can at most gain an area of 1
4 . If this is

the case the area decrease caused by a single edge of Ri is bounded by ∆ti + 1
4 , because

if it were more we could not compensate the surplus with the other three edges. We set
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δi = 0.1hi . A calculation shows that Ali(δi)+Ari(δi)+Aui(δi) ≤ 1
4 (for hi ≥

√
6
π ⇔ x′i ≥ 3

which is the case because of our condition n ≥ 2 on the original instance I).

Now we consider R0. The upper, right and left boundary of Ri in the original edge set E
(before introducing blocking vertices) were single edges and the lower boundary consisted
of 2n − 1 edges (n upper Ri edges and n − 1 connectors between the Ri). So we had a
total of 2n + 2 edges that defined R0. Now these edges in E are isolated from R0 by the
new edges E′ added when introducing blocking vertices. However, the area change of Ri
is still bounded by the edges in E since they do entirely enclose R0: Every area change of
R0 has to flow over the original edge set E. We will exploit this property and limit the
area change of R0 by limiting the area change of the old boundaries of R0. For n of these
edges we have already established the distances δi of their stoppers (namely for the ui,
which only have one stopper).

The remaining edges all have two blocking vertices and their distances will be set in such a
way that edge bending can vary the area in either direction only in the interval (−1

4 ,+
1
4)

for each single one of them. We will achieve this for the topmost edge of R0 in E which
is the longest edge overall and has length

∑
1≤i≤n

wi + (n − 1), with the initial assumption

that all auxiliary edges connecting two Ri have length 1. Since all other edges are shorter
the same value λ will be small enough for them as well. A sufficiently small value is

λ = 0.5

∑
1≤i≤n

wi+(n−1)

.

Let us sum up what we know so far about a valid bending configuration where all target
areas are matched. We have specified the exact positions of all blocking vertices which
help us to guarantee the following four properties:

1. Every Ri gets a portion of A ∈ (∆ti− 1
4 ,∆ti+

1
4) of its decrease from either its upper

or lower edge.

2. The three remaining edges of Ri compensate the difference to ∆ti, and each single
one can vary only in the interval (−1

4 ,+
1
4).

3. Every other edge that does not make part of a Ri can cause an area change of R0 in
the interval (−1

4 ,+
1
4).

4. The new triangle shapes always lie completely in another region and they demand
no area change. So they do not affect the feasibility of the given weights in the
subdivision.

Having this we can prove that I is a positive instance if and only if the derived subdivision
has a solution:

⇒ Let I be a positive instance of Subset Sum (n ≥ 2 and K ≥ 1, otherwise trivial) and
S be a subset with total value K. I ′ is positive if and only if I is positive because
the same subset would be a solution. It is straightforward to see that if I ′ is positive,
then the constructed subdivision admits a valid configuration: Bend all ui inwards
until they form half-circles where x′i ∈ S and do likewise for all bi where x′i /∈ S.
This configuration clearly satisfies all target areas and therefore ICAC is a positive
instance as well.

⇐ Now, assume that the subdivision is a positive instance. Hence, it admits a valid
configuration C. We define the set U as all i where ui is dominant in C, i.e. where
the circular arc replacing ui accounts for the main part of the area decrease of Ri
lying in the interval (∆ti − 1

4 ,∆ti + 1
4).

The at most 2n + 2 edges in E enclosing R0 without the ui where i ∈ U can cause
an area-increase of strictly less than (2n + 2) · 1

4 = n+1
2 . Equally they can cause an
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area-decrease of strictly less than n+1
2 . Thus we have the interval I1 = (−n+1

2 ,+n+1
2 )

for the variation of the area of R0 without the edges in U .

The at most n edges ui with i ∈ U can cause an area change of R0 within the interval

I2 =

(∑
i∈U

(∆ti −
1

4
),
∑
i∈U

(∆ti +
1

4
)

)
⊆(∑

i∈U
∆ti − n

1

4
,
∑
i∈U

∆ti + n
1

4

)
⊆(∑

i∈U
∆ti −

n+ 1

2
,
∑
i∈U

∆ti +
n+ 1

2

)

The total variation of the R0 area lies thus in the sum of the two interval I1 and I2:

I1 + I2 ⊆

(∑
i∈U

∆ti − (n+ 1),
∑
i∈U

∆ti + (n+ 1)

)

We conclude that K ′ =
∑
i∈U

∆ti since K ′ is a multiple of n+ 1 and so is
∑
i∈U

∆ti. The

deviation from
∑
i∈U

∆ti in the interval is not big enough to attain any multiple of

n+ 1 other than K ′ because all interval boundaries are open. So, the xi with i ∈ U
form a subset of value K which implies a solution for I. �
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4. Relaxations

The previous Chapter 3 presented NP -hardness results for some variants of the Circular-
arc Cartogram problem. At first we looked into CACP which is the most general variant
among the ones considered here and we proved it to be NP -hard. Then we focused on the
unrestricted CAC problem where we allow bending any edge of the subdivision without
any further constraints as long as intersections are avoided. Besides its proof of NP -
hardness we came up with proofs for two variants: CACSS where no modifications to the
shape of the non-land areas (seas and lakes) of the subdivision are allowed and CACNB
where unnatural edge bending is disallowed, i.e. bending an edge inwards although the
size of the region needs to be increased or vice versa.

Now, it makes sense to look for reasonable relaxations of the problem that enable finding
a practically satisfying cartogram generation algorithm. Possible approaches are:

• Relaxation of adjacencies

• Relaxation of areas

• Relaxation of vertex related constraints

However, in most applications adjacencies must be preserved as this is an essential struc-
tural property of any map which one does not wish to disturb. Compared to that the exact
shape and position of regions is a less important quality criterion. As long as shapes are
not distorted too badly and one is still able to recognize every region in the map it is ac-
ceptable to have deformations of regions. Plus, when allowing the replacement of straight
segments with curved shapes (e.g. circular arcs) one accepts already that shapes are dis-
torted and the additional distortion from vertex movements is likely to remain acceptable
as well.

So, the most reasonable and practically satisfying relaxation might be the relaxation of
the vertex positions. There are several possibilities: A first approach might be to ignore
vertices of degree two, which means that we can replace several straight line segments
which lie on the same border between two faces of the subdivision by one circular arc or
– in other words – merge two circular arcs into one arc. Another alternative would be to
allow the movement of vertices. Area relaxations where the error which we allow for each
region is bounded are also worth a consideration. Of course combined relaxations of area
and vertex constraints are thinkable as well.

In this chapter we consider the above mentioned relaxation strategies. Area constraint
relaxations are discussed first in Section 4.1 and another NP -hardness result is presented.
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The topic of the second Section 4.2 is dropping vertex constraints. In the last Section 4.3
we propose a combined relaxation approach which lies the theoretical basis for the imple-
mentation and the case study presented in the following Chapter 5.

4.1 Area Relaxations

From the NP -hardness of all CAC variants considered so far it was concluded that appro-
priate relaxations of the area or vertex constraints are the only way to tackle the problem
at hand. We are looking for a compromise which abandons exactness of the produced
cartograms and gains computational efficiency.

An algorithm conceived on the basis of these relaxations should be able to provide car-
tograms in polynomial time but has no guarantee if the region’s areas correspond to their
prescribed weights. Here we will discuss a possible area relaxation which admits a fixed
additive area-error per region and we show that the problem remains NP -hard in this
easier setting.

4.1.1 CAC Area Relaxation

The adapted problem can be stated as follows: The input is as before a polygonal subdivi-
sion S with regions Ri of size Ai. Weights ti are also provided which represent the target
area for each region. Again it is allowed to bend the edges of S in order to satisfy the
weights of all regions. However, we will not be so strict about the achieved areas. In the
classic setting the constraint was that for all i the resulting area Ti of Ri after all bending
has been done equals the target area:

Ti = ti (4.1)

The relaxation of this constraint with an absolute area-error is:

|Ti − ti| ≤ γ (4.2)

where the maximum area-error γ is a positive real number γ ∈ R+. So, we allow a
deviation of γ from the target area for each single region. All CAC decision problems can
be defined with Constraint 4.2 replacing Constraint 4.1. We add the suffix WAT (’with
area tolerance’) to indicate this. A related relaxation is the one with an admitted relative
area-error per region. We would then have a multiplicative factor instead of an absolute
additive constant.

The question is if the absolute area-error relaxation changes anything about the complexity
of the different problem variants?

As in the version without area-error we can find positive as well as negative instances:

• Positive instances are trivial as we can simply set the target areas equal to the initial
areas, ti = Ai ⇔ ∆ti = 0. Than a bending configuration with all radiuses set to +∞
does the necessary because all resulting area-errors are 0.

• A negative instance, i.e. a subdivision S, a target vector t and a predefined maximum
area-error γ as parameter where no bending of the edges is possible such that in the
resulting configuration all areas differ less than γ from the corresponding component
in t can also be constructed: We can take the example from Section 3.2.3 where a
polygon was given, that has an upper bound on its area increase and set the target
area of this polygon to a value higher than this upper area bound plus γ. Then
all valid bending configurations have an error of more than γ and the instance is a
negative one.

Let us now ask the question how hard it is to distinguish between negative and positive
instances.
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4.1.2 Complexity of CACPWAT

Theorem 4.1.1 CACPWAT is NP-hard

Proof We show that the polynomial time reduction used for the CACP (see Section 3.3.1)
can be reused. We will only add a phase of preprocessing the input before constructing
the subdivision. So let I = (x1, . . . , xn) with all xi integer be an instance of Bipartition
with two additional properties:

1. n > 1

2. 1
2

∑
1≤i≤n

xi ∈ N

If one of these two conditions is violated the instance is always negative. So Bipartition
remains NP -complete under these assumptions.

We define a new instance of Bipartition as I ′ = (x′1, . . . , x
′
n) where x′i = (n + 1)dγexi.

Clearly I ′ is a positive instance if and only if I is positive: We have scaled all integers with
the same factor (n+ 1)dγe. A short calculation shows that the existence of a solution for
I implies a solution for I ′ and vice versa.

The subdivision S is then constructed from I ′ following exactly the same rules as in the
case of CACP without area-error (see Figure 3.5). We also set the same target area change
vector ∆t and parameter k = n as before.

In the following Ai is the initial size of region Ri, Ti is the attained area in a valid
configuration after bending and ∆Ti is the implied area change: ∆Ti = Ti−Ai. As before
we know that for each rectangular region Ri exactly one edge must be bent inwards. The
justification was that a total of n edges can be bent, at least one edge must be bent for
each region Ri and none of the regions Ri share any edges. From the construction and
choice of the dimensions of Ri it followed that only a full bending of either the lower or
the upper edge can achieve exactly the target area decrease of ∆ti = −x′i. This is also
the largest decrease we can get because bending the lower or upper edge further would
introduce intersections and because the right and left edge are shorter and have the same
blocking angle of 90◦ as the upper and lower edge. So, in our consideration we can already
exclude the case where the area-error is positive. We always have Ti ≤ ti. It might be
possible though to use the left or right edge to attain an area within an accepted deviation
from ti: Ti ≥ ti − γ. Let us investigate if this is really possible.

If the right edge – respectively the left edge – of Ri is fully bent then the circular segment
is a half-circle which subtracts a maximum area of

∆Ti =

(
hi
2

)2
π

2
=

(√
2x′i
π + 2

π

)2
π
4

2
=
x′i + 1

4
= dγe(n+ 1)xi

4
+

1

4
.

With the initial condition n ≥ 2 we have (n+ 1)xi ≥ 3. Therefore, the maximal decrease
with the right or left edge of Ri is bounded as follows:

∆Ti ≤ dγe
(n+ 1)xi

4
+

1

4
< dγe(n+ 1)xi

4
+ dγe(n+ 1)xi

4

= dγe(n+ 1)xi
2

= dγe
(

(n+ 1)xi −
(n+ 1)xi

2

)
< dγe ((n+ 1)xi − 1) = dγe(n+ 1)xi − dγe
≤ dγe(n+ 1)xi − γ = ∆ti − γ
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I1

Figure 4.1: Intervals I1 and I2 on the number ray when 1
2

∑
1≤i≤n

x′i and
∑
i∈U

x′i are different

multiples of dγe(n+ 1)

This is equivalent to Ti < ti − γ. Hence, we cannot achieve an error of less than γ when
bending the right or left edge of Ri and not introducing intersections. Therefore in a valid
configuration we are obliged to bent either the upper or the lower edge of Ri inwards far
enough to obtain an area change in the interval [x′i − γ, x′i].

Now, in a valid bending configuration consider the set U of all i where Ri
′s upper edge has

been used. Note that the cardinality of U is at most n − 1. If it was n then no lower Ri
edge would be bent and the area of Rn+1 would not change which is not valid because its
target area change is always positive ∆tn+1 > 0. The absolute value of the total decrease
of the regions with i ∈ U lies within the interval

I1 =

[∑
i∈U

(x′i − γ),
∑
i∈U

x′i

]

⊆

[∑
i∈U

x′i − (n− 1)γ,
∑
i∈U

x′i

]
.

This decrease equals exactly the increase of R0 which according to Constraint 4.2 has to
lie in the interval

I2 =

1

2

∑
1≤i≤n

x′i − γ,
1

2

∑
1≤i≤n

x′i + γ

 .
But now 1

2

∑
1≤i≤n

x′i as well as
∑
i∈U

x′i are integer multiples of dγe(n + 1). This leads us to

the final conclusion that

1

2

∑
1≤i≤n

x′i =
∑
i∈U

x′i.

Assume that this was not the case. So the difference between 1
2

∑
1≤i≤n

x′i and
∑
i∈U

x′i is

bigger than dγe(n + 1). But then the two intervals I1 and I2 do not overlap. This is
a contradiction because the area change being shipped over the upper edges of all Ri in
U must lie in both intervals, their intersection therefore be non-empty. See Figure 4.1
for an illustration of the two non-intersecting intervals on the number ray which is the
contradictory case.

The precedent conclusion 1
2

∑
1≤i≤n

x′i =
∑
i∈U

x′i means that the xi with i ∈ U are a solution

for the instance of Bipartition. �
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4.1.3 Area Relaxation of the other CAC Variants

In the previous subsection NP -hardness was shown for the area relaxation CACPWAT of
one particular CAC variant. For the polynomial time reduction we used a factor scaling
technique of the input instance of Bipartition. The scaling factor has to be chosen big
enough in such a way that the imprecision caused by area-errors is always kept small
compared to the demanded area changes in order to be able to distinguish this disturbance
from the really relevant ongoing area change between the inner Ri and the two outer regions
R0 and Rn+1.

For the other variants of CAC that we defined in Section 3.3 the same technique will
work as well. Of course the different topology of the constructions requires other scaling
factors, but the principle remains the same. We can therefore assume that the other
area relaxed variants of CAC are NP -hard, too. This kind of area relaxation with an
additive constant γ is therefore not sufficient with regard to an easy computable method
resolving CAC problems optimally. Possible area relaxations with a multiplicative factor
are more promising than the one with an additive constant which we proposed here.
Their exploration is an open research direction for the future and especially approximation
algorithms or even approximation schemes could bring the efficient resolution of CAC
problems very much forward.

4.1.4 Area-error Optimization Problem

CACPWAT is directly related to the following optimization problem:

Problem 4.1.1 (CAC Optimization Problem) For a given polygonal subdivision S
with target values ti (positive real numbers) for each region of S and an integer k, find an
optimal valid bending configuration C of S (no intersections, adjacencies preserved and at
most k edges bent) with the following minimization criteria:

minimize max
1≤i≤n

(|Ti − ti|)

where Ti is the area of region Ri in the bending configuration C. Hence, the maximum
area-error of a region in S has to be minimized.

This is the optimization version of CACP and we know that it must be NP -hard, unless
P = NP . Otherwise we could resolve CACPWAT and even CACP in polynomial time.

4.2 Relaxation of Vertex-related Constraints

The relaxation of regional areas with an absolute constant is not a sufficient relaxation
as we have seen in the previous section. The problem remains NP -hard if we allow
an arbitrary additive maximum area-error per region. Since our policy is to preserve
adjacencies in any case, we are left with the possibility to relax the vertex positions in
the subdivision. That way we are not anymore limited to changing the shape of single
regions locally in the subdivision by replacing straight line segments with circular arcs
while keeping all vertices at their original position, but we can also significantly change
the global topology of the map by moving the vertices anywhere as long as we preserve
adjacencies or even by removing certain vertices. For example relative positions of the
regions or their aspect ratio can be modified almost arbitrarily when moving the vertices
which was not possible with the circular arcs only approach where the fixed vertex positions
helped to preserve the shape of the polygon at least roughly.

In Subsection 4.2.1 a definition of the vertex movement relaxation is stated. Then we show
that this relaxation solely is not sufficient in the respect that negative instances still do
exist, see Subsection 4.2.2. Whether or not the problem is NP -hard as well remains open.
Other vertex related relaxations are touched upon in Subsection 4.2.3.
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4.2.1 Moving Vertices

Given a polygonal subdivision S – let us identify S with a plane graph G = (V,E) – and a
weight function t : F 7→ R+ which assigns positive weights to the faces of G. The question
we pose is: Does a plane graph G′ exist whose face areas realize the weight function t and
which is obtained from G by applying the following rule R1 as often as required?

R1 : move vertex v ∈ V to any other position in the plane as long as the action of moving
does not cross an edge or another vertex in the subdivision

Any graph obtained from G by applying this rule has the same dual graph as G and has
the same complexity as G for each face if we define complexity of a polygon as the number
of vertices on its boundary. So this corresponds exactly to the initial idea of transforming a
subdivision by moving its vertices around. In the literature graphs which can be obtained
from each other with this rule are said to be homotopically equivalent.

This definition can also be restated more formally with the notion of combinatorial em-
beddings. A combinatorial embedding defines for any vertex of the graph the cyclic order
of all edges incident to that vertex. The set of all of these cyclic orders is called a rota-
tion system. A topological embedding is more precise in the sense that it fixes the exact
positions of all vertices in the plane. Thus a topological embedding is associated with an
unique combinatorial embedding, but a combinatorial embedding can correspond to an in-
finite number of topological embeddings. Combinatorial embeddings form an equivalence
relation of planar graphs, see [BETT99] for more detail.

So, our problem can be reformulated as follows:

Problem 4.2.1 Given a planar graph G with a topological embedding E. Is it possible
to find another topological embedding T that satisfies all prescribed face areas and that is
combinatorially equivalent to E, i.e. the circular ordering of the incident edges is the same
as in the original topological embedding E at all vertices?

4.2.2 Negative Instance

Of course it is of high interest if the presented rule R1 is sufficient to realize any weights
on arbitrary graphs. To prove the contrary an embedded graph G has to be found to-
gether with weights assigned to its faces such that no drawing of G that has the same
combinatorial embedding can attain the required weights.

And indeed such a graph can be found. Consider G and its given topological embedding
which is depicted in Figure 4.2 with seven faces A,B,C,D,E, F,H, all of them triangles.
We set the following weights:

• t(A) = t(B) = t(C) = t(H) = 1

• t(D) = t(E) = t(F ) = 3

This graph has one important property: It is 3-layered in the sense that the layer-1 faces
A,B,C are the only ones that share edges with the outer-face. Then layer-2 faces D,E, F
share no edges with the outer-face but with the first layer and with H. Hence, H is the
3rd layer and can only see the layer-2 faces.

Now, the weights that we have set require all layer-2 faces to be big and all layer-3 and
layer-1 faces to be relatively small. And this is the intuitive reason why this instance is
not feasible. However, we need to establish a geometrically correct proof of this.

In the following for a polygon P we denote a(P ) the area of P and for an edge e we denote
|e| the length of e. Assume that we are given a topological embedding of G such that all
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Figure 4.2: Graph G

weights are realized. We will construct a partition of all layer-2 face and give area bounds
for the subfaces in the partition. Then a theorem going back to Debrunner ([Deb56]) can
be applied which leads us to a contradiction.

For any topological embedding of G with the same rotation system we define the rays
ab
′
, bc
′
, ca′ to be parallel to the outer edges ab, bc, ca moved until they touch the inner

vertices d, f, e (the rays are illustrated as dashed lines in Figure 4.3).

The point x is defined as the intersection of cb
′

and db. This intersection always exists
because db and cb share the same endpoint b and cb

′
has been moved towards d. If cb

′

has even been moved beyond d then let x simply be identical to d. We now compare the
triangle A with the triangle X formed by b,f and x. They both have the same height h
which is the distance between cb

′
and cb. The length of the base of A for this height is |cb|

and the length of the base of X corresponding to the height h is |xf |.

Lemma 4.2.1 |xf | < |cb|

Proof We prove that |xf | < |cb| which means that the area of A is strictly larger than

the area of X. To see this consider the piece of cb
′

which is bounded by ab and ca.
This straight segment must be shorter than cb since these two form a trapezoid with the
connecting pieces of ab and ca where the sum of the inner angles at b and at c is less than
180◦. Otherwise ab and ca wouldn’t approach each other and the outer triangle consisting
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Figure 4.3: Partition of face E

of a,b and c could not be closed. So the piece of cb
′

which is bounded by ab and ca is
shorter than cb itself. But now xf is a part of the piece of cb

′
bounded by ab and ca.

Hence, xf is shorter than cb. �

We have proven 1 = a(A) > a(X). The same can be done analogously for the triangle Y

which consists of the three vertices b,d and y where y is the intersection of ab
′

with fb.
With the same reasoning as before we obtain 1 > a(Y ). Then consider the triangle TE
which is defined by the part of E that does not belong to X or Y . Its area is a(TE) =
a(E)−a(X)−a(Y ) +a(X ∩Y ) ≥ a(E)−a(X)−a(Y ) = 3−a(X)−a(Y ) > 3− 1− 1 = 1.
The same holds for the triangles TF and TD which are defined in the same way as TE with
the other two edges of H.

But now ab
′
, bc
′
, ca′ from a triangle which circumscribes the triangle H. For this configura-

tion of a triangle circumscribing another triangle Debrunner ([Deb56]) stated the following
theorem:

Lemma 4.2.2 (Debrunner) Let ABC be a triangle circumscribed by another triangle
A′B′C ′, i.e. ABC has 3 triangles ABC ′, AB′C and A′BC on its sides. Then:

a(ABC) ≥ min(a(ABC ′), a(AB′C), a(A′BC))

We conclude that the area of H is at least the area of either TD or of TE or of TF , in other
words a(H) ≥ min(a(TD), a(TE), a(TF )). Earlier we saw that a(TD), a(TE), a(TF ) > 1 and
therefore we have a(H) > 1. But this is a contradiction to our requirement a(H) = 1. So
the given areas can not be realized for the graph G with its given combinatorial embedding
which finishes this proof. �
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Note that Ringel already showed what we just proved in this section for a similar graph,
see [Rin90] . However, his proof is less intuitive.

To our best knowledge a complexity result does not exist for Problem 4.2.1. Thomassen
showed that it is polynomially solvable if the graph is cubic [Tho92]. He could not bring
up a similar result for more general graphs. So, this is an interesting research direction for
future work. However, even without a proof of its NP -hardness the fact alone that there
are negative instances means that also this relaxation is not enough to tackle the problem
since we might encounter an input which is a negative instance and in that case a result
can not be computed.

4.2.3 Removing vertices

Instead of only allowing the movement of vertices we could allow to remove vertices in
subdivision. This makes sense above all when combining this relaxation with circular arcs.
For a given circular-arc configuration which has been produced somehow (for example
with a heuristic) and which does not attain all prescribed face areas because neighbored
circular arcs that must be bent further are already bent to a maximum, i.e. have the same
tangent with another circular arc at their common vertex v, we look for a new technique
to balance the remaining target area changes. In that case the ability to remove v from
the subdivision and replace the two existing circular arcs with one circular arc can supply
a larger edge bending capacity in terms of area transported over the circular arc and that
way help to reduce the area-error of the involved faces.

For this relaxation only vertices of degree must be considered. Vertices of higher degrees
can not be removed as easily because they can not be replaced by one new circular arc
connecting its two neighbors. But obviously not all vertices of degree two are suited equally
well to be removed. Whether or not it is desirable to remove a vertex depends above all
on the following criteria:

1. the angle enclosed by the two adjacent straight edges in the initial subdivision

2. the length, height and orientation of the two neighboring circular arcs

3. the remaining desired area changes of the adjacent regions

A vertex which encloses an angle of nearly 180◦ with its adjacent edges is a good candidate
to be removed since no big amount of topological information will be lost as opposed to
a vertex which represents a spike in the subdivision for instance. Moreover in an existing
bending configuration the circular arcs give a hint where it makes sense to remove vertices
of degree two. If two adjacent countries have a big difference in their area demands, i.e.
one wants to grow considerably and the other one wants to shrink considerably, then it
makes sense not to be to strict about the vertices on the border between the two countries
even if a loss of information might occur.

Figure 4.4 shows two typical situations where it can be advantageous to remove a vertex.
In the left image if the country below still wants to increase its size then an appropriate
action could be to remove the vertex and gain more area with the new circular arc (dotted
lines). The right graphic shows the inverse case.

Probably the most promising relaxation is to allow movement for vertices of degree three
and higher and to allow removal of vertices of degree two under certain requirements related
to the three criteria discussed above. This makes sense in the context of a combination
with circular arcs since we then have full flexibility to merge circular arcs by removing
vertices of degree two and simultaneously to shift countries by moving vertices of degree
three or higher. The next section treats combined relaxations deepening this idea and
involve area relaxations as well.
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(a) (b)

Figure 4.4: The marked vertices can be removed without a loss of essential information

4.3 A Combined Relaxation Approach

From the number of complexity results for Circular-arc Cartogram problems (see Sec-
tion 3.3) we concluded that constraints in the problem setting have to be dropped or
at least relaxed in order to allow for efficient algorithmic methods which solve the prob-
lem. But the more the constraints are relaxed the heavier the quality of resulting maps
potentially degrades due to the new degrees of freedom. We tried to build up a series
of relaxations with the goal to make the problem a little bit easier to solve with each
relaxation and at the same time still guarantee a certain level of quality.

So far a first relaxation approach was considered where the strict area-constraints are
dropped, i.e. we allow an absolute area-error between the actual weight and the required
weight for each region. We saw that the problem remains NP -hard even under this
condition (Section 4.1.2). This also means that the optimization version of the problem,
where for a map the circular-arc configuration with the smallest area-error has to be found,
is NP -hard.

We then showed in Section 4.2 how vertex positions can be relaxed: We do not anymore
stick with all the original vertex positions but we allow the vertices to move. The idea
behind this is that in general vertex movements can correct cartographic errors more
significantly than the action of flipping edges because the circular arcs somehow block
each other in any subdivision whereas vertex movement is less restricted in most cases.
We gave an example of a graph and weights on the graph’s faces where the weights are
not feasible as areas on that graph when only allowing vertex movements.

Now, let us look at a method based on a combination of area and vertex constraint relax-
ations that uses circular arcs as well. The method is divided in two phases:

1. Bend edges in the subdivision according to some heuristic or manually with the goal
to balance between the weights of the countries, i.e. reduce the sum of all area-errors
in the subdivision.

2. Based on the bending configuration proposed in phase 1 merge circular arcs and
move vertices of degree three or higher in order to establish a better balance.

These two phases can be iterated over, for instance until reaching a certain quality mea-
sured by the overall area-error. The heuristic discussed in the next Chapter 5 has been
designed according to this method and parts of it have been implemented and evaluated
with a case study.
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5. Heuristic Resolution

In this chapter we present a heuristic for the Circular-arc Cartogram problem based on
network flows. The algorithm has been implemented and an evaluation has been con-
ducted with real data. In Section 5.1 of this chapter we describe the heuristic. Subsec-
tion 5.1.1 and 5.1.2 contain the geometric fundamentals of the modeling of the Circular-arc
Cartogram problem with a flow network the precise construction of which is presented in
Subsection 5.1.3. In Section 5.2 we discuss some visual output generated with our imple-
mentation.

5.1 A Flow-network Based Modeling of the CAC Problem

An input instance of the Circular-arc Cartogram problem consists of a polygonal subdi-
vision S = (VS , ES), identified by its nodes VS and its edges ES , plus a weight vector t
whose components ti are the quantities that are to be represented proportionally by the
areas of the regions of S. The dual graph of S is G = (V,E). Members of ES will be called
primal edges and members of E will be called dual edges in the following. In G every face
fi of S is represented by a vertex vi and vertices in G are adjacent if and only if they share
a common border in S. We require G to be a directed graph which means that for any
two vertices that are adjacent we have two edges, one for each direction. Additionally, we
augment G with one vertex vout for the outer-face and edges from vout to all vi and vice
versa where fi borders the outer face. As a bijection exists between the primal faces fi
and the dual vertices vi we will use these two expressions interchangeably in the remainder
of this chapter.

Any edge e ∈ E of the dual graph represents an adjacency between two countries in
the subdivision possibly consisting of several disjoint borders. Every dual edge is hence
associated with several primal edges that lie on borders between the two corresponding
countries, but every primal edge maps to exactly one dual edge. There are thus no multiple
edges in the dual graph between two vertices. We define B to be a function that associates
all the primal edges of the corresponding borders in S to its dual edge e:

B(e) = {a ∈ ES , where a is a shared edge of the source and target country of e}

We have the trivial property that B(e) = B(e′) where e′ is the twin edge of e in G.

Every vertex vi in G is assigned with two values: the area Ai of face fi in the initial map
and the given weight ti of that face. From these two values we will now derive a third value
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Ati which is the actual target area of the face, i.e. the area that the face needs to have in a
correct cartogram. As weights are most often statistical data it is likely that they are not
in the same numeric dimension as the size of the map and therefore they have to be scaled
up or down in oder to obtain appropriate sizes for the cartogram. The areas Ati must thus
be proportional to the weights ti because the cartogram is a proportional representation
of the weights. So, we will set the target areas in such a way that the target area of face
fi is exactly the portion of the total initial area of S that fi should have according to the
quotient of fi’s weight and the total weight. Hence, for any vertex vi of G (or equivalently
every face fi of S) we have a triple (Ai, ti, Ati) where the first two are given in the input
as faces sizes and weights and where the third can be obtained from the first two with the
following formula:

Ati =
∑
fj∈S

(Aj) ·
ti∑

fj∈S
(tj)

This transformation is justified by the fact that it brings the convenience of ensuring that
the achieved areas are proportional to the target weights and at the same time guaranteeing
the total area of the subdivision to remain unchanged in a correct cartogram:

∑
fi∈S

(Ai) =
∑
fi∈S

(Ati) (5.1)

For a face fi we denote by bi = Ati − Ai the desired area change of this face (or target
area change). The sum of all desired area changes of all faces is then equal to 0 due to
the transformation above. Additionally we denote by Ti the achieved area for a region in
a specific circular-arc configuration. The cartographic error – or area-error – of a region
is then given by Ti−Ati . There two basic ways to define the cartographic error of a whole
cartogram. The first one is to use the maximum area-error of all regions ( max

1≤i≤n
Ti −Ati)

and the second one is to use the sum of all area-errors (
∑

1≤i≤n
Ti −Ati).

If the cartogram is required to realize the exact prescribed weights as face areas and
not only the proportional values At−i that we derived, we can simply scale the resulting
cartogram up or down without any deformations until reaching the desired values. For the
outer-face vertex we can simply set Ai, ti and Ati to 0 since the area of the outer face will
not be affected which also follows from the transformation.

The problem in this equivalent setting is in other words a problem of transferring the exist-
ing area of the subdivision between the countries in order to balance their sizes according
to the target values Ati . Countries are able to transfer area to or from a neighboring coun-
try by bending the edges on the border in either sense. As mentioned earlier the sum of
all target area changes bi is guaranteed to be 0 at the end of this process if a cartographic
error of 0 is achieved:

∑
fi∈S

(bi) = 0. If a country fi has bi > 0, i.e. it desires to increase its

size, then we call vi a supply vertex. If fi has bi < 0, i.e. it demands a decrease of its size,
then vi is a demand vertex. Countries with bi = 0 are called transfer vertices. Thus vout is
always a transfer vertex.

As a next step we will assign capacities to the edges in G. We define the capacity c(e) of
a dual edge e = (vs, vt) ∈ E to be the ability to transfer area from the source face fs of e
(fs is the face corresponding to vs) to its target face ft (ft is the face corresponding to vt)
over the primal edges a1 . . . ak ∈ B(e) that lie on the border of size k between source face
and target face in the subdivision. The following subsection presents the method used for
the computation of the capacities.
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5.1.1 Computation of Bending Capacities with the Straight Skeleton

In order to determine the capacity of a dual edge e = (vs, vt) ∈ E we regard the set
B(e) as a system of primal edges that must be bent into the target face ft and where
the capacity will be exactly the amount of area which can be transferred from fs to ft by
the circular arcs of the edges in B(e) respecting some predefined rules. We are therefore
interested in circular arcs which can not be bent further without violating constraints such
as intersections or modified adjacencies. A first idea is to compute the capacity of each
single edge a ∈ B(e) straightforward by calculating the circular arc emerging from a with
maximal height that does not intersect any edge of the target face ft. But clearly the
circular arcs from the different edges in B(e) interfere with each other: If one edge is fully
bent into the target face then probably the edge next to it only has a very small maximal
height for its circular arc. Likewise also edges from different borders interfere. If an edge
is bent considerably far into face fi then possibly this blocks edges lying on the opposite
side of fi.

Hence, the problem of computing the capacities is not as obvious as it first seemed because
the capacities need to be static and should not depend on each other which would require
them to change dynamically during the execution of any cartogram algorithm relying on
circular arcs. Consequently, we have to think of a better technique to determine capacities.
A good alternative is to make use of the straight skeleton concept for polygons. The
straight skeleton of a polygon is defined by a process of shifting the polygon’s edges inwards
simultaneously until intersection events occur. There are two types of events. The first
type is the edge event which means that an edge is omitted since two of its neighboring
edges collide and the second type is the split event where an edge collides with a vertex.
In the latter case the polygon is split into two at that vertex. The result of this process is
a subdivision of the original polygon into disjoint sub-polygons where every sub-polygon
corresponds to exactly one edge of the original polygon. The straight skeleton concept was
introduced in [AAAG95]. They suggest to construct the straight skeleton by simulating the
polygon shrinking process which can be implemented with a runtime lying in O(n2 log n)
when a priority queue for storing the events.

An example of a straight skeleton is depicted in Figure 5.1. The initial polygon in Fig-
ure 5.1a is an octilinear schematization of the boundaries of Germany and the unique
straight skeleton for this polygon is depicted in Figure 5.1b.

Besides the fact that all components of a straight skeleton are straight edges two additional
properties make them very useful for our purpose:

1. Every polygon edge has one dedicated skeleton region that it belongs to

2. All skeleton regions are disjoint

Hence, if we require the circular arcs in our application to stay inside the skeleton region of
their corresponding edge then we are sure that intersections of circular arcs can not occur
in any bending configuration. Therefore the capacities can be computed independently for
each edge. For a primal edge a and a face f which lies on one side of a we call cap(a, f)
the maximal area that can be subtracted from f by replacing a with a circular arc that
does not exceed f ’s skeleton region, i.e. the area of the circular segment corresponding to
the maximal circular arc. Note that in this context the expressions ’maximal circular arc’
or ’maximal area change’ always signify that the circular arc is maximal with respect to
the straight skeleton region of the corresponding polygon edge.

The capacity of a dual edge e = (vs, vt) ∈ E with target face ft can then be given as the
sum of all maximal area changes of the primal edges lying on its border:
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(a) Input polygon (b) Straight skeleton of the input polygon

Figure 5.1: Straight skeleton creation

c(e) =
∑

a∈B(e)

(cap(a, ft))

Note that while we had B(e) = B(e′) for e ∈ E and its reverse edge e′, the equation
c(e) = c(e′) does not hold in general since the straight skeletons of the two faces adjacent
to an edge may not at all look alike.

Figure 5.2a shows a polygon together with its straight skeleton. A bending configuration
with maximally inwards bent circular arcs with respect to the straight skeleton of the
polygon is depicted in Figure 5.2b.

With all that we are able to determine all capacities c(e) of dual edges that are directed
into a regular face, i.e. have an actual country in the map as their target face. This works
fine as all regular faces are simple polygons and we can compute the straight skeleton of
a simple polygon. The outer face however is not bounded and therefore is not a polygon.
We can fix this problem by using a rectangle as bounding box with very large margins
which surrounds the subdivision. Then the former outer face becomes a regular face in
which all continents of the initial map are now holes. The straight skeleton is defined for
polygons with holes as well – see [AA96] – and this allows us to compute the remaining
capacities in the same way as before.

A bending configuration of the polygon in Figure 5.2 with maximally outwards bent cir-
cular arcs (i.e. bent into the outer face) is depicted in Figure 5.3. These maximal circular
arcs were computed as explained in the previous paragraph.

The methodology of computing capacities with the straight skeleton has been described
in this subsection. It remains to describe the exact geometric computation of the height
for maximal circular arcs. This is the topic of the next subsection.
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(a) Input polygon and its straight skeleton (b) All circular arcs are maximally bent inwards

Figure 5.2: Maximal bending configuration

Figure 5.3: Maximal outwards bending configuration
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5.1.2 Finding Maximal Circular Arcs

In order to compute the unique maximal circular arc for a primal edge a with respect to
the skeleton region associated with a we need to compute all maximal circular arcs with
respect to every skeleton edge s of that skeleton region, i.e. the height or radius for which
the arc generated from a touches s at one single point. The smallest of these maximal
circular arcs determines the bending capacity of a in one direction. In this context small
refers to the height of the circular arc. It always holds that if the circular arc C1 does not
intersect a certain skeleton edge s then any circular arc C2 that is flatter than C1 (i.e. has
a smaller height) does not intersect s as well since C2 is included in C1. Because of that
we know that the flattest of all maximal circular arcs does not intersect any skeleton edge.

Hence, this problem reduces to the computation of the maximal height of a circular arc
being bent into face fi having a as its chord (the chord is the edge that separates the
circular arc from the rest of the circle) such that the circular arc does not intersect a
certain skeleton edge s.

We simplify the problem by rotating and translating the two straight segments a and s
such that a lies on the x-axis and is centered (i.e. its middle point is the origin of the
coordinate-system) with fi bordering a from above the x-axis. The two endpoints of a
then have the form (0,−d) and (0,+d), where 2d is the length of a. From now on a and
s denote the rotated and translated objects. Figure 5.4 illustrates this simplified setting.
The edge a (drawn in fat) has a circular arc with center (0, b) which is maximally bent into
the skeleton region of a (dashed edges) that lies within the target face fi (dotted lines).

In this simplified setting if s is not vertical let s be described by the following straight line
equation where m is its slope and n is its y-axis intercept:

s : y = mx+ n (5.2)

If s is vertical it will be described as follows:

s : x = n (5.3)

Note, that this does not describe the straight segment s only but the whole line passing
through it. Later when we compute intersection points we will always have to check if the
intersection point is actually contained in the segment s or not.

Then we define a circle C which passes through the two endpoints of a and has the center
(0, b):

C : x2 + (y − b)2 = d2 + b2 (5.4)

The radius of C is
√
d2 + b2. The maximal circular arc which we look for is the part of C

which lies above the x-axis.

We distinguish five cases with respect to the positioning of s in order to compute the
maximal circular arc for a and s. The non-trivial cases 2,3,4 and 5 are illustrated in
Figure 5.5.

case 1) s lies entirely below the x-axis:

This case is trivial as the circular arc will never intersect s and therefore the maximal
height of the arc is ∞.
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a

s

−d +db

fi

Figure 5.4: Maximal circular arc for a

case 2) s and a share a common vertex:

The maximal circular arc is then only limited by the angle between a and s. We
choose the circular arc in such a way that its tangent at the common vertex has the
same slope as s. Then the only intersection point of the circular arc and s is the
common vertex of s with a.

case 3) s is a vertical segment and its x-value lies in the interval [−d,+d]:

The intersection of the circular arc and s will always occur at the lower vertex
(xlow, ylow) of s. We can therefore simply substitute x = xlow and y = ylow in
Equation 5.4 and resolve for b:

b =
x2
low + y2

low − d2

2ylow

By giving a value for b the circular arc is uniquely defined.

case 4) s is a vertical segment and its x-value does not lie in the interval [−d,+d]:

In this case the intersection can occur at any point of s. We can write s as shown in
Equation 5.3. This substituted into Equation 5.4 and resolved for y gives

y1,2 = b±
√
d2 + b2 − n2

We want this equation to have exactly one solution (i.e. the circular arc does not
really intersect but just touch the segement s) which means that the term under the
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square root must equal 0 which leads to

b1,2 = ±
√
n2 − d2

From the fact that s lies entirely to the left or right of a we conclude that the circular
arc can be bent further than a half-circle without intersecting s because only then
the arc will exceed the x-boundaries of a. Thus b must be positive: b =

√
n2 − d2.

It remains to detect if this value of b actually leads to an intersection point that is
contained in the segment s. This can be done by comparing the coordinates of the
intersection point with the endpoints of s. Otherwise the circular arc only intersects
the line passing through s. But then finding the circular arc which touches s at
exactly one point reduces to case 3 because the intersection will occur at the lower
vertex of s.

case 5) none of the cases above applies:

We substitute Equation 5.2 into Equation 5.4 and resolve for x:

x1,2 = −mn− bm
1 +m2

±

√
b2m2 + 2bn+ d2m2 − n2 + d2

(1 +m2)2

Again, we only want the arc to touch s and therefore the equation above is required
to have exactly one solution which leads to

b1,2 = − n

m2
±
√
n2

m4
− d2 − d2

m2
+
n2

m2

One of the two solutions for b will lead to an intersection point with positive y-value
and the other to a negative one. We are interested in the circular arc above the
x-axis so we only regard the intersection point with positive y-value. Then it only
remains to check whether the intersection really occurs on a point of s or just on the
line (as in case 4). If the latter is the case then again the problem reduces to case 3.

5.1.3 Algorithmic Concept

From the two preceding subsections we know how to construct a directed dual graph G
for a subdivision S which has capacitated edges where the capacities signify how much
area can be transfered over the corresponding border in S from one face to another. These
capacities were defined in such a way that they are independent of each other. So, when
creating circular arcs somewhere in the subdivision this does not change anything about
the existing capacities in the graph. The outer face was included in these considerations,
too. In addition to the capacities we derived a value bi for each vertex signifying how much
area the corresponding face demands or supplies.

The goal now is to find a bending configuration which balances the bi’s as good as possible,
i.e. the demands of all vertices are met, by sending flow over the edges respecting the
capacities. The problem in this setting is equivalent to the so-called transshipment problem
on G where units are sent over the edges of a network and the quantity of units flowing
on an edge e is limited by its capacity c(e). The overall goal is to find a flow f : E 7→ R+

that satisfies all bi’s and minimizes the total costs caused by flow over an edge measured
in cost per flow unit p(e). A feasible flow f must thus meet these two requirements:

f(e) ≤ c(e) ∀e ∈ E (capacity constraint)
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−d +d

b

s

a

(a) Case 2

−d +d

s

b

(xlow, ylow)

a

(b) Case 3

−d +d

s

b

a

(c) Case 4

−d +d

s

b

a

(d) Case 5

Figure 5.5: Non-trivial cases of the position of s with respect to a in the simplified setting

∑
e=(vj ,vi)

f(e)−
∑

e=(vi,vj)

f(e) = bi ∀vi ∈ V (demand/supply constraint)

In our context as costs we can set p(e) = 0 for all edges e ∈ E since we simply want to
know if it is possible to balance the demands and supplies of the different vertices with a
feasible flow and it is not important which edges are used for transferring area. So we do
not penalize the use of any edge. Let us call this problem T .

The transshipment problem is closely related to the maximum-flow problem which is well
explored and for which numerous algorithms exist. In fact the transshipment problem
when only asking if a feasible flow exists can be solved with a maximum-flow algorithm.
Hence, we will remodel the problem and solve it with a max-flow algorithm. A source and
target vertex vS and vT must be added to G and connected to the existing vertices as
follows:

• (vS , vi) ∈ E with c(vS , vi) = bi, if bi > 0

• (vi, vT ) ∈ E with c(vi, vT ) = −bi, if bi < 0

We denote this extended graph by G′ = (V ′, E′). In Figure 5.6 an example for G′ is
depicted. The initial subdivision is drawn in bold black and G′ is illustrated in blue. The
max-flow problem F is to find a feasible flow f maximizing
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vT

vout

vS

bi > 0

bi < 0

bi < 0

bi > 0

bi = 0

Figure 5.6: Flow network G′

∑
e=(vS ,vi)∈E

f(e). (flow value)

In contrast to T this problem defines a feasible flow by replacing the demand/supply
constraint above with the following flow conservation constraint:

∑
e=(vj ,vi)

f(e)−
∑

e=(vi,vj)

f(e) = 0 ∀vi ∈ V \ {vS , vT } (flow conservation)

Obviously there is a strong relationship between T and F which manifests itself in the
following theorem:

Theorem 5.1.1 A feasible flow for T exists if and only if the optimum solution for F
has value

∑
bi>0

bi

Proof We show both implications:

⇒ Let f be a feasible flow for T on G.
We define the flow f ′ as follows:

– f ′ E = f

– f ′(e) = c(e) ∀e ∈ E′ \ E
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Thus all edges from the source and to the sink are saturated and all other edges have
the same flow as in f . Clearly f ′ is a feasible flow for F and its flow value is

∑
bi>0

bi.

No other flow can be higher since all source edges are saturated.

⇐ Let f be a maximum flow for F with a flow value of
∑
bi>0

(bi).

In f all source and sink edges must be saturated, otherwise the value could not be
attained. The flow f restricted to the edges in E is a feasible flow for T on G:
Capacities are still respected and the demand or supply of each vertex is also met
since a surplus or lack of exactly bi occurs at vertex vi because of the missing source
and sink edges. Therefore f ′ = f E is a feasible flow for T . �

Hence, if a max-flow in G′ with a value of
∑
bi>0

bi can be found we know that all target

areas can be achieved. Furthermore even if a max-flow value of
∑
bi>0

bi can not be attained,

the max-flow still optimizes problem T since the difference to
∑
bi>0

bi is exactly the total

area-error. This fact justifies using a max-flow algorithm heuristically for the resolution
of the Circular-arc Cartogram problem.

There is one last issue related to the structure of the given flow network G′. In G′ we
have positive capacities for both edges of one edge pair. However, most popular max-flow
algorithms require that for an edge e with c(e) > 0 the reverse edge e′ must have c(e′) = 0.
In our application we need to have c(e′) > 0. The method of Boykov-Kolmogorov ([BK04])
can deal with this and therefore our heuristic relies on their max-flow algorithm.

In the last three subsections we described all important components of our heuristic which
consists of two major phases. First the straight skeletons of all faces in the subdivision and
the resulting capacities of the dual graph are computed. Then the algorithm of Boykov-
Kolmogorov is run on the extended dual graph and the resulting flow is applied to the
subdivision as a valid bending configuration. The runtime of this method lies therefore
in O(ln2 log n + ml2|C|) where n is the number of vertices in the subdivision, m is the
number of edges, l is the number of faces and |C| is the cardinality of a minimum cut
in the dual graph of the subdivision. It depends thus on the runtime of the algorithm of
Boykov-Kolmogorov (second term) which can be very slow theoretically in the worst case
but in practice performs better than other known max-flow algorithms.

5.2 Case Study

The heuristic described in the previous Section 5.1 has been implemented in C++. Geomet-
ric data-structures, geometric operations and graph algorithms from the geometry library
CGAL and the Boost Graph Library were employed in the implementation as well. In this
section we showcase some visual output produced by this implementation and we evaluate
the underlying heuristic by assessing the quality of the obtained cartograms.

The schematized input maps used for producing these cartograms were provided by Wouter
Meulemans generated with his algorithm for area-preserving subdivision schematization
[MvRS10].

Figure 5.7a shows a circular-arc cartogram for the 2010 gross domestic product (GDP) in
Europe1. The original octilinear schematization is drawn in gray and the resulting circular-
arc cartogram in black. This first cartogram already gives some hints about what are the
strengths and weaknesses of our method. The regions in the output are all recognizable.

1GDP data of 2010 from http://www.imf.org/external/pubs/ft/weo/2011/01/weodata/index.aspx

53

http://www.imf.org/external/pubs/ft/weo/2011/01/weodata/index.aspx


We can easily identify the different countries and shapes are not distorted too bad. Even
the aspect ratio of most regions does not change significantly. The length of all borders is
at least as big as in the input, so adjacencies are even more easily readable.

However, the cartographic error for some regions is extremely high. Table 5.7b maps
countries to their quotient of realized area change by desired area change. Noticeably
there are a lot of countries for which less than 10% of the target area change could be
realized. Especially countries lying in the middle of a cluster of countries that all want
to increase their size (respectively decrease their size) have difficulties to do so as there is
no neighbor that the can get area from (respectively transfer their area to). Switzerland,
Luxembourg and Belgium are such cases in this cartogram. This deficiency of having
countries unable to change their area because they are enclosed by neighbors which have
the same goal to grow or to shrink can not be rectified with circular arcs or structural
modifications to the existing flow network. The problem lies deeper and is caused by the
static requirement that vertex positions are fixed. Thus a strategy needs to be conceived in
future to move vertices in order to deal with these closed-in countries. On the other hand
countries like Italy, Spain or the Scandinavian countries that have a long border with the
sea can realize a considerable change of their size which leads to a good success quotient.

We conclude from this output that the existing implementation does not always provide
high-quality cartograms, i.e. with low cartographic errors, if the map is very much clustered
in increasing and decreasing zones which are not equipped with a long sea border. In prac-
tice this is however often the case. Many maps have zones where some over-proportioned
or under-proportioned countries are clustered no matter which statistical data we regard
and also very often these zones do not necessarily have a long common border with the
sea which makes it difficult and sometimes impossible to change the area of regions in the
middle of the cluster at all.

The cartogram in Figure 5.8a illustrates the distribution of Italy’s population per region
in 20102. Again the success rate in % is depicted in Table 5.8b. From the table it can
be seen that this cartogram has by far a better quality than the previous one. The av-
erage success rate is 78.045% and most regions are at 100% which means that their size
is correct according to the prescribed value. Very few vertex movements could correct
the remaining area-errors completely if such a technique was implemented. For instance
consider Sardegna which is the leftmost island. It is shrunk to the smallest possible con-
figuration with circular arcs according to our method but it still is over-proportioned with
respect to the prescribed quantity. Only a movement or removal of vertices as discussed in
Section 4.2 could bring the necessary degree of freedom to shrink Sardegna’s size further
in order to deal with the remaining area-decrease that has to be done.

The reason why this input leads to a considerably better cartogram than the one before
lies in the structure of the initial map and the structure of the provided weight vector. A
first structural property which benefits the cartogram generation is the skinny shape of
Italy with a high aspect ratio where almost all regions have a common border with the sea.
Areas can than easily be exchanged with the sea which leads to a low cartographic error.
In addition the weight vector matches the sizes of the regions quite well in the initial map.
There are no big deviations between areas of the regions and their population since Italy
is quite uniformly populated. The algorithm can realize these moderate area changes per
region sufficiently well and the produced cartogram is thus a good one with acceptable
cartographic error.

Figure 5.9 shows a cartogram for the population distribution in the Netherlands in 20043.
The Netherlands are not as evenly populated as Italy. For example the provinces Noord-

2Population data of 2010 from http://demo.istat.it/pop2010/index1_e.html
3Population data of 2004 from http://en.wikipedia.org/wiki/Ranked_list_of_Dutch_provinces
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(a) GDP in Europe

Country Success in %
Portugal 100%

Iceland 54.6%
Ireland 100%

United Kingdom 31.5%
Spain 100%

Belgium 7.1%
Luxembourg 0%
Netherlands 10.65%

France 29.13%
Italy 73.6%

Denmark 54.4%
Switzerland 0%

Germany 4.5%
Slovenia 100%
Austria 39.5%

Czech Republic 100%
Sweden 44.6%
Croatia 20.2%
Bosnia 6%

Norway 47.4%
Slovakia 34.7%
Albania 38.1%
Poland 19.6%

Hungary 2.9%
Finland 57.83%

Lithuania 6.2%
Serbia 7%

Estonia 32.6%
Macedonia 22.1%

Latvia 21.7%
Greece 100%

Moldavia 0%
Belarus 12.1%

Romania 2.7%
Bulgaria 17.2%
Ukraine 20.3%

(b) Realized area change in %

Figure 5.7: Circular-arc cartogram: GDP in Europe

Brabant as well as Zuid- and Noord-Holland containing all important urban areas make up
the largest part of the Dutch population. There is thus a big imbalance between south and
north and this fact also expresses itself in the cartogram. The regions of the metropolitan
south are shaped like clouds and the northern rural areas look more like snowflakes with
all the edges bent inwards. The imbalance in the distribution of the Dutch population
is thus indicated by the cartogram, the significance of this imbalance however does not
become evident. Zuid- and Noord-Holland still want to grow a lot and both have not even
achieved one third of their desired growth. In this case an action of merging two circular
arcs would be very effective because both regions have long sea borders with circular arcs
blocking each other at their common vertices. If these vertices were dropped the regions
could gain a lot more area over the new larger circular arcs. The same holds for the
northern territories which still want to shrink considerably.

An advantageous side-effect of this circular-arc cartogram is the fact that adjacencies are
much better visible than in the original map. The bigger length of the border when
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(a) Population distribution in Italy

Province Success in %
Valle d’Aosta 78.8%

Piemonte 100%
Sardegna 68.1%

Liguria 100%
Lombardia 17.9%

Toscana 100%
Trentino 62.3%

Emilia-Romagna 100%
Veneto 64.3%

Umbria 56.2%
Friuli 100%

Marche 100%
Lazio 100%

Abruzzo 86.5%
Molise 34.4%
Sicilia 100%

Campania 47.5%
Basilicata 44.9%
Calabira 100%

Puglia 100%

(b) Realized area change in %

Figure 5.8: Circular-arc cartogram: Population distribution in Italy

replacing straight lines with circular arcs was already discussed before as one advantage of
circular-arc cartograms and here we see a practical example of this. Consider the border
of the province Zealand which consists of the three bottom left islands in the map. In the
original schematized map (gray lines) their boundaries were hard to read because they are
a bit nested, i.e. they lie close to each other and all have approximately the same form.
The circular arcs reach a better clarity since they bring more contrast into the drawing
and that way help to distinguish between the different regions more easily.

The evaluation of this cartogram is thus a mixed one. High cartographic errors of some
regions stand in opposition to a better readable overall shape of the cartogram compared
to the original map. The size of the southern metropolitan provinces deviates too much
from a proportionally correct cartogram so we can not say that this cartogram is one that
might be used to illustrate this statistic realistically.

Figure 5.10 shows a cartogram of total agricultural exports in the USA by states in 20104.
Note that Alaska and Hawaii have been omitted for ease of illustration. This cartogram
confirms the conclusion that we drew from the preceding population cartogram of the
Netherlands. The cartogram indicates where the big agricultural US-states lie. From the

4Data of 2010 taken from the United States Department of Agriculture http://www.ers.usda.gov/Data/
StateExports/
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(a) Population distribution in the Netherlands

Province Success in %
Zealand 100%

Zuid-Holland 11.4%
Noord-Holland 32.4%

Friesland 35.9%
Utrecht 49.4%

Flevoland 74%
Noord-Brabant 100%

Limburg 100%
Gelderland 100%

Overijssel 67.8%
Drenthe 11.6%

Groningen 47.8%

(b) Realized area change in %

Figure 5.9: Circular-arc cartogram: Population distribution in the Netherlands

cloud shape of the Midwest-states and California one can deduce that these states export
more agricultural products than the rest of the country with respect to their size. However,
the actual proportions do not shine through. Most states in the Midwest like Arkansas,
Minnesota, Kansas or Oklahoma have only achieved less than one third of their desired
area increase, see Figure 5.11. Likewise states on the East Coast and in the mountain range
have only realized a very small portion of their desired area decrease. In some cases the
success rate is only at 10% or less which degrades the quality of the cartogram significantly.
So this example also demonstrates the necessity to implement other relaxations, namely
the possibility to move or remove vertices.

One effect that is striking in this cartogram is the dependence of our heuristic on a input
map that has been schematized to a considerable extent. If many straight line segments
in the input are very short then the circular arcs can not realize a big area change in
general. For instance Texas has an advantageously long border with the sea. However,
all these edges are pretty short and therefore Texas does not get the flake shape that we
would like it to have but instead looks a bit nibbled. Long edges favor good edge bending
capacities and therefore lead to better cartograms in terms of a smaller cartographic error
and a more appealing shape (recall the cloud and flake analogy). Obviously the necessity
to have long edges is also linked to the vertex removal relaxation discussed previously an
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Figure 5.10: Circular-arc cartogram for the exports of agricultural products in 2010 by
states

Country Success in %

California 31.1%
Oregon 37.8%

Washington 100%
Nevada 12.9%

Idaho 0.6%
Arizona 12.7%

Utah 0%
New Mexico 3.4%

Wyoming 5.8%
Montana 15.5%
Colorado 13.5%

North Dakota 72.3%
South Dakota 100%

Nebraska 5.3%
Kansas 20.4%

Oklahoma 31.8%
Texas 38.9%
Iowa 0%

Minnesota 13.3%
Arkansas 33%
Louisiana 48.7%
Missouri 3.1%

Wisconsin 17.3%
Illinois 1.2%

Mississippi 100%
Michigan 100%

Indiana 9.6%
Alabama 26.2%
Kentucky 100%
Tennessee 100%

Ohio 22.4%
Georgia 100%

West Virgina 28.5%
South Carolina 85.6%

Florida 100%
Pennsylvania 100%

North Carolina 96.5%
Virginia 57.3%

District of Columbia 71.2%
Maryland 100%
Delaware 51.6%

New Jersey 100%
New York 68.7%

Vermont 11.2%
Connecticut 100%

New Hampshire 3.8%
Rhode Island 36.9%

Massachusetts 21.9%
Maine 40.7%

Figure 5.11: Realized area change in %

implementation of which would allow to generate long edges where needed during execution
of the heuristic.

To finish the evaluation of our heuristic let us have a look at the running time of the
algorithm for the generation of the four circular-arc cartograms above. We split the running
time up into the duration of the setup of the flow network which includes computing the
capacities with straight skeletons and the duration of the max-flow algorithm including the
application of the found flow as bending configuration. The resulting running times are
listed in Figure 5.12. We conclude that the method is fast and the running times depend
directly on the number of countries in the map. This holds for both the generation of the
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flow network as well as for the execution of the maximum flow and its application.

Cartogram Setup of the flow network in sec Max-flow algorithm in sec

Europe, GDP 2,276180 1,948683
Italy, Population 1,744108 1,730795

Netherlands, Population 1,686170 1,810870
USA, Agrar exports 3,535535 2,156636

Figure 5.12: Running times of the heuristic for the four examples in this section
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6. Conclusion

We presented a new approach to generate cartograms by replacing straight line segments
of a subdivision with circular arcs. Several constraints that could be imposed on such a
cartogram were proposed. The preservation of adjacencies was decided to be a hard con-
straint, i.e. they should in no case be modified by a cartogram algorithm. Area constraints
and vertex-related constraints are subject to relaxations.

In Chapter 3.3 NP -hardness results were presented for four different variants of the
circular-arc cartogram problem and took this as a justification to relax some constraints.
At first we tried how the area-constraint could be relaxed, i.e. admitting a bounded area-
error per region. The problem with a fixed additive area-error turned out to remain
NP -hard as well, so that possible relaxations of the vertex positions were then discussed.

We then proposed a heuristic based on a max-flow algorithm. A maximum flow on the
augmented dual graph of the map where flow signifies the transfer of area between faces
of the map is susceptible to provide a good approximation to a near-optimal bending
configuration minimizing the total area error. No guarantees on the quality can be given
though. We produced some results with an implementation of this heuristic in C++ which
point out where the advantages and disadvantages of this heuristic lie. The produced
cartograms have a very good quality in terms of their visual appeal. Boundaries that are
shaped a bit like clouds and the inverse of clouds or flakes are pleasant to look at and the
basic information of the map can be read pretty well from the cartograms (e.g. adjacencies
or which country corresponds to which cartogram region). Moreover when imposing the
normal bending condition the cartogram benefits from the fact that all regions with a
positive target area change are inflated along their entire boundary and regions with a
negative target area change are deflated as a whole. However, for certain inputs the
cartographic error can be very high for some countries. Especially maps where a lot of
countries are clustered that all want to grow or shrink cause this problem. If additionally
the provided weights differ too much from the actual proportions of the countries in the
map than our heuristic reaches its functional limits and big cartographic errors can be the
result.

Numerous further problems emerge from this thesis. On the theoretic side it remains to
study possible approximation algorithms for the problem at hand with a guaranteed qual-
ity. Perhaps an approximation with a multiplicative factor can be found when the target
area changes per region are suitably bounded. Another promising resolution technique is
the relaxation of vertex-related constraints. We briefly discussed what this could look like
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in Section 4.2 and we saw that the question whether the problem of satisfying all weights
in a subdivision with vertex-movements is NP -hard remains open.

Nevertheless a specific strategy was not given and also an incorporation into the imple-
mentation has not been conducted. An optimization of the software could also be to use
minimum cost flow algorithms and then prioritize sending flow over long edges instead
of short edges as then the resulting circular arcs will be flatter which leads to a better
readability.

Abstracting from circular arcs could also bring many new possibilities. If we do not
anymore limit ourselves to replacing straight segments with circular arcs but with more
general kinds of curves (e.g. cubic splines) we gain a new level of flexibility in modifying
the initial map. If still requiring a smooth shape of the boundaries as it is automatically
the case with circular arcs and cubic splines respectively than we could hope for visually
appealing results where the ability to reduce the cartographic error is a lot higher.

A detailed comparison of our method with other cartogram generation methods could be
conducted as well as an evaluation by users in order to assess its acceptance in practice.
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