
Point Labeling with Leaders
for Convex Boundaries

Diploma Thesis of

Neil Jami

At the Department of Informatics
Institute of Theoretical Informatics

Reviewers: Prof. Dr. D. Wagner
Prof. Dr. P. Sanders

Advisors: Dr. Martin Nöllenburg
Dipl.-Inform. Andreas Gemsa

Time Period: 01. November 2011 – 30. April 2012

www.kit.eduKIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, 30th April 2012

Neil Jami

iii

Abstract

This diploma thesis deals with the concept of convex boundary labeling. Given a
set of points positioned in a map with a polygonal shape, the objective is to place,
for each point, a rectangular label outside of the map, and connect it to the point
with a leader. Generally, the labels are placed so that no two leaders intersect and
so that the total leader length is minimized.

The main contribution of this work is the study of boundary labelings for maps with
a convex polygonal shape. We consider axis aligned leaders with at most one bend,
and assume that the labels can be placed anywhere to the right of the map. We
study here three different models of the problem and present different algorithms to
compute a crossing-free labeling with minimum leader length.

We describe the different algorithms and prove their correctness. The algorithms
for the different models have a similar structure. They first compute a labeling
with minimal leader length. For this purpose, each algorithm calls repetitively a
second algorithm that computes a labeling with minimal leader length for a cluster
of labels. In two of the three models, the second algorithm computes minimum
weighted matchings. Since computing a matching takes a long time, we look for an
alternative fast algorithm to avoid matching computations as much as possible. In a
second step, the algorithms remove the remaining leader crossings in the computed
labeling. Finally, we evaluate the quality and the performance of the implemented
algorithms for practical inputs.

Deutsche Zusammenfassung

Diese Diplomarbeit beschäftigt sich mit dem Konzept von konvexer Randbeschrif-
tungen. Gegeben eine Menge von Punkten in einer von einem Polygon begrenzten
Karte, ist das Ziel, für jeden Punkt ein Label mit rechteckiger Form außerhalb des
Polygons zu platzieren und durch einen Pfeil (Leader) mit dem Punkt zu verbinden.
Somit werden Punkte in einer Karte annotiert. Üblicherweise werden die Labels
so positioniert, dass die Leaders sich nicht kreuzen und die gesamte Leaderlänge
minimiert wird.

Das Hauptthema in dieser Arbeit ist die Untersuchung von Algorithmen für kon-
vexeRandbeschriftungen. Wir betrachten hier Leader, die aus höchstens zwei hori-
zontalen oder vertikalen Segmente bestehen. Außerdem werden die Label rechts von
der Karte platziert. Wir untersuchen hier drei Labeling Modelle und die entsprechen-
den Algorithmen, die kreuzungfreie Labelings mit minimaler Leaderlänge berechnen.

Wir beschreiben die verschiedenen Algorithmen und beweisen ihre Korrektheit. Die
drei Algorithmen haben dieselbe Grundstruktur. Zunächst wird ein Labeling mit
minimaler Leaderlänge berechnet, indem jeder Algorithmus iterativ einen weiteren
Algorithmus aufruft, der ein Labeling eines einzigen Clusters mit minimaler Leader-
länge berechnet. Das Labeling eines Clusters wird in zwei der drei Modelle mithilfe
von Matchings mit minimalem Gewicht berechnet. Da die Laufzeit von Matchin-
galgorithmen ziemlich hoch ist, wird eine schnellere Lösung benutzt, um so selten
wie möglich einen Matchingalgorithmus aufzurufen. In einem zweiten Schritt ent-
fernt jeder Algorithmus die eventuell vorhandenen Kreuzungen von dem Labeling
minimaler Leaderlänge. Schließlich werden die Algorithmen implementiert, um ihre
Laufzeit und Qualität für praktische Instanzen zu evaluieren.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition . 2
1.3 Thesis Outline . 4
1.4 Related Work . 5

2 Preliminaries 7
2.1 Notations . 7
2.2 Integer Linear Programming . 9
2.3 Matching Algorithms and Fixed-Labels Labeling 10
2.4 Algorithms for Vertical Boundary . 11

3 Weakly-Aligned Boundary Labeling 15
3.1 Labeling on a Single Edge . 16

3.1.1 Leader Length Functions . 17
3.1.2 Minimal Cluster Labeling using a Matching Algorithm 18
3.1.3 Minimal Cluster Labeling using a Sweep-line Algorithm 19

3.1.3.1 Position of a Cluster with Fixed Order 20
3.1.3.2 Finding an Optimal Order 25

3.1.4 Removing the crossings . 27
3.1.5 Computing an Optimal Labeling . 30
3.1.6 Linear Programming . 33
3.1.7 Conclusion . 34

3.2 Convex Boundary with Big Slopes . 35
3.2.1 Leader Length Functions . 36
3.2.2 Minimal Cluster Labeling using a Matching Algorithm 38
3.2.3 Minimal Cluster Labeling using a Sweep-line Algorithm 39
3.2.4 Removing the crossings . 42
3.2.5 Computing an Optimal Labeling . 43
3.2.6 Integer Linear Programming . 45
3.2.7 Conclusion . 46

4 Alternative Labeling Models 47
4.1 Strictly-Aligned Boundary Labeling . 47

4.1.1 General Results . 47
4.1.2 Minimal Cluster Labeling using a Matching Algorithm 50
4.1.3 Minimal Cluster Labeling using a Sweep-line Algorithm 51
4.1.4 Crossing Removal . 51
4.1.5 Conclusion . 55

4.2 Discrete Labeling using ILP. 55
4.2.1 Integer Linear Program . 56
4.2.2 Choice of Slots . 57

vii

viii Contents

4.2.3 Conclusion . 58
4.3 Rectangular Block Labeling . 58

4.3.1 Border With a Single Edge . 63
4.3.2 Border With a Several Edges with Big Slopes 63
4.3.3 Conclusion . 66

5 Evaluation 69
5.1 Description of the Labeling Programs . 69
5.2 Quality of the Labelings . 71
5.3 Run Time Analysis . 76

6 Conclusion 83

Bibliography 85

viii

1. Introduction

1.1 Motivation

Over the last decades, the process of information visualization has become an important
domain of research. Indeed, maps and illustrations represent an important visual com-
ponent to communicate information. An easy to read map usually makes an explanation
much easier than a whole written text. A particular interest has been given to the place-
ment of extra information describing the maps. The reason is simple: manually generating
a legend and describing an map takes a significant amount of the time for its creation.

This extra information usually takes the form of textual labels. The concept of linking
each of these labels with some features in an map, namely called labeling, often represents
the main contribution of the map. The map describes an environment, and these labels
tell us what we are supposed to see, or where the element corresponding to each label is on
the map. Applications exist in numerous and diverse areas such as cartography, anatomy,
engineering and statistics.

Figure 1.1: Example of labeling.

Cartographers have developed several criteria and ways of modeling the problem to com-
pute high-quality labelings [Imh75, Yoe72]. Unfortunately, the majority of labeling prob-
lems are known to be NP-complete [Wag93]. Several approximation algorithms and heuris-
tics have been suggested. the problem of map labeling has been widely researched on the

1

2 1. Introduction

domains of cartography and computational geometry. The ACM Computational Geometry
Impact Task Force report [Cca99] also denoted label placement as an important research
area for the future years.

Until a few years ago, algorithms have been studied that place the labels on the map,
next to the features they describe. However, such a placement is not always possible. For
example, the problem of labeling is difficult in small areas with many features. Moreover,
it is difficult to find the right size for the labels. Indeed, too small labels are difficult
to read, whereas big labels hide parts of the maps, and thus disturb the readability of
the map. In 2006, the concept of boundary labeling appeared in the algorithm literature
[BKSW07]. Instead of placing the labels inside the map next to the features, the labels are
placed outside, next to the border of the map. Each feature has then to be connected to
a label with a curve. This new modeling has the double advantage to make dense regions
easy to label and allow any size for the labels. Nevertheless, an important optimization
problem is to compute curves between labels and feature that are easy for the human eye
to follow.

Several simple but effective criteria have been suggested to produce clear boundary label-
ings, such as placing each label close to the corresponding feature.

In this thesis, we study a new variant of the boundary labeling problem. Most criteria
have already be decided, but for most models the research only considered rectangular
map borders. However, not all maps have a rectangular shape, and using a rectangular
border may leave undesired unused space between the map and the labels. We consider
here the possibility of a map delimited by a convex border.

1.2 Problem Definition

In our context, we define a map as a set of n points {P0, . . . , Pn−1} inside a convex
polygon R. Each point corresponds to a feature to annotate with a textual label, modeled
by a rectangle with a fixed height. We define n labels {L0, . . . , Ln−1} to connect to the
points.We call leader the curve connecting a point to a label. We denote by anchor point
or anchor the endpoint of a leader on the rectangular contour of a label. A placement of
the labels and a drawing of the leaders is called boundary labeling. From now on, we will
call labeling a boundary labeling.

In this thesis, we require the anchor of each leader to be the middle point of the left
side of a label. Let rtop and rbottom be the topmost and the bottommost points of the
convex polygon R. We define the right side of the polygon R and the polygonal curve
of R between Rtop and rbottom containing the rightmost point of R. In this thesis, the
labels must be placed entirely outside of the map, and either touches the right side of the
border or are farther away to the right of it. Moreover, The labels must not share the same
y-coordinate, i.e., every horizontal line must not intersect two different labels. We denote
by right-labeling a labeling imposing these constraints to the label position. Moreover, the
leader will be polygonal curves composed of a vertical segment parallel to the left side of
the labels, and a horizontal segment orthogonal to the left side of the labels. Such a leader
is called po-leaders. Figure 1.2 shows an example of right-labeling using po-leaders.

In the literature, further shapes of leader have also been defined, like direct-leaders, opo-
leaders [BKSW07], and do-leaders [BHKN09] as presented in Figure 1.3.

In order to make the labeling as easy to read as possible, we add constraints that our label-
ing must respect. One of the most used constraint is to minimize the number of crossings
between the leaders and between the leaders and the labels. We call then leader crossing
an intersection between two leaders and leader-label crossing an intersection between a

2

1.2. Problem Definition 3

rup

rbottom

right side of R

anchor point

Figure 1.2: Example of right-labeling using po-leaders.

(a) do-leader: a diagonal segment
and an orthogonal segment

(b) do-leader: an orthogonal seg-
ment and a diagonal segment

(c) opo-leader: an orthogonal seg-
ment, a parallel segment and an or-
thogonal segment

(d) direct-leader: a single direct
segment

Figure 1.3: Some other leader types, studied when the right side of the border is vertical.

label and a leader. We say that a labeling is crossing-free when it contains no crossing
between two leaders or between a leader and a label. As we will see, given a set of points
and a border R, we can always find a crossing-free right-labeling using po-leaders.

We consider in addition a badness function, associating a labeling to a badness value. The
minimum of this function must provide a clear labeling. Intuitively, a labeling seems to
be easier to read when the labels are close to the point they are connected to. Another
possibility would be to minimize the number of bends of the labels.

Further conditions for the position of the labels may be added. We define a labeling with
fixed labels as a labeling so that a number m slots of possible label positions are fixed, and
we have to decide which label will be placed in which slot and how to connect these labels
to the points. On the other side, we denote by labeling with sliding labels a labeling where

3

4 1. Introduction

the labels can have any position, and we add a constraint of non-intersection of the labels.

Furthermore, we define a concept of cluster-labeling: a cluster of labels is a block of several
labels so that the top-side of each label coincides with the bottom-side of the label above
it in the cluster. We denote by cluster-labeling a labeling so that every labels has to be
in the same cluster. A labeling composed of several clusters is called clustered-labeling, as
illustrated in Figure 1.4.

(a) Cluster labeling: a single
cluster

(b) Clustered labeling with
two clusters

Figure 1.4: Illustration of cluster of labels

A labeling is composed of one or several clusters of labels connected to the points. When
annotating features, many people tend to align vertically the texts which are close to each
other, in order to make them look more uniform. Therefore, it may be suggested to give
a rectangular shape to the clusters by aligning vertically the left side of the labels in each
cluster.

In this thesis, we compute crossing-free right-labelings using po-leader with a minimal
total leader length. The function to minimize is the sum of the L1 distances between each
point and the label it is connected to. This badness function makes computations easy
and seems to be a good model to put the labels as close as possible to the points they are
connected to. We denote by minimal labeling a labeling that minimizes the total leader
length and by optimal labeling a crossing-free minimal labeling.

1.3 Thesis Outline

This work is structured as follows: In the next section, we present an overview of the
related work. In Chapter 2, we introduce specific notations that we will use in the thesis,
and present some results from existing work that we will use and generalize, such as
the Integer Linear Programming, matching Algorithms and an algorithm to compute the
desired labeling when the right side of the polygon R is a vertical segment. In Chapter
3 and Chapter 4, we study the labeling problems for different constraints on the labels.
Chapter 3 presents the main results for the so-called weakly-aligned boundary labelings,
where the labels can be placed anywhere to the right of the map. In Chapter 4, we
consider two variants of this labeling. In a strongly-aligned boundary labelings, labels are
required to touch the boundary, and in a rectangular-block labeling, the clusters have a
rectangular shape, and the left side of the labels in a same cluster are vertically aligned.
Chapter 5 provides experimental results on the quality and the time-complexity of the
computed labeling. Chapter 6 concludes this thesis.

4

1.4. Related Work 5

1.4 Related Work

The concept of boundary labeling has been introduced in 2006 by Bekos et al. [BKSW07].
In this paper, the authors considered several models for rectangular maps and fixed label
positions. The labels are fixed on one, two or four sides of the map. Three kinds of leaders
were introduced, that is the direct leaders, the one-bend po-leaders and the two-bend opo-
leaders. These three kinds of leader are presented in Figure 1.3. and their name describe
their shape. An opo-leader is composed of an ’o’ segment, i.e., orthogonal to the the left
side of a label, then of a ’p’ segment, i.e. parallel to the the left side of a label, and
of a second ’o’ segment. The authors studied the labeling problem with fixed ports and
with ports sliding on the labels, where the port of a leader is its endpoint touching the
label. Two different optimization functions have been presented, namely the minimization
of the total leader length, and the minimization of the number of bends of the leaders. In
particular, a algorithm has been developed to compute in O(n2) a crossing-free labeling
with po-leader minimizing the total leader length with either fixed port or with sliding
ports. Further algorithms have been developed for direct-leaders and for opo-leaders.

In another paper, Bekos et al. [BKPS06] studied boundary labelings with opo-leaders for
multiple stacks of labels. The labels are then placed on several columns on one side of a
rectangular boundary.

In order to overcome the abrupt form of the bend in po-leaders, Benkert et al. [BHKN09]
studied the boundary labeling with a new type of leader called do-leader, where ’d’ stands
for ’diagonal segment’. Unfortunately, boundary labelings with do-leaders may not always
be feasible. For example, if the points are concentrated in the same area next to the
border, the diagonal part may not allow us to place a label far enough from the point.
For one-sided labelings using po-leaders, the authors developed an algorithm to compute
a crossing-free labeling with fixed label positions and minimal leader length in O(n log n)
time. The concept of do-leader has been generalized to octilinear leaders [BKNS09], where
new leader types pd- and od-leaders have been added. Then, using two types of leaders,
for example do- and od-leaders, the problem of infeasible labelings has been solved. The
authors developed algorithms to compute in (n3) time crossing-free labelings with minimal
leader length for each type of octilinear leaders.

In 2008, Bekos et al. [BKPS08] considered the model where features are not points sites
but area features, i.e., a region of the map. They allowed the leader to be attached to any
position in the area feature. The authors generated labelings with a min-cost bipartite
matching algorithm, with a time complexity of O(n3).

Lin et al. [LK08] studied the possibility to connect a label to several points Such labelings
are particularly interesting when several point on the map represent the same object
type. Reducing the number of labels avoids redundancy of text and allows to use bigger
labels with more text. They proved the NP-completeness of this problem and presented
approximation algorithms.

In 2010, Čmoĺık et al. [vB10] employed fuzzy logic and greedy optimization to create layout
aware labelings. The authors modeled features as non intersecting surfaces, and each label
has to be connected to a dynamic point in such a surface. In order to improve the quality
of the labeling, the border of the map has been taken into account to compute a reasonable
input position of the labels. However, the algorithm only compute an approximation of a
labeling with minimal leader length and may not be suited for dense maps.

Nöllenburg et al. [NPS10] envisaged the visualization boundary labelings for dynamic
maps, where the user can interactively zoom in or out. Therefore, the view of the map
is not fixed, and the number and the position of points and labels continuously change.

5

6 1. Introduction

This labeling has been called dynamic boundary labeling, and has been mostly studied for
one-sided or two-sided labeling in rectangular maps.

Finally, Gemsa et al. [GHN11] studied boundary labelings for panorama images, where
points in a rectangle R are connected to disjoint rectangular labels places above R in k
rows. Each points in connected to its label by a vertical leader that does not intersect any
other label. The authors presented polynomial time algorithms that either minimize the
number of rows to place the labels, or maximize the number of labels that can be placed
in a fixed number of k rows. For weighted labels, the problem is shown to be NP-hard.

An overview of the main results regarding the boundary labeling problem has been written
by Kaufmann [Kau09], and an extensive bibliography is maintained by Wolff [Wol96].

6

2. Preliminaries

In this chapter, we present our notations and the existent algorithms that will help us
to compute our convex-boundary labelings. We first present the notations used in this
thesis. Then we will see what is an integer linear program. In the next section we define
the matching problems and give two matching algorithms to solve the problem of optimal
labeling for fixed label positions. We finally describe the structure of the algorithm pro-
posed by Nöllenburg et al. [NPS10] to compute an optimal labeling when the right side of
the boundary is vertical.

2.1 Notations

The points are denoted by {Pi = (xi, yi) | i = 0, . . . , n − 1}, and the labels by {Lj =
(tj , sj) | j = 0, . . . , n− 1}. Each label is supposed to have a rectangular form, and is then
delimited by four corners. The coordinates of a label corresponds to the coordinates of its
anchor, i.e., the vertical midpoint of its left side. We suppose that both the set of points
and the set of labels are sorted by increasing y-coordinate, namely y0 < y1 < . . . < yn−1
and s0 < s1 < . . . < sn−1. We denote by `(Pi, Lj) the leader connecting the point Pi to
the label Lj . The length of the leader `(Pi, Lj) is given by the L1 distance between Pi and
Lj :

|`(Pi, Lj)| = |yi − sj |+ |xi − tj |
We define the vertical length (horizontal length) of a leader `(Pi, Lj) as the the distances
of y-coordinates (x-coordinates) between Pi and Lj . We denote by L a boundary labeling,
and introduce a bijective function σ from the point indices to the label indices so that in
the labeling L the point Pi is connected to the label Lσ(i). The function σ is called order
of labels. We denote by Y-order the order of labels so that the i-th bottommost label Li
is connected to the i-th bottommost point Pi for each index i.

We call badness of a labeling L its total leader length in this labeling, and we denote by
bad this function:

bad(L) =
n−1∑
i=0

|`(Pi, Lσ(i))|

A labeling is called minimal when it has a minimum badness. In this thesis, we denote by
leader length function a function computing the length of a leader given the position of its
point and label. Moreover, we call leader crossing an intersection between two leaders, and
leader-label crossing an intersection between a label and a leader. Both of these crossings

7

8 2. Preliminaries

crossing

(a) Leader crossing

crossing

(b) Leader-label crossing

Figure 2.1: Illustration of leader crossings and leader-label-crossings

are illustrated in Figure 2.1. A crossing-free labeling contains no leader crossing and no
label crossing. Our objective is to compute an optimal labeling, that is, a minimal and
crossing-free labeling.

Further notations are defined for the convex boundary. The map is delimited by a convex
polygon R and contains n points. We define the border as the right side of polygon R
delimited by its topmost and its bottommost points. The border is composed of k segments
called edges. The edges are denoted by E1, . . . , Ek sorted from the bottom to the top. We
denote by nodes the endpoints N0, . . . , Nk of the edges, so that each edge Ei is delimited
by the nodes Ni−1 and Ni. Since the labels are placed right from the border, this border
is characterized by an equation E giving the x-coordinate of a label from its y-coordinate:

Edge E2 with equation

t(s) = a2 +
1
2(s+

h
2)

Edge E3 with equation

t(s) = a3

Edge E1 with equation

t(s) = a1 + (s+ h
2)

s

t

Node N3

Node N2

Node N1

Node N0

a1 a3a2

Edge E3 with equation

t(s) = a3

h/2
L = (t, s)

Figure 2.2: Label L = (t, s) touching a border E with three edges E1, E2 and E3.

Since we look for a right-sided labeling with minimal length, we only consider the position
(tj , sj) for a label so that there is no valid position (t, sj) inducing a smaller leader length.
Consider the leftmost possible position (t′, sj) for a label when the vertical midpoint is

8

2.2. Integer Linear Programming 9

sj , i.e., the label touches the border with its left side. Let Pi : (xi, yi) be the point the
label is connected to. If t′ > xi, then tj = t′ is the optimal position for the label at the
y-coordinate sj , and any other position t increases the leader length by t− t′. In this case,
we say that the label is on the border. Otherwise, the optimal position for the label has x-
coordinate tj = xi, and any other label position with x-coordinate t 6= xi and y-coordinate
sj increases the leader length by |t− xi|. In the last case the label is said to be shifted.

In addition, we define three types of leaders. We call a leader upward when the incident
point is below the incident label, downward when the incident point is above the incident
label, and straight otherwise.

(a) upward (b) straight (c) downward (d) downward shifted

Figure 2.3: Different Types of Leaders.

Sometimes, several labels Li, Li+1, . . . , Lj will be regrouped so that the bottom side of each
label Lk coincides with the top side of the label Lk−1 and its top side coincides with the
bottom side of the label Lk−1. Such a group of labels is called cluster of labels. We note
that the position of a cluster is entirely described by the position of its bottommost label.
We define a cluster labeling as a position of the cluster and a bijection σ from the points
connected to the cluster to the labels. A cluster labeling is called minimal (resp. optimal)
when no other labeling of this cluster has a lower badness (resp. when it is minimal and
crossing-free).

We define the operation moving a cluster upward (downward) by a distance of ε as increas-
ing (decreasing) the y-coordinate of each label of the cluster by ε and then computing their
new optimal x-coordinate. Moreover, we define the operation of switching two labels Li
and Lj as switching the values of their y-coordinate, and then recomputing the optimal
x-coordinate associated to this position. Given a labeling, we call the gain G of a modifica-
tion the difference of badness after and before this modification. If the gain G is negative,
then the new labeling has a badness smaller than the initial labeling. A modification can
be moving labels or switching labels. The badness function is minimal if no modification
has a negative gain.

2.2 Integer Linear Programming

A linear program is defined by a linear function to optimize and a set of linear constraints,
which are equalities or inequalities, to respect. Every linear program can be reduced to
the following canonical form:

minimise cTx
subject to Ax ≤ b

x ≥ 0,

where c ∈ Rn is a n-dimensional vector defining the objective function, x ∈ Rn is the
n-dimensional vector of the variables, A ∈ Rm×n and b ∈ Rm are a matrix and a vector

9

10 2. Preliminaries

defining the constraints of the problem. A linear program can be solved in polynomial
time, using for instance Karmakar’s interior point method [Kar84].

In case of the variables and constraints having integer values, this problem is called Integer
Linear Program. Many optimization problems can be modeled as Integer Linear Programs,
but not as Linear Programs, which makes Integer Linear Programming a powerful tool
to use in optimization. Unfortunately, this problem is known to be NP-hard [GJ79].
Chandru and Rao gave a survey [CR99] containing a good presentation of Integer Linear
Programming and the theory of discrete optimization in general. There exist several solvers
such as gurobi1 or lp solve2 to solve integer linear programs, using heuristics to compute
quickly a first solution close to the optimum, then slowly improving this solution.

2.3 Matching Algorithms and Fixed-Labels Labeling

The theory of graphs is an important domain in applied mathematics and algorithmics. A
graph3 is a tuple G = (V,E) composed of a set V of |V | vertices and a set E of |E| edges
{u, v} ∈ V × V . Given an edge e = {u, v}, we say that the vertices u and v are incident
to the edge.

One of the most well-known problems in graph theory is the matching problem. A matching
is a set of edges so that no two edges are incident to the same vertex. The matching problem
consists in searching a matching with maximum cardinality.

We call bipartite matching problem a matching problem in a bipartite graph, i.e., in a
graph where the vertices are divided into two sets N1 and N2 so that each edge connects
a vertex from N1 to a vertex from N2. A simple example is the assignment problem. We
dispose of n1 persons and n2 tasks. We want to accomplish as many task as possible.
We create then a graph with n1 + n2 vertices corresponding to the personnel and the
tasks. We create an edge between the person Pi and the task Tj if Pi has the necessary
competences to accomplish Tj . The assignment problem corresponds to the search for a
maximum cardinality matching.

We define now a cost function over the edges:

cost : E −→ N

We define a maximum weighted matching a matching S∗ = {e1, . . . , ek} in a graph with a
cost function to be a matching with maximum cost.

cost(S∗) =
∑

e∈S∗ cost(e)

cost(S∗) ≥ cost(S) for every matching S.

We call maximum weighted bipartite matching problem a maximum weighted matching
problem in a bipartite graph.

Let’s go back to the labeling problem. Suppose that we have n points and m ≥ n fixed
and non-intersecting slots for the labels. The objective is to compute a minimal labeling
with fixed labels slots.

As we saw in section 2.1, for one-sided boundary labeling, the border is described by
an equation giving the x-coordinate of a label from its y-coordinate. Therefore, we can
suppose that only the y-coordinates of the labels are fixed. Then, for each pair (Pi, Lj) of

1see http://www.gurobi.com/products/gurobi-optimizer/gurobi-overview
2see http://lpsolve.sourceforge.net
3We consider here only the notion of undirected graphs.

10

2.4. Algorithms for Vertical Boundary 11

point and label, we can compute the length of the leader `(Pi, Lj) if Pi is connected to Lj .
Therefore, computing a minimal labeling is equivalent to computing a minimum weighted
bipartite matching. Our problem is thus solved by the search of a maximal weighted
matching in the following bipartite graph G = (V1 ∪ V2, E) with:

• V1: set of n points P0, . . . , Pn−1.

• V2: set of m ≥ n labels L0, . . . , Ln−1.

• E = V1×V2, each edge {Pi, Lj} has cost C−|`(Pi, Lj)|, where C is a constant greater
than any leader length:

C > max
leader `

|`|

Many algorithms exists for the matching problem. E. L. Lawler [Law76] presented several
polynomial time algorithms to compute any kind of matchings.

For bipartite graphs, the Hungarian algorithm [Kuh55] provides an efficient solution in
O(|V | · |E|) time. The following theorem provides thus a first algorithm for Fixed-Label
labeling, that is labeling so that the y-coordinates of all labels are fixed.

Theorem 1. Given a set of n points and m non intersecting sites for the labels. The
Hungarian Algorithm [Kuh55] computes in O

(
(n+m) · n ·m

)
time a minimal labeling.

Furthermore, Vaidya [Vai89] studied graphs representing cartographic data, so that the
cost function over the edges is a distance function under some metric. In particular, he
studied perfect matching in complete graphs: a matching is said to be perfect when every
vertex is incident to one of the edges in the matching. To create perfect matchings, the
two sets of vertices N1 and N2 must then have the same size. A graph is called complete
when there is an edge connecting every two vertices. A bipartite graph is complete when
there is an edge connecting every vertex of the set N1 to every vertex of the set N2.

With the help of geometry data, he created an algorithm with O
(
|V |2 · (log |V |)3

)
time

complexity to compute a minimum weighted perfect matching in a complete bipartite
graph, when the cost function follows the L1 or the L∞ metric. For po-leaders, the length
computed is the L1 distance. We obtain the following theorem:

Theorem 2. Given a set of n points and n possible sites for the labels, the Algorithm of
Vaidya [Vai89] computes in O

(
n2 · (log n)3

)
time a minimal labeling.

2.4 Algorithms for Vertical Boundary

This section presents the basics of our new models and algorithms. We suppose here that
the right border is a vertical line. We compute clustered-labelings with sliding labels, i.e.,
labelings which may contain several clusters of labels and where the possible positions
of the labels are not fixed. The objective is to compute an optimal labeling, that is a
crossing-free labeling with minimal leader length. This problem has already been studied
by Nöllenburg et al. [NPS10], for one-sided labeling in a rectangular boundary and with
sliding labels. The objective of this thesis is to generalize this model to the case of a
convex boundary. We summary here the main results, which will help us developing new
algorithms.

Recall that σ denotes the order of the labels, i.e., in a labeling L the point Pi is connected
to the label Lσ(i). For a one-sided labeling using po-leaders and with a vertical border, all

11

12 2. Preliminaries

labels have the same abscissa t, and it is sufficient to minimize the vertical leader length
in a labeling L.

bad(L) =
n−1∑
i=0

(
|sσ(i) − yi|+ |t− xi|

)
=

n−1∑
i=0

(
|sσ(i) − yi|

)
+ C,

where C is a constant. We will see at the end of this part an algorithm with O(n2) time
complexity to remove crossings in a minimal labeling. Thus, we will now look for a labeling
with minimal badness, and then use the other algorithm to remove the crossings.

Given a single label, positioning the label at the same y-coordinate as the point minimizes
the leader length. This leader is then straight. The farther the label is moved away from
this position, the greater the length of the leader gets. This property is formalized by the
following lemma:

Lemma 1. Let fi(sj) be the function giving the length of the leader `(Pi, Lj) from the
y-coordinate sj of a label Lj. The function fi(sj) is convex and has a unique minimum
for sj = yi.

When the labeling consists of several labels whose optimal positions intersect, these labels
will be regrouped into clusters. An optimal position is computed for each cluster of labels.

For each cluster, we must find out the position of the cluster and the order σ of the labels
that minimize the total leader length. The following lemma tells that there exists a labeling
with minimal leader length connecting the label Li to the point Pi for each i.

Lemma 2 (corresponds to theorem 6 in [BKSW07]). There exists a minimal labeling using
the Y -order.

We now assume that the i bottommost label Li is connected to the i bottommost point
Pi, i.e., σ(i) = i, for each i. The following lemma gives the optimal position of a cluster of
n labels from the coordinates of the points P0, . . . , Pn−1:

Lemma 3 (Lemma 3.2 in [NPS10]). A position of the cluster with at most n
2 upward leaders

and at most n
2 downward leaders is optimal. In particular, this condition is satisfied when

the leader corresponding to the median of the set {yi − i · h} is straight, where h is the
height of the labels.

Nöllenburg et al. (Lemma 4.1 in [NPS10]) proposed a data structure which can be build in
O(n log n) time and that allows to do median queries for clusters in O(log n) time. Lemma
3 induces an algorithm giving the optimal position of a cluster in O(log n) time given
this data structure, if we do not compute the exact position of each label. Algorithm 1
computes a grouping of the labels into clusters inducing a minimal labeling. We will see in
Section 3.1 that it is due to the convexity of the leader length functions stated in Lemma
1.

By combining it with the Upward-downward algorithm with Lemma 3 and the data struc-
ture proposed by Nöllenburg et al., we create an algorithm computing a minimal labeling
in O(n log n) time. Finally, we have to remove leader crossings in the computed minimal
labeling. The following lemma gives an interesting property about the leader crossings in
a minimal labeling.

Lemma 4 (Lemma 1 in [BHKN09]). In a minimal labeling, there are no crossings between
an upward leaders and a downward leader. Moreover, no straight leader can be involved in
a crossing with an upward leader and a crossing with a downward leader at the same time.

12

2.4. Algorithms for Vertical Boundary 13

Algorithm 1: Upward-Downward Algorithm

Data: {P0, . . . , Pn−1}.
Result: minimal labeling.

Sort the points by increasing y-coordinate;
for i = 0 to n− 1 do

// add Pi in the labeling;
Position Li at its optimal position;
Let Ci be the cluster containing Li;
while Ci intersects a cluster Cj do

Fusion Ci and Cj ;
Compute a minimal cluster labeling for Ci;

return the created labeling;

Lj

Lj+1

Lj+2

(a) Lj is connected by a downward leader

Lj

Lj−1

Lj−2

(b) Lj is connected ny an upward leader

Figure 2.4: Removing the crossing of the leader connected to the label Lj . The dashed
lines in red represent the new connections between points and leader. We note
in Figure (b) that changing the connection of two downward leader can create
a new crossing, with a downward leader connected to a label below Lj .

We denote by downward crossing a crossing involving a downward leader, and by upward
crossing a crossing involving an upward leader. See Figure 2.4 for an illustration. We know
from Lemma 4 that the labels involved in crossing can be subdivided into two disjoint sets,
the first one containing the upward crossings and the second one containing the downward
crossings. Moreover, when we switch two label positions to remove a downward crossing,
we do not create any upward leader, and vice-versa. Therefore, these two sets of crossing
leaders can be made crossing-free independently.

When we switch the position of two labels Li and Lj corresponding to an upward crossing,
we can not create a crossing involving a leader incident to a label below Li and Lj . Likewise,
when we switch the position of two labels Li and Lj corresponding to a downward crossing,
we can not create a crossing involving a leader incident to a label above Li and Lj . From
these observations, Algorithm 2 has been developed to remove leader crossings. Figure 2.4

13

14 2. Preliminaries

shows what happens in the algorithm.

Algorithm 2: Crossing-Removal Algorithm

Data: minimal labeling L.
Result: remove the crossings of L without increasing the badness.
for j = n− 1 downto 0 do

// the leaders incident to labels Lj ,. . . , Ln−1 ;
// are not involved in downward crossings ;
if `(Pσ−1(j), Lj) involved in a downward crossing then

`(Pσ−1(k), Lk) := downward leader with the rightmost crossing with

`(Pσ−1(j), Lj).;

Switch the position Lj and Lk.;

for j = 0 to n− 1 do
// the leaders incident to labels L0,. . . , Lj ;
// are not involved in upward crossings ;
if `(Pσ−1(j), Lj) involved in an upward crossing then

`(Pσ−1(k), Lk) := upward leader with the rightmost crossing with

`(Pσ−1(j), Lj).;

Switch the position Lj and Lk.;

return the labeling;

We now state the final result for a vertical border:

Theorem 3. For a one-sided labeling using po-leaders and with a vertical border, an
optimal labeling can be computed in O(n2) time.

14

3. Weakly-Aligned Boundary Labeling

In this chapter, we consider a first model of labeling for convex boundary. In Section 2.4,
we considered right-sided po-labelings for vertical boundary. Given a y-coordinate of a
label, the x-coordinate of the label that minimizes the leader length corresponds to a label
touching the border. However, when the boundary is not vertical, the x-coordinate of the
label that minimizes the leader length can be shifted to the right of the border, see Figure
3.1.

(a) A shifted label (b) A label crossed by the
leader it is connected by

Figure 3.1: Unclear position of a label

On the other side, to make a labeling clear, a leader must not cross the label it is connected
to, as shown in Figure 3.1. Our first model consists of allowing labels to be shifted to the
right of the border, so that no leader crosses the label it is connected to. For a given y-
coordinate of a label, we will always position the label at the x-coordinate which minimizes
the leader length. Therefore, no label will be placed to the right of the point it is connected
to. We call this model of labeling weakly-aligned boundary labeling, or WAB-labeling, and
every labeling in this chapter will refer to a WAB-labeling.

In a first section, we will assume that the border consists of a single edge. We will generalize
the algorithms from Section 2.4 to the case of the edge of the border being not necessarily
vertical, and develop an algorithm to compute an optimal labeling when the edge of the

15

16 3. Weakly-Aligned Boundary Labeling

border has a slope greater than 1. In a second section, we will study the case of a convex
border composed of several edges with slopes greater than 1.

3.1 Labeling on a Single Edge

In this section, the border consists of a single edge positioned to the right of the set of
points. Therefore, the labels are always placed further to the right of the border so that the
leader length is minimal. To minimize the leader length, the label may have to be shifted.
The objective here is to compute an optimal labeling, i.e., a a crossing-free labeling with
minimal leader length. Figure 3.2 shows an example of labeling for this section.

Badness : 1377

Point 0

Point 1

Point 2

Point 3

Point 4

Point 5

Point 6

Point 7

Point 8

Figure 3.2: Example of optimal labeling looked for in this section. The bottommost label
is shifted.

Since the case of an edge with a positive slope is symmetric to the case of an edge with
a negative slope, we will assume here that the slope of the edge composing the border is
positive. Then, each label connected by an upward leader cannot be left of the point it is
connected to. Therefore, shifted labels can only be connected by downward leaders. We
distinguish three kind of downward leaders:

1. downward-straight leaders: the label is not shifted, but the leader is vertical.

2. downward-shifted leaders: the label is shifted and the leader is vertical.

3. downward-regular leaders: the leader has a vertical and a horizontal segment.

In order to avoid confusions, we will call horizontal-straight leaders what we called straight
leaders in the previous chapter.

We denote by leader length function a function computing the leader length of a label given
its y-coordinate or a function computing the total leader length for a cluster of labels given
the y-coordinate of it bottommost label.

In this section, we will first study the properties of the leader length functions. Then
we will develop two algorithms to compute minimal cluster labelings, i.e., labeling with a
minimal total leader length such that every label is in the same cluster. We will also study
the crossing removal step before developing an algorithm that computes an optimal cluster
labeling using the Upward-downward algorithm. We will conclude after describing a simple
integer linear program to test experimentally the correctness of the written program for
our algorithm.

16

3.1. Labeling on a Single Edge 17

3.1.1 Leader Length Functions

Let sj be the y-coordinate of a label Lj . When the label touches the border, its x-
coordinate tj can be calculated with the border equation: tj(sj) =

sj
m + a, with m > 0. A

vertical border corresponds to the case m = ±∞.

Consider a point Pi. We denote by fi(sj) the length of the leader incident to Pi when
the label it is connected to has y-coordinate sj . The following lemma states an interesting
property of these leader length functions when the value of the slope m is bigger than 1:

Lemma 5. The function fi(sj) corresponding to any point Pi is piecewise linear and
convex. Moreover, the endpoints of the segments of fi(sj) correspond to a horizontal-
straight leader or to a downward-straight leader.

Proof. Let Pi = (xi, yi) be a given point of the map, connected to a label Lj = (tj , sj).
Let’s compute the length of the leader depending on the y-coordinate sj of the label.
Figure 3.3 shows the global form of the function.

Let zi be the y-coordinate of the label when its x-coordinate is xi. Since the label cannot
be moved left of the point, every position of the label below this one makes Lj a shifted
label:

∀sj ≤ zi, |`(Pi, Lj)| = yi − sj
This length is greater than the length of the leader when sj = zi.

If the leader is upward, then the length of the leader depending on sj > yi is:

|`(Pi, Lj)| = (sj − yi) + (tj − xi)

Since the label is on the border, we have tj = a+
sj
m , and thus:

∀sj > yi, |`(Pi, Lj)| = sj · (1 +
1

m
) + a− xi − yi

This length is greater than the length of the leader when s = yi, i.e., when the leader is
horizontal-straight.

Finally, if the leader is downward but not shifted, then its length is:

|`(Pi, L)| = (yi − sj) + (tj − xi) with tj = a+
sj
m

Thus:

∀s ∈ [zi, yi], |`(Pi, Lj)| = sj · (
1

m
− 1) + a− xi + yi

Therefore, the optimal position of a label depends on the value of the slope m: If the slope
is big, i.e., m ≥ 1. then the minimal leader length corresponds to a horizontal-straight
leader, when the label has y-coordinate sj = yi. However, when the slope is small, i.e.,
m ≤ 1, the minimal leader length corresponds to a downward-straight leader, when the
label has y-coordinate zi.

Therefore, the leader length function fi is piecewise linear and composed of three segments
with respective slope −1, 1

m − 1, and 1
m + 1 when sorted by increasing s values. Since we

supposed m > 0, the second slope 1
m − 1 is greater than −1 and lower than 1

m + 1. Thus,
the leader length function fi is convex.

We deduce from this lemma the following corollary, to compute a minimal labeling for a
cluster of labels.

17

18 3. Weakly-Aligned Boundary Labeling

zi yi label ordinate s

leader length fi

(horizontal leader)(vertical leader)

Figure 3.3: Length of a leader as a function of the y-coordinate s of its label, for a single-
edge border with big slope: m > 1

Corollary 1. Given a set of labels constituting a cluster. There exists a minimal cluster
labeling with a horizontal-straight leader or a downward-straight leader.

Proof. Consider a cluster C composed of n labels L0, . . . , Ln−1 sorted by increasing y-
coordinates. Each of these labels has to be connected to one of the points P0, . . . , Pn−1.
We define the order σ of labels in C so that the point Pi is connected to the label Lσ(i).
The badness function of the cluster at position s0 is then

∑
i fi(s0 + σ(i) · h).

In Lemma 5, we saw that the functions fi are piecewise linear, and the endpoints of the
segments correspond to either a horizontal-straight leader or a downward-straight leader.

Since the minimum of a sum of piecewise linear functions is attained at one of its extreme
points, we conclude that there exists a minimal cluster labeling with a horizontal-straight
leader or a downward-straight leader.

3.1.2 Minimal Cluster Labeling using a Matching Algorithm

In this part, we use the matching algorithms defined in the preliminaries to compute a
minimal cluster labeling. We are given a set of n points P0, . . . , Pn−1, a set of n labels
L0, . . . , Ln−1 and we look for a minimal labeling supposing that all labels are placed into
the same cluster.

We already know from Corollary 1 that there exists a minimal cluster labeling containing
a horizontal-straight leader or a downward-straight leader. Given a pair (Pi, Lj), there
exists a single cluster positions so that:

• The i bottommost point is Pi,

• The j bottommost label of the cluster is Lj ,

• the point Pi is connected to Lj by a horizontal-straight leader.

The same holds for a downward-straight leader. Therefore, Corollary 1 provides 2 · n2
cluster positions, and at least one of them is the position of a minimal cluster labeling.

Moreover, given a position of the cluster, the position of each of the n labels is directly
implied. Therefore, Theorem 2 states that the Algorithm of Vaidya [Vai89] computes in

18

3.1. Labeling on a Single Edge 19

O
(
n2 · (log n)3

)
a minimal cluster labeling. We construct the following algorithm.

Algorithm 3: Minimal Cluster WAB-Labeling for single-edge border with slopem > 1.

Data: {P1, . . . , Pn−1}
Result: Minimal Cluster Labeling: σ, L0, . . . , Ln−1
min badness := null;
best cluster := null;
best σ := null;
foreach i ∈ {0 . . . n− 1} do

foreach j ∈ {0 . . . n− 1} do
Cluster Chs := cluster position so that `(Pi, Lj) would be horizontal-straight;
(σ, badness) := OptimalMatching(Chs);
if badness < min badness then

min badness := badness;
best σ := σ;
best cluster := Chs;

;
Cluster Cds := cluster position so that `(Pi, Lj) would be downward-straight;
(σ, badness) := OptimalMatching(Cds);
if badness < min badness then

min badness := badness;
best σ := σ;
best cluster := Cds;

return best σ, best cluster;

Theorem 4. Algorithm 3 computes in O
(
n4 · (log n)3

)
time a minimal cluster labeling.

Proof. The correctness and the running time follow directly from Corollary 1 and Theorem
2. Algorithm 3 computes O(n2) matchings that are computed in O

(
n2 · (log n)3

)
time, and

one of theses matchings induces a minimal cluster labeling.

Moreover, we can reduce the number of matching computations. A minimal cluster labeling
containing a downward-straight also contains also an upward leader or an horizontal-
straight leader. Indeed, for a single edge border with a big slope, moving upward a label
connected to a downward leader decreases its leader length, because the leader length
function is convex and the minimal leader length is attained for a horizontal-straight
leader. Thus, moving upward a cluster only containing downward leaders decrease the
badness function.

For this reason, every cluster position computed for a downward-straight leader but only
containing downward leaders cannot induce a minimal cluster labeling. Every cluster so
that s0 < y0 − n · h is so that sj < yi for every pair (Pi, Lj) of point and label. These
cluster positions can thus not induce a minimal labeling.

Finally, depending on the slope of the edge and the position of the points, we may be able
to compute only n2 matchings instead of 2 · n2, speeding up the algorithm by a factor 2.

3.1.3 Minimal Cluster Labeling using a Sweep-line Algorithm

In this part, we still suppose that every labels has to be grouped into the same cluster,
and we look for a minimal cluster labeling, that is an order of the labels and a position

19

20 3. Weakly-Aligned Boundary Labeling

of the whole cluster which minimize the total leader length. We consider that the slope is
positive and big: m > 1.

In the previous part, we already saw an algorithm to compute a minimal cluster labeling in
O
(
n4 · (log n)3

)
time, which is a much more than the time complexity provided by Lemma

3 in the case of a vertical border. This lemma states that a minimal cluster labeling for n
labels can be computed for a vertical boundary in O(log n) time by calculating the median
of n elements. In this part, we will generalize this algorithm to speed-up the computation
of a minimal cluster position.

We recall the two main results for a vertical border, i.e., when the slope m > 1 is equal to
+∞. First, there exists a minimal labeling using the Y -order. Moreover, for the Y -order,
the cluster has a minimal total leader length when at most half of the leaders are upward
and at most half of them are downward. Unfortunately, things do not go so well for a
slanted border. Indeed, some labels can be shifted. Therefore, it is possible to reduce
the total leader length by switching a shifted label with another label left of it so that no
labels are shifted afterward. This way, we decrease the horizontal leader length. Figure
3.4 shows a counter-example where the minimal cluster labeling with the Y -order contains
a shifted label, and switching it with another label reduces the total leader length.

Badness : 356

Point 0

Point 1

Point 2

(a) optimal labeling using Y -order

Badness : 340

Point 0

Point 1

Point 2

(b) optimal labeling

Figure 3.4: Example where the Y order is suboptimal. Switching the labels L0 and L1

reduces the total leader length.

Therefore, the Y -order may be suboptimal, and we have to find not only the optimal
position of a cluster, but also an order of the labels which gives a minimal labeling.

3.1.3.1 Position of a Cluster with Fixed Order

We suppose first that we know in which order the labels have to be positioned in the
cluster. We are looking for a cluster position which minimizes the leader length.

We are given n points P0, . . . , Pn−1 sorted by increasing ordinates. The coordinates of a
point Pi are denoted by (xi, yi). We consider a cluster of n labels L0, . . . , Ln−1, the label

20

3.1. Labeling on a Single Edge 21

Li has the coordinates (ti, si). These labels are grouped into a single cluster and sorted
by increasing ordinates: s0 = s1 − h = . . . = sn−1 − (n− 1) · h, where h is the height of a
label. We denote by σ the bijection between the points and the labels, i.e., the point Pi is
connected to the label Lσ(i).

We know from Corollary 1 that there exists a minimal cluster labeling with a downward-
straight leader or an horizontal straight leader. Since we know in which order the labels
are positioned, each horizontal-straight leader and each downward-straight leader induce
a position for every labels Therefore, Corollary 1 induces 2n cluster positions, and one of
them corresponds to a minimal cluster labeling. Moreover, for each of those cases, we can
compute in linear time the position of each label and the total leader length associated to
this cluster labeling. Thus, we can compute a position of the cluster with minimal badness
for the given order in O(n2) time.

If the minimal cluster labeling for the given order contains no shifted label, Algorithm 4
computes the optimal position faster:

Algorithm 4: Possibly Minimal Cluster WAB-Labeling for a given order of labels, for
single-edge border with slope m > 1

Data: σ, {P0, . . . , Pn−1}
Result: A possibly minimal cluster labeling
Y ′ = ∅;
foreach i ∈ {0 . . . n− 1} do add (yi − σ(i) · h, i) in Y ′ ;
sort Y ′ by increasing yi − σ(i) · h value.;
ν = unique integer value in [n2 (1− 1

m), n2 (1− 1
m) + 1[;

(yk − σ(k) · h, k) = νth element in Y ′;
return cluster position so that `(Pk, Lσ(k)) is horizontal-straight;

Note that when m =∞, the border is vertical and ν ∈ [n2 ,
n
2 + 1[. Then k corresponds to

the median of Y ′. Here, when the border has a positive finite slope, the cluster tends to
be pushed downward. If m ≈ 1, the length of a leader does not change much when the
label is moved below its optimal position, but increase a lot when it is pushed above its
optimal position. Therefore, the optimal position of the cluster will contain only straight
and downward leaders.

Lemma 6. If the cluster position computed in Algorithm 4 contains no shifted label, then
this position has a minimal badness among the cluster positions with the given order σ.

Proof. This proof is composed of two steps. We first consider the virtual badness function
where the horizontal length of a leader `(Pi, Lσ(i)) is given by tσ(i)−xi instead of |tσ(i)−xi|.
Therefore, there will be no shifted label, and if the left side of a label moves left of the
point it is connected to, the horizontal leader length will be negative. We compute the
minimal cluster labeling for this case.

Then, we prove that this cluster position is optimal for the real badness function if every
horizontal leader length is positive, i.e., if this cluster position induces no shifted label
using the real badness function.

We suppose now that the horizontal length of a leader i is tσ(i) − xi. The total leader
length depending on s0 is given by the following badness function:

F1(s0) =
n−1∑
i=0

(
|sσ(i) − yi)|+ (tσ(i) − xi)

)

21

22 3. Weakly-Aligned Boundary Labeling

We replace sσ(i) and tσ(i) by their expression sσ(i) = s0 + σ(i) · h and tσ(i) = a+
sσ(i)
m =

a+ s0+σ(i)·h
m :

F1(s0) =
n−1∑
i=0

(
|yi − σ(i) · h− s0|+

s0
m

+
σ(i) · h
m

+ a− xi
)

Since xi, a, h and m are independent of s0, minimizing F1 is the same as minimizing:

F2(s0) =
n−1∑
i=0

(
|(yi − σ(i) · h)− s0|+

s0
m

)
= s0 ·

n

m
+
n−1∑
i=0

(
|(yi − σ(i) · h)− s0|

)
Let’s look for local minima of the function F2. We fix a position s0 for the bottommost
cluster and a value ε > 0. We define the gain function upward Gu(s0, ε) = F2(s0 + ε) −
F2(s0) and the gain function downward Gd(s0, ε) = F2(s0 − ε) − F2(s0). Let’s remember
that the position s0 for the bottommost label induces a locally optimal labeling if both
gains are positive for any value of ε. From Lemma 5, we know that the total leader length
function is convex, and therefore a local minimum is a global minimum.

Let ∆i(s0, ε) = |(yi − σ(i) · h)− (s0 + ε)| − |(yi − σ(i) · h)− s0|. We have then:

Gu(s0, ε) = ε
n

m
+
n−1∑
i=0

∆i(s0, ε)

Gd(s0, ε) = −ε n
m

+
n−1∑
i=0

∆i(s0,−ε)

Given i ∈ {0, 1, . . . , n− 1} and ε > 0, ∆i(s0, ε) =

{
+ε if yi − σ(i) · h ≤ s0
−ε if s0 ≤ yi − σ(i) · h− ε

Similarly, ∆i(s0,−ε) =

{
−ε if yi − σ(i) · h+ ε ≤ s0
+ε if s0 ≤ yi − σ(i) · h

Since we look for a local minima, we can choose ε small enough so that ∆i(s0, ε) = ±ε for
each value of i. Then, ∆i(s0, ε) = +ε if the leader incident to the label Li is upward or
straight, and ∆i(s0, ε) = −ε if the leader is downward. We define now:

• ns = |{i | s0 = yi − σ(i) · h}| the number of straight leaders.

• nd = |{i | s0 < yi − σ(i) · h}| the number of downward leaders.

• nu = |{i | s0 > yi − σ(i) · h}| the number of upward leaders.

We have then ns + nd + nu = n and:

• Gd(s0, ε) = (− n
m + ns − nu + nd)ε = (n− n

m − 2 · nu)ε.

• Gu(s0, ε) = (nm + ns + nu − nd)ε = (nm − n+ 2 · ns + 2 · nu)ε.

We have a local minimum when there exists a value δ > 0 so that Gd(s0, ε) ≥ 0 and
Gu(s0, ε) ≥ 0 for each positive value ε < δ.

• Gd(s0, ε) ≥ 0 ⇒ nu ≤ 1
2(n− n

m).

• Gu(s0, ε) ≥ 0 ⇒ nu ≥ 1
2(n− n

m)− ns.
From Corollary 1, we know that there exists an optimal position with a horizontal-straight
leader or a downward-straight leader. We supposed here that xi < tσ(i) for each i. This
means that we cannot have any downward-straight leader. Thus, this minimal cluster
labeling must contain a horizontal-straight leader.

22

3.1. Labeling on a Single Edge 23

Let’s consider an optimal position of the cluster with ns ≥ 1 straight leaders and nu ∈
[n2 (1 − 1

m) − ns, n
2 (1 − 1

m)] upward leaders. If n
2 (1 − 1

m) − ns is an integer value, then
n
2 (1 − 1

m) − ns + 1 is another integer value for nu corresponding to an minimal cluster
labeling. Therefore, we can exclude the value n

2 (1 − 1
m) − ns from the interval of values

for nu. We suppose now:

n

2
(1− 1

m
)− ns < nu ≤

n

2
(1− 1

m
) (1)

The elements in Y ′ are sorted by increasing value of yi−σ(i) ·h, then the nu first elements
of Y ′ correspond to upward leaders with yi < sσ(i) = s0 +σ(i) ·h, and the nd last elements
of Y ′ correspond to downward leaders with yi > sσ(i) = s0 + σ(i) · h. The straight leaders
corresponds to the elements from the index nu + 1 to the index nu + ns.

For each k1 ∈ {1 . . . , ns}, we deduce from (1):

n

2
(1− 1

m
) + k1 − ns < nu + k1 ≤

n

2
(1− 1

m
) + k1 (2)

Therefore, the ns integer between nu + 1 and nu + ns are between n
2 (1− 1

m) + 1− ns and
n
2 (1− 1

m)+2 ·ns. This interval contains exactly 2 ·ns+1 value. Since the ns values nu+ki
are consecutive, we deduce that one of theses values is the ns-th value of the interval. In
others words:

∃k ∈ {1, . . . , ns}, ν = nu + k ∈ [
n

2
(1− 1

m
),
n

2
(1− 1

m
) + 1[(3)

Finally, the position of the cluster so that the leader connected to the ν bottommost point
is straight has a minimal leader length with the order of labels σ.

We just proved that Algorithm 4 would return the optimal cluster position if the badness
function was F1(s0) =

∑ |yi−sσ(i)|+(xi−tσ(i)) instead of F (s0) =
∑ |yi−sσ(i)|+|xi−tσ(i)|.

Consider now the minimal cluster labeling given by s∗0 for the badness F1. There is a
negative horizontal leader length for the badness function F1 if and only if there is a
shifted label for the badness function F . Therefore, we have to prove that this cluster
position is optimal for the badness function bad when there is no negative horizontal
leader length with the badness function F1. Since each number is smaller or equal to its
absolute value, we have for each s0: F1(s0) ≤ bad(s0). Because the position s∗0 induces
no negative leader length, we have bad(s∗0) = F1(s

∗
0) = mins0 F1(s0) ≤ mins0 F (s0). We

conclude that s∗0 is the minimal cluster labeling for the badness function bad and the order
σ of labels, and thus that Algorithm 4 returns the minimal cluster labeling.

Theorem 5. Algorithm 4 computes a cluster position in O(n log n) time. The obtained
labeling is optimal for the given order of labels if this cluster position contains no shifted
label.

Proof. The optimality of the cluster position is proven by Lemma 5. The algorithm com-
putes the elements of Y ′ in linear time and sorts it in O(n log n) time. Then, the index
of a point connected by a straight leader is found in constant time from Y ′, and finally,
the position of each label is computed in linear time. Thus, the total running time in
O(n log n).

However, when the cluster position computed by Algorithm 4 contains a shifted label, this
position may not be optimal. Figure 3.5 shows a counter-example.

In this case, we have to compare the total leader length of each of the 2n possible optimal
positions, corresponding to the extreme points of the badness function

∑
i fi(s0 +σ(i) ·h).

23

24 3. Weakly-Aligned Boundary Labeling

Badness : 592

Point 0

Point 1

Point 2

Point 3

Point 4

(a) Labeling computed by Algorithm 4

Badness : 585

Point 0

Point 1

Point 2

Point 3

Point 4

(b) Labeling computed by Algorithm 5

Figure 3.5: Example of minimal cluster labeling containing no horizontal-straight leader.
The cluster labeling computed by Algorithm 4 is not minimal.

The total leader length of a cluster position is computed in linear time. Therefore, the
optimal position of a cluster given the order of the labels can be computed in O(n log n)
time, with the following algorithm.

Algorithm 5: Minimal Cluster Labeling for a Given Order of Labels, for single-edge
border with slope m > 1

Data: σ, {P0, . . . , Pn−1}
Result: Minimal cluster labeling.
Y ′ := ∅;
foreach i ∈ {0 . . . n− 1} do

Add (yi − σ(i) · h,HS) in Y ′ ;
Add (zi − σ(i) · h,DS) in Y ′, where zi is the y-coordinate of the label Li when its
leader is downward straight.;

Sort Y ′ in decreasing order.;
new s0 := cluster position corresponding to the first element of Y ′;
new ll := total leader length for position new s0;
ns := number of horizontal-straight leaders for position new s0;
nu := number of upward leaders for position new s0;
n′ := number of downward-straight and downward-shifted leader for position new s0;
foreach cluster position in Y ′ do

previous s0 := new s0;
previous ll:= new ll;
new s0 := y-coordinate of the cluster position;
nu := nu − ns;
ns := number of element corresponding to the next cluster position with second
field with value HS;
n′ := n′+ number of element corresponding to the next cluster position with
second field with value DS;

new ll := previous ll + (previous s0 - new s0) ·
(
n− 2 · nu − n−n′

m

)
;

update the best badness and the associated s0 value.;

return the best labeling;

24

3.1. Labeling on a Single Edge 25

Theorem 6. Algorithm 5 computes in O(n log n) time a minimal cluster labeling of the
cluster for the given order of labels.

Proof. The correctness of Algorithm 5 follows from Corollary 1. We now explain how
to compute in constant time the badness of a cluster labeling at a position given the
badness at the previous cluster position. From the previous cluster position to the new
one, the cluster is moved upward by a distance of previous s0 - new s0. Moreover, no
upward label become downward, and no downward-regular label become downward-shifted.
Therefore, the vertical leader length is increased by (previous s0 - new s0)·(ns + nd −
nu). Since n = ns + nd + nu, the vertical leader length is increased by (previous s0
- new s0)·(n − 2 · nu). Furthermore, every label connected to either an upward, or a
horizontal-straight or a downward-regular leader reduces its horizontal leader length by
(previous s0 - new s0)/m. In Algorithm 5, we set n′ as the number of leaders that are
downward-straight or downward-shifted in the previous cluster position and are downward-
shifted in the new cluster position. Since the horizontal length of these n′ labels do not
change, the horizontal leader length is then reduced by (previous s0 - new s0)·(n−n′)/m.
We conclude:

new ll := previous ll + (previous s0 − new s0) ·
(
n− 2 · nu −

n− n′
m

)
In order to update in constant time the values of nu, ns and n′, we associate with each
element of Y ′ an index telling if the element corresponds to a horizontal-straight leader
event HS or to a downward-straight leader event DS. Since each leader can be only once
downward-straight and only once upward-straight, the update of nu, ns and n′ is done in
amortized constant time. Therefore, the sweep-line is computed in linear time, and the
time complexity of Algorithm 5 is bounded by the O(n log n) time required to sort the list
Y ′.

3.1.3.2 Finding an Optimal Order

In the previous part, we saw algorithms to compute the optimal position of a cluster of
n labels given the order of the labels σ. Now, we look for an order of the labels which
provides a minimal labeling. We already saw an example where the Y -order does not
provide a minimal labeling. The following lemma gives a sufficient condition so that the
cluster-labeling computed by Algorithm 4 is minimal.

Lemma 7. If the cluster labeling computed by Algorithm 4 with the Y -order contains no
shifted labels, then this cluster labeling has a minimal badness among every cluster labeling
with any order of labels.

Proof. Let L∗ be the cluster labeling produced by Algorithm 4. Consider a labeling L2
of the same cluster with an order σ2 for the labels and a cluster position α2. We have to
prove that this labeling has a badness greater or equal to the badness of L∗.
We denote here by projection of a WAB-labeling L the labeling proj(L) computed by
moving every shifted labels back to the border. The cluster labeling proj(L) is not a
WAB-labeling if L contains shifted labels. We denote then by F1 the badness function:

F1(L) =
n−1∑
i=0

(
|sσL(i) − yi)|+ (t′σL(i) − xi)

)
,

where tσ′L(i) corresponds to the x-coordinate of the label Lσ′L(i) in the labeling proj(L).
We saw in the proof of Lemma 6 that Algorithm 4 computes a cluster labeling minimizing

25

26 3. Weakly-Aligned Boundary Labeling

the badness F1(proj(L)) of the projection of the cluster WAB-labelings L. The badness
to minimize is the total leader length bad(L):

bad(L) =

n−1∑
i=0

(
|sσL(i) − yi)|+ |tσL(i) − xi|

)
Since |tσL(i) − xi| ≥ (tσL(i) − xi), we deduce:

∀L, bad(L) ≥ F1(proj(L))

We have in particular:
bad(L2) ≥ F1(proj(L2)) (1)

Since L∗ contains no shifted label, we deduce:

bad(L∗) = F1(proj(L∗)) (2)

We create now from L2 a cluster labeling L3 by switching iteratively the labels to obtain
the Y -order. The total horizontal leader length are the same for the projection of these
two labeling because

∑
0≤i<n ti is then constant. Given a position of the cluster, we saw

in Section 2.4 that the Y -order minimizes the vertical leader length. Therefore:

F1(proj(L2)) ≥ F1(proj(L3)) (3)

Since Algorithm 4 computes a cluster labeling minimizing the badness function F1 of the
projection of the cluster labelings using the Y -order, we have:

F1(proj(L3)) ≥ F1(proj(L∗)) (4)

We deduce from (1), (2), (3) and (4):

bad(L2) ≥ F1(projL2)) ≥ F1(proj(L3)) ≥ F1(proj(L∗)) = bad(L∗)

We conclude that the badness of the initial labeling L2 is greater or equal to the badness
of the labeling L∗ computed by Algorithm 4 using the Y -order.

In addition, a similar result holds for a labeling created by Algorithm 5:

Lemma 8. If the labeling computed by Algorithm 5 with the Y -order contains no shifted
labels and no downward-straight leader, then this labeling has a minimal badness among
every labeling with any order of labels.

Proof. Let L∗ be the cluster labeling returned by Algorithm 4 and L′ be the cluster labeling
returned by Algorithm 5, both using the Y -order. We suppose that L′ contains no vertical
leader, i.e., no downward-straight and no downward-shifted leader. We prove then that
the position of the labelings L′ and L∗ are the same.

We use here the same notation as in the proof of Lemma 7. Since L′ contains no shifted
label, we have:

bad(L′) = F1(proj(L′))

Let s′ be the position of the cluster labeling L′. Since L′ contains no downward-straight
leader, there exists an interval of positions]s′ − ε, s′ + ε[where every WAB-labeling
contains no shifted label. In this interval, the badnesses bad(L) and F1(proj(L)) are
equal. Therefore, s′ is a local minimum of for the badness function F1(proj(L)).

However, we can prove with the same reasoning as in Lemma 5 that the badness function
F1(proj(L)) is convex. Since L∗ is a minimum of this function, we have L∗ = L′. We
deduce with Lemma 7 that this cluster labeling is minimal.

26

3.1. Labeling on a Single Edge 27

Suppose now that the labeling given by Algorithm 4 contains shifted labels. Figure 3.6
shows two similar maps. Both labelings are minimal. In the first figure, the Y -order
provides a minimal labeling. On the second figure, the points have a similar position but
the Y -order does not provide any minimal labeling. Indeed, on the second figure, the y-
coordinates of the two points labeled ’Point 1’ and ’Point 5’ are close enough to each other
so that connecting switching the two corresponding labels reduces more the horizontal
leader length than increases the vertical leader length.

Badness : 650

Point 0

Point 1

Point 2

Point 3

Point 4

Point 5

(a) First set of points: the Y -order is opti-
mal

Badness : 650

Point 0

Point 1

Point 2

Point 3

Point 4

Point 5

(b) Second set of points: the Y -order is not
optimal

Figure 3.6: The two labelings above have exactly the same badness. From the left figure
to the right one, the topmost point has been moved downward. As a result,
positioning the label connected to the topmost point to the shifted label put
this label back on the border without increasing the vertical leader length too
much.

It is not easy to compute a minimal cluster labeling starting from the Y -order and by
changing the order of labels to reduce the leader length.

3.1.4 Removing the crossings

Now we will adapt the crossing-removal algorithm for a border composed of a single edge
with positive slope. We suppose here that we have a minimal labeling which may contain
leader crossings. We want to change some connections between labels and points to get an
optimal labeling, without crossing. For a vertical border, we saw a O(n2) time algorithm
[BHKN09] to remove crossings, where n is the number of labels.

The following lemma is a generalization of Lemma 4.

Lemma 9. In a minimal labeling, there are no crossings between an upward leaders and
a downward leader. Moreover, no straight leader can be involved in a crossing with an
upward leader and a crossing with a downward leader at the same time.

Proof. Suppose first that an upward leader `(Pi, Lσ(i)) crosses a downward leader `(Pj , Lσ(j)).
The crossing is left of both labels, therefore switching the two labels will not create a new
shifted label. Moreover, switching the labels reduces the vertical leader length, as presented
in Figure 3.7. Therefore, the labeling is not minimal.

27

28 3. Weakly-Aligned Boundary Labeling

Pi

Pj
Lσ(i)

Lσ(j)

(a) First possibility

Lσ(j)

Lσ(i)

Pj

Pi

(b) Second possibility

Figure 3.7: Two possibilities for a crossing between an upward an a downward label, de-
pending on the segment of each leader involved in the crossing. In both cases,
the labeling do not have a minimal badness. The dashed segments represent
the leader after switching the labels.

The same reasoning can be done if a straight leader crosses both an upward leader and a
downward leader. Consider then the leftmost crossing. Switching the two labels concerned
does not change the badness function, but creates a crossing between an upward and a
downward leader, as presented in Figure 3.8

(a) First possibility (b) Second possibility

Figure 3.8: Examples of labeling where a straight leader crosses both an upward and a
downward crossing. The highlighted strokes represent the reduction of the
leader length.

Therefore, Algorithm 2 removes the leader crossings. However, in addition to leader cross-
ings, we may here have intersections between a leader and a label. See Figure 3.9 for an
example.

Lemma 10. In a minimal labeling, a crossing between a label and a leader can only occur
if the two concerned leaders are vertical, i.e., each of the two concerned labels has the same
x-coordinate as the point it is connected to. Moreover, in a minimal labeling, a downward-
straight leader cannot cross a downward-regular leader and be connected to a crossed label
at the same time.

Proof. Suppose that a leader `(Pi, Lσ(i)) crosses a label Lσ(j), ad presented in Figure 3.10
Then, we have σ(i) < σ(j), i.e., the label Lσ(j) is above Lσ(i). Because of the crossing, the

28

3.1. Labeling on a Single Edge 29

Label 0

Label 1

Label 2

Label 3

Label 4

Label 5

Label 6

(a) Crossing

Label 0

Label 1

Label 2

Label 3

Label 4

Label 5

Label 6

(b) Resolution

Figure 3.9: Leader-label Crossing. Both concerned leaders are vertical.

label Lσ(i) must be right of the label Lσ(j). However, if the label Lσ(i) was on the border,
it would be left of the label Lσ(j). Therefore, the label Lσ(i) is shifted, and the leader
`(Pi, Lσ(i)) is vertical.

Suppose now that the leader `(Pj , Lσ(j)) is not vertical, which means xj < tσ(j). Then,
switching the two labels reduces the horizontal leader length by either tσ(i) − xi, or the
distance between the current position of Lσ(i) and the position of a label with y-coordinate
sσ(i) when on the border, depending on the x-coordinate xj . The vertical leader length
would either remain unchanged, when the leader `(Pj , Lσ(j)) is also downward, or would
be reduced if this leader is upward. Then, the labeling would not be minimal. Thus the
leader `(Pj , Lσ(j)) is vertical.

Consider finally a downward-shifted leader `(Pi, Lσ(i)) crossing a label Lσ(j) so that the
leader `(Pj , Lσ(j)) is downward-straight and crosses a regular leader `(Pk, Lσ(k)).

Lσ(i)

Lσ(j)

Lσ(k)

Pk Pj

Pi

(a) Initial Labeling

Lσ(i)

Lσ(j)

Lσ(k)Pi

PjPk

(b) After swithing Lσ(j) and
Lσ(k)

Figure 3.10: Leader-label Crossing. Both concerned leaders are vertical.

Therefore, the point Pk is left of the point Pj and switching the labels Lσ(j) and Lσ(k) does
not change the total leader length. After the switch, the point Pk is connected to the label
Lσ(j), itself crossed by the leader `(Pi, Lσ(i)). However, the leader `(Pk, Lσ(j)) is regular.
We saw at the beginning of this proof that, if the leader `(Pk, Lσ(j)) is not vertical, then
the labeling is not minimal.

29

30 3. Weakly-Aligned Boundary Labeling

Algorithm 6 solves leader-label crossings. It runs the same way as Algorithm 2.

Algorithm 6: Leader-Label Crossings Removal for single-edge border with slope m >
1.
Data: σ and Lj : (tj , sj) for a minimal labeling, Pi : (xi, yi)
Result: Remove the leader-label crossings
foreach j from n− 1 to 0 do

i = σ−1(j).;
if Lj is crossed by a leader then

Lk := label connected by a downward-straight leader having the rightmost
leader-label crossing with Lj ;
Switch the position of Lj and Lk.;

Theorem 7. Given a minimal labeling, Algorithm 6 removes in O(n2) time the leader-label
crossings and Algorithm 2 removes in O(n2) time the leader crossings.

Proof. We know that Algorithm 2 removes in O(n2) time the leader-crossings inside the
map. Algorithm 6 removes leader-label crossings in O(n2) time by switching labels. In-
deed, Algorithm has been created so that after the j-th step of the iteration, the labels
Lj , . . . , Ln−1 do not cross any leader. Since the j-th step does not involve the labels
Lj+1, . . . , Ln−1, the crossings involving label Lj are to the left of the labels Lj+1, . . . , Ln−1,
and therefore switching two labels at the j-th step does not create any crossing with one
of the labels Lj+1, . . . , Ln−1. Thus, at the end of the algorithm, there is no leader-label
crossing.

Since the switched labels are always incident to vertical leaders, this algorithm only changes
segments of leaders inside the map. Therefore, Algorithm 6 creates no new leader-crossings.

We conclude that these two algorithms compute in quadratic time an optimal crossing-free
labeling from a minimal labeling.

Moreover, Lemma 10 states that in a minimal labeling no leader can be involved in both
a leader crossing and a leader-label crossing. Therefore, the two algorithms can be run in
an arbitrary order.

3.1.5 Computing an Optimal Labeling

In the previous parts, we studied how to compute a minimal cluster labeling, and how to
remove crossings in a minimal labeling. In this part, we study now the Upward-downward
algorithm presented in Section 2.4 in order to compute a minimal labeling from algorithms
producing minimal cluster labelings.

First of all, we regroup Algorithm 4 and Algorithm 3 into a single algorithm:

Algorithm 7: Minimal Cluster WAB-Labeling for single-edge border with slope m > 1

Data: Points P0, . . . , Pn−1 corresponding to the labels of a cluster.
Result: Minimal cluster labeling.
Use Algorithm 4 with σ := Y -order to compute a position of the labels L0, . . . , Ln−1;
if ∃j | Lj shifted then return the labeling computed by Algorithm 3;
else return (Y -order, L0, . . . , Ln−1);

Now, we prove with the following lemma that the Upward downward algorithm computes
a minimal cluster labeling.

30

3.1. Labeling on a Single Edge 31

Lemma 11. If the length functions of the leaders are convex, then the Upward-downward
algorithm (Algorithm 1). To use this algorithm, we must be able to compute a minimal
cluster labeling.

Proof. The upward-downward algorithm first positions the label connected to P0 at its
optimal position. Then, for each point Pi considered with respect to their increasing
y-coordinates:

1. Add the label connected to Pi at its optimal position. This label can be considered
as a cluster above the others.

2. While this cluster intersects the cluster below it, merge the two clusters.

The upward-downward algorithm can be interpreted as follows. We position each label at
its optimal position, and then consider overlapping labels. When two clusters intersect,
they have to be regrouped into the same cluster, and two regrouped cluster never have to
be separated afterward.

We prove that this assertion is true when the leader length functions are convex: Consider
two clusters C1 and C2 containing respectively n1 and n2 labels, and suppose that we are at
a point of the algorithm where these two clusters intersect. The clusters are constructed so
that each point connected to a label in the bottom cluster C1 is below the points connected
to a label in the top cluster C2. Let fC1(s) and fC2(s) be the length functions of the leaders
connected to C1 and C2 given the y-coordinate of the bottommost label of the cluster. Let
sC1 and sC2 be the computed minimal positions of the clusters. Because of the position of
the clusters, we have sC1 < sC2 . Let C be the merger of the two clusters C1 and C2. The
total leader length function associated to the cluster C is fC(s) = fC1(s) + fC2(s+n1 · h).

We know from Lemma 5 that the functions fi(s) are convex. Therefore the functions
fC1(s) and fC2(s) are convex as sums of convex functions. The optimal position of the
cluster C is sC ∈ [sC2 − n1 · h, sC1]. Indeed, consider a value s > sC1 :

fC(s) = fC1(s) + fC2(s+ n1 · h)

Since sC1 is the argument of the minimum of fC1 , we have fC1(s) > fC1(sC1). Moreover,
s+ n1 · h > sC1 + n1 · h > sC2 because the clusters intersect. Thanks to the convexity of
the function fC2 , we deduce: fC2(s + n1 · h) > fC2(sC1 + n1 · h) > fC2(sC2). Finally, we
have:

fC(s) > fC1(sC1) + fC2(sC1 + n1 · h) = fC(sC1)

This inclusion sC ∈ [sC2 − n1 · h, sC1] means that every y-coordinate occupied by a label
in the computed minimal positions of C1 or C2 is also occupied in the computed optimal
position of C. Therefore, the labels of C2 are pushed upward and the labels of C1 are
moved downward from their current position. In particular, the optimal position of each
of the two clusters C1 and C2 has been moved away from its optimal position. Because
of the convexity of the functions fC1 and fC2 , separating these clusters would increase the
badness of the labeling. The same reasoning can be done for any partition {Ca, Cb} of the
cluster C, because their optimal positions would overlap.

Thus, moving one or several labels outside of the cluster at its optimal position would
place them farther away from their optimal position corresponding to horizontal-straight
leaders. Because of the convexity of the leader length functions, moving the labels closer
to the cluster would then reduce the leader length. This shows that labels which were once
merged into a cluster never have to be separated again.

31

32 3. Weakly-Aligned Boundary Labeling

Cluster C1

Cluster C2

(a) Overlapping clusters C1 and C2

Cluster C

(b) Cluster C entirely overlaying the clusters
C1 and C2

Figure 3.11: When the leader length functions are convex, the optimal position of the new
cluster C entirely overlay the position of the initial clusters C1 and C2.

Finally, we recall that two intersecting clusters are merged into a single cluster to prevent
the label from intersecting. We proved here that not merging these clusters cannot reduce
the total leader length. We conclude that the Upward downward algorithm computes a
minimal cluster labeling.

We conclude this part by providing a theorem combining the upward-downward algorithm
(Algorithm 1), Algorithms 2 and 10 to remove crossings, and Algorithm 7 to compute a
minimal cluster labeling, in order to compute an optimal cluster labeling:

Algorithm 8: Optimal WAB-Labeling for single-edge border with slope m > 1

Data: Points P0, . . . , Pn−1
Result: optimal labeling
Compute a minimal cluster labeling with Algorithm 1, which uses Algorithm 7 to
compute minimal cluster labelings;
Call Algorithm 2 to remove leader crossings;
Call Algorithm 6 to remove leader-label crossings;
return the labeling;

Theorem 8. Algorithm 8 computes an optimal labeling with a minimum time complexity
of O

(
n2
)

and with a worst case complexity of O
(
n5 · (log n)3

)
.

Proof. The correctness of Algorithm 8 follows from 11, the correctness of the algorithms
computing minimal cluster labeling and from Theorem 7. In the best case, the cluster la-
belings computed by Algorithm 4 are minimal, and therefore we can compute in O(n log n)
time a minimal cluster labeling. The Upward downward algorithm computes a minimal
labeling from O(n) cluster labelings. Since we only call Algorithm 4 with the Y -order, we
can use an array structure for the list Y ′ = {yi − i · h} to add in O(n) time an element
and compute then in constant time a minimal cluster labeling with Algorithm 4. In the
best case, a minimal labeling is then created in O(n2) time.

In the worst case, we call O(n) times Algorithm 3 with a O
(
n4 · (log n)3

)
time complexity.

The worst case complexity is then O
(
n5 · (log n)3

)
.

32

3.1. Labeling on a Single Edge 33

3.1.6 Linear Programming

In this part, we present the minimal labeling problem as an Integer Linear Program (ILP).
The objective is to compute with ab ILP solver minimal labelings in order to verify that
the implementation of our algorithm creates a minimal labeling.

Given a set of n points, the equation t(s) = a + s/m of the labels on the border and the
height h of the labels, we create an ILP instance.

We recall the general form of an ILP:

minimize cTx
subject to Ax ≤ b

x ≥ 0,

Variables. The variables of the program are the position of the labels and the order
of the labels. The position of the labels L0, . . . , Ln−1 are given by their y-coordinates
s0, . . . , sn−1:

Variables: S =
(
s0, . . . , sn−1

)
∈ Rn (3.1)

We consider here that the labels are sorted by increasing y-coordinates, and define the
order of labels σ(·, ·) as the adjacency matrix of the points and the labels. Thus, given
indexes i and j, σ(i, j) is equal to 1 if the points Pi is connected to the label Lj , and 0
otherwise:

Variables: σ(i, j) ∈ {0, 1}n2
for 0 ≤ i, j ≤ n− 1 (3.2)

In addition, we define further variables corresponding to the function to minimize. The
constraints of the problem will define the relation between the variables above and these
new variables. The function to minimize here is the sum of the leader lengths. We define
two vectors LLx and LLy of n horizontal leader lengths and n vertical leader lengths. We
denote by LLx[j] and LLy[j] the horizontal and vertical lengths of the leader incident to
the label j.

V ariables : LLx =
(
LLx[0], . . . , LLx[n− 1]

)
∈ Rn (3.3)

V ariables : LLy =
(
LLy[0], . . . , LLy[n− 1]

)
∈ Rn (3.4)

Finally, we obtain the following vector of variables:

x =

(
S, σ, LLx, LLy

)
Optimization Function. The badness function bad is easy to describe thanks to the
variables LLx and LLy:

minimize: bad =
n−1∑
i=0

(
LLx[i] + LLy[i]

)
(3.5)

Constraints. The first constraints concerns the order of labels σ. Each label must be
connected to a single point and each point must be connected to a single label:

Constraints: ∀j,
∑
i

σ(i, j) = 1 (3.6)

Constraints: ∀i,
∑
j

σ(i, j) = 1 (3.7)

33

34 3. Weakly-Aligned Boundary Labeling

Furthermore, the labels have to be right of the border described by the equation t(s) =
a+s/m of the labels L : (t, s) on the border. This constraint it described by a lower bound
of the length of the incident leader:

Constraints: ∀j, LLx[j] ≥ a+ sj/m−
n−1∑
i=0

σ(i, j) · xi (3.8)

Moreover, the labels must be shifted to the right if their position on the border is left of the
position of the point they are connected to. This constraint is introduced by defining the
horizontal leader length LLx[j] of a leader `(Pi, Lj) as the difference tj−xi in x-coordinates
of the label to the point. Then, this constraint is described as follows.

Constraints: ∀j, LLx[j] ≥ 0 (3.9)

Therefore, the optimization function minimizes the horizontal leader length, and the hor-
izontal length LLx[i] of a leader will be set equal to one of these two lower bounds,
corresponding either to a label on the border or a shifted label.

The vertical length |`(Pi, Lj)| of a leader is defined by |sj − yi|. Since the optimization
function minimizes these lengths, we must prevent the variables LLy[j] to be greater than
the actual length of their corresponding leader length

(
`(Pσ−1(j), Lj)

)
:

∀j, LLy[j] ≥ |
∑n−1

i=0 (σ(i, j) · yi)− sj |
∀j, −LLy[j] ≤

∑n−1
i=0 (σ(i, j) · yi)− sj ≤ LLy[j]

Finally the constraints for the vertical leader length are the following:

Constraints: ∀j, LLy[j] ≥
n−1∑
i=0

(
σ(i, j) · yi

)
− sj (3.10)

Constraints: ∀j, LLy[j] ≥ sj −
n−1∑
i=0

(
σ(i, j) · yi

)
(3.11)

The last Constraints for this problem is the non-overlapping of the labels. Each label
Lj : (tj , sj) occupies the vertical place from y = sj − h/2 to y = sj + h/2, and no
other label can occupies a part of this place. Moreover, the labels L1, . . . , Ln−1 have been
defined so that each label Lj is above the label Lj−1, for j 6= 0. Thus, the constraint of
non-overlapping of labels is described by:

Constraints: ∀j 6= 0, sj ≥ sj−1 + h (3.12)

When two consecutive labels Lj and Lj+1 are grouped into the same cluster, we have then
sj = sj−1 + h.

3.1.7 Conclusion

In Section 3.1 , we studied the po-right-labeling problem when the border is composed of
a single edge with positive inclination. For an edge with small slope m ≤ 1, we can either
replace the edge with a new edge of slope 1, or consider the edge as a part of the bottom
side of the border. Moreover, in this case m ≤ 1 the leader length functions contains two
local minima corresponding to a downward-straight leader and to a horizontal-straight
leader. Therefore, this problem can be considered as a form of two-sided labeling, where
we have to decide for each label, if it will be placed to the right of the point or below the

34

3.2. Convex Boundary with Big Slopes 35

point. Either way, this case has not been precisely treated. It might be an interesting issue
to find out how to compute an optimal labeling in this case, and eventually considering a
labeling with the bottommost side of the map.

Then, we saw a general algorithm using the algorithm of Vaidya [Vai89] for minimum
weighted matching in bipartite complete graphs to compute a minimal cluster labeling in
O(n4 · (log n)3) time.

The generalization of the algorithm of the vertical border to compute a minimal cluster
labeling is much faster, namely has a O(n log n) time complexity. However, it does not
always provide a minimal labeling and no efficient method has been found to correct the
sub-optimality due to shifted labels. However, the cluster labeling created is minimal if it
contains no shifted label.

Furthermore, the algorithm for crossing removal used for a vertical border has been adapted
by taking into account the new leader-label crossings. The time complexity stays in O(n2).

Then, we showed that the Upward-downward algorithm used with vertical border computes
a clustering inducing a minimal labeling for the border consisting of a single edge with big
slope m > 1.

Finally, we described an ILP Program to compute a minimal labeling. Thus, we can
compare the results of the implementation of our algorithms with the results of the minimal
labeling computed by an ILP solver to verify the correctness of our implementation.

3.2 Convex Boundary with Big Slopes

In this section, we present the generalization of the results and algorithms of the previous
section for a convex border with big slopes. This section has exactly the same structure
as Section 3.1. We first present the differences between a single edge boundary labeling
and a labeling computer for a border with several edges, and generalize the integer linear
program given in Section 3.1 into a integer quadratic program. Then, we give general
results about the leader length functions and describe algorithms to compute a minimal
cluster labeling. After that, we will see that the Upward-downward algorithm might not
be optimal for a convex boundary consisting of several edges, and see how we could adapt
it. Before concluding, we present the final algorithm computing an optimal labeling.

We consider here a convex border E composed of k edges E1, . . . , Ek. Figure 3.12 provides
an example of an optimal labeling.

We saw in the previous section that, when the border is composed of an edge with positive
slope, the top-left corner of every label is in contact with the border except shifted labels.
Similarly, for a edge with negative slope, the bottom-left corner of the label must be on
the border. When a convex border has edges with positive slopes and negative slopes, we
must find a way to get from the top-left corner to the bottom-left corner of a label being
on the border.

The boundary consists now of k edges E1, . . . , Ek connected by the nodes N0, . . . , Nk. Let
Nright be the rightmost node of the border. We denote by nj the y-coordinate of a label
so that the node Nj coincides with one of the corners of this labels. For Nj = Nright,
we define a further y-coordinate n′right, because in this case, both the top-left and the
bottom-left corners may coincide with the node. A label touching the border verify one
of the following statements: (1) its top-left corner touches an edge with a positive slope,
(2) its bottom-left corner touches an edge with a negative slope, or (3) the rightmost node
touches the left side of the label, and then the label has the same x-coordinate as Nright.

35

36 3. Weakly-Aligned Boundary Labeling

Badness : 875

Point 0

Point 1

Point 2

Point 3

Point 4

Point 5

Point 6

Point 7

Point 8

Figure 3.12: Example of a labeling for a convex border.

Furthermore, we saw in the previous section that a label has to be shifted when the x-
coordinate of the point it is connected to is right to the x-coordinate the label would have
if this label was touching the border. When an edge has a negative slope, the shifted
label is connected by an upward leader. Similarly to the definition of the three kinds of
downward leader, we define here three kinds of upward leaders:

1. upward-straight leaders: the label is not shifted, but is vertical.

2. upward-shifted leaders: the label is shifted and then vertical.

3. upward-regular leaders: the label is not vertical.

3.2.1 Leader Length Functions

In this part, we study the leader length functions and deduce properties with help com-
puting a minimal cluster labeling.

Let sj be the y-coordinate of a label. When the label touches the border, its x-coordinate
tj can be calculated with the border equation: tj(sj) =

sj
mh

+ ah, where Eh is the edge
touching the label Lj . The previous section presented results for a convex border consisting
in a single edge, i.e., when k = 1.

Consider a point Pi. We denote by fi(sj) the length of the leader incident to Pi when the
label it is connected to has y-coordinate sj . The following lemma generalizes Lemma 5 to
convex border composed of several edges.

Lemma 12. The function fi(sj) corresponding to a point Pi is piecewise linear and has no
local non-global minimum, but is generally not convex. Moreover, the endpoints of the seg-
ments composing fi(sj) correspond to straight leader or to y-coordinates n0, . . . , nk, n

′
right.

36

3.2. Convex Boundary with Big Slopes 37

Proof. Consider a point Pi connected to a label Lj , a convex border composed of k edges
E1, . . . , Ek and the k + 1 corresponding nodes N0, . . . , Nk so that two consecutive nodes
Ni−1 and Ni are the endpoints of the edge Ei.

Let nup and ndown be the coordinates of the label Lj corresponding respectively to an
upward-straight leader and a downward-straight leader. We prove here that (1) the min-
imum of the length function fi(sj) of the leader `(Pi, Lj) is attained when the leader is
horizontal-straight, that (2) this function is piecewise linear and that (3) the endpoints of
the segments composing fi(sj) corresponds to the y-coordinates yi, nup, ndown, n1, . . . , nk,
and n′right.

Let’s position first the label at the y-coordinate yi on an edge Eh, and move the label
upward. We create then events corresponding to the y-coordinates nh, nh+1, . . . , nlast and
nup so that ∀l > last, nup < nl. In this order, the events are sorted by increasing values.
We denote by el the l-th event.

Between the y-coordinates sj = yi and sj = e1, the label stays on the edge Eh. When
we move the label by a distance of ε ≤ e1 − yi upward, the leader length is increased by
(1+1/mh) ·ε. Since the slopes are supposed big, |mh| ≥ 1 and therefore (1+1/mh) ·ε ≥ 0,
i.e., the leader length increases. When the y-coordinate of the label is between the two
events el and el+1, the label stays on the same edge Eh+l. Thus, when moving the label by
a distance of ε ≤ el+1− el upward between these two positions, the leader length increases
by (1 + 1/mh+l) · ε. Finally, from the last event el = nup, moving the label upward by
a distance of ε increases the leader length by ε ≥ 0 and the label becomes or is shifted.
We conclude that the leader length fi(sj) corresponding to a horizontal-straight leader is
lower that the leader length corresponding to an upward leader. Moreover, the function
fi(sj) is piecewise linear for sj ≥ yi and the endpoints of the segments are yi and the events
nh, nh+1, . . . , nlast, nup corresponding to an upward-straight leader, to a horizontal-straight
leader and to several of the y-coordinates n1, . . . , nk, n

′
right.

We can prove analogously that the function fi(sj) for sj < yi is piecewise linear, and that
the endpoints of the segments of the function correspond to a downward-straight leader,
to a horizontal-straight leader and to several of the y-coordinates n1, . . . , nk, n

′
right.

Finally, we note that the leader length function presented in Figure 3.13 is not convex, for
example between the y-coordinates yi and nup.

We deduce from this lemma the following corollary, to compute a minimal labeling for a
cluster of labels.

Corollary 2. Given a set of labels that are grouped in the same cluster. There exists a
minimal cluster labeling with either a horizontal-, or an upward- , or a downward-straight
leader, or such that a left corner of a label touches a node of the convex border.

Proof. We saw in the proof of Lemma 12 that the endpoints of the segments of the leader
length function fi for a point Pi correspond to a horizontal-straight leader, an upward-
straight leader, a downward-straight leader or the overlay of a left corner of the label with
a node of the border.

Given n points P0, . . . , Pn−1 and an order σ of the labels inside the cluster, the total leader
length function depending on the y-coordinate of the bottommost label of the cluster is:

bad(s0) =

n−1∑
i=0

(
fi(so + σ(i) · h)

)
Therefore, the total leader length function is a piecewise linear function, and one of its
minimums is attained at an endpoint of a segment of one of the functions fi.

37

38 3. Weakly-Aligned Boundary Labeling

ndown label ordinate sj

leader length fi

n2 nupn1n0 yi n3n′
2

(a) Leader length function

Pi

yi

label ordinate sj

Lj

N1 n1

ndown

nup

n2

N2

N3

N0

n3

n0

n′
2

(b) Border considered

Figure 3.13: length function of a leader given the border equation and the coordinates of
the point it is connected to.

3.2.2 Minimal Cluster Labeling using a Matching Algorithm

In this part, we are given n points P0, . . . , Pn−1. Each point Pi has to be connected to
one of the n labels L0, . . . , Ln−1. We suppose here that the n labels are regrouped into a
single cluster. The objective is to compute a position of this cluster and an order σ of the
labels depending on the point they are connected to, such that the point Pi is connected
to the label Lσ(i).

When the border consists of a single edge, we saw that the Algorithm of Vaidya [Vai89]
computes the optimal order of labels in O(n2 · (log n)3) time, given fixed positions for the
labels.

For the case of a convex border with k edges, we know from Corollary 2 that one of the
minimal labelings fulfills at least one of the following statements:

• there is a horizontal-straight leader,

• there is a downward-straight leader,

• there is an upward-straight leader,

• a corner of one of the labels touches a border node.

These statements define O(k · n2) possible cluster positions. Thus, Algorithm 3 can easily
be generalized for convex borders. Thus, we conclude:

Theorem 9. There exists an O(n4(log n)3) time algorithm that computes an minimal
cluster labeling.

38

3.2. Convex Boundary with Big Slopes 39

Algorithm 9 computes in O(k · n4(log n)3) time algorithm that calls O(k · n2) times the
algorithm of Vaidya [Vai89] in order to compute a minimal cluster labeling:

Algorithm 9: Minimal Cluster WAB-Labeling for a convex border with big slopes.

Data: P0, . . . , Pn−1.
Result: cluster position, σ for a minimal cluster labeling.
List Positions := {};
foreach j ∈ {0 . . . n− 1} do

foreach i ∈ {0 . . . n− 1} do
List Positions ∪ = {cluster position | `(Pi, Pj) is horizontal-straight};
List Positions ∪ = {cluster position | `(Pi, Pj) is upward-straight};
List Positions ∪ = {cluster position | `(Pi, Pj) is downward-straight};

foreach i ∈ {0, . . . k} do
List Positions ∪ = {cluster position | a corner of Lj touches Ni};

Remove redundancy of cluster positions in List Positions;
best badness := upper bound of the minimum badness;
best position := 0;
best σ := Y − order;
foreach cluster position ∈ List Positions do

(badness, σ) :=OptimalMatching(cluster position);
if badness < best badness then

best badness := badness;
best position := cluster position best σ := σ;

return cluster position, σ

3.2.3 Minimal Cluster Labeling using a Sweep-line Algorithm

In this part, we suppose that every label is grouped into the same cluster, and we look
for a minimal cluster labeling, that is, an order of the labels and a position of the whole
cluster which minimizes the total leader length. We consider that the slope of each of the
k edges is big and we allow crossings between two leaders and between a leader and a
label.

In the previous section, we saw two algorithms. Algorithm 4 computes a cluster labeling
minimizing a badness bad′ given an order σ of the labels. We saw that, when we set σ to
be the Y -order, the cluster labeling computed is minimal if it contains no shifted label.
Algorithm 5 is a sweep-line algorithm computing a minimal cluster labeling for a given
order of labels. We proved with Lemma 8, due to the convexity property of the leader
length functions, that the cluster labeling computed by the algorithm is a minimal cluster
labeling if it contains no vertical leaders, that is no downward-straight or -shifted leader.

Corollary 2 states that there exists a minimal cluster-labeling containing one of the fol-
lowings:

• a horizontal-straight leader

• an upward-straight leader

• a downward-straight leader

• a label whose top-left corner or bottom-left corner overlay a node of the border.

Therefore, we can easily generalize the sweep-line algorithm used in Algorithm 5 to com-
pute a minimal cluster labeling for a given order of the labels, by taking into account the
positions of the cluster for which an upward-shifted leader get on an edge and the positions

39

40 3. Weakly-Aligned Boundary Labeling

where a label change the edge it is on. However, we do not describe here precisely how to
do it, because the leader length functions are not convex anymore, which makes it more
difficult to find a sufficient condition so that the minimal cluster labeling among the cluster
labelings using the Y -order is a minimal cluster labeling.

In this part, we create a sweep-line algorithm similar to Algorithm 5 generalizing Algorithm
4, that is, computing a labeling minimizing the same badness function bad′ as in Algorithm
4. Then, we prove that, if the cluster labeling computed using the Y -order contains no
shifted label, then this cluster labeling is minimal. Since the condition of minimality of
the labeling is only granted with the Y -order, we suppose here that the labels are sorted
with respect to the Y -order.

We assume now that we have n points P0, . . . , Pn−1 and the equation Eq of a convex border
consisting of k edges E1, . . . , Ek. We denote by Li : (ti, si) the coordinates of the label
connected to the point Pi : (xi, yi). Let t′i be the x-coordinate of the label Li when Li
touches the border. The sweep-line algorithm we describe here is based on the proof of
Lemma 6. Therefore, we look for a cluster-labeling L minimizing the following badness
function:

bad′(L) =
n∑
i=1

|yi − si|+ (xi − t′i)

We recall that the badness function bad′ depends on t′i instead of ti, and then everything
happens as if the labels are on the border, and instead of shifted labels, we have leader with
negative horizontal leader length. see Figure 3.14. In particular, we do not consider the
positions of the cluster corresponding to an upward-straight or downward-straight leader.

On edge E2

On edge E2

On edge E2

On edge E3

On edge E4

On edge E4

On edge E4

On edge E4

(a) Initial cluster position: a straight
leader and a corner on a border node.

On edge E2

On edge E4

On edge E4

On edge E4

On edge E3

On edge E3

On edge E2

On edge E2

(b) Next cluster position: s straight
leader.

Figure 3.14: Cluster moving downward by a distance of ε. The red segments represent
negative leader length for the badness bad′. The blue arrows represents the
shift distance ε

A cluster position minimizing this badness function bad′ can be computed with a sweep-
line algorithm. We first compute the badness bad′ corresponding of the topmost cluster
position, which may not correspond to a WAB-labeling. Then, we iteratively compute the

40

3.2. Convex Boundary with Big Slopes 41

badness bad′ from top to bottom for the cluster positions.

Algorithm 10: Possibly Minimal Cluster WAB-Labeling using the Y -order

Data: points P0, . . . , Pn
Result: A possibly minimal cluster labeling
Y ′ = {};
foreach i ∈ {0 . . . n− 1} do

add (yi − i · h,HS) to Y’;
foreach j ∈ {0 . . . k} do

add (ni,j − i · h,Nj) to Y’;

Sort Y ′ in decreasing order;
new s0 := cluster position corresponding to the first element of Y ′;
new ll := badness bad′ for position new s0;
ns := number of horizontal-straight leaders for position new s0;
nu := number of upward leaders for position new s0;
foreach j ∈ {0 . . . k} do

E[j] := number of labels touching edge Ej for position new s0;

foreach cluster position in Y ′ do
previous s0 := new s0;
previous ll:= new ll;
new s0 := y-coordinate of the cluster position;
nu := nu − ns;
ns := number of element corresponding to the next cluster position with second
field with value HS;
foreach element with second field Nj do

E[j] := E[j]− 1;
E[j − 1] := E[j − 1] + 1;

new ll := previous ll + (previous s0 - new s0) ·
(
n− 2 · nu −

∑
j
E[j]
mj

)
;

update the best badness and the associated s0 value.;

return the best labeling;

Lemma 13. If the labeling provided by Algorithm 10 contains no shifted labels, then this
is a minimal cluster labeling.

Proof. We prove this lemma exactly the same way as we proved Lemma 13. We redefine
here the projection operation proj(L) which consist of moving the shifted label of a labeling
L back to the border.

We denote here by bad(L) the total leader length of a labeling L and bad′(L) = F1(proj(L))
the following virtual badness function, depending on the order of the labels σL and the
x-coordinate t′j of the labels in the projection proj(calL) of the labeling L:

bad′(L) =
∑

`(Pi,LσL(i))

(
|sσL(i) − yi|+ (tσ′L(i) − xi)

)
≤ ∑

`(Pi,LσL(i))

(
|sσL(i) − yi|+ |tσL(i) − xi|

)
bad′(L) ≤ bad(L)

Suppose that the labeling L∗ computed by Algorithm 10 contains no shifted label. There-
fore, we have:

bad(L∗) = bad′(L∗) ≤ bad′(L), ∀L using the Y -order (1)

41

42 3. Weakly-Aligned Boundary Labeling

Consider now a labeling L2. The value of its badness bad′ is lower than its total leader
length:

bad(L2) ≥ bad′(L2) (2)

Switch the labels of the cluster to create a labeling L3 with the same position as L2, but
using the Y -order. The labeling L3 has a value b3 for the badness function bad′. For
the badness bad′, every cluster labeling with the same position for the cluster has the
same horizontal leader length

∑
(ti)−

∑
(xi). Given a set of n points and n slots for the

labels, Lemma 2 in Section 2.4 states that the vertical leader length is minimized with the
Y -order. We deduce:

bad′(L2) ≥ bad′(L3) (3)

Because of Equation (1), we have

bad′(L3) ≥ bad′(L∗) (4)

From (1), (2), (3) and (4), we conclude:

bad(L2) ≥ bad′(L2) ≥ bad′(L3) ≥ bad′(L∗) = bad(L∗)

We conclude that L∗ is a minimal cluster labeling.

Theorem 10. Algorithm 10 computes a minimal cluster labeling for the given order of
labels in O(k · n log(k · n)) time.

Proof. The correctness follows from Lemma 13. We need only to prove the time complexity.
The algorithm consists of sorting a list of O(n ·k) elements, which require O(k ·n log(k ·n))
time, and then sweeping its elements. For each element of the list, The edge touching
the label can be computed with a binary search algorithm in O(log k) time. Thus, the
sweep-line takes O(k · n log(k)) time.

3.2.4 Removing the crossings

In this part, we suppose that we have a minimal labeling for a set of n points. The objective
is to remove the leader crossings and the leader-label crossings. When the border is
composed of a single edge, we saw that Algorithm 2 removes the leader crossings whereas
Algorithm 6 removes the leader-label crossings. The two algorithms can be run in an
arbitrary order.

The equation of the border has no direct influence on Algorithm 6, the only assumption
made is the possibility to have downward-shifted leaders. For a convex border, we also
have to take into account the presence of upward-shifted leaders.

With the same reasoning as in the previous section, we create the following algorithm to

42

3.2. Convex Boundary with Big Slopes 43

remove the leader-label crossings:

Algorithm 11: Algorithm Removing the Leader-Label Crossings, for Convex Bound-
ary

Data: σ L0, . . . , Ln−1) for minimal labeling
Result: Removes leader-label crossings.
// removing crossing involving downward-shifted leaders ;
foreach j from n− 1 to 0 do

i = σ−1(j).;
if `(Pi, Lj) has type po-leader and involved in a downward crossing then

`(Pσ−1(k), Lk) := downward leader with the bottommost crossing with

`(Pi, Lj).;
Switch the position Lj and Lk.;

// removing crossing involving upward-shifted leaders ;
foreach j from 0 to n− 1 do

i = σ−1(j).;
if xi = tj then

k := argmax{tk | (k < j)&(tk = xσ−1(k))}.;
Switch the position of Lj and Lk.;

Theorem 11. Given a minimal labeling, Algorithm 11 removes in O(n2) time the leader-
label crossings and Algorithm 2 removes in O(n2) time the leader crossings.

Proof. Lemma 10 proves that the first iteration removes the leader-label crossings involv-
ing a downward-shifted leader. Since the problem is symmetrical, we can prove with an
analogous reasoning that the second iteration removes the leader-label crossings involving
an upward-shifted leader.

since the two iterations are similar, they both have the same complexity. Theorem 11 states
that the first iteration takes O(n2) time. Therefore Algorithm 11 also takes O(n2).

3.2.5 Computing an Optimal Labeling

In the previous parts, we saw two algorithms to compute a minimal cluster labeling, and
an algorithm to remove the crossings from a minimal labeling. In this part, we regroup the
results and deduce an algorithm to compute an optimal labeling. The matching algorithm
presented previously always compute a minimal cluster labeling, but takes O(n4(log n)3)
times. The sweep-line algorithm only takes O(n·k log(n·k)) time, but the computed cluster
labeling is only verified to be optimal when it contains no shifted label. It is reasonable
to think that, in most cases, the points will be placed so that the labeling computed by
the sweep-line algorithm contains no shifted label. We create then an algorithm that (1)
first compute a labeling with the sweep-lime algorithm, and (2) only call the algorithm
using a matching when the first computed labeling contains a shifted label. The following
algorithm computes a minimal cluster labeling with a best case time complexity of O(n ·

43

44 3. Weakly-Aligned Boundary Labeling

k log(n · k)) and with a worst case complexity of O(n4(log n)3):

Algorithm 12: Minimal Cluster WAB-Labeling for Convex Border with big slopes

Data: Points P0, . . . , Pn−1
Result: Labels L0, . . . , Ln−1 and order σ for a minimal cluster labeling.
Use Algorithm 10 with σ := Y − order to compute a position of the labels
L0, . . . , Ln−1;
if ∃j | Lj shifted then return the labeling computed by 9;
else return Y − order, L0, . . . , Ln−1;

In Section 3.1, Lemma 11 states that the Upward-downward algorithm allows to compute
optimal labeling when the leader length function are convex. Unfortunately, it is not the
case when the border is composed of several edges. The total leader length function of
a cluster C may have two different optimal positions c1 and c2 so that positioning C at
the position c2 creates an intersection with another cluster. The minimal labeling is then
computed by positioning C at the position c1, whereas fusing the two cluster would result
to a greater badness.

Therefore, when two clusters C1 and C2 intersect, we have to test the minimal cluster
labelings in the following cases:

• (Test 1) we merge the clusters C1 and C2.

• (Test 2) we do not merge the cluster and place them at a local minimum cluster
labeling so that C1 and C2 do not overlap.

Moreover, moving a cluster C1 downward may create a new intersection between this
cluster and the cluster C0 below it. Thus, we should repeat these two tests for each inter-
section created by moving a cluster downward or recomputing a minimal cluster labeling
after fusing two clusters. This leads to an algorithm with an exponential time complexity.

However, this problem can only happen when both positions of the cluster touch several
edges. If the minimal cluster labeling touches a single edge Ei, then everything happens
locally for the cluster as if the border only consists in Ei, and the badness function of a
cluster only contain a global minimum. Then, if two intersecting clusters contain labels
on a single edge, we have to merge them.

Furthermore, suppose, in (Test 2), that the cluster C2 is moved upward and the cluster
C1 is moved downward. When considering the intersection between C1 and the cluster C0

below it, we study the two following cases. Either, the clusters are merged, or the cluster
C0 moves downward, and C1 stays at the same place, because moving the cluster C1 back
upward corresponds to a case already tested. We only test what happens when the cluster
C0 moves downward when it touches several edges. Moreover, the set of edges two non
overlapping clusters are on can only have two edges in common. Therefore, if the cluster
C1 is on the edges Ei, . . . , Ej , then no label of the cluster C0 can be on the edge Ei+1.
Therefore, the number of times we have to test moving a cluster downward depend on the
number of edges O(k). We conclude that the number of minimal cluster labeling we have
to compute is O(n · 2k).
This remark leads to the following adapted version of the Upward-downward algorithm:

At each step of the n steps of the iteration, the algorithm computes at most 2k cluster
labeling, therefore the complexity of Algorithm 13 is O(n · 2k · ClusterPos(n)), where
ClusterPos(n) is the time complexity to compute a minimal cluster labeling for a cluster
with n labels and where k is the number of border edges. Unfortunately, no more efficient
method to compute a minimal labeling has been found. Moreover, it is not easy to prove the

44

3.2. Convex Boundary with Big Slopes 45

Algorithm 13: Upward-Downward Algorithm adapted for a convex border with sev-
eral edges.

Data: Points P0, . . . , Pn−1, border equation, algorithm to compute minimum cluster
labeling.

Result: Computes a minimal labeling.
for i = 0 to n− 1 do

Create a cluster with the label Li connected to Pi;
while Cluster with Li intersect a cluster do

if the two cluster touches both a single edges then
Merge the two clusters, and compute a minimal cluster labeling for the
resulting cluster;

else
Test the 2k different possibilities of cluster merging, and keep the
possibility with the minimal badness;

return the resulting labeling;

correctness of this algorithm. In Section 4.3, we will present in another model of labeling a
contraint of local optimality. With this contraint, we will prove that the Upward-downward
algorithm induces an optimal labeling.

The following algorithm regroups different algorithms to compute an optimal labeling in
O(n · 2k · ClusterPos(n)):

Algorithm 14: Optimal WAB-Labeling for Convex Border with big slopes

Data: Points P0, . . . , Pn−1
Result: Labels L0, . . . , Ln−1 and order σ for an optimal labeling.
Compute a minimal cluster labeling with an Upward-downward Algorithm, given in
input Algorithm 12 providing a minimal cluster labelings;
Call Algorithm 2 to remove leader crossings;
Call Algorithm 11 to remove leader-label crossings;
return the labeling;

3.2.6 Integer Linear Programming

The integer linear program we modeled for a single edge can not be easily generalized for
several edges. Indeed, a constraint defining the horizontal length was:

t(sj)−
∑
i

(σ(i · n+ j) · xi) ≤ llx[j]

Where llx, σ and sj are variables, and j and xi are fixed values. We had also t(sj) =
a + sj/m, where a and m are constants. However, for a convex border, the new value
of t(sj) is t(sj) = mini{ai + sj/mi}, where ai and mi are constants. However, in an
integer linear program, it is not easy to create a constraint stating that a variable has to
be bigger that the minimum of non-constant values. Since the minimum here depends on
the variables t(sj), we cannot compute this minimum in a Integer Linear Program, and
adding a new variable would produce a multiplication between two variables. The integer
program created is then quadratic.

We will see in Section 4.2 an integer linear program to compute a minimal labeling for a
convex border.

45

46 3. Weakly-Aligned Boundary Labeling

3.2.7 Conclusion

In this section, we extended the algorithm developed for a single-edge border in the case
of a convex border composed of k edges. In both cases, we assumed that the slope of the
edges are big, i.e., each equation of the x-coordinate of a label L : (t, s) on an edge Ei of
the border given its y-coordinate has the form t(s) = ai + s/mi with |mi| > 1.

A new difficulty appears when the border consists of more than a single edge, namely the
non-convexity of the leader length functions. Because of it, we have to rethink and adapt
the Upward-downward algorithm to compute the regrouping of the labels into clusters.
As a consequence, the running time of the algorithm is increased by an exponential factor
in the number of edges k and no proof of correctness has been found when a cluster of
labels touches several edges. However, we will see a strong constraint in a later section
with which the Upward-downward algorithm computes an optimal labeling.

Algorithm 14 allows to compute optimal labelings for different shapes of the boundary,
and thereby reducing the white spaces between the border and the surface delimiting the
map.

An interesting research topic would be to study two-sided dynamic labelings, which has
not been completely studied, even for vertical borders.

46

4. Alternative Labeling Models

In Chapter 3, we studied a first model to compute optimal labelings. In this chapter,
we present three further models. The first section describes an alternative model to the
weakly-aligned boundary labelings where we require that every label touches the boundary.
Then, we use integer linear programming to solve the convex boundary problem in a general
case. This integer linear program will resolve two difficulties that occurs in the WAB-
labeling model. First, an ILP instance can be solved by known algorithms. Therefore,
we overcome the difficulty encountered in the proof of the Adapted upward-downward
algorithm. Moreover, the ILP allows to generalize our model to convex borders containing
edges with small slopes |m| ≤ 1 and to two-sided boundary labelings. Finally, we will
present an alternative approach of the boundary labeling problem by requiring that labels
in a same cluster are vertically aligned. For this last model, we will develop algorithm
computing optimal labelings with the same time complexity as the algorithm presented in
Section 2.4.

4.1 Strictly-Aligned Boundary Labeling

In this section, we study an alternative positioning of the labels to the WAB-labeling model
used in Chapter 3. When a cluster contains several shifted labels, it may be difficult to
follow the leaders with the eyes, since the leaders corresponding to shifted leaders are
then parallel lines close to each others. Figure 4.1 shows an example of cluster labeling
containing several downward-shifted leaders.

On the other hand, forbidding shifted labels in the labelings may results in unfeasible
labelings, see Figure 4.2 for an example.

An alternative is to require labels to be on the border, and allowing the use of op-leaders
to allow points to be connected to labels to the left of them. We call this model of labeling
strictly-boundary aligned labeling or SAB-labeling.

In this section, we assume that we have the same input as in section 3.2. Our objective is
to produce a crossing-free SAB-labeling with minimal leader length.

4.1.1 General Results

We first study general results such as the leader length functions and the upward-downward
algorithm.

47

48 4. Alternative Labeling Models

Label 0

Label 1

Label 2

Label 3

Label 4

Label 5

Label 6

Label 7

(a) Labeling with shifted labels

Label 0

Label 1

Label 2

Label 3

Label 4

Label 5

Label 6

Label 7

(b) Labeling with op-leaders

Figure 4.1: Illustration of a cluster with several neighborings shifted labels. Figure (a)
shows a WAB-labeling where several labels are shifted. In Figure (b), the
shifted labels have been replaced by labels that are touching the border and
which are connected by op-leaders.

(a) Infeasible Labeling (b) Labeling allowing
shifted labels

(c) Labeling allowing
op-leaders

Figure 4.2: Different kinds of labelings the same input data. If we forbid shifted labels
without allowing a new type of leader, the labeling is infeasible: In figure (a), we
cannot place the cluster without having either the topmost or the bottommost
label misplaced. In (b) and (c), these label are well placed because we allowed
shifted labels of op-leaders.

Let Pi be a point in the map, and fi(s) be the length of the leader connected to Pi when
the label it is connected to has y-coordinate s. We assume that the boundary consists of
k edges E1, . . . , Ek connected by the nodes N0, . . . , Nk. Let Nright be the rightmost node
of the border. We denote by nj the y-coordinate of a label so that the node Nj coincides
with one of the corners of this labels. For Nj = Nright, we define a further y-coordinate
n′right, because in this case, both the top-left and the bottom-left corners may coincide
with the node.

Lemma 14. The function fi(s) corresponding to any point Pi is piecewise linear and has
no local non-global minimum. Moreover, this function is convex when the border consists
of a single edge.

48

4.1. Strictly-Aligned Boundary Labeling 49

Proof. This proof follows exactly the same argumentation as the proof of Lemma 12.
When the label is not shifted, the leader length are exactly the same for a WAB-labeling
and for a strict labeling. Between the two labeling models, fi(s) only change when the
label is ’shifted’ in a WAB-labeling. A shifted label in a WAB-labeling corresponds to
an op-lea1der in a SAB-labeling, and the leader length of an op-leader contains a vertical
part which increases as the label is moved away from the label. Moreover, in WAB-
labeling, some border nodes have no influence on the leader length because its y-coordinate
corresponds to a shifted label, like node N1 in Figure 4.3. For a SAB-labeling, these nodes
change the slope of a segment of the function since it modifies the horizontal leader length.
But in general, it is easy to understand that the further away we move a label from the
optimal position yi, the bigger the length of the leader gets.

ndown label ordinate sj

leader length fi

n2 nupn1n0 yi n3n′
2

(a) Leader length function

Pi

yi

label ordinate sj

Lj

N1 n1

ndown

nup

n2

N2

N3

N0

n3

n0

n′
2

(b) Border considered

Figure 4.3: Length function of a leader for a given the border equation and the coordinates
of the point it is connected to. The border used and the position of the point
Pi are exactly the sames as in Figure 3.13.

As in the previous sections, we can reduce the number of positions which are necessary to
consider when looking for a minimal cluster labeling.

49

50 4. Alternative Labeling Models

Corollary 3. Given a set of labels that belong to the same cluster. There exists a minimal
cluster SAB-labeling with a horizontal-, upward- or downward-straight leader, or so that
one of the labels has one of the y-coordinates n0, . . . , nk, or n′right. The number of possible

positions to the cluster is then reduced to O(k · n2).

Furthermore, because the properties of the leader length functions in this section and
in the previous one are the same, the adapted upward-downward algorithm explained in
Section 3.2 also create clusters corresponding to a minimal SAB-labeling:

Lemma 15. Algorithm 13 creates a clustering for a minimal SAB-labeling, when it is
given as input an algorithm to compute a minimal SAB-labeling for a single cluster of
labels.

4.1.2 Minimal Cluster Labeling using a Matching Algorithm

For WAB-labelings, we solved the minimal cluster labeling problem by computing several
minimum weighted matchings. We do here exactly the same. Given a fixed position for a
cluster, i.e., the y-coordinates of the labels in the cluster, we create a complete bipartite
graph between the n vertices representing the points and the n vertices representing the
labels. The cost of an edge is equal to the length of the leader that would connect the
corresponding point and label.

The only difference between the matching created in Section 3.2 and the matching here is
the cost of the op-leaders. Thus, this problem is exactly the same as in Section 3.2.

Algorithm 15: Minimal Cluster SAB-Labeling for a Convex Border with big slopes.

Data: P0, . . . , Pn−1
Result: cluster position, σ for a minimal cluster SAB-labeling.
List Positions := {};
for j = 0 to n− 1 do

for i = 0 to n− 1 do
List Positions ∪ = {cluster position | `(Pi, Pj) is horizontal-straight};
List Positions ∪ = {cluster position | `(Pi, Pj) is upward-straight};
List Positions ∪ = {cluster position | `(Pi, Pj) is downward-straight};

for i = 0 to k do
List Positions ∪ = {cluster position | a corner of Lj touches Ni};

Removes redundancy of cluster positions in List Positions;
best badness := upper bound of the minimum badness;
best position := 0;
best σ := Y-order ;
for cluster position ∈ List Positions do

(badness, σ) :=OptimalMatching(cluster position);
if badness < best badness then

best badness := badness;
best position := cluster position;
best σ := σ;

return cluster position, σ

Theorem 12. Algorithm 15 computes in O(k · n4(log n)3) time a minimal cluster SAB-
labeling.

Proof. The correctness of the theorem follows from Lemma 14 and the correctness of the
Vaidya algorithm [Vai89] used to compute a minimum weighted matching. Algorithm 15

50

4.1. Strictly-Aligned Boundary Labeling 51

computes O(k · n2) matchings via the algorithm of Vaidya, where a single computation of
a matching requires O(n2 · (log n)3) time. Therefore, Algorithm 15 takes O(k · n4(log n)3)
time.

4.1.3 Minimal Cluster Labeling using a Sweep-line Algorithm

In this part, we are given a set of n points and a cluster of n labels. In Section 3.2,
Algorithm 10 computes a cluster WAB-labeling using the Y -order, which is minimal if it
contains no shifted labels. The objective of this part is to adapt this approach to the SAB-
labelings. The interesting point of this sweep-line algorithm is that the computed labeling
is optimal if it does not contain any no shifted labels, which corresponds to containing
no op-leader in the model considered here. Moreover, a minimal cluster labeling only
depends on the leader length functions. Just as in Section 3.2, we define a virtual badness
function bad′ and compute a labeling which minimizes this badness function. Algorithm
10 computes a minimal labeling L for the following badness function bad′:

bad′(L) =
∑
i

(
|yi − si|+ (ti − xi)

)
We saw then that, given a WAB-labeling L, the badness function bad′ is lower or equal to
the total leader length function bad, and the functions are the same if there are no shifted
labels. For this reason, we proved that if the labeling computed by Algorithm 10 using
the Y -order contains no shifted label, this labeling is then a minimal cluster labeling.

It is easy to check that, given an SAB-labeling L′, this badness function bad′ is also lower
or equal to the total leader length function, and are the same if there are no op-leader.
Therefore, with the same approach as in Section 3.2, Lemma 16 states that the cluster
labeling computed by Algorithm 10 using the Y -order is also minimal in the case of the
SAB-labelings if it contains no op-leader.

Lemma 16. If the labeling provided by Algorithm 10 with the Y -order contains no op-
leader for the Y -order, then it is a minimal cluster SAB-labeling.

Proof. In this proof, we only recapitulate the main steps as in the proof of Lemma 13.
Let bad(L) be the total leader length in a labeling L Let L∗ be the labeling computed
by Algorithm 10. Let L2 be another labeling. Consider the labeling L3 at the same
position as L2, but using the Y -order. The part of the badness bad′ corresponding to the
horizontal part of the leader remains unchanged, but the part corresponding to the vertical
part cannot increase. Therefore, bad′(L2) ≥ bad(L3). Moreover, L3 and L∗ use both the
Y-order. By construction, the badness bad′(L3) is bigger than bad′(L∗). We deduce:

bad(L2) ≥ bad′(L2) ≥ bad′(L3) ≥ bad′(L∗)

If the labeling L∗ computed by Algorithm 10 contains no op-leader, then it badness
bad′(L∗) is equal to its total leader length bad(L∗). Finally, we have

bad(L2) ≥ bad(L∗)

We conclude that L∗ is a minimal cluster labeling.

4.1.4 Crossing Removal

In this part, we generate a crossing-free minimal labeling from a minimal labeling. We
assume that we have a placement of the labels and know which point is connected to which
leader. The goal is to remove the leader crossings.

51

52 4. Alternative Labeling Models

Lemma 17. For a given a minimal cluster SAB-labeling the following holds:

• no op-leader can have a crossing with a non-vertical po-leader.

• no vertical leader can have a crossing with an op-leader as well as with a po-leader.

• There can be no leader-label crossings.

Proof. We first prove that there can be no crossing between a po-leader and an op-leader
in a minimal SAB-labeling. Suppose that a po-leader `(Pi, Lσ(i)) crosses an op-leader
`(Pj , Lσ(j)). Without loss of generality, we suppose that the po-leader is downward. Several
possibilities have to be considered, depending on the position of the crossing an whether
the op-leader is upward or downward.

• If the op-leader is downward, and its horizontal segment crosses the po-leader (see
Figure 4.4(a)). Because of the crossing, we have:

sσ(j) < sσ(i) < yj < yi (1)

and
tσ(j) < xi < xj , tσ(i) (2)

The length bad1 of these two leaders is then:

bad1 = (yi − sσ(i)) + (yj − sσ(j)) + (tσ(i) − xi) + (xj − tσ(j)) (3)

Suppose now that we switch the two labels Lσ(i) and Lσ(j). The resulting labeling
has a new badness bad2:

bad2 = (yi − sσ(j)) + (yj − sσ(i)) + (xi − tσ(j)) + |xj − tσ(i)| (4)

Because of (1), the vertical leader length of the two labelings is the same:

(yi − sσ(i)) + (yj − sσ(j)) = (yi − sσ(j)) + (yj − sσ(i)) (5)

From (2), we deduce:

xj − tσ(j) = (xj − xi) + (xi − tσ(j)) (6)

(tσ(i) − xi) + (xj − xi) = 2 ·
(

min{xj , tσ(i)} − xi
)

+ |xj − tσ(i)| (7)

By introducing (5), (6), (7) into (3), we get:

bad1 = (yi − sσ(j)) + (yj − sσ(i)) + (tσ(i) − xi) + (xj − tσ(j))
= (yi − sσ(j)) + (yj − sσ(i)) + (tσ(i) − xi) + (xj − xi) + (xi − tσ(j))
= (yi − sσ(j)) + (yj − sσ(i)) + 2 ·

(
min{xj , tσ(i)} − xi

)
+ |xj − tσ(i)|

+(xi − tσ(j))
= bad2 + 2 ·

(
min{xj , tσ(i)} − xi

)
bad1 > bad2

Therefore, the labeling with the crossing between the po-leader and the op-leader is
not minimal.

• If the op-leader is downward, and its vertical segment crosses the po-leader. (See
Figure 4.4(b)). Similarly, we have:

sσ(j) < sσ(i) < yj < yi

xi < tσ(j) < xj , tσ(i)

With the same calculations, we obtain:

bad1 = bad2 + 2 ·
(

min{xj , tσ(i)} − tσ(j)
)
> bad2

52

4.1. Strictly-Aligned Boundary Labeling 53

• If the op-leader is upward, and its horizontal segment crosses the po-leader. (See
Figure 4.4(c)). We have then:

sσ(i) < yj < yi < sσ(j)

xi < tσ(j) < xj , tσ(i)

After some calculations, we obtain:

bad1 = bad2 + 2 ·
(

min{xj , tσ(i)} − xi
)

+ 2 · (yi − yj) > bad2

• Otherwise, the op-leader is upward, and its vertical segment crosses the po-leader.
(See Figure 4.4(d)). We have then:

yj < sσ(i) < yi < sσ(j)

xi < tσ(j) < xj , tσ(i)

After some calculations, we obtain:

bad1 = bad2 + 2 ·
(

min{xj , tσ(i)} − tσ(j)
)

+ 2 · (yi − yj) > bad2

We conclude that a minimal labeling contains no crossing between an op-leader and a
po-leader.

Pi

Pj

Lσ(j)

Lσ(i)

(a)

Pi

Pj

Lσ(j)

Lσ(i)

(b)

Pi

Pj

Lσ(j)

Lσ(i)

(c)

Pi

Pj

Lσ(j)

Lσ(i)

(d)

Figure 4.4: Different possibilities for crossings. The part of the leader highlighted in red
represents the reduction of leader length by switching the two labels.

We now prove that a vertical leader cannot have a crossing with an op-leader as well as with
a crossing with a po-leader in a minimal labeling, as illustrated in Figure 4.5. Suppose that

53

54 4. Alternative Labeling Models

a vertical leader `(Pj , Lσ(j)) crosses a po-leader `(Pi, Lσ(i)) and an op-leader `(Pk, Lσ(k)).
Then, switching the labels Lσ(i) and Lσ(j) does not change the total leader length but
creates a crossing between an op-leader `(Pk, Lσ(k)) and a po-leader `(Pi, Lσ(j)). Since
then we could improve the labeling, as proved above, the initial labeling is not optimal.

Pi

Pj

Lσ(j)

Lσ(i)

Pk

Lσ(k)

(a) Initial SAB-labeling

Pi

Pj

Lσ(j)

Lσ(i)

Pk

Lσ(k)

(b) After switching labels Lσ(i) and
Lσ(j)

Figure 4.5: Vertical leader crossing a po-leader and an op-leader. The parts of the leader
highlighted in red represent the reduction of leader length by switching the
labels.

Finally, we note that no SAB-labeling contains any leader-label crossing, because those
crossings were caused by vertical leaders connected to shifted labels. However, we use
op-leader here instead, which are drawn entirely inside the map.

We finally present an Algorithm 16 removing crossings from a minimal labeling without
increasing its leader length. Figure 4.6 shows what happens in this this algorithm.

Algorithm 16: Algorithm removing the po-leader crossings

Data: Order σ of the labels, coordinates of the points Pi : (xi, yi) and Lj : (tj , sj)
Result: Gives the y-coordinate of the label s′0 corresponding to a possibly minimal

cluster SAB-labeling
// removing crossing involving downward op-leaders
for j from n− 1 to 0 do

i = σ−1(j);
if `(Pi, Lj) is a downward op-leader and crosses another leader then

Lk := label connected to an op-leader with the bottommost intersection with
`(Pi, Lj);
Switch Lj and Lk.;

// removing crossing involving upward op-leaders
for j from 0 to n− 1 do

i = σ−1(j);
if `(Pi, Lj) is an upward op-leader and crosses another leader then

Lk := label connected to an op leader with the topmost intersection with
`(Pi, Lj);
Switch Lj and Lk.;

Theorem 13. Given a minimal SAB-labeling of n points. Algorithm 2 removes the cross-
ings between po-leaders in O(n2) time and Algorithm 16 removes the crossings between
op-leaders in O(n2) time.

54

4.2. Discrete Labeling using ILP. 55

Lj

Lj+1

Lj+2

Pi

(a) between upward leaders

Lj

Lj−1

Lj−2

Pi

(b) between downward leaders

Figure 4.6: Illustration of the crossing removal for op-leaders. The dashed strokes represent
the new leaders after switching the labels.

This theorem can be proved with the same argumentation as Theorems 11 and 7

4.1.5 Conclusion

In the previous sections, we studied algorithms to compute weakly-aligned boundary la-
belings, with minimal leader length and the constraint that labels must be on the right of
the convex border. In this model, it is possible that some labels do not touch the border,
and are then shifted. If too many labels in a same cluster are shifted, it may be more
difficult to follow the leaders with the eyes.

In this section, we studied an alternative model with an additional constraint to require
labels to touch the border. The new op-leader type must then be allowed to connect
a point to a label to the left of it. This new labeling type is called SAB-labeling, or
strictly-boundary aligned labeling

A SAB-labeling has the same properties as a WAB-labelings except for two differences.
First, the shifted labels present in WAB-labelings are here replaced with label connected by
op-leaders. As a consequence, the leader-label crossings are replaced by crossings between
two op-leaders. These two types of crossing are easy to remove. For a point and a border,
the leader length function is not exactly the same in both types of labelings. In SAB-
labelings, the length of the leader increases more rapidly when the label is connected to
an op-leader than it does in WAB-labelings when the label gets shifted. Therefore, the
minimal labeling of a cluster may not have the same position for the two labelings.

Finally, the algorithm used to compute an optimal SAB-labeling is the same as in previous
section, after changing the leader length functions and replacing Algorithm 11 with Algo-
rithm 16 in order to remove the op-leader crossings instead of the leader-labels crossings.

4.2 Discrete Labeling using ILP.

In this section, we consider another method to compute a minimal labeling either using
po-leader and allowing shifted labels or using po- and op-leaders and forcing labels to be on
the border. we suppose then that we compute either a weakly-aligned boundary labeling
or a strictly-boundary aligned labeling.

55

56 4. Alternative Labeling Models

In this section, we discretize the possible label positions, and try to avoid computing several
matchings and cluster labelings. We denote by slots the possible positions for the labels.
We assume that there are m ≥ n slots for the labels, and look for a specific matching to
compute directly a minimum labeling. If the label slots do not intersect, a single minimum
weighted matching provides a minimal labeling. However, the label positions may not
be aesthetically satisfying. Figure 4.7 presents a minimal labeling where the positions of
the m slots of the labels do not intersect. This labeling may irritate the user due to the
fact that some leaders are not straight, but for different label position, the leader can be
straight in an optimal labeling.

(a) Desired labeling (b) Slots for a discrete label-
ing

(c) non-desired labeling

Figure 4.7: Labeling with fixed label slots. If the slots are chosen badly, the position of
some labels is disturbing (Figure (a)). We desire to compute a labeling as
presented in Figure (b). However, for such a labeling the slot of some labels
may intersect.

Here, we allow label slots to intersect. The objective is to create a matching algorithm
which takes into account the fact that the slots chosen by the matching must not intersect.

4.2.1 Integer Linear Program

In Section 3.1, we saw an integer linear program to compute a minimal labeling for a
border consisting in a single edge. In section 3.2, we noted that the program from Section
3.1 can easily be adapted into an integer quadratic program. In this section, we formulate
an integer linear program to compute a minimal labeling for a convex border, by modeling
this problem as a matching with further constraints.

Let Eq be the equation of the border. Given a y-coordinate sj of a label Lj : (tj , sj), the
x-coordinate of Lj is tj = Eq(sj). We denote by L0, . . . , Lm−1 the slots of the labels sorted
from the bottom to the top.

We recall the form of an ILP program:

minimize cTx
subject to Ax ≤ b

x ≥ 0

56

4.2. Discrete Labeling using ILP. 57

Variables.

Since the position of the m label is fixed, the variable to compute is only the matching
σ(·, ·) associating a label to each point. Just as in Section 3.1, we create n ·m variables
σ(i, j). For given indices i and j, σ(i, j) is equal to 1 if the points Pi is connected to the
label Lj , and 0 otherwise:

Variables: σ(i, j) ∈ {0, 1}n2
for 0 ≤ i, j ≤ n− 1 (4.1)

Because the position of the labels is fixed, we do not need to add further variables as in
Section 3.1 concerning the position of the labels and the leader lengths.

Optimization Function.

We create a matching where the cost of a connection between a point Pi and a label Lj
corresponding to the variable σ(i, j) is equal to the leader length |`(Pi, Lj)|.

function to Minimize: bad =

n−1∑
i=0

m−1∑
j=0

|`(Pi, Lj)| (4.2)

This function is characterized by the vector c, composed of n ·m values corresponding to
each leader length, sorted with respect to the order of the variables in x they correspond
to.

Constraints.

We are looking for a minimal labeling, which means in particular that crossings are allowed.
We will later use another algorithm to remove the crossings.

Since the position of the labels is already fixed, the only constraint is that no two labels
may intersect. Denote by Inter(j) the set of indices of the labels intersecting Lj . Thus,
the constraint of the labels in the matching is:

Constraints: ∀j,
n∑
i=1

∑
k∈Inter(j)

σ(i, k) ≤ 1 (4.3)

4.2.2 Choice of Slots

The integer linear program presented above provides a minimal labeling given a fixed
position for the label slots. However, what we are looking for here is a minimal labeling
with variable label positions. That means that no other label position can reduce the total
leader length. In this part, we are detailing a choice of the slots such that the positions of
the labels given by the integer linear program correspond to a minimal labeling.

For this purpose, we use Corollary 2 of Section 3.2 and Corollary 3 of Section 4.1 providing
an interesting property regarding the positions of the labels in a particular minimal cluster
labeling, and deduce some properties about the possible positions of the labels in a minimal
labeling, and thus the placement of the slots in the integer linear program.

These two corollaries state for both types of labelings that we can always compute a
minimal labeling such that every cluster contains a label satisfying one of the following
statements:

• it is connected by a horizontal-straight leader,

57

58 4. Alternative Labeling Models

• it is connected by an upward-straight leader,

• it is connected by a downward-straight leader,

• one of its corners touches one of the k + 1 border nodes.

Therefore, there exists a minimal cluster labeling so that every label is placed either at a
position described as above, or moved by a distance i · h upward (or downward) from it,
where h represents the height of the labels, and i ∈ Z is an integer.

Furthermore, since every cluster contains at most n labels, we can reduce the possible
values of the integer from i to {1 − n, 2 − n, . . . ,−1, 0, 1, . . . , n − 2, n − 1}. Each point
provides then (k + 4) · (2n− 1) positions for the slots. Indeed, suppose that a label Lj is
placed at a y-coordinate sj . Then, every label of the cluster must have a y-coordinate of
the form sj + i · h, where h is the height of a label, and 1− n ≤ i ≤ n− 1.

Altogether, we create at most (k+4) ·n · (2n−1) label slots, and an integer linear program
as created previously computes a minimal labeling for the given type (op-po-labeling or
po-labeling).

4.2.3 Conclusion

In this section, we computed a minimal labeling using a minimum weighted matching in
bipartite graph with specific constraints on the edges allowed in the matching. Given n
points and a border with k edges, the bipartite graph contains O(k ·n2) vertices. However,
because we allowed intersecting label slots whereas that the labels used in the minimum
weighted matching must not intersect, we cannot use a matching algorithm to compute
the minimal labeling this way. The solution is then computed using integer linear pro-
gramming. It would be interesting to study if we can create a polynomial time algorithm
to compute a minimum weight matching with constraints, i.e., by forbidding some edges
to be simultaneously in the solution. This would allow us to handle intersecting label slots.

4.3 Rectangular Block Labeling

In the previous sections, we saw how to compute a crossing-free labeling with a minimal
total leader length when the border is convex and composed of edges with big inclinations.
However the fact that some labels may have to be shifted makes the computations more
difficult. Indeed, the Y -order may only provide a sub-optimal crossing-free labeling, and
in this case, we have to use complex algorithms to solve the labeling problem. Therefore,
we look for another model of convex-boundary labeling which avoids this problem without
making the labeling less aesthetically pleasing.

In this section, we assume that labels in the same cluster must have the same x-coordinate,
(see Figure 4.8). Thus, switching two labels inside a cluster does not change the horizontal
leader length. We call such a labeling rectangular-block labeling, or block-labeling. The
interest of this model is to create labeling such that (1) the label positions depend on
the shape of the convex border, and (2) there always exists a minimal labeling using
the Y -order. Furthermore, we assume that the leader length functions correspond to a
WAB-labeling.

However, another challenge appears in this model, as presented in Figure 4.9. If we
keep the same badness function, a minimal labeling will be similar to a minimal labeling
computed in Sections 3.1 and 3.2. and the only difference will be the distance between two
labels. Indeed, when we search for an optimal labeling of two points whose optimal label
positions intersect, regrouping them in a single cluster usually produces a bigger badness
than separating them. When the two labels are grouped into a single cluster, one of the

58

4.3. Rectangular Block Labeling 59

Badness : 1020

Point 0

Point 1

Point 2

Point 3

Point 4

Point 5

Point 6

Point 7

Point 8

Figure 4.8: Example of a block-labeling. Every label inside the cluster must have the same
x-coordinate.

(a) Overlapping labels (b) Single cluster solution (c) Double clusters solution

Figure 4.9: The figures above shows the problem of applying the same badness function
as before in the block-labeling. The figure (a) presents two overlapping labels.
If we put them into the same cluster (Figure (b)), the total leader length will
be greater than if we move the bottommost label downward to prevent the
overlap. Therefore, it is not optimal to have two labels in the same cluster.

labels will be moved away to the right, and this horizontal distance is bigger than the
vertical distance needed to separate the label in two different clusters.

A first solution would be to consider only leader length inside the map, i.e., the leader
length left to the border. However, this creates a problem similar to the problem of a
shifted label, as presented in Figure 4.10.

Our solution consists in keeping the same badness function as for the WAB-labeling, and
adding a new constraint we call local optimality. This new constraint states that the
position of a cluster of labels must be independent of the other clusters. Then, in Figure
4.9, the two labels have to be in the same cluster. Otherwise, one of the labels would not
be at its optimal position, and removing the other cluster makes the remaining cluster
labeling suboptimal.

59

60 4. Alternative Labeling Models

(a) Y -order (b) optimal order

Figure 4.10: Illustration of the problem similar to the shifted labels, when the badness only
takes into account the leader length inside the map. In the figures, a leader
that has no horizontal segment inside the map will have the same length if we
connect it to any label below the current one. Therefore, the labeling from
Figure (b) has a badness smaller than the badness of the labeling from Figure
(a).

From the new constraint of local optimality, we deduce the following lemma:

Lemma 18. The clusters computed by the upward-downward algorithm induce a minimal
labeling.

Proof. Consider two clusters C1 and C2 which overlap when placed at their respective
optimal position. Then, in a minimal labeling, at least of of those clusters is not at its
optimal position. Without loss of generality, let C1 be not at its optimal position. Suppose
now that they have not been regrouped into a single cluster C. Removing every labels of
the cluster C2 results in having the cluster C1 back at its optimal position, which refuses
the constraint of local optimality.

A block-labeling is defined so that every label in the same cluster has the same x-coordinate.
Therefore, instead of shifted labels, we here can have shifted clusters. Indeed, given a x-
coordinate t for the labels in the cluster, a point Pi may have a x-coordinate xi greater
than t. Then, the cluster must be shifted to the right so that each label has a x-coordinate
xi. The following lemma gives a sufficient condition to prevent shifted clusters.

Lemma 19. Consider a cluster of labels and the points connected to a label in this cluster.
If the topmost point is below the topmost label and the bottommost point is above the
bottommost label, then the cluster is not shifted.

Proof. Consider a shifted cluster. The x-coordinate of its labels is xi, where Pi = (xi, yi) is
the rightmost point connected to a label of the cluster. This point Pi is then either below
the bottommost label or above the topmost label of the cluster. Otherwise, it would be
connected to a label with a non-vertical leader, which contradicts the fact that the cluster
is shifted.

The conditions for this lemma are in particular realized when the clusters are created with
the upward-downward algorithm. Indeed, if a point Pi is above the topmost label of a
cluster, then switching the label it is connected to with the topmost label either reduces
the total leader length if the topmost label is connected by an upward leader, or does not

60

4.3. Rectangular Block Labeling 61

change the total leader length otherwise. Therefore, we can assume that the point Pi is
connected to the topmost label of the cluster. Then, we reduce the total leader length by
putting the topmost label out of the cluster to the optimal position for the point Pi. The
upward-downward algorithm would not have put the point Pi into this cluster.

The following lemma generalizes a result of the WAB-labeling for the case of the block-
labelings.

Lemma 20. The length function of a leader depending on the y-coordinate of the label
is it connected to is piecewise linear and does not contain any local non-global minimum.
The total leader length function is also piecewise linear, and the endpoints of its segments
correspond to horizontal-, upward- or downward-straight leaders.

Proof. Since the difference between a WAB-labeling and a block-labeling can only be found
in the position of labels when they are in the same cluster, the function giving the length
of a leader from the y-coordinate of its label is the same for both labelings. Lemma 5
states that these functions are piecewise linear and contain no local non-global minimum,
the leader length function for a cluster also has these properties.

Moreover, let {L0, . . . , Ln−1} be a cluster of n labels. In a block-labeling the y-coordinate
of each label Li is the same as in the WAB-labeling, and its x-coordinate is shifted by
a distance of di to the right of the x-coordinate in the WAB-labeling. The value of this
distance di is either (n− 1− i) ·h/m or i ·h/m, depending on whether the edge the cluster
touches has positive or negative slope. Let F (s0) be total leader length for the WAB-
labeling when the bottommost label has the y-coordinate s0. The badness for the block-
labeling is then Fb(s0) = F (s0)+

(∑
0≤i<n i

)
·h/m. Since F (s0) is piecewise linear and the

endpoints of its segments correspond to horizontal-, upward-, downward-straight leaders
and the touching of labels corners with border nodes. Fb(s0) has the same property.

In a minimal cluster labeling, the conditions given by Lemma 19 are always true. For
example, if the topmost label of a cluster was connected by a downward leader, then moving
its position upward would decrease the badness of the labeling. Because of Lemma 18, we
will use the upward-downward algorithm to compute the clusters, and thus the clusters in
a minimal labeling cannot be shifted. From this fact, we deduce the following corollary.

Corollary 4. There exists a minimal cluster labeling containing a horizontal-straight
leader, or so that a corner of a label overlays a border node. Moreover no minimal la-
beling contains downward-straight leaders or upward-straight leaders.

Proof. Consider a cluster of labels. We know from Lemma 20 that the function giving the
total leader length from the y-coordinate of the cluster is piecewise linear, and that the end-
points of the segments composing the function correspond to upward-straight, downward-
straight and horizontal-straight leaders. However, when the conditions of Lemma 19 are
realized, no point can be above or below the cluster. In particular, no leader can be vertical.
We conclude that there must be a minimal cluster labeling containing a horizontal-straight
leader.

Furthermore, we do not have the problem created shifted labels that we encountered in a
WAB-labeling. This leads the the following property of a block-labeling.

Lemma 21. There exists a minimal block-labeling induced by the Y -order.

61

62 4. Alternative Labeling Models

Proof. Consider a minimal cluster block-labeling, using an order of labels σ. We suppose
that the cluster has been computed with an upward-downward algorithm, and therefore
we know from Lemma 19 that the cluster is on the border. Thus, for a fixed position of the
cluster, the horizontal leader length is independent of the order of the labels σ. Consider
two labels Li and Lj with i < j which do not respect the Y -order. They are connected to
points Pσ−1(i) and Pσ−1(j) so that σ−1(i) > σ−1(j). Switching labels Li and Lj does not
increase the total leader length, as illustrated in Figure 4.11.

Pσ−1(i)

Pσ−1(j)

Lj

Li

(a) same badness

Pσ−1(i)

Pσ−1(j)

Lj

Li

δ

(b) badness increased by 2δ

Pσ−1(i)

Pσ−1(j)

Lj

Li

δ

(c) badness increased by 2δ

Figure 4.11: Switching two labels which do not respect the Y -order do not reduce the
total leader length of a block-labeling. The three figures below illustrate the
possible cases, depending on the position of Pσ−1(j) regarding Li and Lj , and

the change of badness when the labels Li and Lj are being switched.

Therefore, iteratively switching labels which not respect the Y -order from the order σ to
the Y -order will not increase the badness of the labeling. This means that, given a fixed
cluster position, the Y -order minimizes the badness. Finally there exists a minimal block
labeling using the Y -order.

In a minimal labeling, leader-crossings can only happen between leaders connected to labels
from a same cluster. moreover, we saw in sections 3 and 4 that leader-label crossings
always involve downward-straight or upward-straight leaders. Nevertheless, Corollary 4
states that this cannot happen in block-labelings. Thus, given a minimal labeling of a
single cluster, the crossing-removal problem is the same as for a po-right labeling for a
vertical border. This leads to the following theorem:

Theorem 14. Given a minimal labeling, Algorithm 2 removes the crossing from a minimal
labeling in O(n2) time.

Thus, all we have to do now is to find out how to compute a minimal cluster labeling.

62

4.3. Rectangular Block Labeling 63

4.3.1 Border With a Single Edge

First we suppose that the border consists of a single edge with a big, positive slope. The
equation of the x-coordinate of a label Li : (ti, si) is then ti = si

m + a, with m > 1.

The following lemma gives a results from Algorithm 4 when searching for an optimal
position of a single cluster for the Y -order, given the border equation and the coordinates
of n points whose labels have to be placed in the same cluster.

Lemma 22. The cluster position provided by Algorithm 4 for the Y -order induces a min-
imal block-labeling.

Proof. This proof repeats many points already seen in Lemma 6. For a positive slope, the
cluster is positioned so that the top-left corner of the topmost label is in the border. Since
the topmost label can not be connected by a downward leader, every point is below the
topmost label. Therefore, all the points are placed left to the labels and there can not be
any shifted cluster.

From Corollary 4 and the fact that for each index i it holds that xi < ti. We know that
there is a minimal cluster labeling with a horizontal straight leader.

Let’s position the cluster characterized by a value s0 for the bottommost label such that
yn−1 ≤ sn−1 and there is a horizontal straight leader. First, move the cluster by a distance
of ε upward so that no downward leader becomes upward. Then the total horizontal leader
length is increased by ε

m and the total vertical leader length is increased by ε
(
nu+ns−nd

)
,

where nu, ns and nd are the number of upward, horizontal-straight and downward leaders
respectively. The upward gain is then: Gu(s0, ε) = ε

(
n
m + nu + ns − nd

)
= ε
(
n
m + 2 · nu +

2 · ns − n
)
. Likewise, we compute the downward gain Gu(s0, ε) = ε

(
− n

m − 2 · nu + n
)
.

For a single edge border, the length function of a leader depending on the y-coordinate of
its label is convex. Therefore, any local minimum is global, and the minimum of the convex
total leader length function is attained when both Gu(s0, ε) and Gd(s0, ε) are positive for
sufficiently small values of ε:

• Gu(s0, ε) ≥ 0⇒ n
m + 2 · nu + 2 · ns − n ≥ 0⇒ nu ≥ n

2

(
1− 1

m

)
− ns

• Gd(s0, ε) ≥ 0⇒ − n
m − 2 · nu + n ≥ 0⇒ nu ≤ n

2

(
1− 1

m

)
An optimal position corresponds then to nu ∈ [n2

(
1 − 1

m

)
− ns, n2

(
1 − 1

m

)
]. Let ν be the

unique number in [n2
(
1 − 1

m

)
, n2
(
1 − 1

m

)
+ 1] and k be the index of the point which has

the ν smallest value of yi − i · h. If we position the cluster so that the leader incident to
Pk is horizontal straight, then there will be k − 1 leaders upward or straight and n − k
leaders downward or straight. The number of upward leaders will be at most k− 1 and at
least k − ns. Since this interval includes all integer values in [n2

(
1 − 1

m

)
− ns, n2

(
1 − 1

m

)
],

This cluster position is optimal. This cluster position is returned by Algorithm 4, which
concludes the proof.

Corollary 5. Given a cluster of labels and for a border consisting in a single edge, one of
the minimal cluster labelings contains a horizontal-straight leader.

4.3.2 Border With a Several Edges with Big Slopes

We suppose now that the border is convex and composed of k edges with big slopes
|mk| > 1. We denote by Ej the equation of the x-coordinate ti of a label Li from its
y-coordinate si when the label is placed along the edge with index j ∈ {0, . . . , k − 1}:
ti = si

mj
+ aj . We denote by E the equation for the border.

63

64 4. Alternative Labeling Models

When a label is on an edge with positive slope, its top-left corner is on the border. Similarly,
when a label is on an edge with positive slope, its bottom-left corner is on the border.
However, when the border contains edges with positive and edges with negative slopes,
there are positions between them where neither the top-left corner nor the bottom-left
corner of the label is on the border. When this occurs, the x-coordinate of the label is
equal to the x-coordinate of the rightmost note.

The following lemma gives a simple method to compute a minimal labeling for a border
with k edges E1, . . . , Ek and a virtual edge E0 (see Figure 4.12).

E3

E1

E2

E0

P0

P1

P2

(a) Border

E3

E1

E2

E0

P0

P1
P2

(b) Labeling with E0

E3

E1

E2

E0

P0

P1

P2

(c) Labeling with E2

E3

E1

E2

E0

P0
P1

P2

(d) Labeling with E1

E3

E1

E2
E0

P0
P1

P2

(e) Labeling with E3

Figure 4.12: A minimal labeling of the cluster for a convex boundary is the best of the
labeling computed by taking each edge of the border independently.

Lemma 23. One of the minimal cluster labelings corresponds to the best positions among
the k+ 1 optimal position generated by considering that the border has the equation Ei for
i ∈ {0, . . . , k}.

64

4.3. Rectangular Block Labeling 65

Proof. Consider a minimal cluster labeling. In this position, the cluster is on one of the k
borders. Otherwise, we can reduce its badness by moving the cluster on the left. Let Ei,
i ∈ {0, . . . , k} be such a border.

Consider a minimal cluster labeling supposing that the border equation is Ei. By definition,
the badness of this new cluster position is smaller or equal to the badness of the minimal
cluster labeling for the border E. If no corner of the cluster in this position was on the
border E, then there would be another cluster position on the border with a strictly smaller
badness. Moreover, this other cluster position will have a badness strictly smaller than the
badness of the minimal cluster labeling, which is a contradiction. Therefore, the minimal
cluster labeling for the border Ei is the minimal cluster labeling for the border E. We
conclude that the minimal cluster labeling for the border E is one of the k + 1 optimal
positions supposing respectively that the border is Ei.

Let h be the height of the labels, m the slope of the border edge and Y ′ be a sorted list of
elements (yi−i·h, i). Let {E0, . . . , Ek} be the equations of the edges composing the border.
The following algorithm computes an optimal position for the cluster characterized by the
y-coordinate of the bottommost label of the cluster:

Algorithm 17: Position of a Cluster of n labels, for a Block-labeling

Data: Points {P0, . . . , Pn−1}, {E0, . . . , Ek}, optional: Y ′,
Result: Position s0 of a minimal cluster labeling
s0 := array of k + 1 elements;
badness:= array of k + 1 elements;
foreach i ∈ {0 . . . k} do

νi = unique integer value in [n2 (1− 1
|m|),

n
2 (1− 1

|m|) + 1[;

if mi > 1 then
(yk − k · h, k) = νthi first element in Y ′;

else
(yk − k · h, k) = νthi last element in Y ′;

badness[i] := badness of the cluster labeling at the position yk − k · h;
s0[i] = yk − k · h,;

return s0[i] that minimizes badness[i];

Corollary 6. One of the minimal cluster labelings for a cluster of labels and given a border
equation for k ≥ 1 edges contains a horizontal-straight leader.

Theorem 15. Algorithm 17 computes in O(n log n+n ·k) time a minimal cluster labeling
in general case, and in O(k · n) time if the list Y ′ is provided.

Proof. Lemma 23 shows the correctness of the algorithm. It remains to show the time
complexity.

Computing and sorting the list Y ′ = {(yi − i · h, i) | i = 0 . . . n − 1} takes O(n log n)
time. Algorithm 17 computes k cluster labelings. For each of them, the cluster position in
computed in constant time and the badness in O(n) time. Finding the edge corresponding
to a minimal cluster labeling is done by a minimal badness search in O(k) time. The total
time complexity to compute the minimal cluster labeling corresponding to one of these
cluster position is then O(n · k), supposing that the list Y ′ is already computed.

65

66 4. Alternative Labeling Models

We deduce the following algorithm to compute an optimal labeling:

Algorithm 18: Optimal Block-Labeling for Single-Edge Border with slope m > 1

Data: Points P0, . . . , Pn−1
Result: optimal labeling.
Compute a minimal cluster labeling with Algorithm 1, given in input Algorithm 17 to
provide a minimal cluster labelings;
Call Algorithm 2 to remove leader crossings;
return the labeling;

Theorem 16. Algorithm 18 computes in O(k · n2) an optimal labeling.

Proof. The correctness of the algorithm follows from Lemmas 18 and 23. It remains to
show the time complexity.

Given two overlapping clusters of labels C1 and C2 described by the lists Y ′1 and Y ′2 , the
Upward-downward algorithm enables to compute the list Y ′ in linear O(n2) time, and
Algorithm 17 access in constant time a single value in Y ′, in oder to compute in O(n · k)
time a cluster labeling. The Upward-downward algorithm call (n) time Algorithm 17, thus
computing a minimal labeling has then a total time complexity of O(k · n2).
Finally, with Algorithm 2, the crossings can be removed in O(n2) time.

Algorithm 18 computes thus an optimal labeling in quadratic time in the number of points,
which is as fast as the results provided by Theorem 3, with a factor linear in the number
of edges.

4.3.3 Conclusion

The two previous parts presented results and algorithms to compute an optimal labeling
with minimal leader length, given a set of n points, and a convex border E delimiting the
leftmost position for the labels. These results generalize the work done by Nöllenburg et
al. [NPS10] on one-sided labeling for vertical boundary.

However, this model presents several algorithmic problems which strongly increases the
time complexity. For a general convex border, the complexity is in O

(
n5 · (log n)3 · 2k

)
,

in comparison to O(n2) when the border is vertical. In aligned boundary labelings, the
factor 2k can be removed by adding a further constraint of local optimality and using the
Upward-downward algorithm.

This complexity can be explained by two new problems. First of all, some labels can
be shifted, and in this case it takes a lot of time to determine how the labels have to
be ordered along the y-coordinates. Moreover, the presence of several edges makes the
upward-downward algorithm less efficient to compute the repartition of labels in clusters.

In this section, We considered the block-labeling, which is a new model of the convex
boundary labeling. The block-constraint forces the labels inside the same cluster to have
the same x-coordinate. Hereby, the problem is more similar to the case of a vertical border,
and no label can be shifted anymore. The second constraint is a local-optimality constraint,
and forbid the cluster positions to depend on each others. This strong condition enables not
only to keep the simple badness function as before, but also enables the Upward-downward
algorithm used in Sections 2.4 and 3.1 to compute in this new model an optimal clustering.

We conclude this section by mentioning that, due to the strong constraint of local optimal-
ity for the labels, the algorithms for block labeling can be extended for two-sided labeling

66

4.3. Rectangular Block Labeling 67

and for convex border including small slopes. Nonetheless the Y -order may not induce
a minimal cluster labeling when we consider edges with small slopes. Another possible
extension for block labeling involving the idea of multi-sided labeling would be to consider
non-convex borders.

67

5. Evaluation

In the following, we present some experimental results of our labeling algorithms. In
the past sections, we studied the strictly- and weakly- boundary aligned labelings, and
the rectangular-block labeling. This chapter presents experimental results of the different
labeling programs.

The first section describes the algorithms that will be studied in the later sections. In
section 5.2, the difference of visual quality of the labeling algorithms will be studied. Even
though we primarily focus on the esthetic of a labeling, it is also important that the
labeling algorithm are computed in a reasonable run time. In the last section, we compare
the run times of each algorithm for different border shapes and different number of points.
We will in particular confront the labelings for vertical boundary presented in section 2.4
to the complex algorithms to compute an optimal cluster boundary-aligned labeling and
to the simplified rectangular-block labeling.

5.1 Description of the Labeling Programs

In this part, we present the different algorithms we will evaluate in this chapter.

ALGO VB. This first algorithm computes an optimal labeling assuming that the right
side of the boundary is vertical, and has been presented in Section 2.4. The time complexity
of this algorithm is O(n2). However, we will only compare the quality of this labeling, and
not its run time that we will assume equal to the run time of ALGO Block described later.

ALGO AB. This program computes an optimal aligned-boundary labeling. Here, we
added to the problem a local optimality constraint of the solution so that the Upward-
downward algorithm induces a minimal labeling. Moreover, we used the Hungarian algo-
rithm [Kuh55] instead of the Algorithm of Vaidya [Vai89] to compute a minimum weighted
perfect matching. Therefore, the worst complexity of ALGO AB is O(n5 · (n+k)·) instead
of O(n4 · (n + k) · (log n)3 · 2k). ALGO AB regroups actually two different algorithms
ALGO WAB and algorithms ALGO SAB computing respectively an optimal WAB-
labeling and an optimal SAB-labeling. Both algorithms have exactly the same structure,
call the similar algorithms and have exactly the same run time. We will on one side com-
pare the quality of ALGO WAB and ALGO SAB, and on the other side compare the run
time of the general algorithm ALGO AB to the run time of others algorithms.

ALGO SL. For this algorithm, we assume that the boundary in composed of several edges
with big slopes, and computes a crossing-free WAB-labeling using the Upward-downward

69

70 5. Evaluation

algorithm and the Sweep-line algorithm Algorithm 10. A cluster labeling computed by
Algorithm10 is known to be minimal if it contains no shifted labels. Therefore, a WAB-
labeling computed by ALGO SL is not necessarily minimal. The implemented algorithm
takes O(n2 log n) time to compute a labeling, but this complexity could have been improved
to O(n2). The complexity of this algorithm is equal to the best case time-complexity of
ALGO AB. We want here to compare the run time of ALGO AB to the run time of
ALGO SL representing its best-case complexity, and therefore find out how often shifted
labels appear and how much they increase the run time.

ALGO M. This algorithm is the same ALGO SL, but uses the matching algorithm 9
instead of the sweep-line algorithm. As for ALGO AB, we used here the Hungarian algo-
rithm to compute a minimum weighted perfect matching. The complexity of ALGO M
is exactly the same as the worst-case time-complexity of ALGO AB. while ALGO SL
shows how much the shifted labels increase the run time, we want to test with ALGO M
how efficient is the algorithm combining the sweep-line and the matching algorithms in
comparison to the single use of the matching algorithm.

ALGO Block. This algorithm computes with O(k·n2) time-complexity an optimal block-
labeling. Its run time should be close to the run time of ALGO VB and it should be much
faster than ALGO AB. We will compare the run time and the visual quality between this
algorithm and the two border-aligned algorithms.

In order to compute the labelings, a graphic user interface has been created to manually
place points and border nodes on a map. The interface calls then the desired algorithm to
compute the corresponding labeling. Moreover, the content and the size of the labels can
be decided. Several Figures from in this thesis are screenshots of this interface. Figure 5.1
shows a screenshot of the interface.

Figure 5.1: Graphic User Interface.

70

5.2. Quality of the Labelings 71

5.2 Quality of the Labelings

In this section, we compare the some labelings computed respectively by ALGO VB,
ALGO WAB, ALGO SAB, ALGO Block. We show labelings with a small number of
points to compare the visual quality of the different labeling algorithms. The following
map are small enough to be easily read and the size of the labels is big enough to contain
a text description. Moreover, the labels altogether do not occupy the whole height of the
illustration.

We first present here a convex-boundary of the map of Germany (see Figure 5.2)

Figure 5.2: Map of Germany and the chosen convex boundary, without the points and the
labels.

We compute a labeling to place a textual label describing each Land. The points repre-
senting are positioned arbitrary in the surface of the Länder. Note that the right border
of Germany is close from being vertical, and that most Länder are far away to the left of
the boundary. Therefore, we can already foresee that ALGO AB will compute an optimal
labeling without calling a matching algorithm. This gives the intuition that in most real
maps, the time complexity of the boundary-aligned labelings corresponds to the best-case
complexity.

Figures 5.3, 5.4 and 5.5 present the labelings computed with the different algorithms.

As expected, the labelings computed by ALGO SL and ALGO AB are exactly the same,
and the position of the labels follows the shape of the border. Moreover, the block-labeling
consists in several cluster close to the border of Germany, in opposite to the cluster placed
by ALGO VB that are floating further away from the border. Furthermore, the algorithms
ALGO SL, ALGO AB and ALGO Block computed labeling with the same five clusters,
whereas the labeling computed by ALGO VB only contains two clusters. Therefore, even
for a border close to a vertical border, the slopes of the edges have an influence on the
y-coordinates of the labels and thereby on the number of clusters.

71

72 5. Evaluation

Baden-Württenberg

Bayern

Saarland

Rheinland-Pfalz

Hessen

Thüringen

Sachsen

Nordrhein-Westfalen

Sachsen-Anhalt

Brandenburg

Niedersachsen

Berlin

Bremen

Hamburg

Mecklenburg-Vorpommern

Schleswig-Holstein

Figure 5.3: Boundary Labeling computed by ALGO VB

Baden-Wüttenberg

Bayern

Saarland

Rheinland-Pfalz

Hessen

Thüringen

Sachsen

Nordrhein-Westfalen

Sachsen-Anhalt

Brandenburg

Niedersachsen

Berlin

Bremen

Hamburg

Mecklenburg-Vorpommern

Schleswig-Holstein

Figure 5.4: Boundary Labeling computed by ALGO SL and ALGO AB

72

5.2. Quality of the Labelings 73

Baden-Wüttenberg

Bayern

Saarland

Rheinland-Pfalz

Hessen

Thüringen

Sachsen

Nordrhein-Westfalen

Sachsen-Anhalt

Brandenburg

Niedersachsen

Berlin

Bremen

Hamburg

Mecklenburg-Vorpommern

Schleswig-Holstein

Figure 5.5: Boundary Labeling computed by ALGO Block

We now present a map of Italy which has a different convex boundary. Each point repre-
sents a region of Italy and in each label is written the name of the corresponding region.

Sicily

Calabria

Sardinia

Basilicata

Apulla

Campania

Lazio

Molise

Abruzzi

Umbria

Marche

Tuscany

Liguria

Emilia - Romagna

Piedmont

Lombardy

Veneto

Aostal Valley

Friuli - Venezia Giulia

Trentino

Figure 5.6: Boundary Labeling computed by ALGO VB and ALGO Block.

73

74 5. Evaluation

The right border of Italy consists of two edges with slopes close to 1. Therefore, there may
be shifted labels or op-leaders in the boundary-aligned labelings.

Figures 5.4 and 5.5 present the labelings computed by the algorithms.

Sicily

Calabria

Sardinia

Basilicata

Apulla

Campania

Lazio

Molise

Abruzzi

Umbria

Marche

Tuscany

Liguria

Emilia - Romagna

Piedmont

Lombardy

Veneto

Aostal Valley

Friuli - Venezia Giulia

Trentino

Figure 5.7: Boundary Labeling computed by ALGO SL and ALGO AB.

We first remark that, due to the high number of labels, the computed labelings are com-
posed of a single cluster. As a consequence, the labelings computed by ALGO VB for a
vertical border and ALGO Block are the same. Nevertheless, it is possible that these two
algorithms compute different labelings, both consisting of a single cluster. This occurs
when the cluster computed by ALGO Block do not touch the rightmost border node.

A second observation is that ALGO SL and ALGO AB compute the same labeling. Ac-
tually, the Sweep-line algorithm in ALGO SL computes a minimal labeling containing a
shifted label that is removed with the crossings, see Figure 5.8.

The map of Italy proves that the condition stated by Lemma 13 is sufficient but not
necessary for the computed cluster labeling to be minimal. We could develop further fast
algorithms to compute possibly minimal cluster labelings. For example, we could prove
that, if the cluster labeling computed by Algorithm 10 contains no shifted label after we
remove the crossings, then it is minimal. We will see here that the approximation provided
by ALGO SL is usually good enough.

Since the WAB-labeling shown in Figure 5.8 contains a shifted label, we could compare it
with the SAB-labeling version. We will not do that here, because there is only a single
shifted label, and this label is not shifted far away from the boundary. Instead, we compare
the WAB- labeling to the SAB-labeling in another map which do not represents real data.
The labeling produced by ALGO WAB and ALGO SAB are shown in Figure 5.9.

We remark from the shape of leader connected to Point 5, that the two labelings do not
have exactly the same cluster position. Since the leader length function increase more
rapidly in SAB-labeling when the leader has type op, the cluster position computed by
ALGO SAB is slightly above the cluster position computed by ALGO WAB. The preferred

74

5.2. Quality of the Labelings 75

Sicily

Calabria

Sardinia

Basilicata

Apulla

Campania

Lazio

Molise

Abruzzi

Umbria

Marche

Tuscany

Liguria

Emilia - Romagna

Piedmont

Lombardy

Veneto

Aostal Valley

Friuli - Venezia Giulia

Trentino

Figure 5.8: Minimal Labeling computed by ALGO SL. The second bottommost label,
named Calabria, is shifted. At the same time, it is connected by a cross-
ing leader. After removing the crossings, the final labeling contains no shifted
label (see Figure 5.7).

Point 0

Point 1

Point 2

Point 3

Point 4

Point 5

Point 6

Point 7

Point 8

(a) Computed by ALGO WAB

Point 0

Point 1

Point 2

Point 3

Point 4

Point 5

Point 6

Point 7

Point 8

(b) Computed by ALGO SAB

Figure 5.9: Boundary Labeling computed by the aligned-boundary algorithm and contain-
ing shifted labels or op-leader.

of these two labelings will mainly depend on the user. We now present in Figure 5.10 the
labeling computed by ALGO Block and ALGO VB for this map.

In this labeling, the three bottommost labels are considerably away from the border.
Therefore, we could think about a variant of a block-labeling where each cluster can be

75

76 5. Evaluation

Point 0

Point 1

Point 2

Point 3

Point 4

Point 5

Point 6

Point 7

Point 8

Figure 5.10: Boundary Labeling computed by ALGO Block and ALGO VB

broken into a few number of blocks, so that the labels in each block are vertically aligned.

Finally, we note that the WAB-labeling contains shifted labels because the points in the
map are densely regrouped close to an edge of boundary whose slope is close to 1. Thus, the
labels are grouped into a single cluster, and this cluster is placed further below the position
computed in ALGO VB. Consequently, shifted labels placed right below the points appear.

5.3 Run Time Analysis

In the previous section, we visualized the different labeling models and compared some
results. In this section, we consider the run time of four labeling algorithms:

• ALGO SL computes a boundary-aligned labeling without using a matching algo-
rithm. It corresponds to the best-case time complexity of Algorithm 14.

• ALGO M computes a boundary-aligned labeling always calling O(n2) times a match-
ing algorithm. This corresponds to the worst case time complexity of Algorithm 14.

• ALGO AB is an implementation of Algorithm 14 which computes an optimal aligned-
boundary labeling.

• ALGO Block computes an optimal block labeling. This algorithm has the same
structure as the algorithm ALGO VB described by Nöllenburg et al [NPS10] to com-
pute an optimal labeling for a vertical border. We will assume here that ALGO VB
and ALGO Block have the same run time.

The main objective here is to compare the difference of run time between ALGO SL,
ALGO M and ALGO AB in order to find out what is the average time complexity of
Algorithm 14, and to thus verify the intuition that there are no shifted label in most
WAB-labeling. The second objective is to compare the run time of ALGO Block to the
algorithms for an aligned-boundary labeling. In this section, we first describe how we
created the maps for our experiments, and then show some results.

Border Shape. In the previous sections, we saw that in maps where the points are not
too much close to the boundary, ALGO SL and ALGO AB compute the same labeling,
and thus the difference in run time should not be too big. In our experiments, we consider
five different shapes of the boundary.

76

5.3. Run Time Analysis 77

The first is a vertical border, denoted by V B, see Figure 5.11 (a). With this border, we
expect that ALGO SL and ALGO AB have the same run time, and that ALGO M is
much slower. The second border shape is a Singe edge with a slope m = 1.5 close to 1,
denoted by SE. The bottommost node is placed so that the map has the shape of a right
triangle, see Figure 5.11 (b). The third border TE consists of Two edges with a positive
and a negative slope, both strongly slant so that the map has the shape of an isosceles
triangle , see 5.11 (c). The fourth border CIR is composed of five edges so that the map
has approximately a Semicircular shape, see 5.11 (d). The last shape of border depends
on the positions of the points. Given a position of n points, the last border corresponds
to the right side of the convex hull of the points, after being slightly shifted to the right
so that no point touches the border, see Figure 5.11 (e). This border is denoted by CH.

(a) Border V B (b) Border SE (c)
Border
TE

(d)
Border
CIR

(e) Border CH

Figure 5.11: The different shapes of the border. The red strokes correspond to the convex
boundary.

In addition to a general form of the border, we also have to choose the height of the labels.
If the height of the label is too big, then the total size of the labels will be close to the
height of the boundary. Thus, it would not be interesting to use sliding labels, since such
a problem can be more efficiently solved by algorithms for fixed label slots. On the other
hand, if the height of the labels is to small, there will be a lot of clusters, which is not
interesting for experimental results because the optimal position of the labels will rarely
intersect, and thus the minimal labeling will be computed in linear time 1. We arbitrarily
choose a height h of the labels equals to 3

4H, where H is the height of the boundary.

Number of Points. In a map, we generally compute labeling for a small number of
points. In the previous section, we saw boundary labelings for a map of Germany and a
map of Italy. The objective was to annotate the name of each region. In both case there
were not more than 20 labels. In real maps, to have a satisfying readability, the number
of label should not exceed a few hundred. In our experiments, we compute labeling with
at most 200 points. Moreover, the points are randomly chosen depending on a uniform
function.

Results. The results in this section are based on 1000 randomly chosen instances of the
points.

We first study the runtime when the border is vertical. This first case is studied to points
out the time that ALGO M takes by computing O(n) · O(n2) matchings. Figure 5.12
presents the results of our experiments:

As expected, ALGO SL and ALGO AB have the same run time. ALGO Block is slightly
faster since it computes an optimal cluster position in constant time without making a
sweep-line. On the other hand, ALGO M takes nearly a second to compute a labeling
of 50 points. For 200, points, the run time is 15s, which is 10.000 times slower than the

1Since there will be few calls to the algorithm computing minimal cluster labeling.

77

78 5. Evaluation

● ●
●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

50 100 150 200

0
50

00
10

00
0

15
00

0

#Points

tim
e

(m
s)

● ALGO_M

(a) ALGO M

50 100 150 200

0.
0

0.
5

1.
0

1.
5

#Points

tim
e

(m
s)

ALGO_AB
ALGO_SL
ALGO_Block

(b) Others algorithms

Figure 5.12: Run time of the four algorithms when the border is vertical. Figure (a)
presents the runtime for ALGO M which is 10.000 times slower than the
others.

other algorithms. Moreover, for the other border shapes, ALGO SL takes even more time
to compute an optimal labeling. This comes from the fact that for a vertical border, the
points are uniformly distributed, which reduce the chances for the optimal position of two
labels to overlap. In a map with 200 points and the Two-edges border presented above,
ALGO M takes approximately 50s. We deduce that it is worth first computing a labeling
with Algorithm 10 and avoid as much as possible the matching algorithm.

78

5.3. Run Time Analysis 79

Now, we present the average run times for each of the three algorithms ALGO SL, ALGO AB
and ALGO Block for the different shapes of the border.

Figure 5.13 shows the average run times of ALGO SL for the different border shapes.

50 100 150 200

0
5

10
15

20

#Points

tim
e

(m
s)

● ● ● ● ● ● ● ● ● ●
● ● ●

●
● ●

●
● ● ●

●

Two edges
Convex hull
Circle
Single edge
Vertical border

Figure 5.13: Run time of ALGO SL for different border shapes.

The algorithm takes much more time for the boundary containing two edges. It is probably
due to the fact that the shape of the map is such that every point is close to the border.
In Figure 5.11, we can see that the map where the points can be placed is really narrow.
For others border shapes, ALGO SL takes approximatively the same amount of time to
compute an optimal labeling.

We study now the results of ALGO AB for each of the five border shapes, presented in
Figure 5.14. As for ALGO SL, the run time of ALGO AB for the border with two edges
takes a lot more time than for the other border shapes. For 80 points, the run time is
approximately 80s. Therefore, ALGO SL mostly computes labeling with several shifted
labels for this shape of border, which makes ALGO AB much less efficient. For a border
with a circular shape, the run time also increases rapidly. For 80 points, it takes 3 seconds
to compute an optimal labeling. Further computations shows that for 200 points, the run
time exceeds 5s. ALGO AB takes much less time than ALGO M, but still significantly
more time than ALGO SL, see Figure 5.13. We also see here that first calling the sweep-
line algorithm in Algorithm 14 reduce immensely the run time. For the convex hull shape,
further computations shows that it takes around 25ms to compute an optimal WAB-
labeling with ALGO AB. The speed of ALGO AB for this border can be explained with
the same argumentation as for a vertical border. Since most points are placed far away
to the left of the boundary, most labels in the labeling computed by ALGO SL are not
be shifted. We deduce that, for most maps, Algorithm 14 computes an optimal cluster
labeling in a reasonably small run time, but for a few maps, the algorithm must repetitively
call Algorithm 9 to compute a minimal cluster labeling, and consequently the run time
increase immensely.

We finally present in Figure 5.15 the average run times of ALGO Block:

79

80 5. Evaluation

10 20 30 40 50 60 70 80

0
20

00
0

40
00

0
60

00
0

80
00

0

#Points

tim
e

(m
s)

Two edges

(a) Border with two edges

● ● ●

●

●

●

●

●

10 20 30 40 50 60 70 80

0
50

0
10

00
15

00
20

00
25

00
30

00

#Points

tim
e

(m
s)

● Circle
Single edge
Convex Hull
Vertical border

(b) Others border shapes

Figure 5.14: Run time of ALGO AB for different border shapes.

Just as expected, the algorithm is incredibly fast for every border shape, since the algorithm
computes in constant time an optimal cluster position.

80

5.3. Run Time Analysis 81

50 100 150 200

0.
0

0.
5

1.
0

1.
5

2.
0

#Points

tim
e

(m
s)

●
● ●

●
●

● ●
●

●
●

●
●

●

●

● ●

●

●
●

●

●

Two edges
Circle
Convex hull
Single edge
Vertical border

Figure 5.15: Run time of ALGO Block for different border shapes.

81

6. Conclusion

In this thesis, we studied different models of map labeling with a convex boundary. The
motivation of this work was to improve the visual quality of a labeling when the shape
of the map border is far from being vertical. A lot of research has already be done for
one-sided boundary labeling, and one of the models introduced by Bekos et al. [BKSW07]
is to create a labeling where the points and the labels are connected with non intersecting
po-leaders and so that the total leader lengths is minimal. When the right side of the
boundary is not vertical, it is possible to place the anchor of the labels to the left of a
point, which should not happen in the proposed model. Because of this fact, the model used
until now is not complete anymore, and further constraints must be added. In this work,
we assumed that the border is composed exclusively of edges with a big slope. Otherwise,
there would be several locally optimal positions for a label, and thus the problem would
be similar to a multi-sided labeling problem. Moreover, we concentrated our search on a
right-sided labeling problem, and considered that an edge with small slope corresponds to
the top-side or the bottom-side of the convex border. We studied three different ways to
adapt the existent model.

In the first model, we allowed labels to be placed away to the right of from the boundary.
In this case, the shifted label is right below the point it is connected to. We called this
model weakly-aligned boundary labeling model.

The second model requires label to touch the border and allows points and labels to be
connected with op-leaders, when the point is situated to the right of the label. This second
labeling model is denoted by strictly-aligned boundary labeling.

These two models produce good-quality labelings, but the presence of op-leaders and
shifted labels makes the computation of an optimal labeling more difficult. As a result
the worst case time complexity increase immensely. However, a first fast solution can also
been produced, and a simple criteria can tell whether the produced labeling is optimal or
not. Experiments showed that including this fast algorithm in our algorithm reduces the
average run time drastically. A further problem is that the Upward-downward algorithm
used for a vertical or with a convex border consist of a single edge become suboptimal in
the case of a border composed of several edges, which add a worst case time complexity
factor exponential depending on the number of edges. It is still not clear how much this
adaptation can increase the run time, and if this factor is really attained in worst case.

In a last model, we required that the clusters of labels in a labeling must be vertically
aligned in order to prevent the difficulty encountered in the two previous models. To

83

84 6. Conclusion

make the visual quality of the labelings produced with this new model, we added a strong
constraint of local optimality. With this last model, the labeling are produced as fast as
for a vertical boundary, and the position of the labels also take into account the shape of
the border. However, when there are too much labels with a too big height, the produced
labeling may contain a single cluster and the position of the labels would then not follow
the shape of the border into account. The experimental results showed that solutions for
realistically-sized instances are computed instantaneously.

Computing two-sided labelings with minimal leader length and no crossing is a further
challenging problem. It has been studied by Bekos et al. [BKSW07] for fixed labels
positions, but little has been done yet for sliding labels, that is, for labels which can have
any position as long as they do not intersect.

Moreover, it would be interesting to adapt the algorithms for vertical boundary in the
case of dynamic maps, where it is possible for the user to zoom in and out and make the
position of the labels evolve continuously.

Finally, changing slightly the shape of the leader so that leader are not too close to each
others and far enough to the points would be a thrilling research problem. A labeling
would then be produced by a model either containing a further constraint on the leader,
or including this constraint in the badness function.

Acknowledgment

I want to thank my advisors Martin Nöllenburg and Andreas Gemsa for giving me the
opportunity to work on this topic, for having always time and patience for questions and
for provinding me valuable advises in our discussions.

84

Bibliography

[BHKN09] M. Benkert, H. Haverkort, M. Kroll, and M. Nöllenburg, “Algorithms for multi-
criteria boundary labeling,” Journal of Graph Algorithms and Applications,
vol. 13, pp. 289–317, 2009.

[BKNS09] M. A. Bekos, M. Kaufmann, M. Nöllenburg, and A. Symvonis, “Boundary
labeling with octilinear leaders,” Algorithmica, vol. 57, pp. 436–461, 2009.

[BKPS06] M. A. Bekos., M. Kaufmann, K. Potika, and A. Symvonis,“Multi-stacks bound-
ary labeling problems,” Springer Heidelberg, vol. 4337, pp. 81–92, 2006.

[BKPS08] ——, “Area-feature boundary labeling,” The Computer journal, 2008.

[BKSW07] M. A. Bekos, M. Kaufmann, A. Symvonis, and A. Wolff, “Boundary labeling:
Models and efficient algorithms for rectangular maps,” CGTA, vol. 36, pp.
215–236, 2007.

[Cca99] B. Chazelle and . co authors, “The computationary geometry impact task force
report,” Advances in Discrete and Computational Geometry, vol. 23, American
Mathematical Society, Providence, RI, pp. 407–463, 1999.

[CR99] V. Chandru and M. R. Rao, “Integer programming,” vol. 32, pp. 31/1–32/45,
1999.

[GHN11] A. Gemsa, J.-H. Haunert, and M. Nöllenburg, “Boundary labeling algorithms
for panorama images,” ACM GIS 2011, 2011.

[GJ79] M. R. Garey and D. S. Johnson, “Computers and intractability: A guide of
the theory of NP-completeness,” Freeman, 1979.

[Imh75] E. Imhof, “Positioning names on maps,” The American Cartographer, vol. 2,
pp. 128–144, 1975.

[Kar84] N. Karmarkar, “A new polynomial-time algorithm for linear programming,”
Combinatorica, vol. 4, pp. 373–395, 1984.

[Kau09] M. Kaufmann, “On map labeling with leaders,” Springer, pp. 290–304, 2009.

[Kuh55] H. Kuhn,“The hungarian method for the assignment problem,” Naval Research
Logistic Quartery, vol. 2, pp. 83–97, 1955.

[Law76] E. L. Lawler, “Combinatorial optimization: Networks and matroids,” New
York: Holt, Rinehart & Winston, 1976.

[LK08] C.-C. Lin and H.-J. Kao, “Many-to-one boundary labeling,” Journal of Graph
Algorithms and Applications (JGAA), vol. 12(3), pp. 319–356, 2008.

[NPS10] M. Nöllenburg, V. Polishchuk, and M. Sysikaski, “Dynamic one-sided boundary
labeling,” ACM GIS’10, 2010.

85

86 Bibliography

[Vai89] P. M. Vaidya, “Geometry helps in matchings,” SIAM Journal on Computing,
1989.

[vB10] L. Čmoĺık and J. Bittner, “Layout-aware optimization for interactive labeling
of 3d models,” Computers and Graphics, vol. 34, pp. 378–387, 2010.

[Wag93] F. Wagner, “Approximate Map Labeling is in Ω(nlogn). Technical Report b 96-
98,” Fachbereich Mathematik und Informatik, Freie Universität Berlin, 1993.

[Wol96] A. Wolff, “The map labeling bibliography,” 1996. [Online]. Available:
http://i11www.ira.uka.de/map-labeling/bibliography/

[Yoe72] P. Yoeli, “The logic of automated map lettering.” The Cartographic Journal,
vol. 9, pp. 99–108, 1972.

86

http://i11www.ira.uka.de/map-labeling/bibliography/

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.3 Thesis Outline
	1.4 Related Work

	2 Preliminaries
	2.1 Notations
	2.2 Integer Linear Programming
	2.3 Matching Algorithms and Fixed-Labels Labeling
	2.4 Algorithms for Vertical Boundary

	3 Weakly-Aligned Boundary Labeling
	3.1 Labeling on a Single Edge
	3.1.1 Leader Length Functions
	3.1.2 Minimal Cluster Labeling using a Matching Algorithm
	3.1.3 Minimal Cluster Labeling using a Sweep-line Algorithm
	3.1.3.1 Position of a Cluster with Fixed Order
	3.1.3.2 Finding an Optimal Order

	3.1.4 Removing the crossings
	3.1.5 Computing an Optimal Labeling
	3.1.6 Linear Programming
	3.1.7 Conclusion

	3.2 Convex Boundary with Big Slopes
	3.2.1 Leader Length Functions
	3.2.2 Minimal Cluster Labeling using a Matching Algorithm
	3.2.3 Minimal Cluster Labeling using a Sweep-line Algorithm
	3.2.4 Removing the crossings
	3.2.5 Computing an Optimal Labeling
	3.2.6 Integer Linear Programming
	3.2.7 Conclusion

	4 Alternative Labeling Models
	4.1 Strictly-Aligned Boundary Labeling
	4.1.1 General Results
	4.1.2 Minimal Cluster Labeling using a Matching Algorithm
	4.1.3 Minimal Cluster Labeling using a Sweep-line Algorithm
	4.1.4 Crossing Removal
	4.1.5 Conclusion

	4.2 Discrete Labeling using ILP.
	4.2.1 Integer Linear Program
	4.2.2 Choice of Slots
	4.2.3 Conclusion

	4.3 Rectangular Block Labeling
	4.3.1 Border With a Single Edge
	4.3.2 Border With a Several Edges with Big Slopes
	4.3.3 Conclusion

	5 Evaluation
	5.1 Description of the Labeling Programs
	5.2 Quality of the Labelings
	5.3 Run Time Analysis

	6 Conclusion
	Bibliography

