
Extending, Recombining and
Evaluating Contraction Hierarchy

based Many-to-Many Shortest Path
Algorithms

Bachelor Thesis of

Theo Wieland

At the Department of Informatics
Institute of Theoretical Informatics

Reviewers: PD Dr. Torsten Ueckerdt
Prof. Dr. Peter Sanders

Advisors: Tim Zeitz, M.Sc.

Time Period: 8th December 2021 – 8th April 2022

KIT – The Research University in the Helmholtz Association www.kit.edu

Statement of Authorship

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel
vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten
anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT
zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu
haben.

Karlsruhe, April 5, 2022

iii

Abstract

This thesis focuses on efficient algorithms for the one-to-many and the many-to-many
shortest path problem on continental-sized road networks. Shortest path distances
from a set of source locations to a set of target locations are required by many real-
world applications like map matching, the vehicle routing problem or ride-sharing.
To efficiently calculate shortest path distances various speed-up techniques have
been developed in the past. In this work, we study algorithms that use Contraction
Hierarchies to speed up shortest path queries. We systematically examine and
comprehensively evaluate existing algorithms for the one-to-many and the many-to-
many shortest path problem. Additionally, we propose various recombinations and
extensions of existing algorithms to efficiently process multiple source and target
vertices simultaneously. We introduce a new algorithm for the established bucket-
based many-to-many algorithm, that efficiently populates the buckets from multiple
targets simultaneously. By using our proposed algorithm, we are able to beat the
state of the art in different scenarios.

Deutsche Zusammenfassung

Diese Arbeit befasst sich mit effizienten Algorithmen um kürzeste Wege in statis-
chen, kontinentalen Straßennetzen zu berechnen. Wir beschäftigen uns dabei mit
Algorithmen, die alle Distanzen von einem Startpunkt zu einer Vielzahl an Zielpunk-
ten oder alle Distanzen von einer Vielzahl an Startpunkten zu einer Vielzahl an
Zielpunkten berechnen. Die Berechnung solcher Distanzen werden in vielen Anwen-
dungen benötigt, wie z.B. Map Matching, Tourenplanung oder in Anwendungen
die effizient Mitfahrgelegenheiten zuweisen. Wir betrachten hierbei ausschließlich
Algorithmen, die auf Contraction Hierarchies aufbauen, um solche kürzesten Wege
effizient zu berechnen. Wir implementieren und analysieren systematisch die Ef-
fektivität vieler bereits existierender kürzeste Wege Algorithmen. Darüber hinaus
schlagen wir Rekombinationen und Erweiterungen existierender Algorithmen vor,
deren Wirksamkeit wir in unseren Experimenten nachweisen. Alle Rekombinatio-
nen und Erweiterungen zielen darauf ab, effizient mehrere Start- und Zielpunkte
gleichzeitig zu berücksichtigen. Zuletzt schlagen wir einen alternativen Algorithmus
für den etablierten bucket-based Algorithmus vor, welcher die buckets effizient be-
füllt. In einigen Szenarien können wir darüber hinaus mit unserem vorgeschlagenen
Algorithmus, existierende Algorithmen schlagen.

v

Contents

1. Introduction 1
1.1. Related Work . 2
1.2. Contribution . 3
1.3. Outline . 3

2. Preliminaries 5
2.1. Notation . 5
2.2. Dijkstra’s Algorithm . 5
2.3. Contraction Hierarchies . 6

2.3.1. Preprocessing . 6
2.3.2. Query . 7

2.4. Many-to-Many Problem . 8

3. Algorithms 11
3.1. Implementation . 11

3.1.1. Graph Representation . 11
3.2. Buckets . 12

3.2.1. Baseline Algorithm . 12
3.2.2. Stall-on-Demand . 12
3.2.3. Simultaneous Bucket Initialization 13
3.2.4. Pruning Effectiveness . 16
3.2.5. Simultaneous Bucket Initialization Many-to-Many 18

3.3. Hub Labels . 18
3.3.1. Baseline Algorithm . 18
3.3.2. Contraction Hierarchies . 19
3.3.3. Many-to-Many Hub Labels . 19
3.3.4. Label pruning . 20

3.4. PHAST . 21
3.4.1. RPHAST . 21
3.4.2. RPHAST Many-to-Many . 23

3.5. Lazy RPHAST . 24
3.5.1. Baseline Algorithm . 24
3.5.2. Batched Lazy RPHAST . 25

4. Experiments 27
4.1. Environment . 27
4.2. Algorithms . 27
4.3. One-to-Many . 28

4.3.1. Same Ball . 29
4.3.2. Different Balls . 32

4.4. Many-to-Many . 33
4.4.1. Symmetric Case . 33

vii

Contents

4.4.2. Asymmetric Cases . 40
4.4.3. Sources equal Targets . 42

4.5. Bucket Pruning Algorithms . 43

5. Conclusion 45

Bibliography 47

Appendix 49
A. One-to-Many Selection Times - Different Balls 49
B. One-to-Many Query Times - Different Balls 51
C. One-to-Many Selection+Query Times - Different Balls 53
D. One-to-Many Selection Times - Same Ball 55
E. One-to-Many Selection Times - Same Ball 57
F. One-to-Many Selection+Query Times - Same Ball 59
G. Many-to-Many RPHAST Variants - Different Balls 61
H. Many-to-Many HL Variants - Different Balls 63
I. Many-to-Many Bucket Variants - Different Balls 65
J. Many-to-Many Asymmetric - Different Balls 67
K. Many-to-Many RPHAST batched SBI - Batch Size - Different Balls 69
L. Many-to-Many RPHAST batched rank - Batch Size - Different Balls 70
M. Many-to-Many Batched Lazy RPHAST - Batch Size - Different Balls 71

viii

1. Introduction

Determining short routes is a problem that we humans encounter almost daily. Be it the
way to work, to the nearest supermarket or to a desired vacation destination. Luckily, many
applications exist that calculate such shortest paths in road networks for us, i.e. Apple
Maps1, Bing Maps2, and Google Maps3. Nowadays, using such applications for finding
one’s way around has become natural.

In graph theory, the problem of computing an optimal route between two locations is
referred to as the shortest path problem. Although the shortest path problem has been
studied extensively in the past, there has been an increased interest in algorithms that
answer such shortest path queries in real time due to recent trends in web-based map
services and autonomous navigation systems.

To efficiently calculate shortest path distances in road networks several speed-up techniques
have been developed in the past. These speed-up techniques are usually based on a
preprocessing phase that computes some auxiliary data on the road network in advance.
Given that the properties of the network are static, this auxiliary data can be integrated
into a shortest path query to speed up the computation.

In addition to the shortest path distance between two given locations, some applications
require all pairwise shortest path distances between two sets of locations. Unfortunately,
most shortest path algorithms were designed to calculate shortest path distances from a
single source location to a single target location.

To utilize path prediction [EFH+11], one must calculate the shortest path distances from
a single source location to a set of target locations in order to anticipate a trajectory,
assuming that the driver always takes the optimal route. Ride sharing applications must
efficiently match a passenger who requests a ride with one of potential many drivers offering
rides. Hence, one must identify the driver who has to take the smallest detour to meet the
demands of a passenger. Identifying such a driver can be done with multiple one-to-many
and point-to-point shortest path queries. Furthermore, some applications rely on efficient
many-to-many shortest path queries. For example, the travelling salesman problem is
concerned with the following task: Given a list of cities with shortest path distances
between each pair of cities, what is the length of a minimal tour that visits every city once

1https://www.apple.com/maps/
2https://www.bing.com/maps
3https://www.google.com/maps

1

1. Introduction

and returns to the origin city? Hence, in order to solve the travelling salesman problem,
one must first calculate the shortest path distances between all pairs of cities. Additionally,
the vehicle routing problem which is a generalization of the traveling salesman problem
requires the same many-to-many shortest path distances. Lastly, in order to utilize map
matching where one must map a series of imprecise locations to an existing path in the
road network, one must calculate such many-to-many shortest path distances repeatedly.

1.1. Related Work
Although optimal route planning in road networks has been an ongoing topic of re-
search [BDG+16], there has not been much attention on the many-to-many shortest path
problem. Conventional solutions for the many-to-many shortest path problem mostly
answer multiple queries from each source location independently.

Dijkstra’s algorithm [Dij59] was the first to solve the shortest path problem for a single source
location. Although Dijkstra’s algorithm can be used to solve the one-to-many shortest path
problem, in comparison to more efficient speed-up techniques, Dijkstra’s algorithm settles
too many vertices. Especially on continental-sized road networks, Dijkstra’s algorithm is
not practical for most applications.

Faster shortest path queries that do not rely on a preprocessing can be achieved by goal-
directed algorithms that guide the search towards the goal location. A* [HNR68] is a
goal-directed algorithm that uses a heuristic to efficiently guide a shortest path query
towards a single target location. Although it is straightforward to guide a point-to-point
shortest path query towards a given target location, guiding the search towards multiple
targets is not as easy.

As previously stated, further improvements are mainly achieved by speed-up techniques
that calculate some auxiliary data on the network during a preprocessing. Using such a
preprocessing phase reduces the flexibility but allows for faster shortest path calculations.

Contraction Hierarchies [GSSD08] is a speed-up technique that has been successfully
applied on road networks. By utilizing added shortcut edges and a hierarchy, shortest
path queries can be efficiently answered. Various algorithms, like PHAST [DGNW10],
RPHAST [DGW11] and the bucket-based algorithm as proposed by Knopp et al. [KSS+07],
exist that use Contraction Hierarchies as their speed-up technique.

The bucket-based algorithm as proposed by Knopp et al. [KSS+07], was one of the first to
specifically solve the many-to-many shortest path problem. The algorithm was initially
based on Highway Hierarchies [SS06], but can be applied to any hierarchical speed-up
technique like Contraction Hierarchies as stated by Delling et al. [DGW11]. The bucket-
based algorithm is able to efficiently calculate all shortest path distances from a set of
source vertices S to a set of target vertices T , without having to perform individual |S| · |T |
point-to-point shortest path queries.

PHAST [DGNW10] is an extension of Contraction Hierarchies that is better suited for
modern computer architectures as it accesses memory more efficiently by taking data
locality into account. As stated by Delling et al. [DGNW10], PHAST is able to calculate
the shortest path distances from one source location to all vertices in the graph with
essentially a single linear sweep over all edges.

The RPHAST [DGW11] algorithm is currently one of the fastest algorithm to calculate
shortest path distances from one source location to a set of target locations. Although
Delling et al. in [DGW11] mainly considered algorithms for the one-to-many problem,
they also covered algorithms for the many-to-many problem briefly. SSE RPHAST, an

2

1.2. Contribution

algorithm that uses SIMD instructions to batch multiple sources in one RPHAST query,
is currently the fastest algorithm to calculate all many-to-many shortest path distances
in many scenarios. Our work builds on and extends the ideas as present by Delling et
al. [DGW11], whereby we place a greater focus on the many-to-many problem.

Hub Labels [ADGW10] currently allow for the fastest point-to-point shortest path queries
on continental-sized road networks after a preprocessing. To make the algorithm practical
on continental-sized road networks, Hub Labels can be realized with Contraction Hierar-
chies [ADGW10]. Using Hub Labels to speed-up one-to-many or many-to-many shortest
path queries has not received much attention. A trivial approach to use Hub Labels to
calculate one-to-many or many-to-many shortest path distances is to perform multiple
point-to-point shortest path queries.

Different approaches to the many-to-many problem that do not require a preprocessing
phase include the clustered MSP algorithm, as proposed by Jagadeesh and Srikanthan [JS19].
The clustered MSP algorithm identifies a set of exit vertices that must be traversed by a
shortest path from any clustered source to vertices outside a given range. Such exit vertices
are used to speed up all many-to-many shortest path queries.

1.2. Contribution
In this thesis, we systematically examine existing Contraction Hierarchy based algorithms
for the one-to-many and the many-to-many shortest path problem. Moreover, we comprehen-
sively evaluate the performance of all algorithms in different scenarios on continental-sized
road networks.

We propose various recombinations and extensions of existing algorithms to efficiently
process multiple source and target vertices simultaneously. Furthermore, we propose a new
algorithm that improves the bucket-based many-to-many algorithm as initially proposed
by Knopp et al. [KSS+07]. Based on our proposed algorithm, we are able to efficiently
solve the many-to-many problem.

1.3. Outline
This thesis is structured in four chapters.

We introduce preliminaries in Chapter 2, additionally we cover the basic notation and
formally define the problem that we study in this thesis. Furthermore, we discuss Contrac-
tion Hierarchies. In Chapter 3, we describe all one-to-many and many-to-many algorithms
implemented for this thesis in detail. Moreover, we present various modifications as well
as recombinations of existing algorithms in Chapter 3. Lastly, we present the results of
our experiments in Chapter 4. We conduct a series of one-to-many and many-to-many
experiments that aim to highlight the key differences between all algorithms.

3

2. Preliminaries

2.1. Notation
Formally, we define a directed graph G = (V,E) as a tuple of vertices V and edges
E ⊆ V × V . Let n := |V | be the number of vertices and m := |E| the number of edges in
the graph G.

A road network can be described by a directed graph G = (V,E). Each vertex v ∈ V
represents an intersection and each edge (u, v) ∈ E represents a road segment. Furthermore,
the time needed to travel along a given road segment (u,w) ∈ E can be described by a
weight function ω : E → R≥0.

Given two vertices s, t ∈ V , we specify a path from s to t as a list of vertices P := (v0 =
s, . . . , vn = t) where (vi, vi+1) ∈ E. The weight function can be extended to paths as

follows: ω(P) :=
n−1∑
i=0

ω(vi, vi+1). Let D(s, t) be the minimal weight of a shortest path from

s to t in G. In case there is no path from s to t, we define D(s, t) :=∞.

2.2. Dijkstra’s Algorithm
A common approach to compute shortest paths in graphs is to use Dijkstra’s algo-
rithm [Dij59]. Dijkstra’s algorithm calculates shortest paths from a single source vertex to
all vertices. Given a graph G = (V,E) as well as a source vertex s ∈ V , Dijkstra’s algorithm
grows a tree of shortest paths starting from s. The algorithm maintains a distance array
d[v] that stores the tentative distance from s to v. Furthermore, the algorithm maintains
an array of parent vertices p[v] that stores the parent of v on a shortest path from s to v.
Lastly, a priority queue Q that contains unsettled vertices ordered by minimum distance
d[v] is required by the algorithm.

Initially, the distance value d[v] is set to ∞ and the parent p[v] to ⊥ for all vertices v ∈ V .
Moreover, the distance value d[s] is set to zero and the parent vertex p[s] is set to s for the
source vertex s. Lastly, the priority queue Q is initialized with s.

In each iteration, a vertex v with minimum distance d[v] is removed from Q and settled
by relaxing every edge: The algorithm examines every edge (v, w) ∈ E as follows: If
d[v] + ω(v, w) < d[w], d[w] is updated by assigning d[v] + ω(v, w) to it. Furthermore, in
such a case the parent p[w] is updated to v. Lastly, w is either added to Q or has its
position updated according to the reduced tentative distance d[w].

5

2. Preliminaries

We refer to the search space as the set of all vertices settled by the algorithm.

The algorithm can be extended to stop early, by checking if all relevant target vertices have
been settled. Once a vertex has been settled, its associated distance value d[v] is final and
holds the shortest path distance from s to v.

Although Dijkstra’s algorithm has a theoretical running time of O(n logn+m) by using
Fibonacci heaps [FT87], it is not usable in modern routing planning applications as it is
too slow on continental-sized road networks.

Algorithm 2.1: Dijkstra
Input: Graph G = (V,E), weight function ω and a source vertex s
Data: Priority queue Q ordered by minimum distance d[v]
Output: tentative distances d[v], shortest-path tree from s given by p[·]
// Initialization

1 forall v ∈ V do
2 d[v]←∞
3 p[v]← ⊥
4 Q.insert(s, 0)
5 d[s]← 0
6 p[s]← s

// Main loop
7 while Q is not empty do
8 u← Q.deleteMin()
9 forall (u, v) ∈ E do

10 if d[u] + ω(u, v) < d[v] then
11 d[v]← d[u] + ω(u, v)
12 p[v]← u
13 if Q.contains(v) then
14 Q.decreaseKey(v, d[v])
15 else
16 Q.insert(v, d[v])

2.3. Contraction Hierarchies
Contraction Hierarchies (CH) [GSSD08] is a speed-up technique that can be used to
efficiently calculate shortest paths in road networks. The fundamental concept of a CH is
to introduce a hierarchy that ranks all vertices in increasing order of importance. Based
on such a ranking and a corresponding augmented graph G+, shortest path queries can
be answered by only settling a few vertices, compared to Dijkstra’s algorithm. A ranking
is based on the idea that some vertices and adjacent edges are more important than
others. For example, a highway that connects two cities that are far apart can be more
important than two intersections that share a connecting road inside a local neighborhood
. Nevertheless, for the query algorithm to calculate correct shortest path distances, any
ranking is applicable, though query times can vary with respect to different orders of
importance.

2.3.1. Preprocessing
The preprocessing phase computes an augmented graph G+ based on the importance of
each vertex. We assume that the importance of each vertex is known in advance, otherwise

6

2.3. Contraction Hierarchies

it is also possible to dynamically rank the vertices while calculating G+. We denote the
importance of each vertex v with rank(v). In case a vertex v is more important than
another vertex w we require that rank(v) > rank(w). Lastly, rank(·) must define a strict
total order among all vertices.

We calculate G+ by iteratively contracting a vertex v, such that v has the lowest rank
among all vertices that have not been contracted yet. Initially, the augmented graph
G+ := (V,E+) is equal to the original graph G = (V,E). To contract v, the algorithm
assumes that v is no longer present in G+ by also preserving all shortest path distances.
Hence, we add shortcut edges to G+, in order to preserve shortest path distances among
the remaining vertices. Shortcut edges are added based on the following condition: If for
any incoming edge (u, v) ∈ E+ into v and any outgoing edge (v, w) ∈ E+ from v, a shortest
path from u to w contains v, a shortcut edge (u,w) must be added to E+. In doing so,
we can use the added shortcut edge to bypass v during a shortest path query. The length
of the added shortcut edge (u,w) is equal to ω(u, v) + ω(v, w). The process of checking if
(u, v, w) is the only shortest path from u to w is called a witness search. A shortcut edge is
not required if the witness search finds a shorter path from u to w that does not contain
v. During each vertex contraction we assume that only the vertices that have not been
contracted are present in the graph. Hence, we only examine all incoming and outgoing
edges that start or lead to vertices that have not yet been contracted. Furthermore, the
witness search only settles vertices that have not been contracted.

2.3.2. Query

As previously stated, a shortest path query can be efficiently answered by only settling a few
vertices in G+ based on the added shortcuts and the relative rank of each vertex. Formally,
we introduce the upward graph G↑ as the graph that contains exclusively edges leading
to vertices with a higher rank, hence E↑ := {(u, v) | (u, v) ∈ E+, rank(u) < rank(v)}.
Likewise, the downward graph G↓ contains exclusively edges leading to vertices with a
lower rank, hence E↓ := {(u, v) | (u, v) ∈ E+, rank(u) > rank(v)}. G+ is equal to both
G↑ and G↓ combined.

The query algorithm uses a bidirectional version of Dijkstra’s algorithm. The bidirectional
query algorithm runs two instances of Dijkstra’s algorithm, to settle the vertices in G+.
A forward search runs on G↑ while a backward search runs on G↓. The backward search
settles vertices in G↓ by using Dijkstra’s algorithm on the reversed graph ←−G↓ := (V,←−E ↓),
where ←−E ↓ := {(w, v) | (v, w) ∈ E↓}. Additionally, the bidirectional search keeps track of
a vertex u that minimizes µ = dist(s, u) + dist(u, t). Initially, µ is set to ∞. We denote
the shortest path distance from s to u in G↑ with dist(s, u). Likewise, we use dist(u, t) to
denote the shortest path distance from u to t in G↓. Furthermore, we want to emphasize
that dist(s, u) and dist(u, t) may not be equal to the shortest path distance D(s, u) and
D(u, t) in G respectively.

We now describe the bidirectional query algorithm in detail. The query algorithm alternates
between settling vertices from the forward search and the backward search. While settling
a vertex v, each search checks if v has also been reached by the other search. If so, the
algorithm updates u and µ: If d↑[v] + d↓[v] < µ, the algorithm assigns µ = d↑[v] + d↓[v] and
u = µ. We denote the distance array of the forward search with d↑[v], hence the distance
from s to v in G↑, as calculated by the forward search, is equal to d↑[v]. Likewise, d↓[v]
denotes the distance calculated by the backward search. d↓[v] is equal to the shortest path
distance from t to v in ←−G↓, which is equal to the shortest path distance from v to t in G↓.
Lastly, the algorithm aborts as soon as the minimum distance of both priority queues is
greater than µ or both priority queues are empty. The shortest path distance from s to t
in G+ is equal to µ.

7

2. Preliminaries

0

1

2

3

4

5

6

ra
nk

7

5
7

3

8

4

12

10
12

Figure 2.1.: Contraction Hierarchy query from v3 to v4.

We refer to Figure 2.1 for a schematic representation of a query, where v3 is the source
vertex and v4 is the target vertex. Shortcuts that were added during the preprocessing
are shown with a dashed line. Vertices visited by the forward search in G↑ from v3 are
highlighted in green. Likewise, vertices visited by the backward search in G↓ from v4 are
highlighted in blue. To calculate the shortest path distance from v3 to v4 we must only
settle v3, v5, v6 and v4. The only edges examined are the three added shortcut edges.

Theorem 2.1. The CH query algorithm calculates correct shortest path distances from s
to t in G.

Proof. Given that the forward search calculates only upward-paths and the backward search
only calculates downward-paths we must prove that G+ contains a shortest path from s to
t that is an upward-downward path. Furthermore, the upward-downward path must be of
equal length to a shortest path in G.

Let P be a shortest path from s to t in G+. If P is an upward-downward path we have
nothing to prove. Otherwise, we assume that P is not an upward-downward path. Hence,
there must exist a vertex v in P such that both its predecessor u and successor w have a
higher rank than v. In this case, by definition of the CH preprocessing, v was contracted
before u and w. Hence, either a shortcut edge from u to w was added to G+, or the witness
search found a shortest path from u to w by only settling vertices with a higher rank than
v in G+. This contradicts the assumption that P is not an upward-downward path.

Additionally, because G+ was constructed by only adding shortcut edges, the calculated
distance is equal to the shortest path distance in the original graph G.

2.4. Many-to-Many Problem
The many-to-many problem is the problem of computing all shortest path distances from a
set of source vertices to a set of target vertices.

Formally, we receive a directed and weighted graph G = (V,E), a non-empty set of sources
S ⊆ V as well as a non-empty set of targets T ⊆ V . The goal is to compute a distance
table R|S|×|T | that stores the shortest path distance from each s ∈ S to all t ∈ T denoted

8

2.4. Many-to-Many Problem

by D[s, t]. Naively computing all shortest path distances requires |S| · |T | individual
point-to-point shortest path queries. Fortunately, multiple algorithms exist that compute
this distance table much more efficiently. In the following work we are going to cover such
algorithms that efficiently solve the many-to-many problem.

Other similar problems are the one-to-many problem, the many-to-one problem and the
point-to-point problem. The one-to-many problem is the problem of calculating shortest
paths from one source vertex to a set of target vertices. Likewise, the many-to-one problem
is the problem of calculating shortest paths from multiple sources to one target vertex.
Lastly, the point-to-point problem is the problem of calculating a shortest path from a
single source vertex to a single target vertex.

9

3. Algorithms

In this chapter, we discuss all algorithms implemented for this thesis in detail. Furthermore,
we present various modifications as well as recombinations of existing algorithms.

All algorithms are built on top of a CH preprocessed graph. We therefore assume that the
CH preprocessing was executed in advance. Each algorithm is supplied with the augmented
graph, G↑ and G↓. Moreover, a set of source vertices S ⊆ V and a set of target vertices
T ⊆ V are given as input to each algorithm.

The goal of each algorithm is to compute all shortest path distances D(s, t), for all
(s, t) ∈ S × T . We store all shortest path distances in a two-dimensional array denoted by
D[s, t]. We are only interested in the distance of a shortest path and not the shortest path
by itself.

3.1. Implementation
3.1.1. Graph Representation

Given that all algorithms need to efficiently traverse a graph, we need a data representation
that allows efficient access to adjacent vertices and associated edge weights. We use the
adjacency array representation that stores the graph in a pair of arrays. We refer to these
arrays as the first array and the arclist array.

We assume that vertices have sequential IDs from 0 to n− 1.

To represent G↑, we store each edge together with its associated weight in the arclist array.
Each edge (v, u) ∈ E↑ is stored as a pair containing the ID of the head vertex u and
the weight ω(v, u) associated with that edge. Furthermore, we sort the arclist array in
ascending order based on the tail ID of each edge. By following this approach, all outgoing
edges starting from a given vertex v are stored consecutively in the arclist array. Finally,
we store the position of the first outgoing edge from v in the arclist array in first[v]. In
doing so, we can iterate over the arclist array from first[v] to first[v + 1] in order to access
all outgoing edges from v. Additionally, first[n] is set to m to avoid special cases.

We take a slightly modified approach to store G↓. A CH backward search in G↓ needs
to efficiently access all incoming edges that lead to a given vertex v. Hence, we cannot
use the adjacency array representation as is. Instead of storing G↓, we store the reversed
graph ←−G↓, ←−G↓ := (V,←−E ↓) in the same way as we store G↑. Edges in ←−G↓ are equal to:
←−
E ↓ := {(w, v) | (v, w) ∈ E↓}.

11

3. Algorithms

To further improve memory locality and reduce the number of cache misses, vertex IDs
can be permuted appropriately. We permute vertex IDs based on their rank, such that
vertex ID = rank.

3.2. Buckets
3.2.1. Baseline Algorithm

The bucket-based algorithm, as proposed by Knopp et al. [KSS+07], was one of the first to
efficiently answer many-to-many shortest path queries. The algorithm was initially based
on Highway Hierarchies [SS06], but can be applied to any hierarchical speed-up technique
like Contraction Hierarchies as stated by Delling et al. [DGW11].

The main concept behind the algorithm is to perform the CH forward and backward
searches only once for each source and target vertex. Naively computing all required
shortest path distances requires |S| · |T | forward and backward searches.

The bucket-based algorithm maintains a bucket B(v) for each vertex. Initially each bucket
B(v) is empty, and later populated during the target selection phase. Each bucket can
store multiple pairs, consisting of a target vertex t and the shortest path distance from v
to t in G↓, denoted by dist(v, t). Additionally, the bucket algorithm directly modifies the
distance values for each (s, t) ∈ S × T in D[s, t]. Initially, all entries in the distance array
D are set to ∞.

Buckets are populated through multiple CH backward searches during the target selection
phase. We perform one CH backward search from each t ∈ T in G↓ consecutively. For every
settled vertex v, during such a backward search from t, a pair (t, dist(v, t)) is added to
B(v). Hence, once finished with all backward searches, each bucket B(v) contains multiple
pairs (t, dist(v, t)). One pair each for all targets t that can be reached from v in G↓.

During the subsequent query phase the information available in each bucket is used to
simulate |S| · |T | individual shortest path queries. The query algorithm performs |S|
separate one-to-many queries to calculate all shortest path distances. Each one-to-many
query performs a CH forward search from a different s ∈ S in G↑ to settle vertices. While
settling a vertex v, the bucket contents of the associated bucket B(v) are used to update
the tentative distances in D. More precisely, for each bucket entry (t, dist(v, t)) ∈ B(v),
D[s, t] is updated by assigning D[s, t] = min{D[s, t], dist(s, v) + dist(v, t)}.

Once the algorithm is finished with all CH forward searches, D[s, t] is equal to the shortest
path distance D(s, t) from s to t in G, for all (s, t) ∈ S × T .

3.2.2. Stall-on-Demand

In the following, we discuss and illustrate cases where some bucket entries can be removed
without jeopardizing the correctness of the algorithm.

Because G↓ is constructed as a subgraph of G+ that only contains selected edges, a shortest
path from v to t in G↓ might be longer than a shortest path from v to t in G+. Hence, such
entries where the associated distance dist(v, t) is greater than the shortest path distance
D(v, t), from v to t in G+, only require unnecessary scanning time. We apply a fast
heuristic, similar to the stall-on-demand technique [SS07], to identify and remove most
unnecessary bucket entries.

We check for bucket entries with unnecessary distance values by using a one-step lookahead.
We implement the following procedure into the target selection phase, during which we
perform a CH backward search from each t ∈ T to populate the buckets. Let v be the

12

3.2. Buckets

currently settled vertex with associated shortest path distance dist(v, t) in G↓ during such a
backward search from t ∈ T . If for any outgoing edge (v, w) ∈ G↑, ω(v, w)+d[w] < dist(v, t)
is true, we know that dist(v, t) > D(v, t). Hence, a shorter path from v to t exists in G+

that traverses w before reaching t instead of going from v to t without traversing w.

Figure 3.1 depicts this concept. Because vertices are settled in increasing order of minimum
distance, w is settled before v during a backward search from t. Thus, d[w] = 1 while
we settle v. Consequently, while settling v, ω(v, w) + d[w] < dist(v, t) is true. Hence,
we do not have to add a bucket entry to B(v). Additionally, we do not relax any edges
otherwise relaxed from v, as calculated distances would be unnecessary as well. Without
the stall-on-demand technique a bucket entry (t, 10) would be added to B(v).

t

w

v

ra
nk

10 1

1

Figure 3.1.: Stall-on-Demand visualization.

3.2.3. Simultaneous Bucket Initialization

Rather than performing a separate backward search for each target t ∈ T , we propose
an algorithm to simultaneously populate the buckets for all targets T at once. Our
proposed algorithm only replaces the target selection phase of the bucket-based algorithm
in Section 3.2.1. The query phase remains unchanged.

First, we give an outline of the main concept behind the algorithm, followed by a more
detailed explanation. Additionally, we refer to Algorithm 3.1 for the pseudocode of the
algorithm. The algorithm settles vertices in increasing rank order. For each settled vertex,
we copy bucket entries from previously settled adjacent vertices to the current vertex.
Furthermore, we merge bucket entries from all adjacent vertices by adding only one entry
to the bucket of the current vertex for each discovered target. The distance associated with
each target is equal to the shortest path distance to that target in G↓.

To access all previously settled adjacent vertices, we need to modify how we access G↓.
Unfortunately, we cannot use the adjacency array representation to access all adjacent
vertices as intended. The first and arclist array that store G↓ only allow efficient access to
all incoming edges. By using the adjacency array, we can only efficiently iterate over all
edges (u, v) ∈ E↓ where rank(u) > rank(v) for a given vertex v. However, to copy bucket
entries, we need to access all edges (v, w) ∈ E↓ where rank(v) > rank(w) for a given
vertex v. Instead of modifying how G↓ is stored in the first and arclist array, we propose
a different approach that also reduces the number of accessed edges. By following our
approach we only store selected edges, namely those edges leading to vertices that are in
the combined search space as discovered by all CH backward searches from all targets T in
G↓. In case we were to store the entire graph G↓ alternatively we would access more edges
compared to our approach. We maintain an adjacency list denoted by DownVertices(v)
to access edges as required. DownVertices(v) is initialized as an empty list and populated
as follows: While settling a vertex v, we use the usual adjacency array representation to
access all incoming edges (u, v) ∈ E↓. Given u, with rank(u) > rank(v), we add a pair
(v, ω(u, v)) to DownVertices(u). Thus, DownVertices(u) can be used to access all outgoing

13

3. Algorithms

edges from u that lead to vertices with a lower rank. Because we settle vertices in increasing
rank order, DownVertices(u) is fully populated as soon as we settle u.

Next we are going to elaborate on an efficient algorithm to efficiently merge all bucket
entries from previously settled adjacent vertices. Moreover, we efficiently calculate the
shortest path distance to each target by iterating over each adjacent bucket only once. We
initially create an empty list T ′ and a distance array d[t]. T ′ is used to mark all targets
t ∈ T such that a path from v to t exists in G↓, where v is the vertex we currently settle.
Additionally, we store the tentative shortest path distance from v to t in d[t], initially d[t]
is set to ∞. During the initialization, we add pair (t, 0) to B(t) for each t ∈ T . By adding
such a pair, we indicate that t can be reached from t, with a shortest path of length zero.
Lastly, we initialize a priority queue Q ordered by minimum rank rank(v) with all targets
t ∈ T . In each iteration, a vertex v with minimum rank is removed from Q and settled. We
perform the following steps to settle v: First we iterate over all edges (u, v) ∈ E↓ and add
u to Q in case it has not been added before. Additionally, we add v to DownVertices(u)
as previously stated. In order to prepare for copying bucket entries we need to access all
buckets of vertices adjacent to v. Iterating over all entries (w,ω(v, w)) ∈ DownVertices(v)
reveals all adjacent vertices. Accessing (t, dist(w, t)) ∈ B(w) for each w points us to all
available bucket entries to copy. The algorithm processes each discovered t as follows: If
t /∈ T ′, t is added to T ′. Moreover, d[t] = min{d[t], ω(v, w) + dist(w, t)}, no matter the
previous condition. Once finished with all w, T ′ contains all targets t such that v has a
path to t in G↓. The associated shortest path distance from v to t is stored in d[t]. Hence,
we add a pair (t, d[t]) to B(v) for each t ∈ T ′. Finally, we reset the tentative distances by
setting d[t] to ∞ for all t ∈ T ′. Lastly, we remove all entries from T ′, in order to reuse T ′
during the following iteration.

Retrospective Pruning

Although the simultaneous bucket initialization efficiently populates the buckets from all
targets T at once, it lacks a pruning criterion. Without removing unnecessary bucket
entries, a shortest path query spends too much time on scanning each bucket. Again,
we use a one-step lookahead to prune bucket entries with unnecessary distance values.
The idea is the same as for the stall-on-demand technique that we applied to the bucket
initialization as proposed by Knopp et al. in Section 3.2.2. However, because we settle
vertices in increasing rank order we must adjust our approach. By settling vertices in
increasing rank order, we cannot rely on vertices with a higher rank to prune bucket entries,
as they have not been initialized yet. Hence, we cannot look at outgoing upward edges
to prune bucket entries directly. Instead, we prune buckets of previously settled vertices
retrospectively. While settling a vertex v, we want to access all vertices u adjacent to v
via an incoming edge (u, v) ∈ E↑, where rank(v) > rank(u). Given such a vertex u, we
use the tentative shortest path distances d[t] to check for the following condition: If B(u)
contains a bucket entry (t, dist(u, t)) with dist(u, t) > ω(u, v) + d[t] we can remove t from
B(u). Because v is the vertex we currently settle, d[t] is equal to the shortest path distance
from v to t in G↓.

Given that we need to access d[t], we first initialize d[t] as mentioned in Section 3.2.3.
As soon as d[t] is initialized, we use d[t] to prune bucket entries as stated. To efficiently
access all u, with (u, v) ∈ E↑ where rank(u) < rank(v), we maintain another adjacency
list UpVertices(v). UpVertices(v) follows the same concept as DownVertices(v), but stores
edges (u, v) ∈ E↑. Unfortunately, we also initialize UpVertices(v) for vertices that we do
not necessarily settle. Hence, we must clear UpVertices(v) appropriately, in case we reuse
the data structure for multiple many-to-many queries. We can clear DownVertices(v) after
settling v, so that DownVertices(w) is empty for all w ∈ V after the algorithm is finished.

14

3.2. Buckets

Algorithm 3.1: Simultaneous Bucket Initialization
Input: G↓ and G↑, weight function ω and a set of target vertices T ⊆ V
Data: Priority queue Q ordered by minimum rank, Terminals, distance array d[t],

DownVertices(v), UpVertices(v)
Output: The populated buckets B(v)
// Initialization

1 forall v ∈ V do
2 initialize an empty bucket B(v)
3 forall t ∈ T do
4 Q.insert(t,rank(t))
5 B(t).append((t, 0))
6 d[t]← ⊥

// Main loop
7 while Q is not empty do
8 v ← Q.deleteMin()

// Initialize DownVertices (u)
9 forall (u, v) ∈ E↓ do

10 DownVertices(u).append((v, ω(u, v)))

// Initialize UpVertices (u)
11 forall (v, u) ∈ E↑ do
12 UpVertices(u).append((v, ω(v, u)))

// Discover bucket entries to copy
13 forall (w,ω(v, w)) ∈ DownVertices(v) do
14 forall (t, dist(w, t)) ∈ B(w) do
15 if d[t] 6= ⊥ then
16 Terminals.append(t)
17 d[t]← min{d[t], ω(v, w) + dist(w, t)}

// Apply the retrospective pruning algorithm
18 forall (w,ω(w, v)) ∈ UpVertices(v) do
19 forall (t, dist(w, t)) ∈ B(w) do
20 if dist(w, t) > ω(w, v) + d[t] then
21 B(w).remove((t, dist(w, t)))

// Copy bucket entries to the current vertex
22 forall t ∈ Terminals do
23 B(v).append((t, d[t]))
24 d[t]← ⊥
25 Terminals.clear

15

3. Algorithms

3.2.4. Pruning Effectiveness

In this section we compare the effectiveness of the stall-on-demand technique (Section 3.2.2)
against the retrospective pruning that we applied to the simultaneous bucket initialization
(Section 3.2.3). Although both algorithms reduce the number of bucket entries by roughly
80 percent, in some scenarios one algorithm produces fewer bucket entries than the other.
However, no algorithm is strictly better than the other. We refer to Section 4.5 for an
experimental analysis of the effectiveness of different pruning algorithms.

In the following we discuss the conditions for differences in bucket sizes to occur. In both
illustrations, Figure 3.2 and Figure 3.3, the two algorithms are compared against each
other. Each algorithm performs the initialization for a single target vertex. In this case v0
is the target vertex. Each vertex is displayed with its vertex ID and the contents of its
bucket. We denote each bucket entry as a pair that contains the ID of the target vertex
together with the associated distance to that target (notation: (ID, distance)). Vertices
are ordered in increasing rank order along the vertical axis. Also, each vertex ID is equal
to its rank.

In Figure 3.2 the stall-on-demand technique produces a total of two bucket entries. However,
the simultaneous bucket initialization produces an additional entry that is not necessarily
required. The bucket entry (0, 11) ∈ B(v2) is not required, as a shorter path from v2 to v0
is discovered by continuing the forward search until settling v4.

Because the stall-on-demand technique settles vertices in increasing order of minimum
distance, vertices are settled in the following order: Initially the algorithm starts with
v0, proceeds with v4, and lastly settles v1. After settling v1, the pruning criterion is true.
Hence, further edges are not relaxed. This way, v2 is never settled. Additionally, v3 is
never settled because it has no path to v0 by only using downward edges.

The simultaneous bucket initialization settles all vertices from v0 to v4 in increasing rank
order. While settling the last vertex, v4, only the buckets of v1 and v3 are available for
pruning. This way, the associated buckets of v1 and v3, do not have an entry to the target.
Unfortunately, v2 keeps its unnecessary bucket entry.

Figure 3.3 demonstrates a case in which the simultaneous bucket initialization populates
the buckets with fewer entries than the stall-on-demand technique.

Again, the stall-on-demand technique settles vertices in increasing order of minimum
distance. Hence, vertices are settled in the following order: First v0, then v4 and v2, and
lastly v1. Unfortunately, v3 is never settled because the pruning criterion is true for v2,
thus the edge (v2, v3) is never relaxed. Because v3 is never settled, the pruning criterion is
false for v1. This way the unnecessary bucket entry at v1 is not pruned.

The simultaneous bucket initialization settles vertices from v0 to v4 in increasing rank
order. Initially, a bucket entry (v0, 5) is added to v1, but later pruned. Whilst settling v3,
a shorter path from v1 to v0 is discovered (v1-v3-v2-v0). Therefore, the algorithm removes
the unnecessary entry from B(v1). Likewise, by settling v4, respective bucket entries in v2
and v3 are pruned.

Based on our experimental evaluation in Section 4.5, the stall-on-demand technique
is marginally better at removing unnecessary bucket entries. However, given that the
simultaneous bucket initialization with the retrospective pruning is generally faster than
the stall-on-demand technique, no clear winner can be picked. Nonetheless, both techniques
are very effective in removing unnecessary bucket entries.

16

3.2. Buckets

v0
{(0, 0)}

v1
∅

v2
∅

v3
∅

v4
{(0, 1)}

ra
nk

10

2

1

1

1

1

(a) Stall-on-Demand Initialization

v0
{(0, 0)}

v1
∅

v2
{(0, 11)}

v3
∅

v4
{(0, 1)}

ra
nk

10

2

1

1

1

1

(b) Simultaneous Bucket Initialization

Figure 3.2.: Buckets as populated by different algorithms.

0
{(0, 0)}

1
{(0, 4)}

2
∅

3
∅

4
{(0, 1)}

ra
nk

5

1

3

1
1

2

1

(a) Stall-on-Demand Initialization

0
{(0, 0)}

1
∅

2
∅

3
∅

4
{(0, 1)}

ra
nk

5

1

3

1
1

2

1

(b) Simultaneous Bucket Initialization

Figure 3.3.: Buckets as populated by different algorithms.

17

3. Algorithms

3.2.5. Simultaneous Bucket Initialization Many-to-Many

In this section we introduce a new algorithm that efficiently solves the many-to-many
problem. The algorithm uses the simultaneous bucket initialization (SBI), as described in
Section 3.2.3, to perform both the forward and backward search in G+.

Initially, the algorithm follows the same concept as the bucket algorithm. Given our set of
target vertices T , we use the SBI to populate buckets in G↓. We denote to the buckets
initialized by the SBI in G↓ with BT (v). Hence, BT (v) contains entries (t, dist(v, t)), for
multiple t ∈ T .

Following this backward initialization, we use the SBI again to populate buckets BS(v) in
G↑. However, to use the SBI on G↑ we must slightly modify the algorithm. We use the SBI
on G↑, by using DownVertices(v) to store edges (w, v) ∈ E↑, where rank(v) > rank(w).
The retrospective pruning must be modified analogously to consider edges in E↓ during
the forward initialization. Lastly, we initialize the modified SBI with all sources S. Hence,
BS(v) contains entries (s, dist(s, v)), for multiple s ∈ S. In this case, dist(s, v) is equal
to the shortest path from s to v in G↑. The distances stored in BT (v) are equal to the
shortest path distance from v to t in G↓.

To calculate all shortest path distances, we must combine the information available in
BS(v) and BT (v) for each v ∈ V . We initialize a set of vertices V ′, such that V ′ contains all
vertices that we previously settled during the forward initialization as well as the backward
initialization. Furthermore, V ′ must only contain vertices v ∈ V ′, such that BS(v) is not
empty and BT (v) is not empty.

Lastly, we iterate over all v ∈ V ′ to calculate all shortest path distances. For each
v, we iterate over all bucket entries (s, dist(s, v)) ∈ BS(v), each time iterating over all
bucket entries (t, dist(v, t)) ∈ BT (v). Finally, we use dist(s, v) and dist(v, t) to update
D[s, t] = min{D[s, t], dist(s, v) + dist(v, t)}.

Once finished with all v ∈ V ′, D[s, t] is equal to the shortest path distance from s to t in
G, for all (s, t) ∈ S × T .

3.3. Hub Labels

3.3.1. Baseline Algorithm

Hub Labels (HL) is currently one of the fastest algorithm to calculate point-to-point shortest
path distances. The HL algorithm was initially proposes by Abraham et al. [ADGW10] as
a two stage algorithm. During the preprocessing, a forward label Lf (v) and a backward
label Lb(v) is calculated for each vertex v. Each forward label Lf (v) is made up of a set
of vertices u ∈ V , with the associated shortest path distance D(v, u) from v to u in G.
Analogously, each backward label Lb(v) contains a set of vertices w ∈ V , together with the
associated shortest path distance D(w, v) from w to v in G.

The labels must have the cover property, in order for the query algorithm to calculate
correct shortest path distances. For every pair of vertices (s, t) ∈ V × V , Lf (s) ∩ Lb(t)
must contain a vertex h that is part of a shortest path from s to t. Hence, the shortest
path distance from s to t is equal to D(s, h) +D(h, t). Based on the cover property and
an appropriate data representation, a point-to-point shortest path query can be answered
very efficiently. As previously stated, the query algorithm must search for such a vertex
h that minimizes D(s, h) +D(h, t). By storing the labels in a consecutive memory slice
sorted by their hub vertex, we can scan Lf (s) and Lb(t) simultaneously for h. We present
the details of the query algorithm in Algorithm 3.2.

18

3.3. Hub Labels

Algorithm 3.2: Hub Labels query
Input: forward label Lf (s), backward label Lb(t)
Data: fwdIndex, bwdIndex and tentative shortest path distance µ
Output: Shortest distance from s to t
// Initialization

1 fwdIndex ← 0
2 bwdIndex ← 0
3 µ←∞

// Main loop
4 while fwdIndex < Lf (s).len() and bwdIndex < Lb(t).len() do
5 (fwdHub, fwdDist)← Lf (s)[fwdIndex]
6 (bwdHub, bwdDist)← Lb(t)[bwdIndex]
7 if fwdHub == bwdHub then
8 if fwdDist + bwdDist < µ then
9 µ← fwdDist + bwdDist

10 fwdIndex ← fwdIndex + 1
11 bwdIndex ← bwdIndex + 1
12 else if fwdHub < bwdHub then
13 fwdIndex ← fwdIndex + 1
14 else
15 bwdIndex ← bwdIndex + 1

16 return µ

3.3.2. Contraction Hierarchies

As shown by Abraham et al. [ADGW10], Hub Labels can be realized with Contraction
Hierarchies in order to initialize the forward and backward labels. More precisely, we
perform a CH forward search from each v in G↑ to initialize Lf (v). While settling a vertex
w, we add a pair (w, dist(v, w)) to Lf (v). Backward labels are initialized analogously by a
CH backward search in G↓.

We now focus on the correctness of the query algorithm. Again, we only explain the concept
for the forward labels. As previously stated, the labels must have the cover property, in
order for the query algorithm to calculate correct shortest path distances. However, because
G↑ is created as a subgraph of G+ with only selected edges, a shortest path from v to w in
G↑ might be longer than a shortest path from v to w in G+. Nonetheless, following the
correctness of a CH query, the cover property still holds true. As proven in Theorem 2.1 a
shortest path from s to t in G+ exists that is an upward-downward path. Furthermore,
let h be the highest ranked vertex, on such a shortest path from s to t. Following the
correctness of a CH query, h must be settled by both the forward and backward search.
Hence, h is added to both Lf (s) and Lb(t). Lastly, the distance from s to h dist(s, h) in
G↑ is equal to the shortest path distance from s to h in G+. Consequentially, Lf (s)∩Lb(t)
must contain a vertex h that ensures that the cover property is fulfilled.

3.3.3. Many-to-Many Hub Labels

In this section we focus on Hub Labels for the many-to-many shortest path problem.
Instead of calculating the forward and backward labels during a separate preprocessing, we
selectively calculate all labels while answering a many-to-many shortest path query. Given

19

3. Algorithms

that we only need to calculate shortest path distances from all s ∈ S to t ∈ T , we must
only initialize the labels for all source and target vertices.

To calculate all shortest path distances in D[s, t] we perform the following steps: Initially,
we initialize the forward labels for all s ∈ S and the backward labels for all t ∈ T , by
following the procedure as described in Section 3.3.2. However, because each label contains
too many entries to allow efficient point-to-point shortest path query, we reduce the size of
each label as stated in Section 3.3.4. Lastly, we perform |S| · |T | point-to-point shortest
path queries to calculate all shortest path distances.

3.3.4. Label pruning

In this section we describe two pruning algorithms that reduce the size of each forward and
backward label. Both algorithms were initially proposed by Abraham et al. [ADGW12].
First we describe an algorithm that removes most unnecessary label entries, followed by a
stricter algorithm that removes all unnecessary entries.

The concept of both pruning algorithms is it to remove label entries with unnecessary
distance values, that is distances that are not equal to the shortest path distance in G. As
previously stated, the distance associated with each label entry is equal to the shortest
path distance in either G↑ or G↓.

First, we apply the stall-on-demand technique, as previously used by the bucket-based
algorithm in Section 3.2.2, to remove most unnecessary label entries. We refer to this
approach as HL partially pruned. We briefly cover the forward case in which we initialize
Lf (v). For a more detailed explanation we refer to Section 3.2.2.

Let s be the vertex we want to calculate the forward label Lf (s) for by using a CH
forward search in G↑. While settling a vertex v, we check for the following condition: If
for any incoming edge (w, v) ∈ E↓, dist(s, v) > ω(w, v) + d[w], we do not add v to Lf (s).
Furthermore, we do not have to relax any edges otherwise relaxed from v. Again, the
backward labels can be initialized analogously.

We now focus on a stricter algorithm that removes all unnecessary label entries. We refer
to this algorithm as HL top down. The HL top down algorithm identifies label entries with
unnecessary distance values by calculating the shortest path distance in G for each entry.
More precisely, all label entries (v, dist(s, v)) ∈ Lf (s) whose associated distance dist(s, v)
is not equal to the shortest path distance D(s, v) in G can be removed. To calculate the
shortest path distances in G we use the HL query algorithm itself, as it is one of the fastest
point-to-point shortest path algorithms. However, to use the HL query algorithm we must
also initialize the forward and backward labels for all vertices present in the combined
search space from any source or target vertex.

As before, we only describe the concept for the forward labels, backward labels can be
initialized analogously. Given that we want to use the HL query algorithm to check if
dist(s, w) in G↑ is equal to D(s, w) in G, for all (w, dist(s, w)) ∈ Lf (s), we must also
initialize the backward labels for all w. Hence, instead of only initializing the forward and
backward labels exclusively for all S ∪ T we must initialize them for all vertices in the
combined search space.

Initially, we perform |S| separate forward searches to discover the combined forward search
space from all sources. We refer to all vertices in this combined search space with VS .
Given VS we initialize all labels by performing the following steps: Let v be the vertex
with the highest rank in VS , for which we have not initialized the forward and backward
label. We use an iterative two-way merge to merge all Lf (w) for all (v, w) ∈ E↑. However,
by merging the labels we must increase the associated distance according to the weight of

20

3.4. PHAST

the traversed edge ω(v, w). Lastly, we add a pair (v, 0) to Lf (v). Given that we initialize
both forward and backward labels from top to bottom, we can use a HL query to calculate
shortest path distance in G. We iterate over all label entries (w, dist(v, w)) ∈ Lf (v): If
dist(v, w) is not equal to the distance as calculated by a HL query from v to w, we remove
w from Lf (v).

Once finished with all vertices in VS , we have fully pruned forward labels.

3.4. PHAST
PHAST [DGNW10], short for parallel hardware-accelerated shortest path trees, is an
extension of Contraction Hierarchies. PHAST is better suited for modern computer
architectures as it accesses memory more efficiently by taking data locality into account.

PHAST calculates shortest paths from a single source to all vertices in the graph G. A
PHAST query is split into two parts. First, a CH forward search starting from s in G↑ is
performed. After being finished, the distance value d[v] holds the shortest path distance
from s to v in G↑, for each settled vertex v.

The second part of the query settles all vertices in descending rank order. For every settled
vertex v all incoming edges (u, v) ∈ E↓ are examined. The algorithm updates d[v] by
assigning d[v] = min{d[v], d[u] + ω(u, v)}, for each edge (u, v) ∈ E↓.

Once all vertices in G↓ have been settled, d[v] holds the correct shortest path distance from
s to v in G.

Theorem 3.1. PHAST computes correct shortest path distances d[v], from s to v.

Proof. As already proven in Theorem 2.1, in G+ there exists an upward-downward path
P from s to t such that ω(P) = D(s, t). Let w be the vertex with maximal rank on such
an upward-downward path P . Given that the first part of the query is the same as in
a CH query, we know that d[w] is equal to the shortest path distance from s to w in G.
Furthermore, G+ was constructed to contain a shortest path from w to v by only traversing
vertices in decreasing rank order. Given that the second part of a PHAST query settles
vertices in decreasing rank order we must end up with correct shortest path distance D(s, t),
from s to v in d[v].

3.4.1. RPHAST

RPHAST [DGW11], short for restricted PHAST, is an extension of PHAST. Whereas
PHAST calculates shortest paths from one source vertex to all vertices, RPHAST only
calculates shortest paths from one source vertex to a selected set of target vertices T . As
proposed by Delling et al. [DGW11], RPHAST adds a target selection phase to create a
restricted graph G↓T . G

↓
T contains exclusively the vertices and edges necessary to calculate

shortest paths from any s ∈ V to targets in T . Instead of using G↓ during the second
part of a PHAST query, RPHAST uses G↓T . Hence, RPHAST reduces the number of
settled vertices and relaxed edges. The forward search, during the first part of an RPHAST
query, still operates on the full G↑. Furthermore, storing G↓T in memory requires less space
compared to G↓, thus brining data closer together and improving locality.

In order to calculate correct shortest paths, G↓T must contain all required vertices and
edges, that is all vertices and edges visited by all CH backward searches from t ∈ T in
G↓ combined. The naive approach to calculate G↓T is to perform a CH backward search
from each t ∈ T in G↓ separately. During each CH backward search all settled vertices and
relaxed edges can be extracted to create G↓T .

21

3. Algorithms

RPHAST uses an alternative algorithm to efficiently construct G↓T . Instead of performing
an individual CH backward search for each t ∈ T , RPHAST performs a single backward
search for all targets T at once. More precisely, RPHAST performs the following steps
to calculate a set of necessary vertices T ′: T ′ is the set of vertices required to calculate
shortest paths from any vertex to all t ∈ T in G↓. Initially, T ′ and an unordered queue
Q are initialized with all targets T . In each iteration an arbitrary vertex u is removed
from Q and settled. If for any incoming edge (w, u) ∈ E↓, w /∈ T ′ is true, w is added to
both T ′ and Q. The algorithm terminates as soon as the queue Q is empty. Lastly, G↓T
is constructed as the subgraph of G↓, that only contains the vertices in T ′. The set of
required edges E↓T is equal to E↓T := {(u, v) | (u, v) ∈ E↓, u ∈ T ′, and v ∈ T ′}.

We further modify this approach to construct G↓T in order to increase the efficiency of a
query. Although G↓T contains fewer vertices than G↓, the first array that we use to store
G↓T has the same length as the first array for G↓. Because we access the first array with
the vertex ID of each vertex, we must have an entry for every vertex ID. The arclist array
already contains exclusively all edges that are present in E↓, thus we cannot reduce its size
any further. To decrease the length of the first array for G↓T , we assign restricted vertex
IDs to each v′ ∈ T ′. We pick restricted vertex IDs consecutively from (0, . . . , |T ′| − 1).
Hence, by assigning restricted vertex IDs we reduce the length of the first array to |T ′|+ 1.
To access the first array we use the restricted vertex ID of each vertex. Additionally,
we replace vertex IDs in the arclist array with the restricted vertex IDs. We denote the
restricted vertex ID of a vertex v with v′. In the case v /∈ T ′, v′ is undefined.

We use a modified depth-first-search (DFS) to simultaneously assign restricted vertex IDs
and create G↓T . The modified DFS assigns restricted vertex IDs in reverse order of discovery.
Initially, an empty stack S and an empty list T ′ are initialized. Furthermore, we process
each target t ∈ T as follows: If t /∈ T ′, we add t to both S and T ′. As long as S is not
empty, we examine v ∈ S, such that v has been added to S the most recently. Otherwise,
if S is empty we proceed with the next t ∈ T . If for any edge (u, v) ∈ E↓, u /∈ T ′, we add
u to T ′ and S. Otherwise, if no such u exists, we settle v. That is, we remove v from S
and assign the next consecutive restricted vertex ID to v. Once finished with all t ∈ T , we
have a set of required vertices T ′ together with restricted vertex IDs.

Moreover, we use the order as induced by the restricted vertex IDs to settle vertices during
the second part of an RPHAST query. Our modified DFS only settles a vertex v if all u,
with (u, v) ∈ E↓, have been settled before. Hence, by settling vertices in G↓T in the same
order as we have settled them during the selection, we must end up with correct shortest
path distances.

Lastly, we introduce a restricted distance array dT [v′]. The previous distance array d[v]
is the only array that is indexed by the non-restricted vertex ID during the second part
of an RPHAST query. To avoid having to translate unnecessarily between non-restricted
vertex IDs v and restricted vertex IDs v′, we maintain a restricted distance array dT [v′].
As before, we access dT [v′] with the restricted vertex ID. dT [v′] only stores a distance value
associated for each v′ ∈ T ′. Initially, dT [v′] =∞ for all v′ ∈ T ′. Furthermore, we initialize
the distance values dT [v′] during the first part of an RPHAST query. For each settled
vertex v during a CH forward search from s in G↑, we check if v ∈ T ′. If so, we copy the
shortest path distance dist(s, v), from s to v in G↑, to dT [v′].

Following these adjustments, the second part of an RPHAST query operates exclusively on
the restricted distance array dT [·] and requires no translation between non-restricted and
restricted vertex IDs. By settling vertices in the same order as they were settled by our
modified DFS, we access dT [·], the first array and the arclist array sequentially.

22

3.4. PHAST

3.4.2. RPHAST Many-to-Many

We now focus on RPHAST for the many-to-many problem. To solve the many-to-many
problem by using the RPHAST algorithm, we perform the following steps: Initially, we
run the target selection phase once to calculate G↓T . Given G↓T , we perform multiple
one-to-many queries to calculate all shortest path distances.

However, in order to exploit locality we can process multiple sources simultaneously. Instead
of performing the first and second part of an RPHAST query separately for each s ∈ S, we
perform the second part once for multiple sources simultaneously. Based on the observation
that the second part settles all vertices in G↓T in the same order for any source, we can
update the distance values for multiple sources simultaneously. As previously stated, the
second part of an RPHAST query accesses all edges (u, v) ∈ E↓T to update d[v]. In case we
calculate distances from multiple source, we can access (u, v) and ω(u, v) once to update
multiple distance values.

We process a batch of k sources simultaneously. Hence, we pick k sources, s0, . . . , sk−1,
from S. We then calculate the shortest path distances from all si to all targets in T in
one batch. In case the number of sources |S| is greater than k, multiple batches can be
processed to calculate all shortest path distances D[s, t].

To simultaneously update the distances from k sources, we need to assign k distance values
to each v′ ∈ T ′. We maintain k distance values, dT,0[v′], . . . , dT,k−1[v′], for each v′ ∈ T ′.
As initially discovered by the forward searches, dT,i[v′] contains the shortest path distance
from si to v in G↑. To store k distance values at each v′ ∈ T ′, we resize our restricted
distance array dT [·] to store k · |T ′| values.

Given that all distance values dT,0[v′], . . . , dT,k−1[v′] have been initialized appropriately,
the second part proceeds as follows: As previously stated, we settle vertices in G↓T in the
same order as they were settled by our modified DFS search. Let v′ be the vertex we
currently settle. Just like before, we examine all edges (u′, v′) ∈ E↓T . However, this time we
access each edge with its associated weight ω(u′, v′) once to update all k distance values.
We update dT,i[v′] = min{dT,i[v′], dT,i[u′] + ω(u′, v′)} for all i ∈ (0, . . . , k − 1).

Furthermore, SIMD (single instruction, multiple data) instructions can be used to execute
these operations for multiple sources simultaneously.

We now discuss three methods to initialize all k distance values, dT,0[v′], . . . , dT,k−1[v′],
during the first part of an RPHAST query from multiple sources to all targets T . After
one of the three methods has initialized the k distance values, the second part must be
performed only once to calculate the shortest path distances.

k Separate Forward Searches

We perform the first part of an RPHAST query k times. During each iteration, we start
with one of the k batched sources si. While settling a vertex v, we check if v ∈ T ′. If so, we
copy the shortest path distance dist(si, v) to the respective entry in the restricted distance
array.

Modified Simultaneous Bucket Initialization

We use the simultaneous bucket initialization, as proposed in Section 3.2.3, to initialize all
k distance values for each v′ ∈ T ′. However, to apply the simultaneous bucket initialization
we have to slightly modify the algorithm.

As initially planned, the simultaneous bucket initialization was used by the bucket-based
algorithm to calculate shortest path distances in G↓. We now modify the simultaneous

23

3. Algorithms

bucket initialization to calculate shortest path distance in G↑. Moreover, we initialize
the restricted distance values, dT,0[v′], . . . , dT,k−1[v′] with the bucket entries in B(v), if
v ∈ T ′. Instead of using DownVertices(v) to access all outgoing edges (v, u) ∈ E↓, where
rank(v) > rank(u), we use DownVertices(v) to access appropriate edges in E↑. That is,
DownVertices(v) stores all forward edges (u, v) ∈ E↑, where rank(u) < rank(v). Besides
this modification, the algorithm follows the same concept as before. Again, while settling
a vertex v we copy the current bucket entries to the restricted distance array if v ∈ T ′.
To efficiently copy the current bucket entries B(v), we access the tentative distance array
d[si] directly. However, because the distance array d[·], as used by the SBI algorithm, only
contains the distances to all targets that were discovered from any adjacent bucket we also
have to check for the following condition: If the currently settled vertex v is equal to one
of the k batched sources si, we must set the corresponding restricted distance value dT,i[v′]
to zero. By setting the appropriate distance value to zero, we indicate that the distance
from si to v is equal to zero if v and si refer to the same vertex.

Simultaneous Rank Initialization

Lastly, we propose an algorithm to calculate shortest path distances starting from multiple
sources simultaneously. This approach follows the same concept as the second part of an
RPHAST query, but this time settling vertices in G↑. We settle vertices in G↑ in increasing
rank order, each time updating the distance values for multiple sources.

Instead of using a bucket data structure as the simultaneous bucket initialization does, we
maintain k distance values for every v ∈ V . Because we have no indication to the size of
the combined forward search space from all k sources we must assign k distance values
to each v ∈ V . We refer to each distance value with d0[v], . . . , dk−1[v]. Storing k distance
values for each v ∈ V can be done in a one-dimensional array of length kn. However, for
large n and k this might be challenging as it requires a lot of memory. In cases where not
enough memory is available or practical we dynamically assign k distance values to each
discovered vertex. To this end, we maintain a resizable array for each v ∈ V . Initially every
list is empty and only resized to store k distance values as soon as we settle v or relax
an edge leading to v. Hence, we only need to store the distance values for every settled
vertex. Additionally, we can reset the lists of a settled vertex as soon as we have copied its
distance values to the restricted distance array dT [·].

Given an appropriate distance value representation, we initialize the distance values by
performing the following steps: To settle vertices in increasing rank order we use a priority
queue Q ordered by minimum rank. Initially, we populate Q with all si. In each iteration
a vertex v with minimum rank is removed from Q and settled. We iterate over all outgoing
edge (v, u) ∈ E↑ and add u to Q in case it has not been added before. Moreover, we update
di[u] = min{di[u], di[v] +ω(v, u)} for all i ∈ (0, . . . , k− 1). Additionally, we check if v ∈ T ′.
If so, we copy d0[v], . . . , dk−1[v] to dT,0[v′], . . . , dT,k−1[v′].

3.5. Lazy RPHAST
3.5.1. Baseline Algorithm

Lazy RPHAST is an extension of RPHAST that computes shortest path distances from
multiple sources to one target. The algorithm is based on the CH-Potentials heuristic, as
proposed by Strasser and Zeitz [SZ21].

Instead of selecting multiple target, during the target selection phase, Lazy RPHAST
selects a single target vertex. The core idea behind the Lazy RPHAST algorithm is to
lazily calculate the forward distances from multiple sources. That is, during a forward

24

3.5. Lazy RPHAST

search from any s all calculated shortest path distances are memoized. As long as the
target does not change, every additional shortest path query can reuse these previously
computed shortest path distances. Especially when calculating shortest path distances
from multiple sources that share the same forward search space, we can reuse memoized
shortest path distances.

The Lazy RPHAST algorithm maintains two distance arrays to calculate and memoize
shortest path distances, B[v] and F[v]. Initially all values in B[v] are set to∞. Furthermore,
the values in F[v] are set to ⊥, indicating that we have yet to calculate the shortest path
distance from v to the selected target.

During the target selection phase, a single target t ∈ V is selected. Given such a target t
the distance values in B[v] are initialized by a CH backward search in G↓ from t. Following
this target selection phase, B[v] is equal to the shortest path distance from v to t in G↓.

After the target selection phase, multiple shortest path queries, starting from any vertex
s ∈ V to the selected target, can be efficiently answered. Given such a source vertex s the
algorithm uses the calcAndMemoize algorithm (Algorithm 3.3), to recursively calculate the
shortest path distance.

The function calcAndMemoize performs the following steps to calculate and memoize the
shortest path distance from a given vertex s to the previously selected target t: First,
we check if F[s] 6= ⊥. If so, the shortest path distance from s to t has been calculated
before. Hence, the function returns F[s], as F[s] is equal to the shortest path distance from
s to t. Otherwise, F[s] is assigned B[s]. Additionally, we iterate over all edges (s, v) ∈ E↑
and update F[s] by assigning F[s] = min{F[s], ω(s, v) + F[v]}. Before accessing F[v],
we recursively call the calcAndMemoize function on v, so that F[v] already contains the
shortest path distance from v to t.

Algorithm 3.3: ComputeAndMemoize
Input: B[v]: shortest path distance from v to t as initialized by the target

selection phase
Input: F[v]: memoized distance from v to t, initially set to ⊥
Input: s: the source vertex on a path from s to t
// Main loop

1 if F[s] == ⊥ then
2 F[s]← B[s]
3 forall (s, v) ∈ E↑ do
4 F[s]← min{F[s], ω(u, v) + ComputeAndMemoize(v)}

5 return F[s]

3.5.2. Batched Lazy RPHAST

In this section we propose an extension of Lazy RPHAST that is better suited to solve
the many-to-many problem. We refer to this algorithm as Batched Lazy RPHAST. The
concept behind the Batched Lazy RPHAST algorithm is the same as in the RPHAST
algorithm for multiple sources, as described in Section 3.4.2. As before, we exploit locality
by processing a batch of k vertices simultaneously. Because the Lazy RPHAST algorithm
efficiently calculates many-to-one distances, we batch multiple targets instead of sources.
We denote the k targets, that are part of the current batch, with t0, . . . , tk−1.

As previously stated in Section 3.5.1, Lazy RPHAST uses the target selection phase to
initialize a distance array B[v] for a single target vertex t. To simultaneously process a

25

3. Algorithms

batch of k targets, we must initialize the distances to all k batched targets ti in G↓. To
efficiently initialize the distances to all ti, we utilize the simultaneous bucket initialization
as proposed in Section 3.2.3. Hence, by using the simultaneous bucket initialization we
store the shortest path distance from v ∈ V to ti in a bucket B(v).

Lastly, we modify the computeAndMemoize algorithm to calculate shortest path distances
from one source to k targets. As before, F[v] is initialized with ⊥ for all v ∈ V . However,
instead of storing a single distance value in F[v], we store k distance values in F[v]. We
denote to the individual shortest path distance from v to ti with Fi[v]. Let s be the source
vertex to calculate the distance from to all batched targets ti. First, we check if F[s] 6= ⊥. If
so, the distances from s to all targets ti were already calculated and memoized. Hence, the
function returns all k distance values Fi[s]. Otherwise, we initialize F[s] with k individual
distance values. Initially, Fi[s] = ∞ for all i ∈ (0, . . . , k − 1). Furthermore, we iterate
over all entries (ti, dist(s, ti)) ∈ B(s) and set Fi[s] to dist(s, ti). Lastly, we access each
edge (s, v) ∈ E↑ with its associated weight ω(s, v) once to update all Fi[s] by assigning
Fi[s] = min{Fi[s], ω(s, v) + Fi[v]}. Before accessing Fi[v] for any i, we recursively call the
calcAndMemoize function once on v, so that all required distance values are calculated.

Similar to SIMD RPHAST, we introduce a variant of Batched Lazy RPHAST that uses
SIMD instructions to process multiple targets simultaneously.

26

4. Experiments

In this chapter, we evaluate all implemented algorithms. Moreover, we compare the
algorithms with each other in different scenarios.

4.1. Environment

We implemented all algorithms in Rust1 and compiled them with cargo 1.60.0-nightly using
the release profile with opt-level=3. All experiments were performed on a Supermicro
Superserver SYS-5018R-MR that runs openSUSE Leap2 with version 15.3. Moreover, our
benchmark machine has 128GB (8x16GB) DDR4 2133MHz ECC RAM and an Intel Xeon
E5-1630 v3 CPU with four cores clocked at 3.70GHz. All experiments were executed
sequentially.

Our test graph is the European road network as it was made available by PTV3 for the 9th
DIMACS Implementation Challenge [DGJ09]. The graph has about 18 million vertices and
42 million directed edges prior to the CH preprocessing. Additionally, we used RoutingKit4

to create the augmented graph G+.

4.2. Algorithms

We use this section to give an overview of all algorithms considered during our experiments.
As described in Section 3, we assume that a CH preprocessing was performed in advance.
Hence, all running times only include the time needed to calculate all shortest path distances,
excluding the time required to calculate G+.

• Dijkstra: Dijkstra’s algorithm as described in Section 2.2. Moreover, we stop the
query as soon as all target vertices T have been settled.

• BCH : The standard bucket-based CH algorithm as described in Section 3.2.1. Ad-
ditionally, the BCH algorithm uses the stall-on-demand technique, as described in
Section 3.2.2, to prune unnecessary bucket entries.

1https://www.rust-lang.org
2https://get.opensuse.org/leap/
3https://ptvgroup.com
4https://github.com/RoutingKit/RoutingKit

27

4. Experiments

• SBI : The simultaneous bucket initialization algorithm as described in Section 3.2.3.
The SBI algorithm uses the same query algorithm as the BCH algorithm, to perform
the one-to-many queries after all buckets have been populated. Furthermore, the SBI
algorithm applies the retrospective pruning as described in Section 3.2.3.

• SBI Many-to-Many: The SBI algorithm for the many-to-many problem as described
in Section 3.2.5.

• RPHAST : The RPHAST algorithm, as described in Section 3.4.1. To compute all
shortest path distances, RPHAST performs |S| separate one-to-many queries.

– RPHAST batched dijkstra, RPHAST batched SBI, and RPHAST batched rank:
All three algorithms process a batch of k sources during the second part of an
RPHAST query as described in Section 3.4.2. Only the first part of a batched
RPHAST query varies between all three algorithms.

– RPHAST batched dijkstra: Runs Dijkstra’s algorithm k times as described in
Section 3.4.2 to initialize the distances for k sources.

– RPHAST batched SBI : Uses the SBI as described in Section 3.4.2 to initialize
the distances for k sources.

– RPHAST batched rank: Uses the rank initialization as described in Section 3.4.2
to initialize the distances for k sources.

– SIMD RPHAST : Uses SIMD instructions to process a batch of k = 16 sources
simultaneously. SIMD RPHAST uses the rank initialization as described in
Section 3.4.2 to initialize the distances for k sources by also using SIMD instruc-
tions.

• Lazy RPHAST : The Lazy RPHAST algorithm as described in Section 3.5.1.

• Batched Lazy RPHAST : The batched variant of Lazy RPHAST, as described in
Section 3.5.2.

• SIMD Lazy RPHAST : The same as Batched Lazy RPHAST but uses SIMD instruc-
tions to process k = 16 targets simultaneously.

• HL partially pruned: The Hub Label based algorithm for the many-to-many problem,
as described in Section 3.3.3. HL partially pruned initializes the forward and backward
labels only for the source and target vertices as describe in Section 3.3.4.

• HL top down: The Hub Label based algorithm for the many-to-many problem, as
described in Section 3.3.3. HL top down initializes the forward and backward labels
of all vertices in the combined search space by using the stricter pruning algorithm
as described in Section 3.3.4.

4.3. One-to-Many
To model different scenarios in which one-to-many queries must be answered, we pick our
source and target vertices from different subsets of V . In some cases, it might be interesting
to calculate shortest path distances from one source location to a set of target locations
that are in proximity to each other. For example, the distances to all restaurants or ATMs
within a given city. However, in other cases, it might be interesting to calculate shortest
path distances to multiple targets that are spread over a large area. For example, the
distances from one source location to all city centers of all major cities in a given range.

We pick our vertices from a ball B of varying size. We use Dijkstra’s algorithm to obtain
B ⊆ V . Initially, we pick a center vertex c uniformly at random from V and use it as the

28

4.3. One-to-Many

source location for Dijkstra’s algorithm. We let Dijkstra’s algorithm settle vertices until
the number of settled vertices reaches a predetermined amount, that is |B| the size of our
ball. We then pick a set of distinct target vertices uniformly at random from B. Lastly, we
pick a separate source vertex either uniformly at random from B or V to simulate different
scenarios.

4.3.1. Same Ball

We give an overview of the running times of all one-to-many algorithms in Figure 4.3.
Additionally, we present the selection and query times separately in Figure 4.1 and in
Figure 4.2. Each algorithm is tasked with calculating all shortest path distances from a
single source vertex to a given set of target vertices T . We pick the source vertex and
all target vertices from the same ball B. Furthermore, we use different sizes for the set
of target vertices. We present the running times for |T | = 214 in this section. Results
with different target set sizes can be found in Appendix D, E and F i.e. |T | = 210 = 1024,
|T | = 212 = 4096, and |T | = 214 = 16384. Lastly, all experiments vary the size of the ball
|B|, from which targets are picked. Initially, |B| = |T |, hence all targets are in proximity
to each other. However, we gradually increase the size of the ball |B| from |T | up to 224,
to model scenarios where targets are spread over a large area. We perform 100 iterations
per ball size |B| and algorithm. Each point is the average of 100 iterations. Moreover,
each iteration uses a different source vertex as well as a different set of target vertices T .
Selection times include the time needed to calculate G↓T , populate the buckets or calculate
the forward and backward labels. Query times include the time needed to perform the
subsequent query phase. Lastly, we do not break down the running times of Dijkstra’s
algorithm and Lazy RPHAST as they have no comparable selection phase. Contrary to
what we described in Section 3.5.1, we use a mirrored version of Lazy RPHAST that is
better suited to solve the one-to-many problem.

Increasing the size of the target set |T |, from 210 to 212 and then to 214, has no effect on
the relative order among all algorithms.

The running time of Dijkstra’s algorithm increases steadily with the size of the ball |B|. As
Dijkstra is not goal-directed, the algorithm settles all vertices around the source vertex in
all directions. Hence, by spreading the targets further apart, Dijkstra must settle more
vertices in total which results in an increased running time. By doubling the size of the
target set |T |, the running time of Dijkstra increases by roughly the same factor.

In the following we take a closer look on the differences between the two bucket-based
algorithms. Both BCH and SBI use the same query algorithm, hence the query times of
both algorithms are roughly the same. The only difference between both query algorithms
is a minor disparity in the number of bucket entries per bucket. As stated in Section
3.2.4, in some scenarios one pruning algorithm produces fewer bucket entries. We refer to
Section 4.5 for an experimental analysis of the average bucket sizes of both algorithms.

The bucket-based query algorithm requires almost the same time for all ball sizes |B|, since
the CH forward search settles the same amount of vertices in total no matter the size
of the ball |B|. However, as the targets are spread over a larger area, the average size
of each populated bucket decreases, thus resulting in a decreased time required to scan
each bucket. This phenomenon cannot be observed in our experiment where the size of
the target set is fixed to 210, as the number of entries per bucket is always on a low level.
Furthermore, increasing the size of the target set from 210 to 214 increases the average
query time from 0.159ms to 1.68ms (only an increase of roughly 11x as opposed to 16x for
the size of the target set). In comparison to the RPHAST query, both the BCH query and
the SBI query eventually become faster as the size of the ball |B| increases. For smaller
target set sizes |T |, both the BCH query and the SBI query are almost always faster than

29

4. Experiments

the RPHAST query. However, even for |T | = 214 a bucket query is about 3.65 times faster
than an RPHAST query when |B| = 224 (1.14ms for a bucket query compared to 4.16ms
for an RPHAST query).

We now focus on the selection phase of both bucket-based algorithms. The BCH selection
algorithm performs a separate CH backward search for each target. Hence, as evident in
our one-to-many experiments, the time needed to populate the buckets is not influenced
by the size of the ball |B|. Nonetheless, for larger ball sizes |B| the BCH selection time
increases slightly due to worse locality. Furthermore, the BCH selection time increases
by roughly the same factor from 21ms to 315ms (15x) when increasing the size of the
target set from 210 to 214. Contrary to the BCH selection algorithm, the SBI selection
algorithm requires more time as the size of the ball |B| increases. Initially, when targets
are in proximity to each other, the SBI selection algorithm is able to efficiently populate
the buckets. By increasing the size of the ball |B| we increase the number of total unique
vertices settled during the target selection. Hence, the advantage gained by visiting every
vertex only once during the selection is not able to compensate for the overhead needed to
merge bucket entries as targets are spread over a larger area. Moreover, without taking the
early stopping criteria of the stall-on-demand technique into account, both query algorithms
settle the same vertices. In extreme cases, where only a few targets are spread over a large
area, the BCH selection is eventually faster than the SBI selection. We can observe this
by selecting 210 targets from a ball B that has at least 222 vertices to pick from. However,
for |T | = 214 the SBI algorithm is always the fastest algorithm to populate the buckets.
Even for |B| = 224 the SBI selection is about 1.22 times faster than the BCH selection
(360ms for the BCH selection compared to 295ms for the SBI selection).

RPHAST is about 44 times faster than Dijkstra’s algorithm when comparing the total
time required to calculate all one-to-many shortest path distances. Both the time needed
to calculate G↓T and the query time depend on the size of the ball |B|. By selecting targets
from a larger ball B, the size of the restricted graph G↓T increases significantly. Hence,
the time needed to create G↓T increases. Consequentially, the query time increases as well,
as more vertices must be settled. By increasing the size of the ball |B| from 214 to 224

while selecting 214 targets, the number of vertices in G↓T increases from 18150 to 306012 on
average (16.86x). As observed by Delling et al. in [DGW11], query times increase slightly
less from 0.27ms to 4.2ms (15.03x) due to the fact that the single CH forward search in
G↑ does not depend on the size of the ball |B|. Furthermore, the selection time increases
more for larger ball sizes |B| (from 1.30ms to 50.92ms when increasing the ball size |B|
from 214 to 224).

Lazy RPHAST is the fastest algorithm to calculate all one-to-many distances, when adding
up selection and query times. RPHAST performs slightly worse due to its much slower
target selection phase during which G↓T must be calculated during each one-to-many query.
If we were to only consider the query times, RPHAST would be the fastest algorithm.

Lastly, we focus on the two Hub Label based algorithms. Both query algorithms perform
equally well as they mainly perform the same work. Although the HL top down algorithm
produces labels with fewer entries, its query performs slightly worse due to worse locality.
We store the labels for HL partially pruned consecutively in memory for all source and
target vertices, whereas we store them directly at each vertex v ∈ V for HL top down.
When considering selection times, HL partially pruned is much faster than HL top down as
the algorithm only calculates the labels for the source vertex as well as all target vertices.
Hence, the HL partially pruned selection does not depend on the size of the ball |B|. On
the other hand, the HL top down selection time correlates with the size of the ball |B|, as
more labels must be calculated when the targets are spread further apart from each other.

30

4.3. One-to-Many

Based on these observations, HL partially pruned is the faster of the two algorithms, as
query times are almost identical and its selection is much faster.

214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

1

10

100

1000

10000

Se
le

ct
io

n
Ti

m
e

[m
s]

HL top down HL partially pruned BCH SBI RPHAST

Figure 4.1.: Selection times of one-to-many algorithms with |T | = 214 targets picked from
a ball of varying size |B|; Source picked from the same ball.

214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

1

10

Qu
er

y
Ti

m
e

[m
s]

HL top down HL partially pruned BCH SBI RPHAST

Figure 4.2.: Query times of one-to-many algorithms with |T | = 214 targets picked a ball of
varying size |B|; Source picked from the same ball.

31

4. Experiments

214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

1

10

100

1000

10000

Ru
nn

in
g

Ti
m

e
[m

s]

Dijkstra
HL top down

HL partially pruned
BCH

SBI
RPHAST

Lazy RPHAST

Figure 4.3.: Running times of one-to-many algorithms with |T | = 214 targets picked from
a ball of varying size |B|; Source picked from the same ball.

4.3.2. Different Balls

In the following, we are going to cover a slightly modified one-to-many experiment than
the previous one-to-many experiment in Section 4.3.1. This time we pick our source vertex
from V instead of B. We still pick all target vertices T from a ball B of varying size. We
refer to Appendix A, B, and C for the results. Although most algorithms perform the same
under these modified conditions, there are two notably exceptions.

First, Dijkstra’s algorithm performs worse. By picking the source vertex from V , Dijkstra’s
algorithm must settle more vertices on average until all targets T are settled. Hence, the
running time increases. Furthermore, the running time is no longer dependent on the size
of the ball |B|, because the average distance from the source to the most distant t ∈ T
remains roughly the same for all ball sizes |B|. We can only observe a small uptick in the
running time by increasing the size of the ball |B|.

Secondly, the bucket-based query algorithm (the BCH query and the SBI query) requires
less time as we pick the source from V , compared to when we pick the source from the
same ball B as the targets. As we move the source further away from all targets, we reduce
the number of vertices settled during the forward search that were also settled during the
selection phase. Hence, as we only examine those bucket entries of vertices visited by both
searches, a query scans less bucket entries in total in this case. However, as we increase the
size of the ball |B| the query time increases because the number of settled vertices that
have a non-empty bucket increases as well. Initially, for |B| = |T | = 214 a bucket query is
about 2.27 times faster when the source is picked from V compared to when the source is
picked from B (0.88ms compared to 2ms). However, for |B| = 224 and |T | = 214 picking
the source from V or B makes almost no difference since the size of the ball is almost equal
to |V |. Hence, B contains almost all vertices present in V .

32

4.4. Many-to-Many

4.4. Many-to-Many
Our many-to-many experiments follow the same approach as our one-to-many experiments
in Section 4.3. As before, we use Dijkstra’s algorithm to obtain B ⊆ V . We pick our set
of source and target vertices from either a shared ball or two different balls, to model
different scenarios. Additionally, we conduct experiments in which S = T , which is useful
for problems related to the vehicle routing problem. In cases where we pick our source
and target vertices from different balls we always use the same ball size |B| for both balls.
Moreover, in such cases where we pick source and target vertices from separate balls, both
balls may overlap. Hence, |S ∩ T | ≥ 0. Especially for large ball sizes |B| both balls must
overlap, as there are roughly 18 million vertices in V . Besides symmetric cases in which
|S| = |T |, we also examine asymmetric cases in which |S| > |T | or |S| < |T |. All running
times include the time needed to select the targets T , i.e. construct G↓T , populate all buckets
or calculate all labels as well as the time needed to calculate all shortest path distances.
During each experiment, we perform 100 iterations per algorithm and ball size |B|. Each
iteration uses a different set of source and target vertices.

4.4.1. Symmetric Case

In the following, we conduct the same symmetric experiment with three different configu-
rations. We pick |S| = |T | = 210, |S| = |T | = 212, and |S| = |T | = 214 source and target
vertices from two different balls of the same size |B|.

RPHAST

Initially, we take a detailed look on the various RPHAST variants. We refer to Figure 4.4
for a simplified overview that only contains the running times of all RPHAST variants,
when we pick |S| = |T | = 214 source and target vertices. The relative order between all
variants remains unchanged for the different symmetric configurations we considered. We
present the results with different configurations, i.e. |S| = |T | = 210 and |S| = |T | = 212, in
Appendix G. We use a logarithmic scale along the vertical axis to highlight the disparity
between RPHAST batched dijkstra and both RPHAST batched SBI and RPHAST batched
rank.

The running times of all RPHAST variants are dependent on the size of the ball |B|.
However, increasing the size of the ball |B| affects RPHAST the worst. The average
RPHAST running time increases from 4.4 s to 66.72 s (15.16x), when the size of the ball |B|
is increased from 214 to 224. As previously observed during the one-to-many experiments in
Section 4.3, the number of vertices in G↓T increases by roughly the same factor. Furthermore,
by batching k = 16 sources during the second part of an RPHAST query, we are able to
reduce the relative increase down to factor of roughly 11.02 times. Using SIMD instructions
to batch k = 16 sources improves the running time further (SIMD RPHAST is about 5
times faster than RPHAST).

We now take a closer look on RPHAST batched dijkstra, RPHAST batched SBI, and
RPHAST batched rank as they are mostly the same. The only difference between them is
how they initialize the restricted distance array for k source vertices. Because the query
time is mainly dominated by the more expensive second part, query times are roughly the
same for all three variants. However, RPHAST batched dijkstra performs the worst out
of the three variants. Especially when sources are in proximity to each other, RPHAST
batched dijkstra settles the same vertices several times to initialize all distance values. Both
RPHAST batched SBI and RPHAST batched rank are able to improve the first part of an
RPHAST query by better utilizing locality. Nonetheless, with an increased ball size |B|, the
running times of all three variants converge on each other. Although RPHAST batched SBI

33

4. Experiments

and RPHAST batched rank require almost the same time, RPHAST batched SBI requires
far less memory. Especially in cases where the size of the ball |B| is comparatively large,
RPHAST batched SBI requires far less memory than RPHAST batched rank.

Given that RPHAST fwd dijkstra is always dominated by RPHAST fwd rank as well as
RPHAST fwd SBI, we are going to discard RPHAST fwd dijkstra hereafter.

214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

10

Ru
nn

in
g

Ti
m

e
[s

]

RPHAST
RPHAST batched dijkstra (k = 16)
RPHAST batched SBI (k = 16)

RPHAST batched rank (k = 16)
SIMD RPHAST (k = 16)

Figure 4.4.: Running times of RPHAST algorithms with |S| = |T | = 214 sources and targets
picked from different balls of varying size |B|.

Hub Labels

Next we are going to focus on both Hub Label based algorithms for the many-to-many
problem. We refer to Figure 4.5 for a comparison between HL partially pruned and HL top
down. Additionally, we refer to Appendix H for the results of experiments with different
configurations.

While picking less source and target vertices, i.e. |S| = |T | = 210, HL partially pruned
performs much better than HL top down. In this case, running times are dominated by
the time needed to calculate the forward and backward labels. Hence, HL partially pruned
performs much better as it has to calculate fewer labels. Especially by increasing the size
of the ball |B|, HL top down has to calculate more labels, thus leading to an increased
selection time. By increasing the size of the source and target set from |S| = |T | = 210 to
|S| = |T | = 214, running times are no longer dominated by the time needed to calculate the
labels. Answering |S| · |T | point-to-point shortest path queries becomes the dominating
factor. Unfortunately, even in this case HL partially pruned is faster on average for most
ball sizes |B|. Initially, HL top down is faster for small ball sizes due to the fact that its
labels have slightly fewer entries. However, due to worse locality and the increased time

34

4.4. Many-to-Many

required to calculate the labels, HL top down is much slower than HL partially pruned in
total. Nonetheless, in comparison to other many-to-many algorithms, both HL top down
and HL partially pruned do not stand a chance as they require far more time to calculate
all shortest path distances.

214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

0

20

40

60

80

100

120

140

Ru
nn

in
g

Ti
m

e
[s

]

HL partially pruned selection
HL partially pruned query

HL top down selection
HL top down query

Figure 4.5.: Running times of HL algorithms with |S| = |T | = 214 sources and targets
picked from separate balls of varying size |B|.

Buckets

Finally, we are going to examine the different bucket-based algorithms. We refer to Figure
4.6 for the results of the many-to-many experiment in which we pick 214 source and target
vertices from different balls of the same size |B|. Additionally, we refer to Appendix I for
the results with different configurations.

As previously observed, during our one-to-many experiments in Section 4.3.2, the bucket-
based query time increases with the size of the ball |B|, in case source vertices are picked
from a different ball than the targets. Hence, as the running time is dominated by the |S|
one-to-many queries, we can observe an up tick in the running time as we increase the size
of the ball |B|. Furthermore, BCH and SBI perform equivalently. The faster simultaneous
bucket initialization is not able to significantly improve the running time, as it must be
performed only once during a many-to-many query. Additionally, for |S| = |T | = 214,
BCH is always faster than SBI as the stall-on-demand pruning algorithm populates the
buckets with slightly fewer entries on average. In this case, where |S| = |T | = 214, BCH is
about 830ms faster than SBI. Moreover, SBI Many-to-Many which uses the SBI during the
forward and backward search, is about 1.7 times faster than either bucket-based algorithm.

35

4. Experiments

214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

6

8

10

12

14

16

18
Ru

nn
in

g
Ti

m
e

[s
]

BCH SBI SBI Many-to-Many

Figure 4.6.: Running times of bucket algorithms with |S| = |T | = 214 sources and targets
picked from separate balls of varying size |B|.

Batch Size Comparison

Before we compare the fastest algorithms in each category with each other, we first take a
look on the effects of different batch sizes on the running times of selected algorithms. We
conduct the following experiment with RPHAST batched SBI, RPHAST batched rank, and
Batched Lazy RPHAST. Although RPHAST batched SBI and RPHAST batched rank are
almost identical, we can observe a difference in their running times due to differences in
their cache-friendliness.

To examine the effects of different batch sizes, we exponentially increase the batch size
k from k = 2 up to k = 210 or k = 214, depending on the experiment. Furthermore, we
only examine the effects of different batch sizes by using two configurations in the same
setting as before, i.e. we pick source and target vertices from different balls of the same
size |B|. We perform the same experiment with |S| = |T | = 210 and |S| = |T | = 214. We
refer to Appendix K, L and M for an overview of the effects that different batch sizes have
on the running times of each algorithm. We rank all batch sizes k based on their average
performance across all ball sizes |B|. #1 is associated with the batch size k for which all
distances are calculated the most quickly. Supplementary, we present the range in which
the running times vary for all algorithms in Figure 4.7 and in Figure 4.8.

Initially, we are able to improve the running times by increasing the batch size for RPHAST
batched SBI and RPHAST batched rank. However, upon reaching some point, increasing
the batch size further has an ever-increasing negative effect on the running time of each
algorithm. Contrary to RPHAST batched SBI and RPHAST batched rank, we are able to
improve the running time of Batched Lazy RPHAST by increasing the batch size up to the
maximum of k = |T |.

36

4.4. Many-to-Many

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

10

100

1000

10000
Ru

nn
in

g
Ti

m
e

[m
s]

RPHAST batched buckets RPHAST batched rank Batched Lazy RPHAST

k=
2

k=
51

2

k=
2

k=
51

2

k=
2

k=
51

2

k=
2

k=
51

2

k=
2

k=
25

6

k=
2

k=
51

2

k=
2

k=
10

24

k=
2

k=
10

24

k=
2

k=
10

24

k=
2

k=
10

24

k=
2

k=
10

24

k=
2

k=
10

24

k=
2

k=
10

24

k=
2

k=
51

2

k=
2

k=
51

2

k=
2

k=
25

6

k=
2

k=
25

6

k=
2

k=
25

6

k=
2

k=
25

6

k=
2

k=
25

6

k=
2

k=
12

8

k=
2

k=
12

8

k=
2

k=
12

8

k=
2

k=
12

8

k=
2

k=
12

8

k=
2

k=
64

k=
2

k=
64

k=
2

k=
64

k=
2

k=
12

8

k=
2

k=
12

8

k=
2

k=
10

24

k=
2

k=
10

24

k=
2

k=
10

24

k=
2

k=
10

24

k=
2

k=
10

24

k=
2

k=
10

24

k=
2

k=
10

24

k=
2

k=
10

24

k=
2

k=
10

24

k=
2

k=
10

24

k=
2

k=
10

24

k=
2

k=
10

24

k=
2

k=
10

24

k=
2

k=
10

24

k=
2

k=
10

24

Figure 4.7.: Running times for selected algorithms with different batch sizes k ∈ {2x | x ∈
(1, . . . , 10)}. |S| = |T | = 210 source and target vertices picked from separate
balls of varying size |B|. Each bar represents the range in which running times
fall for all batch sizes. We state the batch size k for which each algorithm
calculates all shortest path distance the fastest at the bottom of each bar.
Analogously, we state the batch size k for which each algorithm calculates all
distances the slowest at the top of each bar.

As observed by Delling et at. [DGNW10], as we increase the batch size k we tend to evict
data from the processor caches that might be useful. With growing k, we increase the
memory required by the distance arrays that store all shortest path distances. Hence, as
their size increases we must remove some, potential useful, data from the processor caches
to make space for the data we currently access. Furthermore, varying the size of the source
and target set can affect the batch size k for which each algorithm calculates all distances
the fastest on average.

First we cover the results of our many-to-many experiment where |S| = |T | = 210. Ini-
tially, for smaller batch sizes, the average running time of RPHAST batched SBI and
RPHAST batched rank improves while we increase the batch size k. By doubling the
batch size from k = 2 to k = 4, both RPHAST batched SBI and RPHAST batched rank
calculate all shortest path distances roughly 1.45 times faster. However, as we increase
the batch size further, the advantage gained by batching multiple sources decreases, until
it finally reverses. Although both algorithms only use a different algorithm to initial-
ize the restricted distance array, their running times are affected differently by different
batch sizes. RPHAST batched SBI is able to utilize larger batch sizes more efficiently than
RPHAST batched rank as it uses memory more cache friendly. When picking |S| = |T | = 210

source and target vertices, RPHAST batched SBI is the fastest on average for k = 512.
RPHAST batched rank is the fastest on average for a much smaller batch size of k = 128.
Because RPHAST batched rank initializes k distance values for every reached vertex during
the forward search, RPHAST batched rank allocates more memory in general compared
to RPHAST batched SBI. Hence, RPHAST batched rank evicts other useful data sooner

37

4. Experiments

than RPHAST batched SBI from the processor caches. That is why the performance of
RPHAST batched rank reverses sooner for smaller batch sizes.

Contrary to RPHAST batched SBI and RPHAST batched rank, Batched Lazy RPHAST does
not have a similar turning point up on which increasing the batch size has an increasingly
negative effect on the running time. We are able to speed up the running time of Batched
Lazy RPHAST by increasing the batch size further and further up to the maximum of
k = |T |. However, for large batch sizes the advantage gained is not as significant as it is
for smaller batch sizes. Batched Lazy RPHAST is about 9.49 times faster with k = 1024
compared to k = 2 and only 2.18 times faster with k = 1024 compared to k = 16.

Next we are going to focus on our batch size experiments in which |S| = |T | = 214. We
give an overview for all algorithms with |S| = |T | = 214 in Figure 4.8.

By increasing the size of our source and target set, we further increase the memory
occupied by the distance arrays of each algorithm. Hence, both RPHAST batched SBI and
RPHAST batched rank perform the fastest for even smaller batch sizes k, compared to the
previous experiment where |S| = |T | = 210. In this case, both RPHAST batched SBI and
RPHAST batched rank are the fastest on average for k = 64.

Moreover, as stated before, Batched Lazy RPHAST is consistently faster for greater batch
sizes. Hence, Batched Lazy RPHAST is the fastest on average for k = 16384. Because
Batched Lazy RPHAST has no selection phase during which a fixed size distance array
is allocated, memory allocation and access procedures are not cache friendly in general.
Hence, there is no point upon which the running time decreases for greater batch sizes.

214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

1

10

100

1000

Ru
nn

in
g

Ti
m

e
[s

]

RPHAST batched buckets RPHAST batched rank Batched Lazy RPHAST

k=
16

38
4

k=
64

k=
81

92
k=

64

k=
2

k=
32

k=
2

k=
32

k=
2

k=
64

k=
2

k=
64

k=
2

k=
64

k=
2

k=
64

k=
2

k=
64

k=
2

k=
64

k=
2

k=
64

k=
16

38
4

k=
64

k=
16

38
4

k=
64

k=
16

38
4

k=
32

k=
2

k=
32

k=
2

k=
32

k=
2

k=
32

k=
2

k=
64

k=
2

k=
64

k=
2

k=
64

k=
2

k=
12

8

k=
2

k=
12

8

k=
2

k=
81

92

k=
2

k=
81

92

k=
2

k=
16

38
4

k=
2

k=
16

38
4

k=
2

k=
16

38
4

k=
2

k=
16

38
4

k=
2

k=
16

38
4

k=
2

k=
16

38
4

k=
2

k=
16

38
4

k=
2

k=
16

38
4

k=
2

k=
16

38
4

Figure 4.8.: Running times for selected algorithms with different batch sizes k ∈ {2x | x ∈
(1, . . . , 14)}. |S| = |T | = 214 source and target vertices picked from separate
balls of varying size |B|. Each bar represents the range in which running times
fall for all batch sizes. We state the batch size k for which each algorithm
calculates all shortest path distance the fastest at the bottom of each bar.
Analogously, we state the batch size k for which each algorithm calculates all
distances the slowest at the top of each bar.

38

4.4. Many-to-Many

Summary

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

0

100

200

300

400

500

600

Ru
nn

in
g

Ti
m

e
[m

s]
Lazy SIMD (k = 16)
Batched Lazy RPHAST (k = 1024)
RPHAST batched rank (k = 128)

RPHAST batched SBI (k = 512)
SIMD RPHAST (k = 16)
SBI Many-to-Many

Figure 4.9.: Running times of many-to-many algorithms with |S| = |T | = 210 sources and
targets picked from separate balls of varying size |B|.

Lastly, we compare the fastest algorithms of each category in Figure 4.9 and in Figure 4.10.
We use the batch size for which each algorithm calculates all shortest path distances
the fastest, as determined in the previous paragraph. We discard both Hub Label based
algorithms, as they perform worse than all other many-to-many algorithms.

First, we are going to cover the case where we pick 210 source and target vertices in
Figure 4.9. Initially, Bached Lazy RPHAST and Lazy SIMD perform equivalently for
|B| ≤ 221. However, for |B| > 221 Batched Lazy RPHAST is faster than Lazy SIMD. The
SIMD instructions with k = 16 are not able to compete with the much bigger batch size
of k = 1024 as used by Batched Lazy RPHAST. Nonetheless, in comparison to all other
portrayed algorithms, both Batched Lazy RPHAST and Lazy SIMD require more time
to calculate all shortest path distances when |B| > 213. Additionally, RPHAST batched
SBI with k = 512 is about 1.48 times faster on average than Batched Lazy RPHAST with
k = 1024.

Contrary to Lazy SIMD, using SIMD instructions makes SIMD RPHAST always the fastest
algorithm compared to RPHAST batched SBI and RPHAST batched rank. Moreover,
SIMD RPHAST is about 1.58 times faster than RPHAST batched SBI on average.

SBI Many-to-Many is initially the slowest algorithm when |B| = 214, however as we increase
the size of the ball |B| the running time of SBI Many-to-Many increases the least in
comparison to all other algorithms. Hence, SBI Many-to-Many is the fastest algorithm
for |B| > 220 when picking |S| = |T | = 210 source and target vertices. Furthermore, SBI

39

4. Experiments

Many-to-Many is about 1.48 times faster than SIMD RPHAST for |B| = 224 (157ms for
SIMD RPHAST compared to 106ms for RPHAST batched SBI).

Finally, we shortly compare the fastest algorithms of each category when picking 214 source
and target vertices. We refer to Figure 4.10 for the results.

Because Batched Lazy RPHAST performs the fastest for k = |T |, increasing the size of the
target set increases the disparity between Lazy SIMD and Batched Lazy RPHAST further.
In this case, Batched Lazy RPHAST with k = 16384 is about 1.4 times faster on average
than Lazy SIMD with k = 16.

Furthermore, initially, for smaller ball sizes |B| < 218, SBI Many-to-Many requires far
more time than all other algorithms to calculate all shortest path distances. However, SBI
Many-to-Many eventually beats SIMD RPHAST when sources and targets are spread over
a large area. We are able to observe this, when picking 214 source and target vertices from
a ball B that has at least 223 vertices to pick from. In this case SBI Many-to-Many needs
8.73 s while SIMD RPHAST needs 11.91 s to calculate all many-to-many shortest path
distances.

214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

0

10

20

30

40

Ru
nn

in
g

Ti
m

e
[s

]

Lazy SIMD (k = 16)
Batched Lazy RPHAST (k = 16384)
RPHAST batched rank (k = 64)

RPHAST batched SBI (k = 64)
SIMD RPHAST (k = 16)
SBI Many-to-Many

Figure 4.10.: Running times of many-to-many algorithms with |S| = |T | = 214 sources and
targets picked from separate balls of varying size |B|.

4.4.2. Asymmetric Cases

In this section, we focus on asymmetric cases with |S| > |T | and |S| < |T |. For simplicity,
we only consider one case each. In Figure 4.11 we display the running times of many-to-
many algorithms with either |S| < |T | or |S| > |T |, depending on which configuration can

40

4.4. Many-to-Many

be computed faster by the algorithm. Furthermore, we refer to Appendix J for additional
figures that depict all configurations.

We categorize all algorithms into two categories, based on which configuration is better
suited for the algorithm. We give an overview of assigned categories in Table 4.1.

Algorithms that are better suited to solve the many-to-many problem with |S| < |T |
are RPHAST, BCH, and SBI. All these algorithms solve the many-to-many problem by
answering |S| one-to-many queries. The target selection must only be performed once
during a many-to-many query, hence the target selection does not influence the running
time much. Consequentially, as running times are dominated by the |S| one-to-many
queries, these algorithms perform better when fewer sources are picked.

On the other hand, Batched Lazy RPHAST is the only algorithm that is better suited
to solve the many-to-many problem where |S| > |T |. Because the running time of
Batched Lazy RPHAST is dominated by the |T | many-to-one queries. Hence, Batched Lazy
RPHAST is faster for smaller target set sizes. Although Batched Lazy RPHAST is more
fitted to solve the many-to-one problem, all batched RPHAST variants are able to keep up
with Batched Lazy RPHAST when |S| > |T |.

Lastly we focus on SBI Many-to-Many. SBI Many-to-Many is the only algorithm that
performs equally in either case. Because the algorithm is completely symmetric, i.e. it uses
the SBI during the forward and backward search, SBI Many-to-Many is able to cope with
either case equally well.

214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

0

1

2

3

4

5

6

Ru
nn

in
g

Ti
m

e
[s

]

Batched Lazy RPHAST (k = 16) (|S| > |T|)
RPHAST (|S| < |T|)
Lazy SIMD (k = 16) (|S| > |T|)
RPHAST batched SBI (k = 16) (|S| < |T|)
RPHAST batched rank (k = 16) (|S| < |T|)

BCH (|S| < |T|)
SBI (|S| < |T|)
SBI Many-to-Many (|S| < |T| or |S| > |T|)
SIMD RPHAST (k = 16) (|S| < |T|)

Figure 4.11.: Running times of many-to-many algorithms with either |S| = 210 and |T | = 214

or |S| = 214 and |T | = 210 vertices picked from different balls of varying size
|B|.

41

4. Experiments

|S| > |T | |S| < |T |
BCH X
SBI X

Batched Lazy RPHAST X
RHAST batched SBI X
RHAST batched rank X

RHAST batched dijkstra X
SIMD RPHAST X

SBI Many-to-Many X X

Table 4.1.: Algorithm classifications based on which configuration can be computed faster
by the algorithm.

4.4.3. Sources equal Targets

Lastly, we briefly cover the special case in which S = T . We use three different sizes for
the size of the source and target set, |S| = |T | = 210, |S| = |T | = 212, and |S| = |T | = 214.

In such a scenario, most algorithms perform equally compared to other scenarios in which
we pick our source and target vertices from two separate balls, as we did in Section 4.4.1.
Unfortunately, the bucket-based algorithms perform worse in this case. Especially for
smaller ball sizes |B|, all bucket-based algorithms require more time to calculate the
shortest path distances. We present the running times of all bucket-based algorithms, when
|S| = |T | = 214, in Figure 4.12. As the set of sources is equal to the set of targets, both
the forward searches and the target selection settle almost the same vertices. Hence, most
vertices visited by the forward search have populated buckets. Consequentially, running
times are worse for smaller ball sizes |B| as the average number of entries per scanned
bucket is greater compared to when targets are spread further apart, as they were in our
previous experiment in Figure 4.6. Moreover, BCH and SBI are about 2.16 times faster
when |B| = 224 compared to when all vertices are in proximity to each other, i.e. |B| = 214.
The running time of SBI Many-to-Many decreases slightly more from 23.65ms down to
8.71ms, which is about 2.7 times faster.

42

4.5. Bucket Pruning Algorithms

214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

10

15

20

25

30

Ru
nn

in
g

Ti
m

e
[s

]
BCH SBI SBI Many-to-Many

Figure 4.12.: Running times of many-to-many algorithms with 214 sources and targets S =
T picked from a ball of varying size |B|.

4.5. Bucket Pruning Algorithms
In the following, we compare the effectiveness of both bucket pruning algorithms. We
compare the stall-on-demand technique (Section 3.2.2) against the retrospective pruning
(Section 3.2.3).

As before, we use a ball B ⊆ V of varying size to obtain our set of target vertices. We present
the number of total entries and the average number of entries per bucket as populated by
each algorithm in Table 4.2. We pick 100 different sets of target vertices. Each set of target
vertices T contains 214 vertices picked from a different ball B of varying size. Furthermore,
we present the average values of all 100 target sets in Table 4.2.

As evident in the table, both algorithms are able to reduce the total number of bucket
entries by roughly 80 percent. Furthermore, the stall-on-demand technique is usually able
to remove slightly more unnecessary bucket entries. Lastly, by spreading targets further
apart, the average number of entries per populated bucket decreases while the total entry
count remains the same.

43

4. Experiments

No Pruning Stall-on-Demand (BCH) Retrospective (SBI)
|B| #entries avg #entries avg reduction #entries avg reduction

[×106] [×106] [%] [×106] [%]
214 10.5 579.2 1.9 107.8 -82.21 2.1 114.7 -80.32
215 9.2 353.9 1.8 72.6 -80.18 2.0 78.4 -77.93
216 9.7 267.9 1.8 52.3 -81.15 2.1 57.0 -78.79
217 9.8 197.1 1.8 38.3 -81.25 2.1 41.2 -79.13
218 10.1 153.1 1.9 29.7 -81.45 2.1 31.7 -79.32
219 10.4 117.5 1.9 22.3 -82.10 2.1 23.7 -79.85
220 10.7 92.5 1.9 17.8 -82.24 2.1 18.5 -80.08
221 10.7 72.9 1.9 14.3 -82.26 2.1 14.5 -80.15
222 11.6 60.2 1.9 11.6 -83.20 2.2 11.4 -81.20
223 11.7 47.9 2.0 9.4 -83.32 2.2 9.0 -81.36
224 10.5 34.4 1.9 7.6 -81.82 2.1 7.1 -79.59

Table 4.2.: Bucket size for different pruning algorithms; |T | = 214 targets picked from a
ball of varying size |B|.
All values are the average of 100 different target sets T . We denote the
total number of bucket entries produced by each algorithm with #entries.
Additionally, avg refers to the average number of entries per populated bucket.
Hence, avg is equal to #entries divided by the number of unique vertices settled
during the target selection. Lastly, reduction [%] refers to the relative reduction
in total entries compared to if no pruning is applied.

44

5. Conclusion

In this thesis we implemented and evaluated various Contraction Hierarchy based shortest
path algorithms for the one-to-many and the many-to-many problem. Additionally, we
proposed different extensions and recombinations of existing algorithms that have proven
to be successful.

By using the restricted distance array dT,i[v′] for the second part of an RPHAST query,
we are able to efficiently batch all source vertices in one batch. As determined in our
experiments, increasing the batch size above k = 16 has a positive effect on the performance
of the RPHAST algorithm. However, upon reaching some point, increasing the batch size
further has an ever-increasing negative effect on the running times for some algorithms.

Moreover, we introduced new algorithms based on existing concepts that have proven to
be able to keep up with existing algorithms and even beat them in some scenarios. As
shown in our one-to-many experiments, Lazy RPHAST is the fastest algorithm to solve
the one-to-many shortest path problem, in case the set of target vertices changes between
consecutive queries.

Lastly, our simultaneous bucket initialization has proven itself as a valuable building block
in different algorithms. As originally intended, the simultaneous bucket initialization is
able to speed up the selection time of the established bucket-based algorithm as initially
proposed by Knopp et al. [KSS+07]. Especially for the one-to-many problem when all
targets are in proximity to each other, the simultaneous bucket initialization is able to
improve the running time significantly. By combining the simultaneous bucket initialization
with a batched RPHAST query, we are able to utilize larger batch sizes more efficiently,
as the simultaneous bucket initialization requires comparatively less memory. Last but
not least, our proposed SBI Many-to-Many algorithm that uses the simultaneous bucket
initialization for the forward and backward search, is about 1.7 times faster than the original
bucket-based algorithm. In some cases where source and target vertices are spread over a
large area, the SBI Many-to-Many algorithm even beats the SIMD RPHAST algorithm.

45

Bibliography

[ADGW10] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. A
Hub-Based Labeling Algorithm for Shortest Paths on Road Networks. Technical
Report MSR-TR-2010-165, Microsoft Research, 2010.

[ADGW12] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck.
Hierarchical Hub Labelings for Shortest Paths. In Proceedings of the 20th
Annual European Symposium on Algorithms (ESA’12), volume 7501 of Lecture
Notes in Computer Science, pages 24–35. Springer, 2012.

[BDG+16] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann,
Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck.
Route Planning in Transportation Networks, pages 19–80. Springer Interna-
tional Publishing, Cham, 2016.

[DGJ09] Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson, editors. The
Shortest Path Problem: Ninth DIMACS Implementation Challenge, volume 74
of DIMACS Book. American Mathematical Society, 2009.

[DGNW10] Daniel Delling, Andrew V. Goldberg, Andreas Nowatzyk, and Renato F.
Werneck. PHAST: Hardware-Accelerated Shortest Path Trees. Technical
Report MSR-TR-2010-125, Microsoft Research, 2010.

[DGW11] Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. Faster Batched
Shortest Paths in Road Networks. In Proceedings of the 11th Workshop on Al-
gorithmic Approaches for Transportation Modeling, Optimization, and Systems
(ATMOS’11), volume 20 of OpenAccess Series in Informatics (OASIcs), pages
52–63, 2011.

[Dij59] Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs.
Numerische Mathematik, 1:269–271, 1959.

[EFH+11] Jochen Eisner, Stefan Funke, Andre Herbst, Andreas Spillner, and Sabine
Storandt. Algorithms for Matching and Predicting Trajectories. In Pro-
ceedings of the 13th Workshop on Algorithm Engineering and Experiments
(ALENEX’11), pages 84–95. SIAM, 2011.

[FT87] Michael L. Fredman and Robert E. Tarjan. Fibonacci Heaps and Their Uses in
Improved Network Optimization Algorithms. Journal of the ACM, 34(3):596–
615, July 1987.

[GSSD08] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling.
Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road
Networks. In Proceedings of the 7th Workshop on Experimental Algorithms
(WEA’08), volume 5038 of Lecture Notes in Computer Science, pages 319–333.
Springer, June 2008.

47

Bibliography

[HNR68] Peter E. Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis for the
Heuristic Determination of Minimum Cost Paths. IEEE Transactions on
Systems Science and Cybernetics, 4:100–107, 1968.

[JS19] George R. Jagadeesh and Thambipillai Srikanthan. Fast computation of
clustered many-to-many shortest paths and its application to map matching.
ACM Trans. Spatial Algorithms Syst., 5(3), aug 2019.

[KSS+07] Sebastian Knopp, Peter Sanders, Dominik Schultes, Frank Schulz, and
Dorothea Wagner. Computing Many-to-Many Shortest Paths Using Highway
Hierarchies. In Proceedings of the 9th Workshop on Algorithm Engineering and
Experiments (ALENEX’07), pages 36–45. SIAM, 2007.

[SS06] Peter Sanders and Dominik Schultes. Engineering Highway Hierarchies. In
Proceedings of the 14th Annual European Symposium on Algorithms (ESA’06),
volume 4168 of Lecture Notes in Computer Science, pages 804–816. Springer,
2006.

[SS07] Dominik Schultes and Peter Sanders. Dynamic Highway-Node Routing. In
Proceedings of the 6th Workshop on Experimental Algorithms (WEA’07), vol-
ume 4525 of Lecture Notes in Computer Science, pages 66–79. Springer, June
2007.

[SZ21] Ben Strasser and Tim Zeitz. A Fast and Tight Heuristic for A* in Road
Networks. In David Coudert and Emanuele Natale, editors, 19th International
Symposium on Experimental Algorithms (SEA 2021), volume 190 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 6:1–6:16, Dagstuhl,
Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

48

Appendix

A. One-to-Many Selection Times - Different Balls

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

1

10

100

1000

Se
le

ct
io

n
Ti

m
e

[m
s]

HL top down HL partially pruned BCH SBI RPHAST

Figure A.1.: Selection times of one-to-many algorithms with |T | = 210 targets picked from
a ball of varying size |B|; Source picked separately from V .

49

5. Appendix

212 213 214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

1

10

100

1000

10000
Se

le
ct

io
n

Ti
m

e
[m

s]
HL top down HL partially pruned BCH SBI RPHAST

Figure A.2.: Selection times of one-to-many algorithms with |T | = 212 targets picked from
a ball of varying size |B|; Source picked separately from V .

214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

1

10

100

1000

10000

Se
le

ct
io

n
Ti

m
e

[m
s]

HL top down HL partially pruned BCH SBI RPHAST

Figure A.3.: Selection times of one-to-many algorithms with |T | = 214 targets picked from
a ball of varying size |B|; Source picked separately from V .

50

B. One-to-Many Query Times - Different Balls

B. One-to-Many Query Times - Different Balls

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

0.1

Qu
er

y
Ti

m
e

[m
s]

HL top down HL partially pruned BCH SBI RPHAST

Figure B.4.: Query times of one-to-many algorithms with |T | = 210 targets picked from a
ball of varying size |B|; Source picked separately from V .

51

5. Appendix

212 213 214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

1

Qu
er

y
Ti

m
e

[m
s]

HL top down HL partially pruned BCH SBI RPHAST

Figure B.5.: Query times of one-to-many algorithms with |T | = 212 targets picked from a
ball of varying size |B|; Source picked separately from V .

214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

1

10

Qu
er

y
Ti

m
e

[m
s]

HL top down HL partially pruned BCH SBI RPHAST

Figure B.6.: Query times of one-to-many algorithms with |T | = 214 targets picked from a
ball of varying size |B|; Source picked separately from V .

52

C. One-to-Many Selection+Query Times - Different Balls

C. One-to-Many Selection+Query Times - Different Balls

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

1

10

100

1000

Ru
nn

in
g

Ti
m

e
[m

s]
Dijkstra
HL top down

HL partially pruned
BCH

SBI
RPHAST

Lazy RPHAST

Figure C.7.: Running times of one-to-many algorithms with |T | = 210 targets picked from
a ball of varying size |B|; Source picked separately from V .

53

5. Appendix

212 213 214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

1

10

100

1000

10000

Ru
nn

in
g

Ti
m

e
[m

s]
Dijkstra
HL top down

HL partially pruned
BCH

SBI
RPHAST

Lazy RPHAST

Figure C.8.: Running times of one-to-many algorithms with |T | = 212 targets picked from
a ball of varying size |B|; Source picked separately from V .

214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

1

10

100

1000

10000

Ru
nn

in
g

Ti
m

e
[m

s]

Dijkstra
HL top down

HL partially pruned
BCH

SBI
RPHAST

Lazy RPHAST

Figure C.9.: Running times of one-to-many algorithms with |T | = 214 targets picked from
a ball of varying size |B|; Source picked separately from V .

54

D. One-to-Many Selection Times - Same Ball

D. One-to-Many Selection Times - Same Ball

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

1

10

100

1000

Se
le

ct
io

n
Ti

m
e

[m
s]

HL top down HL partially pruned BCH SBI RPHAST

Figure D.10.: Selection times of one-to-many algorithms with |T | = 210 targets picked from
a ball of varying size |B|; Source picked from the same ball.

55

5. Appendix

212 213 214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

1

10

100

1000

10000
Se

le
ct

io
n

Ti
m

e
[m

s]
HL top down HL partially pruned BCH SBI RPHAST

Figure D.11.: Selection times of one-to-many algorithms with |T | = 212 targets picked from
a ball of varying size |B|; Source picked from the same ball.

214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

1

10

100

1000

10000

Se
le

ct
io

n
Ti

m
e

[m
s]

HL top down HL partially pruned BCH SBI RPHAST

Figure D.12.: Selection times of one-to-many algorithms with |T | = 214 targets picked from
a ball of varying size |B|; Source picked from the same ball.

56

E. One-to-Many Selection Times - Same Ball

E. One-to-Many Selection Times - Same Ball

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

0.1

Qu
er

y
Ti

m
e

[m
s]

HL top down HL partially pruned BCH SBI RPHAST

Figure E.13.: Query times of one-to-many algorithms with |T | = 210 targets picked from
the a ball of varying size |B|; Source picked from the same ball.

57

5. Appendix

212 213 214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

1

Qu
er

y
Ti

m
e

[m
s]

HL top down HL partially pruned BCH SBI RPHAST

Figure E.14.: Query times of one-to-many algorithms with |T | = 212 targets picked from
the a ball of varying size |B|; Source picked from the same ball.

214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

1

10

Qu
er

y
Ti

m
e

[m
s]

HL top down HL partially pruned BCH SBI RPHAST

Figure E.15.: Query times of one-to-many algorithms with |T | = 214 targets picked from
the a ball of varying size |B|; Source picked from the same ball.

58

F. One-to-Many Selection+Query Times - Same Ball

F. One-to-Many Selection+Query Times - Same Ball

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

1

10

100

1000

Ru
nn

in
g

Ti
m

e
[m

s]
Dijkstra
HL top down

HL partially pruned
BCH

SBI
RPHAST

Lazy RPHAST

Figure F.16.: Running times of one-to-many algorithms with |T | = 210 targets picked from
a ball of varying size |B|; Source picked from the same ball.

59

5. Appendix

212 213 214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

1

10

100

1000

10000

Ru
nn

in
g

Ti
m

e
[m

s]
Dijkstra
HL top down

HL partially pruned
BCH

SBI
RPHAST

Lazy RPHAST

Figure F.17.: Running times of one-to-many algorithms with |T | = 212 targets picked from
a ball of varying size |B|; Source picked from the same ball.

214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

1

10

100

1000

10000

Ru
nn

in
g

Ti
m

e
[m

s]

Dijkstra
HL top down

HL partially pruned
BCH

SBI
RPHAST

Lazy RPHAST

Figure F.18.: Running times of one-to-many algorithms with |T | = 214 targets picked from
a ball of varying size |B|; Source picked from the same ball.

60

G. Many-to-Many RPHAST Variants - Different Balls

G. Many-to-Many RPHAST Variants - Different Balls

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

10

100

1000

Ru
nn

in
g

Ti
m

e
[m

s]
RPHAST
RPHAST batched dijkstra (k = 16)
RPHAST batched SBI (k = 16)

RPHAST batched rank (k = 16)
SIMD RPHAST (k = 16)

Figure G.19.: Running times of RPHAST algorithms with |S| = |T | = 210 sources and
targets picked from different balls of varying size |B|.

61

5. Appendix

212 213 214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

0.1

1

Ru
nn

in
g

Ti
m

e
[s

]

RPHAST
RPHAST batched dijkstra (k = 16)
RPHAST batched SBI (k = 16)

RPHAST batched rank (k = 16)
SIMD RPHAST (k = 16)

Figure G.20.: Running times of RPHAST algorithms with |S| = |T | = 212 sources and
targets picked from different balls of varying size |B|.

214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

10

Ru
nn

in
g

Ti
m

e
[s

]

RPHAST
RPHAST batched dijkstra (k = 16)
RPHAST batched SBI (k = 16)

RPHAST batched rank (k = 16)
SIMD RPHAST (k = 16)

Figure G.21.: Running times of RPHAST algorithms with |S| = |T | = 214 sources and
targets picked from different balls of varying size |B|.

62

H. Many-to-Many HL Variants - Different Balls

H. Many-to-Many HL Variants - Different Balls

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

0

1

2

3

4

Ru
nn

in
g

Ti
m

e
[s

]
HL partially pruned selection
HL partially pruned query

HL top down selection
HL top down query

Figure H.22.: Running times of HL algorithms with |S| = |T | = 210 sources and targets
picked from different balls of varying size |B|.

63

5. Appendix

212 213 214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

0

2

4

6

8

10
Ru

nn
in

g
Ti

m
e

[s
]

HL partially pruned selection
HL partially pruned query

HL top down selection
HL top down query

Figure H.23.: Running times of HL algorithms with |S| = |T | = 212 sources and targets
picked from different balls of varying size |B|.

214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

0

20

40

60

80

100

120

140

Ru
nn

in
g

Ti
m

e
[s

]

HL partially pruned selection
HL partially pruned query

HL top down selection
HL top down query

Figure H.24.: Running times of HL algorithms with |S| = |T | = 214 sources and targets
picked from different balls of varying size |B|.

64

I. Many-to-Many Bucket Variants - Different Balls

I. Many-to-Many Bucket Variants - Different Balls

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

40

60

80

100

120

140

160

180
Ru

nn
in

g
Ti

m
e

[m
s]

BCH SBI SBI Many-to-Many

Figure I.25.: Running times of bucket-based algorithms with |S| = |T | = 210 sources and
targets picked from different balls of varying size |B|.

65

5. Appendix

212 213 214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

400

500

600

700

800

900

1000

1100

1200
Ru

nn
in

g
Ti

m
e

[m
s]

BCH SBI SBI Many-to-Many

Figure I.26.: Running times of bucket-based algorithms with |S| = |T | = 212 sources and
targets picked from different balls of varying size |B|.

214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

6

8

10

12

14

16

18

Ru
nn

in
g

Ti
m

e
[s

]

BCH SBI SBI Many-to-Many

Figure I.27.: Running times of bucket-based algorithms with |S| = |T | = 214 sources and
targets picked from different balls of varying size |B|.

66

J. Many-to-Many Asymmetric - Different Balls

J. Many-to-Many Asymmetric - Different Balls

214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

0

5

10

15

20

Ru
nn

in
g

Ti
m

e
[s

]
Batched Lazy RPHAST (k = 16)
RPHAST
Lazy SIMD (k = 16)
RPHAST batched SBI (k = 16)
RPHAST batched rank (k = 16)

BCH
SBI
SBI Many-to-Many
SIMD RPHAST (k = 16)

Figure J.28.: Running times of many-to-many algorithms with |S| = 210 sources and |T | =
214 targets picked from different balls of varying size |B|.

67

5. Appendix

214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

0

2

4

6

8

10

12

Ru
nn

in
g

Ti
m

e
[s

]

Batched Lazy RPHAST (k = 16)
RPHAST
Lazy SIMD (k = 16)
RPHAST batched SBI (k = 16)
RPHAST batched rank (k = 16)

BCH
SBI
SBI Many-to-Many
SIMD RPHAST (k = 16)

Figure J.29.: Running times of many-to-many algorithms with |S| = 214 sources and |T | =
210 targets picked from different balls of varying size |B|.

68

K. Many-to-Many RPHAST batched SBI - Batch Size - Different Balls

K. Many-to-Many RPHAST batched SBI - Batch Size - Dif-
ferent Balls

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

0

200

400

600

800

1000

Ru
nn

in
g

Ti
m

e
[m

s]

k=2 #10
k=4 #9
k=8 #8
k=16 #7
k=32 #6
k=64 #5
k=128 #4
k=256 #3
k=512 #1
k=1024 #2

Figure K.30.: Running times of RPHAST batched SBI with different batch sizes k ∈
{2x | x ∈ (1, . . . , 10)}; |S| = |T | = 210 sources and targets picked from
different balls of varying size |B|. We rank all batch sizes k based on their
average performance across all ball sizes |B|. #1 is associated with the batch
size k for which all distances are calculated the most quickly.

214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

0

10

20

30

40

50

60

70

Ru
nn

in
g

Ti
m

e
[s

]

k=2 #14
k=4 #13
k=8 #12
k=16 #4
k=32 #2
k=64 #1
k=128 #3
k=256 #5
k=512 #6
k=1024 #7
k=2048 #8
k=4096 #9
k=8192 #10
k=16384 #11

Figure K.31.: Running times of RPHAST batched SBI with different batch sizes k ∈
{2x | x ∈ (1, . . . , 14)}; |S| = |T | = 214 sources and targets picked from
different balls of varying size |B|. We rank all batch sizes k based on their
average performance across all ball sizes |B|. #1 is associated with the batch
size k for which all distances are calculated the most quickly.

69

5. Appendix

L. Many-to-Many RPHAST batched rank - Batch Size - Dif-
ferent Balls

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

0

200

400

600

800

1000

Ru
nn

in
g

Ti
m

e
[m

s]

k=2 #10
k=4 #9
k=8 #8
k=16 #6
k=32 #3
k=64 #2
k=128 #1
k=256 #4
k=512 #5
k=1024 #7

Figure L.32.: Running times of RPHAST batched rank with different batch sizes k ∈
{2x | x ∈ (1, . . . , 10)}; |S| = |T | = 210 sources and targets picked from
different balls of varying size |B|. We rank all batch sizes k based on their
average performance across all ball sizes |B|. #1 is associated with the batch
size k for which all distances are calculated the most quickly.

214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

0

10

20

30

40

50

60

70

Ru
nn

in
g

Ti
m

e
[s

]

k=2 #14
k=4 #13
k=8 #10
k=16 #6
k=32 #2
k=64 #1
k=128 #3
k=256 #4
k=512 #5
k=1024 #7
k=2048 #8
k=4096 #9
k=8192 #11
k=16384 #12

Figure L.33.: Running times of RPHAST batched rank with different batch sizes k ∈
{2x | x ∈ (1, . . . , 14)}; |S| = |T | = 214 sources and targets picked from
different balls of varying size |B|. We rank all batch sizes k based on their
average performance across all ball sizes |B|. #1 is associated with the batch
size k for which all distances are calculated the most quickly.

70

M. Many-to-Many Batched Lazy RPHAST - Batch Size - Different Balls

M. Many-to-Many Batched Lazy RPHAST - Batch Size -
Different Balls

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

0

1000

2000

3000

4000

5000

6000
Ru

nn
in

g
Ti

m
e

[m
s]

k=2 #10
k=4 #9
k=8 #8
k=16 #7
k=32 #6
k=64 #5
k=128 #4
k=256 #3
k=512 #2
k=1024 #1

Figure M.34.: Running times of Batched Lazy RPHAST with different batch sizes k ∈
{2x | x ∈ (1, . . . , 10)}; |S| = |T | = 210 sources and targets picked from
different balls of varying size |B|. We rank all batch sizes k based on their
average performance across all ball sizes |B|. #1 is associated with the batch
size k for which all distances are calculated the most quickly.

214 215 216 217 218 219 220 221 222 223 224

Ball Size | |

0

100

200

300

400

500

600

Ru
nn

in
g

Ti
m

e
[s

]

k=2 #14
k=4 #13
k=8 #12
k=16 #11
k=32 #10
k=64 #9
k=128 #8
k=256 #7
k=512 #6
k=1024 #5
k=2048 #4
k=4096 #3
k=8192 #2
k=16384 #1

Figure M.35.: Running times of Batched Lazy RPHAST with different batch sizes k ∈
{2x | x ∈ (1, . . . , 14)}; |S| = |T | = 214 sources and targets picked from
different balls of varying size |B|. We rank all batch sizes k based on their
average performance across all ball sizes |B|. #1 is associated with the batch
size k for which all distances are calculated the most quickly.

71

	Contents
	1 Introduction
	1.1 Related Work
	1.2 Contribution
	1.3 Outline

	2 Preliminaries
	2.1 Notation
	2.2 Dijkstra's Algorithm
	2.3 Contraction Hierarchies
	2.3.1 Preprocessing
	2.3.2 Query

	2.4 Many-to-Many Problem

	3 Algorithms
	3.1 Implementation
	3.1.1 Graph Representation

	3.2 Buckets
	3.2.1 Baseline Algorithm
	3.2.2 Stall-on-Demand
	3.2.3 Simultaneous Bucket Initialization
	3.2.4 Pruning Effectiveness
	3.2.5 Simultaneous Bucket Initialization Many-to-Many

	3.3 Hub Labels
	3.3.1 Baseline Algorithm
	3.3.2 Contraction Hierarchies
	3.3.3 Many-to-Many Hub Labels
	3.3.4 Label pruning

	3.4 PHAST
	3.4.1 RPHAST
	3.4.2 RPHAST Many-to-Many

	3.5 Lazy RPHAST
	3.5.1 Baseline Algorithm
	3.5.2 Batched Lazy RPHAST

	4 Experiments
	4.1 Environment
	4.2 Algorithms
	4.3 One-to-Many
	4.3.1 Same Ball
	4.3.2 Different Balls

	4.4 Many-to-Many
	4.4.1 Symmetric Case
	4.4.2 Asymmetric Cases
	4.4.3 Sources equal Targets

	4.5 Bucket Pruning Algorithms

	5 Conclusion
	Bibliography
	Appendix
	A One-to-Many Selection Times - Different Balls
	B One-to-Many Query Times - Different Balls
	C One-to-Many Selection+Query Times - Different Balls
	D One-to-Many Selection Times - Same Ball
	E One-to-Many Selection Times - Same Ball
	F One-to-Many Selection+Query Times - Same Ball
	G Many-to-Many RPHAST Variants - Different Balls
	H Many-to-Many HL Variants - Different Balls
	I Many-to-Many Bucket Variants - Different Balls
	J Many-to-Many Asymmetric - Different Balls
	K Many-to-Many RPHAST batched SBI - Batch Size - Different Balls
	L Many-to-Many RPHAST batched rank - Batch Size - Different Balls
	M Many-to-Many Batched Lazy RPHAST - Batch Size - Different Balls

