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Abstract

The game of Cops and Robbers is a vertex pursuit game on graphs in which cops try to

occupy the vertex of the robber. Both parties can move by traversing one edge each turn.

We will consider the surrounding variant of the game in which the cops have to occupy

the entire neighbourhood of the robber’s vertex in order to win instead. The surrounding
cop number of a graph is the least amount of cops necessary to surround a robber on that

graph.

We will show a bound for the surrounding cop number for complete subdivisions of

complete graphs and for the strong product of graphs with paths. We will furthermore

prove a bound for planar graphs and the hypercube with the additional restrictions of the

active cops and robbers game where the cops and the robber no longer can decide to stay

on a vertex.

Additionally we will briey consider the existing bound for the surrounding cop number
of a graph using its treewidth and prove that this bound can be arbitrarily bad.
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Zusammenfassung

Bei dem Spiel Cops and Robbers verfolgen mehrere cops einen robber auf den Knoten eines

Graphen. Dabei können sich beide Parteien über je eine Kante pro Zug bewegen. Das Ziel

der cops ist es, den Knoten des robber’s zu besetzen. Wir betrachten in dieser Arbeit die

surrounding Variante des Spiels, in welcher die cops stattdessen die gesamte Nachbarschaft

des Knoten des robber’s besetzen müssen, um zu gewinnen. Die surrounding cop number
eines Graphen ist die geringste Anzahl an cops, die benötigt werden, um den robber auf
diesem Graphen zu fangen.

Wir werden die surrounding cop number für vollständige Unterteilungen von vollständi-

gen Graphen angeben und eine obere Schranke für die surrounding cop number für das
strong product von Graphen mit Pfaden. Außerdem werden wir eine obere Schranke für die

surrounding cop number von planaren Graphen und vom Hypercube mit der zusätzlichen

Einschränkung, dass cops und robber nicht mehr auf einem Knoten verharren dürfen,

angeben.

Des Weiteren werden wir kurz eine obere Schranke für die surrounding cop number
mittels der Baumweite eines Graphen betrachten und zeigen, dass diese für bestimmte

Graphen beliebig schlecht sein kann.
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1 Introduction

In the game of Cops and Robbers one player, who is controlling the cops, tries to catch the

robber controlled by a second player. We want to begin by giving a simple example as

motivation.

For this we will look at a three by two chess board. The game starts with the cop player

called Bob putting a cop on any square. Now the robber player called Alice places the

robber on any square as well. Now Bob and Alice take alternating turns. In each turn they

can either move their respective actor or let them stay on their square. If they decide to

move their actor, they can move them to any adjacent square, including diagonal squares.

We now want to nd a strategy for Bob to catch the robber in a nite amount of turns,

no matter how Alice decides to move the robber. For that we let Bob place the cop 𝑐1 on

b2 at the beginning of the game (Fig. 1.1). We can observe that every square is adjacent to

the cop’s square. Therefore, no matter where Alice places the robber, the cop can move to

that square in one move. This means we have found a winning strategy for the cops.
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1

a b c

c1

Figure 1.1: Placement of the cop

Next we want to look at what happens if we slightly alter the winning condition of

the cop player. Instead of having to catch the robber by moving a cop onto the robber’s

square, the cops now have to surround the robber by occupying every square adjacent to

the robber, once again including the diagonally adjacent squares. If a cop moves onto the

square of the robber, the robber has to move to another square on their turn.

In the present example it is clear that at least three cops are needed to catch the robber

as this is the least amount of squares any square is adjacent to. So instead of placing only

the cop 𝑐1, Bob now also places two additional cops 𝑐2 and 𝑐3 on b1 (Fig. 1.2).

Due to the symmetry of the board, Alice now has eectively two dierent squares where

she can put the robber. She can put the robber on a1 (Fig. 1.3), which is equivalent to her

putting the robber on c1, or she can put the robber on a2 (Fig. 1.4), which is equivalent to

her putting the robber on c2.
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Figure 1.2: The initial place-

ment of the cops
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Figure 1.3: Conguration if

the Robber is placed on a1
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Figure 1.4: Conguration if

the Robber is placed on a2

We see that the cops can surround the robber in a single step. If the robber is put on a2,

they can do this by moving 𝑐3 one square to the left (Fig. 1.5). If the robber is put on a1

instead, the cops can perform the same move (Fig. 1.6). This results in the robber having to

move away from a1 and since the only unoccupied square adjacent to a1 is a2, the robber

has to move there and is incidently surrounded. This means we have found a winning

strategy using three cops.

2
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Figure 1.5: The cops move

if the robber was put on a2
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Figure 1.6: The cops move

if the robber was put on a1

We now want to give a slightly more formal denition of the game and also give a short

overview over the history of the game. For this we will use a graph instead of a chess

board. The vertices of the graph are the possible positions for the cops and the robber.

Each turn the cops and the robber can move along an edge to move from a vertex to an

adjacent one. The original version of the game, independently introduced by Nowakowski

and Winkler in 1983 [13] and Quilliot in 1978 [16], allows only a single cop chasing the

robber. The graphs where a strategy for the cop exists so that the cop occupies the robber’s

vertex after a nite amount of turns, no matter how the robber moves, are called cop win
graphs (this means the graph from our chess board example is a cop win graph). For these

cop win graphs both the duo of Nowakowski and Winkler as well as Quilliot provided

characterizations in their respective works.

The game then was generalized by Aigner and Fromme in 1984 [1] allowing 𝑘 > 0 cops

to chase a single robber changing the game signicantly and introducing the cop number
of a graph. In this version of the game 𝑘 cops start the game by choosing their starting

vertices on a graph 𝐺 . Then the robber chooses their starting vertex and just like in the

original version of the game the parties alternate taking moves. Since it is now possible to

have more than one cop, it may be advantageous for a cop to stay on a vertex instead of

2



1.1 Assumptions and Notation

moving to another vertex. Therefore, staying on a vertex is also a legal move. A winning

strategy for the cops is a set of moves that lead to a cop occupying the vertex of the robber

no matter how the robber moves. The cop number 𝑐 (𝐺) is the least amount of cops needed

to have a winning strategy for a given graph 𝐺 .

While there are a lot of bounds for specic classes of graphs like 𝑐 (𝐺) ≤ 3 if 𝐺 is

planar, one of the most prominent potential upper bounds known as Meyniel’s conjecture,
rst mentioned in [7] as a personal note from Meyniel to Frankl, still remains unproven.

Meyniel’s conjecture states that 𝑐 (𝐺) ∈ O(
√
𝑛) if 𝐺 is a graph with 𝑛 vertices.

This lack of a tight upper bound does not eect all variations of the game though. For

example one of the most prominent variants is the helicopter cops and robbers variant,
introduced by Seymour and Thomas in [18]. In this variant the cops can use helicopters

to move to an arbitrary vertex each turn and the robber can move at an arbitrary speed.

Unlike a lot of other variants this variant has a nice characterization as a robber can be

caught by 𝑘 cops on a graph 𝐺 if and only if 𝐺 has treewidth 𝑘 + 1.

We want to look at the surrounding cops and robbers variant of the game introduced

by Burgess et al. in 2020 [6]. This variant slightly alters the step of the robber choosing

their starting position by not allowing them to choose a vertex already occupied by a cop,

which is a restriction obviously not needed in the non-surrounding variant. Furthermore,

the winning condition is changed to the one we looked at in our chess board example. If

a cop enters the vertex of the robber in this variant, the robber has the chance to move

to an adjacent vertex on their turn in order to avoid being captured. Instead, the cops

winning condition is to occupy every vertex adjacent to the vertex of the robber. Similar

to the original variant, the surrounding cop number 𝜎 (𝐺) denotes the least amount of cops

needed to have a winning strategy for a given graph 𝐺 .

While there are some upper bounds for the surrounding variant presented in [6], they

are rather unpractical or can be arbitrarily bad as we will show for the bound using the

treewidth of a graph in Chapter 6. Furthermore, just like for the original variant of the

game, there are bounds for certain classes of graphs like planar graphs that are proven in

[5]. The results presented in both those works for specic graphs suggested there might

be a bound using the degeneracy of a graph. However, this is not the case as shown in

Chapter 4. Therefore, instead we present some more upper bounds for specic graphs.

1.1 Assumptions and Notation

In this work we will only look at connected simple, meaning loopless and without parallel

edges, graphs. We will only look at connected graphs because in non-connected graphs

the surrounding cop number is simply the sum of the surrounding cop numbers of the

connected components. We do not allow loops because then a vertex 𝑣 could be in it’s own

neighbourhood 𝑁 (𝑣). This would mess with the denition of our winning condition as it

could require the cops to occupy the robber’s vertex in order to catch them. Finally, parallel

edges do not change the game whatsoever and therefore we do not need to consider them.

3



1 Introduction

Since it is practical to refer to the parties with pronouns, we will use the convention

used in many works regarding the game of cops and robbers and refer to the cops with

male pronouns and to the robber with female pronouns.

We will from now on refer to the non-surrounding variant of the game as introduced in

[1] as the normal variant and refer to the variant as introduced in [6] as the surrounding
variant.

When we continuously reduce the parts of a graph accessible to the robber, we will call

the parts that are accessible to her the robber’s territory.
We will refer to the vertices of a graph 𝐺 with 𝑉 (𝐺) and refer to the edges with 𝐸 (𝐺).

1.2 Formal Definition

We now want to give a mathematical denition of the game of cops and robbers given

a graph 𝐺 = (𝑉 , 𝐸). While we will not use this mathematical denition when giving

strategies for the cops in the following, it might aid the understanding of the game.

A strategy for the cops is a 𝑘-tuple of vertices, as starting positions of the cops, together

with a function 𝑠 : 𝑉 𝑘 ×𝑉 → 𝑉 𝑘 . Let 𝑠 ((𝑣1, . . . , 𝑣𝑘), 𝑣) = (𝑣′
1
, . . . , 𝑣′

𝑘
), then the following

restriction must be fullled:

For all 1 ≤ 𝑖 ≤ 𝑘 : 𝑣′𝑖 ∈ 𝑁 (𝑣𝑖) ∪ {𝑣𝑖} (1.1)

The position of the cops is represented by 𝑉 𝑘 and the position of the the robber is

represented by 𝑉 . Restriction 1.1 ensures that the cops only move to adjacent vertices.

A strategy for the robber is a starting vertex together with a function 𝑟 : 𝑉 ×𝑉 𝑘 → 𝑉 .

Let 𝑟 (𝑣, (𝑣1, . . . , 𝑣𝑘)) = 𝑣′, then the following restrictions must be fullled:

𝑣′ ∈ 𝑁 (𝑣) ∪ {𝑣} (1.2)

For all 1 ≤ 𝑖 ≤ 𝑘 : 𝑣′ ≠ 𝑣𝑖 (1.3)

Restriction 1.2 ensures that the robber only moves to adjacent vertices. Restriction 1.3

ensures that the robber does not move onto vertices occupied by a cop.

Let 𝑠 and 𝑟 be such functions and (𝑣10, . . . , 𝑣𝑘0) and 𝑢0 the respective starting positions

of the cops and the robber with 𝑢0 ≠ 𝑣𝑖0 for all 1 ≤ 𝑖 ≤ 𝑘 . Then we construct a sequence

𝑎𝑛 = ((𝑣1𝑛 , . . . , 𝑣𝑘𝑛 ), 𝑢𝑛) as follows:

𝑎0 = ((𝑣10, . . . , 𝑣𝑘0), 𝑢0)
𝑎2𝑛−1 = (𝑠 (𝑎2𝑛−2), 𝑢2𝑛−2)
𝑎2𝑛 = ((𝑣12𝑛−1, . . . , 𝑣𝑘2𝑛−1), 𝑟 (𝑎2𝑛−1))

Then ((𝑣10, . . . , 𝑣𝑘0), 𝑠) is a winning strategy for the cops if for all robber strategies (𝑢0, 𝑟 )
there exists a 𝑛 ∈ N0 such that 𝑎𝑛 = ((𝑣1𝑛 , . . . , 𝑣𝑘𝑛 ), 𝑢𝑛) where for all 𝑣 ∈ 𝑁 (𝑢𝑛) there exists
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1.3 Other Variants

a 𝑣𝑖𝑛 with 𝑣 = 𝑣𝑖𝑛 . This means there must exist a nite number 𝑛 for every robber strategy

such that after that many turns the robber is surrounded.

The surrounding cop number 𝜎 (𝐺) is the minimal 𝑘 for that a winning strategy using 𝑘

cops exists.

1.3 Other Variants

The game of cops and robbers has a lot of variants altering the dierent aspects of the

game. These variants will sometimes just slightly alter the game and sometimes have huge

implications. We want to give an overview of some of these variants.

1.3.1 Active, Passive and Lazy Cops and Robbers

First, we want to look at the distinction between the passive and active variants of the game.

This distinction was rst introduced by Aigner and Fromme [1]. In the active variant they

proposed the robber has to move every single turn, while in the passive variant she may

stay at a vertex. Since their variant of the game allows only a single cop, these restrictions

do not apply to the cop since the cop would not have an advantage from not moving

anyway.

In the generalized game where 𝑘 > 0 cops are allowed it is possible for the cop player

to get an advantage by not moving a cop for a turn. When we study the active variant

together with the surrounding winning condition in Chapter 7, we will therefore use the

same denition as Oner and Ojakian do in [14]. This means the active variant requires
every cop and the robber to move every turn.

Oner and Ojakian also introduced the variant of lazy cops and robbers where a certain

number of cops may not move each turn or a certain amount of cops may never move.

1.3.2 Speed Restrictions

Another family of variants is the introduction of dierent speeds for the cops or the robber.

This might aect the way how both the cops and the robber move like in the helicopter
cops and robbers variant or it might only aect one party. For example, the alteration of the

robber’s speed is studied in [8] where Frieze, Krivelevich, and Loh generalize Meyniel’s

conjecture for any nite speed the robber may move at.

1.3.3 Information

Another possibility of variation is whether the cops have perfect information. If they

have no information whatsoever the problem is known under the name graph searching,
rst introduced in [15]. Some of the results from this variant also can be used for nding

strategies in the game of cops and robbers. For example, the characterization of the

helicopter cops and robbers uses a monotone search strategy referring to [10].

5



1 Introduction

1.3.4 Alternate Winning Conditions

Alternating winning conditions is another source of variants. These winning conditions

might make catching the robber more dicult (as the surrounding winning condition

does) or instead make catching the robber easier. For example, the cops and robbers from
a distance variant, introduced in [4] by Bonato, Chiniforooshan, and Prałat, changes the

game so that the cops win as soon as a cop has distance 𝑑 ≤ 𝑘 to the robber for a certain 𝑘 .

6



2 Simple Bounds

We now want to introduce some straightforward bounds on the surrounding cop number

already introduced in [6] and then look at some graph classes in order to show some of

the changes the surrounding winning condition can have on certain graphs. We will show

both examples where Lemmas 2.1 to 2.3 are tight and where they are not in Sections 2.1

to 2.4.

Lemma 2.1. Let 𝐺 be a graph, then 𝑐 (𝐺) ≤ 𝜎 (𝐺).

This holds because any strategy that surrounds a robber implies that the cops can occupy

the robber’s vertex in the following turn. Note, however, that this bound only holds if the

graph is connected or has no vertices of degree zero since vertices with degree zero do not

need a cop guarding them in the surrounding variant but do in the normal variant.

An additional lower bound for the surrounding cop number of a graph is its minimal

degree. This is trivially true because for the robber to be caught on any vertex this many

cops are needed to surround her.

Lemma 2.2. Let 𝐺 be a graph, then 𝛿 (𝐺) ≤ 𝜎 (𝐺).

Another bound we will use later is based on a subgraph with suciently large minimal

degree.

Lemma 2.3. Let 𝐺 be a graph and 𝐻 ⊆ 𝐺 with 𝛿 (𝐻 ) = 𝑘 and for all 𝑣 ∈ 𝑉 (𝐻 ) deg(𝑣) > 𝑘 ,
then 𝜎 (𝐺) > 𝑘 .

Proof. Since deg(𝑣) > 𝑘 for all 𝑣 ∈ 𝑉 , the robber can never be caught by 𝑘 cops as long as

she stays on vertices of 𝐻 . Furthermore, since 𝛿 (𝐻 ) = 𝑘 the robber can always move to

another vertex of 𝐻 if she is forced to move by a cop occupying her vertex. Therefore, the

robber can always stay on vertices of 𝐻 and consequently can never be caught by 𝑘 cops

or less. �

We now want to examine some graphs to show how the altered winning condition can

drastically change the game on certain graphs.

2.1 Paths

If we look at paths 𝑃𝑛 with 𝑛 vertices, it is clear that 𝑐 (𝑃𝑛) = 1. This holds because the

cop can simply start at one of the leaves and move to the other leaf and thereby catch the

robber. In the surrounding variant however this is not possible, since the robber could

switch positions with the cop upon him entering the robber’s vertex (if the path is long

7



2 Simple Bounds

enough). For 𝑛 ≤ 3 the cop can be positioned on the middle vertex and therefore 𝜎 (𝑃𝑛) = 1

for all 𝑛 ≤ 3. This is an example where Lemmas 2.1 and 2.2 are tight. However, if 𝑛 > 3

no matter how the cop is positioned the robber can always stay on non-leaf vertices and

therefore never be caught. If two cops are used instead, it becomes trivial to catch the

robber since both cops can start at adjacent vertices and move towards the robber, pushing
her towards a leaf. Therefore, 𝜎 (𝑃𝑛) = 2 for all 𝑛 > 3 making this an example where

Lemma 2.1 is not tight. Furthermore, this is an example where Lemma 2.2 is not tight,

since 𝛿 (𝑃𝑛) = 1.

2.2 Cycles

Unlike paths, cycles 𝐶𝑛 have no winning cop strategy with only one cop for suciently

large 𝑛 in the normal variant of the game. While it is trivial to catch a robber with a single

cop for 𝑛 ≤ 3 (see Section 2.4), it is not possible for 𝑛 > 3, since the robber can start at a

vertex with distance of at least two to the cop and then always move in the same direction

as the cop and thereby keep her distance.

If two cops are used instead, they can start at adjacent vertices and move in dierent

directions until they catch the robber. We now slightly alter the behaviour of the cops to

never move onto a vertex occupied by the robber. Doing this we can also use this strategy

for the surrounding variant. This is true because the only possibility that no cop moves

in a step is if both cops are already adjacent to the robber. Therefore, the game is either

already won or each step the territory of the robber is reduced by at least one. This means

𝜎 (𝐶𝑛) = 𝑐 (𝐶𝑛) = 2 for all 𝑛 > 3.

2.3 Trees

Trees are another class of graphs with a very simple strategy for the cops. In the normal

variant the cop can start at any vertex. Then he can continuously descend the sub-tree

where the robber is and by that continuously reduce the territory of the robber and

eventually catch her. Therefore, the cop number of a tree is one.

We can easily modify this strategy to be applicable for the surrounding variant. We

do this by letting a second cop follow the cop to prevent the robber from switching

vertices upon the cop entering her vertex. Now the two cops can simply descend the

sub-trees where the robber is and continuously reduce the robber’s territory. Therefore,

the surrounding cop number of a tree is two.

2.4 Complete Graphs

An example for graphs where the surrounding and the normal variant of the game diverge

severely are complete graphs 𝐾𝑛 . Since all vertices are connected to each other, it is clear

that in the normal variant one cop suces to catch the robber. This is true because he can

reach every vertex in one step and therefore trivially catch the robber in one step.

8



2.4 Complete Graphs

In the surrounding variant however, since 𝛿 (𝐾𝑛) = 𝑛 − 1, we know that 𝜎 (𝐾𝑛) ≥ 𝑛 − 1

because of Lemma 2.2. Furthermore, since all but one vertices are occupied if 𝑛 − 1 cops

are placed on pairwise dierent vertices, we also know that 𝜎 (𝐾𝑛) = 𝑛 − 1. If we interpret

𝐾𝑛 as a subgraph of 𝐾𝑛+1, this is also an example where Lemma 2.3 is tight.

As an example where Lemma 2.3 is not tight, we want to look at the graph 𝐾1

4
, which

arises from subdividing each edge of 𝐾4 (Fig. 2.1). It is clear that the largest minimal degree

any subgraph of 𝐾1

4
can have is one. Therefore, Lemma 2.3 only tells us that 𝜎 (𝐾1

4
) > 1.

But if the robber only moves upon a cop entering her vertex, it should be clear that she

cannot be caught by two cops. We will show in Chapter 4 that indeed 𝜎 (𝐾1

4
) = 3, giving

us an example where Lemma 2.3 is not tight.

Figure 2.1: The graph 𝐾1

4
arising from subdividing each edge in 𝐾4.

If we look at the denition of the degeneracy of a graph, we can see that all the graphs

above, with the exception of 𝐾1

4
, have a surrounding cop number that is either the same as

its degeneracy or its degeneracy plus one.

Denition 2.4. Let𝐺 be a graph and 𝑆 be the set of all subgraphs of𝐺 . Then the degeneracy
of 𝐺 is dened as deg(𝐺) = max{𝛿 (𝑠) | 𝑠 ∈ 𝑆}.

This could suggest, as alluded to in the introduction, that there might exist a bound for

the surrounding cop number of a graph involving its degeneracy. We will come back to

that later in Chapter 4.
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3 Guarding Paths

In order to nd a winning strategy it is sometimes useful to continuously shrink the

territory the robber can access. One way of achieving this is to guard paths with a certain

number of cops so that the robber cannot access it without being caught. This idea was

rst introduced in [2] for the variant of the game introduced by Aigner and Fromme in a

proof for an upper bound of graphs that exclude a certain minor. We will use a slightly

dierent approach to the proof inspired by [5]. For this we rst introduce the concept of

the robber’s shadow.

Denition 3.1. Let 𝐺 be a graph. Let 𝑃 = (𝑣0, . . . , 𝑣𝑘) ⊆ 𝐺 be a path. When the robber
occupies a vertex 𝑤 with 𝑑 (𝑣0,𝑤) ≤ 𝑘 , her shadow is on 𝑣𝑘 and if 𝑑 (𝑣0,𝑤) ≥ 𝑘 + 1, her
shadow is on 𝑣𝑘 .

Lemma 3.2. Let 𝐺 be a graph and let 𝑃 = (𝑣0, . . . , 𝑣𝑘) ⊆ 𝐺 be a geodesic path. Then there
exists a strategy using one cop guarding it in the normal variant after a nite number of
steps.

Proof. Place one cop on 𝑣0 and in the following turns move the cop towards the robber’s

shadow. Since the shadow can only move up to one step each turn and 𝑃 has length

𝑘 + 1 after at most 𝑘 steps, the cop occupies the vertex with the robber’s shadow. In the

following turns the cop follows its movement.

Assume now that the robber wants to enter a vertex 𝑣𝑖 ∈ 𝑃 . Then she has to occupy a

vertex 𝑣′𝑖 ∈ 𝑁 (𝑣𝑖). This means that 𝑑 (𝑣0, 𝑣′𝑖 ) ≤ 𝑑 (𝑣0, 𝑣𝑖) + 1. Assume now that 𝑑 (𝑣0, 𝑣′𝑖 ) <
𝑑 (𝑣0, 𝑣𝑖) + 1. Then because 𝑃 is geodesic 𝑑 (𝑣0, 𝑣′𝑖 ) ≥ 𝑑 (𝑣0, 𝑣𝑖) − 1 must hold since otherwise

| (𝑣0, . . . , 𝑣′𝑖 , 𝑣𝑖, . . . , 𝑣𝑘) | < 𝑑 (𝑣0, 𝑣𝑖) −1+1+𝑑 (𝑣𝑖, 𝑣𝑘) = |𝑃 | would contradict that 𝑃 is geodesic.

This means that upon the robber wanting to enter 𝑃 , the robber’s shadow and therefore

the cop is either on 𝑣𝑖−1, 𝑣𝑖 or 𝑣𝑖+1. If the cop is on 𝑣𝑖 , it is trivial to catch the robber. If the

cop instead is on one of the other vertices, he becomes adjacent to the robber upon her

moving onto 𝑃 . Thus, the robber can be caught trivially. �

Since a cop being adjacent to the robber is no longer sucient in the surrounding

variant of the game, it is clear this proof needs to be altered for this variant. Bradshaw

did this in [5], proving that three cops suce for a geodesic path and two cops suce for

geodesically closed paths. For the sake of completeness we want to show these proofs

here, too.

Lemma 3.3. Let 𝐺 be a graph and let 𝑃 = (𝑣0, . . . , 𝑣𝑘) ⊆ 𝐺 be a geodesic path. Then there
exists a strategy using three cops guarding it in the surrounding variant after a nite number
of steps.
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3 Guarding Paths

Proof. Place cops 𝑐1, 𝑐2, 𝑐3 on the vertices 𝑣0, 𝑣1, 𝑣2. Until 𝑐2 is occupying the vertex with

the robber’s shadow, the cops move towards it. Similar to the proof of Lemma 3.2 we know

that this happens after a nite number of steps. Now the cops follow the movement of the

robber’s shadow so that both adjacent vertices on 𝑃 are occupied by 𝑐1 and 𝑐3. The only

exception to this is upon the shadow entering 𝑣0 or 𝑣𝑘 . In this case two cops will occupy

the vertex with the robber’s shadow on it. If now the shadow leaves this vertex, 𝑐1 or 𝑐3
respectively will not move for a turn. Thus the adjacent vertices will be occupied.

Assume now that the robber wants to enter a vertex 𝑣𝑖 ∈ 𝑃 . Then they have to occupy a

vertex 𝑣′𝑖 ∈ 𝑁 (𝑣𝑖). Similar to the proof of Lemma 3.2 we know that𝑑 (𝑣0, 𝑣𝑖)−1 ≤ 𝑑 (𝑣0, 𝑣′𝑖 ) ≤
𝑑 (𝑣0, 𝑣𝑖) + 1. We observe that for all three cases there is a cop occupying 𝑣𝑖 . Therefore, the

robber must enter a dierent vertex 𝑣 𝑗 ∈ 𝑃 with 𝑣 𝑗 ∈ 𝑁 (𝑣′𝑖 ). Since 𝑃 is geodesic 𝑣 𝑗 ∉ 𝑁 (𝑣′𝑖 )
must hold for all 𝑗 < 𝑖 − 1. This is true because otherwise 𝑃 ′ = (𝑣0, . . . , 𝑣 𝑗 , 𝑣′𝑖 , 𝑣𝑖, . . . , 𝑣𝑘)
would be shorter than 𝑃 . For the same reasons 𝑣 𝑗 ∉ 𝑁 (𝑣′𝑖 ) holds for all 𝑗 > 𝑖 + 1. Therefore,

the only vertices of 𝑃 the robber could enter are 𝑣𝑖−1 and 𝑣𝑖+1. In order to enter 𝑣𝑖−1, the
robber’s shadow would need to be on 𝑣𝑖+1 since otherwise 𝑣𝑖−1 would be occupied by a

cop. However, for the shadow to be on 𝑣𝑖+1, 𝑑 (𝑣0, 𝑣′𝑖 ) = 𝑖 + 1 must hold. Therefore, 𝑣𝑖−1 and
𝑣′𝑖 cannot be adjacent as that would imply 𝑑 (𝑣0, 𝑣′𝑖 ) ≤ 𝑖 . Similarly, in order to enter 𝑣𝑖+1,
the robber’s shadow would need to be on 𝑣𝑖−1 since otherwise 𝑣𝑖−1 would be occupied by a

cop. This means 𝑑 (𝑣0, 𝑣′𝑖 ) = 𝑖 − 1 would have to hold. But since 𝑃 ′ = (𝑣0, . . . , 𝑣′𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑘)
would be shorter than 𝑃 , this implies that 𝑣′𝑖 and 𝑣𝑖+1 are not adjacent.

Therefore there is no way for the robber to enter any vertex of 𝑃 . �

Lemma 3.4. Let 𝐺 be a graph and let 𝑃 = (𝑣0, . . . , 𝑣𝑘) ⊆ 𝐺 be a geodesically closed path.
Then there exists a strategy using two cops guarding it in the surrounding variant after a
nite number of steps.

Proof. We place the cops 𝑐1 and 𝑐2 like we did in the proof of Lemma 3.2 and they move

the same as long as the robber’s shadow is not on 𝑣0. If that happens, 𝑐2 does not move

onto 𝑣0, but instead stays on 𝑣1 until the robber’s shadow leaves 𝑣0.

We observe that just like in the proof of Lemma 3.2 𝑐2 will occupy the vertex with the

robber’s shadow on it after a nite number of steps. Assume the robber wants to enter

a vertex 𝑣𝑖 ∈ 𝑉 . Then the robber needs to occupy a vertex 𝑣′𝑖 ∈ 𝑁 (𝑣𝑖). We observe that

there is at most one other vertex 𝑣 𝑗 ∈ 𝑃 with 𝑣 𝑗 ∈ 𝑁 (𝑣′𝑖 ) because else 𝑃 would not be

geodesically closed. Furthermore, 𝑣 𝑗 must be adjacent to 𝑣𝑖 . Assume that 𝑣𝑖−1 ∈ 𝑁 (𝑣′𝑖 ).
Then 𝑑 (𝑣0, 𝑣′𝑖 ) = 𝑖 and therefore 𝑣𝑖−1 is occupied by 𝑐1 and 𝑣𝑖 is occupied by 𝑐2 and the

robber can’t enter 𝑃 . Assume now that 𝑣𝑖+1 ∈ 𝑁 (𝑣′𝑖 ). Then 𝑑 (𝑣0, 𝑣′𝑖 ) = 𝑖 + 1 and therefore 𝑣𝑖
is occupied by 𝑐1 and 𝑣𝑖+1 is occupied by 𝑐2 and the robber can’t enter 𝑃 . �

For a proof in Chapter 4 we will also show that for a very specic situation a single cop

will suce after a nite number of steps.

Lemma 3.5. Let𝐺 be a graph. Let 𝑃 = (𝑣0, . . . , 𝑣𝑘) ⊆ 𝐺 be a path. If |𝑃 ′| + 2 ≥ |𝑃 | holds for
all path 𝑃 ′ = (𝑣0, . . . , 𝑣𝑘) with 𝑃 ′ ≠ 𝑃 and furthermore deg(𝑣𝑖) = 2 for all 0 < 𝑖 < 𝑘 , then
there exists a strategy involving two cops for a nite number of moves, that thereafter a single
cop can prevent the robber from accessing vertices of 𝑃 .
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3.1 Planar Graphs

Proof. Place one cop on 𝑣0 and move it like 𝑐1 in the proof of Lemma 3.2. We know that

after a nite number of steps the cop occupies the vertex next to the robber’s shadow. It

continues to behave like 𝑐1, except if the robber moves to a vertex 𝑣 with 𝑑 (𝑣0, 𝑣) > 𝑘 . If
that happens, the cop moves to 𝑣𝑘 until the robber enters a vertex 𝑣 with 𝑑 (𝑣0, 𝑣) ≤ 𝑘 .
Assume now that the robber is not on the path. If the robber wants to enter a vertex

of 𝑃 , she can either enter 𝑣0 or 𝑣𝑘 . If she wants to enter 𝑣0, she has to be on a vertex 𝑤

with 𝑑 (𝑤, 𝑣0) = 1. This means the shadow of the robber is on 𝑣1 and therefore the cop is

on 𝑣0 and the robber can not enter 𝑣0. If the robber wants to enter 𝑣𝑘 , she has to be on

a vertex𝑤 ∈ 𝑁 (𝑣𝑘 ,𝑤). Since the shadow must not be on 𝑣𝑘 in order to enter 𝑃 , 𝑑 (𝑤, 𝑣0)
must be at most 𝑘 . If such a vertex𝑤 ∉ 𝑃 exists, the path 𝑃 ′ = (𝑣0, . . . ,𝑤, 𝑣𝑘) has length at

most 𝑘 + 1 and therefore contradicts the assumption that |𝑃 ′| + 2 ≥ |𝑃 | holds for all paths
𝑃 ′ = (𝑣0, . . . , 𝑣𝑘) with 𝑃 ′ ≠ 𝑃 . This means that if the robber is not on the path 𝑃 upon the

cop occupying the vertex next to the robber’s shadow, she can never access vertices of 𝑃 .

Assume now that the robber is on a vertex of 𝑃 upon the cop occupying the vertex with

the robber’s shadow. We now move a second cop onto 𝑃 and move it to the position of the

robber’s shadow. We once again know that this happens after a nite number of steps. It is

clear that after a nite number of steps following the robber’s shadow the robber is forced

to leave 𝑃 . When the robber leaves 𝑃 , we continue the game with the second cop and do

not need the rst cop anymore as the situation with the cop not on 𝑃 is established. �

3.1 Planar Graphs

Bradshaw shows a bound of seven for 𝜎 (𝐺) if 𝐺 is planar and assume that the bound is

not tight and six is a bound as well. Since we want to show a bound for a variant of the

game that is heavily inspired by their proof, we want to show this proof here, too. For that

we rst have to show how we can transform a geodesic path into a geodesically closed

one. For that we will call a path (𝑎, . . . , 𝑏) an (𝑎, 𝑏)-path.

Lemma 3.6. Let 𝐺 be a graph with a xed drawing in the plane. Let 𝑃1, 𝑃2 ⊆ 𝐺 be two
(𝑎, 𝑏)-paths enclosing a component 𝐴 ⊆ 𝐺 \ (𝑃1 ∪ 𝑃2) where the robber resides on. Let
furthermore 𝑃1 be geodesic in regards to 𝐴 ∪ 𝑃1 but not geodesically closed and let 𝑃2 be
geodesically closed in regards to 𝐴∪ 𝑃2. Assume that 𝑃1 is guarded by three cops, as described
in Lemma 3.3 and 𝑃2 is guarded by two cops, as described in Lemma 3.4. Then there exists
a strategy using two additional cops for a nite amount of steps to restrict the territory of
the robber to a component 𝐵 ( 𝐴 surrounded by a geodesic and a geodesically closed path
guarded by two and three cops respectively.

Proof. Let 𝑃1 = (𝑣1, . . . , 𝑣𝑛). Since 𝑃1 is not geodesically closed in regards to 𝐴 ∪ 𝑃1, we
can nd a path 𝑆 * 𝑃1 with 𝑆 = (𝑣𝑖, 𝑣′𝑖+1 . . . , 𝑣′𝑗−1, 𝑣 𝑗 ) such that 𝑃3 = (𝑣1, . . . , 𝑣𝑖, 𝑣′𝑖+1 . . . , 𝑣′𝑗−1,
𝑣 𝑗 , . . . , 𝑣𝑛) is geodesic in regards to 𝐴 ∪ 𝑃1. We now choose 𝑆 to be the shortest of all

such paths and if multiple of those exist, we choose 𝑆 so that the region 𝐴′
enclosed by

𝑃1 and 𝑁 is minimized. Let 𝑃1(𝑖, 𝑗) = (𝑣𝑖, . . . , 𝑣 𝑗 ). Then 𝐴′ ∪ {𝑣𝑖, 𝑣 𝑗 } does not contain any

(𝑣𝑖, 𝑣 𝑗 )-paths that are geodesic in regards to 𝐴′ ∪ 𝑆 ∪ 𝑃1.
Assume now that 𝑃1 is guarded by three cops 𝑐1, 𝑐2, 𝑐3 as described in Lemma 3.3. We

now use two additional cops 𝑐4, 𝑐5 to guard 𝑆 as described in Lemma 3.4. It is clear that if
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3 Guarding Paths

the robber is on a vertex in 𝐴′
, as the cops on 𝑆 are in place, we are done since 𝐴′ ( 𝐴 and

it is surrounded by two geodesically closed paths.

Assume now that the cops 𝑐4 and 𝑐5 are in place but the robber is not on a vertex in 𝐴′
.

If the cops guarding 𝑃1 are on vertices not in 𝑃1 \ 𝑃1(𝑖, 𝑗), it is clear that they can adjust

their strategy to guard 𝑃3 instead and we are done.

Assume therefore that at least one cop guarding 𝑃1 is on a vertex in 𝑃1(𝑖, 𝑗). This means

the robber’s shadow has to be on a vertex in 𝑃1(𝑖, 𝑗) as well. Since the robber’s shadow can

only move up to one vertex each turn, we can move the cop on 𝑃1 closest to 𝑣0 to 𝑣𝑖 before

the robber’s shadow arrives there. The other cops on 𝑃1 continue their strategy. Note that

since 𝑃1(𝑖, 𝑗) is geodesically closed in regards to 𝐴′ ∪ 𝑃1(𝑖, 𝑗), the two cops remaining on

𝑃1(𝑖, 𝑗) are still guarding it and therefore if the robber at any point enters a vertex in 𝐴′
,

we are done. Now the cop on 𝑣𝑖 moves up on 𝑆 until he enters a vertex adjacent to the

cops guarding 𝑆 . Now those three cops can guard 𝑃3 if the robber’s shadow is on a vertex

𝑣𝑘 with 𝑘 ≤ 𝑗 . If however the robber’s shadow at any point would have entered 𝑣 𝑗+1, the
two cops remaining on 𝑃1 would occupy 𝑣 𝑗+1 and 𝑣 𝑗+2 while one cop on 𝑆 would occupy

𝑣 𝑗 . Therefore, those three cops can guard 𝑃3 and we have found a strategy using three

cops after a nite number of steps to guard 𝑃3 and the robber’s territory is now the region

enclosed by 𝑃3 and 𝑃2. �

Theorem 3.7. Let𝐺 be a planar graph. Then there exists a strategy using seven cops catching
the robber.

Proof. We want to look at a xed drawing of 𝐺 in the plane. We choose two vertices

𝑢, 𝑣 ∈ 𝑉 (𝐺) that are on the outer face of𝐺 . We use three cops guarding a geodesic path

𝑃 = (𝑢, . . . , 𝑣). We call the territory available to the robber 𝑅. We now use three additional

cops to guard the closest geodesic (𝑢, 𝑣)-path to 𝑃 in 𝑅 ∪ {𝑢, 𝑣}. If the robber’s territory is

not enclosed by the two paths, we do not need the cops guarding the rst path anymore.

Therefore, we continuously guard paths until two guarded geodesic paths enclose 𝑅. We

observe that since we always chose the closest paths, both paths 𝑃1 and 𝑃2 guarded by

cops are geodesically closed in regards to 𝑅 ∪ 𝑃1 ∪ 𝑃2. Therefore, two cops each suce

guarding them.

We will now continuously be in one of two cases starting in case 1:

1. The robber’s territory is enclosed by two geodesically closed paths and we have

three cops remaining.

2. The robber’s territory is enclosed by one geodesic but not geodesically closed path

and one geodesically closed path and we have two cops remaining.

If we are in case 1, we can use the three remaining cops to guard a geodesic (𝑢, 𝑣)-path
in 𝑅 ∪ {𝑢, 𝑣}. We observe that this frees up two cops who formerly guarded one of the

geodesically closed paths and we reduced the robber’s territory. If the robber is not caught,

we will now have two cops remaining and therefore are in case 2.

If we are in case 2, we can use the strategy described in Lemma 3.6 to use the two

additional cops to reduce the robber’s territory. If the robber is not caught, the robber’s

territory is now either enclosed by two guarded geodesically closed paths with three cops
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3.1 Planar Graphs

remaining, putting us in case 1, or the robber’s territory is enclosed by one geodesic but

not geodesically closed path and one geodesically closed path with two cops remaining,

putting us in case 2.

Since we can continuously reduce the robber’s territory this way, we catch the robber

after a nite number of steps and therefore have a winning strategy using seven cops.

�

Note that Bradshaw suspects that this bound is not tight.

The example Bradshaw gives for a planar graph 𝐺 with 𝜎 (𝐺) ≥ 6 is the truncated

icosahedron with an additional vertex 𝑣 added to every face 𝑓 and additional edges {𝑣,𝑢}
for each vertex 𝑢 of 𝑓 . However, they only show that ve cops are not sucient to catch a

robber on that graph but not that six cops are sucient.

Therefore, we want to give a dierent graph 𝐺 with 𝜎 (𝐺) = 6 which allows an easy

proof for the suciency of six cops.

v1 v2

v4v3

v5

P1 P2

P3 P4

P5

Figure 3.1: Planar graph𝐺 with geodesic paths used in the strategy to surround the robber.

Theorem 3.8. Let 𝐺 = (𝑉 , 𝐸) be the graph depicted in Figure 3.1. Let 𝐺′ be the graph
resulting from adding a vertex 𝑣′ and the edge {𝑣, 𝑣′} to 𝐺 , for all vertices 𝑣 ∈ 𝑉 with
deg(𝑣) = 5. Then 𝜎 (𝐺′) = 6.

Proof. First, we want to show that 𝜎 (𝐺′) ≥ 6. We can show that by observing that all

vertices in 𝐺 ⊆ 𝐺′
have degree at least ve. Furthermore, we observe that all vertices in

𝐺′
have degree six. Therefore, Lemma 2.3 proofs that indeed 𝜎 (𝐺′) ≥ 6. It remains to be

shown that six cops are sucient to catch the robber.

We start by using two cops each to guard the paths (𝑣1, 𝑣3, 𝑣5) and (𝑣2, 𝑣4, 𝑣5). Now we

can use the remaining two cops to guard the path 𝑃1. This is possible because 𝑃1 is geodesic

in regards to the subgraph the robber can inhabit. Note that the robber cannot be on a

vertex with degree one adjacent to a guarded path without being captured. We observe

that the cops guarding (𝑣1, 𝑣3, 𝑣5) are no longer needed, since the robber would have to
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3 Guarding Paths

pass 𝑃1 = (𝑣1, . . . , 𝑣5) in order to access these vertices. This means the two cops guarding

this path can now guard the path 𝑃2 = (𝑣2, . . . , 𝑣5), making the cops guarding (𝑣2, 𝑣4, 𝑣5)
obsolete. Since guarding 𝑃3 = (𝑣1, . . . , 𝑣5) and 𝑃4 = (𝑣2, . . . , 𝑣5) is making guarding 𝑃1 and

𝑃2 respectively obsolete, we end up with two cops we can use to guard 𝑃5. Now the robber

has no vertex left they can be on. Therefore, we have found a strategy using six cops to

catch the robber on 𝐺′
. �
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4 Subdivisions of Complete Graphs

Wenowwant to look at subdivisions of complete graphs. Subdividing an edge {𝑢, 𝑣} ∈ 𝐸 (𝐺)
in a graph𝐺 results in the new graph𝐺′ = (𝑉 (𝐺) ∪ {𝑤}, (𝐸 (𝐺) ∪ {{𝑢,𝑤}, {𝑣,𝑤}}) \ {𝑢, 𝑣}).
Let 𝐺 be a graph, then 𝐺𝑘 denotes the graph resulting from 𝑘 times subdividing every

edge of 𝐺 .

Subdividing edges in a graph can both increase and decrease the surrounding cop number
of a graph. An example for increasing the surrounding cop number is the graph 𝑃3. As
shown in Section 2.1 we have 𝜎 (𝑃3) = 1. However, if we subdivide an edge in 𝑃3 we get 𝑃4
for which we know that 𝜎 (𝑃4) = 2.

A less trivial example is the graph 𝐺 constructed in Theorem 4.3, which is obtained by

subdividing certain edges of 𝐾𝑛 . Since 𝜎 (𝐺) = 2 it lowers the surrounding cop number of
𝐾𝑛 by subdividing edges. However, we can also obtain 𝐾𝑛𝑛 by subdividing edges of𝐺 for

which we will prove in Theorem 4.1 that 𝜎 (𝐾𝑛𝑛 ) = d𝑛−1
2
e + 1. Therefore, it is also possible

to increase the surrounding cop number of 𝐺 by subdividing it’s edges.

As alluded to in Chapter 2 we want to show that the surrounding cop number of a graph
can not be bounded with a function of its degeneracy. We show this by proving that the

surrounding cop number of total subdivisions of 𝐾𝑛 is dependent on 𝑛. For that we dene
the 𝑘-neighbourhood of a vertex 𝑣 as 𝑁𝑘 (𝑣) = {𝑢 | 𝑑 (𝑣,𝑢) ≤ 𝑘}.

Theorem 4.1. For all 𝑛, 𝑘 ∈ N with 𝑛 > 2 and 𝑘 > 0 we have 𝜎 (𝐾𝑘𝑛 ) = d𝑛−1
2
e + 1.

Proof. First, we want to show that 𝜎 (𝐾𝑘𝑛 ) > d𝑛−1
2
e for all 𝑛 > 2 and 𝑘 > 0. We observe

that after d𝑛−1
2
e cops are placed on the graph, there must exist a vertex 𝑣 ∈ 𝑉 (𝐾𝑘𝑛 ) with

deg(𝑣) = 𝑛 − 1 with no cop occupying it. We place the robber on that vertex. Since

the number of cops is less than deg(𝑣), the robber can not be captured as long as she

stays on that vertex. We also observe that if a cop is on a vertex 𝑢 with deg(𝑢) = 𝑛 − 1

in the 𝑘-neighbourhood 𝑁𝑘 (𝑢) there can not be another vertex with degree 𝑛 − 1. This

holds because every vertex 𝑤 with deg(𝑤) > 2 which is dierent from 𝑢 has a distance

𝑑 (𝑢,𝑤) = 𝑘 + 1. If deg(𝑢) = 2 we observe that |{𝑤 ∈ 𝑁𝑘 (𝑢) | deg(𝑤) > 2}| = 2. This

means that in this case exactly two vertices with degree 𝑛 − 1 are in the 𝑘-neighbourhood

of 𝑢.

If the robber only moves upon a cop moving onto her vertex, we can bound the union of

all 𝑘-neighbourhoods of vertices occupied by cops upon the robber being forced to move

by 2(d𝑛−1
2
e − 1) + 1 = 2d𝑛−1

2
e − 1. If 𝑛 is even, this is the same as 𝑛 − 1 and if 𝑛 is odd, it

is the same as 𝑛 − 2. This means there exists at least one vertex 𝑣′ ∈ 𝐺 in whose entire

𝑘-neighbourhood 𝑁𝑘 (𝑣′) is no cop. If the robber has to move, she chooses such a vertex 𝑣′

and moves there in 𝑘 + 1 steps. Since no cop can reach 𝑣′ in less steps, the robber cannot

be captured on her way. We observe that upon the arrival of the robber at 𝑣′ it satises
the condition of not being occupied by a robber, that we demanded at the beginning of
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4 Subdivisions of Complete Graphs

the proof. Therefore, the robber can indenitely repeat the process of moving to dierent

vertices 𝑣 with deg(𝑣) = 𝑛 − 1 and can never be captured.

It remains to be shown that d𝑛−1
2
e + 1 cops are sucient to catch the robber. We will rst

prove it for even 𝑛. Consider a perfect matching of 𝐾𝑛 . It is clear that we can get a perfect

matching by using
𝑛
2
edges. For every edge (𝑢, 𝑣) in the perfect matching there exists a

shortest path 𝑃 = (𝑢, . . . , 𝑣) ⊆ 𝐾𝑘𝑛 that satises the conditions of Lemma 3.5. For each of

those paths we place a cop on the vertex 𝑢. Using the strategy employed in Lemma 3.5,

we can use the one cop remaining to assure that these paths cannot be accessed by the

robber. We observe that the robber can not be on a vertex𝑤 with deg(𝑤) = 𝑛 − 1, because

since the starting positions of our cops are based on a perfect matching, each 𝑤 with

deg(𝑤) = 𝑛 − 1 must be on a path guarded by a cop. Therefore, the robber is on a vertex

𝑤 with deg(𝑤) = 2. This means she is on a shortest path 𝑃 = (𝑣0, . . . , 𝑣𝑖,𝑤, 𝑣𝑖+1, . . . , 𝑣𝑘)
with deg(𝑣0) = deg(𝑣𝑘) = 𝑛 − 1. Since the starting positions of the cops are based on a

perfect matching, both 𝑣0 and 𝑣𝑘 must be part of paths guarded by cops. This means the

robber can never leave the path 𝑃 . Using the remaining cop, we now can trivially catch

the robber.

We will now prove it for odd 𝑛. Consider a perfect matching of 𝐾𝑛 − 𝑣 for an arbitrary

vertex 𝑤 with deg(𝑤) = 𝑛 − 1. It is again clear that we can get a perfect matching by

using
𝑛−1
2

edges. For every edge (𝑢, 𝑣) in our perfect matching there exists a shortest path

𝑃 = (𝑢, . . . , 𝑣) ⊆ 𝐾𝑘𝑛 that satises the conditions of Lemma 3.5. For each of those paths

place a cop on the vertex 𝑢. Using the strategy employed in Lemma 3.5, we can use the

one cop remaining to assure that these paths cannot be accessed by the robber. We now

direct the remaining cop to the unmatched vertex 𝑣 . This means the robber cannot be on

a vertex 𝑤 with deg(𝑤) = 𝑛 − 1. Therefore, the robber must be on a path between two

vertices 𝑢, 𝑥 with deg(𝑢) = deg(𝑥) = 𝑛 − 1. If neither of these vertices is 𝑣 , we can use the

same strategy used for even 𝑛 to catch the robber trivially. If w.l.o.g. 𝑥 = 𝑣 , the cop on 𝑣

and the cop guarding 𝑤 can move towards the robber without entering her vertex and

will thereby trivially catch her after a nite number of steps. �

Corollary 4.2. Let 𝐺 be a graph and deg(𝐺) its degeneracy. Then there exists no function
𝑓 : N0 → N0, such that 𝜎 (𝐺) ≤ 𝑓 (deg(𝐺)).

Proof. Since we showed that we can nd a total subdivision of a complete graph 𝐾1

𝑚 with

𝜎 (𝐾1

𝑚) ≥ 𝑛 for any 𝑛 ∈ N, we can nd graphs with an arbitrarily high surrounding cop

number and degeneracy two. Therefore, we cannot nd a function only dependent on the

degeneracy of a graph to bound it. �

We now want to show that the bound presented for complete subdivisions does not

hold for arbitrary subdivisions of complete graphs. We do that by showing that there

exists a subdivision for every 𝐾𝑛 that has 𝜎 (𝐾𝑛) = 2.

Theorem 4.3. For every 𝑛 ∈ N with 𝑛 ≥ 2 there exists a subdivision of 𝐾𝑛 with 𝜎 (𝐾𝑛) = 2.

Proof. First, we note that for 𝑛 = 2 we can simply subdivide its one edge twice in order to

get 𝑃4 for which Section 2.1 tells us that 𝜎 (𝑃4) = 2.

For 𝑛 > 2 let 𝐺 = 𝐾𝑛 and 𝑉 (𝐺) = {𝑢1, . . . 𝑢𝑛}. Construct the graph 𝐺′
with the same

vertices and edges as 𝐺 except that each edge which does not include 𝑢1 is subdivided.
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Since 𝛿 (𝐺′) = 2, we know that 𝜎 (𝐺) ≥ 2 because of Lemma 2.2. It remains to be shown

that two cops suce to catch the robber.

For that we place two cops 𝑐1 and 𝑐2 on 𝑢1. If the robber starts on a vertex 𝑣 with

deg(𝑣) = 2, it has two adjacent vertices 𝑢𝑖 and 𝑢 𝑗 . Since we did not subdivide edges

including 𝑢1 they are both in 𝑁 (𝑢1). Therefore, 𝑐1 can move to 𝑢𝑖 and 𝑐2 to 𝑢 𝑗 to surround

the robber.

If the robber instead starts on a vertex 𝑣 with deg(𝑣) > 2, we can force her to move

to another vertex by moving 𝑐1 to 𝑣 . Since 𝑣 ∈ 𝑁 (𝑢1), this is possible in one step. Now

the robber has to move to a vertex 𝑣′ with deg(𝑣′) = 2. Therefore, 𝑐2 can move to the

remaining unoccupied vertex in 𝑁 (𝑣′) and surround the robber. �
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5 Strong Product

In this section we want to examine the surrounding cop number for graphs arising from

the strong product with paths. Let 𝐺 be a graph and 𝑉 (𝐺) = {𝑣1, . . . , 𝑣𝑛}. Let furthermore

𝑃𝑛 be a path of length 𝑛 and 𝑉 (𝑃𝑛) = (𝑝1, . . . , 𝑝𝑛). We denote (𝑣𝑖, 𝑝 𝑗 ) the vertex 𝑣𝑖 in the

𝑗-th copy in𝐺�𝑃𝑛 . Let (𝑣𝑖, 𝑝 𝑗 ) ∈ 𝑉 (𝐺�𝑃𝑛). Then we observe that 𝑁 ((𝑣𝑖, 𝑝 𝑗 )) = {(𝑣𝑖 ′, 𝑝 𝑗 ′) |
𝑣𝑖 ′ ∈ 𝑁 (𝑣𝑖),max{0, 𝑗 − 1} ≤ 𝑗 ′ ≤ min{𝑛, 𝑗 + 1}}. We dene the function 𝑝 : 𝑉 → N as

𝑝 ((𝑣𝑖, 𝑝 𝑗 )) = 𝑗 .

Theorem 5.1. Let 𝐺 be a graph. Then 𝜎 (𝐺 � 𝑃𝑛) ≤ 𝜎 (𝐺) + 2 for all 𝑛 ∈ N.

Proof. We are going to catch the robber in three phases.

Phase 1: Consider a winning strategy (𝑠, (𝑣1, . . . , 𝑣𝑘)) of 𝐺 using 𝜎 (𝐺) = 𝑘 cops, where

𝑣1, . . . , 𝑣𝑘 are the starting positions of the cops. Place cops on the vertices (𝑣1, 𝑝𝑖), . . . , (𝑣𝑘 , 𝑝𝑖)
for 𝑖 ∈ {0, 1, 2}. Now the robber is placed on any other vertex on 𝐺 � 𝑃𝑛 . If at any

point directly after the robber moved, she is on a vertex (𝑣𝑖, 𝑝 𝑗 ) with 𝑗 ≤ min{ 𝑗 ′ |
(𝑣𝑖 ′, 𝑝 𝑗 ′) is occupied by a cop}, go to phase 2. Else on the cops turns let (𝑣𝑖, 𝑝 𝑗 ) be the

position of a cop. This cop now moves to the vertex (𝑣𝑖, 𝑝 𝑗+1). It is clear that after a nite
number of steps we are nished with phase 1.

Phase 2: The cops now move depending on the position of the robber and “mirror” the

robber’s moves along 𝑃𝑛 as described in the following. Let 𝑟 be the vertex of the robber

and 𝑟 ′ the vertex the robber started their turn:

• If 𝑝 (𝑟 ) = 0 mod 𝑛, let (𝑣1, . . . , 𝑣𝑘) be the positions of the cops on the 𝑝 (𝑟 )-th copy. Let
furthermore 𝑠 ((𝑣1, . . . , 𝑣𝑘)) = (𝑣′

1
, . . . , 𝑣′

𝑘
) and let 𝑐 be a cop at vertex (𝑣𝑖, 𝑝 𝑗 ). Then

the cop moves to (𝑣′𝑖 , 𝑝 𝑗 ).

• Else if 𝑝 (𝑟 ) − 𝑝 (𝑟 ′) = −1, , let (𝑣1, . . . , 𝑣𝑘) be the positions of the cops on the 𝑝 (𝑟 )-th
copy. Let furthermore 𝑠 ((𝑣1, . . . , 𝑣𝑘)) = (𝑣′

1
, . . . , 𝑣′

𝑘
) and let 𝑐 be a cop at vertex (𝑣𝑖, 𝑝 𝑗 ).

Then the cop moves to (𝑣′𝑖 , 𝑝 𝑗−1).

• Else if 𝑝 (𝑟 ) − 𝑝 (𝑟 ′) = 1, let (𝑣1, . . . , 𝑣𝑘) be the positions of the cops on the 𝑝 (𝑟 )-th
copy. Let furthermore 𝑠 ((𝑣1, . . . , 𝑣𝑘)) = (𝑣′

1
, . . . , 𝑣′

𝑘
) and let 𝑐 be a cop at vertex (𝑣𝑖, 𝑝 𝑗 ).

Then the cop moves to (𝑣′𝑖 , 𝑝 𝑗+1).

We can easily see that themoves performed by the cops are all legalmoves since𝑁 ((𝑣𝑖, 𝑝 𝑗 )) =
{(𝑣𝑖 ′, 𝑝 𝑗 ′) | 𝑣𝑖 ′ ∈ 𝑁 (𝑣𝑖),max{0, 𝑗 − 1} ≤ 𝑗 ′ ≤ min{𝑛, 𝑗 + 1}}. We observe that after each

turn of the cops the robber is in the middle of three graph copies with cops on them. Since

the cops are carrying out their turns according to a winning strategy on 𝐺 , after a nite

amount of steps the robber cannot move within her graph copy. This means she can only

move to an adjacent graph copy. But since the cops there mirror the movements of the

cops on the robber’s graph copy, the only legal move for the robber is to move along 𝑃𝑛 .
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5 Strong Product

Phase 3: The cops now move only along 𝑃𝑛 and in the direction the robber does. Thus,

the robber continuously can only move along 𝑃𝑛 , too. We now use the remaining two cops

to trivially catch the robber on 𝑃𝑛 , using the strategy described in Section 2.1 using overall

3𝜎 (𝐺) + 2 cops. �

We now want to show that this bound cannot be generalized for arbitrary subgraphs

of 𝐺 � 𝑃𝑛. For that we will show that we can nd a graph with a high surrounding cop
number as a subgraph of 𝐾1,𝑚 � 𝑃𝑚 . Since we know that 𝜎 (𝐾1,𝑚 � 𝑃𝑚) ≤ 3𝜎 (𝐾1,𝑚) + 2 = 5,

this shows that we cannot bound the surrounding cop number for subgraphs of a strong
product of a graph with a path.

Theorem 5.2. Let 𝐾1,𝑛 be the Star with 𝑛 + 1 vertices. Then there exists 𝑚 ∈ N so that
𝐾𝑛𝑛 ⊆ 𝐾𝑚

1,𝑚 � 𝑃𝑛 .

Proof. We start with the graph (𝑉 = ∅, 𝐸 = ∅). Let (𝑣𝑖, 𝑝 𝑗 ) be the vertex in the 𝑗-th copy of

𝐾1,𝑛−1 with degree 𝑛 − 1. We now want to construct a path from (𝑣𝑖, 𝑝1) to (𝑣 𝑗 , 𝑝1). W.l.o.g.

we assume that 𝑖 < 𝑗 . We now add the paths 𝑃1 = (𝑢1, . . . , 𝑢𝑛+𝑖− 𝑗 ) and 𝑃2 = (𝑢𝑛+𝑖− 𝑗 , . . . , 𝑢𝑛)
as well as the edges {(𝑣𝑖, 𝑝1), 𝑢1}, {(𝑣 𝑗 , 𝑝1), 𝑢𝑛}.
This means we have connected (𝑣𝑖, 𝑝1) and (𝑣 𝑗 , 𝑝1) with a path of length 𝑛 + 1. The

path 𝑃1 is a subdivision of an edge in the 𝑖-th graph copy and the path 𝑃2 arises from the

strong-product with 𝑃𝑛. As we did this for any (𝑣𝑖, 𝑝1) and (𝑣 𝑗 , 𝑝1), we have shown that

we can connect all 𝑛 vertices of degree 𝑛 − 1 with disjunctive paths and therefore have

constructed 𝐾𝑛𝑛 ⊆ 𝐾𝑚
1,𝑚 � 𝑃𝑛 . �

1 2 3
n− 1

n− 2

n− 3

n− 2

n− 3
2

1

n− 2
1

Figure 5.1: Representation of 𝐾𝑛𝑛 the way it is constructed. Edge weights denote the length

of the path if its longer than one.
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6 Treewidth

While there are some simple lower bounds for the surrounding cop number of a graph (see

Chapter 2), we do not have any upper bounds so far. We now want to show that an upper

bound proved by Burgess et al. in [6] using the treewidth of a graph is tight.

We will use the denition used by Robertson and Seymour in [17] where the treewidth

was rst introduced.

Let 𝐺 be a graph. A tree decomposition is a pair (𝑋,𝑇 ). 𝑋 = {𝑋1, . . . , 𝑋𝑛} is a family

of subsets of 𝑉 (𝐺) called bags. 𝑇 is a tree with 𝑉 (𝑇 ) = 𝑋 . Furthermore, the following

conditions must be satised:

• 𝑉 (𝐺) = ⋃𝑛
𝑖=1𝑋𝑖 ,

• For every edge {𝑢, 𝑣} ∈ 𝐸 (𝐺) there is a bag 𝑋𝑖 with 𝑢 ∈ 𝑋𝑖 and 𝑣 ∈ 𝑋𝑖 and

• For 𝑋𝑖, 𝑋 𝑗 , 𝑋𝑘 ∈ 𝑋 , if 𝑋 𝑗 is on the path from 𝑋𝑖 to 𝑋𝑘 in 𝑇 then 𝑋𝑖 ∩ 𝑋𝑘 ⊆ 𝑋 𝑗 .

We will now prove the bound already proved in [6] in order to later on show its tightness.

Theorem 6.1. Let 𝐺 be a graph, then 𝜎 (𝐺) ≤ tw(𝐺) + 1.

Proof. Let𝑇 be a xed tree decomposition of𝐺 with width tw(𝐺). We then place a cop on

each vertex of an arbitrary bag 𝐵 of𝑇 . Therefore, the robber has to start on a dierent bag

𝐵′. We interpret 𝐵 as the root of the tree 𝑇 . Let 𝐵′′ be adjacent to 𝐵 and in the subtree the

robber resides in. It is clear that 𝐵 ∩ 𝐵′′ ⊆ 𝐵 and therefore cops can occupy the entirety of

𝐵′′ while ensuring that the robber can never enter 𝐵. After the cops successfully occupied

𝐵′′, they can this way iteratively reduce the territory of the robber and therefore catch her

after a nite amount of steps. This is basically the same strategy used to catch the robber

on a tree used in Section 2.3. �

Note that this bound also holds if the robber can move an arbitrary amount of edges

each turn. Therefore in the setting of helicopter cops and robbers the surrounding winning

condition is equivalent to the normal winning condition.

Theorem 6.2. The bound in Theorem 6.1 is tight.

Proof. To show that the bound is tight we construct a graph 𝐺′
for every 𝑛 ∈ N with

𝜎 (𝐺′) = 𝑛 and tw(𝐺′) = 𝑛 − 1.

For that let𝐺 = 𝐾𝑛 with𝑉 (𝐺) = {𝑣1, . . . , 𝑣𝑛}. We now set𝐺′ = (𝑉 (𝐺)∪{𝑣′
1
. . . , 𝑣′𝑛}, 𝐸 (𝐺)∪

{{𝑣𝑖, 𝑣′𝑖 } | 𝑣 ∈ 𝑉 (𝐺), 1 ≤ 𝑖 ≤ 𝑛}). Since 𝐾𝑛 is a subgraph of𝐺′
and all of the vertices belong-

ing to it have degree 𝑛 in𝐺′
, we know that 𝜎 (𝐺′) ≥ 𝑛 because of Lemma 2.3. Furthermore,

it is clear that tw(𝐺′) = 𝑛 − 1. Therefore, we have constructed a graph for an arbitrary

𝑛 ∈ N for which 𝜎 (𝐺) = tw(𝐺) + 1 holds. This proves the tightness of the bound. �
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6 Treewidth

We now want to show that we can construct graphs for each surrounding cop number
with an arbitrarily high treewidth.

Theorem 6.3. For every 𝑛, 𝑘 ∈ N with 2 ≤ 𝑛 ≤ 𝑚, there exists a graph 𝐺 with 𝜎 (𝐺) = 𝑛
and tw(𝐺) ≥ 𝑚.

Proof. We start by constructing a graph 𝐺 as in Theorem 4.3 for𝑚 + 1. It is clear that

𝐺 has treewidth𝑚 since treewidth is invariant to subdivision for graphs with treewidth

greater than one. This is true because for a subdivided edge {𝑢, 𝑣} which adds a vertex𝑤 ,

we can simply add the bag {𝑢, 𝑣,𝑤} to our tree decomposition and add an edge to a bag

that contains 𝑢 and 𝑣 . Since 𝐺 is a subdivision of 𝐾𝑚 it therefore mus have treewidth𝑚.

Furthermore, Theorem 4.3 tells us that 𝜎 (𝐺) = 2. Since we constructed it for𝑚 + 1 ≥ 3,

we also know that 𝛿 (𝐺) = 2.

We now need to increase 𝜎 (𝐺) to 𝑛. For that we will add 𝑛 − 2 universal vertices to 𝐺

(universal vertices have edges to all other vertices of a graph) to obtain a graph 𝐺′
. This

means that 𝛿 (𝐺′) = 2 + 𝑛 − 2 = 𝑛 and therefore 𝜎 (𝐺′) ≥ 𝑛. Furthermore, it is clear that

tw(𝐺′) ≥ 𝑚 since we just added vertices and edges to a graph which already had sucient

treewidth.

It remains to be shown that 𝑛 cops suce to catch the robber. For that we place 𝑛−2 cops
on the universal vertices. It is clear that the robber can never access any of these vertices.

Therefore, the robber can be caught by employing the strategy used in Theorem 4.3.

�

We now have shown that while the treewidth of a graph can be used as an upper bound

for the surrounding cop number of a graph, it is not necessarily a particularly good bound

as it can deviate quite heavily from the correct surrounding cop number of a graph.

24



7 Active Surrounding Cops and Robbers

We now want to look at the active variant of the game of surrounding cops and robbers.

As alluded to in Section 1.3.1, we will use the same denition as in [14]. This means both

cops and the robber are required to move every turn and cannot stay on a vertex any

more. We want to examine this variation in combination with the surrounding winning

condition. We denote the surrounding cop number with the active restriction of a graph 𝐺

𝜎𝑎 (𝐺). Note that in order to get a formal denition it suces to change Restriction 1.1 to

𝑣′𝑖 ∈ 𝑁 (𝑣𝑖) for all 1 ≤ 𝑖 ≤ 𝑘 and Restriction 1.2 to 𝑣′ ∈ 𝑁 (𝑣).

First, we want to show that the following theorem proved in [9] for the normal variant

also holds for the surrounding variant.

Theorem 7.1. Let 𝐺 be a graph. Then 𝜎 (𝐺) − 1 ≤ 𝜎𝑎 (𝐺) ≤ 2𝜎 (𝐺).

Proof. First, we want to show the lower bound. For that we observe that a single cop can

prevent the robber from not moving by constantly following them. Therefore, any strategy

in the active variant can be applied to the passive variant by adding such a cop.

Let now𝐶 be a set of cops who are used in a winning strategy in the passive variant. We

now add an additional cop 𝑐′𝑖 for every 𝑐𝑖 ∈ 𝐶 who starts on an adjacent vertex to 𝑐𝑖 . If now

a cop 𝑐𝑖 moves, the cop 𝑐′𝑖 will follow its move in order to stay adjacent. If a cop 𝑐𝑖 would

stay on a vertex, he instead switches vertices with 𝑐′𝑖 . If we now relabel the cops they both

eectively stayed on their respective vertices. Therefore, we have found a strategy using

twice as many cops that works in the active variant. This proves the upper bound. �

7.1 Planar Graphs with Active Restrictions

An open question that was proposed by Bradshaw in [5] is how the surrounding cop number
on planar graphs behaves with the additional restrictions of the active variant. We will

show a bound by adjusting the lemmas used for guarding paths to work with the additional

restrictions.

Lemma 7.2. Let 𝐺 be a graph and let 𝑃 = (𝑣0, . . . , 𝑣𝑘) ⊆ 𝐺 be a geodesic path. Then there
exists a strategy using four cops guarding it in the active surrounding variant after a nite
number of steps.

Proof. We will adjust the strategy used in Lemma 3.3 slightly by introducing a fourth cop

𝑐4 who is initially placed on the same vertex as 𝑐2 and makes the same moves as 𝑐2. We

note that the only situations the strategy used in Lemma 3.3 is not legal in the active

variant is if either the cops do not move because the robber’s shadow did not move or if

the robber’s shadow moves either to 𝑣0 or 𝑣𝑘 .
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7 Active Surrounding Cops and Robbers

If the cops do not move due to the robber’s shadow not moving, they are on vertices

𝑣𝑖, 𝑣𝑖+1, 𝑣𝑖+2. Since we added a fourth cop behaving like 𝑐2, there are two cops occupy-

ing 𝑣𝑖+1. Therefore, we have the positions (𝑣𝑖, 𝑣𝑖+1, 𝑣𝑖+1, 𝑣𝑖+2) and the cops can move to

(𝑣𝑖+1, 𝑣𝑖, 𝑣𝑖+2, 𝑣𝑖+1) in one step. If we now relabel the cops, they are in the same conguration

as they where when the turn started. Therefore, we have found a way for the cops to

eectively not move.

It remains to be shown how the cops behave upon the robber’s shadow entering 𝑣0
or 𝑣𝑘 . Assume w.l.o.g. that the robber’s shadow enters 𝑣0. In the strategy employed in

Lemma 3.3 this means that the cops move from (𝑣0, 𝑣1, 𝑣2) to (𝑣0, 𝑣0, 𝑣1). Since we added the
fourth cop, we have the positions (𝑣0, 𝑣1, 𝑣1, 𝑣2) instead. Therefore, the cops on 𝑣0 and 𝑣2
can move to 𝑣1 and the cops on 𝑣1 move to 𝑣0, giving us the conguration (𝑣0, 𝑣0, 𝑣1, 𝑣1). If
the robber’s shadow stays on 𝑣0, the cops can just switch positions to get to an equivalent

conguration. If the robber’s shadow moves to 𝑣1, the cops can just reverse the moves

they made upon the robber’s shadow entering 𝑣0, in order to get back to the conguration

(𝑣0, 𝑣1, 𝑣1, 𝑣2).
Since at all times every vertex occupied in the strategy used in Lemma 3.3 is occupied

by at least one cop in this strategy, this strategy guards 𝑃 with four cops who move every

turn. �

Lemma 7.3. Let 𝐺 be a graph and let 𝑃 = (𝑣0, . . . , 𝑣𝑘) ⊆ 𝐺 be a geodesically closed path.
Then there exists a strategy using two cops guarding it in the active surrounding variant after
a nite number of steps.

Proof. We observe that in the strategy used in Lemma 3.4 the two cops used are always

at adjacent vertices. Therefore, if the cops do not move in this strategy, they can switch

vertices instead, resulting in a legal strategy for the active variant. That this strategy

guards 𝑃 follows directly from Lemma 3.4. �

The proof of the following theorem is very similar to the proof of Lemma 3.6. But in

order to make it understandable, we will repeat the complete setup instead of referencing

to the proof of Lemma 3.6.

Lemma 7.4. Let 𝐺 be a graph with a xed drawing in the plane. Let 𝑃1, 𝑃2 ⊆ 𝐺 be two
(𝑎, 𝑏)-paths enclosing a component 𝐴 ⊆ 𝐺 \ (𝑃1 ∪ 𝑃2) where the robber resides on. Let
furthermore 𝑃1 be geodesic in regards to 𝐴 ∪ 𝑃1 but not geodesically closed and let 𝑃2 be
geodesically closed in regards to 𝐴 ∪ 𝑃2. Assume that 𝑃1 is guarded by four cops, as described
in Lemma 7.2, and 𝑃2 is guarded by two cops, as described in Lemma 7.3. Then there exists
a strategy using two additional cops for a nite amount of steps to restrict the territory of
the robber to a component 𝐵 ( 𝐴 surrounded by a geodesic and a geodesically closed path
guarded by two and three cops respectively, which is legal under the additional restrictions of
the active variant.

Proof. Let 𝑃1 = (𝑣1, . . . , 𝑣𝑛). Since 𝑃1 is not geodesically closed in regards to 𝐴 ∪ 𝑃1, we
can nd a path 𝑆 * 𝑃1 with 𝑆 = (𝑣𝑖, 𝑣′𝑖+1 . . . , 𝑣′𝑗−1, 𝑣 𝑗 ) such that 𝑃3 = (𝑣1, . . . , 𝑣𝑖, 𝑣′𝑖+1 . . . , 𝑣′𝑗−1,
𝑣 𝑗 , . . . , 𝑣𝑛) is geodesic in regards to 𝐴 ∪ 𝑃1. We now choose 𝑆 to be the shortest of all

such paths and if multiple of those exist, we choose 𝑆 so that the region 𝐴′
enclosed by
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𝑃1 and 𝑁 is minimized. Let 𝑃1(𝑖, 𝑗) = (𝑣𝑖, . . . , 𝑣 𝑗 ). Then 𝐴′ ∪ {𝑣𝑖, 𝑣 𝑗 } does not contain any

(𝑣𝑖, 𝑣 𝑗 )-paths that are geodesic in regards to 𝐴′ ∪ 𝑆 ∪ 𝑃1.
Assume now that 𝑃1 is guarded by four cops 𝑐1, 𝑐2, 𝑐3, 𝑐4, as described in Lemma 7.2. We

now use two additional cops 𝑐5, 𝑐6 to guard 𝑆 , as described in Lemma 7.3. It is clear that if

the robber is on a vertex in 𝐴′
, as the cops on 𝑆 are in place, we are done since 𝐴′ ( 𝐴 and

it is surrounded by two geodesically closed paths.

Assume now that the cops 𝑐5 and 𝑐6 are in place, but the robber is not on a vertex in 𝐴′
.

If the cops guarding 𝑃1 are on vertices not in 𝑃1 \ 𝑃1(𝑖, 𝑗), it is clear that they can adjust

their strategy to guard 𝑃3 instead and we are done.

Assume therefore that at least one cop guarding 𝑃1 is on a vertex in 𝑃1(𝑖, 𝑗). Therefore,
the robber’s shadow has to be on a vertex in 𝑃1(𝑖, 𝑗) as well. Since the robber’s shadow
can only move up to one vertex each turn, we can move the cops 𝑐1 and 𝑐2 to 𝑣𝑖 before the

robber’s shadow arrives there, while the other cops on 𝑃1 continue their strategy. Note

that since 𝑃1(𝑖, 𝑗) is geodesically closed in regards to 𝐴′ ∪ 𝑃1(𝑖, 𝑗), the two cops remaining

on 𝑃1(𝑖, 𝑗) are still guarding it and therefore if the robber enters a vertex in 𝐴′
at any

point we are done. Now the cops 𝑐1 and 𝑐2 move up on 𝑆 until one cop enters the vertex

of another cop on 𝑆 . Now those four cops can guard 𝑃3 if the robber’s shadow is on a

vertex 𝑣𝑘 with 𝑘 ≤ 𝑗 . If however the robber’s shadow at any point would have entered

𝑣 𝑗+1, then the two cops remaining on 𝑃1 would occupy 𝑣 𝑗+1 and 𝑣 𝑗+2 while 𝑐6 on 𝑆 would
occupy 𝑣 𝑗 and the 𝑐5 would occupy 𝑣′𝑗−1. It is clear that the rst three cops can guard 𝑃3
as long as the robber’s shadow does not stay on a vertex for a turn. Let the 𝑐5 follow the

other cops. If now the robber’s shadow moves towards 𝑣0 at any point, all cops but 𝑐5 can

move a step towards 𝑣0 while 𝑐5 moves in the opposite direction and we obtain the correct

conguration of cops to guard it according to Lemma 7.2. If at any point the robber’s

shadow stays on a vertex 𝑣𝑘 for a turn, the positions of the cops are (𝑣𝑘−2, 𝑣𝑘−1, 𝑣𝑘 , 𝑣𝑘+1). We

can therefore obtain the positions (𝑣𝑘−1, 𝑣𝑘 , 𝑣𝑘+1, 𝑣𝑘), which is equivalent to the positions

(𝑣𝑘−1, 𝑣𝑘 , 𝑣𝑘 , 𝑣𝑘+1). Therefore, we can then carry out the strategy described in Lemma 7.2.

Since the robber’s shadow cannot move towards 𝑣𝑛 indenitely, this must happen after a

nite number of steps.

Therefore, those four cops can guard 𝑃3 and we have found a strategy using four cops

after a nite number of steps to guard 𝑃3 with the additional restrictions of the active

variant and the robber’s territory is now the region enclosed by 𝑃3 and 𝑃2. �

Theorem 7.5. Let𝐺 be a planar graph. Then there exists a strategy using eight cops catching
the robber with the additional restrictions of the active variant.

Proof. We want to look at a xed drawing of 𝐺 in the plane. We choose two vertices

𝑢, 𝑣 ∈ 𝑉 (𝐺) that are on the outer face of 𝐺 . We use four cops guarding a geodesic path

𝑃 = (𝑢, . . . , 𝑣). We call the territory available to the robber 𝑅. We now use four additional

cops to guard the closest geodesic (𝑢, 𝑣)-path to 𝑃 in 𝑅 ∪ {𝑢, 𝑣}. If the robber’s territory is

not enclosed by the two paths, we do not need the cops guarding the rst path anymore.

Therefore, we continuously guard paths until two guarded geodesic paths enclose 𝑅. We

observe that since we always chose the closest paths, both paths 𝑃1 and 𝑃2 guarded by

cops are geodesically closed in regards to 𝑅 ∪ 𝑃1 ∪ 𝑃2. Therefore, two cops each suce

guarding them.
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We now observe that with the four remaining cops we can use the same strategy as in

the proof of Theorem 3.7 by using the equivalent strategies for the active variant proved

in this section.

The additional cop is needed for the beginning when two geodesic paths have to be

guarded and for the execution of the strategy in Lemma 7.4.

�

Note that just like the bound for planar graphs without the active restrictions this bound

is probably not tight.

7.2 Hypercube

The cop number of the hypercube 𝑄𝑛 has rst been determined by Maamoun and Meyniel

in [11] as a special case of the Cartesian product of trees. They proved that 𝑐 (𝑄𝑛) = d𝑛+1
2
e.

Later on, the cop number for the active variant was studied by Neufeld and Nowakowski in

[12] and it was shown that 𝑐𝑎 (𝑄𝑛) = d𝑛
2
e where 𝑐𝑎 is the cop number with the restrictions

of the active variant.

A generalization of the active variant where a certain number of cops have to move

every turn and a certain number of cops have to not move every turn was then studied

by Oner and Ojakian in [14]. The specic variant of this where only one cop may move

every turn was then also studied in [3].

First, we want to examine the surrounding cop number of the hypercube without any

further restrictions. For that we observe that 𝑄𝑛 is the Cartesian product of 𝑛 paths of

length one.

Theorem 7.6. For every 𝑛 ∈ N we have 𝜎 (𝑄𝑛) = 𝑛.

Proof. First we observe that 𝜎 (𝑄𝑛) ≥ 𝛿 (𝑄𝑛) = 𝑛 by Lemma 2.2. Therefore, it remains to be

shown that 𝑛 cops suce to catch the robber.

For that we use the bound 𝜎 (𝐺�𝐻 ) ≤ 𝜎 (𝐺) + 𝜎 (𝐻 ), shown in [6] for any graphs𝐺 and

𝐻 . Since 𝑃2 has 𝜎 (𝑃2) = 1 and 𝑄𝑛 is the Cartesian product of 𝑛 copies of 𝑃2, it follows that

𝜎 (𝑄𝑛) = 𝜎 (𝑃21� · · ·�𝑃2𝑛 ) ≤ 𝑛 for 𝑛 copies of 𝑃2. �

We now want to look at the hypercube with the restrictions of the active variant. For

that let the vertices of 𝑄𝑛 be dened as (𝑥1, . . . , 𝑥𝑛) ∈ 𝑉 (𝑄𝑛) where 𝑥𝑖 ∈ {0, 1}. We rst

want to show how the parity of the distance between two vertices relates to the parity of

the distance of another vertex to each of those vertices.

Lemma 7.7. Let 𝑣1, 𝑣2, 𝑣3 ∈ 𝑉 (𝑄𝑛) and 𝑑 (𝑣1, 𝑣2) mod 2 = 𝑖 and 𝑑 (𝑣1, 𝑣3) mod 2 = 𝑗 with
𝑖, 𝑗 ∈ {0, 1}. Then 𝑑 (𝑣2, 𝑣3) mod 2 = 𝑖 + 𝑗 mod 2.
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Proof. Let 𝑣1 = (𝑥1
1
, . . . , 𝑥1𝑛), 𝑣2 = (𝑥2

1
, . . . , 𝑥2𝑛), 𝑣3 = (𝑥3

1
, . . . , 𝑥3𝑛). We now want to partition

the indices into four sets.

𝐴1 = { 𝑗 ∈ N | 1 ≤ 𝑗 ≤ 𝑛, 𝑥1𝑗 = 𝑥2𝑗 = 𝑥3𝑗 }
𝐴2 = { 𝑗 ∈ N | 1 ≤ 𝑗 ≤ 𝑛, 𝑥1𝑗 = 𝑥2𝑗 ≠ 𝑥3𝑗 }
𝐴3 = { 𝑗 ∈ N | 1 ≤ 𝑗 ≤ 𝑛, 𝑥1𝑗 ≠ 𝑥2𝑗 = 𝑥3𝑗 }
𝐴4 = { 𝑗 ∈ N | 1 ≤ 𝑗 ≤ 𝑛, 𝑥2𝑗 ≠ 𝑥1𝑗 = 𝑥3𝑗 }

Note that this is indeed a partition of all indices 1 ≤ 𝑗 ≤ 𝑛.
We can now formulate the distances between the vertices using these sets.

𝑑 (𝑣1, 𝑣2) = |𝐴3 ∪𝐴4 | = |𝐴3 | + |𝐴4 |
𝑑 (𝑣1, 𝑣3) = |𝐴2 ∪𝐴3 | = |𝐴2 | + |𝐴3 |
𝑑 (𝑣2, 𝑣3) = |𝐴2 ∪𝐴4 | = |𝐴2 | + |𝐴4 |

Therefore, we can also write the distance between 𝑣2 and 𝑣3 as 𝑑 (𝑣2, 𝑣3) = 𝑑 (𝑣1, 𝑣3) −
|𝐴3 | + 𝑑 (𝑣1, 𝑣2) − |𝐴3 | = 𝑑 (𝑣1, 𝑣3) + 𝑑 (𝑣1, 𝑣2) − 2|𝐴3 |. Therefore, it follows directly that

𝑑 (𝑣2, 𝑣3) mod 2 = 𝑑 (𝑣1, 𝑣3) + 𝑑 (𝑣1, 𝑣2) mod 2. �

We now show that in the active variant the parity of the distance between a cop and

the robber can never change. For that we denote with 𝑑𝑖 (𝑐, 𝑟 ) the distance of a cop 𝑐 to the
robber 𝑟 after the 𝑖-th move of the robber and 𝑑′𝑖 (𝑐, 𝑟 ) the distance of a cop 𝑐 to the robber

𝑟 after the 𝑖-th move of the cops. We denote the distance after the robber is initially placed

on a vertex with 𝑑0(𝑐, 𝑟 ).

Lemma 7.8. Let 𝑑0(𝑐, 𝑟 ) mod 2 = 𝑖 . Then 𝑑′𝑗 (𝑐, 𝑟 ) + 1 mod 2 = 𝑖 and 𝑑 𝑗 (𝑐, 𝑟 ) mod 2 = 𝑖 .

Proof. Let 𝑑 𝑗 (𝑐, 𝑟 ) mod 2 = 𝑖 be the distance of the cop 𝑐 to the robber 𝑟 after the 𝑗-th step

of the robber. If the cop moves now, he either does a move which increases or decreases

the distance to the robber by one. Therefore, after he moved the parity of the distance

changed and 𝑑′𝑗+1(𝑐, 𝑟 ) + 1 mod 2 = 𝑖 . Note that the cop does not have the option to not

move due to the restrictions of the active variant.

Now let 𝑑′𝑗+1(𝑐, 𝑟 ) + 1 mod 2 = 𝑖 . If the robber moves now, she either increases or

decreases the distance to the cop. Therefore, the parity of the distance has to change again

and 𝑑 𝑗+1(𝑐, 𝑟 ) mod 2 = 𝑖 .

Therefore, the statement follows inductively. �

We now show that the surrounding cop number of the hypercube in the active variant is

signicantly higher than without it. The strategy we will use to catch the robber is similar

to the strategy used to catch the robber on normal Cayley graphs described in [5]. We will

say that a cop or the robber does the move 𝑥𝑖 if they move from (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛)
to (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖 + 1 mod 2, 𝑥𝑖 + 1, . . . , 𝑥𝑛). We say a cop mirrors the move of the robber

if he does the same movement the robber last did. We will denote the vertex resulting

from doing the move 𝑥𝑖 starting at 𝑣 with 𝑣 + 𝑥𝑖 . We say the robber has 𝑘 moves available

if exactly 𝑘 vertices in the neighbourhood of the robber are unoccupied.
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7 Active Surrounding Cops and Robbers

Theorem 7.9. Let 𝑛 ∈ N with 𝑛 > 3. Then 𝜎𝑎 (𝑄𝑛) = 2𝑛 − 1.

Proof. First, we want to show a strategy using 2𝑛 − 1 cops to catch the robber. Let 𝐶

be the set of cops. We start by placing 𝑛 − 1 cops 𝑐1, . . . , 𝑐𝑛−1 on a vertex 𝑣 and 𝑛 − 1

cops 𝑐′
1
, . . . , 𝑐′𝑛−1 on the vertex 𝑣 + 𝑥1. When a cop 𝑐𝑖 is not explicitly used, he switches

positions with 𝑥′𝑖 in order to always move. In the rst turn all cops 𝑐′𝑖 will do the move 𝑥1.

In the following turns they will do the move 𝑐𝑖 did the turn before in order to follow him.

Therefore, all cops placed that way will always have another cop to switch positions with.

The remaining cop we place on an arbitrary vertex. He will move arbitrarily if not

explicitly used.

We will now prove that 2𝑛 − 1 suce by inductively proving the following claim:

Claim 1. If the robber has 𝑘 moves available, 2𝑘 − 1 cops suce to catch her.

Assume that the robber only has a single move 𝑥𝑖 available. Then the robber alternates be-

tween the vertices (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛) and (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖 + 1 mod 2, 𝑥𝑖+1, . . . , 𝑥𝑛).
Therefore, if the cop occupies either of these, the robber has no moves left and is caught.

Therefore, the statement holds for 𝑘 = 1.

Assume now that if the robber has 𝑘 moves available, 2𝑘 − 1 cops suce to catch her.

We now show that the statement holds for 𝑘 + 1. For that we will inductively prove the

following claim:

Claim 2. If the robber has 𝑘 + 1 moves available and there is a cop with distance 𝑑 to an
unoccupied vertex in the neighbourhood of the robber, we can use 2𝑘 − 1 cops for a nite
number of turns, so that after that two cops can reduce the available moves of the robber by
one.

If we have a cop adjacent to an unoccupied vertex in neighbourhood of the robber, we

can move the cop to that vertex. The cop now continuously mirrors the robber’s moves.

Therefore, the robber has 𝑘 moves available.

Assume now that Claim 2 holds for a 𝑑 ∈ N.
Let 𝑟 be the vertex occupied by the robber. Assume now that we have a cop with

distance 𝑑 + 1 to an unoccupied vertex 𝑟 + 𝑥𝑖 . Then the cop can reach 𝑟 + 𝑥𝑖 by playing

𝑑 + 1 moves 𝑥𝑖1, . . . , 𝑥𝑖𝑑+1 . If the robber plays a move 𝑥 𝑗 with 𝑗 = 𝑖𝑙 with 1 ≤ 𝑙 ≤ 𝑑 + 1 at

any point, the distance of the cop to 𝑟 + 𝑥𝑖 + 𝑥 𝑗 is 𝑑 as it can be reached by the moves

𝑥𝑖1, . . . , 𝑥𝑖𝑙−1, 𝑥𝑖𝑙+1, . . . , 𝑥𝑖𝑑+1 . Therefore, the cop can switch positions with the cop following

him and we can achieve a distance of 𝑑 and the two cops can therefore reduce the robber’s

available moves by one because of Claim 2. Note that it is relevant that two cops are used

here since if the distance of the cop to the robber is even after the cop moves, the cop

could never be adjacent to the robber and therefore never forbid a certain move.

Assume now that the robber will never play such a move. Then her moves are eectively

reduced by 𝑑 +1 and because of Claim 1 we can use the remaining 2𝑘−1 cops to inductively
reduce her available moves to zero. Therefore, the robber is then forced to make a move

reducing the distance to a cop to 𝑑 after a nite amount of steps. This proves Claim 2

and therefore we can use 2𝑘 + 1 cops for a nite amount of steps, so that after that two

cops reduce the available moves of the robber by one. Therefore, after a nite amount of

steps the robber has 𝑘 moves available and we have 2𝑘 + 1 − 2 = 2𝑘 − 1 cops who are not
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explicitly used in restricting the moves of the robber. This proves Claim 1 and therefore

the suciency of 2𝑛 − 1 cops as the robber has at most 𝑛 moves available at the beginning

of the game.

We now show that 2𝑛 − 2 cops do not suce to catch the robber. Place 2𝑛 − 2 cops on

arbitrary vertices of 𝑄𝑛 . Let 𝑣 ∈ 𝑉 (𝑄𝑛) be a vertex that is not occupied by a cop for that

a vertex 𝑣′ ∈ 𝑁 (𝑣) exists that is not occupied either. Since
1

2
|𝑉 (𝑄𝑛) | = 2

𝑛−1 > 2𝑛 − 1 for

𝑛 > 3, less than half of the vertices of 𝑄𝑛 are occupied by cops. Therefore, such a vertex

has to exist.

Each cop has now either an even or an odd distance to 𝑣 . If exactly 𝑛 − 1 cops have an

odd distance and 𝑛 − 1 cops have an even distance, it is clear that at no point 𝑛 cops can

have distance one to the robber, as all cops change their parity simultaneously because of

Lemma 7.8. Thus, the robber could never be caught. Assume therefore that 𝑘 cops have

an odd distance to 𝑣 and 2𝑛 − 2 − 𝑘 cops have an even distance to 𝑣 . Since the parity is

inverted for 𝑣′ (Lemma 7.7), we can assume w.l.o.g. that 𝑘 > 𝑛 − 1 > 2𝑛 − 2−𝑘 as we could

simply relabel 𝑣 and 𝑣′. We now place the robber on 𝑣 . It is clear that only the cops who

have an odd distance to the robber at the beginning can potentially catch her since there

are less than 𝑛 other cops. Furthermore it is clear that at least 𝑛 of those cops have to have

distance one to the robber if they want to catch her. Since the parity of the distance is

only odd directly after the robber moves, she must move to a vertex already surrounded

by cops in order for the cops to ever catch her.

Assume now that the robber is on the vertex 𝑣 = (𝑥1, . . . , 𝑥𝑛) and it is her turn to

move. Therefore, at most 2𝑛 − 2 − 𝑘 cops are adjacent to her and thus she can move to

𝑛 − 2𝑛 + 2 + 𝑘 = 𝑘 + 2 − 𝑛 ≥ 2 dierent vertices. Assume 𝑘 = 𝑛. Then 2𝑛 − 2 − 𝑘 = 𝑛 − 2.

This means that there are at least two vertices available for the robber to move to. The

union of their neighbourhoods is clearly greater than 𝑛. Therefore, the robber can move

to a vertex where she is not surrounded. Assume now that 𝑘 > 𝑛. Therefore, at most

2𝑛 − 2 − 𝑘 cops are adjacent to her and she can move to 𝑛 − 2𝑛 + 2 + 𝑘 = 𝑘 + 2 − 𝑛 > 2

dierent vertices. Let 𝑣1 = 𝑣 + 𝑥𝑖, 𝑣2 = 𝑣 + 𝑥 𝑗 , 𝑣3 = 𝑣 + 𝑥𝑘 be three such vertices. In order

for the cops to catch the robber, all neighbourhoods of those vertices would have to be

occupied. Since 𝑁 (𝑣1) = {𝑣 + 𝑥𝑖 + 𝑥𝑙 | 1 ≤ 𝑙 ≤ 𝑛}, 𝑁 (𝑣2) = {𝑣 + 𝑥 𝑗 + 𝑥𝑚 | 1 ≤ 𝑚 ≤
𝑛}, 𝑁 (𝑣3) = {𝑣 + 𝑥𝑘 + 𝑥𝑝 | 1 ≤ 𝑝 ≤ 𝑛}, we can see that 𝑁 (𝑣2) contains two vertices of

𝑁 (𝑣1) for𝑚 ∈ { 𝑗, 𝑖} and 𝑁 (𝑣2) contains three vertices of 𝑁 (𝑣1) ∪ 𝑁 (𝑣2) for 𝑝 ∈ { 𝑗, 𝑖, 𝑘}.
Therefore, |𝑁 (𝑣1) ∪ 𝑁 (𝑣2) ∪ 𝑁 (𝑣3) | = 3𝑛 − 2 − 3 = 2𝑛 − 2 + 𝑛 − 3 > 2𝑛 − 2, meaning that

the neighbourhoods cannot be occupied completely and consequently the robber can do a

move which does not result in a capture, proving that 2𝑛 − 2 cops do not suce to catch

her.

Therefore, 𝜎𝑎 (𝑄𝑛) = 2𝑛 − 1 for all 𝑛 > 3. �

We now want to look at the remaining cases of the hypercube 𝑄1, 𝑄2 and 𝑄3. For 𝑄1

it is trivial that 𝜎𝑎 (𝑄1) = 1. Since 𝑄2 = 𝐶4, we can just simply occupy two non-adjacent

vertices and trivially catch the robber. Since 𝛿 (𝑄2) = 2, it follows with Lemma 2.2 that

𝜎𝑎 (𝑄2) = 2.

Theorem 7.10. We have 𝜎𝑎 (𝑄3) = 4.
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7 Active Surrounding Cops and Robbers

Proof. First, we want to show that four cops suce to catch the robber. For that we place

cops on all four blue vertices in Figure 7.1. Since all neighbourhoods of the non-blue

vertices are completely occupied, the robber is caught trivially after she is placed.

Figure 7.1: The hypercube 𝑄3. The blue vertices are occupied by cops.

We now show that three cops do not suce. The arguments we use are largely the

same as for 𝑛 ≥ 3. Place three cops on vertices of 𝑄3. We now pick any unoccupied vertex

𝑣 for which an unoccupied vertex 𝑣′ ∈ 𝑁 (𝑣) exists. If the parity of the distance of the

cops to 𝑣 is not the same for every cop, they can never catch the robber, since at no point

three cops can be adjacent to the robber. Assume therefore w.l.o.g. that all cops have odd

parity to 𝑣 by potentially relabelling 𝑣 and 𝑣′. We now place the robber on 𝑣 . Since 𝑣′ is
not occupied, the robber cannot be caught directly after being placed on the graph. Since

furthermore the parity of the distance of the cops to the robber is only odd directly after

the robber moves, in order for the robber to be caught, she must move on a vertex whose

entire neighbourhood is already occupied. Since no cop is adjacent to the robber upon

her having to move, she has three vertices available to move to. Since the union of the

neighbourhoods of those vertices contains four vertices, she cannot be forced to move to a

vertex where she gets caught. This means that three cops do not suce to catch her.

Therefore, it follows that 𝜎𝑎 (𝑄3) = 4. �

All together we get the following corollary.

Corollary 7.11. We have 𝜎𝑎 (𝑄𝑛) =
{
2
𝑛−1 𝑛 ≤ 3

2𝑛 − 1 𝑛 ≥ 4

for all 𝑛 ∈ N.
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8 Conclusion and Open Questions

While we were able to show tight bounds for the surrounding cop number for certain

graphs, we were unable to nd an upper bound using the degeneracy of graph as it was

originally intended. However, we were able to prove that such a bound cannot exist.

Furthermore, in combination with the results regarding the correlation of treewidth and

the surrounding cop number we have to conclude that there is still a signicant lack of

useful upper bounds.

We conjecture however that there exists an upper bound using the maximum degree of

a graph as we were not a able to construct a graph with 𝜎 (𝐺) > Δ(𝐺).
Furthermore, the question remains open under what condition the subdivision of an

edge increases or decreases the surrounding cop number of a graph. The same applies to

the addition or subtraction of edges or vertices.

Regarding planar graphs we assume that Bradshaw is right in the assumption that there

exists no planar graph𝐺 with 𝜎 (𝐺) > 6. However, just like them we were unable to nd a

proof for that bound.

Regarding the hypercube it would be interesting to generalize the restrictions of the

cops to force a certain number of cops to move each turn and a certain number of cops to

not move each turn, the way it is done in [14] for the normal version of cops and robbers.
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