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Abstract

In this work we introduce a new game on graphs called “The planar graph grabbing
game”. The game is played on a plane graph with vertices weighted 0 and 1. Vertices
with weight 1 are called cherries. Two players – Alice and Bob starting with Alice –
take turns removing single vertices (and in doing so their incident edges) from the
outer face of the remaining graph. The game ends when no vertices are left and the
player who obtained the most weight wins.
We call an instance Bob-dominant when Bob is able to obtain all cherries on the
instance, no matter which strategy Alice follows. First, we show that there are
Bob-dominant instances with arbitrarily many cherries. We also prove that there are
even 4-connected triangulated Bob-dominant instances with arbitrarily many cherries.
We then give examples for 4-connected triangulated Bob-dominant instances of odd
size with up to six cherries and prove that no such graphs can exist for seven or more
cherries.
Finally, we briefly pursue the question what share of cherries Alice is guaranteed to
get on odd 4-connected triangulated instances with “many” cherries.

Deutsche Zusammenfassung

In dieser Arbeit führen wir ein neues Spiel auf Graphen mit dem Namen „Das
planare Graph Grabbing Game“ ein. Das Spiel wird auf einem planaren Graph
mit fester Einbettung, dessen Knoten entweder Gewicht 0 oder 1 haben, gespielt.
Die Knoten mit Gewicht 1 nennen wir Kirschen. Zwei Spieler – Alice und Bob
beginnend mit Alice – entfernen abwechselnd einzelne Knoten (und deren anliegende
Kanten) von der äußeren Facette des verbleibenden Graphen. Das Spiel endet, wenn
alle Knoten entfernt wurden; der Spieler, der am meisten Gewicht gesammelt hat,
gewinnt.
Wir nennen eine Instanz Bob-dominant, wenn Bob unabhängig von Alice’s Strategie
in der Lage ist alle Kirschen zu erhalten. Zuerst zeigen wir, dass es Bob-dominante
Instanzen mit beliebigen vielen Kirschen gibt. Außerdem beweisen wir, dass es
sogar 4-fach zusammenhängende triangulierte Bob-dominante Instanzen mit beliebig
vielen Kirschen gibt. Wir geben anschließend Beispiele für 4-fach zusammenhängende
triangulierte Bob-dominante Instanzen mit einer ungeraden Anzahl Knoten und bis
zu sechs Kirschen und zeigen, dass solche Graphen mit sieben oder mehr Kirschen
nicht existieren können.
Zum Schluss betrachten wir kurz die Frage, welchen Anteil der Kirschen Alice auf
ungeraden 4-fach zusammenhängenden triangulierten Instanzen mit “vielen” Kirschen
mindestens erhält.
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1. Introduction

In 2003, Peter Winkler introduced the first graph grabbing game in his book about mathe-
matical puzzles [1]. In a graph grabbing game two players take turns removing vertices
from a graph with weighted vertices. The game ends when there are no vertices left. The
player who collects the larger amount of weight wins. It can easily be proven that, in this
simple setup, it is best for both players to employ a greedy strategy. What makes this
interesting, however, is adding restrictions on which vertices can be removed throughout
the game. Such restrictions have proven to make the resulting games very hard to analyze.
Specifically, even determining which player can win is often PSPACE-complete [2]. So
in this work, we take a look at a new graph grabbing game: The planar graph grabbing game.

An instance of the game is a planar graph G = (V, E) with a fixed plane embedding
and a weight function c : V → R≥0. In the game, two players (Alice and Bob) take turns
removing vertices from the outer face of the remaining graph until no vertices are left.
Alice begins. The players’ goal is to maximize the weight of the vertices they obtain.
Since this is the first work dealing with this particular game, we only consider a simplified
version of the problem in which the weight function is restricted to weights in {0, 1}. This
makes our questions easier to analyze and discuss. We define C(G) := {v ∈ V | c(v) = 1}
and call the vertices in C(G) cherries.

Since Alice always makes the first move, she usually has an advantage. So an interesting
question to ask is:

“How good can the situation get for Bob?”

Answering questions of this form is the focus of this thesis. The best situation for Bob
would be an instance on which he can obtain all cherries – no matter which strategy Alice
pursues. We call such an instance Bob-dominant.

Structure

After introducing basic definitions in Chapter 2, we concretize the question posed above
in Chapter 3:

“For any n ∈ N, is there a Bob-dominant graph with n cherries?”

1



1. Introduction

In Section 3.1, we show that such games do indeed exist. Then, in Section 3.2 we restrict the
problem to a subclass of planar graphs (4-connected and triangulated planar graphs). This
makes our previous construction for Bob-dominant graphs impossible. On this subclass we
find a new construction for Bob-dominant games which also leads to a positive answer to
the question.
On the even more restricted subclass of 4-connected, triangulated planar graphs with an
odd number of vertices, which we analyze in Section 3.3, we show that the above is not
true anymore. In particular, we find in Section 3.3.2 that for n ≤ 6 there are Bob-dominant
games with |C(G)| = n but for any instance with |C(G)| ≥ 7, Alice can always obtain at
least one cherry. We prove this statement in Section 3.3.1.
After having learned that Alice can always obtain some share of the weight for graphs with
“many” cherries, we investigate what share of the weight Alice can always get when playing
optimally in Chapter 4. We prove a trivial upper bound of 1

2 and a lower bound of 1
8 for

graphs with “nice” structure.
The work concludes in Chapter 5 with a discussion of the results and gives ideas on what
other questions could be asked about our game for future work.

Related Work

A vast amount of games have already been considered on graphs before. One of the
most extensively covered such game is the game of cops and robbers, with an entire book
dedicated to it [3]. In this game, a set of cops and one robber take turns moving on a
graph. The cops win if they catch the robber at some point in the game, i.e., land on the
same vertex as the robber. The robber wins if he gets never caught. On planar graphs for
example, three cops are always sufficient to catch the robber [4].
As mentioned in the introduction, grabbing (or take-away) games in particular were first
studied after being introduced in Peter Winkler’s book about mathematical puzzles [1].
The grabbing game he presented is played by two players on weighted connected graphs
with the restriction that only non-cut vertices can be removed. The first results that were
proven on this game were on cycles (often thought of as pizza slices). In particular, it was
shown by two independent teams that the first player can always obtain 1

2 of the weight on
even cycles and 4

9 of the weight on odd cycles [5, 6]. The game has since then also been
considered on other classes of graphs, such as trees [7, 8], graphs not containing certain
subgraphs [9] and more [10,11]. Another variation that has been considered is restricting
the weight function to weights in {0, 1} [12].
The graph sharing game is very similar to this original game. Here, the restriction is,
that the subgraph formed by the removed vertices needs to stay connected, instead of the
subgraph formed by the remaining vertices. This game has also been considered in multiple
works [13–15] Another grabbing game similar to the planar grabbing game is the convex
grabbing game [16], in which two players take turns removing weighted points in the plane.
The restriction here is that only points in the convex hull of the remaining point set can
be removed. The motivation for our work and the approach we take is motivated by a
paper by Dvorak and Nicholson [17] which aims to find good configurations for Bob in the
convex grabbing game.
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2. Preliminaries

In this chapter we will first give a few general definitions which are already well-established
in the field of graph theory and then introduce new terms which we will then use throughout
this work.

2.1 General Definitions

The following definitions can be found for example in [18]. We will assume that all
graphs we consider in this work are simple, undirected graphs. Unless specified otherwise,
we are in the context of some graph G.

A path P in a graph is a sequence of vertices (v1, . . . , vn) such that vivi+1 ∈ E(G) for
1 ≤ i ≤ n− 1. A graph is called connected if there exists a path Pu,v = (u, . . . , v) for every
u, v ∈ V (G).

For a graph G and a subset of vertices S ⊆ V (G), the induced subgraph of S is the graph
G[S] := (S, {ab | a, b ∈ S, ab ∈ E(G)}).

A graph G with more than k vertices is called k-connected if for any subset of vertices
S ⊆ V (G) with |S| = k − 1, G[V (G) \ S] is connected.

A graph is called plane if it consists not only of an abstract graph but also an embedding
of the graph into the Euclidean plane where

• vertices are points in the plane,

• edges are curves between the points of their incident vertices,

• and edges only intersect on the points of their incident vertices.

A face of a plane graph is a connected component of the Euclidean plane where the
plane embedding of the graph has been removed.
A plane graph is called triangulated if there are exactly three vertex points on the boundary
of every face of the graph. An abstract graph is called planar if there is a plane graph
with the same underlying graph. A planar graph is called maximal planar if adding any
non-existent edge would result in a non-planar graph.
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2. Preliminaries

2.2 The Graph Grabbing Game
An instance of the planar graph grabbing game is a plane graph G = (V, E) with a

weight function
w : V → {0, 1}.

We usually assume implicitly that graphs and structures we are talking about are contained
in such an instance G. A cherry is a vertex v with w(v) = 1.
The weight of an instance is

w(G) :=
∑

v∈V (G)
w(v).

We define the set of cherries on a graph G as

C(G) := {v ∈ V (G) | w(v) = 1}.

We call an instance G even if |V (G)| ≡ 0 (mod 2). Otherwise, we call G odd.
For an instance of the game G, we call C ⊆ V (G) a configuration.

w(C) :=
∑
v∈C

w(v)

out(C) := {v ∈ C | v is incident to the outer face of G[C]}

Follow(C) := {C \ {v} | v ∈ out(C)}

A game on an instance G is a sequence of configurations

(V = C0, C1, C2, . . . , C|V | = ∅) ∈ (2V )|V |+1

for which Ci ∈ Follow(Ci−1) for all 1 ≤ i ≤ |V |. We define G(G) as the set of all games on
the instance G. A configuration of G is valid if it is part of a game G ∈ G(G).
For a set of vertices U we define the minimal set of vertices contained in any valid
configuration which contains U as

M(U) :=
⋂

D valid config.
U⊆D

D.

Furthermore, we define the set of vertices which are hidden by U as

H(U) := M(U) \ U

and the set of vertices on the inside of U

in(U) := M(U) \ out(U).

For a given game G = (C0, . . . , C|V |) ∈ G(G) we define

A(G) :=
∑

1 ≤ i ≤ |V |
i ≡ 1 (mod 2)

w(Ci−1 \ Ci)

B(G) :=
∑

1 ≤ i ≤ |V |
i ≡ 0 (mod 2)

w(Ci−1 \ Ci)

as the weight Alice and Bob obtain in that game.
Furthermore, we define A(G) as the weight Alice obtains if both players play optimally.
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2.2. The Graph Grabbing Game

For V (G) = ∅ we have A(G) = 0 and for V (G) = {v} we get A(G) = w(v). Otherwise we
define

A(G) := max
v1∈out(V )

(
min

v2∈out(V \{v1})

(
w(v1) + A(G− {v1, v2}))

))
.

The weight Bob obtains in this case is

B(G) := w(G)−A(G).

We call G Bob-dominant if B(G) = w(G).

We furthermore define the following names for graphs:
A wheel graph of size k ≥ 4 where the single vertex of degree k − 1 is a cherry and
all the others are not is called a cherry wheel of size k. Cherry wheels are examples of
Bob-dominant graphs. We will often refer to cherry wheels by the vertex set forming them.
If two cherry wheels are not vertex disjoint we call them joint.
Two cherry wheels U, W which are not joint but have two (not necessarily vertex-disjoint)
edges e1, e2 ∈ U ×W (here and at some other points in our work we abuse notation and
mean {ab | a ∈ U, b ∈W} by U ×W ) incident to the outer face of G[U ∪W ] are said to
span a corridor. The edges e1, e2 are called the spanning edges. The corridor in this case is
made up from the cycle containing e1, e2 as well as the vertices in U ∪W which are not
incident to the outer face on G[U ∪W ] and everything contained within this cycle. We call
a corridor with e1 ∩ e2 6= ∅ narrow and all others wide. Two cherry wheels with a wide
corridor are shown in Figure 2.1. In such drawings, cherries are always red squares and
non-cherries black circles.

e1

e2

Figure 2.1: An example of two cherry wheels with a wide corridor colored blue.

For a corridor C in a plane graph we define C as the set of points in the plane which
lie in the interior region and on the boundary of the cycle bounding C. Two corridors
C, D spanned by cherry wheels C1, C2 and D1, D2 respectively are crossing if for any two
simple plane curves c : [0, 1] −→ C with c(0) ∈ C1 and c(1) ∈ C2 and d : [0, 1] −→ D with
d(0) ∈ D1 and d(1) ∈ D2 there are some a, b ∈ [0, 1] with c(a) = d(b). The configuration of
two crossing corridors is called a corridor crossing.

For three cherry wheels U, V, W which are not contained within each other we call V
hidden by U and W if V ⊆M(U ∪W ). Then M(U ∪W ) is a hiding which is spanned by U
and W . A hiding is a corridor hiding if U and W span a corridor and V is contained within
it. A corridor hiding is shown in Figure 2.2. If U and W are joint, the hiding is called an
edge hiding as there is one edge e ∈ U ×W on out(U ∪W ) which together with edges on
(U ∪W ) \ out(U ∪W ) forms a cycle containing V on its inside in the plane drawing. As in
corridors we call e the spanning edge. An edge hiding is shown in Figure 2.3.

5



2. Preliminaries

Figure 2.2: This graph contains a corridor hiding with a narrow corridor colored in blue
and the three cherry wheels colored pink.

e

Figure 2.3: This graph contains an edge hiding where e is the spanning edge.

6



3. Bob-dominant Games

In this section, we will focus on the existence and non-existence of Bob-dominant graphs
with a fixed amount of cherries for different subclasses of planar graphs. In Section 3.1, we
first look at arbitrary plane graphs and then consider narrower subclasses in the following
subsections. Before we start with our main theorems however, we will first introduce two
lemmas which will be helpful for proving Bob-dominance of graphs made up of smaller
Bob-dominant graphs:

Lemma 1. Let G and H be even plane graphs. Let K be a plane graph which consists
only of G and H (drawn separately) and edges connecting G and H such that out(V (K)) =
out(V (G)) ∪ out(V (H)).
Then B(K) ≥ B(G) + B(H).

Note that this implies that such a K is Bob-dominant when G and H are Bob-dominant.
Note also that the inequality is strict in some cases. If G = H = Q where Q is the graph
shown in Figure 3.1 for example, then B(K) = 1 > 0 = 2B(Q).

Figure 3.1: A graph Q with B(Q) = 0

Proof. Let G and H be arbitrary plane even graphs and K the corresponding graph
containing G, H and some edges between them. A sketch of such a plane graph K can be seen
in Figure 3.2. For any configuration C of K and some vertex v ∈ out(C) ∩ V (G) ⊆ V (K),
we get a new configuration C ′ = C \ {v} by removing v from K. This removal uncovers
the exact same vertices as removing the corresponding vertex in G would.
More formally: out(C ′) = out((V (H)∩C))∪ out((V (G)∩C) \ {v}). This holds because G
and H are only connected by edges on their outer faces. By symmetry, the same argument
also works for vertices in H of course.
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3. Bob-dominant Games

G
H

Figure 3.2: Sketch of a graph K as described in Lemma 1

We can give a strategy SK with which Bob can obtain at least as much weight on K as he
can on G and H combined by using optimal strategies SG, SH for Bob on G and H:

• If Alice removes a vertex from G, then Bob will always remove the vertex Bob would
have removed according to SG on the next turn. This is always possible because

1. Alice’s and Bob’s moves on K uncover the same vertices as on G (which we
have seen above).

2. there is always at least one vertex remaining in G. This holds because if Bob
follows SK , it is only Alice’s turn when there is an even number of vertices in G
left. So after Alice removes a vertex from G, there must be at least one vertex
left.

• If Alice removes a vertex from H, then Bob will always remove the vertex Bob would
have removed following SH on the next turn. This is always possible for the same
reasons given above.

Strategy SK copies SG and SH and therefore only ever encounters configurations C of
K in which V (G) ∩ C would also occur with SG on G and V (H) ∩ C would also occur
with SH on H. Therefore, SG and SH will always give a valid next move. Because Bob
obtains the same vertices on K with SK as he does on G and H with SG and SH . We get
B(K) ≥ B(G) + B(H) which is our intended result.

Lemma 2. Let G be an arbitrary plane graph and H a plane even graph. Let K be a plane
graph which consists only of G and H (drawn separately) and edges connecting G and H
such that out(V (G)) ⊂ out(V (K)).
Then B(K) ≥ B(G).

Proof. The proof is very similar to the proof of Lemma 1. We can give a strategy SK with
which Bob can obtain all cherries by using an optimal strategy SG for Bob on G:

• If there are no vertices left in G after Alice’s turn and the game is not over yet, Bob
will just take any vertex on the outer face of the remaining subgraph of H.

• If Alice removes a vertex from G which was not the last, Bob will always remove
the vertex Bob would have removed in SG on the next turn. This can always be
accomplished because of the argument about uncovered vertices from the proof of
Lemma 1.

• If Alice removes a vertex from H while there are still vertices left in G, Bob removes
another vertex from H. This is always possible because when there are still vertices
left in G and Bob followed SK up to this point, it is only Alice’s turn when there is
an even number of vertices left in H. So after Alice removes a vertex from H, there
must be at least one vertex left.

8



3.1. General Graphs

Strategy SK copies SG and therefore only ever encounters configurations C of K in which
V (G) ∩C would also occur with SG on G (except when V (G) ∩C = ∅). So SG will always
give the next possible move while there are vertices left in G.
By following SK on K, Bob obtains the same vertices of V (K) ∩ V (G) as he does by
following SG on G. Therefore, we get B(K) ≥ B(G) which is what we wanted to prove.

3.1 General Graphs
Now, we will prove our first main theorem: There are Bob-dominant graphs with

arbitrarily many cherries.

Theorem 1. For every n ∈ N, there exists a plane Bob-dominant graph G with n cherries,
i.e., |C(G)| = n.

Proof. We use induction:
Base case n = 1. We see that the graph ∆1 shown in Figure 3.3 is Bob-dominant. Alice
can only remove either v1, v2 or v3, uncovering c in the process. Bob can then always take
c and we have B(∆1) = 1 = w(∆1).

v1

v2 v3

c

Figure 3.3: The smallest Bob-dominant graph with non-zero weight ∆1, a cherry wheel of
size 4

Inductive step n  n + 1. Suppose we have a plane Bob-dominant graph ∆n with
|C(G)| = n. We obtain ∆n+1 by embedding ∆n into a triangle formed by three new vertices
v1, v2, v3 (w(vi) = 0) and adding a cherry c next to ∆n in the triangle. This construction
can be seen in Figure 3.4a.
Then, Alice must remove some u1 ∈ {v1, v2, v3}. If Bob then removes c, we are left with a
configuration similar to what is depicted in Figure 3.4b. With Lemma 2 we get:

A(∆n+1) = max
u1∈{v1,v2,v3}

(
min

u2∈out(V (∆n+1)\{u1})

(
w(u1) + A(∆n+1 − {u1, u2}))

))
≤ max

u1∈{v1,v2,v3}

(
0 + A(∆n+1 − {u1, c}))

)

= max
u1∈{v1,v2,v3}

(
A

(
∆n ∪

(
{v1, v2, v3} \ {u1}

2

)))
Lemma 2
≤ max

u1∈{v1,v2,v3}

(
A(∆n) + A

(({v1, v2, v3} \ {u1}
2

)))
= max

u1∈{v1,v2,v3}
(0 + 0) = 0

⇒B(∆n+1) = w(∆n+1) = n + 1.

This proves that ∆n+1 is Bob-dominant.

9



3. Bob-dominant Games

v1

v2
v3

c

∆n

(a) Construction of ∆n+1 from ∆n.
v2

v3

∆n

(b) A configuration of ∆n+1 after two moves.

Figure 3.4: The construction of ∆n+1 from ∆n.

We have now shown that Bob-dominant instances with arbitrarily many cherries do exist.
However, we had to resort to repeatedly nesting Bob-dominant graphs to accomplish that.
So a natural question to ask is whether we can also get arbitrarily large Bob-dominant
graphs which are not nested like this. We tackle this in the following section.

3.2 4-connected Triangulated Graphs

We now add two restrictions to our instances to make the search for Bob-dominant
graphs harder:

• G must be 4-connected, i.e., there exists no cut set of size 3.

• G must be triangulated, i.e., every face of G is incident to three vertices. This is
equivalent to G being maximal planar.

With these restrictions, the construction from the previous chapter no longer works, as
our graphs cannot contain separating triangles.

Lemma 3. In any plane triangulation G with |V (G)| ≥ 5, the following equivalence holds:

G is 4-connected⇐⇒ G does not contain a separating triangle

Proof.
=⇒: Follows directly from the definition of k-connectedness.

⇐=: We use contraposition. Suppose G is a plane triangulation and not 4-connected. We
first show that G must be 3-connected. Suppose we had a cut set {x, y} of size 2 where
G− {x, y} = A ∪B such that A and B are non-empty and G contains no edges in A×B.
Since x and y cannot form a cycle, an edge e ∈ A × B could be added to G without
destroying planarity. So G is not maximal planar, a contradiction to G being a plane
triangulation.
So we have a cut set {x, y, z} ⊂ V (G) such that G− {x, y, z} = A ∪B where A and B are
again non-empty and G contains no edges in A×B. Vertices x, y and z must have neighbors
in both A and B. Otherwise, we would have a smaller cut set which is a contradiction to
3-connectedness of G. Since G is a plane triangulation, it is also maximal planar. Using
this and the fact that there is no edge in A×B, the edges xy, xz and yz must be present
in G which gives us our separating triangle.

From this we get the following corollary.

10



3.2. 4-connected Triangulated Graphs

Corollary 1. In any 4-connected triangulated instance of the graph grabbing game G
with a vertex v /∈ out(V (G)), the subgraph induced by the neighbors of v and v itself
G[N(v)∪ {v}] is a wheel. Furthermore, there are no vertices hidden by v and its neighbors,
i.e., H(N(v) ∪ {v}) = ∅.

Proof. Let v1, . . . , vn be the neighbors of v ordered clockwise by the outgoing edges of
v. All following operations are implicitly mod n. Because G is a plane triangulation,
vivi+1 ∈ E(G) for 1 ≤ i ≤ n − 1 and vnv1 ∈ E(G). Suppose there was another edge
vivj ∈ E(G) with |i− j| 6= 1. Then, we get a separating triangle by vi, vj and v. This is a
contradiction to Lemma 3. So G[N(v)] is a cycle and since v /∈ out(V (G)), the cycle must
contain v on its inside. Therefore, G[N(v) ∪ {v}] is a wheel.
Suppose there was some u ∈ H(N(v) ∪ {u}). Then u would be contained in one of the
faces formed by the wheel. The vertices forming the face would separate u from the rest
of the graph. Since every face in the wheel is a triangle, this is again a contradiction to
Lemma 3. This concludes the proof.

We now proceed with the main theorem of this section.

Theorem 2. For every n ∈ N there exists a 4-connected triangulated Bob-dominant
instance of the planar grabbing game G with |C(G)| = n.

To prove Theorem 2 we construct such instances and show that they are Bob-dominant.
This would be simple when using Theorem 4 which we will prove at a later point in the
thesis. However, we will restrict ourselves to the tools we already obtained, making the
proof a bit more complicated.

Proof. We start by explicitly constructing Bob-dominant graphs. Then, we will prove
inductively that subgraphs of our construction which do not fulfill the new conditions are
Bob-dominant. Finally, we show Bob-dominance of our actual graphs.
We will call the basic part of our construction the O-tile (shown in Figure 3.5a). It is
isomorphic to a cherry wheel of size 8. We now define On as n O-tiles put next to each
other where two adjacent O-tiles are merged as shown in Figure 3.5b. Note that merged
O-tiles share two vertices. We call the cherries in On c1, . . . , cn from left to right.

x↖ x↗

x↑

x→x←

x↓x↙

(a) The O-tile (b) Two merged O-tiles share two vertices
and an edge (blue) and form two new
edges (orange)

Figure 3.5: The basic building blocks of our 4-connected triangulated Bob-dominant graphs

Note that On is even because O1 contains 8 vertices and every merged O-tile adds 6
vertices. Our graphs On are neither triangulated – the outer face is not a triangle – nor

11



3. Bob-dominant Games

4-connected (even though it does not contain any separating triangles). We fix this by
adding two vertices v1 and v2 to On as shown in Figure 3.6b. We call this final graph on n
cherries On.

v1

v2

(a) n = 1

v1

v2

(b) The general construction

Figure 3.6: The final 4-connected triangulated Bob-dominant graph On

By checking that every face is incident to three vertices, we see that On is triangulated.
Using Lemma 3 and knowing that there is no separating triangle in On, we only have to
check that On has no separating triangles containing v1 and v2 for 4-connectedness. This
can be done by verifying that N(v1) and N(v2) induce cycles. It is left to show that our
constructed graphs are Bob-dominant. We start by proving that the On are Bob-dominant.
We do this by induction:

Base case n = 1. First, O1 is Bob-dominant because Alice always uncovers the cherry in
her first turn which Bob can then just take.
Inductive step 1, . . . , n− 1 n. Suppose that O1 . . .On−1 are Bob-dominant. Whatever
vertex Alice removes in her first turn, she will uncover a cherry which Bob will then take.
Suppose Bob took cj .
Case 1: j = 1 or j = n. After Bob’s turn we are left with a configuration C which consists
of an On−1 and four more vertices a, b, c, d. Such a scenario is depicted in Figure 3.7a.
These four vertices do not obstruct any of the vertices in out(On−1). By Bob-dominance
of On−1 and Bob-dominance of the subgraph containing only a, b, c and d we get from
Lemma 1 that the graph in C is Bob-dominant. Since Bob also obtains the first cherry,
Bob can get all n− 1 + 1 = n cherries in this scenario.
Case 2: j 6= 1 and j 6= n. After Bob’s turn we are left with a configuration C, which
consists of an Oj−1, an On−j and two more vertices a, b. Such a configuration is shown in
Figure 3.7b. Since none of these three subgraphs obstruct visibility of the other’s outer
vertices in any way and all three are even and Bob-dominant, we can once again apply
Lemma 1 twice and reach the result that the graph in C is Bob-dominant. So Bob can
obtain all (j − 1) + (n− j) + 1 = n cherries in this case as well.
Since either case 1 or 2 must occur and Bob can obtain all n cherries in both cases, On is
Bob-dominant.
We now consider our graphs On and derive their Bob-dominance from the Bob-dominance
of the On. We give an optimal strategy SOn

for Bob until Alice removes either v1 or v2.
After that, Bob will use an optimal strategy for the remaining graph which we will obtain
later.

1. When Alice removes either v1 or v2, Bob will remove the other one.

2. When there is an uncovered cherry, Bob will take it.

12
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(a) Case 1: There are an On−1
and four more vertices left.

(b) Case 2: There are an Oj−1, an Oj−n and
two more vertices left.

Figure 3.7: Possible configurations of On after two moves

3. Otherwise, Bob removes some vertex v /∈ {v1, v2} without uncovering a cherry.

We will show later that removing such a vertex in the third case is always possible.
Let G = (C0, . . . , C2k, . . . , C6n+4) be a game on On in which we follow our strategy as long
as possible (until v1 and v2 have been removed). Let C2k be the configuration after Bob
made the last move with SOn

. Thereafter, Bob uses an optimal strategy. As mentioned
above, we will show later how to obtain one. Furthermore, let r := w(On \ C2k) be the
weight that was removed from On until C2k.
We will now prove three things about such a game G:

(i) All cherries uncovered until C2k will be uncovered in order from left to right.

(ii) In any configuration until C2k in which it is Bob’s turn and neither case 1 or 2 of
SOn

applies, Bob can make a valid move according to case 3. Furthermore, Bob will
obtain all r cherries which are removed until C2k.

(iii) In C2k, the remaining graph will only consist of an On−r and an even amount of
vertices without weight which do not obstruct outer vertices of On−r.

(i): Since v1 and v2 have not been removed yet, v1 and v2 enclose the embedded On in such
a way that cherries can only be uncovered by a path from the left: For any s ∈ {1, . . . r},
let Ps = (u1, . . . , un) be a path with

• v1, v2 /∈ Ps.

• u1 = x1
←, i.e., x← of the leftmost O-tile: The only vertex on the outer face of On

which is neither v1 nor v2.

• un is the first and only vertex adjacent to cs.

The path Ps must at some point cross the cycle induced by any cj with j < s, the xj
↓, xj
↑ of

the respective j-th O-tile and v1, v2. Since v1, v2 /∈ Ps, only cj , xj
↓, xj
↑ are possible options

for crossing that cycle in Ps. All three of these vertices are either adjacent to cj or require
cj to be uncovered before. Because Ps was arbitrary, cj is uncovered before cs for all j < s.

(ii): Let C2l−1 (l < k) be some configuration of G in which cj is the leftmost cherry which
is neither uncovered nor taken. So N(cj) ⊂ C2l−1. Since we know from (i) that cherries are
uncovered from left to right, we get N(cm) ⊂ C2l−1 ∀m ≥ j. Therefore, the N(cm) form
an On−(j−1). Because it is Bob’s turn and On is even, there is an odd number of vertices
left. We know that H := C2l−1 \ V (On−(j−1)) is odd because On−(j−1) is even. Since l < k,
we get {v1, v2} ⊆ H. Therefore, H must contain another vertex v /∈ {v1, v2} which does
not uncover the next cherry cj . So case 3 of SOn

is always applicable.

13
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From this we directly get that Bob will never uncover a cherry using this strategy. The only
vertices adjacent to multiple cherries are the shared xl

↗ and xl+1
↖ or xl

→ and xl+1
← of two

neighboring O-tiles. As in (i), a path to reach such a vertex before C2k must at some point
cross the cycle v1, v2, cl, xl

↓, xl
↑ without stepping through v1 or v2. As in (i), this implies that

cl is uncovered before such a vertex is reached. Therefore, removing a vertex adjacent to
multiple cherries will only ever uncover one cherry until C2k. So Alice will only ever uncover
one cherry at once which Bob will then take in G. So Bob will obtain all r cherries until C2k.

(iii): If n = r, all cherries have been removed before C2k so the remaining graph consists
only of an even number of vertices without weight. In this case, the statement is therefore
true.
Otherwise, similar arguments as in (ii) imply that C2k−2 must consist of an On−r, v1, v2
and an even amount of vertices without weight which all lie to the left of the On−r. Since
v1 and v2 are removed in the following two moves, out(C2k) contains all the x↑, x↓, x↙ of
the O-tiles in On−r. We also have xn

↗, xn
→ ∈ out(C2k) because they were only hidden by

the edge between v1 and v2. Finally, xr+1
↖ , xr+1

← are in out(C2k) because cr /∈ out(C2k). So
we get out(On−r) ⊂ out(C2k).

From Bob-dominance of the On−r, (iii) and Lemma 2, we get that n− r ≤ B(C2k) ≤
B(On−r) = n − r. So C2k is Bob-dominant which gives us our optimal strategy for
the moves after C2k. Since Bob also obtained all the other r cherries of On until C2k,
B(On) = r + n− r = n = w(On). So On is Bob-dominant. Since On is 4-connected and
triangulated, this concludes the proof.

3.3 Odd 4-connected Triangulated Graphs
We add another restriction to the graphs to make finding Bob-dominant instances even

harder. The graphs On in Theorem 2 are even and the proof of Bob-dominance relied on
this fact at multiple points. So a natural question for us to ask is whether we can also
find odd Bob-dominant 4-connected triangulated plane graphs with an arbitrary amount of
cherries. Theorem 3 tells us that this is not the case.

Theorem 3.

1. For every n ≤ 6, there exists a 4-connected triangulated odd plane graph G with
|C(G)| = n which is Bob-dominant.

2. Let G be a 4-connected triangulated odd plane graph with |C(G)| = n ≥ 7. Then, G is
not Bob-dominant.

In order to prove Theorem 3, we need a few lemmas and corollaries which we will provide
throughout the rest of Section 3.3. In Section 3.3.1, we will then give a proof for part 2 of
Theorem 3. Part 1 will be proven afterwards in Section 3.3.2.

Lemma 4. If an instance G of the game is Bob-dominant, C(G) forms an independent set.

Proof. Suppose c1, c2 ∈ C(G) were adjacent and C the first configuration in a game G on
G in which either c1 or c2 is in out(C). Without loss of generality, c1 ∈ out(C). If it is
Alice’s turn in C, she can just take c1. Otherwise, Bob can either take c1 or leave it. In the
first case, Alice grabs c2 and in the second case she takes c1. Therefore, Alice can always
receive at least one cherry, so A(G) ≥ 1 and the game is not Bob-dominant.
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Because cherries can not be in out(V (G)) in a Bob-dominant graph G and using Lemma 4
and Corollary 1 we get that in any Bob-dominant 4-connected triangulated instance G,
every cherry c ∈ C(G) forms a cherry wheel with its neighborhood N(c).

Theorem 4. Let G be a 4-connected triangulated instance of the planar graph grabbing
game with |V (G)| ≡ b (mod 2) and W its set of cherry wheels.
The graph G is Bob-dominant if and only if the following three conditions hold:

• Every cherry induces a cherry wheel with its neighbors.

For any subset of cherry wheels V ⊆ W in G where M(⋃W∈V W ) contains only the cherry
wheels from V

• |M(⋃W∈V W )| ≡ b (mod 2).

• out(⋃W∈V W ) contains no common vertices of two cherry wheels in V.

Proof. We first show “=⇒”:
The first statement is true as every cherry induces a cherry wheel with its neighbors by
Lemma 4 and Corollary 1.
Assume now that either the second or third statement were false for some subset of cherry
wheels V ⊆ W which hide no other cherry wheels. So either M(⋃W∈V W ) ≡ 1− b (mod 2)
or out(⋃W∈V W ) contains some vertex v ∈ A ∩ B for some A, B ⊆ W. We give SA, a
strategy for Alice for all configurations C where Alice did not yet obtain a cherry:

• If there is a cherry in out(C), Alice takes it.

• Otherwise, if there is some vertex u /∈M(⋃W∈V W ), she takes that.

• Else, she takes a common vertex of two cherry wheels in V .

We now have to prove that this strategy is always applicable. If Bob removes the first
vertex w in out(⋃W∈V W ), he uncovers a cherry which Alice can then take. Alice will
only be the first to remove a vertex from out(⋃W∈V W ) when the current configuration
contains only vertices from M(⋃W∈V W ). Since this can only happen when the parity of
this set’s cardinality is b, there must be some vertex v ∈ A∩B. Using SA, Alice removes v
which reveals two cherries. One of these is still left when it is Alice’s turn again so she
takes it. Therefore, Alice will always obtain a cherry using SA which implies that G is not
Bob-dominant.

For “⇐=” we now assume that the three conditions hold. We give a strategy SB for Bob
with which he will always obtain all cherries. Let C be a configuration and V ⊆ W be the
set of cherry wheels left in C. Strategy SB is defined for C as follows.

• If there is a cherry in out(C), Bob takes it.

• Otherwise, there is some vertex u /∈M(⋃W∈V W ) which Bob takes.

By assumption |M(⋃W∈V W )| ≡ b (mod 2), so Bob will always be able to follow SB as
it is only his turn on configurations with parity 1 − b. We have to show that Bob will
obtain all cherries if he follows SB . As Bob will never take vertices in M(⋃W∈V W ), he will
never uncover a cherry. Since there are no vertices in out(⋃W∈V W ) which are adjacent to
multiple cherries in V, Alice will only uncover exactly one cherry when removing a vertex
from out(⋃W∈V W ). Therefore, Alice will uncover every cherry, one at a time. Following
SB, Bob will obtain all these cherries which implies that G is Bob-dominant.

Corollary 2. An odd 4-connected triangulated instance of the planar graph grabbing game
with an even-sized cherry wheel W is not Bob-dominant.
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3. Bob-dominant Games

Proof. This follows directly from Theorem 4 when we use V = {W}, since |M(W )| =
|W | ≡ 0 6≡ 1 (mod 2) which implies that the graph is not Bob-dominant.

Corollary 3. Let G be an instance of the planar graph grabbing game. If G contains two
cherry wheels W and U and a shared vertex v ∈ U ∩W with v ∈ out(U ∪W ), then G is
not Bob-dominant.

Proof. This also follows directly from Theorem 4 with V = {U, W} because v ∈ out(U ∪W ),
implying that G is not Bob-dominant.

Note that this does not imply that cherry wheels cannot share vertices in a Bob-dominant
graph. An example is given in Figure 3.8.

U W

v1

v2

v3 v4

v5

Figure 3.8: A Bob-dominant graph where two cherry wheels share vertices. For visual
clarity, edges inside the cherry wheels are not drawn.

Corollary 4. In a Bob-dominant 4-connected triangulated instance of the planar graph
grabbing game G with two cherry wheels U, W which are joint, out(U ∪W ) must induce a
cycle not containing any shared vertices. This cycle contains exactly two edges connecting
U and W .

Proof. There is no shared vertex on out(U ∪W ) by Corollary 3. Let v1, . . . vn be an ordered
vertex sequence of out(U ∪W ) such that v1, . . . vk ∈ U and vk+1, . . . , vn ∈ W as shown
in Figure 3.8 with k = 3, n = 5. All further arithmetic operations are assumed to be
mod n. Vertices of consecutive indices are adjacent (vivi+1 ∈ E(G)) because U and W are
connected. There are no recurring vertices in the sequence because the vertex sequence
is made up of two disjoint parts v1, . . . vk ∈ U \W and vk+1, . . . vn ∈ W \ U and out(V )
and out(W ) do not have recurring vertices. Non-consecutive vertices are not adjacent
(vivi+j /∈ E(G) for j ≥ 2) because of three observations:

• Any such adjacency between two vertices in the same cherry wheel results in a
separating triangle.

• An adjacency between the cherry wheels would imply a different vertex sequence.

• v1vk, vk+1vn /∈ E(G) as there is a shared vertex in the cherry wheels which prevents
these adjacencies.

Therefore, out(U ∪W ) induces a cycle. The two edges connecting U and W are then
vkvk+1, vnv1.

Corollary 5. Let G be an instance of the planar graph grabbing game. If G is Bob-dominant
then for any three cherry wheels U, V, W , we have U ∩ V ∩W = ∅.
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Proof. Suppose there is some vertex v ∈ V ∩ U ∩W . Let u ∈ out(U ∪ V ∪W ) w.l.o.g.
u ∈ U . If u is also in V or W , apply Corollary 3. Otherwise, we see that removing u and
the cherry cU in U uncovers v since vcU ∈ E(G). Therefore, v ∈ out(V ∪W ) so we can
again apply Corollary 3 and get that G is not Bob-dominant.

Lemma 5. Let G be an odd 4-connected triangulated instance of the planar graph grabbing
game. If G contains two cherry wheels W and U such that (W ∩ U) ∪H(W ∪ U) is even,
G is not Bob-dominant.

Proof. If either U or W is even, we can apply Corollary 2 and are done.
Otherwise

|M(W ∩ U)| = |W |+ |U | − |U ∩W |+ |H(U ∪W )|
≡ |W |+ |U |+ |U ∩W |+ |H(U ∪W )| (mod 2)
≡ 1 + 1 + 0 (mod 2)
≡ 0 (mod 2)

where we use x ≡ −x (mod 2) in the first equivalence. We get from Theorem 4 that G is
not Bob-dominant.

Recall from Chapter 2 that two cherry wheels U, W span a corridor if they are not joint
and there are two edges in U ×W .

Corollary 6. Let G be an odd 4-connected triangulated instance of the planar graph
grabbing game. If G contains two cherry wheels U and W which are neither joint nor span
a corridor, then G is not Bob-dominant.

Proof. By definition, U and W are vertex-disjoint and there is at most one connecting
edge between the two. Therefore, (U ∩W ) ∪ H(U ∪W ) = ∅. From Lemma 5 we get
non-Bob-dominance.

Corollary 6 is very helpful for proving the main theorem in Section 3.3.1 and Section 3.3.2.

3.3.1 Non-existence of Bob-dominant graphs with seven or more cherries.

First we give a rough idea of the proof for Theorem 3.2.:
We construct an auxiliary graph on the cherry wheels which needs to be complete for the
graph to be Bob-dominant. This auxiliary graph is “mostly planar”. By the non-planarity
of the complete graph on five vertices K5, we then get that Bob-dominant instances whose
auxiliary graphs do not use the non-planarity can only contain up to four cherries. We
show by an extensive case analysis that the possible non-planarity can barely be utilized
in Bob-dominant instances. More specifically, the bar can only be raised by two cherries,
leaving us with the result that a Bob-dominant instance with seven ore more cherries is
impossible.

Proof. We start with the construction of the auxiliary graph X(G) for any odd 4-connected
triangulated instance of the planar graph grabbing game G where any cherry induces a
cherry wheel with its neighborhood and two cherry wheels can only intersect on their
boundaries. These properties hold for Bob-dominant graphs by Corollary 1 and Lemma 4.
An examplary construction of the auxiliary graph is shown in Figure 3.9.
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(a) The drawing of an instance G

(b) The modified drawing containing the four
cherry wheels and two corridors

(c) Since all but one pair of cherry wheels are
either joint or span a corridor, X(G) is
K4 with one edge missing

Figure 3.9: An exemplary construction of the auxiliary graph X(G).

First, we remove unnecessary detail from the drawing of G to make talking about important
structures easier: We do not care about actual vertices in G so we remove them from the
drawing. Furthermore, we only leave edges of G which are either on the outer cycle of
cherry wheels or one of the spanning edges of a corridor. We end up with a drawing of
cherry wheels as closed non-self-intersecting curves and the spanning edges connecting
them. This can be seen in Figure 3.9b. In coming figures, pink will also be used as a fill
color for cherry wheels.
For X(G), we interpret the cherry wheels as our vertices and two of these cherry wheels
as connected by an edge if their bounding curves intersect or they are connected by a
corridor. This is depicted in Figure 3.9c. By Corollary 6, any pair of cherry wheels in a
Bob-dominant graph G are either joint or share a corridor. This is the case if and only if
X(G) is complete.

We now first assume that our Bob-dominant G contains no corridors. Therefore, any
pair of cherry wheels must be joint. From Corollary 5, we know that no three cherry wheels
can share the same vertex. We get a planar embedding of X(G) by using the positions of
the cherries in cherry wheels as the vertex positions. For the edge between two vertices
v1, v2 in X(G) with the respective cherries c1, c2 and a shared neighbor w ∈ N(c1)∩N(c2),
we draw the edge from c1 over w to c2. Since the shared vertex is different for every pair
of cherry wheels, the embedding is planar.
So X(G) must be planar and complete. This is only possible for four vertices or fewer.

18



3.3. Odd 4-connected Triangulated Graphs

Therefore, Bob-dominant G without corridors can not contain five or more cherries.
Unfortunately, this planarity argument cannot be applied anymore when working with
corridors. There are two configurations which can destroy planarity in X(G):

• Corridor crossings (Two corridors which cross)

• Corridor hidings (A cherry wheel contained in a corridor)

Recall their definitions from Chapter 2. We will show that all graphs containing these
configurations are either not Bob-dominant or contain fewer than seven cherries. We will
take care of these two cases not one after the other but in a mixed manner since they can
occur in combination. To give an overview, we present a list of statements which we will
prove for Bob-dominant graphs in the provided order.

(i) Any two spanning edges of two crossing corridors share a vertex.

(ii) Two wide corridors cannot cross.

(iii) A wide and a narrow corridor cannot cross.

(iv) Two narrow corridors can only cross by having the same one-vertex ending.

(v) Any corridor crossing is also an edge hiding.

From this point on, we will not consider crossings anymore but only edge hiding and
corridor hiding.

(vi) A hidden cherry wheel cannot share vertices with the spanning edges of its hiding.

(vii) Two hidden cherry wheels must be in a common hiding.

(viii) A hiding cannot contain another hiding when the inner and outer hiding are spanned
by different cherry wheels.

(ix) A corridor hiding cannot contain another hiding.

(x) There cannot be more than two cherry wheels in a corridor hiding.

(xi) In a graph with a corridor hiding there cannot be more than six cherries1.

(xii) An edge hiding can only have up to one cherry wheel on its outside.

(xiii) In a graph with an edge hiding there cannot be more than six cherries.

In the following proofs we always assume that the configuration is contained in an odd
Bob-dominant 4-connected triangulated graph G.

(i) By definition, any two curves going through the two corridors of a corridor crossing
which connect the cherry wheels of their corridor intersect at some point. In particular
this implies that the spanning edges intersect in our plane drawing. Therefore, they share
a vertex.

(ii) Let L, K be crossing wide corridors, l1 = ab, l2 = cd and k1, k2 their spanning edges.
By (i), any li and kj have a common vertex and since L and K are wide corridors, k1 and
k2 also cover the set {a, b, c, d} w.l.o.g. k1 = ac, k2 = bd. So the four edges form a C4
which enclose the full inner parts of the corridors L and K.
Corridors must contain vertices not belonging to the cherry wheels which span the corridor
(Lemma 5). Therefore, {a, b, c, d} must induce the C4 since adding another edge would
introduce a separating triangle in the corridor. Now a is incident to both a cherry wheel

1It is even possible to show that a Bob-dominant graph with a corridor hiding can only contain five or
fewer cherry wheels but we will not need this result for our purposes.
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from L and K. We call them AL and AK . By Corollary 4, a is not in out(AL ∪ AK).
The two necessary edges needed to hide a cannot be in the corridor. Thus, the cycle
out(AL ∪AK) must enclose the corridor and all cherry wheels involved.
This argument also implies that the same must be true for the cherry wheels DL and DK

sharing d. These two conditions contradict each other in a plane graph.
Therefore, no two wide corridors can cross. See Figure 3.10 for a visual explanation.

a b

c d

AK

DL

DK

Figure 3.10: Two crossing wide corridors would defy planarity

(iii) Let W be the wide and N the narrow corridor with the spanning edges w1 =
ab, w2 = cd, n1, n2. Suppose they are crossing. From (i) we again get that n1, n2 are edges
in {a, b, c, d}. The edges n1, n2 have a common vertex because N is narrow. Let this
common vertex be a w.l.o.g. Then {n1, n2} = {ac, ad}. Since N must contain a vertex not
belonging to its spanning cherry wheels, a, c, d form a separating triangle.
Therefore, a wide corridor and a narrow corridor cannot cross. A picture is given in
Figure 3.11.

a b

c
d

Figure 3.11: A wide and a narrow corridor which cross imply a separating triangle

(iv) We know already that two crossing corridors can only be narrow. So let N, O be
two narrow corridors with spanning edges n1 = ab, n2 = ac, o1, o2. Suppose now that the
shared vertex of o1, o2 is not a. Then the shared vertex is either b or c. W.l.o.g. we can
assume b to be the shared vertex. Now either o1 or o2 must be the edge bc. This implies
that N is bounded by a triangle. Since the corridor also has a non-empty inside, a, b, c
form a separating triangle. This configuration can be seen in Figure 3.12a. So for two
narrow corridors to cross, the shared vertex of their crossing edges must be the same.
Since we already ruled out every other case of corridor crossing, we are left with only this
possibility. This configuration is depicted in Figure 3.12b
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a

b

c

(a) Two narrow corridors with different
shared vertices of their spanning edges
always imply a separating triangle

a

b

c

(b) Two narrow corridors with the same
shared vertex of their spanning edges

Figure 3.12: Crossings between two narrow corridors

(v) Let N, O be two crossing corridors with cherry wheels N1, N2, O1, O2. From (iv)
we know that N and O are narrow with a shared vertex v ∈ N1 ∩ O1. By Corollary 4
v /∈ out(N1 ∪O1). So there must be two edges e1, e2 ∈ N1 ×O1 which are on out(N1 ∪O1)
and hide v. Any such edge in N1×O1 cannot lie on N2 or O2 since these two cherry wheels
do not share vertices with one either N1 or O1 by the definition of corridor spanning. So
we get that N2, O2 are hidden within M(N1 ∪O1) as they are directly connected to v. This
gives us our edge hiding spanned by N1 and O1 with a spanning edge e ∈ {e1, e2}. This
configuration is depicted in Figure 3.13.
Therefore, we only have to consider hidings from now on.

vN1
N2

O1

O2

e1

e2

Figure 3.13: Two crossing corridors in a Bob-dominant graph always form an edge hiding.

(vi) Let U and W be two cherry wheels spanning a hiding H and a cherry wheel V
hidden in H. Suppose W shared a vertex v with one of the spanning edges. W.l.o.g. v ∈ U .
Then by definition of the spanning edges v ∈ out(U ∪W ) and therefore v ∈ out(U ∪ V )
which is a contradiction to Corollary 4. We therefore have that V ⊆ in(M(U ∪W )) in any
Bob-dominant graph where V is contained in a hiding spanned by U and W .

(vii) Suppose there are two cherry wheels U, W hidden in hidings K, L such that
in(L) ∩ in(K) = ∅. By (vi), U, W are not incident to any of the spanning edges of their
hidings. Therefore, any path from U to W has a length of at least two. So U and W
are neither joint nor span a corridor which implies that such a configuration cannot be
contained in a Bob-dominant graph.

(viii) Let A1, B1 span the outer hiding O and A2, B2 the inner hiding I. We will leave
it ambiguous at first of which kind the two hidings are. Let W be a cherry wheel hidden
in the inner corridor, E the set of spanning edges of the inner corridor and U their set of
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vertices.
The cherry wheel W needs to span a corridor with A1 and B1, which implies that there
need to be two vertices u, v ∈ U ∩ (A1 ∪ B1) with two narrow corridors from u, v to W .
Vertex u being equal to v would only be possible if it was a shared vertex of A1 and B1.
But since u is also in A2 or B2 this would imply a vertex shared by three cherry wheels, a
contradiction to Bob-dominance. Thus u 6= v.
It is helpful to think about the boundary of I as a cycle which touches A1 and B1, therefore
splitting O in two parts O1 and O2. Consider u w.l.o.g. u ∈ A1 ∪ A2 and the part of O
(w.l.o.g. O1) which is incident to a spanning edge containing u. There needs to be another
vertex from A2 on O1 to hide u from this side with an edge between A1 and A2. The only
vertex which can fulfill these properties is v, as having any other vertex would imply that
v /∈ U . Therefore, u, v ∈ A2. This is impossible if I is an edge hiding because there is only
one spanning edge and u 6= v. This setup can be seen in Figure 3.14a. If I is a corridor

A1 B1

A2 B2

W

u vO2

O1

(a) If the inner hiding is an edge hiding, the
shared vertices u, v of the inner and outer
hiding cannot be hidden on the component
O1 incident to the spanning edge uv.

A1 B1

A2

B2

W

u vO2

O1

(b) If the inner hiding is a corridor hiding, the
edges hiding u and v on O1 would intersect.

Figure 3.14: Problems with a hiding containing another hiding spanned by different cherry
wheels. The gray area on the outer hiding represents ambiguity about the
kind of hiding. The corridors between the cherry wheel in the edge hiding and
the outer cherry wheels are marked in green.

hiding we also get a contradiction from the fact that the above argument for u must also
be true for v on O1. This implies that there is an edge between A1 and u as well as an
edge between A2 and v through O1. These two edges intersect, a contradiction to planarity.
This problem is depicted in Figure 3.14b. So we get that a hiding cannot contain another
hiding with different cherry wheels.

(ix) In (viii) we already dealt with the case that the outer and inner hidings do not have
common spanning cherry wheels. If they have both cherry wheels in common, then we are
talking about the same hiding. Therefore, we now assume that the inner and outer hidings
have one cherry wheel in common. The outer hiding is a corridor hiding, the inner one
either a corridor or edge hiding. As in (viii), we can deal with these two cases in one go:
Let A and B span the outer hiding O, A and C the inner hiding and let W be a cherry
wheel in the inner corridor. Cherry wheels W and B cannot be joint because of (vi).
Therefore, they have to span a corridor which is only possible if a spanning edge ac ∈ A×C
of the inner corridor is incident to B. Since A and B are not joint this implies that the
shared vertex must be c. Now as in (viii) O is split into two parts O1, O2 by C and the
spanning edges of the inner corridor. Let O1 be the part incident to ac. In order to hide c
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3.3. Odd 4-connected Triangulated Graphs

on O1, there needs to be an edge e ∈ B × C on O1 not containing c. The only vertex in C
incident to O1 other than c is possibly a. If a is not in C we are done as e cannot contain
c itself. This situation is illustrated in Figure 3.15a.

A BCW

O2

O1

a c

e

(a) When a /∈ C, c cannot be hidden on O1. The
gray area represents ambiguity whether the
inner hiding is a corridor or edge hiding.

A B

C

W

O2

O1

a c
e f

(b) When a ∈ C, the two edges hiding a and
c on O1 must intersect, a contradiction to
planarity.

Figure 3.15: Problems which emerge in a corridor hiding containing another hiding with
a shared cherry wheel. The corridors between the inner hidden cherry wheel
and the outer cherry wheels are colored green.

Otherwise a is a shared vertex of A and C, implying that there needs to be an edge
f ∈ A×C on O1 not containing a. Since A and B are not joint, e and f have to intersect –
a contradiction to planarity depicted in Figure 3.15b.
With (viii) we get that a corridor hiding cannot contain another hiding inside it.

(x) Suppose there are three cherry wheels U, V, W in a corridor spanned by A and B. By
(ix) there cannot be another hiding in our corridor, disallowing corridor hidings and corridor
crossings in the outer corridor. Therefore, we can directly draw plane X(G) − AB by
drawing edges through spanned corridors or shared vertices. Since the drawing is contained
within the corridor, A, B are on the outside of X(G)−AB. By connecting A and B using
the outer face we get a plane drawing of X(G) = K5 which is impossible. Thus, a corridor
can only contain up to two cherry wheels.

(xi) We show that if we have a corridor spanned by cherry wheels A, B with a hidden
cherry wheel in it, there can not be more than two cherry wheels on the outside of the
corridor. Suppose there are three cherry wheels O1, O2, O3 outside of the corridor. All of
them must be incident to at least one of the vertices on the corridor spanning edges to
span a corridor with the inner cherry wheel. Let vi be such a vertex for Oi. For these
vertices we have vi 6= vj for i 6= j because otherwise we would have a vertex shared by three
cherry wheels. By the pigeonhole principle two of the vi must be on the same spanning
edge. W.l.o.g. e = v1v2 ∈ A × B is a spanning edge. Since O1 and A must hide v1, the
cycle on out(O1 ∪A) has to contain the corridor and any cherry wheels directly attached
to it: In particular also O2 and B. But since the same is true for O2 and the cycles only
contain vertices from their respective cherry wheels we get a contradiction to planarity.
This configuration can be seen in Figure 3.16.
This insight, paired with (x), gives us that if our graph contains a hidden cherry wheel,
then we can only have up to

2︸︷︷︸
C.w. spanning
the corridor

+ 2︸︷︷︸
Max. amount of c.w.

in the corridor

+ 2︸︷︷︸
Max. amount of c.w.
outside of corridor

= 6

cherry wheels.

(xii) Suppose there are two cherry wheels O1, O2 on the outside of an edge hiding spanned
by A and B with the spanning edge e = ab ∈ A×B. The cherry wheels O1 and O2 must
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A B

O1 O2

O3

v1 v2

v3

Figure 3.16: For three cherry wheels to be on the outside of a corridor hiding, two edges
would need to intersect.

be incident to either a or b. However, both cannot be incident to the same vertex as we
would then get a vertex shared by three cherry wheels. So w.l.o.g. a ∈ O1 \O2, b ∈ O2 \O1.
Now a /∈ out(A∪O1) since a is a shared vertex. We get that the cycle on out(A∪O1) must
contain a and with it also O2 and B on its inside. The same argument for b gives us that
O1 and A must be contained within the cycle on out(O2 ∪B). Because the intersection of
the two cycles must be empty (otherwise we would have a shared vertex on the outside
once again) this is a contradiction. This can be seen in Figure 3.17.

a b
A B

O1 O2

Figure 3.17: Two cherry wheels on the outside of an edge hiding give us two intersecting
edges – a contradiction to planarity.

(xiii) Let A, B be cherry wheels spanning an edge hiding. Suppose first there are five
cherry wheels I1, . . . I5 in the edge hiding. By (viii), none of these five inner cherry wheels
can span a hiding disallowing any kind of non-planarity (corridor hidings or corridor
crossings) within them. So we get a plane drawing of X(G[I1 ∪ . . . ∪ I5]) = K5 by drawing
the edges through the corridors and shared vertices which is impossible.
Suppose now that there where four cherry wheels I1, I2, I3, I4 in the edge hiding and one
(it can not be more than that by (xii)) cherry wheel O on the outside of our edge hiding.
Again by (viii), none of these four inner cherry wheels can span a hiding, implying that
X(G[I1 ∪ I2 ∪ I3 ∪ I4]) = K4 can be drawn plane directly. This means that one of the
inner cherry wheels – w.l.o.g. I1 – is enclosed by the other three by corridors and shared
vertices. By (vi), O has to be incident to the spanning edge of the edge hiding in order
to span a corridor with the hidden cherry wheels. A corridor between O and I1 has to
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3.3. Odd 4-connected Triangulated Graphs

cross the barrier formed by I2, I3, I4. This corridor cannot contain any Ii, since we know
that any graph with a corridor hiding cannot have more than six cherry wheels from (xi).
Therefore, we have a corridor crossing between the corridors spanned by O, I1 and w.l.o.g.
I2, I3. The shared vertex (see (iv)) u of the two corridors cannot be on I1 as this would
imply an edge hiding spanned by I1 and either I2 or I3 (by (v)) which again is impossible
by (viii). This problem is depicted in Figure 3.18a. Therefore, v ∈ O which is, however,
also not possible as neither I2 nor I3 can share vertices with O (again by (vi)) as can be
seen in Figure 3.18b. We have shown that the amount of cherry wheels on the outside and
inside of an edge hiding cannot exceed four. We therefore get that a graph with an edge
hiding can only contain up to six cherry wheels in total.

A B

O

I1I2

I3

I4

u

(a) If v is on the inner cherry I1, we get a corridor
crossing in a hiding which is impossible.

A BO

I1

I2
I3

I4

u

(b) When v is on the outer cherry wheel O, one
of the inner cherry wheels must be incident
to the spanning edge of the outer corridor.
This is impossible.

Figure 3.18: Problems which emerge when a edge hiding contains four cherry wheels on
its inside and there is one cherry wheel on its outside. In both cases we get a
corridor crossing with shared vertex v.

We have thus shown that any Bob-dominant graph contains only up to six cherry wheels,
thereby completing the proof.

3.3.2 Existence of Bob-dominant graphs with less than seven cherries

We will now give the proof for part one of Theorem 3 by giving examples of such
Bob-dominant graphs.

Proof. We call the graphs we give as examples for odd 4-connected triangulated Bob-
dominant graphs with n cherries Gn.
For G0, any odd 4-connected triangulated graph G with C(G) = ∅ will qualify by the
definition of Bob-dominance. As G1 we can just take a cherry wheel of size 5 with two
more vertices on its outside to get a triangulated graph (see Figure 3.19).
A valid G2 can be constructed by just taking two odd cherry wheels, letting them have
one shared vertex (to fulfill Lemma 5), making sure that the shared vertex is hidden by
the cherry wheels and again adding two vertices for the graph to be triangulated. The
resulting graph is depicted in Figure 3.20.
From now on we will actually prove Bob-dominance of our graphs by utilizing Theorem 4.
The same can of course be done for the previous graphs but we do not consider it necessary.
Our G3 has three pairwise joint cherry wheels which hide their shared vertices. There is
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3. Bob-dominant Games

Figure 3.19: G1: An odd 4-connected triangulated Bob-dominant graph with one cherry

Figure 3.20: G2: An odd 4-connected triangulated Bob-dominant graph with two cherries

also one additional vertex hidden by the three cherry wheels as a whole which is revealed
when one of the cherry wheels is opened. The graph is depicted in Figure 3.21.
We have to check two conditions in order to prove Bob-dominance using Theorem 4:

1. Any shared vertex of two cherry wheels A, B is not in out(A ∪B).

2. For any subset of cherry wheels V which do not hide any other cherry wheels,
M(⋃W∈V W ) is odd.

There are three shared vertices in G3 which are all hidden by the two cherry wheels they
are shared by. Let U, V, W be the three cherry wheels in G3.

|M(U ∪ V ∪W )| = 19

|M(U ∪ V )| = |M(U ∪W )| = |M(V ∪W )| = 13
|M(U)| = |M(V )| = |M(W )| = 7

This proves Bob-dominance of G3.
For G4, we take three cherry wheels arranged in a triangle with one cherry wheel in the
middle, such that any pair of cherry wheels share one vertex and any set of three cherry
wheels which contain the middle cherry wheel hide one vertex, as in the G3 case. See
Figure 3.22 for an image.
It can be easily confirmed that shared vertices are hidden in G4. Now for the parity of
cherry wheel subsets: Let O = {A, B, C} be the set of outer cherry wheels and I be the
inner cherry wheel. For any X, Y ∈ O, X 6= Y we have:

|M(A ∪B ∪ C ∪ I)| = 31.

Since I can not be removed first, we only have to check subsets of size three with I.

|M(X ∪ Y ∪ I)| = 25

For subsets of size two we have the two cases that I is either contained or not.

|M(X ∪ Y )| = 13 |M(X ∪ I)| = 19
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Figure 3.21: G3: An odd 4-connected triangulated Bob-dominant graph with three cherries.
The edges incident to cherries are left out for visual clarity.

For single cherries, we have to again make a distinction between I and the other cherry
wheels:

|M(X)| = 7 |M(I)| = 13

Therefore, G4 is Bob-dominant.

A B

C

I

Figure 3.22: G4: An odd 4-connected triangulated Bob-dominant graph with four cherries.
The edges incident to cherries are left out for visual clarity.

As we have seen in Section 3.3.1, four cherries is the best we can do without using corridors.
For G5, we have a corridor hiding spanned by A1 and B with one cherry wheel on the
outside (A2) and two on the inside (C1 and C2). For a picture, see Figure 3.23. The only
shared vertex is between A1 and A2 and is not on out(A1 ∪A2). Now for parity:

|M(A1 ∪A2 ∪B ∪ C1 ∪ C2)| = 43

Four-cherry wheel subsets can only have either A1 or A2 missing. In any case, we get (for
A ∈ {A1, A2})

|M(A ∪B ∪ C1 ∪ C2)| = 37.

There are four possible three-cherry wheel subsets which can be left. Let A ∈ {A1, A2}.
Then we have:

|M(B ∪ C1 ∪ C2)| = 29 |M(A2 ∪B ∪ C2)| = 25 |M(A ∪ C1 ∪ C2)| = 23
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Single cherry wheels are odd, so we can conclude this case.
For subsets of size two we see that any pair X, Y of cherry wheels which do not hide cherry
wheels, either share exactly one vertex or hide one vertex in their corridor. Therefore, we
get an odd amount of vertices in total:

|M(X ∪ Y )| ≡ |X|+ |Y |+ |(X ∩ Y ) ∪H(X ∪ Y )| ≡ 1 + 1 + 1 ≡ 1 (mod 2)

Therefore, G5 is also Bob-dominant.

A1 A2

B

C1 C2

Figure 3.23: G5: An odd 4-connected triangulated Bob-dominant graph with five cherries.
The edges incident to vertices which seem not to be connected to anything
are left out for visual clarity. Implicitly ,such vertices are connected to every
vertex on the boundary of its face.

For our last graph G6 we cannot use any corridor hidings as already mentioned in a footnote
in Section 3.3.2. The idea here is to have three outer cherry wheels A1, A2, A3 such that
any two of those span an edge hiding. All of these three edge hidings overlap in such a
way that they contain three inner cherry wheels B1, B2, B3. Additionally, one of the edge
hidings – in our case the one spanned between A1 and A3 – also contains the other outer
cherry wheel. This needs to be the case to avoid a separating triangle in the middle. Now
the three cherry wheels in the middle need to span corridors with all the outer cherry
wheels. To accomplish this, we heavily rely on corridor crossings: The shared vertices of
the outer cherry wheels are used to connect an inner cherry wheel to two cherry wheels on
the outside using only one corridor. So each of the inner cherry wheels spans two corridors
with two different shared vertices of the outer cherry wheels which is enough to have them
fully connected. A picture of this construction is given in Figure 3.24.
The three shared vertices are hidden by their respective edge hidings. For subset parity we
get the following:

|M(A1 ∪A2 ∪A3 ∪B1 ∪B2 ∪B3)| = 61

Only A1 or A3 can be opened at first. We get

|M(A ∪A2 ∪B1 ∪B2 ∪B3)| = 57 A ∈ {A1, A3}.

Removing any of the other outer cherry wheels next leaves us with

|M(A ∪B1 ∪B2 ∪B3)| = 49 A ∈ {A1, A2, A3}.
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If we instead remove one of the inner cherry wheels, we are left with

|M(A ∪A2 ∪B ∪B2)| = 39 A ∈ {A1, A3}, B ∈ {B1, B3}.

As for the previous graphs, three-, two- and one-cherry wheel subsets also have an odd
amount of vertices since any two cherry wheels hide or share a vertex and any three-cherry
wheel subset also hides one vertex. This grants us Bob-dominance for our final graph,
thereby completing the proof.

A1 A2

A3

B1 B2

B3

Figure 3.24: G6: An odd 4-connected triangulated Bob-dominant graph with six cherries.
The edges incident to vertices which seem not to be connected to anything
are left out for visual clarity. Implicitly, such vertices are connected to every
vertex on the boundary of its face.
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4. Asymptotic Bounds on Optimal
Strategies for Alice

In previous sections we only considered games which were optimal for Bob. But as we
learned in Section 3.3 there are no Bob-dominant games with more than six cherries in
the class of odd 4-connected triangulated graphs. Naturally, the following question arises:
“What is the maximum share of cherries that Bob can obtain for graphs with n cherries?”.
Phrasing it more formally from the viewpoint of Alice where Gn denotes the set of odd
4-connected triangulated graphs with n cherries, we get:

“What share of cherries sn = inf
G∈Gn

A(G)
n can Alice obtain on every odd

4-connected triangulated graphs with n cherries if both players play optimally?”
However, we do not want an answer for a specific n but instead look at this question
asymptotically: We want to know the value of s = lim

n→∞
sn. We will not be able to achieve

that in this thesis. Instead, we will only give rough upper and lower bounds for s.
Proving an upper bound u for s involves finding instances for arbitrarily large n in which
Alice can never obtain more than u · n cherries independent of the strategy she uses.
A trivial upper bound is 1

2 : For even n, we can just take graphs Gn with n cherries and one
non-cherry. For every configuration C of Gn with |C| ≥ 2 we have |out(C)| ≥ 2. Therefore,
both players can obtain one cherry in every move except for Alice’s very last move. Since
Alice does n

2 + 1 moves on Gn, A(Gn) = n
2 and lim

n→∞
A(Gn)

n = 1
2 . Thus, we have proven the

upper bound.
We also believe that it is feasible to prove the upper bound 1

3 using graphs such as the one
pictured in Figure 4.1. However, this is outside of the scope of this thesis.
To prove a lower bound l, it is necessary to prove that Alice can obtain at least l ·n cherries
on any graph with n cherries for large n. Giving a lower bound is tricky since we cannot
assume anything about the structure of our graphs. We still want to give at least a minor
result for which we need a lot of assumptions.

Theorem 5. Let Xn be the set of all odd 4-connected triangulated plane graphs with n
cherries where cherries only occur in cherry wheels and there are no corridor crossings, no
hidden cherry wheels and no vertices shared by three or more cherry wheels.
Then A(G) ≥ n

8 for any G ∈ Xn when n ≡ 0 (mod 8).

Proof. Let G ∈ Xn. Then, X(G) admits a plane drawing since edges drawn between cherry
wheels through shared vertices and corridors do not cross by our assumptions about G. By
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Figure 4.1: An instance on which Alice can (probably) only obtain up to approximately 1
3

of the weight if she plays optimally. To build larger graphs with this property
it is sufficient to add cherry wheels from above and below in the same manner
as depicted. Edges in cherry wheels are left out for visual clarity.

the four color theorem, X(G) has an independent set W of size at least n
4 . Let V be the

set of all vertices in G which belong to cherry wheels in W . We now give a strategy SA for
Alice with which she obtains an eighth of the cherry wheels. Let C be a configuration on
G which can occur when Alice uses SA:

• If there is some cherry c ∈ out(C), Alice takes it.

• If there is some vertex v ∈ out(C) ∪ V , Alice takes it.

• If there is a vertex in out(C) which does not uncover any cherries when removed,
Alice takes it.

• Otherwise, Alice takes a vertex belonging to a cherry wheel in W which is odd.

Such a move as in the fourth case is always possible because if none of the first three cases
apply, there are only untouched cherry wheels from W left. These do not share any vertices
and contain an odd amount of vertices as a whole since it is only Alice’s turn when there is
an odd number of vertices left. Therefore, one of the remaining cherry wheels must be odd
which Alice then opens.
It is now only left to prove that SA actually gains Alice at least n

8 vertices: In the first part
of the game – until there are only vertices from V left – she obtains all cherries from W
which Bob uncovers at some point. From then on, whenever Alice has to uncover a cherry
in V she “changes the parity” of the game by opening an odd cherry wheel. So Bob has to
open the next cherry wheel, as they contain an even amount of vertices. Therefore, for any
cherry Bob receives in W , Alice also receives one cherry.
Since W contains n

4 cherries, Alice obtains n
8 of them which finishes the proof.
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5. Conclusion and Outlook

In this work, we mostly focused on the question in which cases in the planar graph grabbing
game Bob can obtain all cherries. We could prove that in the general case and on the
subclass of 4-connected triangulated graphs, there is a graph for every n with n cherries
such that Bob can obtain all of its weight. With the additional condition that the graphs
must be odd, we then got the surprising result that Alice can always obtain at least one
cherry on any graph with more than six cherries. In the last chapter, we continued dealing
with this class of graphs and briefly considered the question asymptotically, i.e., we were
asking what share of the cherries Alice can obtain on graphs with “a lot of” weight. In this
domain there are probably more results that could be achieved. Other approaches that
could be interesting to pursue in the future include the following:

• The restriction we posed in the beginning for our weight function w : V → {0, 1}
could be removed to allow arbitrary positive or even negative weight.

• Future work could ask questions about the computational complexity of the planar
graph grabbing game on general graphs or subclasses of graphs. As is true with many
such games, it might be possible to show that the game is in PSPACE .

• On simple subclasses of graphs it might be feasible to find optimal strategies for the
planar graph grabbing game given arbitrary weight assignment to the vertices. A
simple example is the class of outerplanar graphs on which the optimal strategy for
both players is to be greedy. When finding optimal strategies is too hard, it might
still be possible to get bounds on the optimal gain for both players.

• It might be possible to show that the planar graph grabbing game is equivalent to
other grabbing games.

• Varying the amount of moves a player can make in one turn or increasing the amount
of players could also lead to interesting results. In particular, one might find that the
parity of the graph is important not by mod 2 but mod some other k – perhaps the
amount of players.
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