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Abstract
Many algorithms are known to solve the shortest path problem on road networks without
turn costs. This work focuses on Customizable Contraction Hierarchies and extends
this technique to handle networks with turn costs e�ciently. We compare di�erent
ways to model turn costs in road networks and evaluate which impact those models
have on the performance of Customizable Contraction Hierarchies. We also propose
some improvements to handle turn costs faster. Albeit most of these improvements were
designed for turn costs, some do also apply to Customizable Contraction Hierarchies
in general. In addition to that, we introduce a new algorithm to build a Customizable
Contraction Hierarchie which is not only simpler but also more e�cient than the original
algorithm.

Zusammenfassung
Es gibt verschiedenste Algorithmen, die das kürzeste Wege Problem auf Straßengraphen
lösen, jedoch ohne Abbiegekosten zu betrachten. In dieser Arbeit untersuchen wir Custo-
mizable Contraction Hierarchies und erweitern diese, um auch Abbiegekosten korrekt zu
behandeln. Darüber hinaus vergleichen wir verschiedene Möglichkeiten die Abbiegekos-
ten zu modellieren und gehen auf die Auswirkungen der Modellierung auf Customizable
Contraction Hierarchies näher ein. Außerdem stellen wir Verbesserungen vor, um Ab-
biegekosten e�zienter zu handhaben. Obwohl diese Verbesserungen für Abbiegekosten
entwickelt wurden, können sie teilweise auch auf Customizable Contraction Hierarchies
im Algemeinen angewandt werden. Darüber hinaus stellen wir einen neuen Algorithmus
für den Aufbau von Customizable Contraction Hierarchies vor. Dieser Algorithmus ist
nicht nur simpler, sondern auch e�zienter, als der ursprüngliche Algorithmus.
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1 Introduction

1.1 Motivation

The single-source shortest-path problem is one of the best-known problems in computer
science. Dijkstra’s Algorithm was the �rst algorithm to solve this problem in almost
linear time [Dij59]. There is a broad spectrum of problems which are related to the single
source-shortest path problem. Those problems include real-time tra�c updates, time-
dependent routing, public transit, electric vehicle routing and many more. In the past
decades, many new techniques have been developed to deal with these problems. A
comprehensive summary of the state of the art route planning algorithms is given by
Bast et al. [Bas+16]. One of the problems related to the single source-shortest path is
the turn cost problem. Here the problem is to �nd the shortest path while considering
costs for turns and respecting turn restrictions. It is important to distinguish between
di�erent types of turns since it could be faster to make a right turn instead of a left turn.
For example, some mail delivery services try to eliminate as many left turns as possible
while planning their routes [UPS]. One of the state-of-the-art speed-up techniques is the
Customizable Contraction Hierarchie (CCH). It is a three-stage approach allowing real-time
tra�c updates in a few seconds while being able to process shortest path queries in under
a second. The combination of CCHs with the turn cost problem has not been examined
yet. Therefore, we study this combination in our work.

1.2 Related Work

Turn costs are important for real-world routing applications. Therefore many speed-up
techniques have already been studied in combination with turn costs. Among those
techniques are Customizable Route Planning (CRP) [DGPW11] and Contraction Hierar-
chies (CH) [GV11]. Those earlier works already introduced two models which allow the
incorporation of turn costs into graphs, one which embeds the turn costs directly into the
graph and another one which adds turn cost tables to each node. An earlier version of the
CCH paper already includes a chapter about turn costs. The paper gives a prediction for
the performance of CCHs with turn costs in the �rst model. In addition to that, some ideas
for improvements are mentioned. However nothing of this has been evaluated yet, and
the corresponding chapter has been removed from the �nal version [DSW14 | DSW16]. In
this work, we pick up some of the ideas mentioned there and evaluate them.
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1 Introduction

1.3 Outline
In the next chapter, we cover the basic concepts of graph theory and route planning.
Moreover, we de�ne the conventions we use in this work. In the third chapter, we describe
how we incorporate turn costs into our graph and elaborate on the basic properties of
the two models we use. In Chapters 4 to 6, we show how the turn cost models can be
used with CCHs. In addition to that, we propose some improvements for CCHs in context
of turn costs. Our primary focus lies on the speed-up of the customization stage, which
su�ers the most if we include turn costs. To achieve a speed-up in this stage, we modify
the metric-independent preprocessing stage, to reduce the number of lower triangles
which are enumerated in the customization stage. We also introduce the fast and simple
triangulation1 algorithm (FastAlgorithm). This algorithm and some of the modi�cations
we introduce in Sections 5.3 and 6.1 can also be applied to speed-up CCHs in general. After
that, we present an experimental evaluation of our proposed algorithms on some real
world road networks.

1In our context, triangulated is equivalent to chordal, but triangulation results in the better acronym.
However, this is not a planar triangulation.
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2 Preliminaries

In the following sections we introduce basic concepts of graph theory and route planning.
We also introduce notations that are used throughout this work. In particular, we de�ne
graphs and cost functions to model routing networks. In addition to that we give a brief
introduction to CCHs.

2.1 Graph Theory

An undirected graph G = (V, E) consists of a set of vertices V = {1, 2, . . . ,n} and a set of
edges E ⊆

{
{u,v}

�� u,v ∈ V }
. In contrast, a directed graph G = (V, E) consists of V and a

set of edges E ⊆
{
(u,v)

�� u,v ∈ V }
. The only di�erence between the two de�nitions is that

in a directed graph an edge has a direction. This means that the edge (u,v) has a source u
and a target v . In particular, this implies that the edges (u,v) and (v,u) are not equal. If
not stated otherwise, we only consider simple directed loop-free graphs in this work.

The degree deg(v) of a vertex v is the number of edges that contain v . If the graph G is
directed we di�erentiate between indegree degin(v) and outdegree degout(v) of a vertex v .
The indegree is de�ned as the number of edges that end in v . Similarly the outdegree is
de�ned as the number of edges that start in v .

deg(v) B #
{
e
�� e ∈ E and v ∈ e

}
degin(v) B #

{
(u,v)

�� (u,v) ∈ E}
degout(v) B #

{
(v,u)

�� (v,u) ∈ E}
The line graph L(G) of a graph G represents the adjacency of edges in G. For this the

vertices of L(G) correspond to the edges of G. Two vertices in L(G) are connected if and
only if the corresponding edges in G are adjacent. The concept of line graphs can be
extended to directed graphs. In this case, the resulting graph is also directed and we call it
line digraph. In this graph, all vertices correspond to directed edges in G. A directed edge
in L(G) is induced between (a,b) and (c,d) if b equals c . We also denote the directed line
graph with L(G). Thus L(G) is directed if and only if G is directed.

A graphG is called chordal or triangulated if it contains no holes. This means that there
exists no induced cycle on more than three vertices inG . An alternative characterization is
that a vertex order ord exists such that the neighbors of each vertex v which come after v
in ord form a clique [FG65]. Such an order is called a perfect elimination scheme.
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2 Preliminaries

2.2 Route Planning
In the context of route planning, a road network is modeled as a directed graph. A vertex
in this graph corresponds to a intersection and a directed edge corresponds to a road
segment. A bidirectional road is modeled as two directed edges. Additionally we use a
weight function c , sometimes referred to as metric. Such a metric is used to model the
incurring costs for taking a road. In our work, we assume that the values of c are non-
negative. Moreover, if not stated otherwise, the metric we use describes the travel time
needed to traverse a road. For this metric it should be clear that all values are non-negative.

Similarly we de�ne a turn cost function ct which describes the time required to take a
turn and a turn restriction function cr, which is true if it is forbidden to take a turn. We say
that ct and cr are consistent if, cr (e,д) = true implies that ct (e,д) is in�nity.

c : E → �+0 ∪ {∞}
ct : E2 → �+0 ∪ {∞}
cr : E2 → �

A path from v1 to vn is an n-tuple of vertices P = (v1,v2, . . . ,vn). We call P valid,
if (vi,vi+1) ∈ E and cr

(
(vi,vi+1), (vi+1,vi+2)

)
= false for all i . Accordingly, we de�ne the

length of a path P as the sum of costs for all edges and all turns that the path consists
of and denote it with c(P). A shortest path between u and v is then de�ned as a path for
which c(P) is minimal among all possible paths from u to v . Note that a shortest path is
not necessarily unique. There may exist multiple shortest paths.

c(P) B
n−1∑
i=1

c
(
(vi,vi+1)

)
+

n−2∑
i=1

ct
(
(vi,vi+1), (vi+1,vi+2)

)
In addition to this, we de�ne the position pos for each vertex. Positions correspond to

the coordinates of the intersection that the vertex represents. For simplicity, we assume
that all positions are on an in�nite Euclidean plane and not on the surface of a sphere.

pos(v) : V → �2

2.3 Customizable Contractiron Hierarchies
Customizable Contraction Hierarchies are a speed-up technique for point to point shortest
path queries. The technique is similar to CHs but uses a metric-independent order and
therefore allows a three-stage approach as introduced by Delling et al. [DGPW11].

Stage 1: metric-independent preprocessing
Stage 2: metric customization
Stage 3: query stage

In the metric-independent preprocessing some shortcuts are added depending on a permu-
tation ord of the vertices. In our model, the turn restriction function cr is already available
at this stage, whereas ct is not available. After this preprocessing stage, the resulting
graph Gc is chordal [DSW16]. In the second stage, the metric c is customized. This means
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2.3 Customizable Contractiron Hierarchies

that the costs for shortcuts are calculated. In this stage ct is available. The time required
for the customization heavily depends on the density of the graph because we enumerate
triangles in Gc . In the query stage, the customized metric c and Gc are used to �nd the
shortest path between two vertices. In this stage, we use a bidirectional query algorithm
to �nd an up-down path.

We de�ne the rank of v in ord as ord −1(v). Thus it is equal to the number of vertices
which are before v in ord. Based on this order, we de�ne two types of neighbors of v . The
neighbors of v with a lower rank are denoted by N −(v). Accordingly, the neighbors with
a higher rank are denoted by N +(v). Since all ranks are unique, each neighbor of v is in
either N −(v) or N +(v).

N −(v) B
{
u

�� {u,v} ∈ E and rank [u] < rank [v]
}

N +(v) B
{
u

�� {u,v} ∈ E and rank [u] > rank [v]
}

Additionally, we de�ne the elimination tree based on ord and denote it byGe . InGe each
vertex has an edge to its next neighbor in the perfect elimination scheme ord. That is there
is an edge from v to the lowest ranked neighbor in N +(v). In combination with this we
assign each vertex v a level l(v). We de�ne the level of v depending on the level of the
lower neighbors of v . The level of v is as small as possible while still being greater than
the level of any vertex in N −(v). The levels de�ned like this are equal for Gc and Ge .

l(v) B

{
0 if N −(v) = 6o
1 +max

{
l(u)

�� {u,v} ∈ E and u ∈ N −(v)
}

else
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3 Modeling Turn Costs
There are multiple ways of modeling turn costs in a directed graph. The two models we con-
sider for this work are the expanded graph model and the table based model. These models
have already been introduced and tested in the context of CHs by Geisberger et al. [GV11].
Since CCHs and CHs are closely related, some of their insights can also be applied to CCHs.

3.1 Expanded Graph
In the expanded graph model (edge-based [GV11]) we use a Graph Gexp to incorporate
turn costs. In Gexp a vertex corresponds to a directed edge in the original graph and an
edge corresponds to an edge and a turn in the original graph. Therefore the expanded
graph is directed and there exists an edge between two vertices if and only if the turn
at the intersection corresponding to the edges is allowed. An example of this is given in
Figure 3.1. The costs cexp of an expanded edge is de�ned as the sum of the cost of the
starting edge in the original graph and the cost of the turn it implies.

G = (V, E) → Gexp = (Vexp, Eexp)

Vexp B E

Eexp B
{
(ei, ej)

�� ei, ej ∈ E and ¬cr (ei, ej)
}

cexp : Eexp → �+0
(ei, ej) 7→ c(ei) + c

t (ei, ej)

In terms of graph theory, the expanded graph created without any turn restrictions
in G is L(G). The graph Gexp is, therefore, a subgraph of L(G). The advantage of this
model is that a path inGexp corresponds to a path inG with turn costs, and thus turn costs
are handled implicitly. For a path P in Gexp , the de�nition of cexp results in alternating
weights of edges and turns in G. Therefore any speed-up technique can be applied to this
graph in order to incorporate turn costs. No further modi�cations are required. However,
this transformation increases the average vertex degree and density of the graph. Yet the
maximum degree cannot increase. The reason behind both is that a single vertex v in G
results in degout(v) vertices ui in Gexp with degin(ui) ≤ degin(v). Without turn restrictions,
those values are equal. Thus a vertex with high degree results in many vertices with high
degree, whereas a vertex with low degree results in few vertices with low degree. This
also gives a bound on the number of edges in the expanded graph.��Eexp �� ≤∑

v∈V

degout(v) · degin(v)

7



3 Modeling Turn Costs

1

2

3

4

5

2,1

1,3

1,4

1,5

1,2

Figure 3.1: On the left, a graph G with a restricted left turn is shown. It is forbidden
to take the turn form (2, 1) to (1, 5). On the right, the corresponding edges
starting at (2, 1) of the expanded graph Gexp are shown. The vertices on the
right correspond to directed edges on the left.

This is a drawback for calculations which are heavily based on the sparseness of a graph.
For example, the enumeration of triangles in the customization phase of a CCH becomes
slower since the number of triangles grows more than linear with the number of edges.
Another disadvantage of this model is the required space to store the graph. Overall, the
number of edges is at least two to three times larger due to the expansion.

For some algorithms, a geographic embedding of the vertices of a graph is required. We
use the center of the edge as the position for the corresponding vertex in the expanded
graph.

pos(e) : E → �2, (u,v) 7→
1
2
(
pos(u) + pos(v)

)
3.2 Table Graph
In the table graph model (node-based [GV11]), the topology of G stays the same and the
costs for a turn are stored in a table for each node. When taking a turn over a node v
the needed turn costs can be looked up in this table. To allow this, we de�ne two new
functions idin, idout : E → �0. The function idin assigns to each outgoing edge of a vertexv
a unique integer and idout assigns to each incoming edge a unique integer.

idin
(
(v, x)

)
= idin

(
(v,y)

)
⇐⇒ x = y

idout
(
(x,v)

)
= idout

(
(y,v)

)
⇐⇒ x = y

We also de�ne the function t with t(v) ∈ �m×n, where m B degin(v) and n B degout(v).
This function assigns a 2D-matrix to each vertex v which stores the turn costs for each
possible turn at vertex v . This 2D-matrix is the turn table of v .

t
(
v1

) [
idin

(
(v0,v1)

) ] [
idout

(
(v1,v2)

) ]
B ct

(
(v0,v1), (v1,v2)

)
This model allows us to store all turn costs e�ciently. Geisberger et al. [GV11] already
mentioned that the number of di�erent turn tables is limited, and duplicates need to
be stored only once. Furthermore, since there is some degree of freedom in the choice
of idin, idout and t we can choose it in such a way that as many tables as possible are equal.

8



3.2 Table Graph

Note that if both idin and idout are given, t is already completely de�ned. Therefore, it
is su�cient to de�ne idin and idout in such a way that all tables than can be equal are
equal. For example it is possible to de�ne a lexicographic order on matrices and chose idin
and idout so that all tables of t are lexicographic minimal. This is always possible since the
image of idin can be permutated freely for each start vertex, and the image of idout can
be permutated freely for each end vertex. This is also described in the following formula
where a ⊥⊥ b denotes that a and b can be chosen independently.

u , v =⇒ idin
(
(u, x)

)
⊥⊥ idin

(
(v,y)

)
u , v =⇒ idout

(
(x,u)

)
⊥⊥ idout

(
(y,v)

)
The disadvantage of this model is that the turn costs are handled explicitly. Thus a
shortest-path algorithm needs to be modi�ed to use t and to respect turn costs.

9





4 Nested Dissection Order

For the construction of a CCH a permutation ord is required. It has been shown that a
nested dissection order (ND-order) is an appropriate choice for a CCH [BCRW16]. An
ND-order is created by successively removing small balanced separators until the whole
graph is empty. A possible way to construct a small separator is to derive it from a small
balanced cut, which can be found by a graph partitioning algorithm. In the context of this
work, we use the InertialFlow partitioning algorithm [SS15]. To derive a separator from
a given cut, we pick the vertices from one side of the cut. We always choose the smaller
side. This choice is not optimal, but in practice, this works well on road networks. Due to
the sparseness of road networks, this choice is not worse than a minimal vertex cover on
the subgraph induced by the cut. Also, the actual order of those separator nodes in the
ND-order makes no big di�erence because the vertices often form a clique in Gc [DSW16].

4.1 Expanded Graphs
There exists a simple way to derive an ND-order for Gexp from an ND-order for G . We can
replace each vertex in the order ofG by all its outgoing edges. This results in a permutation
of the vertices of Gexp since every edge of G occurs exactly once and is, therefore, a valid
order. This order can be calculated in roughly the same time as an order for G.

Alternatively, we can calculate an ND-order on Gexp directly. This is slower but results
in a better quality of the order. As we already mentioned earlier, the expanded graph is
denser than the original one. Therefore, the order can be improved further by a better
separator derivation. A minimal separator can be derived from a cut by taking a vertex
cover on the graph induced by the cut edges. Since this induced graph is bipartite, there
are e�cient algorithms to compute such a minimal vertex cover due to Kőnig’s theorem
and e�cient matching algorithms on bipartite graphs [Kőn36 | HK73].

However, we propose an even better and easier algorithm to construct an ND-order
with InertialFlow for the expanded graph. For this, we use the fact that the undirected
graph of Gexp is a subgraph of the line graph of G. This results in a duality between a cut
in G and a separator in Gexp . Since the graph partitioning algorithm actually calculates a
cut, we can use the edges in this cut to form an ND-order for Gexp . This yields a simpler
implementation of InertialFlow for this case.

In the expanded graph model, another optimization can be used to increase the quality
of an ND-order. Previously we mentioned that the order of the vertices in a separator
makes no di�erence. This statement is only true for the number of edges in Gc , but we
can increase the number edges e for which c(e) will always be in�nite. We will call those
edges always-infinity edges. Since we take a cut in G where every edge has a direction,
there are two di�erent types of edges, and we need one edge of both directions to form a

11



4 Nested Dissection Order

C

1 2

3 4

5 6

Sl Sr

5,6

6,5

3,4

4,3

· ·
·

5,6

3,4

1,2

6,5

· ·
·

Figure 4.1: On the left is a visualization of a cut inG . In the middle is an arbitrary contrac-
tion order which results in no in�nity edges after the �rst four contractions.
On the right the edges in the order are grouped which results in three in�nity
edges after the �rst four contractions (shown by the dotted edges).

cycle. If we group these edges by their directions, all shortcuts created between edges in
the �rst group are always-in�nity edges, since it is impossible to form a cycle without any
edge of the opposite direction. This is shown in Figure 4.1.

To be more precise, let the cutC splitG into two parts Sl and Sr . The vertices induced by
the edges inC often form a clique after the metric-independent preprocessing. If all vertices
induced by edges from Sl to Sr are contracted �rst, the edges between those vertices have
to be in�nity edges. The reason for this is that an edge from Sr to Sl is required to form a
path between the vertices, but these edges are not available since they are contracted later.
Suppose there are el edges from Sl to Sr , and er edges from Sr to Sl , and without loss of
generality let el ≥ er . Then up to a quarter of the edges in the separator are always in�nity.
It can be even more if the di�erence between el and er is larger. The approximations is
derived from the following formula.

lim
el→∞
er→el

(el
2
)(el+er

2
) ≥ lim

el→∞

(el
2
)(2el

2
) = lim

el→∞

el − 1
2(2el − 1)

=
1
4

4.2 Table Graph

Since the topology of G stays untouched in this model, we can use the same ND-order as
without turn costs. This is actually a drawback for the customization stage. Compared
with the expanded model we have less degrees of freedom to choose an ND-order but
the graph still encodes the same information. For example, an intersection without turn
restrictions results in a clique inside the vertex. This means that inside the intersection all
pairs of turns are allowed and there is a shortcut for each of those pairs.

12



4.3 Small Parts

4.3 Small Parts
As mentioned before, calculating an ND-order is based on balanced graph partitioning.
However, graph partitioning is an NP-hard problem. Therefore the partitioning algorithm,
in our case InertialFlow, is not necessarily optimal. While successively removing
balanced separators, at some point, the remaining parts are small enough to make a brute-
force approach feasible. Thus if a part becomes smaller than a limit lim, it is possible to
test all possible ND-orders and choose the solution which results in the fewest number of
triangles. To further improve the result we count all created triangles and not only those
created in the partition. To do this we simulate the contraction on all vertices in the part
but also create shortcuts with vertices adjacent to any vertex in the part. After this we
simulate the customization and count the triangles.

13





5 Metric-Independent Preprocessing

In this chapter, we deal with stage one of the CCH computation. We create shortcuts
in G which decrease the search-space in the query stage. The key idea is that if there
is a path between two vertices u and v , there should also be a path from u to v , which
only uses vertices wi with rank [wi] ≥ min{rank [u], rank [v]}. To simplify this process
the operations are performed on the undirected version of the graph G. In this case it is
su�cient to iterate over all vertices ordered by their rank and add a shortcut between
all pairs of neighbors with a higher rank. The resulting graph is the minimal chordal
supergraph Gc of G for which ord is a perfect elimination scheme. The graph Gc is fully
de�ned byG and ord. Dibbelt et al. [DSW16] specify a rather complex algorithm based on a
quotient graph [GL79]. Their algorithm is able to compute Gc in O

(
|Ec | · α(|V |)

)
where α

denotes the inverse Ackermann function. We now propose a much simpler and also more
e�cient algorithm which accomplishes the same task in O

(
|V | + |Ec |

)
. This algorithm is

heavily based on the work of Habib et al. [HMPV00] for the recognition of chordal graphs
in linear time. To the best of our knowledge, this algorithm has not yet been used in the
context of CCH computation.

5.1 Contraction
The fast and simple triangulation algorithm iterates through all vertices in the order
de�ned by their rank. For each vertex u it determines the lowest ranked neighbor v in
ord which is not yet processed. It removes all duplicated edges starting at u and then
adds the neighbors of u with a higher rank to v . This means that three vertices u,v and w
with rank [u] < rank [v] < rank [w] result in a shortcut {v,w} if u is adjacent to both v
and w .

Algorithm 1: FastAlgorithm
input : undirected graph G = (V, E), permutation ord
output : minimal chordal supergraph Gres = (V, Eres)

1 Gres ←− G
2 rank←− ord −1

3 for each u ∈ V ordered by rank do
4 if N +(u) , 6o then
5 v ←− argmin

{
rank [w]

�� w ∈ N +(u)}
6 for each {u,w} ∈ Eres do
7 if rank [u] < rank [w] then
8 Eres ←− Eres ∪

{
{v,w}

}
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5 Metric-Independent Preprocessing

Theorem 5.1: FastAlgorithm calculates the minimal chordal supergraph ofG induced by
ord, that is Eres = Ec .

Proof. We �rst need to show that ord is a perfect elimination scheme for Gres . It is su�-
cient to show that each vertex is simplicial, which means that all neighbors of v which
follow after v in ord form a clique [FG65]. Suppose this is not true. Then there must be a
counterexample consisting of three vertices x,y and z with rank [x] < rank [y] < rank [z]
and {x,y}, {x, z} ∈ Eres and {y, z} < Eres . Without loss of generality we choose a coun-
terexample such that x has the highest possible rank among all counterexamples.
In Line 5 we �nd the closest neighbor u after x . If u , y, then the edges {u,y} and {u, z}
are be added in Line 8. Therefore u would be a counterexample which comes after x . This
con�icts with our assumption that x has the highest possible rank. Thus u = y holds. In
this case, we add the edge {y, z} in Line 8 and this is not a counterexample at all. Because
of this, there exists no counterexample and Gres is chordal.
To show that Gres = Gc we now only need to show that the graph is minimal. This is true
since every time we add edges to the neighbor of v those edges are required to make v
simplicial. �

Theorem 5.2: FastAlgorithm has a runtime of O
(
|V | + |Ec |

)
.

Proof. To show this, we use the accounting method. We assign to each edge in E one token
and to each edge in Ec one token. A token can either be spent to remove a duplicate edge
or to create a new shortcut. We assume that each edge {u,w} in Line 6 is unique and has
two tokens. In Line 8, one of those tokens is spent to create a new shortcut {v,w} and the
second token is given to this shortcut. Now there are two cases. Either {v,w} is a new
edge, then this edge gains a second token because it is in Ec . Also all edges are still unique.
In the other case {v,w} already existed so we can use its token to remove it. After this all
edges are unique again.
To e�ciently recognize and remove duplicated edges, we do this lazily. This means that we
will remove edges with the same destination while searching the lowest ranked neighbor
in Line 5. This can be done with an array where we mark the destination vertex of the
edge we process. If the destination is already marked we need to remove the current edge.
This allows us to recognize duplicates in O(1) and still guarantees that all edges processed
in line 6 are unique. Since the tokens cover all operations except the enumeration of all
vertices and we only provide E + Ec tokens, the algorithm runs in O

(
|V | + |Ec |

)
. �
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5.2 Contracting Table Graphs
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4

5 6

1

5 6

1

Figure 5.1: On the left, a graph G with only left turns allowed. Thus the only path
from 5 to 6 is (5, 1, 4, 1, 3, 1, 2, 1, 6). On the right, the same graph after contract-
ing {2, 3, 4}. It is important that three shortcuts are added since their values
of id are di�erent. In this example all pairs of self-loops create a shortcut
when 1 is contracted.

5.2 Contracting Table Graphs
Contracting vertices and adding shortcuts is also possible in the table graph model. For
the contraction on the undirected graph we de�ne a generalized id function.

id : Ec → �2
0, {u,v} 7→

(
idin(u), idout(v)

)
Two edges e1 and e2 are considered equal if and only if e1 = e2 and id(e1) = id(e2). This is
necessary to distinguish between multi-edges and between shortcuts which are produced
by the contraction. To contract a vertex v we actually contract all its edges. In our case
we ordered the edges by id . Thus we behave as if we temporarily expanded the vertex
we contract and use an order for Gexp , where each vertex v is replaced by all edges which
contain v . This is done to avoid any sort of con�icts which could occur in the contraction.
For example in Figure 5.1 we see that the contraction can create self-loops but multi-edges
are also possible. We also need to de�ne id for created shortcut. To be more precise, if we
contract a vertex b and there are edges {a,b} and {b, c} we add two shortcuts {a, c}. One
with id

(
{a, c}

)
=

(
idin(a), idout(c)

)
and another one with id

(
{a, c}

)
=

(
idout(a), idin(c)

)
.

Note that a can be equal to c , which results in self-loops.

5.3 Infinity Edges
Since the contraction is performed on the undirected graph of Gc , some directed edges
in Gc always have an in�nite weight, independent of the used metric c . This has already
been mentioned in Section 4.1. There even can be edges which are always in�nite in
both directions. An example of such a graph is given in Figure 5.2. We therefore suggest
replacing each undirected edge {u,v} in Gc by two directed edges (u,v) and (v,u). After
this, we remove the always in�nity edges to reduce the number of edges for the following
stages. Note that the elimination tree and the levels of the vertices have to be calculated
before this step. We also propose a simple way to detect those edges.
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5 Metric-Independent Preprocessing
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Figure 5.2: A graph G on three vertices, where ord = (1, 2, 3, 4) produces an always
in�nity edge between the nodes 2 and 3. The edge between 2 and 3 is always-
in�nity in both directions since there is no path in G between 2 and 3 in the
subgraph induced by the vertices 1, 2 and 3.

Theorem 5.3: The edge e = (u,v) is an always infinity edge if and only if c(e) = ∞ after
customization of the zero metric c [DSW14].

c(e) B

{
0 if e ∈ E
∞ if e < E

Proof. Obviously, c(e) is in�nity, since it is in�nity for every metric. It is clear that for
each other metric c′ it holds that c′(e) ≥ c(e).

Since c(e) ∈ {0,∞}, it is possible to modify the customization to stop enumerating lower
triangles of e once c(e) = 0. It is also possible to use weights in � instead of �.

As the most time of the preprocessing phase is spent on �nding a good ND-order, the
additional time of a single basic customization makes no signi�cant di�erence for the
overall preprocessing time. Since this optimization is not based on the metric or turn costs,
it works with all metrics for all graphs, and the directed graph can still be customized with
di�erent metrics.
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6 Customization
In the previous chapter, we explained how to compute Gc and how to remove in�nity
edges. In this chapter we want to incorporate the costs c and turn costs ct into Gc . To
do this we de�ne c for the shortcuts. we also ensure that the path which only uses
higher ranked vertices is always a shortest path. For this, it is su�cient to ensure that
the costs for each edge {u,v} is not greater than for any path from u to v . We call a
tuple

(
{u,v},w

)
a lower triangle of {u,v} if w is adjacent to both u and v and w has a

lower rank than both u and v . Dibbelt et al. [DSW16] showed that it is su�cient to ensure
that c

(
{u,v}

)
≤ c

(
{u,w}

)
+ c

(
{w,v}

)
holds for every lower triangle and if it holds we call

the metric c customized. To customize c we enumerate all vertices by their rank. For each
vertex v we enumerate all upward edges {u,v} and for each edge all lower triangles. If the
lower triangle inequality does not hold we modify c to make it hold. This customization
also works if we remove edges which are in�nite in both directions. We do not need to
direct any edges for this since c is in�nity for both directions. Therefore those edges are
never used for a shortest path. Thus we only need to enumerate lower triangles and adjust
the weights of the edges.

6.1 Directed Customization
We now explain a modi�cation to handle directed graphs. In this case, there are two types
of lower triangles depending on the direction of the edge {u,v}. The �rst approach is
customizing each edge (u,v) and (v,u) with rank [u] < rank [v], while processing u. This
is the same as with undirected edges, but it requires storing the incoming downward
edges for each vertex. However, it is also possible to customize Gc without this additional
information. We need to customize two types of edges. The �rst type is an edge (u,v)which
is directed upwards, thus rank [v] > rank [u]. The second type is directed downwards,
and thus rank [v] < rank [u]. The corresponding triangles are shown in Figure 6.1. Our
approach also handles vertices by their rank, but for each vertex u we �rst customize
all downwards edges (u,v) by ascending value of rank [v]. After this we customize the
upwards edges starting at u in any order.
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6 Customization

x

u

v

x

u

v

Figure 6.1: A lower triangle induced by an edge of type one on the left, and one induced
by an edge of type two on the right. The order is ord = (x,u,v).

Theorem 6.1: The customization is correct if all vertices are handled in order of their rank
and for each vertexu all edges (u,v) of type two are customized by ascending value of rank [v]
and before any edge of type one starting at u.

Proof. To show this, we prove that the other two edges, which are required to form a
triangle, are already customized. If the edge (u,v) is upward the edge (u, x) is customized
earlier, since (u, x) is directed downwards. However the edge (x,v) is also directed upwards,
but the vertex x has a lower rank and therefore (x,v) is customized �rst. Alternatively (u,v)
is directed downwards. In this case (v, x) is also directed downwards, but x has a lower
rank then u, and therefore (v, x) is customized earlier. The other edge is (x,u). This edge
is directed upwards and is customized �rst because x has the lowest rank. �

Corollary 6.2: The customization is correct if the vertices are handled in the order of their
rank and for each vertex u the edges (u,v) are handled by ascending value of rank [v].

Proof. This follows from Theorem 6.1 since the destination rank of an upwards edge is
higher than the destination rank of a downwards edge. �

6.2 Table Customization
Table customization behaves like customization described above. In Section 5.2, we already
see thatGc can contain self-loops and multi-edges. Therefore a triangle can also be formed
by three self-loops or by two edges and one self-loop. This can be handled in the same way
as for the contraction. For each vertex, we enumerate the edges by increasing value of id .
This ensures that the other two edges which are needed to form a triangle are customized
before the currently processed edge.

Note that it would technically be possible to handle self-loops by modifying the turn
cost table. Thus we would not only customize c but also ct. However this con�icts with
other optimizations for this model since one turn table is shared across multiple vertices.
Thus if we modify ct we loose one of the main advantages of this model.
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7 Evaluation
In this chapter, we evaluate the algorithms that we proposed in the previous chapters. We
have a particular focus on the customization of the CCH computation since turn costs
have the most impact on this stage. We apply our algorithms to three di�erent graphs,
and we always use travel time as metric. The �rst one is a road network of the American
city Chicago [Res]. We use this graph since it is quite dense for a road network, which we
expect to have a bad impact on our algorithms. However, we have neither turn restrictions
nor turn costs for this graph. Therefore, we allow all turns and set U-turn costs to 100s and
all other turn costs to zero. This is the same approach as chosen by Delling et al. [DGPW11].
The second graph we use consists of the region around the German city Stuttgart and
was provided to us by the PTV Group1. We use this graph since we have actual turn
cost data for this graph. The third graph is the DIMACS graph of Europe [DGJ09]. This
graph has already been used in related works to test algorithms. However, for this graph,
we only have turn restrictions. Therefore, we de�ne the turn cost the same way as for
Chicago. Thus it is exactly the same instance as used by Delling et al. [DGPW11]. We
do not expect a signi�cant di�erence to real turn costs, since CCH operations are mostly
metric independent. An overview of the used test instances is given in Table 7.1.

In the work of Geisberger et al. [GV11] the largest strongly connected component
(SCC) of a graph was used for evaluation. For our tests, we do this too but with a further
restriction. We want the edges of our graph to be strongly connected as well. This means
that every edge is part of a cycle, and for each pair of edges a and b, there exists a path that
starts with a and ends with b. This ensures that the expanded graph also forms an SCC.

Such a maximal subgraph of a graph G can be found by calculating the largest SCC
of Gexp . As long as this SCC is not trivial, the subgraph of G which is induced by the
vertices of this SCC is the required graph. Thus we take the corresponding edges in G and
all induced vertices.

All tests were performed on a dual 8-core Intel Xeon E5-2670 processor clocked at 2.6 GHz,
with 64 GiB of DDR3-1600 RAM, 20 MiB of L3 and 256 KiB of L2 cache. Our code was written
in c++ and was compiled with g++ 8.2.1 and -O3.

1https://www.ptvgroup.com/
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7 Evaluation

Table 7.1: Overview over our test graphs.

Vertices Edges avg deg max degin max degout
Chicago 12 978 39 017 3.01 7 7
Chicagoexp 39 017 135 297 3.47 7 7

Stuttgart 109 695 252 487 2.30 6 7
Stuttgartexp 252 487 395 003 1.56 5 6

Europe 17 349 990 39 936 473 1.56 12 12
Europeexp 39 936 473 105 381 970 2.64 12 12

7.1 Nested Dissection Order
In this section, we compare the algorithms we proposed in Chapter 4. Since our primary
focus is on the optimization of the customization phase, we count the number of lower
triangles in the resulting CCH to compare the ND-orders because the running time of
the basic customization mostly depends on the number of lower triangles. If we use
precalculated triangles for that step, it only depends on this. The algorithms we compare
are given in the following list.

InertialFlow is the order created by the InertialFlow which chooses the smaller side
of a cut as separator.

Expanded order is the same order as above, but each vertex is replaced by its outgoing
edges and thus forms an order for the expanded graph.

InertialFlow with vertex cover is the order created by the InertialFlow which chooses
a minimum vertex cover as separator.

InertialFlow with cuts is the order created by the InertialFlow which uses cuts on
the unexpanded graph as a separators for the expanded graph.

In Figures 7.1 to 7.3 we see the number of lower triangles in Gc created with the ND-order
produced by our algorithms. We see that most triangles are on the lowest levels. Those
are also the levels with the most vertices. We also see that the InertialFlow which uses
cuts in the unexpanded graph is the best algorithm in terms of created triangles, but it
is still far worse than the number of triangles in the unexpanded graph. The results of
the expanded order also represents the number of triangles which are created in the table
model. We see that the number of triangles is much higher as with the best order which
can be used with the expanded model. Overall the number of triangles can increase by a
factor up to ten. This can be seen in Figure 7.1 by comparing the green and red area or by
looking at the total number of lower triangles in Table 7.2.
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Figure 7.1: Triangles in Chicago.

0 50 100 150 200 250 300 350 400 450 500
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Level

N
um

be
ro

fl
ow

er
Tr

ia
ng

le
s
[ ·106]

Expanded graph, expanded order
Expanded graph, InertialFlow
Expanded graph, InertialFlow with vertex cover
Expanded graph, InertialFlow with cuts
Unexpanded graph, InertialFlow

Figure 7.2: Triangles in Stuttgart.
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Figure 7.3: Triangles in Europe. Note that the y axis is scaled with
√
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7.2 Infinity Edges

7.2 Infinity Edges
In this section, we use InertialFlow, which uses cuts to test the impact of always in�nity
edges on the number of triangles. This was the best InertialFlow variation as seen in the
previous section. To show how good this optimization is we mainly look at the number of
lower triangles since this has the most impact on the time required for the customization.
In the directed case the lower triangles consisting of

(
(x,y), z

)
and

(
(y, x), z

)
are considered

as two di�erent triangles and therefore counted twice, whereas
(
{x,y}, z

)
is counted only

once. However those numbers better �t to the actual time required for the customization
and are therefore displayed like this.

The number of lower triangles can be seen in Figures 7.4 to 7.6. And the time required
for the customization can be seen in Table 7.3. We see that this optimization is so e�cient
that the number of lower triangles is only two to three times larger as in the unexpanded
case and the runtime grows by roughly the same factor. In Tables 7.2 and 7.3 we also see
that this optimization can be applied in the unexpanded case. However the impact in that
case is much smaller.

Table 7.2: Overview over lower triangles in our graphs.

Both direction
in�nity edges

Single direction
in�nity edges

Triangles with
in�nity edges

Triangles w/o
in�nity edges

Chicago 1 643 22 250 2 472 267 2 064 625
Chicagoexp 195 793 600 336 22 838 460 4 104 031

Stuttgart 8 743 83 757 1 812 437 1 362 426
Stuttgartexp 350 713 1 247 204 11 843 125 2 158 633

Europe 1 509 723 12 667 920 1 271 694 088 993 233 990
Europeexp 83 623 967 266 426 169 9 839 173 866 1 615 075 840

Table 7.3: Time required to customize the metric. All times are given in milliseconds.

with in�nity arcs w/o undirected in�nity edges w/o all in�nity edges

Chicago 41 625 40 669 40 838
Chicagoexp 425 514 266 725 77 732

Stuttgart 39 606 38 802 37 732
Stuttgartexp 309 267 212 364 109 557

Europe 23 864 191 23 300 575 19 893 854
Europeexp 239 833 848 123 387 347 46 823 088
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Figure 7.4: Triangles in Chicago without in�nity arcs.
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Figure 7.5: Triangles in Stuttgart without in�nity arcs.
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Figure 7.6: Triangles in Europe without in�nity arcs. Note that they axis is scaled with
√
x .

7.3 Small Parts
In Section 4.3 we mentioned a further optimization for ND-orders. This optimization
should decrease the number of triangles on the lowest levels. We tested this optimization
with lim = 5 and lim = 10. However, we aborted the tests with lim = 10 after several
days since the algorithm did not �nish on the Europe network. For lim = 5 the result was
almost equal to the InertialFlow without the optimization. Overall this optimization
does not seem to bring any bene�t. If we also consider the runtime, it is better not to use
it at all. It should also be mentioned that other partitioning algorithms do the opposite.
The Metis ND-order computation algorithm switches to a greedy partitioning if the part
is small enough [KK98].

7.4 Contraction
In this section, we compare the FastAlgorithm with the quotient graph based contraction
algorithm described by Dibbelt et al. [DSW16] which is implemented in RoutingKit [RK].
However, the implementation in RoutingKit uses an additional optimization. The permu-
tation ord is applied to the graph G before calculating Gc and is then contracted with the
identity as order. This is done to improve cache-locality and is described in [DSW16]. This
optimization can also be applied to our algorithm and has been implemented for these tests.
In Table 7.4 we can see that our algorithm is not only simpler and asymptotically faster
but also more than three times faster than the algorithm implemented in RoutingKit.
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Table 7.4: Time required to compute Gc in milliseconds and speed-up as QG
FAST . The mea-

sured time is only for the contraction, not for the reordering process, or any
other computations.

Quotient Graph FastAlgorithm Speed-up

Chicago 7.4 2.2 3.41
Chicagoexp 39.3 10.8 3.63

Stuttgart 32.2 9.8 3.29
Stuttgartexp 106.6 33.3 3.19

Europe 8 162.3 1 828.4 4.46
Europeexp 38 966.1 10 373.9 3.76

7.5 �eries
The last point we evaluate is the speed of point-to-point shortest-path queries. The query
algorithm used in this section is the elimination-tree-based query algorithm. For this
algorithm we traverse the reachable vertices by their rank while updating the shortest
distance. Thus we just follow the parent link of each vertex. Our queries work without
the stalling described by Dibbelt et al. [DSW14] and without the optimization for local
queries described by Buchhold et al. [BSW18]. Without those improvements the query
time is mostly independent from the distance between the origin and the destination of
the query. Therefore we test our algorithm with random queries. We choose the origin o
and the destination d independently and uniformly at random from the set of vertices.
For the expanded model we use the vertices corresponding to outgoing edges of o and d
as origins and destinations. Thus we have multiple origins and destinations in this case.
We make one million of those queries and use the average query time to compare our
algorithms. This is the same approach chosen by Dibbelt et al. [DSW16] to compare CCHs
with other algorithms. The algorithms we compare are given in the following list.

CCH is the CCH algorithm without turn costs and an ND-order produced by Iner-
tialFlow.

ccht is the CCH algorithm which uses tables to incorporate turn costs and an ND-order
produced by InertialFlow.

CCHexp is the CCH algorithm which performs on the expanded graph to incorporate turn
costs and an ND-order produced by InertialFlow.

CCHexp+ is the CCH algorithm which performs on the expanded graph, without in�nity
edges and with an ND-order produced by InertialFlow with cuts.
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7.5 Queries

Table 7.5: Minimum, maximum and average query time on one million random queries.
All times are given in microseconds.

Chicago Stuttgart Europe

min max avg min max avg min max avg

CCH 1 694 64 7 90 40 91 8 928 1 127

CCHt 2 1 218 719 34 1 073 222 614 30 185 9 278
CCHexp 127 2 857 518 46 251 108 357 25 652 5 380
CCHexp+ 2 1 641 176 33 205 83 209 29 035 2 786

Dibbelt et al. [DSW14] already mentioned that they expect queries to be two times slower
in the expanded graph model. In our tests we see that this is true for Stuttgart, whereas
for Europe and Chicago it seems to be more like a factor of three. This is probably due to
the fact that those road networks are more dense then the Stuttgart network. Note that
for this tests the expanded graph has an additional slow-down, since we use multi-origin
and multi-destination queries to query equivalent paths. However in real applications this
is probably not needed and would further speed-up the expanded model.
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8 Conclusion
Based on the expanded graph model we saw that turn costs can be incorporated into CCHs
without any extra work. In our evaluation we see that this approach only has a slow-down
of a factor two to three in the metric-independent preprocessing and query stage. However
the time required for the customization increased by up to a factor of ten. We also saw
that some small modi�cations to the ND-order calculation can signi�cantly speed-up the
second stage. With some more improvements it is possible to make stage two only three
times slower compared to the non turn cost version. We also saw that the turn-table-based
approach requires much more work and is slower compared to the expanded model.

8.1 Future Work
In our tests the table model was already worse than the expanded model without any
optimizations. This and the fact that the expanded model is easier to use and has more
space for improvements lead to the fact that our improvements were designed to work
especially well with the expanded model. Are there any table model speci�c optimizations
which make this approach competitive with the expanded model?

In the evaluation of the query time for our algorithms we already mentioned that we
did not implement some known improvements. Which impact do stalling techniques have
on the query time in combination with the removal of in�nity edges?

For this work we only evaluated the InertialFlow partitioning algorithm. However in
practice more advanced partitioning algorithms like FlowCutter are used [HS18]. How
does the cut based ND-order approach for the expanded model perform with other cut
based partitioning algorithms?
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